at v6.7 48 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24#include <linux/shrinker.h> 25 26struct mem_cgroup; 27struct obj_cgroup; 28struct page; 29struct mm_struct; 30struct kmem_cache; 31 32/* Cgroup-specific page state, on top of universal node page state */ 33enum memcg_stat_item { 34 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 35 MEMCG_SOCK, 36 MEMCG_PERCPU_B, 37 MEMCG_VMALLOC, 38 MEMCG_KMEM, 39 MEMCG_ZSWAP_B, 40 MEMCG_ZSWAPPED, 41 MEMCG_NR_STAT, 42}; 43 44enum memcg_memory_event { 45 MEMCG_LOW, 46 MEMCG_HIGH, 47 MEMCG_MAX, 48 MEMCG_OOM, 49 MEMCG_OOM_KILL, 50 MEMCG_OOM_GROUP_KILL, 51 MEMCG_SWAP_HIGH, 52 MEMCG_SWAP_MAX, 53 MEMCG_SWAP_FAIL, 54 MEMCG_NR_MEMORY_EVENTS, 55}; 56 57struct mem_cgroup_reclaim_cookie { 58 pg_data_t *pgdat; 59 unsigned int generation; 60}; 61 62#ifdef CONFIG_MEMCG 63 64#define MEM_CGROUP_ID_SHIFT 16 65 66struct mem_cgroup_id { 67 int id; 68 refcount_t ref; 69}; 70 71/* 72 * Per memcg event counter is incremented at every pagein/pageout. With THP, 73 * it will be incremented by the number of pages. This counter is used 74 * to trigger some periodic events. This is straightforward and better 75 * than using jiffies etc. to handle periodic memcg event. 76 */ 77enum mem_cgroup_events_target { 78 MEM_CGROUP_TARGET_THRESH, 79 MEM_CGROUP_TARGET_SOFTLIMIT, 80 MEM_CGROUP_NTARGETS, 81}; 82 83struct memcg_vmstats_percpu; 84struct memcg_vmstats; 85 86struct mem_cgroup_reclaim_iter { 87 struct mem_cgroup *position; 88 /* scan generation, increased every round-trip */ 89 unsigned int generation; 90}; 91 92struct lruvec_stats_percpu { 93 /* Local (CPU and cgroup) state */ 94 long state[NR_VM_NODE_STAT_ITEMS]; 95 96 /* Delta calculation for lockless upward propagation */ 97 long state_prev[NR_VM_NODE_STAT_ITEMS]; 98}; 99 100struct lruvec_stats { 101 /* Aggregated (CPU and subtree) state */ 102 long state[NR_VM_NODE_STAT_ITEMS]; 103 104 /* Non-hierarchical (CPU aggregated) state */ 105 long state_local[NR_VM_NODE_STAT_ITEMS]; 106 107 /* Pending child counts during tree propagation */ 108 long state_pending[NR_VM_NODE_STAT_ITEMS]; 109}; 110 111/* 112 * per-node information in memory controller. 113 */ 114struct mem_cgroup_per_node { 115 struct lruvec lruvec; 116 117 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 118 struct lruvec_stats lruvec_stats; 119 120 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 121 122 struct mem_cgroup_reclaim_iter iter; 123 124 struct shrinker_info __rcu *shrinker_info; 125 126 struct rb_node tree_node; /* RB tree node */ 127 unsigned long usage_in_excess;/* Set to the value by which */ 128 /* the soft limit is exceeded*/ 129 bool on_tree; 130 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 131 /* use container_of */ 132}; 133 134struct mem_cgroup_threshold { 135 struct eventfd_ctx *eventfd; 136 unsigned long threshold; 137}; 138 139/* For threshold */ 140struct mem_cgroup_threshold_ary { 141 /* An array index points to threshold just below or equal to usage. */ 142 int current_threshold; 143 /* Size of entries[] */ 144 unsigned int size; 145 /* Array of thresholds */ 146 struct mem_cgroup_threshold entries[] __counted_by(size); 147}; 148 149struct mem_cgroup_thresholds { 150 /* Primary thresholds array */ 151 struct mem_cgroup_threshold_ary *primary; 152 /* 153 * Spare threshold array. 154 * This is needed to make mem_cgroup_unregister_event() "never fail". 155 * It must be able to store at least primary->size - 1 entries. 156 */ 157 struct mem_cgroup_threshold_ary *spare; 158}; 159 160/* 161 * Remember four most recent foreign writebacks with dirty pages in this 162 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 163 * one in a given round, we're likely to catch it later if it keeps 164 * foreign-dirtying, so a fairly low count should be enough. 165 * 166 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 167 */ 168#define MEMCG_CGWB_FRN_CNT 4 169 170struct memcg_cgwb_frn { 171 u64 bdi_id; /* bdi->id of the foreign inode */ 172 int memcg_id; /* memcg->css.id of foreign inode */ 173 u64 at; /* jiffies_64 at the time of dirtying */ 174 struct wb_completion done; /* tracks in-flight foreign writebacks */ 175}; 176 177/* 178 * Bucket for arbitrarily byte-sized objects charged to a memory 179 * cgroup. The bucket can be reparented in one piece when the cgroup 180 * is destroyed, without having to round up the individual references 181 * of all live memory objects in the wild. 182 */ 183struct obj_cgroup { 184 struct percpu_ref refcnt; 185 struct mem_cgroup *memcg; 186 atomic_t nr_charged_bytes; 187 union { 188 struct list_head list; /* protected by objcg_lock */ 189 struct rcu_head rcu; 190 }; 191}; 192 193/* 194 * The memory controller data structure. The memory controller controls both 195 * page cache and RSS per cgroup. We would eventually like to provide 196 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 197 * to help the administrator determine what knobs to tune. 198 */ 199struct mem_cgroup { 200 struct cgroup_subsys_state css; 201 202 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 203 struct mem_cgroup_id id; 204 205 /* Accounted resources */ 206 struct page_counter memory; /* Both v1 & v2 */ 207 208 union { 209 struct page_counter swap; /* v2 only */ 210 struct page_counter memsw; /* v1 only */ 211 }; 212 213 /* Legacy consumer-oriented counters */ 214 struct page_counter kmem; /* v1 only */ 215 struct page_counter tcpmem; /* v1 only */ 216 217 /* Range enforcement for interrupt charges */ 218 struct work_struct high_work; 219 220#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 221 unsigned long zswap_max; 222#endif 223 224 unsigned long soft_limit; 225 226 /* vmpressure notifications */ 227 struct vmpressure vmpressure; 228 229 /* 230 * Should the OOM killer kill all belonging tasks, had it kill one? 231 */ 232 bool oom_group; 233 234 /* protected by memcg_oom_lock */ 235 bool oom_lock; 236 int under_oom; 237 238 int swappiness; 239 /* OOM-Killer disable */ 240 int oom_kill_disable; 241 242 /* memory.events and memory.events.local */ 243 struct cgroup_file events_file; 244 struct cgroup_file events_local_file; 245 246 /* handle for "memory.swap.events" */ 247 struct cgroup_file swap_events_file; 248 249 /* protect arrays of thresholds */ 250 struct mutex thresholds_lock; 251 252 /* thresholds for memory usage. RCU-protected */ 253 struct mem_cgroup_thresholds thresholds; 254 255 /* thresholds for mem+swap usage. RCU-protected */ 256 struct mem_cgroup_thresholds memsw_thresholds; 257 258 /* For oom notifier event fd */ 259 struct list_head oom_notify; 260 261 /* 262 * Should we move charges of a task when a task is moved into this 263 * mem_cgroup ? And what type of charges should we move ? 264 */ 265 unsigned long move_charge_at_immigrate; 266 /* taken only while moving_account > 0 */ 267 spinlock_t move_lock; 268 unsigned long move_lock_flags; 269 270 CACHELINE_PADDING(_pad1_); 271 272 /* memory.stat */ 273 struct memcg_vmstats *vmstats; 274 275 /* memory.events */ 276 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 277 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 278 279 /* 280 * Hint of reclaim pressure for socket memroy management. Note 281 * that this indicator should NOT be used in legacy cgroup mode 282 * where socket memory is accounted/charged separately. 283 */ 284 unsigned long socket_pressure; 285 286 /* Legacy tcp memory accounting */ 287 bool tcpmem_active; 288 int tcpmem_pressure; 289 290#ifdef CONFIG_MEMCG_KMEM 291 int kmemcg_id; 292 /* 293 * memcg->objcg is wiped out as a part of the objcg repaprenting 294 * process. memcg->orig_objcg preserves a pointer (and a reference) 295 * to the original objcg until the end of live of memcg. 296 */ 297 struct obj_cgroup __rcu *objcg; 298 struct obj_cgroup *orig_objcg; 299 /* list of inherited objcgs, protected by objcg_lock */ 300 struct list_head objcg_list; 301#endif 302 303 CACHELINE_PADDING(_pad2_); 304 305 /* 306 * set > 0 if pages under this cgroup are moving to other cgroup. 307 */ 308 atomic_t moving_account; 309 struct task_struct *move_lock_task; 310 311 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 312 313#ifdef CONFIG_CGROUP_WRITEBACK 314 struct list_head cgwb_list; 315 struct wb_domain cgwb_domain; 316 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 317#endif 318 319 /* List of events which userspace want to receive */ 320 struct list_head event_list; 321 spinlock_t event_list_lock; 322 323#ifdef CONFIG_TRANSPARENT_HUGEPAGE 324 struct deferred_split deferred_split_queue; 325#endif 326 327#ifdef CONFIG_LRU_GEN 328 /* per-memcg mm_struct list */ 329 struct lru_gen_mm_list mm_list; 330#endif 331 332 struct mem_cgroup_per_node *nodeinfo[]; 333}; 334 335/* 336 * size of first charge trial. 337 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 338 * workload. 339 */ 340#define MEMCG_CHARGE_BATCH 64U 341 342extern struct mem_cgroup *root_mem_cgroup; 343 344enum page_memcg_data_flags { 345 /* page->memcg_data is a pointer to an objcgs vector */ 346 MEMCG_DATA_OBJCGS = (1UL << 0), 347 /* page has been accounted as a non-slab kernel page */ 348 MEMCG_DATA_KMEM = (1UL << 1), 349 /* the next bit after the last actual flag */ 350 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 351}; 352 353#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 354 355static inline bool folio_memcg_kmem(struct folio *folio); 356 357/* 358 * After the initialization objcg->memcg is always pointing at 359 * a valid memcg, but can be atomically swapped to the parent memcg. 360 * 361 * The caller must ensure that the returned memcg won't be released: 362 * e.g. acquire the rcu_read_lock or css_set_lock. 363 */ 364static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 365{ 366 return READ_ONCE(objcg->memcg); 367} 368 369/* 370 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 371 * @folio: Pointer to the folio. 372 * 373 * Returns a pointer to the memory cgroup associated with the folio, 374 * or NULL. This function assumes that the folio is known to have a 375 * proper memory cgroup pointer. It's not safe to call this function 376 * against some type of folios, e.g. slab folios or ex-slab folios or 377 * kmem folios. 378 */ 379static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 380{ 381 unsigned long memcg_data = folio->memcg_data; 382 383 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 384 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 385 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 386 387 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 388} 389 390/* 391 * __folio_objcg - get the object cgroup associated with a kmem folio. 392 * @folio: Pointer to the folio. 393 * 394 * Returns a pointer to the object cgroup associated with the folio, 395 * or NULL. This function assumes that the folio is known to have a 396 * proper object cgroup pointer. It's not safe to call this function 397 * against some type of folios, e.g. slab folios or ex-slab folios or 398 * LRU folios. 399 */ 400static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 401{ 402 unsigned long memcg_data = folio->memcg_data; 403 404 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 405 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 406 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 407 408 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 409} 410 411/* 412 * folio_memcg - Get the memory cgroup associated with a folio. 413 * @folio: Pointer to the folio. 414 * 415 * Returns a pointer to the memory cgroup associated with the folio, 416 * or NULL. This function assumes that the folio is known to have a 417 * proper memory cgroup pointer. It's not safe to call this function 418 * against some type of folios, e.g. slab folios or ex-slab folios. 419 * 420 * For a non-kmem folio any of the following ensures folio and memcg binding 421 * stability: 422 * 423 * - the folio lock 424 * - LRU isolation 425 * - folio_memcg_lock() 426 * - exclusive reference 427 * - mem_cgroup_trylock_pages() 428 * 429 * For a kmem folio a caller should hold an rcu read lock to protect memcg 430 * associated with a kmem folio from being released. 431 */ 432static inline struct mem_cgroup *folio_memcg(struct folio *folio) 433{ 434 if (folio_memcg_kmem(folio)) 435 return obj_cgroup_memcg(__folio_objcg(folio)); 436 return __folio_memcg(folio); 437} 438 439static inline struct mem_cgroup *page_memcg(struct page *page) 440{ 441 return folio_memcg(page_folio(page)); 442} 443 444/** 445 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 446 * @folio: Pointer to the folio. 447 * 448 * This function assumes that the folio is known to have a 449 * proper memory cgroup pointer. It's not safe to call this function 450 * against some type of folios, e.g. slab folios or ex-slab folios. 451 * 452 * Return: A pointer to the memory cgroup associated with the folio, 453 * or NULL. 454 */ 455static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 456{ 457 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 458 459 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 460 WARN_ON_ONCE(!rcu_read_lock_held()); 461 462 if (memcg_data & MEMCG_DATA_KMEM) { 463 struct obj_cgroup *objcg; 464 465 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 466 return obj_cgroup_memcg(objcg); 467 } 468 469 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 470} 471 472/* 473 * folio_memcg_check - Get the memory cgroup associated with a folio. 474 * @folio: Pointer to the folio. 475 * 476 * Returns a pointer to the memory cgroup associated with the folio, 477 * or NULL. This function unlike folio_memcg() can take any folio 478 * as an argument. It has to be used in cases when it's not known if a folio 479 * has an associated memory cgroup pointer or an object cgroups vector or 480 * an object cgroup. 481 * 482 * For a non-kmem folio any of the following ensures folio and memcg binding 483 * stability: 484 * 485 * - the folio lock 486 * - LRU isolation 487 * - lock_folio_memcg() 488 * - exclusive reference 489 * - mem_cgroup_trylock_pages() 490 * 491 * For a kmem folio a caller should hold an rcu read lock to protect memcg 492 * associated with a kmem folio from being released. 493 */ 494static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 495{ 496 /* 497 * Because folio->memcg_data might be changed asynchronously 498 * for slabs, READ_ONCE() should be used here. 499 */ 500 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 501 502 if (memcg_data & MEMCG_DATA_OBJCGS) 503 return NULL; 504 505 if (memcg_data & MEMCG_DATA_KMEM) { 506 struct obj_cgroup *objcg; 507 508 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 509 return obj_cgroup_memcg(objcg); 510 } 511 512 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 513} 514 515static inline struct mem_cgroup *page_memcg_check(struct page *page) 516{ 517 if (PageTail(page)) 518 return NULL; 519 return folio_memcg_check((struct folio *)page); 520} 521 522static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 523{ 524 struct mem_cgroup *memcg; 525 526 rcu_read_lock(); 527retry: 528 memcg = obj_cgroup_memcg(objcg); 529 if (unlikely(!css_tryget(&memcg->css))) 530 goto retry; 531 rcu_read_unlock(); 532 533 return memcg; 534} 535 536#ifdef CONFIG_MEMCG_KMEM 537/* 538 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 539 * @folio: Pointer to the folio. 540 * 541 * Checks if the folio has MemcgKmem flag set. The caller must ensure 542 * that the folio has an associated memory cgroup. It's not safe to call 543 * this function against some types of folios, e.g. slab folios. 544 */ 545static inline bool folio_memcg_kmem(struct folio *folio) 546{ 547 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 548 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio); 549 return folio->memcg_data & MEMCG_DATA_KMEM; 550} 551 552 553#else 554static inline bool folio_memcg_kmem(struct folio *folio) 555{ 556 return false; 557} 558 559#endif 560 561static inline bool PageMemcgKmem(struct page *page) 562{ 563 return folio_memcg_kmem(page_folio(page)); 564} 565 566static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 567{ 568 return (memcg == root_mem_cgroup); 569} 570 571static inline bool mem_cgroup_disabled(void) 572{ 573 return !cgroup_subsys_enabled(memory_cgrp_subsys); 574} 575 576static inline void mem_cgroup_protection(struct mem_cgroup *root, 577 struct mem_cgroup *memcg, 578 unsigned long *min, 579 unsigned long *low) 580{ 581 *min = *low = 0; 582 583 if (mem_cgroup_disabled()) 584 return; 585 586 /* 587 * There is no reclaim protection applied to a targeted reclaim. 588 * We are special casing this specific case here because 589 * mem_cgroup_calculate_protection is not robust enough to keep 590 * the protection invariant for calculated effective values for 591 * parallel reclaimers with different reclaim target. This is 592 * especially a problem for tail memcgs (as they have pages on LRU) 593 * which would want to have effective values 0 for targeted reclaim 594 * but a different value for external reclaim. 595 * 596 * Example 597 * Let's have global and A's reclaim in parallel: 598 * | 599 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 600 * |\ 601 * | C (low = 1G, usage = 2.5G) 602 * B (low = 1G, usage = 0.5G) 603 * 604 * For the global reclaim 605 * A.elow = A.low 606 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 607 * C.elow = min(C.usage, C.low) 608 * 609 * With the effective values resetting we have A reclaim 610 * A.elow = 0 611 * B.elow = B.low 612 * C.elow = C.low 613 * 614 * If the global reclaim races with A's reclaim then 615 * B.elow = C.elow = 0 because children_low_usage > A.elow) 616 * is possible and reclaiming B would be violating the protection. 617 * 618 */ 619 if (root == memcg) 620 return; 621 622 *min = READ_ONCE(memcg->memory.emin); 623 *low = READ_ONCE(memcg->memory.elow); 624} 625 626void mem_cgroup_calculate_protection(struct mem_cgroup *root, 627 struct mem_cgroup *memcg); 628 629static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 630 struct mem_cgroup *memcg) 631{ 632 /* 633 * The root memcg doesn't account charges, and doesn't support 634 * protection. The target memcg's protection is ignored, see 635 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 636 */ 637 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 638 memcg == target; 639} 640 641static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 642 struct mem_cgroup *memcg) 643{ 644 if (mem_cgroup_unprotected(target, memcg)) 645 return false; 646 647 return READ_ONCE(memcg->memory.elow) >= 648 page_counter_read(&memcg->memory); 649} 650 651static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 652 struct mem_cgroup *memcg) 653{ 654 if (mem_cgroup_unprotected(target, memcg)) 655 return false; 656 657 return READ_ONCE(memcg->memory.emin) >= 658 page_counter_read(&memcg->memory); 659} 660 661void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg); 662 663int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 664 665/** 666 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 667 * @folio: Folio to charge. 668 * @mm: mm context of the allocating task. 669 * @gfp: Reclaim mode. 670 * 671 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 672 * pages according to @gfp if necessary. If @mm is NULL, try to 673 * charge to the active memcg. 674 * 675 * Do not use this for folios allocated for swapin. 676 * 677 * Return: 0 on success. Otherwise, an error code is returned. 678 */ 679static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 680 gfp_t gfp) 681{ 682 if (mem_cgroup_disabled()) 683 return 0; 684 return __mem_cgroup_charge(folio, mm, gfp); 685} 686 687int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp, 688 long nr_pages); 689 690int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 691 gfp_t gfp, swp_entry_t entry); 692void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 693 694void __mem_cgroup_uncharge(struct folio *folio); 695 696/** 697 * mem_cgroup_uncharge - Uncharge a folio. 698 * @folio: Folio to uncharge. 699 * 700 * Uncharge a folio previously charged with mem_cgroup_charge(). 701 */ 702static inline void mem_cgroup_uncharge(struct folio *folio) 703{ 704 if (mem_cgroup_disabled()) 705 return; 706 __mem_cgroup_uncharge(folio); 707} 708 709void __mem_cgroup_uncharge_list(struct list_head *page_list); 710static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 711{ 712 if (mem_cgroup_disabled()) 713 return; 714 __mem_cgroup_uncharge_list(page_list); 715} 716 717void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages); 718 719void mem_cgroup_replace_folio(struct folio *old, struct folio *new); 720 721void mem_cgroup_migrate(struct folio *old, struct folio *new); 722 723/** 724 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 725 * @memcg: memcg of the wanted lruvec 726 * @pgdat: pglist_data 727 * 728 * Returns the lru list vector holding pages for a given @memcg & 729 * @pgdat combination. This can be the node lruvec, if the memory 730 * controller is disabled. 731 */ 732static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 733 struct pglist_data *pgdat) 734{ 735 struct mem_cgroup_per_node *mz; 736 struct lruvec *lruvec; 737 738 if (mem_cgroup_disabled()) { 739 lruvec = &pgdat->__lruvec; 740 goto out; 741 } 742 743 if (!memcg) 744 memcg = root_mem_cgroup; 745 746 mz = memcg->nodeinfo[pgdat->node_id]; 747 lruvec = &mz->lruvec; 748out: 749 /* 750 * Since a node can be onlined after the mem_cgroup was created, 751 * we have to be prepared to initialize lruvec->pgdat here; 752 * and if offlined then reonlined, we need to reinitialize it. 753 */ 754 if (unlikely(lruvec->pgdat != pgdat)) 755 lruvec->pgdat = pgdat; 756 return lruvec; 757} 758 759/** 760 * folio_lruvec - return lruvec for isolating/putting an LRU folio 761 * @folio: Pointer to the folio. 762 * 763 * This function relies on folio->mem_cgroup being stable. 764 */ 765static inline struct lruvec *folio_lruvec(struct folio *folio) 766{ 767 struct mem_cgroup *memcg = folio_memcg(folio); 768 769 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 770 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 771} 772 773struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 774 775struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 776 777struct mem_cgroup *get_mem_cgroup_from_current(void); 778 779struct lruvec *folio_lruvec_lock(struct folio *folio); 780struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 781struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 782 unsigned long *flags); 783 784#ifdef CONFIG_DEBUG_VM 785void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 786#else 787static inline 788void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 789{ 790} 791#endif 792 793static inline 794struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 795 return css ? container_of(css, struct mem_cgroup, css) : NULL; 796} 797 798static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 799{ 800 return percpu_ref_tryget(&objcg->refcnt); 801} 802 803static inline void obj_cgroup_get(struct obj_cgroup *objcg) 804{ 805 percpu_ref_get(&objcg->refcnt); 806} 807 808static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 809 unsigned long nr) 810{ 811 percpu_ref_get_many(&objcg->refcnt, nr); 812} 813 814static inline void obj_cgroup_put(struct obj_cgroup *objcg) 815{ 816 percpu_ref_put(&objcg->refcnt); 817} 818 819static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 820{ 821 return !memcg || css_tryget(&memcg->css); 822} 823 824static inline void mem_cgroup_put(struct mem_cgroup *memcg) 825{ 826 if (memcg) 827 css_put(&memcg->css); 828} 829 830#define mem_cgroup_from_counter(counter, member) \ 831 container_of(counter, struct mem_cgroup, member) 832 833struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 834 struct mem_cgroup *, 835 struct mem_cgroup_reclaim_cookie *); 836void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 837void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 838 int (*)(struct task_struct *, void *), void *arg); 839 840static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 841{ 842 if (mem_cgroup_disabled()) 843 return 0; 844 845 return memcg->id.id; 846} 847struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 848 849#ifdef CONFIG_SHRINKER_DEBUG 850static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 851{ 852 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 853} 854 855struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 856#endif 857 858static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 859{ 860 return mem_cgroup_from_css(seq_css(m)); 861} 862 863static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 864{ 865 struct mem_cgroup_per_node *mz; 866 867 if (mem_cgroup_disabled()) 868 return NULL; 869 870 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 871 return mz->memcg; 872} 873 874/** 875 * parent_mem_cgroup - find the accounting parent of a memcg 876 * @memcg: memcg whose parent to find 877 * 878 * Returns the parent memcg, or NULL if this is the root. 879 */ 880static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 881{ 882 return mem_cgroup_from_css(memcg->css.parent); 883} 884 885static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 886 struct mem_cgroup *root) 887{ 888 if (root == memcg) 889 return true; 890 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 891} 892 893static inline bool mm_match_cgroup(struct mm_struct *mm, 894 struct mem_cgroup *memcg) 895{ 896 struct mem_cgroup *task_memcg; 897 bool match = false; 898 899 rcu_read_lock(); 900 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 901 if (task_memcg) 902 match = mem_cgroup_is_descendant(task_memcg, memcg); 903 rcu_read_unlock(); 904 return match; 905} 906 907struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 908ino_t page_cgroup_ino(struct page *page); 909 910static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 911{ 912 if (mem_cgroup_disabled()) 913 return true; 914 return !!(memcg->css.flags & CSS_ONLINE); 915} 916 917void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 918 int zid, int nr_pages); 919 920static inline 921unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 922 enum lru_list lru, int zone_idx) 923{ 924 struct mem_cgroup_per_node *mz; 925 926 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 927 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 928} 929 930void mem_cgroup_handle_over_high(gfp_t gfp_mask); 931 932unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 933 934unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 935 936void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 937 struct task_struct *p); 938 939void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 940 941static inline void mem_cgroup_enter_user_fault(void) 942{ 943 WARN_ON(current->in_user_fault); 944 current->in_user_fault = 1; 945} 946 947static inline void mem_cgroup_exit_user_fault(void) 948{ 949 WARN_ON(!current->in_user_fault); 950 current->in_user_fault = 0; 951} 952 953static inline bool task_in_memcg_oom(struct task_struct *p) 954{ 955 return p->memcg_in_oom; 956} 957 958bool mem_cgroup_oom_synchronize(bool wait); 959struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 960 struct mem_cgroup *oom_domain); 961void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 962 963void folio_memcg_lock(struct folio *folio); 964void folio_memcg_unlock(struct folio *folio); 965 966void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 967 968/* try to stablize folio_memcg() for all the pages in a memcg */ 969static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 970{ 971 rcu_read_lock(); 972 973 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 974 return true; 975 976 rcu_read_unlock(); 977 return false; 978} 979 980static inline void mem_cgroup_unlock_pages(void) 981{ 982 rcu_read_unlock(); 983} 984 985/* idx can be of type enum memcg_stat_item or node_stat_item */ 986static inline void mod_memcg_state(struct mem_cgroup *memcg, 987 int idx, int val) 988{ 989 unsigned long flags; 990 991 local_irq_save(flags); 992 __mod_memcg_state(memcg, idx, val); 993 local_irq_restore(flags); 994} 995 996static inline void mod_memcg_page_state(struct page *page, 997 int idx, int val) 998{ 999 struct mem_cgroup *memcg; 1000 1001 if (mem_cgroup_disabled()) 1002 return; 1003 1004 rcu_read_lock(); 1005 memcg = page_memcg(page); 1006 if (memcg) 1007 mod_memcg_state(memcg, idx, val); 1008 rcu_read_unlock(); 1009} 1010 1011unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 1012 1013static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1014 enum node_stat_item idx) 1015{ 1016 struct mem_cgroup_per_node *pn; 1017 long x; 1018 1019 if (mem_cgroup_disabled()) 1020 return node_page_state(lruvec_pgdat(lruvec), idx); 1021 1022 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1023 x = READ_ONCE(pn->lruvec_stats.state[idx]); 1024#ifdef CONFIG_SMP 1025 if (x < 0) 1026 x = 0; 1027#endif 1028 return x; 1029} 1030 1031static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1032 enum node_stat_item idx) 1033{ 1034 struct mem_cgroup_per_node *pn; 1035 long x = 0; 1036 1037 if (mem_cgroup_disabled()) 1038 return node_page_state(lruvec_pgdat(lruvec), idx); 1039 1040 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1041 x = READ_ONCE(pn->lruvec_stats.state_local[idx]); 1042#ifdef CONFIG_SMP 1043 if (x < 0) 1044 x = 0; 1045#endif 1046 return x; 1047} 1048 1049void mem_cgroup_flush_stats(void); 1050void mem_cgroup_flush_stats_ratelimited(void); 1051 1052void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1053 int val); 1054void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1055 1056static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1057 int val) 1058{ 1059 unsigned long flags; 1060 1061 local_irq_save(flags); 1062 __mod_lruvec_kmem_state(p, idx, val); 1063 local_irq_restore(flags); 1064} 1065 1066static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1067 enum node_stat_item idx, int val) 1068{ 1069 unsigned long flags; 1070 1071 local_irq_save(flags); 1072 __mod_memcg_lruvec_state(lruvec, idx, val); 1073 local_irq_restore(flags); 1074} 1075 1076void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1077 unsigned long count); 1078 1079static inline void count_memcg_events(struct mem_cgroup *memcg, 1080 enum vm_event_item idx, 1081 unsigned long count) 1082{ 1083 unsigned long flags; 1084 1085 local_irq_save(flags); 1086 __count_memcg_events(memcg, idx, count); 1087 local_irq_restore(flags); 1088} 1089 1090static inline void count_memcg_folio_events(struct folio *folio, 1091 enum vm_event_item idx, unsigned long nr) 1092{ 1093 struct mem_cgroup *memcg = folio_memcg(folio); 1094 1095 if (memcg) 1096 count_memcg_events(memcg, idx, nr); 1097} 1098 1099static inline void count_memcg_event_mm(struct mm_struct *mm, 1100 enum vm_event_item idx) 1101{ 1102 struct mem_cgroup *memcg; 1103 1104 if (mem_cgroup_disabled()) 1105 return; 1106 1107 rcu_read_lock(); 1108 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1109 if (likely(memcg)) 1110 count_memcg_events(memcg, idx, 1); 1111 rcu_read_unlock(); 1112} 1113 1114static inline void memcg_memory_event(struct mem_cgroup *memcg, 1115 enum memcg_memory_event event) 1116{ 1117 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1118 event == MEMCG_SWAP_FAIL; 1119 1120 atomic_long_inc(&memcg->memory_events_local[event]); 1121 if (!swap_event) 1122 cgroup_file_notify(&memcg->events_local_file); 1123 1124 do { 1125 atomic_long_inc(&memcg->memory_events[event]); 1126 if (swap_event) 1127 cgroup_file_notify(&memcg->swap_events_file); 1128 else 1129 cgroup_file_notify(&memcg->events_file); 1130 1131 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1132 break; 1133 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1134 break; 1135 } while ((memcg = parent_mem_cgroup(memcg)) && 1136 !mem_cgroup_is_root(memcg)); 1137} 1138 1139static inline void memcg_memory_event_mm(struct mm_struct *mm, 1140 enum memcg_memory_event event) 1141{ 1142 struct mem_cgroup *memcg; 1143 1144 if (mem_cgroup_disabled()) 1145 return; 1146 1147 rcu_read_lock(); 1148 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1149 if (likely(memcg)) 1150 memcg_memory_event(memcg, event); 1151 rcu_read_unlock(); 1152} 1153 1154void split_page_memcg(struct page *head, unsigned int nr); 1155 1156unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1157 gfp_t gfp_mask, 1158 unsigned long *total_scanned); 1159 1160#else /* CONFIG_MEMCG */ 1161 1162#define MEM_CGROUP_ID_SHIFT 0 1163 1164static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1165{ 1166 return NULL; 1167} 1168 1169static inline struct mem_cgroup *page_memcg(struct page *page) 1170{ 1171 return NULL; 1172} 1173 1174static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1175{ 1176 WARN_ON_ONCE(!rcu_read_lock_held()); 1177 return NULL; 1178} 1179 1180static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1181{ 1182 return NULL; 1183} 1184 1185static inline struct mem_cgroup *page_memcg_check(struct page *page) 1186{ 1187 return NULL; 1188} 1189 1190static inline bool folio_memcg_kmem(struct folio *folio) 1191{ 1192 return false; 1193} 1194 1195static inline bool PageMemcgKmem(struct page *page) 1196{ 1197 return false; 1198} 1199 1200static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1201{ 1202 return true; 1203} 1204 1205static inline bool mem_cgroup_disabled(void) 1206{ 1207 return true; 1208} 1209 1210static inline void memcg_memory_event(struct mem_cgroup *memcg, 1211 enum memcg_memory_event event) 1212{ 1213} 1214 1215static inline void memcg_memory_event_mm(struct mm_struct *mm, 1216 enum memcg_memory_event event) 1217{ 1218} 1219 1220static inline void mem_cgroup_protection(struct mem_cgroup *root, 1221 struct mem_cgroup *memcg, 1222 unsigned long *min, 1223 unsigned long *low) 1224{ 1225 *min = *low = 0; 1226} 1227 1228static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1229 struct mem_cgroup *memcg) 1230{ 1231} 1232 1233static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1234 struct mem_cgroup *memcg) 1235{ 1236 return true; 1237} 1238static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1239 struct mem_cgroup *memcg) 1240{ 1241 return false; 1242} 1243 1244static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1245 struct mem_cgroup *memcg) 1246{ 1247 return false; 1248} 1249 1250static inline void mem_cgroup_commit_charge(struct folio *folio, 1251 struct mem_cgroup *memcg) 1252{ 1253} 1254 1255static inline int mem_cgroup_charge(struct folio *folio, 1256 struct mm_struct *mm, gfp_t gfp) 1257{ 1258 return 0; 1259} 1260 1261static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, 1262 gfp_t gfp, long nr_pages) 1263{ 1264 return 0; 1265} 1266 1267static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1268 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1269{ 1270 return 0; 1271} 1272 1273static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1274{ 1275} 1276 1277static inline void mem_cgroup_uncharge(struct folio *folio) 1278{ 1279} 1280 1281static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1282{ 1283} 1284 1285static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 1286 unsigned int nr_pages) 1287{ 1288} 1289 1290static inline void mem_cgroup_replace_folio(struct folio *old, 1291 struct folio *new) 1292{ 1293} 1294 1295static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1296{ 1297} 1298 1299static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1300 struct pglist_data *pgdat) 1301{ 1302 return &pgdat->__lruvec; 1303} 1304 1305static inline struct lruvec *folio_lruvec(struct folio *folio) 1306{ 1307 struct pglist_data *pgdat = folio_pgdat(folio); 1308 return &pgdat->__lruvec; 1309} 1310 1311static inline 1312void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1313{ 1314} 1315 1316static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1317{ 1318 return NULL; 1319} 1320 1321static inline bool mm_match_cgroup(struct mm_struct *mm, 1322 struct mem_cgroup *memcg) 1323{ 1324 return true; 1325} 1326 1327static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1328{ 1329 return NULL; 1330} 1331 1332static inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1333{ 1334 return NULL; 1335} 1336 1337static inline 1338struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1339{ 1340 return NULL; 1341} 1342 1343static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1344{ 1345} 1346 1347static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1348{ 1349 return true; 1350} 1351 1352static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1353{ 1354} 1355 1356static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1357{ 1358 struct pglist_data *pgdat = folio_pgdat(folio); 1359 1360 spin_lock(&pgdat->__lruvec.lru_lock); 1361 return &pgdat->__lruvec; 1362} 1363 1364static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1365{ 1366 struct pglist_data *pgdat = folio_pgdat(folio); 1367 1368 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1369 return &pgdat->__lruvec; 1370} 1371 1372static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1373 unsigned long *flagsp) 1374{ 1375 struct pglist_data *pgdat = folio_pgdat(folio); 1376 1377 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1378 return &pgdat->__lruvec; 1379} 1380 1381static inline struct mem_cgroup * 1382mem_cgroup_iter(struct mem_cgroup *root, 1383 struct mem_cgroup *prev, 1384 struct mem_cgroup_reclaim_cookie *reclaim) 1385{ 1386 return NULL; 1387} 1388 1389static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1390 struct mem_cgroup *prev) 1391{ 1392} 1393 1394static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1395 int (*fn)(struct task_struct *, void *), void *arg) 1396{ 1397} 1398 1399static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1400{ 1401 return 0; 1402} 1403 1404static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1405{ 1406 WARN_ON_ONCE(id); 1407 /* XXX: This should always return root_mem_cgroup */ 1408 return NULL; 1409} 1410 1411#ifdef CONFIG_SHRINKER_DEBUG 1412static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1413{ 1414 return 0; 1415} 1416 1417static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1418{ 1419 return NULL; 1420} 1421#endif 1422 1423static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1424{ 1425 return NULL; 1426} 1427 1428static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1429{ 1430 return NULL; 1431} 1432 1433static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1434{ 1435 return true; 1436} 1437 1438static inline 1439unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1440 enum lru_list lru, int zone_idx) 1441{ 1442 return 0; 1443} 1444 1445static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1446{ 1447 return 0; 1448} 1449 1450static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1451{ 1452 return 0; 1453} 1454 1455static inline void 1456mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1457{ 1458} 1459 1460static inline void 1461mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1462{ 1463} 1464 1465static inline void folio_memcg_lock(struct folio *folio) 1466{ 1467} 1468 1469static inline void folio_memcg_unlock(struct folio *folio) 1470{ 1471} 1472 1473static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1474{ 1475 /* to match folio_memcg_rcu() */ 1476 rcu_read_lock(); 1477 return true; 1478} 1479 1480static inline void mem_cgroup_unlock_pages(void) 1481{ 1482 rcu_read_unlock(); 1483} 1484 1485static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1486{ 1487} 1488 1489static inline void mem_cgroup_enter_user_fault(void) 1490{ 1491} 1492 1493static inline void mem_cgroup_exit_user_fault(void) 1494{ 1495} 1496 1497static inline bool task_in_memcg_oom(struct task_struct *p) 1498{ 1499 return false; 1500} 1501 1502static inline bool mem_cgroup_oom_synchronize(bool wait) 1503{ 1504 return false; 1505} 1506 1507static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1508 struct task_struct *victim, struct mem_cgroup *oom_domain) 1509{ 1510 return NULL; 1511} 1512 1513static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1514{ 1515} 1516 1517static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1518 int idx, 1519 int nr) 1520{ 1521} 1522 1523static inline void mod_memcg_state(struct mem_cgroup *memcg, 1524 int idx, 1525 int nr) 1526{ 1527} 1528 1529static inline void mod_memcg_page_state(struct page *page, 1530 int idx, int val) 1531{ 1532} 1533 1534static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1535{ 1536 return 0; 1537} 1538 1539static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1540 enum node_stat_item idx) 1541{ 1542 return node_page_state(lruvec_pgdat(lruvec), idx); 1543} 1544 1545static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1546 enum node_stat_item idx) 1547{ 1548 return node_page_state(lruvec_pgdat(lruvec), idx); 1549} 1550 1551static inline void mem_cgroup_flush_stats(void) 1552{ 1553} 1554 1555static inline void mem_cgroup_flush_stats_ratelimited(void) 1556{ 1557} 1558 1559static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1560 enum node_stat_item idx, int val) 1561{ 1562} 1563 1564static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1565 int val) 1566{ 1567 struct page *page = virt_to_head_page(p); 1568 1569 __mod_node_page_state(page_pgdat(page), idx, val); 1570} 1571 1572static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1573 int val) 1574{ 1575 struct page *page = virt_to_head_page(p); 1576 1577 mod_node_page_state(page_pgdat(page), idx, val); 1578} 1579 1580static inline void count_memcg_events(struct mem_cgroup *memcg, 1581 enum vm_event_item idx, 1582 unsigned long count) 1583{ 1584} 1585 1586static inline void __count_memcg_events(struct mem_cgroup *memcg, 1587 enum vm_event_item idx, 1588 unsigned long count) 1589{ 1590} 1591 1592static inline void count_memcg_folio_events(struct folio *folio, 1593 enum vm_event_item idx, unsigned long nr) 1594{ 1595} 1596 1597static inline 1598void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1599{ 1600} 1601 1602static inline void split_page_memcg(struct page *head, unsigned int nr) 1603{ 1604} 1605 1606static inline 1607unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1608 gfp_t gfp_mask, 1609 unsigned long *total_scanned) 1610{ 1611 return 0; 1612} 1613#endif /* CONFIG_MEMCG */ 1614 1615static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1616{ 1617 __mod_lruvec_kmem_state(p, idx, 1); 1618} 1619 1620static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1621{ 1622 __mod_lruvec_kmem_state(p, idx, -1); 1623} 1624 1625static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1626{ 1627 struct mem_cgroup *memcg; 1628 1629 memcg = lruvec_memcg(lruvec); 1630 if (!memcg) 1631 return NULL; 1632 memcg = parent_mem_cgroup(memcg); 1633 if (!memcg) 1634 return NULL; 1635 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1636} 1637 1638static inline void unlock_page_lruvec(struct lruvec *lruvec) 1639{ 1640 spin_unlock(&lruvec->lru_lock); 1641} 1642 1643static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1644{ 1645 spin_unlock_irq(&lruvec->lru_lock); 1646} 1647 1648static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1649 unsigned long flags) 1650{ 1651 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1652} 1653 1654/* Test requires a stable page->memcg binding, see page_memcg() */ 1655static inline bool folio_matches_lruvec(struct folio *folio, 1656 struct lruvec *lruvec) 1657{ 1658 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1659 lruvec_memcg(lruvec) == folio_memcg(folio); 1660} 1661 1662/* Don't lock again iff page's lruvec locked */ 1663static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1664 struct lruvec *locked_lruvec) 1665{ 1666 if (locked_lruvec) { 1667 if (folio_matches_lruvec(folio, locked_lruvec)) 1668 return locked_lruvec; 1669 1670 unlock_page_lruvec_irq(locked_lruvec); 1671 } 1672 1673 return folio_lruvec_lock_irq(folio); 1674} 1675 1676/* Don't lock again iff page's lruvec locked */ 1677static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio, 1678 struct lruvec *locked_lruvec, unsigned long *flags) 1679{ 1680 if (locked_lruvec) { 1681 if (folio_matches_lruvec(folio, locked_lruvec)) 1682 return locked_lruvec; 1683 1684 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1685 } 1686 1687 return folio_lruvec_lock_irqsave(folio, flags); 1688} 1689 1690#ifdef CONFIG_CGROUP_WRITEBACK 1691 1692struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1693void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1694 unsigned long *pheadroom, unsigned long *pdirty, 1695 unsigned long *pwriteback); 1696 1697void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1698 struct bdi_writeback *wb); 1699 1700static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1701 struct bdi_writeback *wb) 1702{ 1703 struct mem_cgroup *memcg; 1704 1705 if (mem_cgroup_disabled()) 1706 return; 1707 1708 memcg = folio_memcg(folio); 1709 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1710 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1711} 1712 1713void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1714 1715#else /* CONFIG_CGROUP_WRITEBACK */ 1716 1717static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1718{ 1719 return NULL; 1720} 1721 1722static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1723 unsigned long *pfilepages, 1724 unsigned long *pheadroom, 1725 unsigned long *pdirty, 1726 unsigned long *pwriteback) 1727{ 1728} 1729 1730static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1731 struct bdi_writeback *wb) 1732{ 1733} 1734 1735static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1736{ 1737} 1738 1739#endif /* CONFIG_CGROUP_WRITEBACK */ 1740 1741struct sock; 1742bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1743 gfp_t gfp_mask); 1744void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1745#ifdef CONFIG_MEMCG 1746extern struct static_key_false memcg_sockets_enabled_key; 1747#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1748void mem_cgroup_sk_alloc(struct sock *sk); 1749void mem_cgroup_sk_free(struct sock *sk); 1750static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1751{ 1752 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1753 return !!memcg->tcpmem_pressure; 1754 do { 1755 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1756 return true; 1757 } while ((memcg = parent_mem_cgroup(memcg))); 1758 return false; 1759} 1760 1761int alloc_shrinker_info(struct mem_cgroup *memcg); 1762void free_shrinker_info(struct mem_cgroup *memcg); 1763void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1764void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1765#else 1766#define mem_cgroup_sockets_enabled 0 1767static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1768static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1769static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1770{ 1771 return false; 1772} 1773 1774static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1775 int nid, int shrinker_id) 1776{ 1777} 1778#endif 1779 1780#ifdef CONFIG_MEMCG_KMEM 1781bool mem_cgroup_kmem_disabled(void); 1782int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1783void __memcg_kmem_uncharge_page(struct page *page, int order); 1784 1785/* 1786 * The returned objcg pointer is safe to use without additional 1787 * protection within a scope. The scope is defined either by 1788 * the current task (similar to the "current" global variable) 1789 * or by set_active_memcg() pair. 1790 * Please, use obj_cgroup_get() to get a reference if the pointer 1791 * needs to be used outside of the local scope. 1792 */ 1793struct obj_cgroup *current_obj_cgroup(void); 1794struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1795 1796static inline struct obj_cgroup *get_obj_cgroup_from_current(void) 1797{ 1798 struct obj_cgroup *objcg = current_obj_cgroup(); 1799 1800 if (objcg) 1801 obj_cgroup_get(objcg); 1802 1803 return objcg; 1804} 1805 1806int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1807void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1808 1809extern struct static_key_false memcg_bpf_enabled_key; 1810static inline bool memcg_bpf_enabled(void) 1811{ 1812 return static_branch_likely(&memcg_bpf_enabled_key); 1813} 1814 1815extern struct static_key_false memcg_kmem_online_key; 1816 1817static inline bool memcg_kmem_online(void) 1818{ 1819 return static_branch_likely(&memcg_kmem_online_key); 1820} 1821 1822static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1823 int order) 1824{ 1825 if (memcg_kmem_online()) 1826 return __memcg_kmem_charge_page(page, gfp, order); 1827 return 0; 1828} 1829 1830static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1831{ 1832 if (memcg_kmem_online()) 1833 __memcg_kmem_uncharge_page(page, order); 1834} 1835 1836/* 1837 * A helper for accessing memcg's kmem_id, used for getting 1838 * corresponding LRU lists. 1839 */ 1840static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1841{ 1842 return memcg ? memcg->kmemcg_id : -1; 1843} 1844 1845struct mem_cgroup *mem_cgroup_from_obj(void *p); 1846struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1847 1848static inline void count_objcg_event(struct obj_cgroup *objcg, 1849 enum vm_event_item idx) 1850{ 1851 struct mem_cgroup *memcg; 1852 1853 if (!memcg_kmem_online()) 1854 return; 1855 1856 rcu_read_lock(); 1857 memcg = obj_cgroup_memcg(objcg); 1858 count_memcg_events(memcg, idx, 1); 1859 rcu_read_unlock(); 1860} 1861 1862#else 1863static inline bool mem_cgroup_kmem_disabled(void) 1864{ 1865 return true; 1866} 1867 1868static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1869 int order) 1870{ 1871 return 0; 1872} 1873 1874static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1875{ 1876} 1877 1878static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1879 int order) 1880{ 1881 return 0; 1882} 1883 1884static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1885{ 1886} 1887 1888static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1889{ 1890 return NULL; 1891} 1892 1893static inline bool memcg_bpf_enabled(void) 1894{ 1895 return false; 1896} 1897 1898static inline bool memcg_kmem_online(void) 1899{ 1900 return false; 1901} 1902 1903static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1904{ 1905 return -1; 1906} 1907 1908static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1909{ 1910 return NULL; 1911} 1912 1913static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1914{ 1915 return NULL; 1916} 1917 1918static inline void count_objcg_event(struct obj_cgroup *objcg, 1919 enum vm_event_item idx) 1920{ 1921} 1922 1923#endif /* CONFIG_MEMCG_KMEM */ 1924 1925#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1926bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1927void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1928void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1929#else 1930static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1931{ 1932 return true; 1933} 1934static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1935 size_t size) 1936{ 1937} 1938static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1939 size_t size) 1940{ 1941} 1942#endif 1943 1944#endif /* _LINUX_MEMCONTROL_H */