at v6.7 168 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21#ifndef _LINUX_NETDEVICE_H 22#define _LINUX_NETDEVICE_H 23 24#include <linux/timer.h> 25#include <linux/bug.h> 26#include <linux/delay.h> 27#include <linux/atomic.h> 28#include <linux/prefetch.h> 29#include <asm/cache.h> 30#include <asm/byteorder.h> 31#include <asm/local.h> 32 33#include <linux/percpu.h> 34#include <linux/rculist.h> 35#include <linux/workqueue.h> 36#include <linux/dynamic_queue_limits.h> 37 38#include <net/net_namespace.h> 39#ifdef CONFIG_DCB 40#include <net/dcbnl.h> 41#endif 42#include <net/netprio_cgroup.h> 43 44#include <linux/netdev_features.h> 45#include <linux/neighbour.h> 46#include <uapi/linux/netdevice.h> 47#include <uapi/linux/if_bonding.h> 48#include <uapi/linux/pkt_cls.h> 49#include <uapi/linux/netdev.h> 50#include <linux/hashtable.h> 51#include <linux/rbtree.h> 52#include <net/net_trackers.h> 53#include <net/net_debug.h> 54#include <net/dropreason-core.h> 55 56struct netpoll_info; 57struct device; 58struct ethtool_ops; 59struct kernel_hwtstamp_config; 60struct phy_device; 61struct dsa_port; 62struct ip_tunnel_parm; 63struct macsec_context; 64struct macsec_ops; 65struct netdev_name_node; 66struct sd_flow_limit; 67struct sfp_bus; 68/* 802.11 specific */ 69struct wireless_dev; 70/* 802.15.4 specific */ 71struct wpan_dev; 72struct mpls_dev; 73/* UDP Tunnel offloads */ 74struct udp_tunnel_info; 75struct udp_tunnel_nic_info; 76struct udp_tunnel_nic; 77struct bpf_prog; 78struct xdp_buff; 79struct xdp_frame; 80struct xdp_metadata_ops; 81struct xdp_md; 82/* DPLL specific */ 83struct dpll_pin; 84 85typedef u32 xdp_features_t; 86 87void synchronize_net(void); 88void netdev_set_default_ethtool_ops(struct net_device *dev, 89 const struct ethtool_ops *ops); 90void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 91 92/* Backlog congestion levels */ 93#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 94#define NET_RX_DROP 1 /* packet dropped */ 95 96#define MAX_NEST_DEV 8 97 98/* 99 * Transmit return codes: transmit return codes originate from three different 100 * namespaces: 101 * 102 * - qdisc return codes 103 * - driver transmit return codes 104 * - errno values 105 * 106 * Drivers are allowed to return any one of those in their hard_start_xmit() 107 * function. Real network devices commonly used with qdiscs should only return 108 * the driver transmit return codes though - when qdiscs are used, the actual 109 * transmission happens asynchronously, so the value is not propagated to 110 * higher layers. Virtual network devices transmit synchronously; in this case 111 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 112 * others are propagated to higher layers. 113 */ 114 115/* qdisc ->enqueue() return codes. */ 116#define NET_XMIT_SUCCESS 0x00 117#define NET_XMIT_DROP 0x01 /* skb dropped */ 118#define NET_XMIT_CN 0x02 /* congestion notification */ 119#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 120 121/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 122 * indicates that the device will soon be dropping packets, or already drops 123 * some packets of the same priority; prompting us to send less aggressively. */ 124#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 125#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 126 127/* Driver transmit return codes */ 128#define NETDEV_TX_MASK 0xf0 129 130enum netdev_tx { 131 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 132 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 133 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 134}; 135typedef enum netdev_tx netdev_tx_t; 136 137/* 138 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 139 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 140 */ 141static inline bool dev_xmit_complete(int rc) 142{ 143 /* 144 * Positive cases with an skb consumed by a driver: 145 * - successful transmission (rc == NETDEV_TX_OK) 146 * - error while transmitting (rc < 0) 147 * - error while queueing to a different device (rc & NET_XMIT_MASK) 148 */ 149 if (likely(rc < NET_XMIT_MASK)) 150 return true; 151 152 return false; 153} 154 155/* 156 * Compute the worst-case header length according to the protocols 157 * used. 158 */ 159 160#if defined(CONFIG_HYPERV_NET) 161# define LL_MAX_HEADER 128 162#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 163# if defined(CONFIG_MAC80211_MESH) 164# define LL_MAX_HEADER 128 165# else 166# define LL_MAX_HEADER 96 167# endif 168#else 169# define LL_MAX_HEADER 32 170#endif 171 172#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 173 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 174#define MAX_HEADER LL_MAX_HEADER 175#else 176#define MAX_HEADER (LL_MAX_HEADER + 48) 177#endif 178 179/* 180 * Old network device statistics. Fields are native words 181 * (unsigned long) so they can be read and written atomically. 182 */ 183 184#define NET_DEV_STAT(FIELD) \ 185 union { \ 186 unsigned long FIELD; \ 187 atomic_long_t __##FIELD; \ 188 } 189 190struct net_device_stats { 191 NET_DEV_STAT(rx_packets); 192 NET_DEV_STAT(tx_packets); 193 NET_DEV_STAT(rx_bytes); 194 NET_DEV_STAT(tx_bytes); 195 NET_DEV_STAT(rx_errors); 196 NET_DEV_STAT(tx_errors); 197 NET_DEV_STAT(rx_dropped); 198 NET_DEV_STAT(tx_dropped); 199 NET_DEV_STAT(multicast); 200 NET_DEV_STAT(collisions); 201 NET_DEV_STAT(rx_length_errors); 202 NET_DEV_STAT(rx_over_errors); 203 NET_DEV_STAT(rx_crc_errors); 204 NET_DEV_STAT(rx_frame_errors); 205 NET_DEV_STAT(rx_fifo_errors); 206 NET_DEV_STAT(rx_missed_errors); 207 NET_DEV_STAT(tx_aborted_errors); 208 NET_DEV_STAT(tx_carrier_errors); 209 NET_DEV_STAT(tx_fifo_errors); 210 NET_DEV_STAT(tx_heartbeat_errors); 211 NET_DEV_STAT(tx_window_errors); 212 NET_DEV_STAT(rx_compressed); 213 NET_DEV_STAT(tx_compressed); 214}; 215#undef NET_DEV_STAT 216 217/* per-cpu stats, allocated on demand. 218 * Try to fit them in a single cache line, for dev_get_stats() sake. 219 */ 220struct net_device_core_stats { 221 unsigned long rx_dropped; 222 unsigned long tx_dropped; 223 unsigned long rx_nohandler; 224 unsigned long rx_otherhost_dropped; 225} __aligned(4 * sizeof(unsigned long)); 226 227#include <linux/cache.h> 228#include <linux/skbuff.h> 229 230#ifdef CONFIG_RPS 231#include <linux/static_key.h> 232extern struct static_key_false rps_needed; 233extern struct static_key_false rfs_needed; 234#endif 235 236struct neighbour; 237struct neigh_parms; 238struct sk_buff; 239 240struct netdev_hw_addr { 241 struct list_head list; 242 struct rb_node node; 243 unsigned char addr[MAX_ADDR_LEN]; 244 unsigned char type; 245#define NETDEV_HW_ADDR_T_LAN 1 246#define NETDEV_HW_ADDR_T_SAN 2 247#define NETDEV_HW_ADDR_T_UNICAST 3 248#define NETDEV_HW_ADDR_T_MULTICAST 4 249 bool global_use; 250 int sync_cnt; 251 int refcount; 252 int synced; 253 struct rcu_head rcu_head; 254}; 255 256struct netdev_hw_addr_list { 257 struct list_head list; 258 int count; 259 260 /* Auxiliary tree for faster lookup on addition and deletion */ 261 struct rb_root tree; 262}; 263 264#define netdev_hw_addr_list_count(l) ((l)->count) 265#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 266#define netdev_hw_addr_list_for_each(ha, l) \ 267 list_for_each_entry(ha, &(l)->list, list) 268 269#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 270#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 271#define netdev_for_each_uc_addr(ha, dev) \ 272 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 273#define netdev_for_each_synced_uc_addr(_ha, _dev) \ 274 netdev_for_each_uc_addr((_ha), (_dev)) \ 275 if ((_ha)->sync_cnt) 276 277#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 278#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 279#define netdev_for_each_mc_addr(ha, dev) \ 280 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 281#define netdev_for_each_synced_mc_addr(_ha, _dev) \ 282 netdev_for_each_mc_addr((_ha), (_dev)) \ 283 if ((_ha)->sync_cnt) 284 285struct hh_cache { 286 unsigned int hh_len; 287 seqlock_t hh_lock; 288 289 /* cached hardware header; allow for machine alignment needs. */ 290#define HH_DATA_MOD 16 291#define HH_DATA_OFF(__len) \ 292 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 293#define HH_DATA_ALIGN(__len) \ 294 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 295 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 296}; 297 298/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 299 * Alternative is: 300 * dev->hard_header_len ? (dev->hard_header_len + 301 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 302 * 303 * We could use other alignment values, but we must maintain the 304 * relationship HH alignment <= LL alignment. 305 */ 306#define LL_RESERVED_SPACE(dev) \ 307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 309#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 310 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 311 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 312 313struct header_ops { 314 int (*create) (struct sk_buff *skb, struct net_device *dev, 315 unsigned short type, const void *daddr, 316 const void *saddr, unsigned int len); 317 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322 bool (*validate)(const char *ll_header, unsigned int len); 323 __be16 (*parse_protocol)(const struct sk_buff *skb); 324}; 325 326/* These flag bits are private to the generic network queueing 327 * layer; they may not be explicitly referenced by any other 328 * code. 329 */ 330 331enum netdev_state_t { 332 __LINK_STATE_START, 333 __LINK_STATE_PRESENT, 334 __LINK_STATE_NOCARRIER, 335 __LINK_STATE_LINKWATCH_PENDING, 336 __LINK_STATE_DORMANT, 337 __LINK_STATE_TESTING, 338}; 339 340struct gro_list { 341 struct list_head list; 342 int count; 343}; 344 345/* 346 * size of gro hash buckets, must less than bit number of 347 * napi_struct::gro_bitmask 348 */ 349#define GRO_HASH_BUCKETS 8 350 351/* 352 * Structure for NAPI scheduling similar to tasklet but with weighting 353 */ 354struct napi_struct { 355 /* The poll_list must only be managed by the entity which 356 * changes the state of the NAPI_STATE_SCHED bit. This means 357 * whoever atomically sets that bit can add this napi_struct 358 * to the per-CPU poll_list, and whoever clears that bit 359 * can remove from the list right before clearing the bit. 360 */ 361 struct list_head poll_list; 362 363 unsigned long state; 364 int weight; 365 int defer_hard_irqs_count; 366 unsigned long gro_bitmask; 367 int (*poll)(struct napi_struct *, int); 368#ifdef CONFIG_NETPOLL 369 /* CPU actively polling if netpoll is configured */ 370 int poll_owner; 371#endif 372 /* CPU on which NAPI has been scheduled for processing */ 373 int list_owner; 374 struct net_device *dev; 375 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 376 struct sk_buff *skb; 377 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 378 int rx_count; /* length of rx_list */ 379 unsigned int napi_id; 380 struct hrtimer timer; 381 struct task_struct *thread; 382 /* control-path-only fields follow */ 383 struct list_head dev_list; 384 struct hlist_node napi_hash_node; 385}; 386 387enum { 388 NAPI_STATE_SCHED, /* Poll is scheduled */ 389 NAPI_STATE_MISSED, /* reschedule a napi */ 390 NAPI_STATE_DISABLE, /* Disable pending */ 391 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 392 NAPI_STATE_LISTED, /* NAPI added to system lists */ 393 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 394 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 395 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 396 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 397 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 398}; 399 400enum { 401 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 402 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 403 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 404 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 405 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 406 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 407 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 408 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 409 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 410 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 411}; 412 413enum gro_result { 414 GRO_MERGED, 415 GRO_MERGED_FREE, 416 GRO_HELD, 417 GRO_NORMAL, 418 GRO_CONSUMED, 419}; 420typedef enum gro_result gro_result_t; 421 422/* 423 * enum rx_handler_result - Possible return values for rx_handlers. 424 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 425 * further. 426 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 427 * case skb->dev was changed by rx_handler. 428 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 429 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 430 * 431 * rx_handlers are functions called from inside __netif_receive_skb(), to do 432 * special processing of the skb, prior to delivery to protocol handlers. 433 * 434 * Currently, a net_device can only have a single rx_handler registered. Trying 435 * to register a second rx_handler will return -EBUSY. 436 * 437 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 438 * To unregister a rx_handler on a net_device, use 439 * netdev_rx_handler_unregister(). 440 * 441 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 442 * do with the skb. 443 * 444 * If the rx_handler consumed the skb in some way, it should return 445 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 446 * the skb to be delivered in some other way. 447 * 448 * If the rx_handler changed skb->dev, to divert the skb to another 449 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 450 * new device will be called if it exists. 451 * 452 * If the rx_handler decides the skb should be ignored, it should return 453 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 454 * are registered on exact device (ptype->dev == skb->dev). 455 * 456 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 457 * delivered, it should return RX_HANDLER_PASS. 458 * 459 * A device without a registered rx_handler will behave as if rx_handler 460 * returned RX_HANDLER_PASS. 461 */ 462 463enum rx_handler_result { 464 RX_HANDLER_CONSUMED, 465 RX_HANDLER_ANOTHER, 466 RX_HANDLER_EXACT, 467 RX_HANDLER_PASS, 468}; 469typedef enum rx_handler_result rx_handler_result_t; 470typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 471 472void __napi_schedule(struct napi_struct *n); 473void __napi_schedule_irqoff(struct napi_struct *n); 474 475static inline bool napi_disable_pending(struct napi_struct *n) 476{ 477 return test_bit(NAPI_STATE_DISABLE, &n->state); 478} 479 480static inline bool napi_prefer_busy_poll(struct napi_struct *n) 481{ 482 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 483} 484 485/** 486 * napi_is_scheduled - test if NAPI is scheduled 487 * @n: NAPI context 488 * 489 * This check is "best-effort". With no locking implemented, 490 * a NAPI can be scheduled or terminate right after this check 491 * and produce not precise results. 492 * 493 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 494 * should not be used normally and napi_schedule should be 495 * used instead. 496 * 497 * Use only if the driver really needs to check if a NAPI 498 * is scheduled for example in the context of delayed timer 499 * that can be skipped if a NAPI is already scheduled. 500 * 501 * Return True if NAPI is scheduled, False otherwise. 502 */ 503static inline bool napi_is_scheduled(struct napi_struct *n) 504{ 505 return test_bit(NAPI_STATE_SCHED, &n->state); 506} 507 508bool napi_schedule_prep(struct napi_struct *n); 509 510/** 511 * napi_schedule - schedule NAPI poll 512 * @n: NAPI context 513 * 514 * Schedule NAPI poll routine to be called if it is not already 515 * running. 516 * Return true if we schedule a NAPI or false if not. 517 * Refer to napi_schedule_prep() for additional reason on why 518 * a NAPI might not be scheduled. 519 */ 520static inline bool napi_schedule(struct napi_struct *n) 521{ 522 if (napi_schedule_prep(n)) { 523 __napi_schedule(n); 524 return true; 525 } 526 527 return false; 528} 529 530/** 531 * napi_schedule_irqoff - schedule NAPI poll 532 * @n: NAPI context 533 * 534 * Variant of napi_schedule(), assuming hard irqs are masked. 535 */ 536static inline void napi_schedule_irqoff(struct napi_struct *n) 537{ 538 if (napi_schedule_prep(n)) 539 __napi_schedule_irqoff(n); 540} 541 542/** 543 * napi_complete_done - NAPI processing complete 544 * @n: NAPI context 545 * @work_done: number of packets processed 546 * 547 * Mark NAPI processing as complete. Should only be called if poll budget 548 * has not been completely consumed. 549 * Prefer over napi_complete(). 550 * Return false if device should avoid rearming interrupts. 551 */ 552bool napi_complete_done(struct napi_struct *n, int work_done); 553 554static inline bool napi_complete(struct napi_struct *n) 555{ 556 return napi_complete_done(n, 0); 557} 558 559int dev_set_threaded(struct net_device *dev, bool threaded); 560 561/** 562 * napi_disable - prevent NAPI from scheduling 563 * @n: NAPI context 564 * 565 * Stop NAPI from being scheduled on this context. 566 * Waits till any outstanding processing completes. 567 */ 568void napi_disable(struct napi_struct *n); 569 570void napi_enable(struct napi_struct *n); 571 572/** 573 * napi_synchronize - wait until NAPI is not running 574 * @n: NAPI context 575 * 576 * Wait until NAPI is done being scheduled on this context. 577 * Waits till any outstanding processing completes but 578 * does not disable future activations. 579 */ 580static inline void napi_synchronize(const struct napi_struct *n) 581{ 582 if (IS_ENABLED(CONFIG_SMP)) 583 while (test_bit(NAPI_STATE_SCHED, &n->state)) 584 msleep(1); 585 else 586 barrier(); 587} 588 589/** 590 * napi_if_scheduled_mark_missed - if napi is running, set the 591 * NAPIF_STATE_MISSED 592 * @n: NAPI context 593 * 594 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 595 * NAPI is scheduled. 596 **/ 597static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 598{ 599 unsigned long val, new; 600 601 val = READ_ONCE(n->state); 602 do { 603 if (val & NAPIF_STATE_DISABLE) 604 return true; 605 606 if (!(val & NAPIF_STATE_SCHED)) 607 return false; 608 609 new = val | NAPIF_STATE_MISSED; 610 } while (!try_cmpxchg(&n->state, &val, new)); 611 612 return true; 613} 614 615enum netdev_queue_state_t { 616 __QUEUE_STATE_DRV_XOFF, 617 __QUEUE_STATE_STACK_XOFF, 618 __QUEUE_STATE_FROZEN, 619}; 620 621#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 622#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 623#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 624 625#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 626#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 627 QUEUE_STATE_FROZEN) 628#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 629 QUEUE_STATE_FROZEN) 630 631/* 632 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 633 * netif_tx_* functions below are used to manipulate this flag. The 634 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 635 * queue independently. The netif_xmit_*stopped functions below are called 636 * to check if the queue has been stopped by the driver or stack (either 637 * of the XOFF bits are set in the state). Drivers should not need to call 638 * netif_xmit*stopped functions, they should only be using netif_tx_*. 639 */ 640 641struct netdev_queue { 642/* 643 * read-mostly part 644 */ 645 struct net_device *dev; 646 netdevice_tracker dev_tracker; 647 648 struct Qdisc __rcu *qdisc; 649 struct Qdisc __rcu *qdisc_sleeping; 650#ifdef CONFIG_SYSFS 651 struct kobject kobj; 652#endif 653#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 654 int numa_node; 655#endif 656 unsigned long tx_maxrate; 657 /* 658 * Number of TX timeouts for this queue 659 * (/sys/class/net/DEV/Q/trans_timeout) 660 */ 661 atomic_long_t trans_timeout; 662 663 /* Subordinate device that the queue has been assigned to */ 664 struct net_device *sb_dev; 665#ifdef CONFIG_XDP_SOCKETS 666 struct xsk_buff_pool *pool; 667#endif 668/* 669 * write-mostly part 670 */ 671 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 672 int xmit_lock_owner; 673 /* 674 * Time (in jiffies) of last Tx 675 */ 676 unsigned long trans_start; 677 678 unsigned long state; 679 680#ifdef CONFIG_BQL 681 struct dql dql; 682#endif 683} ____cacheline_aligned_in_smp; 684 685extern int sysctl_fb_tunnels_only_for_init_net; 686extern int sysctl_devconf_inherit_init_net; 687 688/* 689 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 690 * == 1 : For initns only 691 * == 2 : For none. 692 */ 693static inline bool net_has_fallback_tunnels(const struct net *net) 694{ 695#if IS_ENABLED(CONFIG_SYSCTL) 696 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 697 698 return !fb_tunnels_only_for_init_net || 699 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 700#else 701 return true; 702#endif 703} 704 705static inline int net_inherit_devconf(void) 706{ 707#if IS_ENABLED(CONFIG_SYSCTL) 708 return READ_ONCE(sysctl_devconf_inherit_init_net); 709#else 710 return 0; 711#endif 712} 713 714static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 715{ 716#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 717 return q->numa_node; 718#else 719 return NUMA_NO_NODE; 720#endif 721} 722 723static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 724{ 725#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 726 q->numa_node = node; 727#endif 728} 729 730#ifdef CONFIG_RPS 731/* 732 * This structure holds an RPS map which can be of variable length. The 733 * map is an array of CPUs. 734 */ 735struct rps_map { 736 unsigned int len; 737 struct rcu_head rcu; 738 u16 cpus[]; 739}; 740#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 741 742/* 743 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 744 * tail pointer for that CPU's input queue at the time of last enqueue, and 745 * a hardware filter index. 746 */ 747struct rps_dev_flow { 748 u16 cpu; 749 u16 filter; 750 unsigned int last_qtail; 751}; 752#define RPS_NO_FILTER 0xffff 753 754/* 755 * The rps_dev_flow_table structure contains a table of flow mappings. 756 */ 757struct rps_dev_flow_table { 758 unsigned int mask; 759 struct rcu_head rcu; 760 struct rps_dev_flow flows[]; 761}; 762#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 763 ((_num) * sizeof(struct rps_dev_flow))) 764 765/* 766 * The rps_sock_flow_table contains mappings of flows to the last CPU 767 * on which they were processed by the application (set in recvmsg). 768 * Each entry is a 32bit value. Upper part is the high-order bits 769 * of flow hash, lower part is CPU number. 770 * rps_cpu_mask is used to partition the space, depending on number of 771 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 772 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 773 * meaning we use 32-6=26 bits for the hash. 774 */ 775struct rps_sock_flow_table { 776 u32 mask; 777 778 u32 ents[] ____cacheline_aligned_in_smp; 779}; 780#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 781 782#define RPS_NO_CPU 0xffff 783 784extern u32 rps_cpu_mask; 785extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 786 787static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 788 u32 hash) 789{ 790 if (table && hash) { 791 unsigned int index = hash & table->mask; 792 u32 val = hash & ~rps_cpu_mask; 793 794 /* We only give a hint, preemption can change CPU under us */ 795 val |= raw_smp_processor_id(); 796 797 /* The following WRITE_ONCE() is paired with the READ_ONCE() 798 * here, and another one in get_rps_cpu(). 799 */ 800 if (READ_ONCE(table->ents[index]) != val) 801 WRITE_ONCE(table->ents[index], val); 802 } 803} 804 805#ifdef CONFIG_RFS_ACCEL 806bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 807 u16 filter_id); 808#endif 809#endif /* CONFIG_RPS */ 810 811/* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 812enum xps_map_type { 813 XPS_CPUS = 0, 814 XPS_RXQS, 815 XPS_MAPS_MAX, 816}; 817 818#ifdef CONFIG_XPS 819/* 820 * This structure holds an XPS map which can be of variable length. The 821 * map is an array of queues. 822 */ 823struct xps_map { 824 unsigned int len; 825 unsigned int alloc_len; 826 struct rcu_head rcu; 827 u16 queues[]; 828}; 829#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 830#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 831 - sizeof(struct xps_map)) / sizeof(u16)) 832 833/* 834 * This structure holds all XPS maps for device. Maps are indexed by CPU. 835 * 836 * We keep track of the number of cpus/rxqs used when the struct is allocated, 837 * in nr_ids. This will help not accessing out-of-bound memory. 838 * 839 * We keep track of the number of traffic classes used when the struct is 840 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 841 * not crossing its upper bound, as the original dev->num_tc can be updated in 842 * the meantime. 843 */ 844struct xps_dev_maps { 845 struct rcu_head rcu; 846 unsigned int nr_ids; 847 s16 num_tc; 848 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 849}; 850 851#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 852 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 853 854#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 855 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 856 857#endif /* CONFIG_XPS */ 858 859#define TC_MAX_QUEUE 16 860#define TC_BITMASK 15 861/* HW offloaded queuing disciplines txq count and offset maps */ 862struct netdev_tc_txq { 863 u16 count; 864 u16 offset; 865}; 866 867#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 868/* 869 * This structure is to hold information about the device 870 * configured to run FCoE protocol stack. 871 */ 872struct netdev_fcoe_hbainfo { 873 char manufacturer[64]; 874 char serial_number[64]; 875 char hardware_version[64]; 876 char driver_version[64]; 877 char optionrom_version[64]; 878 char firmware_version[64]; 879 char model[256]; 880 char model_description[256]; 881}; 882#endif 883 884#define MAX_PHYS_ITEM_ID_LEN 32 885 886/* This structure holds a unique identifier to identify some 887 * physical item (port for example) used by a netdevice. 888 */ 889struct netdev_phys_item_id { 890 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 891 unsigned char id_len; 892}; 893 894static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 895 struct netdev_phys_item_id *b) 896{ 897 return a->id_len == b->id_len && 898 memcmp(a->id, b->id, a->id_len) == 0; 899} 900 901typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 902 struct sk_buff *skb, 903 struct net_device *sb_dev); 904 905enum net_device_path_type { 906 DEV_PATH_ETHERNET = 0, 907 DEV_PATH_VLAN, 908 DEV_PATH_BRIDGE, 909 DEV_PATH_PPPOE, 910 DEV_PATH_DSA, 911 DEV_PATH_MTK_WDMA, 912}; 913 914struct net_device_path { 915 enum net_device_path_type type; 916 const struct net_device *dev; 917 union { 918 struct { 919 u16 id; 920 __be16 proto; 921 u8 h_dest[ETH_ALEN]; 922 } encap; 923 struct { 924 enum { 925 DEV_PATH_BR_VLAN_KEEP, 926 DEV_PATH_BR_VLAN_TAG, 927 DEV_PATH_BR_VLAN_UNTAG, 928 DEV_PATH_BR_VLAN_UNTAG_HW, 929 } vlan_mode; 930 u16 vlan_id; 931 __be16 vlan_proto; 932 } bridge; 933 struct { 934 int port; 935 u16 proto; 936 } dsa; 937 struct { 938 u8 wdma_idx; 939 u8 queue; 940 u16 wcid; 941 u8 bss; 942 u8 amsdu; 943 } mtk_wdma; 944 }; 945}; 946 947#define NET_DEVICE_PATH_STACK_MAX 5 948#define NET_DEVICE_PATH_VLAN_MAX 2 949 950struct net_device_path_stack { 951 int num_paths; 952 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 953}; 954 955struct net_device_path_ctx { 956 const struct net_device *dev; 957 u8 daddr[ETH_ALEN]; 958 959 int num_vlans; 960 struct { 961 u16 id; 962 __be16 proto; 963 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 964}; 965 966enum tc_setup_type { 967 TC_QUERY_CAPS, 968 TC_SETUP_QDISC_MQPRIO, 969 TC_SETUP_CLSU32, 970 TC_SETUP_CLSFLOWER, 971 TC_SETUP_CLSMATCHALL, 972 TC_SETUP_CLSBPF, 973 TC_SETUP_BLOCK, 974 TC_SETUP_QDISC_CBS, 975 TC_SETUP_QDISC_RED, 976 TC_SETUP_QDISC_PRIO, 977 TC_SETUP_QDISC_MQ, 978 TC_SETUP_QDISC_ETF, 979 TC_SETUP_ROOT_QDISC, 980 TC_SETUP_QDISC_GRED, 981 TC_SETUP_QDISC_TAPRIO, 982 TC_SETUP_FT, 983 TC_SETUP_QDISC_ETS, 984 TC_SETUP_QDISC_TBF, 985 TC_SETUP_QDISC_FIFO, 986 TC_SETUP_QDISC_HTB, 987 TC_SETUP_ACT, 988}; 989 990/* These structures hold the attributes of bpf state that are being passed 991 * to the netdevice through the bpf op. 992 */ 993enum bpf_netdev_command { 994 /* Set or clear a bpf program used in the earliest stages of packet 995 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 996 * is responsible for calling bpf_prog_put on any old progs that are 997 * stored. In case of error, the callee need not release the new prog 998 * reference, but on success it takes ownership and must bpf_prog_put 999 * when it is no longer used. 1000 */ 1001 XDP_SETUP_PROG, 1002 XDP_SETUP_PROG_HW, 1003 /* BPF program for offload callbacks, invoked at program load time. */ 1004 BPF_OFFLOAD_MAP_ALLOC, 1005 BPF_OFFLOAD_MAP_FREE, 1006 XDP_SETUP_XSK_POOL, 1007}; 1008 1009struct bpf_prog_offload_ops; 1010struct netlink_ext_ack; 1011struct xdp_umem; 1012struct xdp_dev_bulk_queue; 1013struct bpf_xdp_link; 1014 1015enum bpf_xdp_mode { 1016 XDP_MODE_SKB = 0, 1017 XDP_MODE_DRV = 1, 1018 XDP_MODE_HW = 2, 1019 __MAX_XDP_MODE 1020}; 1021 1022struct bpf_xdp_entity { 1023 struct bpf_prog *prog; 1024 struct bpf_xdp_link *link; 1025}; 1026 1027struct netdev_bpf { 1028 enum bpf_netdev_command command; 1029 union { 1030 /* XDP_SETUP_PROG */ 1031 struct { 1032 u32 flags; 1033 struct bpf_prog *prog; 1034 struct netlink_ext_ack *extack; 1035 }; 1036 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1037 struct { 1038 struct bpf_offloaded_map *offmap; 1039 }; 1040 /* XDP_SETUP_XSK_POOL */ 1041 struct { 1042 struct xsk_buff_pool *pool; 1043 u16 queue_id; 1044 } xsk; 1045 }; 1046}; 1047 1048/* Flags for ndo_xsk_wakeup. */ 1049#define XDP_WAKEUP_RX (1 << 0) 1050#define XDP_WAKEUP_TX (1 << 1) 1051 1052#ifdef CONFIG_XFRM_OFFLOAD 1053struct xfrmdev_ops { 1054 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1055 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1056 void (*xdo_dev_state_free) (struct xfrm_state *x); 1057 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1058 struct xfrm_state *x); 1059 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1060 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1061 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1062 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1063 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1064}; 1065#endif 1066 1067struct dev_ifalias { 1068 struct rcu_head rcuhead; 1069 char ifalias[]; 1070}; 1071 1072struct devlink; 1073struct tlsdev_ops; 1074 1075struct netdev_net_notifier { 1076 struct list_head list; 1077 struct notifier_block *nb; 1078}; 1079 1080/* 1081 * This structure defines the management hooks for network devices. 1082 * The following hooks can be defined; unless noted otherwise, they are 1083 * optional and can be filled with a null pointer. 1084 * 1085 * int (*ndo_init)(struct net_device *dev); 1086 * This function is called once when a network device is registered. 1087 * The network device can use this for any late stage initialization 1088 * or semantic validation. It can fail with an error code which will 1089 * be propagated back to register_netdev. 1090 * 1091 * void (*ndo_uninit)(struct net_device *dev); 1092 * This function is called when device is unregistered or when registration 1093 * fails. It is not called if init fails. 1094 * 1095 * int (*ndo_open)(struct net_device *dev); 1096 * This function is called when a network device transitions to the up 1097 * state. 1098 * 1099 * int (*ndo_stop)(struct net_device *dev); 1100 * This function is called when a network device transitions to the down 1101 * state. 1102 * 1103 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1104 * struct net_device *dev); 1105 * Called when a packet needs to be transmitted. 1106 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1107 * the queue before that can happen; it's for obsolete devices and weird 1108 * corner cases, but the stack really does a non-trivial amount 1109 * of useless work if you return NETDEV_TX_BUSY. 1110 * Required; cannot be NULL. 1111 * 1112 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1113 * struct net_device *dev 1114 * netdev_features_t features); 1115 * Called by core transmit path to determine if device is capable of 1116 * performing offload operations on a given packet. This is to give 1117 * the device an opportunity to implement any restrictions that cannot 1118 * be otherwise expressed by feature flags. The check is called with 1119 * the set of features that the stack has calculated and it returns 1120 * those the driver believes to be appropriate. 1121 * 1122 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1123 * struct net_device *sb_dev); 1124 * Called to decide which queue to use when device supports multiple 1125 * transmit queues. 1126 * 1127 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1128 * This function is called to allow device receiver to make 1129 * changes to configuration when multicast or promiscuous is enabled. 1130 * 1131 * void (*ndo_set_rx_mode)(struct net_device *dev); 1132 * This function is called device changes address list filtering. 1133 * If driver handles unicast address filtering, it should set 1134 * IFF_UNICAST_FLT in its priv_flags. 1135 * 1136 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1137 * This function is called when the Media Access Control address 1138 * needs to be changed. If this interface is not defined, the 1139 * MAC address can not be changed. 1140 * 1141 * int (*ndo_validate_addr)(struct net_device *dev); 1142 * Test if Media Access Control address is valid for the device. 1143 * 1144 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1145 * Old-style ioctl entry point. This is used internally by the 1146 * appletalk and ieee802154 subsystems but is no longer called by 1147 * the device ioctl handler. 1148 * 1149 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1150 * Used by the bonding driver for its device specific ioctls: 1151 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1152 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1153 * 1154 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1155 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1156 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1157 * 1158 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1159 * Used to set network devices bus interface parameters. This interface 1160 * is retained for legacy reasons; new devices should use the bus 1161 * interface (PCI) for low level management. 1162 * 1163 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1164 * Called when a user wants to change the Maximum Transfer Unit 1165 * of a device. 1166 * 1167 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1168 * Callback used when the transmitter has not made any progress 1169 * for dev->watchdog ticks. 1170 * 1171 * void (*ndo_get_stats64)(struct net_device *dev, 1172 * struct rtnl_link_stats64 *storage); 1173 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1174 * Called when a user wants to get the network device usage 1175 * statistics. Drivers must do one of the following: 1176 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1177 * rtnl_link_stats64 structure passed by the caller. 1178 * 2. Define @ndo_get_stats to update a net_device_stats structure 1179 * (which should normally be dev->stats) and return a pointer to 1180 * it. The structure may be changed asynchronously only if each 1181 * field is written atomically. 1182 * 3. Update dev->stats asynchronously and atomically, and define 1183 * neither operation. 1184 * 1185 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1186 * Return true if this device supports offload stats of this attr_id. 1187 * 1188 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1189 * void *attr_data) 1190 * Get statistics for offload operations by attr_id. Write it into the 1191 * attr_data pointer. 1192 * 1193 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1194 * If device supports VLAN filtering this function is called when a 1195 * VLAN id is registered. 1196 * 1197 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1198 * If device supports VLAN filtering this function is called when a 1199 * VLAN id is unregistered. 1200 * 1201 * void (*ndo_poll_controller)(struct net_device *dev); 1202 * 1203 * SR-IOV management functions. 1204 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1205 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1206 * u8 qos, __be16 proto); 1207 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1208 * int max_tx_rate); 1209 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1210 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1211 * int (*ndo_get_vf_config)(struct net_device *dev, 1212 * int vf, struct ifla_vf_info *ivf); 1213 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1214 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1215 * struct nlattr *port[]); 1216 * 1217 * Enable or disable the VF ability to query its RSS Redirection Table and 1218 * Hash Key. This is needed since on some devices VF share this information 1219 * with PF and querying it may introduce a theoretical security risk. 1220 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1221 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1222 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1223 * void *type_data); 1224 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1225 * This is always called from the stack with the rtnl lock held and netif 1226 * tx queues stopped. This allows the netdevice to perform queue 1227 * management safely. 1228 * 1229 * Fiber Channel over Ethernet (FCoE) offload functions. 1230 * int (*ndo_fcoe_enable)(struct net_device *dev); 1231 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1232 * so the underlying device can perform whatever needed configuration or 1233 * initialization to support acceleration of FCoE traffic. 1234 * 1235 * int (*ndo_fcoe_disable)(struct net_device *dev); 1236 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1237 * so the underlying device can perform whatever needed clean-ups to 1238 * stop supporting acceleration of FCoE traffic. 1239 * 1240 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1241 * struct scatterlist *sgl, unsigned int sgc); 1242 * Called when the FCoE Initiator wants to initialize an I/O that 1243 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1244 * perform necessary setup and returns 1 to indicate the device is set up 1245 * successfully to perform DDP on this I/O, otherwise this returns 0. 1246 * 1247 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1248 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1249 * indicated by the FC exchange id 'xid', so the underlying device can 1250 * clean up and reuse resources for later DDP requests. 1251 * 1252 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1253 * struct scatterlist *sgl, unsigned int sgc); 1254 * Called when the FCoE Target wants to initialize an I/O that 1255 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1256 * perform necessary setup and returns 1 to indicate the device is set up 1257 * successfully to perform DDP on this I/O, otherwise this returns 0. 1258 * 1259 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1260 * struct netdev_fcoe_hbainfo *hbainfo); 1261 * Called when the FCoE Protocol stack wants information on the underlying 1262 * device. This information is utilized by the FCoE protocol stack to 1263 * register attributes with Fiber Channel management service as per the 1264 * FC-GS Fabric Device Management Information(FDMI) specification. 1265 * 1266 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1267 * Called when the underlying device wants to override default World Wide 1268 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1269 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1270 * protocol stack to use. 1271 * 1272 * RFS acceleration. 1273 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1274 * u16 rxq_index, u32 flow_id); 1275 * Set hardware filter for RFS. rxq_index is the target queue index; 1276 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1277 * Return the filter ID on success, or a negative error code. 1278 * 1279 * Slave management functions (for bridge, bonding, etc). 1280 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1281 * Called to make another netdev an underling. 1282 * 1283 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1284 * Called to release previously enslaved netdev. 1285 * 1286 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1287 * struct sk_buff *skb, 1288 * bool all_slaves); 1289 * Get the xmit slave of master device. If all_slaves is true, function 1290 * assume all the slaves can transmit. 1291 * 1292 * Feature/offload setting functions. 1293 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1294 * netdev_features_t features); 1295 * Adjusts the requested feature flags according to device-specific 1296 * constraints, and returns the resulting flags. Must not modify 1297 * the device state. 1298 * 1299 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1300 * Called to update device configuration to new features. Passed 1301 * feature set might be less than what was returned by ndo_fix_features()). 1302 * Must return >0 or -errno if it changed dev->features itself. 1303 * 1304 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1305 * struct net_device *dev, 1306 * const unsigned char *addr, u16 vid, u16 flags, 1307 * struct netlink_ext_ack *extack); 1308 * Adds an FDB entry to dev for addr. 1309 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1310 * struct net_device *dev, 1311 * const unsigned char *addr, u16 vid) 1312 * Deletes the FDB entry from dev coresponding to addr. 1313 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1314 * struct netlink_ext_ack *extack); 1315 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1316 * struct net_device *dev, struct net_device *filter_dev, 1317 * int *idx) 1318 * Used to add FDB entries to dump requests. Implementers should add 1319 * entries to skb and update idx with the number of entries. 1320 * 1321 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1322 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1323 * Adds an MDB entry to dev. 1324 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1325 * struct netlink_ext_ack *extack); 1326 * Deletes the MDB entry from dev. 1327 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1328 * struct netlink_callback *cb); 1329 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1330 * callback is used by core rtnetlink code. 1331 * 1332 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1333 * u16 flags, struct netlink_ext_ack *extack) 1334 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1335 * struct net_device *dev, u32 filter_mask, 1336 * int nlflags) 1337 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1338 * u16 flags); 1339 * 1340 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1341 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1342 * which do not represent real hardware may define this to allow their 1343 * userspace components to manage their virtual carrier state. Devices 1344 * that determine carrier state from physical hardware properties (eg 1345 * network cables) or protocol-dependent mechanisms (eg 1346 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1347 * 1348 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1349 * struct netdev_phys_item_id *ppid); 1350 * Called to get ID of physical port of this device. If driver does 1351 * not implement this, it is assumed that the hw is not able to have 1352 * multiple net devices on single physical port. 1353 * 1354 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1355 * struct netdev_phys_item_id *ppid) 1356 * Called to get the parent ID of the physical port of this device. 1357 * 1358 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1359 * struct net_device *dev) 1360 * Called by upper layer devices to accelerate switching or other 1361 * station functionality into hardware. 'pdev is the lowerdev 1362 * to use for the offload and 'dev' is the net device that will 1363 * back the offload. Returns a pointer to the private structure 1364 * the upper layer will maintain. 1365 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1366 * Called by upper layer device to delete the station created 1367 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1368 * the station and priv is the structure returned by the add 1369 * operation. 1370 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1371 * int queue_index, u32 maxrate); 1372 * Called when a user wants to set a max-rate limitation of specific 1373 * TX queue. 1374 * int (*ndo_get_iflink)(const struct net_device *dev); 1375 * Called to get the iflink value of this device. 1376 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1377 * This function is used to get egress tunnel information for given skb. 1378 * This is useful for retrieving outer tunnel header parameters while 1379 * sampling packet. 1380 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1381 * This function is used to specify the headroom that the skb must 1382 * consider when allocation skb during packet reception. Setting 1383 * appropriate rx headroom value allows avoiding skb head copy on 1384 * forward. Setting a negative value resets the rx headroom to the 1385 * default value. 1386 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1387 * This function is used to set or query state related to XDP on the 1388 * netdevice and manage BPF offload. See definition of 1389 * enum bpf_netdev_command for details. 1390 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1391 * u32 flags); 1392 * This function is used to submit @n XDP packets for transmit on a 1393 * netdevice. Returns number of frames successfully transmitted, frames 1394 * that got dropped are freed/returned via xdp_return_frame(). 1395 * Returns negative number, means general error invoking ndo, meaning 1396 * no frames were xmit'ed and core-caller will free all frames. 1397 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1398 * struct xdp_buff *xdp); 1399 * Get the xmit slave of master device based on the xdp_buff. 1400 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1401 * This function is used to wake up the softirq, ksoftirqd or kthread 1402 * responsible for sending and/or receiving packets on a specific 1403 * queue id bound to an AF_XDP socket. The flags field specifies if 1404 * only RX, only Tx, or both should be woken up using the flags 1405 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1406 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1407 * int cmd); 1408 * Add, change, delete or get information on an IPv4 tunnel. 1409 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1410 * If a device is paired with a peer device, return the peer instance. 1411 * The caller must be under RCU read context. 1412 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1413 * Get the forwarding path to reach the real device from the HW destination address 1414 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1415 * const struct skb_shared_hwtstamps *hwtstamps, 1416 * bool cycles); 1417 * Get hardware timestamp based on normal/adjustable time or free running 1418 * cycle counter. This function is required if physical clock supports a 1419 * free running cycle counter. 1420 * 1421 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1422 * struct kernel_hwtstamp_config *kernel_config); 1423 * Get the currently configured hardware timestamping parameters for the 1424 * NIC device. 1425 * 1426 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1427 * struct kernel_hwtstamp_config *kernel_config, 1428 * struct netlink_ext_ack *extack); 1429 * Change the hardware timestamping parameters for NIC device. 1430 */ 1431struct net_device_ops { 1432 int (*ndo_init)(struct net_device *dev); 1433 void (*ndo_uninit)(struct net_device *dev); 1434 int (*ndo_open)(struct net_device *dev); 1435 int (*ndo_stop)(struct net_device *dev); 1436 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1437 struct net_device *dev); 1438 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1439 struct net_device *dev, 1440 netdev_features_t features); 1441 u16 (*ndo_select_queue)(struct net_device *dev, 1442 struct sk_buff *skb, 1443 struct net_device *sb_dev); 1444 void (*ndo_change_rx_flags)(struct net_device *dev, 1445 int flags); 1446 void (*ndo_set_rx_mode)(struct net_device *dev); 1447 int (*ndo_set_mac_address)(struct net_device *dev, 1448 void *addr); 1449 int (*ndo_validate_addr)(struct net_device *dev); 1450 int (*ndo_do_ioctl)(struct net_device *dev, 1451 struct ifreq *ifr, int cmd); 1452 int (*ndo_eth_ioctl)(struct net_device *dev, 1453 struct ifreq *ifr, int cmd); 1454 int (*ndo_siocbond)(struct net_device *dev, 1455 struct ifreq *ifr, int cmd); 1456 int (*ndo_siocwandev)(struct net_device *dev, 1457 struct if_settings *ifs); 1458 int (*ndo_siocdevprivate)(struct net_device *dev, 1459 struct ifreq *ifr, 1460 void __user *data, int cmd); 1461 int (*ndo_set_config)(struct net_device *dev, 1462 struct ifmap *map); 1463 int (*ndo_change_mtu)(struct net_device *dev, 1464 int new_mtu); 1465 int (*ndo_neigh_setup)(struct net_device *dev, 1466 struct neigh_parms *); 1467 void (*ndo_tx_timeout) (struct net_device *dev, 1468 unsigned int txqueue); 1469 1470 void (*ndo_get_stats64)(struct net_device *dev, 1471 struct rtnl_link_stats64 *storage); 1472 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1473 int (*ndo_get_offload_stats)(int attr_id, 1474 const struct net_device *dev, 1475 void *attr_data); 1476 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1477 1478 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1479 __be16 proto, u16 vid); 1480 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1481 __be16 proto, u16 vid); 1482#ifdef CONFIG_NET_POLL_CONTROLLER 1483 void (*ndo_poll_controller)(struct net_device *dev); 1484 int (*ndo_netpoll_setup)(struct net_device *dev, 1485 struct netpoll_info *info); 1486 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1487#endif 1488 int (*ndo_set_vf_mac)(struct net_device *dev, 1489 int queue, u8 *mac); 1490 int (*ndo_set_vf_vlan)(struct net_device *dev, 1491 int queue, u16 vlan, 1492 u8 qos, __be16 proto); 1493 int (*ndo_set_vf_rate)(struct net_device *dev, 1494 int vf, int min_tx_rate, 1495 int max_tx_rate); 1496 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1497 int vf, bool setting); 1498 int (*ndo_set_vf_trust)(struct net_device *dev, 1499 int vf, bool setting); 1500 int (*ndo_get_vf_config)(struct net_device *dev, 1501 int vf, 1502 struct ifla_vf_info *ivf); 1503 int (*ndo_set_vf_link_state)(struct net_device *dev, 1504 int vf, int link_state); 1505 int (*ndo_get_vf_stats)(struct net_device *dev, 1506 int vf, 1507 struct ifla_vf_stats 1508 *vf_stats); 1509 int (*ndo_set_vf_port)(struct net_device *dev, 1510 int vf, 1511 struct nlattr *port[]); 1512 int (*ndo_get_vf_port)(struct net_device *dev, 1513 int vf, struct sk_buff *skb); 1514 int (*ndo_get_vf_guid)(struct net_device *dev, 1515 int vf, 1516 struct ifla_vf_guid *node_guid, 1517 struct ifla_vf_guid *port_guid); 1518 int (*ndo_set_vf_guid)(struct net_device *dev, 1519 int vf, u64 guid, 1520 int guid_type); 1521 int (*ndo_set_vf_rss_query_en)( 1522 struct net_device *dev, 1523 int vf, bool setting); 1524 int (*ndo_setup_tc)(struct net_device *dev, 1525 enum tc_setup_type type, 1526 void *type_data); 1527#if IS_ENABLED(CONFIG_FCOE) 1528 int (*ndo_fcoe_enable)(struct net_device *dev); 1529 int (*ndo_fcoe_disable)(struct net_device *dev); 1530 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1531 u16 xid, 1532 struct scatterlist *sgl, 1533 unsigned int sgc); 1534 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1535 u16 xid); 1536 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1537 u16 xid, 1538 struct scatterlist *sgl, 1539 unsigned int sgc); 1540 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1541 struct netdev_fcoe_hbainfo *hbainfo); 1542#endif 1543 1544#if IS_ENABLED(CONFIG_LIBFCOE) 1545#define NETDEV_FCOE_WWNN 0 1546#define NETDEV_FCOE_WWPN 1 1547 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1548 u64 *wwn, int type); 1549#endif 1550 1551#ifdef CONFIG_RFS_ACCEL 1552 int (*ndo_rx_flow_steer)(struct net_device *dev, 1553 const struct sk_buff *skb, 1554 u16 rxq_index, 1555 u32 flow_id); 1556#endif 1557 int (*ndo_add_slave)(struct net_device *dev, 1558 struct net_device *slave_dev, 1559 struct netlink_ext_ack *extack); 1560 int (*ndo_del_slave)(struct net_device *dev, 1561 struct net_device *slave_dev); 1562 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1563 struct sk_buff *skb, 1564 bool all_slaves); 1565 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1566 struct sock *sk); 1567 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1568 netdev_features_t features); 1569 int (*ndo_set_features)(struct net_device *dev, 1570 netdev_features_t features); 1571 int (*ndo_neigh_construct)(struct net_device *dev, 1572 struct neighbour *n); 1573 void (*ndo_neigh_destroy)(struct net_device *dev, 1574 struct neighbour *n); 1575 1576 int (*ndo_fdb_add)(struct ndmsg *ndm, 1577 struct nlattr *tb[], 1578 struct net_device *dev, 1579 const unsigned char *addr, 1580 u16 vid, 1581 u16 flags, 1582 struct netlink_ext_ack *extack); 1583 int (*ndo_fdb_del)(struct ndmsg *ndm, 1584 struct nlattr *tb[], 1585 struct net_device *dev, 1586 const unsigned char *addr, 1587 u16 vid, struct netlink_ext_ack *extack); 1588 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1589 struct net_device *dev, 1590 struct netlink_ext_ack *extack); 1591 int (*ndo_fdb_dump)(struct sk_buff *skb, 1592 struct netlink_callback *cb, 1593 struct net_device *dev, 1594 struct net_device *filter_dev, 1595 int *idx); 1596 int (*ndo_fdb_get)(struct sk_buff *skb, 1597 struct nlattr *tb[], 1598 struct net_device *dev, 1599 const unsigned char *addr, 1600 u16 vid, u32 portid, u32 seq, 1601 struct netlink_ext_ack *extack); 1602 int (*ndo_mdb_add)(struct net_device *dev, 1603 struct nlattr *tb[], 1604 u16 nlmsg_flags, 1605 struct netlink_ext_ack *extack); 1606 int (*ndo_mdb_del)(struct net_device *dev, 1607 struct nlattr *tb[], 1608 struct netlink_ext_ack *extack); 1609 int (*ndo_mdb_dump)(struct net_device *dev, 1610 struct sk_buff *skb, 1611 struct netlink_callback *cb); 1612 int (*ndo_mdb_get)(struct net_device *dev, 1613 struct nlattr *tb[], u32 portid, 1614 u32 seq, 1615 struct netlink_ext_ack *extack); 1616 int (*ndo_bridge_setlink)(struct net_device *dev, 1617 struct nlmsghdr *nlh, 1618 u16 flags, 1619 struct netlink_ext_ack *extack); 1620 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1621 u32 pid, u32 seq, 1622 struct net_device *dev, 1623 u32 filter_mask, 1624 int nlflags); 1625 int (*ndo_bridge_dellink)(struct net_device *dev, 1626 struct nlmsghdr *nlh, 1627 u16 flags); 1628 int (*ndo_change_carrier)(struct net_device *dev, 1629 bool new_carrier); 1630 int (*ndo_get_phys_port_id)(struct net_device *dev, 1631 struct netdev_phys_item_id *ppid); 1632 int (*ndo_get_port_parent_id)(struct net_device *dev, 1633 struct netdev_phys_item_id *ppid); 1634 int (*ndo_get_phys_port_name)(struct net_device *dev, 1635 char *name, size_t len); 1636 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1637 struct net_device *dev); 1638 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1639 void *priv); 1640 1641 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1642 int queue_index, 1643 u32 maxrate); 1644 int (*ndo_get_iflink)(const struct net_device *dev); 1645 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1646 struct sk_buff *skb); 1647 void (*ndo_set_rx_headroom)(struct net_device *dev, 1648 int needed_headroom); 1649 int (*ndo_bpf)(struct net_device *dev, 1650 struct netdev_bpf *bpf); 1651 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1652 struct xdp_frame **xdp, 1653 u32 flags); 1654 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1655 struct xdp_buff *xdp); 1656 int (*ndo_xsk_wakeup)(struct net_device *dev, 1657 u32 queue_id, u32 flags); 1658 int (*ndo_tunnel_ctl)(struct net_device *dev, 1659 struct ip_tunnel_parm *p, int cmd); 1660 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1661 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1662 struct net_device_path *path); 1663 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1664 const struct skb_shared_hwtstamps *hwtstamps, 1665 bool cycles); 1666 int (*ndo_hwtstamp_get)(struct net_device *dev, 1667 struct kernel_hwtstamp_config *kernel_config); 1668 int (*ndo_hwtstamp_set)(struct net_device *dev, 1669 struct kernel_hwtstamp_config *kernel_config, 1670 struct netlink_ext_ack *extack); 1671}; 1672 1673/** 1674 * enum netdev_priv_flags - &struct net_device priv_flags 1675 * 1676 * These are the &struct net_device, they are only set internally 1677 * by drivers and used in the kernel. These flags are invisible to 1678 * userspace; this means that the order of these flags can change 1679 * during any kernel release. 1680 * 1681 * You should have a pretty good reason to be extending these flags. 1682 * 1683 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1684 * @IFF_EBRIDGE: Ethernet bridging device 1685 * @IFF_BONDING: bonding master or slave 1686 * @IFF_ISATAP: ISATAP interface (RFC4214) 1687 * @IFF_WAN_HDLC: WAN HDLC device 1688 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1689 * release skb->dst 1690 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1691 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1692 * @IFF_MACVLAN_PORT: device used as macvlan port 1693 * @IFF_BRIDGE_PORT: device used as bridge port 1694 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1695 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1696 * @IFF_UNICAST_FLT: Supports unicast filtering 1697 * @IFF_TEAM_PORT: device used as team port 1698 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1699 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1700 * change when it's running 1701 * @IFF_MACVLAN: Macvlan device 1702 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1703 * underlying stacked devices 1704 * @IFF_L3MDEV_MASTER: device is an L3 master device 1705 * @IFF_NO_QUEUE: device can run without qdisc attached 1706 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1707 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1708 * @IFF_TEAM: device is a team device 1709 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1710 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1711 * entity (i.e. the master device for bridged veth) 1712 * @IFF_MACSEC: device is a MACsec device 1713 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1714 * @IFF_FAILOVER: device is a failover master device 1715 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1716 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1717 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1718 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1719 * skb_headlen(skb) == 0 (data starts from frag0) 1720 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1721 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1722 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1723 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1724 */ 1725enum netdev_priv_flags { 1726 IFF_802_1Q_VLAN = 1<<0, 1727 IFF_EBRIDGE = 1<<1, 1728 IFF_BONDING = 1<<2, 1729 IFF_ISATAP = 1<<3, 1730 IFF_WAN_HDLC = 1<<4, 1731 IFF_XMIT_DST_RELEASE = 1<<5, 1732 IFF_DONT_BRIDGE = 1<<6, 1733 IFF_DISABLE_NETPOLL = 1<<7, 1734 IFF_MACVLAN_PORT = 1<<8, 1735 IFF_BRIDGE_PORT = 1<<9, 1736 IFF_OVS_DATAPATH = 1<<10, 1737 IFF_TX_SKB_SHARING = 1<<11, 1738 IFF_UNICAST_FLT = 1<<12, 1739 IFF_TEAM_PORT = 1<<13, 1740 IFF_SUPP_NOFCS = 1<<14, 1741 IFF_LIVE_ADDR_CHANGE = 1<<15, 1742 IFF_MACVLAN = 1<<16, 1743 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1744 IFF_L3MDEV_MASTER = 1<<18, 1745 IFF_NO_QUEUE = 1<<19, 1746 IFF_OPENVSWITCH = 1<<20, 1747 IFF_L3MDEV_SLAVE = 1<<21, 1748 IFF_TEAM = 1<<22, 1749 IFF_RXFH_CONFIGURED = 1<<23, 1750 IFF_PHONY_HEADROOM = 1<<24, 1751 IFF_MACSEC = 1<<25, 1752 IFF_NO_RX_HANDLER = 1<<26, 1753 IFF_FAILOVER = 1<<27, 1754 IFF_FAILOVER_SLAVE = 1<<28, 1755 IFF_L3MDEV_RX_HANDLER = 1<<29, 1756 IFF_NO_ADDRCONF = BIT_ULL(30), 1757 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1758 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1759 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1760}; 1761 1762#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1763#define IFF_EBRIDGE IFF_EBRIDGE 1764#define IFF_BONDING IFF_BONDING 1765#define IFF_ISATAP IFF_ISATAP 1766#define IFF_WAN_HDLC IFF_WAN_HDLC 1767#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1768#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1769#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1770#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1771#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1772#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1773#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1774#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1775#define IFF_TEAM_PORT IFF_TEAM_PORT 1776#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1777#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1778#define IFF_MACVLAN IFF_MACVLAN 1779#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1780#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1781#define IFF_NO_QUEUE IFF_NO_QUEUE 1782#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1783#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1784#define IFF_TEAM IFF_TEAM 1785#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1786#define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1787#define IFF_MACSEC IFF_MACSEC 1788#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1789#define IFF_FAILOVER IFF_FAILOVER 1790#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1791#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1792#define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1793 1794/* Specifies the type of the struct net_device::ml_priv pointer */ 1795enum netdev_ml_priv_type { 1796 ML_PRIV_NONE, 1797 ML_PRIV_CAN, 1798}; 1799 1800enum netdev_stat_type { 1801 NETDEV_PCPU_STAT_NONE, 1802 NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */ 1803 NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */ 1804 NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */ 1805}; 1806 1807/** 1808 * struct net_device - The DEVICE structure. 1809 * 1810 * Actually, this whole structure is a big mistake. It mixes I/O 1811 * data with strictly "high-level" data, and it has to know about 1812 * almost every data structure used in the INET module. 1813 * 1814 * @name: This is the first field of the "visible" part of this structure 1815 * (i.e. as seen by users in the "Space.c" file). It is the name 1816 * of the interface. 1817 * 1818 * @name_node: Name hashlist node 1819 * @ifalias: SNMP alias 1820 * @mem_end: Shared memory end 1821 * @mem_start: Shared memory start 1822 * @base_addr: Device I/O address 1823 * @irq: Device IRQ number 1824 * 1825 * @state: Generic network queuing layer state, see netdev_state_t 1826 * @dev_list: The global list of network devices 1827 * @napi_list: List entry used for polling NAPI devices 1828 * @unreg_list: List entry when we are unregistering the 1829 * device; see the function unregister_netdev 1830 * @close_list: List entry used when we are closing the device 1831 * @ptype_all: Device-specific packet handlers for all protocols 1832 * @ptype_specific: Device-specific, protocol-specific packet handlers 1833 * 1834 * @adj_list: Directly linked devices, like slaves for bonding 1835 * @features: Currently active device features 1836 * @hw_features: User-changeable features 1837 * 1838 * @wanted_features: User-requested features 1839 * @vlan_features: Mask of features inheritable by VLAN devices 1840 * 1841 * @hw_enc_features: Mask of features inherited by encapsulating devices 1842 * This field indicates what encapsulation 1843 * offloads the hardware is capable of doing, 1844 * and drivers will need to set them appropriately. 1845 * 1846 * @mpls_features: Mask of features inheritable by MPLS 1847 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1848 * 1849 * @ifindex: interface index 1850 * @group: The group the device belongs to 1851 * 1852 * @stats: Statistics struct, which was left as a legacy, use 1853 * rtnl_link_stats64 instead 1854 * 1855 * @core_stats: core networking counters, 1856 * do not use this in drivers 1857 * @carrier_up_count: Number of times the carrier has been up 1858 * @carrier_down_count: Number of times the carrier has been down 1859 * 1860 * @wireless_handlers: List of functions to handle Wireless Extensions, 1861 * instead of ioctl, 1862 * see <net/iw_handler.h> for details. 1863 * @wireless_data: Instance data managed by the core of wireless extensions 1864 * 1865 * @netdev_ops: Includes several pointers to callbacks, 1866 * if one wants to override the ndo_*() functions 1867 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1868 * @ethtool_ops: Management operations 1869 * @l3mdev_ops: Layer 3 master device operations 1870 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1871 * discovery handling. Necessary for e.g. 6LoWPAN. 1872 * @xfrmdev_ops: Transformation offload operations 1873 * @tlsdev_ops: Transport Layer Security offload operations 1874 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1875 * of Layer 2 headers. 1876 * 1877 * @flags: Interface flags (a la BSD) 1878 * @xdp_features: XDP capability supported by the device 1879 * @priv_flags: Like 'flags' but invisible to userspace, 1880 * see if.h for the definitions 1881 * @gflags: Global flags ( kept as legacy ) 1882 * @padded: How much padding added by alloc_netdev() 1883 * @operstate: RFC2863 operstate 1884 * @link_mode: Mapping policy to operstate 1885 * @if_port: Selectable AUI, TP, ... 1886 * @dma: DMA channel 1887 * @mtu: Interface MTU value 1888 * @min_mtu: Interface Minimum MTU value 1889 * @max_mtu: Interface Maximum MTU value 1890 * @type: Interface hardware type 1891 * @hard_header_len: Maximum hardware header length. 1892 * @min_header_len: Minimum hardware header length 1893 * 1894 * @needed_headroom: Extra headroom the hardware may need, but not in all 1895 * cases can this be guaranteed 1896 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1897 * cases can this be guaranteed. Some cases also use 1898 * LL_MAX_HEADER instead to allocate the skb 1899 * 1900 * interface address info: 1901 * 1902 * @perm_addr: Permanent hw address 1903 * @addr_assign_type: Hw address assignment type 1904 * @addr_len: Hardware address length 1905 * @upper_level: Maximum depth level of upper devices. 1906 * @lower_level: Maximum depth level of lower devices. 1907 * @neigh_priv_len: Used in neigh_alloc() 1908 * @dev_id: Used to differentiate devices that share 1909 * the same link layer address 1910 * @dev_port: Used to differentiate devices that share 1911 * the same function 1912 * @addr_list_lock: XXX: need comments on this one 1913 * @name_assign_type: network interface name assignment type 1914 * @uc_promisc: Counter that indicates promiscuous mode 1915 * has been enabled due to the need to listen to 1916 * additional unicast addresses in a device that 1917 * does not implement ndo_set_rx_mode() 1918 * @uc: unicast mac addresses 1919 * @mc: multicast mac addresses 1920 * @dev_addrs: list of device hw addresses 1921 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1922 * @promiscuity: Number of times the NIC is told to work in 1923 * promiscuous mode; if it becomes 0 the NIC will 1924 * exit promiscuous mode 1925 * @allmulti: Counter, enables or disables allmulticast mode 1926 * 1927 * @vlan_info: VLAN info 1928 * @dsa_ptr: dsa specific data 1929 * @tipc_ptr: TIPC specific data 1930 * @atalk_ptr: AppleTalk link 1931 * @ip_ptr: IPv4 specific data 1932 * @ip6_ptr: IPv6 specific data 1933 * @ax25_ptr: AX.25 specific data 1934 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1935 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1936 * device struct 1937 * @mpls_ptr: mpls_dev struct pointer 1938 * @mctp_ptr: MCTP specific data 1939 * 1940 * @dev_addr: Hw address (before bcast, 1941 * because most packets are unicast) 1942 * 1943 * @_rx: Array of RX queues 1944 * @num_rx_queues: Number of RX queues 1945 * allocated at register_netdev() time 1946 * @real_num_rx_queues: Number of RX queues currently active in device 1947 * @xdp_prog: XDP sockets filter program pointer 1948 * @gro_flush_timeout: timeout for GRO layer in NAPI 1949 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1950 * allow to avoid NIC hard IRQ, on busy queues. 1951 * 1952 * @rx_handler: handler for received packets 1953 * @rx_handler_data: XXX: need comments on this one 1954 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1955 * @ingress_queue: XXX: need comments on this one 1956 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1957 * @broadcast: hw bcast address 1958 * 1959 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1960 * indexed by RX queue number. Assigned by driver. 1961 * This must only be set if the ndo_rx_flow_steer 1962 * operation is defined 1963 * @index_hlist: Device index hash chain 1964 * 1965 * @_tx: Array of TX queues 1966 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1967 * @real_num_tx_queues: Number of TX queues currently active in device 1968 * @qdisc: Root qdisc from userspace point of view 1969 * @tx_queue_len: Max frames per queue allowed 1970 * @tx_global_lock: XXX: need comments on this one 1971 * @xdp_bulkq: XDP device bulk queue 1972 * @xps_maps: all CPUs/RXQs maps for XPS device 1973 * 1974 * @xps_maps: XXX: need comments on this one 1975 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1976 * @nf_hooks_egress: netfilter hooks executed for egress packets 1977 * @qdisc_hash: qdisc hash table 1978 * @watchdog_timeo: Represents the timeout that is used by 1979 * the watchdog (see dev_watchdog()) 1980 * @watchdog_timer: List of timers 1981 * 1982 * @proto_down_reason: reason a netdev interface is held down 1983 * @pcpu_refcnt: Number of references to this device 1984 * @dev_refcnt: Number of references to this device 1985 * @refcnt_tracker: Tracker directory for tracked references to this device 1986 * @todo_list: Delayed register/unregister 1987 * @link_watch_list: XXX: need comments on this one 1988 * 1989 * @reg_state: Register/unregister state machine 1990 * @dismantle: Device is going to be freed 1991 * @rtnl_link_state: This enum represents the phases of creating 1992 * a new link 1993 * 1994 * @needs_free_netdev: Should unregister perform free_netdev? 1995 * @priv_destructor: Called from unregister 1996 * @npinfo: XXX: need comments on this one 1997 * @nd_net: Network namespace this network device is inside 1998 * 1999 * @ml_priv: Mid-layer private 2000 * @ml_priv_type: Mid-layer private type 2001 * 2002 * @pcpu_stat_type: Type of device statistics which the core should 2003 * allocate/free: none, lstats, tstats, dstats. none 2004 * means the driver is handling statistics allocation/ 2005 * freeing internally. 2006 * @lstats: Loopback statistics: packets, bytes 2007 * @tstats: Tunnel statistics: RX/TX packets, RX/TX bytes 2008 * @dstats: Dummy statistics: RX/TX/drop packets, RX/TX bytes 2009 * 2010 * @garp_port: GARP 2011 * @mrp_port: MRP 2012 * 2013 * @dm_private: Drop monitor private 2014 * 2015 * @dev: Class/net/name entry 2016 * @sysfs_groups: Space for optional device, statistics and wireless 2017 * sysfs groups 2018 * 2019 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 2020 * @rtnl_link_ops: Rtnl_link_ops 2021 * 2022 * @gso_max_size: Maximum size of generic segmentation offload 2023 * @tso_max_size: Device (as in HW) limit on the max TSO request size 2024 * @gso_max_segs: Maximum number of segments that can be passed to the 2025 * NIC for GSO 2026 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 2027 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 2028 * for IPv4. 2029 * 2030 * @dcbnl_ops: Data Center Bridging netlink ops 2031 * @num_tc: Number of traffic classes in the net device 2032 * @tc_to_txq: XXX: need comments on this one 2033 * @prio_tc_map: XXX: need comments on this one 2034 * 2035 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2036 * 2037 * @priomap: XXX: need comments on this one 2038 * @phydev: Physical device may attach itself 2039 * for hardware timestamping 2040 * @sfp_bus: attached &struct sfp_bus structure. 2041 * 2042 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2043 * 2044 * @proto_down: protocol port state information can be sent to the 2045 * switch driver and used to set the phys state of the 2046 * switch port. 2047 * 2048 * @wol_enabled: Wake-on-LAN is enabled 2049 * 2050 * @threaded: napi threaded mode is enabled 2051 * 2052 * @net_notifier_list: List of per-net netdev notifier block 2053 * that follow this device when it is moved 2054 * to another network namespace. 2055 * 2056 * @macsec_ops: MACsec offloading ops 2057 * 2058 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2059 * offload capabilities of the device 2060 * @udp_tunnel_nic: UDP tunnel offload state 2061 * @xdp_state: stores info on attached XDP BPF programs 2062 * 2063 * @nested_level: Used as a parameter of spin_lock_nested() of 2064 * dev->addr_list_lock. 2065 * @unlink_list: As netif_addr_lock() can be called recursively, 2066 * keep a list of interfaces to be deleted. 2067 * @gro_max_size: Maximum size of aggregated packet in generic 2068 * receive offload (GRO) 2069 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2070 * receive offload (GRO), for IPv4. 2071 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2072 * zero copy driver 2073 * 2074 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2075 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2076 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2077 * @dev_registered_tracker: tracker for reference held while 2078 * registered 2079 * @offload_xstats_l3: L3 HW stats for this netdevice. 2080 * 2081 * @devlink_port: Pointer to related devlink port structure. 2082 * Assigned by a driver before netdev registration using 2083 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2084 * during the time netdevice is registered. 2085 * 2086 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2087 * where the clock is recovered. 2088 * 2089 * FIXME: cleanup struct net_device such that network protocol info 2090 * moves out. 2091 */ 2092 2093struct net_device { 2094 char name[IFNAMSIZ]; 2095 struct netdev_name_node *name_node; 2096 struct dev_ifalias __rcu *ifalias; 2097 /* 2098 * I/O specific fields 2099 * FIXME: Merge these and struct ifmap into one 2100 */ 2101 unsigned long mem_end; 2102 unsigned long mem_start; 2103 unsigned long base_addr; 2104 2105 /* 2106 * Some hardware also needs these fields (state,dev_list, 2107 * napi_list,unreg_list,close_list) but they are not 2108 * part of the usual set specified in Space.c. 2109 */ 2110 2111 unsigned long state; 2112 2113 struct list_head dev_list; 2114 struct list_head napi_list; 2115 struct list_head unreg_list; 2116 struct list_head close_list; 2117 struct list_head ptype_all; 2118 struct list_head ptype_specific; 2119 2120 struct { 2121 struct list_head upper; 2122 struct list_head lower; 2123 } adj_list; 2124 2125 /* Read-mostly cache-line for fast-path access */ 2126 unsigned int flags; 2127 xdp_features_t xdp_features; 2128 unsigned long long priv_flags; 2129 const struct net_device_ops *netdev_ops; 2130 const struct xdp_metadata_ops *xdp_metadata_ops; 2131 int ifindex; 2132 unsigned short gflags; 2133 unsigned short hard_header_len; 2134 2135 /* Note : dev->mtu is often read without holding a lock. 2136 * Writers usually hold RTNL. 2137 * It is recommended to use READ_ONCE() to annotate the reads, 2138 * and to use WRITE_ONCE() to annotate the writes. 2139 */ 2140 unsigned int mtu; 2141 unsigned short needed_headroom; 2142 unsigned short needed_tailroom; 2143 2144 netdev_features_t features; 2145 netdev_features_t hw_features; 2146 netdev_features_t wanted_features; 2147 netdev_features_t vlan_features; 2148 netdev_features_t hw_enc_features; 2149 netdev_features_t mpls_features; 2150 netdev_features_t gso_partial_features; 2151 2152 unsigned int min_mtu; 2153 unsigned int max_mtu; 2154 unsigned short type; 2155 unsigned char min_header_len; 2156 unsigned char name_assign_type; 2157 2158 int group; 2159 2160 struct net_device_stats stats; /* not used by modern drivers */ 2161 2162 struct net_device_core_stats __percpu *core_stats; 2163 2164 /* Stats to monitor link on/off, flapping */ 2165 atomic_t carrier_up_count; 2166 atomic_t carrier_down_count; 2167 2168#ifdef CONFIG_WIRELESS_EXT 2169 const struct iw_handler_def *wireless_handlers; 2170 struct iw_public_data *wireless_data; 2171#endif 2172 const struct ethtool_ops *ethtool_ops; 2173#ifdef CONFIG_NET_L3_MASTER_DEV 2174 const struct l3mdev_ops *l3mdev_ops; 2175#endif 2176#if IS_ENABLED(CONFIG_IPV6) 2177 const struct ndisc_ops *ndisc_ops; 2178#endif 2179 2180#ifdef CONFIG_XFRM_OFFLOAD 2181 const struct xfrmdev_ops *xfrmdev_ops; 2182#endif 2183 2184#if IS_ENABLED(CONFIG_TLS_DEVICE) 2185 const struct tlsdev_ops *tlsdev_ops; 2186#endif 2187 2188 const struct header_ops *header_ops; 2189 2190 unsigned char operstate; 2191 unsigned char link_mode; 2192 2193 unsigned char if_port; 2194 unsigned char dma; 2195 2196 /* Interface address info. */ 2197 unsigned char perm_addr[MAX_ADDR_LEN]; 2198 unsigned char addr_assign_type; 2199 unsigned char addr_len; 2200 unsigned char upper_level; 2201 unsigned char lower_level; 2202 2203 unsigned short neigh_priv_len; 2204 unsigned short dev_id; 2205 unsigned short dev_port; 2206 unsigned short padded; 2207 2208 spinlock_t addr_list_lock; 2209 int irq; 2210 2211 struct netdev_hw_addr_list uc; 2212 struct netdev_hw_addr_list mc; 2213 struct netdev_hw_addr_list dev_addrs; 2214 2215#ifdef CONFIG_SYSFS 2216 struct kset *queues_kset; 2217#endif 2218#ifdef CONFIG_LOCKDEP 2219 struct list_head unlink_list; 2220#endif 2221 unsigned int promiscuity; 2222 unsigned int allmulti; 2223 bool uc_promisc; 2224#ifdef CONFIG_LOCKDEP 2225 unsigned char nested_level; 2226#endif 2227 2228 2229 /* Protocol-specific pointers */ 2230 2231 struct in_device __rcu *ip_ptr; 2232 struct inet6_dev __rcu *ip6_ptr; 2233#if IS_ENABLED(CONFIG_VLAN_8021Q) 2234 struct vlan_info __rcu *vlan_info; 2235#endif 2236#if IS_ENABLED(CONFIG_NET_DSA) 2237 struct dsa_port *dsa_ptr; 2238#endif 2239#if IS_ENABLED(CONFIG_TIPC) 2240 struct tipc_bearer __rcu *tipc_ptr; 2241#endif 2242#if IS_ENABLED(CONFIG_ATALK) 2243 void *atalk_ptr; 2244#endif 2245#if IS_ENABLED(CONFIG_AX25) 2246 void *ax25_ptr; 2247#endif 2248#if IS_ENABLED(CONFIG_CFG80211) 2249 struct wireless_dev *ieee80211_ptr; 2250#endif 2251#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2252 struct wpan_dev *ieee802154_ptr; 2253#endif 2254#if IS_ENABLED(CONFIG_MPLS_ROUTING) 2255 struct mpls_dev __rcu *mpls_ptr; 2256#endif 2257#if IS_ENABLED(CONFIG_MCTP) 2258 struct mctp_dev __rcu *mctp_ptr; 2259#endif 2260 2261/* 2262 * Cache lines mostly used on receive path (including eth_type_trans()) 2263 */ 2264 /* Interface address info used in eth_type_trans() */ 2265 const unsigned char *dev_addr; 2266 2267 struct netdev_rx_queue *_rx; 2268 unsigned int num_rx_queues; 2269 unsigned int real_num_rx_queues; 2270 2271 struct bpf_prog __rcu *xdp_prog; 2272 unsigned long gro_flush_timeout; 2273 int napi_defer_hard_irqs; 2274#define GRO_LEGACY_MAX_SIZE 65536u 2275/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2276 * and shinfo->gso_segs is a 16bit field. 2277 */ 2278#define GRO_MAX_SIZE (8 * 65535u) 2279 unsigned int gro_max_size; 2280 unsigned int gro_ipv4_max_size; 2281 unsigned int xdp_zc_max_segs; 2282 rx_handler_func_t __rcu *rx_handler; 2283 void __rcu *rx_handler_data; 2284#ifdef CONFIG_NET_XGRESS 2285 struct bpf_mprog_entry __rcu *tcx_ingress; 2286#endif 2287 struct netdev_queue __rcu *ingress_queue; 2288#ifdef CONFIG_NETFILTER_INGRESS 2289 struct nf_hook_entries __rcu *nf_hooks_ingress; 2290#endif 2291 2292 unsigned char broadcast[MAX_ADDR_LEN]; 2293#ifdef CONFIG_RFS_ACCEL 2294 struct cpu_rmap *rx_cpu_rmap; 2295#endif 2296 struct hlist_node index_hlist; 2297 2298/* 2299 * Cache lines mostly used on transmit path 2300 */ 2301 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2302 unsigned int num_tx_queues; 2303 unsigned int real_num_tx_queues; 2304 struct Qdisc __rcu *qdisc; 2305 unsigned int tx_queue_len; 2306 spinlock_t tx_global_lock; 2307 2308 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2309 2310#ifdef CONFIG_XPS 2311 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2312#endif 2313#ifdef CONFIG_NET_XGRESS 2314 struct bpf_mprog_entry __rcu *tcx_egress; 2315#endif 2316#ifdef CONFIG_NETFILTER_EGRESS 2317 struct nf_hook_entries __rcu *nf_hooks_egress; 2318#endif 2319 2320#ifdef CONFIG_NET_SCHED 2321 DECLARE_HASHTABLE (qdisc_hash, 4); 2322#endif 2323 /* These may be needed for future network-power-down code. */ 2324 struct timer_list watchdog_timer; 2325 int watchdog_timeo; 2326 2327 u32 proto_down_reason; 2328 2329 struct list_head todo_list; 2330 2331#ifdef CONFIG_PCPU_DEV_REFCNT 2332 int __percpu *pcpu_refcnt; 2333#else 2334 refcount_t dev_refcnt; 2335#endif 2336 struct ref_tracker_dir refcnt_tracker; 2337 2338 struct list_head link_watch_list; 2339 2340 enum { NETREG_UNINITIALIZED=0, 2341 NETREG_REGISTERED, /* completed register_netdevice */ 2342 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2343 NETREG_UNREGISTERED, /* completed unregister todo */ 2344 NETREG_RELEASED, /* called free_netdev */ 2345 NETREG_DUMMY, /* dummy device for NAPI poll */ 2346 } reg_state:8; 2347 2348 bool dismantle; 2349 2350 enum { 2351 RTNL_LINK_INITIALIZED, 2352 RTNL_LINK_INITIALIZING, 2353 } rtnl_link_state:16; 2354 2355 bool needs_free_netdev; 2356 void (*priv_destructor)(struct net_device *dev); 2357 2358#ifdef CONFIG_NETPOLL 2359 struct netpoll_info __rcu *npinfo; 2360#endif 2361 2362 possible_net_t nd_net; 2363 2364 /* mid-layer private */ 2365 void *ml_priv; 2366 enum netdev_ml_priv_type ml_priv_type; 2367 2368 enum netdev_stat_type pcpu_stat_type:8; 2369 union { 2370 struct pcpu_lstats __percpu *lstats; 2371 struct pcpu_sw_netstats __percpu *tstats; 2372 struct pcpu_dstats __percpu *dstats; 2373 }; 2374 2375#if IS_ENABLED(CONFIG_GARP) 2376 struct garp_port __rcu *garp_port; 2377#endif 2378#if IS_ENABLED(CONFIG_MRP) 2379 struct mrp_port __rcu *mrp_port; 2380#endif 2381#if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2382 struct dm_hw_stat_delta __rcu *dm_private; 2383#endif 2384 struct device dev; 2385 const struct attribute_group *sysfs_groups[4]; 2386 const struct attribute_group *sysfs_rx_queue_group; 2387 2388 const struct rtnl_link_ops *rtnl_link_ops; 2389 2390 /* for setting kernel sock attribute on TCP connection setup */ 2391#define GSO_MAX_SEGS 65535u 2392#define GSO_LEGACY_MAX_SIZE 65536u 2393/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2394 * and shinfo->gso_segs is a 16bit field. 2395 */ 2396#define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2397 2398 unsigned int gso_max_size; 2399#define TSO_LEGACY_MAX_SIZE 65536 2400#define TSO_MAX_SIZE UINT_MAX 2401 unsigned int tso_max_size; 2402 u16 gso_max_segs; 2403#define TSO_MAX_SEGS U16_MAX 2404 u16 tso_max_segs; 2405 unsigned int gso_ipv4_max_size; 2406 2407#ifdef CONFIG_DCB 2408 const struct dcbnl_rtnl_ops *dcbnl_ops; 2409#endif 2410 s16 num_tc; 2411 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2412 u8 prio_tc_map[TC_BITMASK + 1]; 2413 2414#if IS_ENABLED(CONFIG_FCOE) 2415 unsigned int fcoe_ddp_xid; 2416#endif 2417#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2418 struct netprio_map __rcu *priomap; 2419#endif 2420 struct phy_device *phydev; 2421 struct sfp_bus *sfp_bus; 2422 struct lock_class_key *qdisc_tx_busylock; 2423 bool proto_down; 2424 unsigned wol_enabled:1; 2425 unsigned threaded:1; 2426 2427 struct list_head net_notifier_list; 2428 2429#if IS_ENABLED(CONFIG_MACSEC) 2430 /* MACsec management functions */ 2431 const struct macsec_ops *macsec_ops; 2432#endif 2433 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2434 struct udp_tunnel_nic *udp_tunnel_nic; 2435 2436 /* protected by rtnl_lock */ 2437 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2438 2439 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2440 netdevice_tracker linkwatch_dev_tracker; 2441 netdevice_tracker watchdog_dev_tracker; 2442 netdevice_tracker dev_registered_tracker; 2443 struct rtnl_hw_stats64 *offload_xstats_l3; 2444 2445 struct devlink_port *devlink_port; 2446 2447#if IS_ENABLED(CONFIG_DPLL) 2448 struct dpll_pin *dpll_pin; 2449#endif 2450}; 2451#define to_net_dev(d) container_of(d, struct net_device, dev) 2452 2453/* 2454 * Driver should use this to assign devlink port instance to a netdevice 2455 * before it registers the netdevice. Therefore devlink_port is static 2456 * during the netdev lifetime after it is registered. 2457 */ 2458#define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2459({ \ 2460 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2461 ((dev)->devlink_port = (port)); \ 2462}) 2463 2464static inline bool netif_elide_gro(const struct net_device *dev) 2465{ 2466 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2467 return true; 2468 return false; 2469} 2470 2471#define NETDEV_ALIGN 32 2472 2473static inline 2474int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2475{ 2476 return dev->prio_tc_map[prio & TC_BITMASK]; 2477} 2478 2479static inline 2480int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2481{ 2482 if (tc >= dev->num_tc) 2483 return -EINVAL; 2484 2485 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2486 return 0; 2487} 2488 2489int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2490void netdev_reset_tc(struct net_device *dev); 2491int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2492int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2493 2494static inline 2495int netdev_get_num_tc(struct net_device *dev) 2496{ 2497 return dev->num_tc; 2498} 2499 2500static inline void net_prefetch(void *p) 2501{ 2502 prefetch(p); 2503#if L1_CACHE_BYTES < 128 2504 prefetch((u8 *)p + L1_CACHE_BYTES); 2505#endif 2506} 2507 2508static inline void net_prefetchw(void *p) 2509{ 2510 prefetchw(p); 2511#if L1_CACHE_BYTES < 128 2512 prefetchw((u8 *)p + L1_CACHE_BYTES); 2513#endif 2514} 2515 2516void netdev_unbind_sb_channel(struct net_device *dev, 2517 struct net_device *sb_dev); 2518int netdev_bind_sb_channel_queue(struct net_device *dev, 2519 struct net_device *sb_dev, 2520 u8 tc, u16 count, u16 offset); 2521int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2522static inline int netdev_get_sb_channel(struct net_device *dev) 2523{ 2524 return max_t(int, -dev->num_tc, 0); 2525} 2526 2527static inline 2528struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2529 unsigned int index) 2530{ 2531 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2532 return &dev->_tx[index]; 2533} 2534 2535static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2536 const struct sk_buff *skb) 2537{ 2538 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2539} 2540 2541static inline void netdev_for_each_tx_queue(struct net_device *dev, 2542 void (*f)(struct net_device *, 2543 struct netdev_queue *, 2544 void *), 2545 void *arg) 2546{ 2547 unsigned int i; 2548 2549 for (i = 0; i < dev->num_tx_queues; i++) 2550 f(dev, &dev->_tx[i], arg); 2551} 2552 2553#define netdev_lockdep_set_classes(dev) \ 2554{ \ 2555 static struct lock_class_key qdisc_tx_busylock_key; \ 2556 static struct lock_class_key qdisc_xmit_lock_key; \ 2557 static struct lock_class_key dev_addr_list_lock_key; \ 2558 unsigned int i; \ 2559 \ 2560 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2561 lockdep_set_class(&(dev)->addr_list_lock, \ 2562 &dev_addr_list_lock_key); \ 2563 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2564 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2565 &qdisc_xmit_lock_key); \ 2566} 2567 2568u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2569 struct net_device *sb_dev); 2570struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2571 struct sk_buff *skb, 2572 struct net_device *sb_dev); 2573 2574/* returns the headroom that the master device needs to take in account 2575 * when forwarding to this dev 2576 */ 2577static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2578{ 2579 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2580} 2581 2582static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2583{ 2584 if (dev->netdev_ops->ndo_set_rx_headroom) 2585 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2586} 2587 2588/* set the device rx headroom to the dev's default */ 2589static inline void netdev_reset_rx_headroom(struct net_device *dev) 2590{ 2591 netdev_set_rx_headroom(dev, -1); 2592} 2593 2594static inline void *netdev_get_ml_priv(struct net_device *dev, 2595 enum netdev_ml_priv_type type) 2596{ 2597 if (dev->ml_priv_type != type) 2598 return NULL; 2599 2600 return dev->ml_priv; 2601} 2602 2603static inline void netdev_set_ml_priv(struct net_device *dev, 2604 void *ml_priv, 2605 enum netdev_ml_priv_type type) 2606{ 2607 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2608 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2609 dev->ml_priv_type, type); 2610 WARN(!dev->ml_priv_type && dev->ml_priv, 2611 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2612 2613 dev->ml_priv = ml_priv; 2614 dev->ml_priv_type = type; 2615} 2616 2617/* 2618 * Net namespace inlines 2619 */ 2620static inline 2621struct net *dev_net(const struct net_device *dev) 2622{ 2623 return read_pnet(&dev->nd_net); 2624} 2625 2626static inline 2627void dev_net_set(struct net_device *dev, struct net *net) 2628{ 2629 write_pnet(&dev->nd_net, net); 2630} 2631 2632/** 2633 * netdev_priv - access network device private data 2634 * @dev: network device 2635 * 2636 * Get network device private data 2637 */ 2638static inline void *netdev_priv(const struct net_device *dev) 2639{ 2640 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2641} 2642 2643/* Set the sysfs physical device reference for the network logical device 2644 * if set prior to registration will cause a symlink during initialization. 2645 */ 2646#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2647 2648/* Set the sysfs device type for the network logical device to allow 2649 * fine-grained identification of different network device types. For 2650 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2651 */ 2652#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2653 2654/* Default NAPI poll() weight 2655 * Device drivers are strongly advised to not use bigger value 2656 */ 2657#define NAPI_POLL_WEIGHT 64 2658 2659void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2660 int (*poll)(struct napi_struct *, int), int weight); 2661 2662/** 2663 * netif_napi_add() - initialize a NAPI context 2664 * @dev: network device 2665 * @napi: NAPI context 2666 * @poll: polling function 2667 * 2668 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2669 * *any* of the other NAPI-related functions. 2670 */ 2671static inline void 2672netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2673 int (*poll)(struct napi_struct *, int)) 2674{ 2675 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2676} 2677 2678static inline void 2679netif_napi_add_tx_weight(struct net_device *dev, 2680 struct napi_struct *napi, 2681 int (*poll)(struct napi_struct *, int), 2682 int weight) 2683{ 2684 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2685 netif_napi_add_weight(dev, napi, poll, weight); 2686} 2687 2688/** 2689 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2690 * @dev: network device 2691 * @napi: NAPI context 2692 * @poll: polling function 2693 * 2694 * This variant of netif_napi_add() should be used from drivers using NAPI 2695 * to exclusively poll a TX queue. 2696 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2697 */ 2698static inline void netif_napi_add_tx(struct net_device *dev, 2699 struct napi_struct *napi, 2700 int (*poll)(struct napi_struct *, int)) 2701{ 2702 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2703} 2704 2705/** 2706 * __netif_napi_del - remove a NAPI context 2707 * @napi: NAPI context 2708 * 2709 * Warning: caller must observe RCU grace period before freeing memory 2710 * containing @napi. Drivers might want to call this helper to combine 2711 * all the needed RCU grace periods into a single one. 2712 */ 2713void __netif_napi_del(struct napi_struct *napi); 2714 2715/** 2716 * netif_napi_del - remove a NAPI context 2717 * @napi: NAPI context 2718 * 2719 * netif_napi_del() removes a NAPI context from the network device NAPI list 2720 */ 2721static inline void netif_napi_del(struct napi_struct *napi) 2722{ 2723 __netif_napi_del(napi); 2724 synchronize_net(); 2725} 2726 2727struct packet_type { 2728 __be16 type; /* This is really htons(ether_type). */ 2729 bool ignore_outgoing; 2730 struct net_device *dev; /* NULL is wildcarded here */ 2731 netdevice_tracker dev_tracker; 2732 int (*func) (struct sk_buff *, 2733 struct net_device *, 2734 struct packet_type *, 2735 struct net_device *); 2736 void (*list_func) (struct list_head *, 2737 struct packet_type *, 2738 struct net_device *); 2739 bool (*id_match)(struct packet_type *ptype, 2740 struct sock *sk); 2741 struct net *af_packet_net; 2742 void *af_packet_priv; 2743 struct list_head list; 2744}; 2745 2746struct offload_callbacks { 2747 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2748 netdev_features_t features); 2749 struct sk_buff *(*gro_receive)(struct list_head *head, 2750 struct sk_buff *skb); 2751 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2752}; 2753 2754struct packet_offload { 2755 __be16 type; /* This is really htons(ether_type). */ 2756 u16 priority; 2757 struct offload_callbacks callbacks; 2758 struct list_head list; 2759}; 2760 2761/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2762struct pcpu_sw_netstats { 2763 u64_stats_t rx_packets; 2764 u64_stats_t rx_bytes; 2765 u64_stats_t tx_packets; 2766 u64_stats_t tx_bytes; 2767 struct u64_stats_sync syncp; 2768} __aligned(4 * sizeof(u64)); 2769 2770struct pcpu_dstats { 2771 u64 rx_packets; 2772 u64 rx_bytes; 2773 u64 rx_drops; 2774 u64 tx_packets; 2775 u64 tx_bytes; 2776 u64 tx_drops; 2777 struct u64_stats_sync syncp; 2778} __aligned(8 * sizeof(u64)); 2779 2780struct pcpu_lstats { 2781 u64_stats_t packets; 2782 u64_stats_t bytes; 2783 struct u64_stats_sync syncp; 2784} __aligned(2 * sizeof(u64)); 2785 2786void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2787 2788static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2789{ 2790 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2791 2792 u64_stats_update_begin(&tstats->syncp); 2793 u64_stats_add(&tstats->rx_bytes, len); 2794 u64_stats_inc(&tstats->rx_packets); 2795 u64_stats_update_end(&tstats->syncp); 2796} 2797 2798static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2799 unsigned int packets, 2800 unsigned int len) 2801{ 2802 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2803 2804 u64_stats_update_begin(&tstats->syncp); 2805 u64_stats_add(&tstats->tx_bytes, len); 2806 u64_stats_add(&tstats->tx_packets, packets); 2807 u64_stats_update_end(&tstats->syncp); 2808} 2809 2810static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2811{ 2812 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2813 2814 u64_stats_update_begin(&lstats->syncp); 2815 u64_stats_add(&lstats->bytes, len); 2816 u64_stats_inc(&lstats->packets); 2817 u64_stats_update_end(&lstats->syncp); 2818} 2819 2820#define __netdev_alloc_pcpu_stats(type, gfp) \ 2821({ \ 2822 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2823 if (pcpu_stats) { \ 2824 int __cpu; \ 2825 for_each_possible_cpu(__cpu) { \ 2826 typeof(type) *stat; \ 2827 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2828 u64_stats_init(&stat->syncp); \ 2829 } \ 2830 } \ 2831 pcpu_stats; \ 2832}) 2833 2834#define netdev_alloc_pcpu_stats(type) \ 2835 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2836 2837#define devm_netdev_alloc_pcpu_stats(dev, type) \ 2838({ \ 2839 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2840 if (pcpu_stats) { \ 2841 int __cpu; \ 2842 for_each_possible_cpu(__cpu) { \ 2843 typeof(type) *stat; \ 2844 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2845 u64_stats_init(&stat->syncp); \ 2846 } \ 2847 } \ 2848 pcpu_stats; \ 2849}) 2850 2851enum netdev_lag_tx_type { 2852 NETDEV_LAG_TX_TYPE_UNKNOWN, 2853 NETDEV_LAG_TX_TYPE_RANDOM, 2854 NETDEV_LAG_TX_TYPE_BROADCAST, 2855 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2856 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2857 NETDEV_LAG_TX_TYPE_HASH, 2858}; 2859 2860enum netdev_lag_hash { 2861 NETDEV_LAG_HASH_NONE, 2862 NETDEV_LAG_HASH_L2, 2863 NETDEV_LAG_HASH_L34, 2864 NETDEV_LAG_HASH_L23, 2865 NETDEV_LAG_HASH_E23, 2866 NETDEV_LAG_HASH_E34, 2867 NETDEV_LAG_HASH_VLAN_SRCMAC, 2868 NETDEV_LAG_HASH_UNKNOWN, 2869}; 2870 2871struct netdev_lag_upper_info { 2872 enum netdev_lag_tx_type tx_type; 2873 enum netdev_lag_hash hash_type; 2874}; 2875 2876struct netdev_lag_lower_state_info { 2877 u8 link_up : 1, 2878 tx_enabled : 1; 2879}; 2880 2881#include <linux/notifier.h> 2882 2883/* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2884 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2885 * adding new types. 2886 */ 2887enum netdev_cmd { 2888 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2889 NETDEV_DOWN, 2890 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2891 detected a hardware crash and restarted 2892 - we can use this eg to kick tcp sessions 2893 once done */ 2894 NETDEV_CHANGE, /* Notify device state change */ 2895 NETDEV_REGISTER, 2896 NETDEV_UNREGISTER, 2897 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2898 NETDEV_CHANGEADDR, /* notify after the address change */ 2899 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2900 NETDEV_GOING_DOWN, 2901 NETDEV_CHANGENAME, 2902 NETDEV_FEAT_CHANGE, 2903 NETDEV_BONDING_FAILOVER, 2904 NETDEV_PRE_UP, 2905 NETDEV_PRE_TYPE_CHANGE, 2906 NETDEV_POST_TYPE_CHANGE, 2907 NETDEV_POST_INIT, 2908 NETDEV_PRE_UNINIT, 2909 NETDEV_RELEASE, 2910 NETDEV_NOTIFY_PEERS, 2911 NETDEV_JOIN, 2912 NETDEV_CHANGEUPPER, 2913 NETDEV_RESEND_IGMP, 2914 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2915 NETDEV_CHANGEINFODATA, 2916 NETDEV_BONDING_INFO, 2917 NETDEV_PRECHANGEUPPER, 2918 NETDEV_CHANGELOWERSTATE, 2919 NETDEV_UDP_TUNNEL_PUSH_INFO, 2920 NETDEV_UDP_TUNNEL_DROP_INFO, 2921 NETDEV_CHANGE_TX_QUEUE_LEN, 2922 NETDEV_CVLAN_FILTER_PUSH_INFO, 2923 NETDEV_CVLAN_FILTER_DROP_INFO, 2924 NETDEV_SVLAN_FILTER_PUSH_INFO, 2925 NETDEV_SVLAN_FILTER_DROP_INFO, 2926 NETDEV_OFFLOAD_XSTATS_ENABLE, 2927 NETDEV_OFFLOAD_XSTATS_DISABLE, 2928 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2929 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2930 NETDEV_XDP_FEAT_CHANGE, 2931}; 2932const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2933 2934int register_netdevice_notifier(struct notifier_block *nb); 2935int unregister_netdevice_notifier(struct notifier_block *nb); 2936int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2937int unregister_netdevice_notifier_net(struct net *net, 2938 struct notifier_block *nb); 2939int register_netdevice_notifier_dev_net(struct net_device *dev, 2940 struct notifier_block *nb, 2941 struct netdev_net_notifier *nn); 2942int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2943 struct notifier_block *nb, 2944 struct netdev_net_notifier *nn); 2945 2946struct netdev_notifier_info { 2947 struct net_device *dev; 2948 struct netlink_ext_ack *extack; 2949}; 2950 2951struct netdev_notifier_info_ext { 2952 struct netdev_notifier_info info; /* must be first */ 2953 union { 2954 u32 mtu; 2955 } ext; 2956}; 2957 2958struct netdev_notifier_change_info { 2959 struct netdev_notifier_info info; /* must be first */ 2960 unsigned int flags_changed; 2961}; 2962 2963struct netdev_notifier_changeupper_info { 2964 struct netdev_notifier_info info; /* must be first */ 2965 struct net_device *upper_dev; /* new upper dev */ 2966 bool master; /* is upper dev master */ 2967 bool linking; /* is the notification for link or unlink */ 2968 void *upper_info; /* upper dev info */ 2969}; 2970 2971struct netdev_notifier_changelowerstate_info { 2972 struct netdev_notifier_info info; /* must be first */ 2973 void *lower_state_info; /* is lower dev state */ 2974}; 2975 2976struct netdev_notifier_pre_changeaddr_info { 2977 struct netdev_notifier_info info; /* must be first */ 2978 const unsigned char *dev_addr; 2979}; 2980 2981enum netdev_offload_xstats_type { 2982 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2983}; 2984 2985struct netdev_notifier_offload_xstats_info { 2986 struct netdev_notifier_info info; /* must be first */ 2987 enum netdev_offload_xstats_type type; 2988 2989 union { 2990 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2991 struct netdev_notifier_offload_xstats_rd *report_delta; 2992 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2993 struct netdev_notifier_offload_xstats_ru *report_used; 2994 }; 2995}; 2996 2997int netdev_offload_xstats_enable(struct net_device *dev, 2998 enum netdev_offload_xstats_type type, 2999 struct netlink_ext_ack *extack); 3000int netdev_offload_xstats_disable(struct net_device *dev, 3001 enum netdev_offload_xstats_type type); 3002bool netdev_offload_xstats_enabled(const struct net_device *dev, 3003 enum netdev_offload_xstats_type type); 3004int netdev_offload_xstats_get(struct net_device *dev, 3005 enum netdev_offload_xstats_type type, 3006 struct rtnl_hw_stats64 *stats, bool *used, 3007 struct netlink_ext_ack *extack); 3008void 3009netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 3010 const struct rtnl_hw_stats64 *stats); 3011void 3012netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 3013void netdev_offload_xstats_push_delta(struct net_device *dev, 3014 enum netdev_offload_xstats_type type, 3015 const struct rtnl_hw_stats64 *stats); 3016 3017static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 3018 struct net_device *dev) 3019{ 3020 info->dev = dev; 3021 info->extack = NULL; 3022} 3023 3024static inline struct net_device * 3025netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3026{ 3027 return info->dev; 3028} 3029 3030static inline struct netlink_ext_ack * 3031netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3032{ 3033 return info->extack; 3034} 3035 3036int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3037int call_netdevice_notifiers_info(unsigned long val, 3038 struct netdev_notifier_info *info); 3039 3040extern rwlock_t dev_base_lock; /* Device list lock */ 3041 3042#define for_each_netdev(net, d) \ 3043 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3044#define for_each_netdev_reverse(net, d) \ 3045 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3046#define for_each_netdev_rcu(net, d) \ 3047 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3048#define for_each_netdev_safe(net, d, n) \ 3049 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3050#define for_each_netdev_continue(net, d) \ 3051 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3052#define for_each_netdev_continue_reverse(net, d) \ 3053 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3054 dev_list) 3055#define for_each_netdev_continue_rcu(net, d) \ 3056 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3057#define for_each_netdev_in_bond_rcu(bond, slave) \ 3058 for_each_netdev_rcu(&init_net, slave) \ 3059 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3060#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3061 3062#define for_each_netdev_dump(net, d, ifindex) \ 3063 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3064 3065static inline struct net_device *next_net_device(struct net_device *dev) 3066{ 3067 struct list_head *lh; 3068 struct net *net; 3069 3070 net = dev_net(dev); 3071 lh = dev->dev_list.next; 3072 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3073} 3074 3075static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3076{ 3077 struct list_head *lh; 3078 struct net *net; 3079 3080 net = dev_net(dev); 3081 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3082 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3083} 3084 3085static inline struct net_device *first_net_device(struct net *net) 3086{ 3087 return list_empty(&net->dev_base_head) ? NULL : 3088 net_device_entry(net->dev_base_head.next); 3089} 3090 3091static inline struct net_device *first_net_device_rcu(struct net *net) 3092{ 3093 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3094 3095 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3096} 3097 3098int netdev_boot_setup_check(struct net_device *dev); 3099struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3100 const char *hwaddr); 3101struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3102void dev_add_pack(struct packet_type *pt); 3103void dev_remove_pack(struct packet_type *pt); 3104void __dev_remove_pack(struct packet_type *pt); 3105void dev_add_offload(struct packet_offload *po); 3106void dev_remove_offload(struct packet_offload *po); 3107 3108int dev_get_iflink(const struct net_device *dev); 3109int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3110int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3111 struct net_device_path_stack *stack); 3112struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3113 unsigned short mask); 3114struct net_device *dev_get_by_name(struct net *net, const char *name); 3115struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3116struct net_device *__dev_get_by_name(struct net *net, const char *name); 3117bool netdev_name_in_use(struct net *net, const char *name); 3118int dev_alloc_name(struct net_device *dev, const char *name); 3119int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3120void dev_close(struct net_device *dev); 3121void dev_close_many(struct list_head *head, bool unlink); 3122void dev_disable_lro(struct net_device *dev); 3123int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3124u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3125 struct net_device *sb_dev); 3126u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3127 struct net_device *sb_dev); 3128 3129int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3130int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3131 3132static inline int dev_queue_xmit(struct sk_buff *skb) 3133{ 3134 return __dev_queue_xmit(skb, NULL); 3135} 3136 3137static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3138 struct net_device *sb_dev) 3139{ 3140 return __dev_queue_xmit(skb, sb_dev); 3141} 3142 3143static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3144{ 3145 int ret; 3146 3147 ret = __dev_direct_xmit(skb, queue_id); 3148 if (!dev_xmit_complete(ret)) 3149 kfree_skb(skb); 3150 return ret; 3151} 3152 3153int register_netdevice(struct net_device *dev); 3154void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3155void unregister_netdevice_many(struct list_head *head); 3156static inline void unregister_netdevice(struct net_device *dev) 3157{ 3158 unregister_netdevice_queue(dev, NULL); 3159} 3160 3161int netdev_refcnt_read(const struct net_device *dev); 3162void free_netdev(struct net_device *dev); 3163void netdev_freemem(struct net_device *dev); 3164int init_dummy_netdev(struct net_device *dev); 3165 3166struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3167 struct sk_buff *skb, 3168 bool all_slaves); 3169struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3170 struct sock *sk); 3171struct net_device *dev_get_by_index(struct net *net, int ifindex); 3172struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3173struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3174 netdevice_tracker *tracker, gfp_t gfp); 3175struct net_device *netdev_get_by_name(struct net *net, const char *name, 3176 netdevice_tracker *tracker, gfp_t gfp); 3177struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3178struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3179 3180static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3181 unsigned short type, 3182 const void *daddr, const void *saddr, 3183 unsigned int len) 3184{ 3185 if (!dev->header_ops || !dev->header_ops->create) 3186 return 0; 3187 3188 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3189} 3190 3191static inline int dev_parse_header(const struct sk_buff *skb, 3192 unsigned char *haddr) 3193{ 3194 const struct net_device *dev = skb->dev; 3195 3196 if (!dev->header_ops || !dev->header_ops->parse) 3197 return 0; 3198 return dev->header_ops->parse(skb, haddr); 3199} 3200 3201static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3202{ 3203 const struct net_device *dev = skb->dev; 3204 3205 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3206 return 0; 3207 return dev->header_ops->parse_protocol(skb); 3208} 3209 3210/* ll_header must have at least hard_header_len allocated */ 3211static inline bool dev_validate_header(const struct net_device *dev, 3212 char *ll_header, int len) 3213{ 3214 if (likely(len >= dev->hard_header_len)) 3215 return true; 3216 if (len < dev->min_header_len) 3217 return false; 3218 3219 if (capable(CAP_SYS_RAWIO)) { 3220 memset(ll_header + len, 0, dev->hard_header_len - len); 3221 return true; 3222 } 3223 3224 if (dev->header_ops && dev->header_ops->validate) 3225 return dev->header_ops->validate(ll_header, len); 3226 3227 return false; 3228} 3229 3230static inline bool dev_has_header(const struct net_device *dev) 3231{ 3232 return dev->header_ops && dev->header_ops->create; 3233} 3234 3235/* 3236 * Incoming packets are placed on per-CPU queues 3237 */ 3238struct softnet_data { 3239 struct list_head poll_list; 3240 struct sk_buff_head process_queue; 3241 3242 /* stats */ 3243 unsigned int processed; 3244 unsigned int time_squeeze; 3245#ifdef CONFIG_RPS 3246 struct softnet_data *rps_ipi_list; 3247#endif 3248 3249 bool in_net_rx_action; 3250 bool in_napi_threaded_poll; 3251 3252#ifdef CONFIG_NET_FLOW_LIMIT 3253 struct sd_flow_limit __rcu *flow_limit; 3254#endif 3255 struct Qdisc *output_queue; 3256 struct Qdisc **output_queue_tailp; 3257 struct sk_buff *completion_queue; 3258#ifdef CONFIG_XFRM_OFFLOAD 3259 struct sk_buff_head xfrm_backlog; 3260#endif 3261 /* written and read only by owning cpu: */ 3262 struct { 3263 u16 recursion; 3264 u8 more; 3265#ifdef CONFIG_NET_EGRESS 3266 u8 skip_txqueue; 3267#endif 3268 } xmit; 3269#ifdef CONFIG_RPS 3270 /* input_queue_head should be written by cpu owning this struct, 3271 * and only read by other cpus. Worth using a cache line. 3272 */ 3273 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3274 3275 /* Elements below can be accessed between CPUs for RPS/RFS */ 3276 call_single_data_t csd ____cacheline_aligned_in_smp; 3277 struct softnet_data *rps_ipi_next; 3278 unsigned int cpu; 3279 unsigned int input_queue_tail; 3280#endif 3281 unsigned int received_rps; 3282 unsigned int dropped; 3283 struct sk_buff_head input_pkt_queue; 3284 struct napi_struct backlog; 3285 3286 /* Another possibly contended cache line */ 3287 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3288 int defer_count; 3289 int defer_ipi_scheduled; 3290 struct sk_buff *defer_list; 3291 call_single_data_t defer_csd; 3292}; 3293 3294static inline void input_queue_head_incr(struct softnet_data *sd) 3295{ 3296#ifdef CONFIG_RPS 3297 sd->input_queue_head++; 3298#endif 3299} 3300 3301static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3302 unsigned int *qtail) 3303{ 3304#ifdef CONFIG_RPS 3305 *qtail = ++sd->input_queue_tail; 3306#endif 3307} 3308 3309DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3310 3311static inline int dev_recursion_level(void) 3312{ 3313 return this_cpu_read(softnet_data.xmit.recursion); 3314} 3315 3316#define XMIT_RECURSION_LIMIT 8 3317static inline bool dev_xmit_recursion(void) 3318{ 3319 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3320 XMIT_RECURSION_LIMIT); 3321} 3322 3323static inline void dev_xmit_recursion_inc(void) 3324{ 3325 __this_cpu_inc(softnet_data.xmit.recursion); 3326} 3327 3328static inline void dev_xmit_recursion_dec(void) 3329{ 3330 __this_cpu_dec(softnet_data.xmit.recursion); 3331} 3332 3333void __netif_schedule(struct Qdisc *q); 3334void netif_schedule_queue(struct netdev_queue *txq); 3335 3336static inline void netif_tx_schedule_all(struct net_device *dev) 3337{ 3338 unsigned int i; 3339 3340 for (i = 0; i < dev->num_tx_queues; i++) 3341 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3342} 3343 3344static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3345{ 3346 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3347} 3348 3349/** 3350 * netif_start_queue - allow transmit 3351 * @dev: network device 3352 * 3353 * Allow upper layers to call the device hard_start_xmit routine. 3354 */ 3355static inline void netif_start_queue(struct net_device *dev) 3356{ 3357 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3358} 3359 3360static inline void netif_tx_start_all_queues(struct net_device *dev) 3361{ 3362 unsigned int i; 3363 3364 for (i = 0; i < dev->num_tx_queues; i++) { 3365 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3366 netif_tx_start_queue(txq); 3367 } 3368} 3369 3370void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3371 3372/** 3373 * netif_wake_queue - restart transmit 3374 * @dev: network device 3375 * 3376 * Allow upper layers to call the device hard_start_xmit routine. 3377 * Used for flow control when transmit resources are available. 3378 */ 3379static inline void netif_wake_queue(struct net_device *dev) 3380{ 3381 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3382} 3383 3384static inline void netif_tx_wake_all_queues(struct net_device *dev) 3385{ 3386 unsigned int i; 3387 3388 for (i = 0; i < dev->num_tx_queues; i++) { 3389 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3390 netif_tx_wake_queue(txq); 3391 } 3392} 3393 3394static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3395{ 3396 /* Must be an atomic op see netif_txq_try_stop() */ 3397 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3398} 3399 3400/** 3401 * netif_stop_queue - stop transmitted packets 3402 * @dev: network device 3403 * 3404 * Stop upper layers calling the device hard_start_xmit routine. 3405 * Used for flow control when transmit resources are unavailable. 3406 */ 3407static inline void netif_stop_queue(struct net_device *dev) 3408{ 3409 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3410} 3411 3412void netif_tx_stop_all_queues(struct net_device *dev); 3413 3414static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3415{ 3416 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3417} 3418 3419/** 3420 * netif_queue_stopped - test if transmit queue is flowblocked 3421 * @dev: network device 3422 * 3423 * Test if transmit queue on device is currently unable to send. 3424 */ 3425static inline bool netif_queue_stopped(const struct net_device *dev) 3426{ 3427 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3428} 3429 3430static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3431{ 3432 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3433} 3434 3435static inline bool 3436netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3437{ 3438 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3439} 3440 3441static inline bool 3442netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3443{ 3444 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3445} 3446 3447/** 3448 * netdev_queue_set_dql_min_limit - set dql minimum limit 3449 * @dev_queue: pointer to transmit queue 3450 * @min_limit: dql minimum limit 3451 * 3452 * Forces xmit_more() to return true until the minimum threshold 3453 * defined by @min_limit is reached (or until the tx queue is 3454 * empty). Warning: to be use with care, misuse will impact the 3455 * latency. 3456 */ 3457static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3458 unsigned int min_limit) 3459{ 3460#ifdef CONFIG_BQL 3461 dev_queue->dql.min_limit = min_limit; 3462#endif 3463} 3464 3465/** 3466 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3467 * @dev_queue: pointer to transmit queue 3468 * 3469 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3470 * to give appropriate hint to the CPU. 3471 */ 3472static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3473{ 3474#ifdef CONFIG_BQL 3475 prefetchw(&dev_queue->dql.num_queued); 3476#endif 3477} 3478 3479/** 3480 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3481 * @dev_queue: pointer to transmit queue 3482 * 3483 * BQL enabled drivers might use this helper in their TX completion path, 3484 * to give appropriate hint to the CPU. 3485 */ 3486static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3487{ 3488#ifdef CONFIG_BQL 3489 prefetchw(&dev_queue->dql.limit); 3490#endif 3491} 3492 3493/** 3494 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3495 * @dev_queue: network device queue 3496 * @bytes: number of bytes queued to the device queue 3497 * 3498 * Report the number of bytes queued for sending/completion to the network 3499 * device hardware queue. @bytes should be a good approximation and should 3500 * exactly match netdev_completed_queue() @bytes. 3501 * This is typically called once per packet, from ndo_start_xmit(). 3502 */ 3503static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3504 unsigned int bytes) 3505{ 3506#ifdef CONFIG_BQL 3507 dql_queued(&dev_queue->dql, bytes); 3508 3509 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3510 return; 3511 3512 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3513 3514 /* 3515 * The XOFF flag must be set before checking the dql_avail below, 3516 * because in netdev_tx_completed_queue we update the dql_completed 3517 * before checking the XOFF flag. 3518 */ 3519 smp_mb(); 3520 3521 /* check again in case another CPU has just made room avail */ 3522 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3523 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3524#endif 3525} 3526 3527/* Variant of netdev_tx_sent_queue() for drivers that are aware 3528 * that they should not test BQL status themselves. 3529 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3530 * skb of a batch. 3531 * Returns true if the doorbell must be used to kick the NIC. 3532 */ 3533static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3534 unsigned int bytes, 3535 bool xmit_more) 3536{ 3537 if (xmit_more) { 3538#ifdef CONFIG_BQL 3539 dql_queued(&dev_queue->dql, bytes); 3540#endif 3541 return netif_tx_queue_stopped(dev_queue); 3542 } 3543 netdev_tx_sent_queue(dev_queue, bytes); 3544 return true; 3545} 3546 3547/** 3548 * netdev_sent_queue - report the number of bytes queued to hardware 3549 * @dev: network device 3550 * @bytes: number of bytes queued to the hardware device queue 3551 * 3552 * Report the number of bytes queued for sending/completion to the network 3553 * device hardware queue#0. @bytes should be a good approximation and should 3554 * exactly match netdev_completed_queue() @bytes. 3555 * This is typically called once per packet, from ndo_start_xmit(). 3556 */ 3557static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3558{ 3559 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3560} 3561 3562static inline bool __netdev_sent_queue(struct net_device *dev, 3563 unsigned int bytes, 3564 bool xmit_more) 3565{ 3566 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3567 xmit_more); 3568} 3569 3570/** 3571 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3572 * @dev_queue: network device queue 3573 * @pkts: number of packets (currently ignored) 3574 * @bytes: number of bytes dequeued from the device queue 3575 * 3576 * Must be called at most once per TX completion round (and not per 3577 * individual packet), so that BQL can adjust its limits appropriately. 3578 */ 3579static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3580 unsigned int pkts, unsigned int bytes) 3581{ 3582#ifdef CONFIG_BQL 3583 if (unlikely(!bytes)) 3584 return; 3585 3586 dql_completed(&dev_queue->dql, bytes); 3587 3588 /* 3589 * Without the memory barrier there is a small possiblity that 3590 * netdev_tx_sent_queue will miss the update and cause the queue to 3591 * be stopped forever 3592 */ 3593 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3594 3595 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3596 return; 3597 3598 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3599 netif_schedule_queue(dev_queue); 3600#endif 3601} 3602 3603/** 3604 * netdev_completed_queue - report bytes and packets completed by device 3605 * @dev: network device 3606 * @pkts: actual number of packets sent over the medium 3607 * @bytes: actual number of bytes sent over the medium 3608 * 3609 * Report the number of bytes and packets transmitted by the network device 3610 * hardware queue over the physical medium, @bytes must exactly match the 3611 * @bytes amount passed to netdev_sent_queue() 3612 */ 3613static inline void netdev_completed_queue(struct net_device *dev, 3614 unsigned int pkts, unsigned int bytes) 3615{ 3616 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3617} 3618 3619static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3620{ 3621#ifdef CONFIG_BQL 3622 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3623 dql_reset(&q->dql); 3624#endif 3625} 3626 3627/** 3628 * netdev_reset_queue - reset the packets and bytes count of a network device 3629 * @dev_queue: network device 3630 * 3631 * Reset the bytes and packet count of a network device and clear the 3632 * software flow control OFF bit for this network device 3633 */ 3634static inline void netdev_reset_queue(struct net_device *dev_queue) 3635{ 3636 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3637} 3638 3639/** 3640 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3641 * @dev: network device 3642 * @queue_index: given tx queue index 3643 * 3644 * Returns 0 if given tx queue index >= number of device tx queues, 3645 * otherwise returns the originally passed tx queue index. 3646 */ 3647static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3648{ 3649 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3650 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3651 dev->name, queue_index, 3652 dev->real_num_tx_queues); 3653 return 0; 3654 } 3655 3656 return queue_index; 3657} 3658 3659/** 3660 * netif_running - test if up 3661 * @dev: network device 3662 * 3663 * Test if the device has been brought up. 3664 */ 3665static inline bool netif_running(const struct net_device *dev) 3666{ 3667 return test_bit(__LINK_STATE_START, &dev->state); 3668} 3669 3670/* 3671 * Routines to manage the subqueues on a device. We only need start, 3672 * stop, and a check if it's stopped. All other device management is 3673 * done at the overall netdevice level. 3674 * Also test the device if we're multiqueue. 3675 */ 3676 3677/** 3678 * netif_start_subqueue - allow sending packets on subqueue 3679 * @dev: network device 3680 * @queue_index: sub queue index 3681 * 3682 * Start individual transmit queue of a device with multiple transmit queues. 3683 */ 3684static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3685{ 3686 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3687 3688 netif_tx_start_queue(txq); 3689} 3690 3691/** 3692 * netif_stop_subqueue - stop sending packets on subqueue 3693 * @dev: network device 3694 * @queue_index: sub queue index 3695 * 3696 * Stop individual transmit queue of a device with multiple transmit queues. 3697 */ 3698static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3699{ 3700 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3701 netif_tx_stop_queue(txq); 3702} 3703 3704/** 3705 * __netif_subqueue_stopped - test status of subqueue 3706 * @dev: network device 3707 * @queue_index: sub queue index 3708 * 3709 * Check individual transmit queue of a device with multiple transmit queues. 3710 */ 3711static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3712 u16 queue_index) 3713{ 3714 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3715 3716 return netif_tx_queue_stopped(txq); 3717} 3718 3719/** 3720 * netif_subqueue_stopped - test status of subqueue 3721 * @dev: network device 3722 * @skb: sub queue buffer pointer 3723 * 3724 * Check individual transmit queue of a device with multiple transmit queues. 3725 */ 3726static inline bool netif_subqueue_stopped(const struct net_device *dev, 3727 struct sk_buff *skb) 3728{ 3729 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3730} 3731 3732/** 3733 * netif_wake_subqueue - allow sending packets on subqueue 3734 * @dev: network device 3735 * @queue_index: sub queue index 3736 * 3737 * Resume individual transmit queue of a device with multiple transmit queues. 3738 */ 3739static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3740{ 3741 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3742 3743 netif_tx_wake_queue(txq); 3744} 3745 3746#ifdef CONFIG_XPS 3747int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3748 u16 index); 3749int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3750 u16 index, enum xps_map_type type); 3751 3752/** 3753 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3754 * @j: CPU/Rx queue index 3755 * @mask: bitmask of all cpus/rx queues 3756 * @nr_bits: number of bits in the bitmask 3757 * 3758 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3759 */ 3760static inline bool netif_attr_test_mask(unsigned long j, 3761 const unsigned long *mask, 3762 unsigned int nr_bits) 3763{ 3764 cpu_max_bits_warn(j, nr_bits); 3765 return test_bit(j, mask); 3766} 3767 3768/** 3769 * netif_attr_test_online - Test for online CPU/Rx queue 3770 * @j: CPU/Rx queue index 3771 * @online_mask: bitmask for CPUs/Rx queues that are online 3772 * @nr_bits: number of bits in the bitmask 3773 * 3774 * Returns true if a CPU/Rx queue is online. 3775 */ 3776static inline bool netif_attr_test_online(unsigned long j, 3777 const unsigned long *online_mask, 3778 unsigned int nr_bits) 3779{ 3780 cpu_max_bits_warn(j, nr_bits); 3781 3782 if (online_mask) 3783 return test_bit(j, online_mask); 3784 3785 return (j < nr_bits); 3786} 3787 3788/** 3789 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3790 * @n: CPU/Rx queue index 3791 * @srcp: the cpumask/Rx queue mask pointer 3792 * @nr_bits: number of bits in the bitmask 3793 * 3794 * Returns >= nr_bits if no further CPUs/Rx queues set. 3795 */ 3796static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3797 unsigned int nr_bits) 3798{ 3799 /* -1 is a legal arg here. */ 3800 if (n != -1) 3801 cpu_max_bits_warn(n, nr_bits); 3802 3803 if (srcp) 3804 return find_next_bit(srcp, nr_bits, n + 1); 3805 3806 return n + 1; 3807} 3808 3809/** 3810 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3811 * @n: CPU/Rx queue index 3812 * @src1p: the first CPUs/Rx queues mask pointer 3813 * @src2p: the second CPUs/Rx queues mask pointer 3814 * @nr_bits: number of bits in the bitmask 3815 * 3816 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3817 */ 3818static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3819 const unsigned long *src2p, 3820 unsigned int nr_bits) 3821{ 3822 /* -1 is a legal arg here. */ 3823 if (n != -1) 3824 cpu_max_bits_warn(n, nr_bits); 3825 3826 if (src1p && src2p) 3827 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3828 else if (src1p) 3829 return find_next_bit(src1p, nr_bits, n + 1); 3830 else if (src2p) 3831 return find_next_bit(src2p, nr_bits, n + 1); 3832 3833 return n + 1; 3834} 3835#else 3836static inline int netif_set_xps_queue(struct net_device *dev, 3837 const struct cpumask *mask, 3838 u16 index) 3839{ 3840 return 0; 3841} 3842 3843static inline int __netif_set_xps_queue(struct net_device *dev, 3844 const unsigned long *mask, 3845 u16 index, enum xps_map_type type) 3846{ 3847 return 0; 3848} 3849#endif 3850 3851/** 3852 * netif_is_multiqueue - test if device has multiple transmit queues 3853 * @dev: network device 3854 * 3855 * Check if device has multiple transmit queues 3856 */ 3857static inline bool netif_is_multiqueue(const struct net_device *dev) 3858{ 3859 return dev->num_tx_queues > 1; 3860} 3861 3862int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3863 3864#ifdef CONFIG_SYSFS 3865int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3866#else 3867static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3868 unsigned int rxqs) 3869{ 3870 dev->real_num_rx_queues = rxqs; 3871 return 0; 3872} 3873#endif 3874int netif_set_real_num_queues(struct net_device *dev, 3875 unsigned int txq, unsigned int rxq); 3876 3877int netif_get_num_default_rss_queues(void); 3878 3879void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3880void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3881 3882/* 3883 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3884 * interrupt context or with hardware interrupts being disabled. 3885 * (in_hardirq() || irqs_disabled()) 3886 * 3887 * We provide four helpers that can be used in following contexts : 3888 * 3889 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3890 * replacing kfree_skb(skb) 3891 * 3892 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3893 * Typically used in place of consume_skb(skb) in TX completion path 3894 * 3895 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3896 * replacing kfree_skb(skb) 3897 * 3898 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3899 * and consumed a packet. Used in place of consume_skb(skb) 3900 */ 3901static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3902{ 3903 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3904} 3905 3906static inline void dev_consume_skb_irq(struct sk_buff *skb) 3907{ 3908 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3909} 3910 3911static inline void dev_kfree_skb_any(struct sk_buff *skb) 3912{ 3913 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3914} 3915 3916static inline void dev_consume_skb_any(struct sk_buff *skb) 3917{ 3918 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3919} 3920 3921u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3922 struct bpf_prog *xdp_prog); 3923void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3924int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3925int netif_rx(struct sk_buff *skb); 3926int __netif_rx(struct sk_buff *skb); 3927 3928int netif_receive_skb(struct sk_buff *skb); 3929int netif_receive_skb_core(struct sk_buff *skb); 3930void netif_receive_skb_list_internal(struct list_head *head); 3931void netif_receive_skb_list(struct list_head *head); 3932gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3933void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3934struct sk_buff *napi_get_frags(struct napi_struct *napi); 3935void napi_get_frags_check(struct napi_struct *napi); 3936gro_result_t napi_gro_frags(struct napi_struct *napi); 3937struct packet_offload *gro_find_receive_by_type(__be16 type); 3938struct packet_offload *gro_find_complete_by_type(__be16 type); 3939 3940static inline void napi_free_frags(struct napi_struct *napi) 3941{ 3942 kfree_skb(napi->skb); 3943 napi->skb = NULL; 3944} 3945 3946bool netdev_is_rx_handler_busy(struct net_device *dev); 3947int netdev_rx_handler_register(struct net_device *dev, 3948 rx_handler_func_t *rx_handler, 3949 void *rx_handler_data); 3950void netdev_rx_handler_unregister(struct net_device *dev); 3951 3952bool dev_valid_name(const char *name); 3953static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3954{ 3955 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3956} 3957int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3958int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3959int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3960 void __user *data, bool *need_copyout); 3961int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3962int generic_hwtstamp_get_lower(struct net_device *dev, 3963 struct kernel_hwtstamp_config *kernel_cfg); 3964int generic_hwtstamp_set_lower(struct net_device *dev, 3965 struct kernel_hwtstamp_config *kernel_cfg, 3966 struct netlink_ext_ack *extack); 3967int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3968unsigned int dev_get_flags(const struct net_device *); 3969int __dev_change_flags(struct net_device *dev, unsigned int flags, 3970 struct netlink_ext_ack *extack); 3971int dev_change_flags(struct net_device *dev, unsigned int flags, 3972 struct netlink_ext_ack *extack); 3973int dev_set_alias(struct net_device *, const char *, size_t); 3974int dev_get_alias(const struct net_device *, char *, size_t); 3975int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3976 const char *pat, int new_ifindex); 3977static inline 3978int dev_change_net_namespace(struct net_device *dev, struct net *net, 3979 const char *pat) 3980{ 3981 return __dev_change_net_namespace(dev, net, pat, 0); 3982} 3983int __dev_set_mtu(struct net_device *, int); 3984int dev_set_mtu(struct net_device *, int); 3985int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3986 struct netlink_ext_ack *extack); 3987int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3988 struct netlink_ext_ack *extack); 3989int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3990 struct netlink_ext_ack *extack); 3991int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3992int dev_get_port_parent_id(struct net_device *dev, 3993 struct netdev_phys_item_id *ppid, bool recurse); 3994bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3995void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin); 3996void netdev_dpll_pin_clear(struct net_device *dev); 3997 3998static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev) 3999{ 4000#if IS_ENABLED(CONFIG_DPLL) 4001 return dev->dpll_pin; 4002#else 4003 return NULL; 4004#endif 4005} 4006 4007struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 4008struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 4009 struct netdev_queue *txq, int *ret); 4010 4011int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 4012u8 dev_xdp_prog_count(struct net_device *dev); 4013u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 4014 4015int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4016int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 4017int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 4018bool is_skb_forwardable(const struct net_device *dev, 4019 const struct sk_buff *skb); 4020 4021static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4022 const struct sk_buff *skb, 4023 const bool check_mtu) 4024{ 4025 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4026 unsigned int len; 4027 4028 if (!(dev->flags & IFF_UP)) 4029 return false; 4030 4031 if (!check_mtu) 4032 return true; 4033 4034 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4035 if (skb->len <= len) 4036 return true; 4037 4038 /* if TSO is enabled, we don't care about the length as the packet 4039 * could be forwarded without being segmented before 4040 */ 4041 if (skb_is_gso(skb)) 4042 return true; 4043 4044 return false; 4045} 4046 4047void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4048 4049#define DEV_CORE_STATS_INC(FIELD) \ 4050static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4051{ \ 4052 netdev_core_stats_inc(dev, \ 4053 offsetof(struct net_device_core_stats, FIELD)); \ 4054} 4055DEV_CORE_STATS_INC(rx_dropped) 4056DEV_CORE_STATS_INC(tx_dropped) 4057DEV_CORE_STATS_INC(rx_nohandler) 4058DEV_CORE_STATS_INC(rx_otherhost_dropped) 4059#undef DEV_CORE_STATS_INC 4060 4061static __always_inline int ____dev_forward_skb(struct net_device *dev, 4062 struct sk_buff *skb, 4063 const bool check_mtu) 4064{ 4065 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4066 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4067 dev_core_stats_rx_dropped_inc(dev); 4068 kfree_skb(skb); 4069 return NET_RX_DROP; 4070 } 4071 4072 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4073 skb->priority = 0; 4074 return 0; 4075} 4076 4077bool dev_nit_active(struct net_device *dev); 4078void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4079 4080static inline void __dev_put(struct net_device *dev) 4081{ 4082 if (dev) { 4083#ifdef CONFIG_PCPU_DEV_REFCNT 4084 this_cpu_dec(*dev->pcpu_refcnt); 4085#else 4086 refcount_dec(&dev->dev_refcnt); 4087#endif 4088 } 4089} 4090 4091static inline void __dev_hold(struct net_device *dev) 4092{ 4093 if (dev) { 4094#ifdef CONFIG_PCPU_DEV_REFCNT 4095 this_cpu_inc(*dev->pcpu_refcnt); 4096#else 4097 refcount_inc(&dev->dev_refcnt); 4098#endif 4099 } 4100} 4101 4102static inline void __netdev_tracker_alloc(struct net_device *dev, 4103 netdevice_tracker *tracker, 4104 gfp_t gfp) 4105{ 4106#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4107 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4108#endif 4109} 4110 4111/* netdev_tracker_alloc() can upgrade a prior untracked reference 4112 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4113 */ 4114static inline void netdev_tracker_alloc(struct net_device *dev, 4115 netdevice_tracker *tracker, gfp_t gfp) 4116{ 4117#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4118 refcount_dec(&dev->refcnt_tracker.no_tracker); 4119 __netdev_tracker_alloc(dev, tracker, gfp); 4120#endif 4121} 4122 4123static inline void netdev_tracker_free(struct net_device *dev, 4124 netdevice_tracker *tracker) 4125{ 4126#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4127 ref_tracker_free(&dev->refcnt_tracker, tracker); 4128#endif 4129} 4130 4131static inline void netdev_hold(struct net_device *dev, 4132 netdevice_tracker *tracker, gfp_t gfp) 4133{ 4134 if (dev) { 4135 __dev_hold(dev); 4136 __netdev_tracker_alloc(dev, tracker, gfp); 4137 } 4138} 4139 4140static inline void netdev_put(struct net_device *dev, 4141 netdevice_tracker *tracker) 4142{ 4143 if (dev) { 4144 netdev_tracker_free(dev, tracker); 4145 __dev_put(dev); 4146 } 4147} 4148 4149/** 4150 * dev_hold - get reference to device 4151 * @dev: network device 4152 * 4153 * Hold reference to device to keep it from being freed. 4154 * Try using netdev_hold() instead. 4155 */ 4156static inline void dev_hold(struct net_device *dev) 4157{ 4158 netdev_hold(dev, NULL, GFP_ATOMIC); 4159} 4160 4161/** 4162 * dev_put - release reference to device 4163 * @dev: network device 4164 * 4165 * Release reference to device to allow it to be freed. 4166 * Try using netdev_put() instead. 4167 */ 4168static inline void dev_put(struct net_device *dev) 4169{ 4170 netdev_put(dev, NULL); 4171} 4172 4173static inline void netdev_ref_replace(struct net_device *odev, 4174 struct net_device *ndev, 4175 netdevice_tracker *tracker, 4176 gfp_t gfp) 4177{ 4178 if (odev) 4179 netdev_tracker_free(odev, tracker); 4180 4181 __dev_hold(ndev); 4182 __dev_put(odev); 4183 4184 if (ndev) 4185 __netdev_tracker_alloc(ndev, tracker, gfp); 4186} 4187 4188/* Carrier loss detection, dial on demand. The functions netif_carrier_on 4189 * and _off may be called from IRQ context, but it is caller 4190 * who is responsible for serialization of these calls. 4191 * 4192 * The name carrier is inappropriate, these functions should really be 4193 * called netif_lowerlayer_*() because they represent the state of any 4194 * kind of lower layer not just hardware media. 4195 */ 4196void linkwatch_fire_event(struct net_device *dev); 4197 4198/** 4199 * netif_carrier_ok - test if carrier present 4200 * @dev: network device 4201 * 4202 * Check if carrier is present on device 4203 */ 4204static inline bool netif_carrier_ok(const struct net_device *dev) 4205{ 4206 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4207} 4208 4209unsigned long dev_trans_start(struct net_device *dev); 4210 4211void __netdev_watchdog_up(struct net_device *dev); 4212 4213void netif_carrier_on(struct net_device *dev); 4214void netif_carrier_off(struct net_device *dev); 4215void netif_carrier_event(struct net_device *dev); 4216 4217/** 4218 * netif_dormant_on - mark device as dormant. 4219 * @dev: network device 4220 * 4221 * Mark device as dormant (as per RFC2863). 4222 * 4223 * The dormant state indicates that the relevant interface is not 4224 * actually in a condition to pass packets (i.e., it is not 'up') but is 4225 * in a "pending" state, waiting for some external event. For "on- 4226 * demand" interfaces, this new state identifies the situation where the 4227 * interface is waiting for events to place it in the up state. 4228 */ 4229static inline void netif_dormant_on(struct net_device *dev) 4230{ 4231 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4232 linkwatch_fire_event(dev); 4233} 4234 4235/** 4236 * netif_dormant_off - set device as not dormant. 4237 * @dev: network device 4238 * 4239 * Device is not in dormant state. 4240 */ 4241static inline void netif_dormant_off(struct net_device *dev) 4242{ 4243 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4244 linkwatch_fire_event(dev); 4245} 4246 4247/** 4248 * netif_dormant - test if device is dormant 4249 * @dev: network device 4250 * 4251 * Check if device is dormant. 4252 */ 4253static inline bool netif_dormant(const struct net_device *dev) 4254{ 4255 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4256} 4257 4258 4259/** 4260 * netif_testing_on - mark device as under test. 4261 * @dev: network device 4262 * 4263 * Mark device as under test (as per RFC2863). 4264 * 4265 * The testing state indicates that some test(s) must be performed on 4266 * the interface. After completion, of the test, the interface state 4267 * will change to up, dormant, or down, as appropriate. 4268 */ 4269static inline void netif_testing_on(struct net_device *dev) 4270{ 4271 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4272 linkwatch_fire_event(dev); 4273} 4274 4275/** 4276 * netif_testing_off - set device as not under test. 4277 * @dev: network device 4278 * 4279 * Device is not in testing state. 4280 */ 4281static inline void netif_testing_off(struct net_device *dev) 4282{ 4283 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4284 linkwatch_fire_event(dev); 4285} 4286 4287/** 4288 * netif_testing - test if device is under test 4289 * @dev: network device 4290 * 4291 * Check if device is under test 4292 */ 4293static inline bool netif_testing(const struct net_device *dev) 4294{ 4295 return test_bit(__LINK_STATE_TESTING, &dev->state); 4296} 4297 4298 4299/** 4300 * netif_oper_up - test if device is operational 4301 * @dev: network device 4302 * 4303 * Check if carrier is operational 4304 */ 4305static inline bool netif_oper_up(const struct net_device *dev) 4306{ 4307 return (dev->operstate == IF_OPER_UP || 4308 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4309} 4310 4311/** 4312 * netif_device_present - is device available or removed 4313 * @dev: network device 4314 * 4315 * Check if device has not been removed from system. 4316 */ 4317static inline bool netif_device_present(const struct net_device *dev) 4318{ 4319 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4320} 4321 4322void netif_device_detach(struct net_device *dev); 4323 4324void netif_device_attach(struct net_device *dev); 4325 4326/* 4327 * Network interface message level settings 4328 */ 4329 4330enum { 4331 NETIF_MSG_DRV_BIT, 4332 NETIF_MSG_PROBE_BIT, 4333 NETIF_MSG_LINK_BIT, 4334 NETIF_MSG_TIMER_BIT, 4335 NETIF_MSG_IFDOWN_BIT, 4336 NETIF_MSG_IFUP_BIT, 4337 NETIF_MSG_RX_ERR_BIT, 4338 NETIF_MSG_TX_ERR_BIT, 4339 NETIF_MSG_TX_QUEUED_BIT, 4340 NETIF_MSG_INTR_BIT, 4341 NETIF_MSG_TX_DONE_BIT, 4342 NETIF_MSG_RX_STATUS_BIT, 4343 NETIF_MSG_PKTDATA_BIT, 4344 NETIF_MSG_HW_BIT, 4345 NETIF_MSG_WOL_BIT, 4346 4347 /* When you add a new bit above, update netif_msg_class_names array 4348 * in net/ethtool/common.c 4349 */ 4350 NETIF_MSG_CLASS_COUNT, 4351}; 4352/* Both ethtool_ops interface and internal driver implementation use u32 */ 4353static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4354 4355#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4356#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4357 4358#define NETIF_MSG_DRV __NETIF_MSG(DRV) 4359#define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4360#define NETIF_MSG_LINK __NETIF_MSG(LINK) 4361#define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4362#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4363#define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4364#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4365#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4366#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4367#define NETIF_MSG_INTR __NETIF_MSG(INTR) 4368#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4369#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4370#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4371#define NETIF_MSG_HW __NETIF_MSG(HW) 4372#define NETIF_MSG_WOL __NETIF_MSG(WOL) 4373 4374#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4375#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4376#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4377#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4378#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4379#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4380#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4381#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4382#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4383#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4384#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4385#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4386#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4387#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4388#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4389 4390static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4391{ 4392 /* use default */ 4393 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4394 return default_msg_enable_bits; 4395 if (debug_value == 0) /* no output */ 4396 return 0; 4397 /* set low N bits */ 4398 return (1U << debug_value) - 1; 4399} 4400 4401static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4402{ 4403 spin_lock(&txq->_xmit_lock); 4404 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4405 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4406} 4407 4408static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4409{ 4410 __acquire(&txq->_xmit_lock); 4411 return true; 4412} 4413 4414static inline void __netif_tx_release(struct netdev_queue *txq) 4415{ 4416 __release(&txq->_xmit_lock); 4417} 4418 4419static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4420{ 4421 spin_lock_bh(&txq->_xmit_lock); 4422 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4423 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4424} 4425 4426static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4427{ 4428 bool ok = spin_trylock(&txq->_xmit_lock); 4429 4430 if (likely(ok)) { 4431 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4432 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4433 } 4434 return ok; 4435} 4436 4437static inline void __netif_tx_unlock(struct netdev_queue *txq) 4438{ 4439 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4440 WRITE_ONCE(txq->xmit_lock_owner, -1); 4441 spin_unlock(&txq->_xmit_lock); 4442} 4443 4444static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4445{ 4446 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4447 WRITE_ONCE(txq->xmit_lock_owner, -1); 4448 spin_unlock_bh(&txq->_xmit_lock); 4449} 4450 4451/* 4452 * txq->trans_start can be read locklessly from dev_watchdog() 4453 */ 4454static inline void txq_trans_update(struct netdev_queue *txq) 4455{ 4456 if (txq->xmit_lock_owner != -1) 4457 WRITE_ONCE(txq->trans_start, jiffies); 4458} 4459 4460static inline void txq_trans_cond_update(struct netdev_queue *txq) 4461{ 4462 unsigned long now = jiffies; 4463 4464 if (READ_ONCE(txq->trans_start) != now) 4465 WRITE_ONCE(txq->trans_start, now); 4466} 4467 4468/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4469static inline void netif_trans_update(struct net_device *dev) 4470{ 4471 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4472 4473 txq_trans_cond_update(txq); 4474} 4475 4476/** 4477 * netif_tx_lock - grab network device transmit lock 4478 * @dev: network device 4479 * 4480 * Get network device transmit lock 4481 */ 4482void netif_tx_lock(struct net_device *dev); 4483 4484static inline void netif_tx_lock_bh(struct net_device *dev) 4485{ 4486 local_bh_disable(); 4487 netif_tx_lock(dev); 4488} 4489 4490void netif_tx_unlock(struct net_device *dev); 4491 4492static inline void netif_tx_unlock_bh(struct net_device *dev) 4493{ 4494 netif_tx_unlock(dev); 4495 local_bh_enable(); 4496} 4497 4498#define HARD_TX_LOCK(dev, txq, cpu) { \ 4499 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4500 __netif_tx_lock(txq, cpu); \ 4501 } else { \ 4502 __netif_tx_acquire(txq); \ 4503 } \ 4504} 4505 4506#define HARD_TX_TRYLOCK(dev, txq) \ 4507 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4508 __netif_tx_trylock(txq) : \ 4509 __netif_tx_acquire(txq)) 4510 4511#define HARD_TX_UNLOCK(dev, txq) { \ 4512 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4513 __netif_tx_unlock(txq); \ 4514 } else { \ 4515 __netif_tx_release(txq); \ 4516 } \ 4517} 4518 4519static inline void netif_tx_disable(struct net_device *dev) 4520{ 4521 unsigned int i; 4522 int cpu; 4523 4524 local_bh_disable(); 4525 cpu = smp_processor_id(); 4526 spin_lock(&dev->tx_global_lock); 4527 for (i = 0; i < dev->num_tx_queues; i++) { 4528 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4529 4530 __netif_tx_lock(txq, cpu); 4531 netif_tx_stop_queue(txq); 4532 __netif_tx_unlock(txq); 4533 } 4534 spin_unlock(&dev->tx_global_lock); 4535 local_bh_enable(); 4536} 4537 4538static inline void netif_addr_lock(struct net_device *dev) 4539{ 4540 unsigned char nest_level = 0; 4541 4542#ifdef CONFIG_LOCKDEP 4543 nest_level = dev->nested_level; 4544#endif 4545 spin_lock_nested(&dev->addr_list_lock, nest_level); 4546} 4547 4548static inline void netif_addr_lock_bh(struct net_device *dev) 4549{ 4550 unsigned char nest_level = 0; 4551 4552#ifdef CONFIG_LOCKDEP 4553 nest_level = dev->nested_level; 4554#endif 4555 local_bh_disable(); 4556 spin_lock_nested(&dev->addr_list_lock, nest_level); 4557} 4558 4559static inline void netif_addr_unlock(struct net_device *dev) 4560{ 4561 spin_unlock(&dev->addr_list_lock); 4562} 4563 4564static inline void netif_addr_unlock_bh(struct net_device *dev) 4565{ 4566 spin_unlock_bh(&dev->addr_list_lock); 4567} 4568 4569/* 4570 * dev_addrs walker. Should be used only for read access. Call with 4571 * rcu_read_lock held. 4572 */ 4573#define for_each_dev_addr(dev, ha) \ 4574 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4575 4576/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4577 4578void ether_setup(struct net_device *dev); 4579 4580/* Support for loadable net-drivers */ 4581struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4582 unsigned char name_assign_type, 4583 void (*setup)(struct net_device *), 4584 unsigned int txqs, unsigned int rxqs); 4585#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4586 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4587 4588#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4589 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4590 count) 4591 4592int register_netdev(struct net_device *dev); 4593void unregister_netdev(struct net_device *dev); 4594 4595int devm_register_netdev(struct device *dev, struct net_device *ndev); 4596 4597/* General hardware address lists handling functions */ 4598int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4599 struct netdev_hw_addr_list *from_list, int addr_len); 4600void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4601 struct netdev_hw_addr_list *from_list, int addr_len); 4602int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4603 struct net_device *dev, 4604 int (*sync)(struct net_device *, const unsigned char *), 4605 int (*unsync)(struct net_device *, 4606 const unsigned char *)); 4607int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4608 struct net_device *dev, 4609 int (*sync)(struct net_device *, 4610 const unsigned char *, int), 4611 int (*unsync)(struct net_device *, 4612 const unsigned char *, int)); 4613void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4614 struct net_device *dev, 4615 int (*unsync)(struct net_device *, 4616 const unsigned char *, int)); 4617void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4618 struct net_device *dev, 4619 int (*unsync)(struct net_device *, 4620 const unsigned char *)); 4621void __hw_addr_init(struct netdev_hw_addr_list *list); 4622 4623/* Functions used for device addresses handling */ 4624void dev_addr_mod(struct net_device *dev, unsigned int offset, 4625 const void *addr, size_t len); 4626 4627static inline void 4628__dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4629{ 4630 dev_addr_mod(dev, 0, addr, len); 4631} 4632 4633static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4634{ 4635 __dev_addr_set(dev, addr, dev->addr_len); 4636} 4637 4638int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4639 unsigned char addr_type); 4640int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4641 unsigned char addr_type); 4642 4643/* Functions used for unicast addresses handling */ 4644int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4645int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4646int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4647int dev_uc_sync(struct net_device *to, struct net_device *from); 4648int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4649void dev_uc_unsync(struct net_device *to, struct net_device *from); 4650void dev_uc_flush(struct net_device *dev); 4651void dev_uc_init(struct net_device *dev); 4652 4653/** 4654 * __dev_uc_sync - Synchonize device's unicast list 4655 * @dev: device to sync 4656 * @sync: function to call if address should be added 4657 * @unsync: function to call if address should be removed 4658 * 4659 * Add newly added addresses to the interface, and release 4660 * addresses that have been deleted. 4661 */ 4662static inline int __dev_uc_sync(struct net_device *dev, 4663 int (*sync)(struct net_device *, 4664 const unsigned char *), 4665 int (*unsync)(struct net_device *, 4666 const unsigned char *)) 4667{ 4668 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4669} 4670 4671/** 4672 * __dev_uc_unsync - Remove synchronized addresses from device 4673 * @dev: device to sync 4674 * @unsync: function to call if address should be removed 4675 * 4676 * Remove all addresses that were added to the device by dev_uc_sync(). 4677 */ 4678static inline void __dev_uc_unsync(struct net_device *dev, 4679 int (*unsync)(struct net_device *, 4680 const unsigned char *)) 4681{ 4682 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4683} 4684 4685/* Functions used for multicast addresses handling */ 4686int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4687int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4688int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4689int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4690int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4691int dev_mc_sync(struct net_device *to, struct net_device *from); 4692int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4693void dev_mc_unsync(struct net_device *to, struct net_device *from); 4694void dev_mc_flush(struct net_device *dev); 4695void dev_mc_init(struct net_device *dev); 4696 4697/** 4698 * __dev_mc_sync - Synchonize device's multicast list 4699 * @dev: device to sync 4700 * @sync: function to call if address should be added 4701 * @unsync: function to call if address should be removed 4702 * 4703 * Add newly added addresses to the interface, and release 4704 * addresses that have been deleted. 4705 */ 4706static inline int __dev_mc_sync(struct net_device *dev, 4707 int (*sync)(struct net_device *, 4708 const unsigned char *), 4709 int (*unsync)(struct net_device *, 4710 const unsigned char *)) 4711{ 4712 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4713} 4714 4715/** 4716 * __dev_mc_unsync - Remove synchronized addresses from device 4717 * @dev: device to sync 4718 * @unsync: function to call if address should be removed 4719 * 4720 * Remove all addresses that were added to the device by dev_mc_sync(). 4721 */ 4722static inline void __dev_mc_unsync(struct net_device *dev, 4723 int (*unsync)(struct net_device *, 4724 const unsigned char *)) 4725{ 4726 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4727} 4728 4729/* Functions used for secondary unicast and multicast support */ 4730void dev_set_rx_mode(struct net_device *dev); 4731int dev_set_promiscuity(struct net_device *dev, int inc); 4732int dev_set_allmulti(struct net_device *dev, int inc); 4733void netdev_state_change(struct net_device *dev); 4734void __netdev_notify_peers(struct net_device *dev); 4735void netdev_notify_peers(struct net_device *dev); 4736void netdev_features_change(struct net_device *dev); 4737/* Load a device via the kmod */ 4738void dev_load(struct net *net, const char *name); 4739struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4740 struct rtnl_link_stats64 *storage); 4741void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4742 const struct net_device_stats *netdev_stats); 4743void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4744 const struct pcpu_sw_netstats __percpu *netstats); 4745void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4746 4747extern int netdev_max_backlog; 4748extern int dev_rx_weight; 4749extern int dev_tx_weight; 4750extern int gro_normal_batch; 4751 4752enum { 4753 NESTED_SYNC_IMM_BIT, 4754 NESTED_SYNC_TODO_BIT, 4755}; 4756 4757#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4758#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4759 4760#define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4761#define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4762 4763struct netdev_nested_priv { 4764 unsigned char flags; 4765 void *data; 4766}; 4767 4768bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4769struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4770 struct list_head **iter); 4771 4772/* iterate through upper list, must be called under RCU read lock */ 4773#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4774 for (iter = &(dev)->adj_list.upper, \ 4775 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4776 updev; \ 4777 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4778 4779int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4780 int (*fn)(struct net_device *upper_dev, 4781 struct netdev_nested_priv *priv), 4782 struct netdev_nested_priv *priv); 4783 4784bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4785 struct net_device *upper_dev); 4786 4787bool netdev_has_any_upper_dev(struct net_device *dev); 4788 4789void *netdev_lower_get_next_private(struct net_device *dev, 4790 struct list_head **iter); 4791void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4792 struct list_head **iter); 4793 4794#define netdev_for_each_lower_private(dev, priv, iter) \ 4795 for (iter = (dev)->adj_list.lower.next, \ 4796 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4797 priv; \ 4798 priv = netdev_lower_get_next_private(dev, &(iter))) 4799 4800#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4801 for (iter = &(dev)->adj_list.lower, \ 4802 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4803 priv; \ 4804 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4805 4806void *netdev_lower_get_next(struct net_device *dev, 4807 struct list_head **iter); 4808 4809#define netdev_for_each_lower_dev(dev, ldev, iter) \ 4810 for (iter = (dev)->adj_list.lower.next, \ 4811 ldev = netdev_lower_get_next(dev, &(iter)); \ 4812 ldev; \ 4813 ldev = netdev_lower_get_next(dev, &(iter))) 4814 4815struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4816 struct list_head **iter); 4817int netdev_walk_all_lower_dev(struct net_device *dev, 4818 int (*fn)(struct net_device *lower_dev, 4819 struct netdev_nested_priv *priv), 4820 struct netdev_nested_priv *priv); 4821int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4822 int (*fn)(struct net_device *lower_dev, 4823 struct netdev_nested_priv *priv), 4824 struct netdev_nested_priv *priv); 4825 4826void *netdev_adjacent_get_private(struct list_head *adj_list); 4827void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4828struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4829struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4830int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4831 struct netlink_ext_ack *extack); 4832int netdev_master_upper_dev_link(struct net_device *dev, 4833 struct net_device *upper_dev, 4834 void *upper_priv, void *upper_info, 4835 struct netlink_ext_ack *extack); 4836void netdev_upper_dev_unlink(struct net_device *dev, 4837 struct net_device *upper_dev); 4838int netdev_adjacent_change_prepare(struct net_device *old_dev, 4839 struct net_device *new_dev, 4840 struct net_device *dev, 4841 struct netlink_ext_ack *extack); 4842void netdev_adjacent_change_commit(struct net_device *old_dev, 4843 struct net_device *new_dev, 4844 struct net_device *dev); 4845void netdev_adjacent_change_abort(struct net_device *old_dev, 4846 struct net_device *new_dev, 4847 struct net_device *dev); 4848void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4849void *netdev_lower_dev_get_private(struct net_device *dev, 4850 struct net_device *lower_dev); 4851void netdev_lower_state_changed(struct net_device *lower_dev, 4852 void *lower_state_info); 4853 4854/* RSS keys are 40 or 52 bytes long */ 4855#define NETDEV_RSS_KEY_LEN 52 4856extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4857void netdev_rss_key_fill(void *buffer, size_t len); 4858 4859int skb_checksum_help(struct sk_buff *skb); 4860int skb_crc32c_csum_help(struct sk_buff *skb); 4861int skb_csum_hwoffload_help(struct sk_buff *skb, 4862 const netdev_features_t features); 4863 4864struct netdev_bonding_info { 4865 ifslave slave; 4866 ifbond master; 4867}; 4868 4869struct netdev_notifier_bonding_info { 4870 struct netdev_notifier_info info; /* must be first */ 4871 struct netdev_bonding_info bonding_info; 4872}; 4873 4874void netdev_bonding_info_change(struct net_device *dev, 4875 struct netdev_bonding_info *bonding_info); 4876 4877#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4878void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4879#else 4880static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4881 const void *data) 4882{ 4883} 4884#endif 4885 4886__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4887 4888static inline bool can_checksum_protocol(netdev_features_t features, 4889 __be16 protocol) 4890{ 4891 if (protocol == htons(ETH_P_FCOE)) 4892 return !!(features & NETIF_F_FCOE_CRC); 4893 4894 /* Assume this is an IP checksum (not SCTP CRC) */ 4895 4896 if (features & NETIF_F_HW_CSUM) { 4897 /* Can checksum everything */ 4898 return true; 4899 } 4900 4901 switch (protocol) { 4902 case htons(ETH_P_IP): 4903 return !!(features & NETIF_F_IP_CSUM); 4904 case htons(ETH_P_IPV6): 4905 return !!(features & NETIF_F_IPV6_CSUM); 4906 default: 4907 return false; 4908 } 4909} 4910 4911#ifdef CONFIG_BUG 4912void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4913#else 4914static inline void netdev_rx_csum_fault(struct net_device *dev, 4915 struct sk_buff *skb) 4916{ 4917} 4918#endif 4919/* rx skb timestamps */ 4920void net_enable_timestamp(void); 4921void net_disable_timestamp(void); 4922 4923static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4924 const struct skb_shared_hwtstamps *hwtstamps, 4925 bool cycles) 4926{ 4927 const struct net_device_ops *ops = dev->netdev_ops; 4928 4929 if (ops->ndo_get_tstamp) 4930 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4931 4932 return hwtstamps->hwtstamp; 4933} 4934 4935static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4936 struct sk_buff *skb, struct net_device *dev, 4937 bool more) 4938{ 4939 __this_cpu_write(softnet_data.xmit.more, more); 4940 return ops->ndo_start_xmit(skb, dev); 4941} 4942 4943static inline bool netdev_xmit_more(void) 4944{ 4945 return __this_cpu_read(softnet_data.xmit.more); 4946} 4947 4948static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4949 struct netdev_queue *txq, bool more) 4950{ 4951 const struct net_device_ops *ops = dev->netdev_ops; 4952 netdev_tx_t rc; 4953 4954 rc = __netdev_start_xmit(ops, skb, dev, more); 4955 if (rc == NETDEV_TX_OK) 4956 txq_trans_update(txq); 4957 4958 return rc; 4959} 4960 4961int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4962 const void *ns); 4963void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4964 const void *ns); 4965 4966extern const struct kobj_ns_type_operations net_ns_type_operations; 4967 4968const char *netdev_drivername(const struct net_device *dev); 4969 4970static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4971 netdev_features_t f2) 4972{ 4973 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4974 if (f1 & NETIF_F_HW_CSUM) 4975 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4976 else 4977 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4978 } 4979 4980 return f1 & f2; 4981} 4982 4983static inline netdev_features_t netdev_get_wanted_features( 4984 struct net_device *dev) 4985{ 4986 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4987} 4988netdev_features_t netdev_increment_features(netdev_features_t all, 4989 netdev_features_t one, netdev_features_t mask); 4990 4991/* Allow TSO being used on stacked device : 4992 * Performing the GSO segmentation before last device 4993 * is a performance improvement. 4994 */ 4995static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4996 netdev_features_t mask) 4997{ 4998 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4999} 5000 5001int __netdev_update_features(struct net_device *dev); 5002void netdev_update_features(struct net_device *dev); 5003void netdev_change_features(struct net_device *dev); 5004 5005void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5006 struct net_device *dev); 5007 5008netdev_features_t passthru_features_check(struct sk_buff *skb, 5009 struct net_device *dev, 5010 netdev_features_t features); 5011netdev_features_t netif_skb_features(struct sk_buff *skb); 5012void skb_warn_bad_offload(const struct sk_buff *skb); 5013 5014static inline bool net_gso_ok(netdev_features_t features, int gso_type) 5015{ 5016 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 5017 5018 /* check flags correspondence */ 5019 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 5020 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 5021 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5022 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5023 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5024 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5025 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5026 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5027 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5028 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5029 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5030 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5031 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5032 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5033 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5034 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5035 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5036 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5037 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5038 5039 return (features & feature) == feature; 5040} 5041 5042static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5043{ 5044 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5045 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5046} 5047 5048static inline bool netif_needs_gso(struct sk_buff *skb, 5049 netdev_features_t features) 5050{ 5051 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5052 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5053 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5054} 5055 5056void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5057void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5058void netif_inherit_tso_max(struct net_device *to, 5059 const struct net_device *from); 5060 5061static inline bool netif_is_macsec(const struct net_device *dev) 5062{ 5063 return dev->priv_flags & IFF_MACSEC; 5064} 5065 5066static inline bool netif_is_macvlan(const struct net_device *dev) 5067{ 5068 return dev->priv_flags & IFF_MACVLAN; 5069} 5070 5071static inline bool netif_is_macvlan_port(const struct net_device *dev) 5072{ 5073 return dev->priv_flags & IFF_MACVLAN_PORT; 5074} 5075 5076static inline bool netif_is_bond_master(const struct net_device *dev) 5077{ 5078 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5079} 5080 5081static inline bool netif_is_bond_slave(const struct net_device *dev) 5082{ 5083 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5084} 5085 5086static inline bool netif_supports_nofcs(struct net_device *dev) 5087{ 5088 return dev->priv_flags & IFF_SUPP_NOFCS; 5089} 5090 5091static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5092{ 5093 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5094} 5095 5096static inline bool netif_is_l3_master(const struct net_device *dev) 5097{ 5098 return dev->priv_flags & IFF_L3MDEV_MASTER; 5099} 5100 5101static inline bool netif_is_l3_slave(const struct net_device *dev) 5102{ 5103 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5104} 5105 5106static inline int dev_sdif(const struct net_device *dev) 5107{ 5108#ifdef CONFIG_NET_L3_MASTER_DEV 5109 if (netif_is_l3_slave(dev)) 5110 return dev->ifindex; 5111#endif 5112 return 0; 5113} 5114 5115static inline bool netif_is_bridge_master(const struct net_device *dev) 5116{ 5117 return dev->priv_flags & IFF_EBRIDGE; 5118} 5119 5120static inline bool netif_is_bridge_port(const struct net_device *dev) 5121{ 5122 return dev->priv_flags & IFF_BRIDGE_PORT; 5123} 5124 5125static inline bool netif_is_ovs_master(const struct net_device *dev) 5126{ 5127 return dev->priv_flags & IFF_OPENVSWITCH; 5128} 5129 5130static inline bool netif_is_ovs_port(const struct net_device *dev) 5131{ 5132 return dev->priv_flags & IFF_OVS_DATAPATH; 5133} 5134 5135static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5136{ 5137 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5138} 5139 5140static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5141{ 5142 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5143} 5144 5145static inline bool netif_is_team_master(const struct net_device *dev) 5146{ 5147 return dev->priv_flags & IFF_TEAM; 5148} 5149 5150static inline bool netif_is_team_port(const struct net_device *dev) 5151{ 5152 return dev->priv_flags & IFF_TEAM_PORT; 5153} 5154 5155static inline bool netif_is_lag_master(const struct net_device *dev) 5156{ 5157 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5158} 5159 5160static inline bool netif_is_lag_port(const struct net_device *dev) 5161{ 5162 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5163} 5164 5165static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5166{ 5167 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5168} 5169 5170static inline bool netif_is_failover(const struct net_device *dev) 5171{ 5172 return dev->priv_flags & IFF_FAILOVER; 5173} 5174 5175static inline bool netif_is_failover_slave(const struct net_device *dev) 5176{ 5177 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5178} 5179 5180/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5181static inline void netif_keep_dst(struct net_device *dev) 5182{ 5183 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5184} 5185 5186/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5187static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5188{ 5189 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5190 return netif_is_macsec(dev); 5191} 5192 5193extern struct pernet_operations __net_initdata loopback_net_ops; 5194 5195/* Logging, debugging and troubleshooting/diagnostic helpers. */ 5196 5197/* netdev_printk helpers, similar to dev_printk */ 5198 5199static inline const char *netdev_name(const struct net_device *dev) 5200{ 5201 if (!dev->name[0] || strchr(dev->name, '%')) 5202 return "(unnamed net_device)"; 5203 return dev->name; 5204} 5205 5206static inline const char *netdev_reg_state(const struct net_device *dev) 5207{ 5208 switch (dev->reg_state) { 5209 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5210 case NETREG_REGISTERED: return ""; 5211 case NETREG_UNREGISTERING: return " (unregistering)"; 5212 case NETREG_UNREGISTERED: return " (unregistered)"; 5213 case NETREG_RELEASED: return " (released)"; 5214 case NETREG_DUMMY: return " (dummy)"; 5215 } 5216 5217 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5218 return " (unknown)"; 5219} 5220 5221#define MODULE_ALIAS_NETDEV(device) \ 5222 MODULE_ALIAS("netdev-" device) 5223 5224/* 5225 * netdev_WARN() acts like dev_printk(), but with the key difference 5226 * of using a WARN/WARN_ON to get the message out, including the 5227 * file/line information and a backtrace. 5228 */ 5229#define netdev_WARN(dev, format, args...) \ 5230 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5231 netdev_reg_state(dev), ##args) 5232 5233#define netdev_WARN_ONCE(dev, format, args...) \ 5234 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5235 netdev_reg_state(dev), ##args) 5236 5237/* 5238 * The list of packet types we will receive (as opposed to discard) 5239 * and the routines to invoke. 5240 * 5241 * Why 16. Because with 16 the only overlap we get on a hash of the 5242 * low nibble of the protocol value is RARP/SNAP/X.25. 5243 * 5244 * 0800 IP 5245 * 0001 802.3 5246 * 0002 AX.25 5247 * 0004 802.2 5248 * 8035 RARP 5249 * 0005 SNAP 5250 * 0805 X.25 5251 * 0806 ARP 5252 * 8137 IPX 5253 * 0009 Localtalk 5254 * 86DD IPv6 5255 */ 5256#define PTYPE_HASH_SIZE (16) 5257#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5258 5259extern struct list_head ptype_all __read_mostly; 5260extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5261 5262extern struct net_device *blackhole_netdev; 5263 5264/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5265#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5266#define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5267 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5268#define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5269 5270#endif /* _LINUX_NETDEVICE_H */