Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PAGEMAP_H
3#define _LINUX_PAGEMAP_H
4
5/*
6 * Copyright 1995 Linus Torvalds
7 */
8#include <linux/mm.h>
9#include <linux/fs.h>
10#include <linux/list.h>
11#include <linux/highmem.h>
12#include <linux/compiler.h>
13#include <linux/uaccess.h>
14#include <linux/gfp.h>
15#include <linux/bitops.h>
16#include <linux/hardirq.h> /* for in_interrupt() */
17#include <linux/hugetlb_inline.h>
18
19struct folio_batch;
20
21unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 pgoff_t start, pgoff_t end);
23
24static inline void invalidate_remote_inode(struct inode *inode)
25{
26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 S_ISLNK(inode->i_mode))
28 invalidate_mapping_pages(inode->i_mapping, 0, -1);
29}
30int invalidate_inode_pages2(struct address_space *mapping);
31int invalidate_inode_pages2_range(struct address_space *mapping,
32 pgoff_t start, pgoff_t end);
33int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35
36int write_inode_now(struct inode *, int sync);
37int filemap_fdatawrite(struct address_space *);
38int filemap_flush(struct address_space *);
39int filemap_fdatawait_keep_errors(struct address_space *mapping);
40int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
41int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
42 loff_t start_byte, loff_t end_byte);
43
44static inline int filemap_fdatawait(struct address_space *mapping)
45{
46 return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
47}
48
49bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
50int filemap_write_and_wait_range(struct address_space *mapping,
51 loff_t lstart, loff_t lend);
52int __filemap_fdatawrite_range(struct address_space *mapping,
53 loff_t start, loff_t end, int sync_mode);
54int filemap_fdatawrite_range(struct address_space *mapping,
55 loff_t start, loff_t end);
56int filemap_check_errors(struct address_space *mapping);
57void __filemap_set_wb_err(struct address_space *mapping, int err);
58int filemap_fdatawrite_wbc(struct address_space *mapping,
59 struct writeback_control *wbc);
60int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
61
62static inline int filemap_write_and_wait(struct address_space *mapping)
63{
64 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
65}
66
67/**
68 * filemap_set_wb_err - set a writeback error on an address_space
69 * @mapping: mapping in which to set writeback error
70 * @err: error to be set in mapping
71 *
72 * When writeback fails in some way, we must record that error so that
73 * userspace can be informed when fsync and the like are called. We endeavor
74 * to report errors on any file that was open at the time of the error. Some
75 * internal callers also need to know when writeback errors have occurred.
76 *
77 * When a writeback error occurs, most filesystems will want to call
78 * filemap_set_wb_err to record the error in the mapping so that it will be
79 * automatically reported whenever fsync is called on the file.
80 */
81static inline void filemap_set_wb_err(struct address_space *mapping, int err)
82{
83 /* Fastpath for common case of no error */
84 if (unlikely(err))
85 __filemap_set_wb_err(mapping, err);
86}
87
88/**
89 * filemap_check_wb_err - has an error occurred since the mark was sampled?
90 * @mapping: mapping to check for writeback errors
91 * @since: previously-sampled errseq_t
92 *
93 * Grab the errseq_t value from the mapping, and see if it has changed "since"
94 * the given value was sampled.
95 *
96 * If it has then report the latest error set, otherwise return 0.
97 */
98static inline int filemap_check_wb_err(struct address_space *mapping,
99 errseq_t since)
100{
101 return errseq_check(&mapping->wb_err, since);
102}
103
104/**
105 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
106 * @mapping: mapping to be sampled
107 *
108 * Writeback errors are always reported relative to a particular sample point
109 * in the past. This function provides those sample points.
110 */
111static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
112{
113 return errseq_sample(&mapping->wb_err);
114}
115
116/**
117 * file_sample_sb_err - sample the current errseq_t to test for later errors
118 * @file: file pointer to be sampled
119 *
120 * Grab the most current superblock-level errseq_t value for the given
121 * struct file.
122 */
123static inline errseq_t file_sample_sb_err(struct file *file)
124{
125 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
126}
127
128/*
129 * Flush file data before changing attributes. Caller must hold any locks
130 * required to prevent further writes to this file until we're done setting
131 * flags.
132 */
133static inline int inode_drain_writes(struct inode *inode)
134{
135 inode_dio_wait(inode);
136 return filemap_write_and_wait(inode->i_mapping);
137}
138
139static inline bool mapping_empty(struct address_space *mapping)
140{
141 return xa_empty(&mapping->i_pages);
142}
143
144/*
145 * mapping_shrinkable - test if page cache state allows inode reclaim
146 * @mapping: the page cache mapping
147 *
148 * This checks the mapping's cache state for the pupose of inode
149 * reclaim and LRU management.
150 *
151 * The caller is expected to hold the i_lock, but is not required to
152 * hold the i_pages lock, which usually protects cache state. That's
153 * because the i_lock and the list_lru lock that protect the inode and
154 * its LRU state don't nest inside the irq-safe i_pages lock.
155 *
156 * Cache deletions are performed under the i_lock, which ensures that
157 * when an inode goes empty, it will reliably get queued on the LRU.
158 *
159 * Cache additions do not acquire the i_lock and may race with this
160 * check, in which case we'll report the inode as shrinkable when it
161 * has cache pages. This is okay: the shrinker also checks the
162 * refcount and the referenced bit, which will be elevated or set in
163 * the process of adding new cache pages to an inode.
164 */
165static inline bool mapping_shrinkable(struct address_space *mapping)
166{
167 void *head;
168
169 /*
170 * On highmem systems, there could be lowmem pressure from the
171 * inodes before there is highmem pressure from the page
172 * cache. Make inodes shrinkable regardless of cache state.
173 */
174 if (IS_ENABLED(CONFIG_HIGHMEM))
175 return true;
176
177 /* Cache completely empty? Shrink away. */
178 head = rcu_access_pointer(mapping->i_pages.xa_head);
179 if (!head)
180 return true;
181
182 /*
183 * The xarray stores single offset-0 entries directly in the
184 * head pointer, which allows non-resident page cache entries
185 * to escape the shadow shrinker's list of xarray nodes. The
186 * inode shrinker needs to pick them up under memory pressure.
187 */
188 if (!xa_is_node(head) && xa_is_value(head))
189 return true;
190
191 return false;
192}
193
194/*
195 * Bits in mapping->flags.
196 */
197enum mapping_flags {
198 AS_EIO = 0, /* IO error on async write */
199 AS_ENOSPC = 1, /* ENOSPC on async write */
200 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
201 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
202 AS_EXITING = 4, /* final truncate in progress */
203 /* writeback related tags are not used */
204 AS_NO_WRITEBACK_TAGS = 5,
205 AS_LARGE_FOLIO_SUPPORT = 6,
206 AS_RELEASE_ALWAYS, /* Call ->release_folio(), even if no private data */
207 AS_STABLE_WRITES, /* must wait for writeback before modifying
208 folio contents */
209};
210
211/**
212 * mapping_set_error - record a writeback error in the address_space
213 * @mapping: the mapping in which an error should be set
214 * @error: the error to set in the mapping
215 *
216 * When writeback fails in some way, we must record that error so that
217 * userspace can be informed when fsync and the like are called. We endeavor
218 * to report errors on any file that was open at the time of the error. Some
219 * internal callers also need to know when writeback errors have occurred.
220 *
221 * When a writeback error occurs, most filesystems will want to call
222 * mapping_set_error to record the error in the mapping so that it can be
223 * reported when the application calls fsync(2).
224 */
225static inline void mapping_set_error(struct address_space *mapping, int error)
226{
227 if (likely(!error))
228 return;
229
230 /* Record in wb_err for checkers using errseq_t based tracking */
231 __filemap_set_wb_err(mapping, error);
232
233 /* Record it in superblock */
234 if (mapping->host)
235 errseq_set(&mapping->host->i_sb->s_wb_err, error);
236
237 /* Record it in flags for now, for legacy callers */
238 if (error == -ENOSPC)
239 set_bit(AS_ENOSPC, &mapping->flags);
240 else
241 set_bit(AS_EIO, &mapping->flags);
242}
243
244static inline void mapping_set_unevictable(struct address_space *mapping)
245{
246 set_bit(AS_UNEVICTABLE, &mapping->flags);
247}
248
249static inline void mapping_clear_unevictable(struct address_space *mapping)
250{
251 clear_bit(AS_UNEVICTABLE, &mapping->flags);
252}
253
254static inline bool mapping_unevictable(struct address_space *mapping)
255{
256 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
257}
258
259static inline void mapping_set_exiting(struct address_space *mapping)
260{
261 set_bit(AS_EXITING, &mapping->flags);
262}
263
264static inline int mapping_exiting(struct address_space *mapping)
265{
266 return test_bit(AS_EXITING, &mapping->flags);
267}
268
269static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
270{
271 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
272}
273
274static inline int mapping_use_writeback_tags(struct address_space *mapping)
275{
276 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
277}
278
279static inline bool mapping_release_always(const struct address_space *mapping)
280{
281 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
282}
283
284static inline void mapping_set_release_always(struct address_space *mapping)
285{
286 set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
287}
288
289static inline void mapping_clear_release_always(struct address_space *mapping)
290{
291 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
292}
293
294static inline bool mapping_stable_writes(const struct address_space *mapping)
295{
296 return test_bit(AS_STABLE_WRITES, &mapping->flags);
297}
298
299static inline void mapping_set_stable_writes(struct address_space *mapping)
300{
301 set_bit(AS_STABLE_WRITES, &mapping->flags);
302}
303
304static inline void mapping_clear_stable_writes(struct address_space *mapping)
305{
306 clear_bit(AS_STABLE_WRITES, &mapping->flags);
307}
308
309static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
310{
311 return mapping->gfp_mask;
312}
313
314/* Restricts the given gfp_mask to what the mapping allows. */
315static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
316 gfp_t gfp_mask)
317{
318 return mapping_gfp_mask(mapping) & gfp_mask;
319}
320
321/*
322 * This is non-atomic. Only to be used before the mapping is activated.
323 * Probably needs a barrier...
324 */
325static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
326{
327 m->gfp_mask = mask;
328}
329
330/**
331 * mapping_set_large_folios() - Indicate the file supports large folios.
332 * @mapping: The file.
333 *
334 * The filesystem should call this function in its inode constructor to
335 * indicate that the VFS can use large folios to cache the contents of
336 * the file.
337 *
338 * Context: This should not be called while the inode is active as it
339 * is non-atomic.
340 */
341static inline void mapping_set_large_folios(struct address_space *mapping)
342{
343 __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
344}
345
346/*
347 * Large folio support currently depends on THP. These dependencies are
348 * being worked on but are not yet fixed.
349 */
350static inline bool mapping_large_folio_support(struct address_space *mapping)
351{
352 return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
353 test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
354}
355
356static inline int filemap_nr_thps(struct address_space *mapping)
357{
358#ifdef CONFIG_READ_ONLY_THP_FOR_FS
359 return atomic_read(&mapping->nr_thps);
360#else
361 return 0;
362#endif
363}
364
365static inline void filemap_nr_thps_inc(struct address_space *mapping)
366{
367#ifdef CONFIG_READ_ONLY_THP_FOR_FS
368 if (!mapping_large_folio_support(mapping))
369 atomic_inc(&mapping->nr_thps);
370#else
371 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
372#endif
373}
374
375static inline void filemap_nr_thps_dec(struct address_space *mapping)
376{
377#ifdef CONFIG_READ_ONLY_THP_FOR_FS
378 if (!mapping_large_folio_support(mapping))
379 atomic_dec(&mapping->nr_thps);
380#else
381 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
382#endif
383}
384
385struct address_space *page_mapping(struct page *);
386struct address_space *folio_mapping(struct folio *);
387struct address_space *swapcache_mapping(struct folio *);
388
389/**
390 * folio_file_mapping - Find the mapping this folio belongs to.
391 * @folio: The folio.
392 *
393 * For folios which are in the page cache, return the mapping that this
394 * page belongs to. Folios in the swap cache return the mapping of the
395 * swap file or swap device where the data is stored. This is different
396 * from the mapping returned by folio_mapping(). The only reason to
397 * use it is if, like NFS, you return 0 from ->activate_swapfile.
398 *
399 * Do not call this for folios which aren't in the page cache or swap cache.
400 */
401static inline struct address_space *folio_file_mapping(struct folio *folio)
402{
403 if (unlikely(folio_test_swapcache(folio)))
404 return swapcache_mapping(folio);
405
406 return folio->mapping;
407}
408
409/**
410 * folio_flush_mapping - Find the file mapping this folio belongs to.
411 * @folio: The folio.
412 *
413 * For folios which are in the page cache, return the mapping that this
414 * page belongs to. Anonymous folios return NULL, even if they're in
415 * the swap cache. Other kinds of folio also return NULL.
416 *
417 * This is ONLY used by architecture cache flushing code. If you aren't
418 * writing cache flushing code, you want either folio_mapping() or
419 * folio_file_mapping().
420 */
421static inline struct address_space *folio_flush_mapping(struct folio *folio)
422{
423 if (unlikely(folio_test_swapcache(folio)))
424 return NULL;
425
426 return folio_mapping(folio);
427}
428
429static inline struct address_space *page_file_mapping(struct page *page)
430{
431 return folio_file_mapping(page_folio(page));
432}
433
434/**
435 * folio_inode - Get the host inode for this folio.
436 * @folio: The folio.
437 *
438 * For folios which are in the page cache, return the inode that this folio
439 * belongs to.
440 *
441 * Do not call this for folios which aren't in the page cache.
442 */
443static inline struct inode *folio_inode(struct folio *folio)
444{
445 return folio->mapping->host;
446}
447
448/**
449 * folio_attach_private - Attach private data to a folio.
450 * @folio: Folio to attach data to.
451 * @data: Data to attach to folio.
452 *
453 * Attaching private data to a folio increments the page's reference count.
454 * The data must be detached before the folio will be freed.
455 */
456static inline void folio_attach_private(struct folio *folio, void *data)
457{
458 folio_get(folio);
459 folio->private = data;
460 folio_set_private(folio);
461}
462
463/**
464 * folio_change_private - Change private data on a folio.
465 * @folio: Folio to change the data on.
466 * @data: Data to set on the folio.
467 *
468 * Change the private data attached to a folio and return the old
469 * data. The page must previously have had data attached and the data
470 * must be detached before the folio will be freed.
471 *
472 * Return: Data that was previously attached to the folio.
473 */
474static inline void *folio_change_private(struct folio *folio, void *data)
475{
476 void *old = folio_get_private(folio);
477
478 folio->private = data;
479 return old;
480}
481
482/**
483 * folio_detach_private - Detach private data from a folio.
484 * @folio: Folio to detach data from.
485 *
486 * Removes the data that was previously attached to the folio and decrements
487 * the refcount on the page.
488 *
489 * Return: Data that was attached to the folio.
490 */
491static inline void *folio_detach_private(struct folio *folio)
492{
493 void *data = folio_get_private(folio);
494
495 if (!folio_test_private(folio))
496 return NULL;
497 folio_clear_private(folio);
498 folio->private = NULL;
499 folio_put(folio);
500
501 return data;
502}
503
504static inline void attach_page_private(struct page *page, void *data)
505{
506 folio_attach_private(page_folio(page), data);
507}
508
509static inline void *detach_page_private(struct page *page)
510{
511 return folio_detach_private(page_folio(page));
512}
513
514/*
515 * There are some parts of the kernel which assume that PMD entries
516 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then,
517 * limit the maximum allocation order to PMD size. I'm not aware of any
518 * assumptions about maximum order if THP are disabled, but 8 seems like
519 * a good order (that's 1MB if you're using 4kB pages)
520 */
521#ifdef CONFIG_TRANSPARENT_HUGEPAGE
522#define MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER
523#else
524#define MAX_PAGECACHE_ORDER 8
525#endif
526
527#ifdef CONFIG_NUMA
528struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
529#else
530static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
531{
532 return folio_alloc(gfp, order);
533}
534#endif
535
536static inline struct page *__page_cache_alloc(gfp_t gfp)
537{
538 return &filemap_alloc_folio(gfp, 0)->page;
539}
540
541static inline struct page *page_cache_alloc(struct address_space *x)
542{
543 return __page_cache_alloc(mapping_gfp_mask(x));
544}
545
546static inline gfp_t readahead_gfp_mask(struct address_space *x)
547{
548 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
549}
550
551typedef int filler_t(struct file *, struct folio *);
552
553pgoff_t page_cache_next_miss(struct address_space *mapping,
554 pgoff_t index, unsigned long max_scan);
555pgoff_t page_cache_prev_miss(struct address_space *mapping,
556 pgoff_t index, unsigned long max_scan);
557
558/**
559 * typedef fgf_t - Flags for getting folios from the page cache.
560 *
561 * Most users of the page cache will not need to use these flags;
562 * there are convenience functions such as filemap_get_folio() and
563 * filemap_lock_folio(). For users which need more control over exactly
564 * what is done with the folios, these flags to __filemap_get_folio()
565 * are available.
566 *
567 * * %FGP_ACCESSED - The folio will be marked accessed.
568 * * %FGP_LOCK - The folio is returned locked.
569 * * %FGP_CREAT - If no folio is present then a new folio is allocated,
570 * added to the page cache and the VM's LRU list. The folio is
571 * returned locked.
572 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
573 * folio is already in cache. If the folio was allocated, unlock it
574 * before returning so the caller can do the same dance.
575 * * %FGP_WRITE - The folio will be written to by the caller.
576 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
577 * * %FGP_NOWAIT - Don't block on the folio lock.
578 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
579 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
580 * implementation.
581 */
582typedef unsigned int __bitwise fgf_t;
583
584#define FGP_ACCESSED ((__force fgf_t)0x00000001)
585#define FGP_LOCK ((__force fgf_t)0x00000002)
586#define FGP_CREAT ((__force fgf_t)0x00000004)
587#define FGP_WRITE ((__force fgf_t)0x00000008)
588#define FGP_NOFS ((__force fgf_t)0x00000010)
589#define FGP_NOWAIT ((__force fgf_t)0x00000020)
590#define FGP_FOR_MMAP ((__force fgf_t)0x00000040)
591#define FGP_STABLE ((__force fgf_t)0x00000080)
592#define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */
593
594#define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
595
596/**
597 * fgf_set_order - Encode a length in the fgf_t flags.
598 * @size: The suggested size of the folio to create.
599 *
600 * The caller of __filemap_get_folio() can use this to suggest a preferred
601 * size for the folio that is created. If there is already a folio at
602 * the index, it will be returned, no matter what its size. If a folio
603 * is freshly created, it may be of a different size than requested
604 * due to alignment constraints, memory pressure, or the presence of
605 * other folios at nearby indices.
606 */
607static inline fgf_t fgf_set_order(size_t size)
608{
609 unsigned int shift = ilog2(size);
610
611 if (shift <= PAGE_SHIFT)
612 return 0;
613 return (__force fgf_t)((shift - PAGE_SHIFT) << 26);
614}
615
616void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
617struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
618 fgf_t fgp_flags, gfp_t gfp);
619struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
620 fgf_t fgp_flags, gfp_t gfp);
621
622/**
623 * filemap_get_folio - Find and get a folio.
624 * @mapping: The address_space to search.
625 * @index: The page index.
626 *
627 * Looks up the page cache entry at @mapping & @index. If a folio is
628 * present, it is returned with an increased refcount.
629 *
630 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
631 * this index. Will not return a shadow, swap or DAX entry.
632 */
633static inline struct folio *filemap_get_folio(struct address_space *mapping,
634 pgoff_t index)
635{
636 return __filemap_get_folio(mapping, index, 0, 0);
637}
638
639/**
640 * filemap_lock_folio - Find and lock a folio.
641 * @mapping: The address_space to search.
642 * @index: The page index.
643 *
644 * Looks up the page cache entry at @mapping & @index. If a folio is
645 * present, it is returned locked with an increased refcount.
646 *
647 * Context: May sleep.
648 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
649 * this index. Will not return a shadow, swap or DAX entry.
650 */
651static inline struct folio *filemap_lock_folio(struct address_space *mapping,
652 pgoff_t index)
653{
654 return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
655}
656
657/**
658 * filemap_grab_folio - grab a folio from the page cache
659 * @mapping: The address space to search
660 * @index: The page index
661 *
662 * Looks up the page cache entry at @mapping & @index. If no folio is found,
663 * a new folio is created. The folio is locked, marked as accessed, and
664 * returned.
665 *
666 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
667 * and failed to create a folio.
668 */
669static inline struct folio *filemap_grab_folio(struct address_space *mapping,
670 pgoff_t index)
671{
672 return __filemap_get_folio(mapping, index,
673 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
674 mapping_gfp_mask(mapping));
675}
676
677/**
678 * find_get_page - find and get a page reference
679 * @mapping: the address_space to search
680 * @offset: the page index
681 *
682 * Looks up the page cache slot at @mapping & @offset. If there is a
683 * page cache page, it is returned with an increased refcount.
684 *
685 * Otherwise, %NULL is returned.
686 */
687static inline struct page *find_get_page(struct address_space *mapping,
688 pgoff_t offset)
689{
690 return pagecache_get_page(mapping, offset, 0, 0);
691}
692
693static inline struct page *find_get_page_flags(struct address_space *mapping,
694 pgoff_t offset, fgf_t fgp_flags)
695{
696 return pagecache_get_page(mapping, offset, fgp_flags, 0);
697}
698
699/**
700 * find_lock_page - locate, pin and lock a pagecache page
701 * @mapping: the address_space to search
702 * @index: the page index
703 *
704 * Looks up the page cache entry at @mapping & @index. If there is a
705 * page cache page, it is returned locked and with an increased
706 * refcount.
707 *
708 * Context: May sleep.
709 * Return: A struct page or %NULL if there is no page in the cache for this
710 * index.
711 */
712static inline struct page *find_lock_page(struct address_space *mapping,
713 pgoff_t index)
714{
715 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
716}
717
718/**
719 * find_or_create_page - locate or add a pagecache page
720 * @mapping: the page's address_space
721 * @index: the page's index into the mapping
722 * @gfp_mask: page allocation mode
723 *
724 * Looks up the page cache slot at @mapping & @offset. If there is a
725 * page cache page, it is returned locked and with an increased
726 * refcount.
727 *
728 * If the page is not present, a new page is allocated using @gfp_mask
729 * and added to the page cache and the VM's LRU list. The page is
730 * returned locked and with an increased refcount.
731 *
732 * On memory exhaustion, %NULL is returned.
733 *
734 * find_or_create_page() may sleep, even if @gfp_flags specifies an
735 * atomic allocation!
736 */
737static inline struct page *find_or_create_page(struct address_space *mapping,
738 pgoff_t index, gfp_t gfp_mask)
739{
740 return pagecache_get_page(mapping, index,
741 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
742 gfp_mask);
743}
744
745/**
746 * grab_cache_page_nowait - returns locked page at given index in given cache
747 * @mapping: target address_space
748 * @index: the page index
749 *
750 * Same as grab_cache_page(), but do not wait if the page is unavailable.
751 * This is intended for speculative data generators, where the data can
752 * be regenerated if the page couldn't be grabbed. This routine should
753 * be safe to call while holding the lock for another page.
754 *
755 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
756 * and deadlock against the caller's locked page.
757 */
758static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
759 pgoff_t index)
760{
761 return pagecache_get_page(mapping, index,
762 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
763 mapping_gfp_mask(mapping));
764}
765
766#define swapcache_index(folio) __page_file_index(&(folio)->page)
767
768/**
769 * folio_index - File index of a folio.
770 * @folio: The folio.
771 *
772 * For a folio which is either in the page cache or the swap cache,
773 * return its index within the address_space it belongs to. If you know
774 * the page is definitely in the page cache, you can look at the folio's
775 * index directly.
776 *
777 * Return: The index (offset in units of pages) of a folio in its file.
778 */
779static inline pgoff_t folio_index(struct folio *folio)
780{
781 if (unlikely(folio_test_swapcache(folio)))
782 return swapcache_index(folio);
783 return folio->index;
784}
785
786/**
787 * folio_next_index - Get the index of the next folio.
788 * @folio: The current folio.
789 *
790 * Return: The index of the folio which follows this folio in the file.
791 */
792static inline pgoff_t folio_next_index(struct folio *folio)
793{
794 return folio->index + folio_nr_pages(folio);
795}
796
797/**
798 * folio_file_page - The page for a particular index.
799 * @folio: The folio which contains this index.
800 * @index: The index we want to look up.
801 *
802 * Sometimes after looking up a folio in the page cache, we need to
803 * obtain the specific page for an index (eg a page fault).
804 *
805 * Return: The page containing the file data for this index.
806 */
807static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
808{
809 return folio_page(folio, index & (folio_nr_pages(folio) - 1));
810}
811
812/**
813 * folio_contains - Does this folio contain this index?
814 * @folio: The folio.
815 * @index: The page index within the file.
816 *
817 * Context: The caller should have the page locked in order to prevent
818 * (eg) shmem from moving the page between the page cache and swap cache
819 * and changing its index in the middle of the operation.
820 * Return: true or false.
821 */
822static inline bool folio_contains(struct folio *folio, pgoff_t index)
823{
824 return index - folio_index(folio) < folio_nr_pages(folio);
825}
826
827/*
828 * Given the page we found in the page cache, return the page corresponding
829 * to this index in the file
830 */
831static inline struct page *find_subpage(struct page *head, pgoff_t index)
832{
833 /* HugeTLBfs wants the head page regardless */
834 if (PageHuge(head))
835 return head;
836
837 return head + (index & (thp_nr_pages(head) - 1));
838}
839
840unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
841 pgoff_t end, struct folio_batch *fbatch);
842unsigned filemap_get_folios_contig(struct address_space *mapping,
843 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
844unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
845 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
846
847struct page *grab_cache_page_write_begin(struct address_space *mapping,
848 pgoff_t index);
849
850/*
851 * Returns locked page at given index in given cache, creating it if needed.
852 */
853static inline struct page *grab_cache_page(struct address_space *mapping,
854 pgoff_t index)
855{
856 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
857}
858
859struct folio *read_cache_folio(struct address_space *, pgoff_t index,
860 filler_t *filler, struct file *file);
861struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
862 gfp_t flags);
863struct page *read_cache_page(struct address_space *, pgoff_t index,
864 filler_t *filler, struct file *file);
865extern struct page * read_cache_page_gfp(struct address_space *mapping,
866 pgoff_t index, gfp_t gfp_mask);
867
868static inline struct page *read_mapping_page(struct address_space *mapping,
869 pgoff_t index, struct file *file)
870{
871 return read_cache_page(mapping, index, NULL, file);
872}
873
874static inline struct folio *read_mapping_folio(struct address_space *mapping,
875 pgoff_t index, struct file *file)
876{
877 return read_cache_folio(mapping, index, NULL, file);
878}
879
880/*
881 * Get the offset in PAGE_SIZE (even for hugetlb pages).
882 */
883static inline pgoff_t page_to_pgoff(struct page *page)
884{
885 struct page *head;
886
887 if (likely(!PageTransTail(page)))
888 return page->index;
889
890 head = compound_head(page);
891 /*
892 * We don't initialize ->index for tail pages: calculate based on
893 * head page
894 */
895 return head->index + page - head;
896}
897
898/*
899 * Return byte-offset into filesystem object for page.
900 */
901static inline loff_t page_offset(struct page *page)
902{
903 return ((loff_t)page->index) << PAGE_SHIFT;
904}
905
906static inline loff_t page_file_offset(struct page *page)
907{
908 return ((loff_t)page_index(page)) << PAGE_SHIFT;
909}
910
911/**
912 * folio_pos - Returns the byte position of this folio in its file.
913 * @folio: The folio.
914 */
915static inline loff_t folio_pos(struct folio *folio)
916{
917 return page_offset(&folio->page);
918}
919
920/**
921 * folio_file_pos - Returns the byte position of this folio in its file.
922 * @folio: The folio.
923 *
924 * This differs from folio_pos() for folios which belong to a swap file.
925 * NFS is the only filesystem today which needs to use folio_file_pos().
926 */
927static inline loff_t folio_file_pos(struct folio *folio)
928{
929 return page_file_offset(&folio->page);
930}
931
932/*
933 * Get the offset in PAGE_SIZE (even for hugetlb folios).
934 */
935static inline pgoff_t folio_pgoff(struct folio *folio)
936{
937 return folio->index;
938}
939
940static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
941 unsigned long address)
942{
943 pgoff_t pgoff;
944 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
945 pgoff += vma->vm_pgoff;
946 return pgoff;
947}
948
949struct wait_page_key {
950 struct folio *folio;
951 int bit_nr;
952 int page_match;
953};
954
955struct wait_page_queue {
956 struct folio *folio;
957 int bit_nr;
958 wait_queue_entry_t wait;
959};
960
961static inline bool wake_page_match(struct wait_page_queue *wait_page,
962 struct wait_page_key *key)
963{
964 if (wait_page->folio != key->folio)
965 return false;
966 key->page_match = 1;
967
968 if (wait_page->bit_nr != key->bit_nr)
969 return false;
970
971 return true;
972}
973
974void __folio_lock(struct folio *folio);
975int __folio_lock_killable(struct folio *folio);
976vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
977void unlock_page(struct page *page);
978void folio_unlock(struct folio *folio);
979
980/**
981 * folio_trylock() - Attempt to lock a folio.
982 * @folio: The folio to attempt to lock.
983 *
984 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
985 * when the locks are being taken in the wrong order, or if making
986 * progress through a batch of folios is more important than processing
987 * them in order). Usually folio_lock() is the correct function to call.
988 *
989 * Context: Any context.
990 * Return: Whether the lock was successfully acquired.
991 */
992static inline bool folio_trylock(struct folio *folio)
993{
994 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
995}
996
997/*
998 * Return true if the page was successfully locked
999 */
1000static inline int trylock_page(struct page *page)
1001{
1002 return folio_trylock(page_folio(page));
1003}
1004
1005/**
1006 * folio_lock() - Lock this folio.
1007 * @folio: The folio to lock.
1008 *
1009 * The folio lock protects against many things, probably more than it
1010 * should. It is primarily held while a folio is being brought uptodate,
1011 * either from its backing file or from swap. It is also held while a
1012 * folio is being truncated from its address_space, so holding the lock
1013 * is sufficient to keep folio->mapping stable.
1014 *
1015 * The folio lock is also held while write() is modifying the page to
1016 * provide POSIX atomicity guarantees (as long as the write does not
1017 * cross a page boundary). Other modifications to the data in the folio
1018 * do not hold the folio lock and can race with writes, eg DMA and stores
1019 * to mapped pages.
1020 *
1021 * Context: May sleep. If you need to acquire the locks of two or
1022 * more folios, they must be in order of ascending index, if they are
1023 * in the same address_space. If they are in different address_spaces,
1024 * acquire the lock of the folio which belongs to the address_space which
1025 * has the lowest address in memory first.
1026 */
1027static inline void folio_lock(struct folio *folio)
1028{
1029 might_sleep();
1030 if (!folio_trylock(folio))
1031 __folio_lock(folio);
1032}
1033
1034/**
1035 * lock_page() - Lock the folio containing this page.
1036 * @page: The page to lock.
1037 *
1038 * See folio_lock() for a description of what the lock protects.
1039 * This is a legacy function and new code should probably use folio_lock()
1040 * instead.
1041 *
1042 * Context: May sleep. Pages in the same folio share a lock, so do not
1043 * attempt to lock two pages which share a folio.
1044 */
1045static inline void lock_page(struct page *page)
1046{
1047 struct folio *folio;
1048 might_sleep();
1049
1050 folio = page_folio(page);
1051 if (!folio_trylock(folio))
1052 __folio_lock(folio);
1053}
1054
1055/**
1056 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1057 * @folio: The folio to lock.
1058 *
1059 * Attempts to lock the folio, like folio_lock(), except that the sleep
1060 * to acquire the lock is interruptible by a fatal signal.
1061 *
1062 * Context: May sleep; see folio_lock().
1063 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1064 */
1065static inline int folio_lock_killable(struct folio *folio)
1066{
1067 might_sleep();
1068 if (!folio_trylock(folio))
1069 return __folio_lock_killable(folio);
1070 return 0;
1071}
1072
1073/*
1074 * folio_lock_or_retry - Lock the folio, unless this would block and the
1075 * caller indicated that it can handle a retry.
1076 *
1077 * Return value and mmap_lock implications depend on flags; see
1078 * __folio_lock_or_retry().
1079 */
1080static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1081 struct vm_fault *vmf)
1082{
1083 might_sleep();
1084 if (!folio_trylock(folio))
1085 return __folio_lock_or_retry(folio, vmf);
1086 return 0;
1087}
1088
1089/*
1090 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1091 * and should not be used directly.
1092 */
1093void folio_wait_bit(struct folio *folio, int bit_nr);
1094int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1095
1096/*
1097 * Wait for a folio to be unlocked.
1098 *
1099 * This must be called with the caller "holding" the folio,
1100 * ie with increased folio reference count so that the folio won't
1101 * go away during the wait.
1102 */
1103static inline void folio_wait_locked(struct folio *folio)
1104{
1105 if (folio_test_locked(folio))
1106 folio_wait_bit(folio, PG_locked);
1107}
1108
1109static inline int folio_wait_locked_killable(struct folio *folio)
1110{
1111 if (!folio_test_locked(folio))
1112 return 0;
1113 return folio_wait_bit_killable(folio, PG_locked);
1114}
1115
1116static inline void wait_on_page_locked(struct page *page)
1117{
1118 folio_wait_locked(page_folio(page));
1119}
1120
1121void folio_end_read(struct folio *folio, bool success);
1122void wait_on_page_writeback(struct page *page);
1123void folio_wait_writeback(struct folio *folio);
1124int folio_wait_writeback_killable(struct folio *folio);
1125void end_page_writeback(struct page *page);
1126void folio_end_writeback(struct folio *folio);
1127void wait_for_stable_page(struct page *page);
1128void folio_wait_stable(struct folio *folio);
1129void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1130static inline void __set_page_dirty(struct page *page,
1131 struct address_space *mapping, int warn)
1132{
1133 __folio_mark_dirty(page_folio(page), mapping, warn);
1134}
1135void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1136void __folio_cancel_dirty(struct folio *folio);
1137static inline void folio_cancel_dirty(struct folio *folio)
1138{
1139 /* Avoid atomic ops, locking, etc. when not actually needed. */
1140 if (folio_test_dirty(folio))
1141 __folio_cancel_dirty(folio);
1142}
1143bool folio_clear_dirty_for_io(struct folio *folio);
1144bool clear_page_dirty_for_io(struct page *page);
1145void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1146int __set_page_dirty_nobuffers(struct page *page);
1147bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1148
1149#ifdef CONFIG_MIGRATION
1150int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1151 struct folio *src, enum migrate_mode mode);
1152#else
1153#define filemap_migrate_folio NULL
1154#endif
1155void folio_end_private_2(struct folio *folio);
1156void folio_wait_private_2(struct folio *folio);
1157int folio_wait_private_2_killable(struct folio *folio);
1158
1159/*
1160 * Add an arbitrary waiter to a page's wait queue
1161 */
1162void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1163
1164/*
1165 * Fault in userspace address range.
1166 */
1167size_t fault_in_writeable(char __user *uaddr, size_t size);
1168size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1169size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1170size_t fault_in_readable(const char __user *uaddr, size_t size);
1171
1172int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1173 pgoff_t index, gfp_t gfp);
1174int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1175 pgoff_t index, gfp_t gfp);
1176void filemap_remove_folio(struct folio *folio);
1177void __filemap_remove_folio(struct folio *folio, void *shadow);
1178void replace_page_cache_folio(struct folio *old, struct folio *new);
1179void delete_from_page_cache_batch(struct address_space *mapping,
1180 struct folio_batch *fbatch);
1181bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1182loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1183 int whence);
1184
1185/* Must be non-static for BPF error injection */
1186int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1187 pgoff_t index, gfp_t gfp, void **shadowp);
1188
1189bool filemap_range_has_writeback(struct address_space *mapping,
1190 loff_t start_byte, loff_t end_byte);
1191
1192/**
1193 * filemap_range_needs_writeback - check if range potentially needs writeback
1194 * @mapping: address space within which to check
1195 * @start_byte: offset in bytes where the range starts
1196 * @end_byte: offset in bytes where the range ends (inclusive)
1197 *
1198 * Find at least one page in the range supplied, usually used to check if
1199 * direct writing in this range will trigger a writeback. Used by O_DIRECT
1200 * read/write with IOCB_NOWAIT, to see if the caller needs to do
1201 * filemap_write_and_wait_range() before proceeding.
1202 *
1203 * Return: %true if the caller should do filemap_write_and_wait_range() before
1204 * doing O_DIRECT to a page in this range, %false otherwise.
1205 */
1206static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1207 loff_t start_byte,
1208 loff_t end_byte)
1209{
1210 if (!mapping->nrpages)
1211 return false;
1212 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1213 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1214 return false;
1215 return filemap_range_has_writeback(mapping, start_byte, end_byte);
1216}
1217
1218/**
1219 * struct readahead_control - Describes a readahead request.
1220 *
1221 * A readahead request is for consecutive pages. Filesystems which
1222 * implement the ->readahead method should call readahead_page() or
1223 * readahead_page_batch() in a loop and attempt to start I/O against
1224 * each page in the request.
1225 *
1226 * Most of the fields in this struct are private and should be accessed
1227 * by the functions below.
1228 *
1229 * @file: The file, used primarily by network filesystems for authentication.
1230 * May be NULL if invoked internally by the filesystem.
1231 * @mapping: Readahead this filesystem object.
1232 * @ra: File readahead state. May be NULL.
1233 */
1234struct readahead_control {
1235 struct file *file;
1236 struct address_space *mapping;
1237 struct file_ra_state *ra;
1238/* private: use the readahead_* accessors instead */
1239 pgoff_t _index;
1240 unsigned int _nr_pages;
1241 unsigned int _batch_count;
1242 bool _workingset;
1243 unsigned long _pflags;
1244};
1245
1246#define DEFINE_READAHEAD(ractl, f, r, m, i) \
1247 struct readahead_control ractl = { \
1248 .file = f, \
1249 .mapping = m, \
1250 .ra = r, \
1251 ._index = i, \
1252 }
1253
1254#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1255
1256void page_cache_ra_unbounded(struct readahead_control *,
1257 unsigned long nr_to_read, unsigned long lookahead_count);
1258void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1259void page_cache_async_ra(struct readahead_control *, struct folio *,
1260 unsigned long req_count);
1261void readahead_expand(struct readahead_control *ractl,
1262 loff_t new_start, size_t new_len);
1263
1264/**
1265 * page_cache_sync_readahead - generic file readahead
1266 * @mapping: address_space which holds the pagecache and I/O vectors
1267 * @ra: file_ra_state which holds the readahead state
1268 * @file: Used by the filesystem for authentication.
1269 * @index: Index of first page to be read.
1270 * @req_count: Total number of pages being read by the caller.
1271 *
1272 * page_cache_sync_readahead() should be called when a cache miss happened:
1273 * it will submit the read. The readahead logic may decide to piggyback more
1274 * pages onto the read request if access patterns suggest it will improve
1275 * performance.
1276 */
1277static inline
1278void page_cache_sync_readahead(struct address_space *mapping,
1279 struct file_ra_state *ra, struct file *file, pgoff_t index,
1280 unsigned long req_count)
1281{
1282 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1283 page_cache_sync_ra(&ractl, req_count);
1284}
1285
1286/**
1287 * page_cache_async_readahead - file readahead for marked pages
1288 * @mapping: address_space which holds the pagecache and I/O vectors
1289 * @ra: file_ra_state which holds the readahead state
1290 * @file: Used by the filesystem for authentication.
1291 * @folio: The folio at @index which triggered the readahead call.
1292 * @index: Index of first page to be read.
1293 * @req_count: Total number of pages being read by the caller.
1294 *
1295 * page_cache_async_readahead() should be called when a page is used which
1296 * is marked as PageReadahead; this is a marker to suggest that the application
1297 * has used up enough of the readahead window that we should start pulling in
1298 * more pages.
1299 */
1300static inline
1301void page_cache_async_readahead(struct address_space *mapping,
1302 struct file_ra_state *ra, struct file *file,
1303 struct folio *folio, pgoff_t index, unsigned long req_count)
1304{
1305 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1306 page_cache_async_ra(&ractl, folio, req_count);
1307}
1308
1309static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1310{
1311 struct folio *folio;
1312
1313 BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1314 ractl->_nr_pages -= ractl->_batch_count;
1315 ractl->_index += ractl->_batch_count;
1316
1317 if (!ractl->_nr_pages) {
1318 ractl->_batch_count = 0;
1319 return NULL;
1320 }
1321
1322 folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1323 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1324 ractl->_batch_count = folio_nr_pages(folio);
1325
1326 return folio;
1327}
1328
1329/**
1330 * readahead_page - Get the next page to read.
1331 * @ractl: The current readahead request.
1332 *
1333 * Context: The page is locked and has an elevated refcount. The caller
1334 * should decreases the refcount once the page has been submitted for I/O
1335 * and unlock the page once all I/O to that page has completed.
1336 * Return: A pointer to the next page, or %NULL if we are done.
1337 */
1338static inline struct page *readahead_page(struct readahead_control *ractl)
1339{
1340 struct folio *folio = __readahead_folio(ractl);
1341
1342 return &folio->page;
1343}
1344
1345/**
1346 * readahead_folio - Get the next folio to read.
1347 * @ractl: The current readahead request.
1348 *
1349 * Context: The folio is locked. The caller should unlock the folio once
1350 * all I/O to that folio has completed.
1351 * Return: A pointer to the next folio, or %NULL if we are done.
1352 */
1353static inline struct folio *readahead_folio(struct readahead_control *ractl)
1354{
1355 struct folio *folio = __readahead_folio(ractl);
1356
1357 if (folio)
1358 folio_put(folio);
1359 return folio;
1360}
1361
1362static inline unsigned int __readahead_batch(struct readahead_control *rac,
1363 struct page **array, unsigned int array_sz)
1364{
1365 unsigned int i = 0;
1366 XA_STATE(xas, &rac->mapping->i_pages, 0);
1367 struct page *page;
1368
1369 BUG_ON(rac->_batch_count > rac->_nr_pages);
1370 rac->_nr_pages -= rac->_batch_count;
1371 rac->_index += rac->_batch_count;
1372 rac->_batch_count = 0;
1373
1374 xas_set(&xas, rac->_index);
1375 rcu_read_lock();
1376 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1377 if (xas_retry(&xas, page))
1378 continue;
1379 VM_BUG_ON_PAGE(!PageLocked(page), page);
1380 VM_BUG_ON_PAGE(PageTail(page), page);
1381 array[i++] = page;
1382 rac->_batch_count += thp_nr_pages(page);
1383 if (i == array_sz)
1384 break;
1385 }
1386 rcu_read_unlock();
1387
1388 return i;
1389}
1390
1391/**
1392 * readahead_page_batch - Get a batch of pages to read.
1393 * @rac: The current readahead request.
1394 * @array: An array of pointers to struct page.
1395 *
1396 * Context: The pages are locked and have an elevated refcount. The caller
1397 * should decreases the refcount once the page has been submitted for I/O
1398 * and unlock the page once all I/O to that page has completed.
1399 * Return: The number of pages placed in the array. 0 indicates the request
1400 * is complete.
1401 */
1402#define readahead_page_batch(rac, array) \
1403 __readahead_batch(rac, array, ARRAY_SIZE(array))
1404
1405/**
1406 * readahead_pos - The byte offset into the file of this readahead request.
1407 * @rac: The readahead request.
1408 */
1409static inline loff_t readahead_pos(struct readahead_control *rac)
1410{
1411 return (loff_t)rac->_index * PAGE_SIZE;
1412}
1413
1414/**
1415 * readahead_length - The number of bytes in this readahead request.
1416 * @rac: The readahead request.
1417 */
1418static inline size_t readahead_length(struct readahead_control *rac)
1419{
1420 return rac->_nr_pages * PAGE_SIZE;
1421}
1422
1423/**
1424 * readahead_index - The index of the first page in this readahead request.
1425 * @rac: The readahead request.
1426 */
1427static inline pgoff_t readahead_index(struct readahead_control *rac)
1428{
1429 return rac->_index;
1430}
1431
1432/**
1433 * readahead_count - The number of pages in this readahead request.
1434 * @rac: The readahead request.
1435 */
1436static inline unsigned int readahead_count(struct readahead_control *rac)
1437{
1438 return rac->_nr_pages;
1439}
1440
1441/**
1442 * readahead_batch_length - The number of bytes in the current batch.
1443 * @rac: The readahead request.
1444 */
1445static inline size_t readahead_batch_length(struct readahead_control *rac)
1446{
1447 return rac->_batch_count * PAGE_SIZE;
1448}
1449
1450static inline unsigned long dir_pages(struct inode *inode)
1451{
1452 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1453 PAGE_SHIFT;
1454}
1455
1456/**
1457 * folio_mkwrite_check_truncate - check if folio was truncated
1458 * @folio: the folio to check
1459 * @inode: the inode to check the folio against
1460 *
1461 * Return: the number of bytes in the folio up to EOF,
1462 * or -EFAULT if the folio was truncated.
1463 */
1464static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1465 struct inode *inode)
1466{
1467 loff_t size = i_size_read(inode);
1468 pgoff_t index = size >> PAGE_SHIFT;
1469 size_t offset = offset_in_folio(folio, size);
1470
1471 if (!folio->mapping)
1472 return -EFAULT;
1473
1474 /* folio is wholly inside EOF */
1475 if (folio_next_index(folio) - 1 < index)
1476 return folio_size(folio);
1477 /* folio is wholly past EOF */
1478 if (folio->index > index || !offset)
1479 return -EFAULT;
1480 /* folio is partially inside EOF */
1481 return offset;
1482}
1483
1484/**
1485 * page_mkwrite_check_truncate - check if page was truncated
1486 * @page: the page to check
1487 * @inode: the inode to check the page against
1488 *
1489 * Returns the number of bytes in the page up to EOF,
1490 * or -EFAULT if the page was truncated.
1491 */
1492static inline int page_mkwrite_check_truncate(struct page *page,
1493 struct inode *inode)
1494{
1495 loff_t size = i_size_read(inode);
1496 pgoff_t index = size >> PAGE_SHIFT;
1497 int offset = offset_in_page(size);
1498
1499 if (page->mapping != inode->i_mapping)
1500 return -EFAULT;
1501
1502 /* page is wholly inside EOF */
1503 if (page->index < index)
1504 return PAGE_SIZE;
1505 /* page is wholly past EOF */
1506 if (page->index > index || !offset)
1507 return -EFAULT;
1508 /* page is partially inside EOF */
1509 return offset;
1510}
1511
1512/**
1513 * i_blocks_per_folio - How many blocks fit in this folio.
1514 * @inode: The inode which contains the blocks.
1515 * @folio: The folio.
1516 *
1517 * If the block size is larger than the size of this folio, return zero.
1518 *
1519 * Context: The caller should hold a refcount on the folio to prevent it
1520 * from being split.
1521 * Return: The number of filesystem blocks covered by this folio.
1522 */
1523static inline
1524unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1525{
1526 return folio_size(folio) >> inode->i_blkbits;
1527}
1528
1529static inline
1530unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1531{
1532 return i_blocks_per_folio(inode, page_folio(page));
1533}
1534#endif /* _LINUX_PAGEMAP_H */