Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
4 * Copyright 2012 Google, Inc.
5 */
6
7#include "bcachefs.h"
8#include "alloc_foreground.h"
9#include "bkey_buf.h"
10#include "bset.h"
11#include "btree_update.h"
12#include "buckets.h"
13#include "checksum.h"
14#include "clock.h"
15#include "compress.h"
16#include "debug.h"
17#include "ec.h"
18#include "error.h"
19#include "extent_update.h"
20#include "inode.h"
21#include "io_write.h"
22#include "journal.h"
23#include "keylist.h"
24#include "move.h"
25#include "nocow_locking.h"
26#include "rebalance.h"
27#include "subvolume.h"
28#include "super.h"
29#include "super-io.h"
30#include "trace.h"
31
32#include <linux/blkdev.h>
33#include <linux/prefetch.h>
34#include <linux/random.h>
35#include <linux/sched/mm.h>
36
37#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
38
39static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
40 u64 now, int rw)
41{
42 u64 latency_capable =
43 ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
44 /* ideally we'd be taking into account the device's variance here: */
45 u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
46 s64 latency_over = io_latency - latency_threshold;
47
48 if (latency_threshold && latency_over > 0) {
49 /*
50 * bump up congested by approximately latency_over * 4 /
51 * latency_threshold - we don't need much accuracy here so don't
52 * bother with the divide:
53 */
54 if (atomic_read(&ca->congested) < CONGESTED_MAX)
55 atomic_add(latency_over >>
56 max_t(int, ilog2(latency_threshold) - 2, 0),
57 &ca->congested);
58
59 ca->congested_last = now;
60 } else if (atomic_read(&ca->congested) > 0) {
61 atomic_dec(&ca->congested);
62 }
63}
64
65void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
66{
67 atomic64_t *latency = &ca->cur_latency[rw];
68 u64 now = local_clock();
69 u64 io_latency = time_after64(now, submit_time)
70 ? now - submit_time
71 : 0;
72 u64 old, new, v = atomic64_read(latency);
73
74 do {
75 old = v;
76
77 /*
78 * If the io latency was reasonably close to the current
79 * latency, skip doing the update and atomic operation - most of
80 * the time:
81 */
82 if (abs((int) (old - io_latency)) < (old >> 1) &&
83 now & ~(~0U << 5))
84 break;
85
86 new = ewma_add(old, io_latency, 5);
87 } while ((v = atomic64_cmpxchg(latency, old, new)) != old);
88
89 bch2_congested_acct(ca, io_latency, now, rw);
90
91 __bch2_time_stats_update(&ca->io_latency[rw], submit_time, now);
92}
93
94#endif
95
96/* Allocate, free from mempool: */
97
98void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
99{
100 struct bvec_iter_all iter;
101 struct bio_vec *bv;
102
103 bio_for_each_segment_all(bv, bio, iter)
104 if (bv->bv_page != ZERO_PAGE(0))
105 mempool_free(bv->bv_page, &c->bio_bounce_pages);
106 bio->bi_vcnt = 0;
107}
108
109static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
110{
111 struct page *page;
112
113 if (likely(!*using_mempool)) {
114 page = alloc_page(GFP_NOFS);
115 if (unlikely(!page)) {
116 mutex_lock(&c->bio_bounce_pages_lock);
117 *using_mempool = true;
118 goto pool_alloc;
119
120 }
121 } else {
122pool_alloc:
123 page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS);
124 }
125
126 return page;
127}
128
129void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
130 size_t size)
131{
132 bool using_mempool = false;
133
134 while (size) {
135 struct page *page = __bio_alloc_page_pool(c, &using_mempool);
136 unsigned len = min_t(size_t, PAGE_SIZE, size);
137
138 BUG_ON(!bio_add_page(bio, page, len, 0));
139 size -= len;
140 }
141
142 if (using_mempool)
143 mutex_unlock(&c->bio_bounce_pages_lock);
144}
145
146/* Extent update path: */
147
148int bch2_sum_sector_overwrites(struct btree_trans *trans,
149 struct btree_iter *extent_iter,
150 struct bkey_i *new,
151 bool *usage_increasing,
152 s64 *i_sectors_delta,
153 s64 *disk_sectors_delta)
154{
155 struct bch_fs *c = trans->c;
156 struct btree_iter iter;
157 struct bkey_s_c old;
158 unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new));
159 bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new));
160 int ret = 0;
161
162 *usage_increasing = false;
163 *i_sectors_delta = 0;
164 *disk_sectors_delta = 0;
165
166 bch2_trans_copy_iter(&iter, extent_iter);
167
168 for_each_btree_key_upto_continue_norestart(iter,
169 new->k.p, BTREE_ITER_SLOTS, old, ret) {
170 s64 sectors = min(new->k.p.offset, old.k->p.offset) -
171 max(bkey_start_offset(&new->k),
172 bkey_start_offset(old.k));
173
174 *i_sectors_delta += sectors *
175 (bkey_extent_is_allocation(&new->k) -
176 bkey_extent_is_allocation(old.k));
177
178 *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new));
179 *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
180 ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
181 : 0;
182
183 if (!*usage_increasing &&
184 (new->k.p.snapshot != old.k->p.snapshot ||
185 new_replicas > bch2_bkey_replicas(c, old) ||
186 (!new_compressed && bch2_bkey_sectors_compressed(old))))
187 *usage_increasing = true;
188
189 if (bkey_ge(old.k->p, new->k.p))
190 break;
191 }
192
193 bch2_trans_iter_exit(trans, &iter);
194 return ret;
195}
196
197static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
198 struct btree_iter *extent_iter,
199 u64 new_i_size,
200 s64 i_sectors_delta)
201{
202 struct btree_iter iter;
203 struct bkey_i *k;
204 struct bkey_i_inode_v3 *inode;
205 /*
206 * Crazy performance optimization:
207 * Every extent update needs to also update the inode: the inode trigger
208 * will set bi->journal_seq to the journal sequence number of this
209 * transaction - for fsync.
210 *
211 * But if that's the only reason we're updating the inode (we're not
212 * updating bi_size or bi_sectors), then we don't need the inode update
213 * to be journalled - if we crash, the bi_journal_seq update will be
214 * lost, but that's fine.
215 */
216 unsigned inode_update_flags = BTREE_UPDATE_NOJOURNAL;
217 int ret;
218
219 k = bch2_bkey_get_mut_noupdate(trans, &iter, BTREE_ID_inodes,
220 SPOS(0,
221 extent_iter->pos.inode,
222 extent_iter->snapshot),
223 BTREE_ITER_CACHED);
224 ret = PTR_ERR_OR_ZERO(k);
225 if (unlikely(ret))
226 return ret;
227
228 if (unlikely(k->k.type != KEY_TYPE_inode_v3)) {
229 k = bch2_inode_to_v3(trans, k);
230 ret = PTR_ERR_OR_ZERO(k);
231 if (unlikely(ret))
232 goto err;
233 }
234
235 inode = bkey_i_to_inode_v3(k);
236
237 if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) &&
238 new_i_size > le64_to_cpu(inode->v.bi_size)) {
239 inode->v.bi_size = cpu_to_le64(new_i_size);
240 inode_update_flags = 0;
241 }
242
243 if (i_sectors_delta) {
244 le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta);
245 inode_update_flags = 0;
246 }
247
248 if (inode->k.p.snapshot != iter.snapshot) {
249 inode->k.p.snapshot = iter.snapshot;
250 inode_update_flags = 0;
251 }
252
253 ret = bch2_trans_update(trans, &iter, &inode->k_i,
254 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
255 inode_update_flags);
256err:
257 bch2_trans_iter_exit(trans, &iter);
258 return ret;
259}
260
261int bch2_extent_update(struct btree_trans *trans,
262 subvol_inum inum,
263 struct btree_iter *iter,
264 struct bkey_i *k,
265 struct disk_reservation *disk_res,
266 u64 new_i_size,
267 s64 *i_sectors_delta_total,
268 bool check_enospc)
269{
270 struct bpos next_pos;
271 bool usage_increasing;
272 s64 i_sectors_delta = 0, disk_sectors_delta = 0;
273 int ret;
274
275 /*
276 * This traverses us the iterator without changing iter->path->pos to
277 * search_key() (which is pos + 1 for extents): we want there to be a
278 * path already traversed at iter->pos because
279 * bch2_trans_extent_update() will use it to attempt extent merging
280 */
281 ret = __bch2_btree_iter_traverse(iter);
282 if (ret)
283 return ret;
284
285 ret = bch2_extent_trim_atomic(trans, iter, k);
286 if (ret)
287 return ret;
288
289 next_pos = k->k.p;
290
291 ret = bch2_sum_sector_overwrites(trans, iter, k,
292 &usage_increasing,
293 &i_sectors_delta,
294 &disk_sectors_delta);
295 if (ret)
296 return ret;
297
298 if (disk_res &&
299 disk_sectors_delta > (s64) disk_res->sectors) {
300 ret = bch2_disk_reservation_add(trans->c, disk_res,
301 disk_sectors_delta - disk_res->sectors,
302 !check_enospc || !usage_increasing
303 ? BCH_DISK_RESERVATION_NOFAIL : 0);
304 if (ret)
305 return ret;
306 }
307
308 /*
309 * Note:
310 * We always have to do an inode update - even when i_size/i_sectors
311 * aren't changing - for fsync to work properly; fsync relies on
312 * inode->bi_journal_seq which is updated by the trigger code:
313 */
314 ret = bch2_extent_update_i_size_sectors(trans, iter,
315 min(k->k.p.offset << 9, new_i_size),
316 i_sectors_delta) ?:
317 bch2_trans_update(trans, iter, k, 0) ?:
318 bch2_trans_commit(trans, disk_res, NULL,
319 BTREE_INSERT_NOCHECK_RW|
320 BTREE_INSERT_NOFAIL);
321 if (unlikely(ret))
322 return ret;
323
324 if (i_sectors_delta_total)
325 *i_sectors_delta_total += i_sectors_delta;
326 bch2_btree_iter_set_pos(iter, next_pos);
327 return 0;
328}
329
330static int bch2_write_index_default(struct bch_write_op *op)
331{
332 struct bch_fs *c = op->c;
333 struct bkey_buf sk;
334 struct keylist *keys = &op->insert_keys;
335 struct bkey_i *k = bch2_keylist_front(keys);
336 struct btree_trans *trans = bch2_trans_get(c);
337 struct btree_iter iter;
338 subvol_inum inum = {
339 .subvol = op->subvol,
340 .inum = k->k.p.inode,
341 };
342 int ret;
343
344 BUG_ON(!inum.subvol);
345
346 bch2_bkey_buf_init(&sk);
347
348 do {
349 bch2_trans_begin(trans);
350
351 k = bch2_keylist_front(keys);
352 bch2_bkey_buf_copy(&sk, c, k);
353
354 ret = bch2_subvolume_get_snapshot(trans, inum.subvol,
355 &sk.k->k.p.snapshot);
356 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
357 continue;
358 if (ret)
359 break;
360
361 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
362 bkey_start_pos(&sk.k->k),
363 BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
364
365 ret = bch2_bkey_set_needs_rebalance(c, sk.k,
366 op->opts.background_target,
367 op->opts.background_compression) ?:
368 bch2_extent_update(trans, inum, &iter, sk.k,
369 &op->res,
370 op->new_i_size, &op->i_sectors_delta,
371 op->flags & BCH_WRITE_CHECK_ENOSPC);
372 bch2_trans_iter_exit(trans, &iter);
373
374 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
375 continue;
376 if (ret)
377 break;
378
379 if (bkey_ge(iter.pos, k->k.p))
380 bch2_keylist_pop_front(&op->insert_keys);
381 else
382 bch2_cut_front(iter.pos, k);
383 } while (!bch2_keylist_empty(keys));
384
385 bch2_trans_put(trans);
386 bch2_bkey_buf_exit(&sk, c);
387
388 return ret;
389}
390
391/* Writes */
392
393void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
394 enum bch_data_type type,
395 const struct bkey_i *k,
396 bool nocow)
397{
398 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
399 const struct bch_extent_ptr *ptr;
400 struct bch_write_bio *n;
401 struct bch_dev *ca;
402
403 BUG_ON(c->opts.nochanges);
404
405 bkey_for_each_ptr(ptrs, ptr) {
406 BUG_ON(ptr->dev >= BCH_SB_MEMBERS_MAX ||
407 !c->devs[ptr->dev]);
408
409 ca = bch_dev_bkey_exists(c, ptr->dev);
410
411 if (to_entry(ptr + 1) < ptrs.end) {
412 n = to_wbio(bio_alloc_clone(NULL, &wbio->bio,
413 GFP_NOFS, &ca->replica_set));
414
415 n->bio.bi_end_io = wbio->bio.bi_end_io;
416 n->bio.bi_private = wbio->bio.bi_private;
417 n->parent = wbio;
418 n->split = true;
419 n->bounce = false;
420 n->put_bio = true;
421 n->bio.bi_opf = wbio->bio.bi_opf;
422 bio_inc_remaining(&wbio->bio);
423 } else {
424 n = wbio;
425 n->split = false;
426 }
427
428 n->c = c;
429 n->dev = ptr->dev;
430 n->have_ioref = nocow || bch2_dev_get_ioref(ca,
431 type == BCH_DATA_btree ? READ : WRITE);
432 n->nocow = nocow;
433 n->submit_time = local_clock();
434 n->inode_offset = bkey_start_offset(&k->k);
435 n->bio.bi_iter.bi_sector = ptr->offset;
436
437 if (likely(n->have_ioref)) {
438 this_cpu_add(ca->io_done->sectors[WRITE][type],
439 bio_sectors(&n->bio));
440
441 bio_set_dev(&n->bio, ca->disk_sb.bdev);
442
443 if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
444 bio_endio(&n->bio);
445 continue;
446 }
447
448 submit_bio(&n->bio);
449 } else {
450 n->bio.bi_status = BLK_STS_REMOVED;
451 bio_endio(&n->bio);
452 }
453 }
454}
455
456static void __bch2_write(struct bch_write_op *);
457
458static void bch2_write_done(struct closure *cl)
459{
460 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
461 struct bch_fs *c = op->c;
462
463 EBUG_ON(op->open_buckets.nr);
464
465 bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
466 bch2_disk_reservation_put(c, &op->res);
467
468 if (!(op->flags & BCH_WRITE_MOVE))
469 bch2_write_ref_put(c, BCH_WRITE_REF_write);
470 bch2_keylist_free(&op->insert_keys, op->inline_keys);
471
472 EBUG_ON(cl->parent);
473 closure_debug_destroy(cl);
474 if (op->end_io)
475 op->end_io(op);
476}
477
478static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
479{
480 struct keylist *keys = &op->insert_keys;
481 struct bch_extent_ptr *ptr;
482 struct bkey_i *src, *dst = keys->keys, *n;
483
484 for (src = keys->keys; src != keys->top; src = n) {
485 n = bkey_next(src);
486
487 if (bkey_extent_is_direct_data(&src->k)) {
488 bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
489 test_bit(ptr->dev, op->failed.d));
490
491 if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src)))
492 return -EIO;
493 }
494
495 if (dst != src)
496 memmove_u64s_down(dst, src, src->k.u64s);
497 dst = bkey_next(dst);
498 }
499
500 keys->top = dst;
501 return 0;
502}
503
504/**
505 * __bch2_write_index - after a write, update index to point to new data
506 * @op: bch_write_op to process
507 */
508static void __bch2_write_index(struct bch_write_op *op)
509{
510 struct bch_fs *c = op->c;
511 struct keylist *keys = &op->insert_keys;
512 unsigned dev;
513 int ret = 0;
514
515 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
516 ret = bch2_write_drop_io_error_ptrs(op);
517 if (ret)
518 goto err;
519 }
520
521 if (!bch2_keylist_empty(keys)) {
522 u64 sectors_start = keylist_sectors(keys);
523
524 ret = !(op->flags & BCH_WRITE_MOVE)
525 ? bch2_write_index_default(op)
526 : bch2_data_update_index_update(op);
527
528 BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
529 BUG_ON(keylist_sectors(keys) && !ret);
530
531 op->written += sectors_start - keylist_sectors(keys);
532
533 if (ret && !bch2_err_matches(ret, EROFS)) {
534 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
535
536 bch_err_inum_offset_ratelimited(c,
537 insert->k.p.inode, insert->k.p.offset << 9,
538 "write error while doing btree update: %s",
539 bch2_err_str(ret));
540 }
541
542 if (ret)
543 goto err;
544 }
545out:
546 /* If some a bucket wasn't written, we can't erasure code it: */
547 for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
548 bch2_open_bucket_write_error(c, &op->open_buckets, dev);
549
550 bch2_open_buckets_put(c, &op->open_buckets);
551 return;
552err:
553 keys->top = keys->keys;
554 op->error = ret;
555 op->flags |= BCH_WRITE_DONE;
556 goto out;
557}
558
559static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
560{
561 if (state != wp->state) {
562 u64 now = ktime_get_ns();
563
564 if (wp->last_state_change &&
565 time_after64(now, wp->last_state_change))
566 wp->time[wp->state] += now - wp->last_state_change;
567 wp->state = state;
568 wp->last_state_change = now;
569 }
570}
571
572static inline void wp_update_state(struct write_point *wp, bool running)
573{
574 enum write_point_state state;
575
576 state = running ? WRITE_POINT_running :
577 !list_empty(&wp->writes) ? WRITE_POINT_waiting_io
578 : WRITE_POINT_stopped;
579
580 __wp_update_state(wp, state);
581}
582
583static CLOSURE_CALLBACK(bch2_write_index)
584{
585 closure_type(op, struct bch_write_op, cl);
586 struct write_point *wp = op->wp;
587 struct workqueue_struct *wq = index_update_wq(op);
588 unsigned long flags;
589
590 if ((op->flags & BCH_WRITE_DONE) &&
591 (op->flags & BCH_WRITE_MOVE))
592 bch2_bio_free_pages_pool(op->c, &op->wbio.bio);
593
594 spin_lock_irqsave(&wp->writes_lock, flags);
595 if (wp->state == WRITE_POINT_waiting_io)
596 __wp_update_state(wp, WRITE_POINT_waiting_work);
597 list_add_tail(&op->wp_list, &wp->writes);
598 spin_unlock_irqrestore (&wp->writes_lock, flags);
599
600 queue_work(wq, &wp->index_update_work);
601}
602
603static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
604{
605 op->wp = wp;
606
607 if (wp->state == WRITE_POINT_stopped) {
608 spin_lock_irq(&wp->writes_lock);
609 __wp_update_state(wp, WRITE_POINT_waiting_io);
610 spin_unlock_irq(&wp->writes_lock);
611 }
612}
613
614void bch2_write_point_do_index_updates(struct work_struct *work)
615{
616 struct write_point *wp =
617 container_of(work, struct write_point, index_update_work);
618 struct bch_write_op *op;
619
620 while (1) {
621 spin_lock_irq(&wp->writes_lock);
622 op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list);
623 if (op)
624 list_del(&op->wp_list);
625 wp_update_state(wp, op != NULL);
626 spin_unlock_irq(&wp->writes_lock);
627
628 if (!op)
629 break;
630
631 op->flags |= BCH_WRITE_IN_WORKER;
632
633 __bch2_write_index(op);
634
635 if (!(op->flags & BCH_WRITE_DONE))
636 __bch2_write(op);
637 else
638 bch2_write_done(&op->cl);
639 }
640}
641
642static void bch2_write_endio(struct bio *bio)
643{
644 struct closure *cl = bio->bi_private;
645 struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
646 struct bch_write_bio *wbio = to_wbio(bio);
647 struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
648 struct bch_fs *c = wbio->c;
649 struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev);
650
651 if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write,
652 op->pos.inode,
653 wbio->inode_offset << 9,
654 "data write error: %s",
655 bch2_blk_status_to_str(bio->bi_status))) {
656 set_bit(wbio->dev, op->failed.d);
657 op->flags |= BCH_WRITE_IO_ERROR;
658 }
659
660 if (wbio->nocow)
661 set_bit(wbio->dev, op->devs_need_flush->d);
662
663 if (wbio->have_ioref) {
664 bch2_latency_acct(ca, wbio->submit_time, WRITE);
665 percpu_ref_put(&ca->io_ref);
666 }
667
668 if (wbio->bounce)
669 bch2_bio_free_pages_pool(c, bio);
670
671 if (wbio->put_bio)
672 bio_put(bio);
673
674 if (parent)
675 bio_endio(&parent->bio);
676 else
677 closure_put(cl);
678}
679
680static void init_append_extent(struct bch_write_op *op,
681 struct write_point *wp,
682 struct bversion version,
683 struct bch_extent_crc_unpacked crc)
684{
685 struct bkey_i_extent *e;
686
687 op->pos.offset += crc.uncompressed_size;
688
689 e = bkey_extent_init(op->insert_keys.top);
690 e->k.p = op->pos;
691 e->k.size = crc.uncompressed_size;
692 e->k.version = version;
693
694 if (crc.csum_type ||
695 crc.compression_type ||
696 crc.nonce)
697 bch2_extent_crc_append(&e->k_i, crc);
698
699 bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size,
700 op->flags & BCH_WRITE_CACHED);
701
702 bch2_keylist_push(&op->insert_keys);
703}
704
705static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
706 struct write_point *wp,
707 struct bio *src,
708 bool *page_alloc_failed,
709 void *buf)
710{
711 struct bch_write_bio *wbio;
712 struct bio *bio;
713 unsigned output_available =
714 min(wp->sectors_free << 9, src->bi_iter.bi_size);
715 unsigned pages = DIV_ROUND_UP(output_available +
716 (buf
717 ? ((unsigned long) buf & (PAGE_SIZE - 1))
718 : 0), PAGE_SIZE);
719
720 pages = min(pages, BIO_MAX_VECS);
721
722 bio = bio_alloc_bioset(NULL, pages, 0,
723 GFP_NOFS, &c->bio_write);
724 wbio = wbio_init(bio);
725 wbio->put_bio = true;
726 /* copy WRITE_SYNC flag */
727 wbio->bio.bi_opf = src->bi_opf;
728
729 if (buf) {
730 bch2_bio_map(bio, buf, output_available);
731 return bio;
732 }
733
734 wbio->bounce = true;
735
736 /*
737 * We can't use mempool for more than c->sb.encoded_extent_max
738 * worth of pages, but we'd like to allocate more if we can:
739 */
740 bch2_bio_alloc_pages_pool(c, bio,
741 min_t(unsigned, output_available,
742 c->opts.encoded_extent_max));
743
744 if (bio->bi_iter.bi_size < output_available)
745 *page_alloc_failed =
746 bch2_bio_alloc_pages(bio,
747 output_available -
748 bio->bi_iter.bi_size,
749 GFP_NOFS) != 0;
750
751 return bio;
752}
753
754static int bch2_write_rechecksum(struct bch_fs *c,
755 struct bch_write_op *op,
756 unsigned new_csum_type)
757{
758 struct bio *bio = &op->wbio.bio;
759 struct bch_extent_crc_unpacked new_crc;
760 int ret;
761
762 /* bch2_rechecksum_bio() can't encrypt or decrypt data: */
763
764 if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
765 bch2_csum_type_is_encryption(new_csum_type))
766 new_csum_type = op->crc.csum_type;
767
768 ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
769 NULL, &new_crc,
770 op->crc.offset, op->crc.live_size,
771 new_csum_type);
772 if (ret)
773 return ret;
774
775 bio_advance(bio, op->crc.offset << 9);
776 bio->bi_iter.bi_size = op->crc.live_size << 9;
777 op->crc = new_crc;
778 return 0;
779}
780
781static int bch2_write_decrypt(struct bch_write_op *op)
782{
783 struct bch_fs *c = op->c;
784 struct nonce nonce = extent_nonce(op->version, op->crc);
785 struct bch_csum csum;
786 int ret;
787
788 if (!bch2_csum_type_is_encryption(op->crc.csum_type))
789 return 0;
790
791 /*
792 * If we need to decrypt data in the write path, we'll no longer be able
793 * to verify the existing checksum (poly1305 mac, in this case) after
794 * it's decrypted - this is the last point we'll be able to reverify the
795 * checksum:
796 */
797 csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
798 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
799 return -EIO;
800
801 ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
802 op->crc.csum_type = 0;
803 op->crc.csum = (struct bch_csum) { 0, 0 };
804 return ret;
805}
806
807static enum prep_encoded_ret {
808 PREP_ENCODED_OK,
809 PREP_ENCODED_ERR,
810 PREP_ENCODED_CHECKSUM_ERR,
811 PREP_ENCODED_DO_WRITE,
812} bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
813{
814 struct bch_fs *c = op->c;
815 struct bio *bio = &op->wbio.bio;
816
817 if (!(op->flags & BCH_WRITE_DATA_ENCODED))
818 return PREP_ENCODED_OK;
819
820 BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
821
822 /* Can we just write the entire extent as is? */
823 if (op->crc.uncompressed_size == op->crc.live_size &&
824 op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 &&
825 op->crc.compressed_size <= wp->sectors_free &&
826 (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) ||
827 op->incompressible)) {
828 if (!crc_is_compressed(op->crc) &&
829 op->csum_type != op->crc.csum_type &&
830 bch2_write_rechecksum(c, op, op->csum_type) &&
831 !c->opts.no_data_io)
832 return PREP_ENCODED_CHECKSUM_ERR;
833
834 return PREP_ENCODED_DO_WRITE;
835 }
836
837 /*
838 * If the data is compressed and we couldn't write the entire extent as
839 * is, we have to decompress it:
840 */
841 if (crc_is_compressed(op->crc)) {
842 struct bch_csum csum;
843
844 if (bch2_write_decrypt(op))
845 return PREP_ENCODED_CHECKSUM_ERR;
846
847 /* Last point we can still verify checksum: */
848 csum = bch2_checksum_bio(c, op->crc.csum_type,
849 extent_nonce(op->version, op->crc),
850 bio);
851 if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
852 return PREP_ENCODED_CHECKSUM_ERR;
853
854 if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
855 return PREP_ENCODED_ERR;
856 }
857
858 /*
859 * No longer have compressed data after this point - data might be
860 * encrypted:
861 */
862
863 /*
864 * If the data is checksummed and we're only writing a subset,
865 * rechecksum and adjust bio to point to currently live data:
866 */
867 if ((op->crc.live_size != op->crc.uncompressed_size ||
868 op->crc.csum_type != op->csum_type) &&
869 bch2_write_rechecksum(c, op, op->csum_type) &&
870 !c->opts.no_data_io)
871 return PREP_ENCODED_CHECKSUM_ERR;
872
873 /*
874 * If we want to compress the data, it has to be decrypted:
875 */
876 if ((op->compression_opt ||
877 bch2_csum_type_is_encryption(op->crc.csum_type) !=
878 bch2_csum_type_is_encryption(op->csum_type)) &&
879 bch2_write_decrypt(op))
880 return PREP_ENCODED_CHECKSUM_ERR;
881
882 return PREP_ENCODED_OK;
883}
884
885static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
886 struct bio **_dst)
887{
888 struct bch_fs *c = op->c;
889 struct bio *src = &op->wbio.bio, *dst = src;
890 struct bvec_iter saved_iter;
891 void *ec_buf;
892 unsigned total_output = 0, total_input = 0;
893 bool bounce = false;
894 bool page_alloc_failed = false;
895 int ret, more = 0;
896
897 BUG_ON(!bio_sectors(src));
898
899 ec_buf = bch2_writepoint_ec_buf(c, wp);
900
901 switch (bch2_write_prep_encoded_data(op, wp)) {
902 case PREP_ENCODED_OK:
903 break;
904 case PREP_ENCODED_ERR:
905 ret = -EIO;
906 goto err;
907 case PREP_ENCODED_CHECKSUM_ERR:
908 goto csum_err;
909 case PREP_ENCODED_DO_WRITE:
910 /* XXX look for bug here */
911 if (ec_buf) {
912 dst = bch2_write_bio_alloc(c, wp, src,
913 &page_alloc_failed,
914 ec_buf);
915 bio_copy_data(dst, src);
916 bounce = true;
917 }
918 init_append_extent(op, wp, op->version, op->crc);
919 goto do_write;
920 }
921
922 if (ec_buf ||
923 op->compression_opt ||
924 (op->csum_type &&
925 !(op->flags & BCH_WRITE_PAGES_STABLE)) ||
926 (bch2_csum_type_is_encryption(op->csum_type) &&
927 !(op->flags & BCH_WRITE_PAGES_OWNED))) {
928 dst = bch2_write_bio_alloc(c, wp, src,
929 &page_alloc_failed,
930 ec_buf);
931 bounce = true;
932 }
933
934 saved_iter = dst->bi_iter;
935
936 do {
937 struct bch_extent_crc_unpacked crc = { 0 };
938 struct bversion version = op->version;
939 size_t dst_len = 0, src_len = 0;
940
941 if (page_alloc_failed &&
942 dst->bi_iter.bi_size < (wp->sectors_free << 9) &&
943 dst->bi_iter.bi_size < c->opts.encoded_extent_max)
944 break;
945
946 BUG_ON(op->compression_opt &&
947 (op->flags & BCH_WRITE_DATA_ENCODED) &&
948 bch2_csum_type_is_encryption(op->crc.csum_type));
949 BUG_ON(op->compression_opt && !bounce);
950
951 crc.compression_type = op->incompressible
952 ? BCH_COMPRESSION_TYPE_incompressible
953 : op->compression_opt
954 ? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
955 op->compression_opt)
956 : 0;
957 if (!crc_is_compressed(crc)) {
958 dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
959 dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
960
961 if (op->csum_type)
962 dst_len = min_t(unsigned, dst_len,
963 c->opts.encoded_extent_max);
964
965 if (bounce) {
966 swap(dst->bi_iter.bi_size, dst_len);
967 bio_copy_data(dst, src);
968 swap(dst->bi_iter.bi_size, dst_len);
969 }
970
971 src_len = dst_len;
972 }
973
974 BUG_ON(!src_len || !dst_len);
975
976 if (bch2_csum_type_is_encryption(op->csum_type)) {
977 if (bversion_zero(version)) {
978 version.lo = atomic64_inc_return(&c->key_version);
979 } else {
980 crc.nonce = op->nonce;
981 op->nonce += src_len >> 9;
982 }
983 }
984
985 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
986 !crc_is_compressed(crc) &&
987 bch2_csum_type_is_encryption(op->crc.csum_type) ==
988 bch2_csum_type_is_encryption(op->csum_type)) {
989 u8 compression_type = crc.compression_type;
990 u16 nonce = crc.nonce;
991 /*
992 * Note: when we're using rechecksum(), we need to be
993 * checksumming @src because it has all the data our
994 * existing checksum covers - if we bounced (because we
995 * were trying to compress), @dst will only have the
996 * part of the data the new checksum will cover.
997 *
998 * But normally we want to be checksumming post bounce,
999 * because part of the reason for bouncing is so the
1000 * data can't be modified (by userspace) while it's in
1001 * flight.
1002 */
1003 if (bch2_rechecksum_bio(c, src, version, op->crc,
1004 &crc, &op->crc,
1005 src_len >> 9,
1006 bio_sectors(src) - (src_len >> 9),
1007 op->csum_type))
1008 goto csum_err;
1009 /*
1010 * rchecksum_bio sets compression_type on crc from op->crc,
1011 * this isn't always correct as sometimes we're changing
1012 * an extent from uncompressed to incompressible.
1013 */
1014 crc.compression_type = compression_type;
1015 crc.nonce = nonce;
1016 } else {
1017 if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
1018 bch2_rechecksum_bio(c, src, version, op->crc,
1019 NULL, &op->crc,
1020 src_len >> 9,
1021 bio_sectors(src) - (src_len >> 9),
1022 op->crc.csum_type))
1023 goto csum_err;
1024
1025 crc.compressed_size = dst_len >> 9;
1026 crc.uncompressed_size = src_len >> 9;
1027 crc.live_size = src_len >> 9;
1028
1029 swap(dst->bi_iter.bi_size, dst_len);
1030 ret = bch2_encrypt_bio(c, op->csum_type,
1031 extent_nonce(version, crc), dst);
1032 if (ret)
1033 goto err;
1034
1035 crc.csum = bch2_checksum_bio(c, op->csum_type,
1036 extent_nonce(version, crc), dst);
1037 crc.csum_type = op->csum_type;
1038 swap(dst->bi_iter.bi_size, dst_len);
1039 }
1040
1041 init_append_extent(op, wp, version, crc);
1042
1043 if (dst != src)
1044 bio_advance(dst, dst_len);
1045 bio_advance(src, src_len);
1046 total_output += dst_len;
1047 total_input += src_len;
1048 } while (dst->bi_iter.bi_size &&
1049 src->bi_iter.bi_size &&
1050 wp->sectors_free &&
1051 !bch2_keylist_realloc(&op->insert_keys,
1052 op->inline_keys,
1053 ARRAY_SIZE(op->inline_keys),
1054 BKEY_EXTENT_U64s_MAX));
1055
1056 more = src->bi_iter.bi_size != 0;
1057
1058 dst->bi_iter = saved_iter;
1059
1060 if (dst == src && more) {
1061 BUG_ON(total_output != total_input);
1062
1063 dst = bio_split(src, total_input >> 9,
1064 GFP_NOFS, &c->bio_write);
1065 wbio_init(dst)->put_bio = true;
1066 /* copy WRITE_SYNC flag */
1067 dst->bi_opf = src->bi_opf;
1068 }
1069
1070 dst->bi_iter.bi_size = total_output;
1071do_write:
1072 *_dst = dst;
1073 return more;
1074csum_err:
1075 bch_err(c, "error verifying existing checksum while rewriting existing data (memory corruption?)");
1076 ret = -EIO;
1077err:
1078 if (to_wbio(dst)->bounce)
1079 bch2_bio_free_pages_pool(c, dst);
1080 if (to_wbio(dst)->put_bio)
1081 bio_put(dst);
1082
1083 return ret;
1084}
1085
1086static bool bch2_extent_is_writeable(struct bch_write_op *op,
1087 struct bkey_s_c k)
1088{
1089 struct bch_fs *c = op->c;
1090 struct bkey_s_c_extent e;
1091 struct extent_ptr_decoded p;
1092 const union bch_extent_entry *entry;
1093 unsigned replicas = 0;
1094
1095 if (k.k->type != KEY_TYPE_extent)
1096 return false;
1097
1098 e = bkey_s_c_to_extent(k);
1099 extent_for_each_ptr_decode(e, p, entry) {
1100 if (crc_is_encoded(p.crc) || p.has_ec)
1101 return false;
1102
1103 replicas += bch2_extent_ptr_durability(c, &p);
1104 }
1105
1106 return replicas >= op->opts.data_replicas;
1107}
1108
1109static inline void bch2_nocow_write_unlock(struct bch_write_op *op)
1110{
1111 struct bch_fs *c = op->c;
1112 const struct bch_extent_ptr *ptr;
1113 struct bkey_i *k;
1114
1115 for_each_keylist_key(&op->insert_keys, k) {
1116 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
1117
1118 bkey_for_each_ptr(ptrs, ptr)
1119 bch2_bucket_nocow_unlock(&c->nocow_locks,
1120 PTR_BUCKET_POS(c, ptr),
1121 BUCKET_NOCOW_LOCK_UPDATE);
1122 }
1123}
1124
1125static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
1126 struct btree_iter *iter,
1127 struct bkey_i *orig,
1128 struct bkey_s_c k,
1129 u64 new_i_size)
1130{
1131 struct bkey_i *new;
1132 struct bkey_ptrs ptrs;
1133 struct bch_extent_ptr *ptr;
1134 int ret;
1135
1136 if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) {
1137 /* trace this */
1138 return 0;
1139 }
1140
1141 new = bch2_bkey_make_mut_noupdate(trans, k);
1142 ret = PTR_ERR_OR_ZERO(new);
1143 if (ret)
1144 return ret;
1145
1146 bch2_cut_front(bkey_start_pos(&orig->k), new);
1147 bch2_cut_back(orig->k.p, new);
1148
1149 ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
1150 bkey_for_each_ptr(ptrs, ptr)
1151 ptr->unwritten = 0;
1152
1153 /*
1154 * Note that we're not calling bch2_subvol_get_snapshot() in this path -
1155 * that was done when we kicked off the write, and here it's important
1156 * that we update the extent that we wrote to - even if a snapshot has
1157 * since been created. The write is still outstanding, so we're ok
1158 * w.r.t. snapshot atomicity:
1159 */
1160 return bch2_extent_update_i_size_sectors(trans, iter,
1161 min(new->k.p.offset << 9, new_i_size), 0) ?:
1162 bch2_trans_update(trans, iter, new,
1163 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
1164}
1165
1166static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
1167{
1168 struct bch_fs *c = op->c;
1169 struct btree_trans *trans = bch2_trans_get(c);
1170 struct btree_iter iter;
1171 struct bkey_i *orig;
1172 struct bkey_s_c k;
1173 int ret;
1174
1175 for_each_keylist_key(&op->insert_keys, orig) {
1176 ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents,
1177 bkey_start_pos(&orig->k), orig->k.p,
1178 BTREE_ITER_INTENT, k,
1179 NULL, NULL, BTREE_INSERT_NOFAIL, ({
1180 bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size);
1181 }));
1182
1183 if (ret && !bch2_err_matches(ret, EROFS)) {
1184 struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
1185
1186 bch_err_inum_offset_ratelimited(c,
1187 insert->k.p.inode, insert->k.p.offset << 9,
1188 "write error while doing btree update: %s",
1189 bch2_err_str(ret));
1190 }
1191
1192 if (ret) {
1193 op->error = ret;
1194 break;
1195 }
1196 }
1197
1198 bch2_trans_put(trans);
1199}
1200
1201static void __bch2_nocow_write_done(struct bch_write_op *op)
1202{
1203 bch2_nocow_write_unlock(op);
1204
1205 if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
1206 op->error = -EIO;
1207 } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
1208 bch2_nocow_write_convert_unwritten(op);
1209}
1210
1211static CLOSURE_CALLBACK(bch2_nocow_write_done)
1212{
1213 closure_type(op, struct bch_write_op, cl);
1214
1215 __bch2_nocow_write_done(op);
1216 bch2_write_done(cl);
1217}
1218
1219struct bucket_to_lock {
1220 struct bpos b;
1221 unsigned gen;
1222 struct nocow_lock_bucket *l;
1223};
1224
1225static void bch2_nocow_write(struct bch_write_op *op)
1226{
1227 struct bch_fs *c = op->c;
1228 struct btree_trans *trans;
1229 struct btree_iter iter;
1230 struct bkey_s_c k;
1231 struct bkey_ptrs_c ptrs;
1232 const struct bch_extent_ptr *ptr;
1233 DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets;
1234 struct bucket_to_lock *i;
1235 u32 snapshot;
1236 struct bucket_to_lock *stale_at;
1237 int ret;
1238
1239 if (op->flags & BCH_WRITE_MOVE)
1240 return;
1241
1242 darray_init(&buckets);
1243 trans = bch2_trans_get(c);
1244retry:
1245 bch2_trans_begin(trans);
1246
1247 ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot);
1248 if (unlikely(ret))
1249 goto err;
1250
1251 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
1252 SPOS(op->pos.inode, op->pos.offset, snapshot),
1253 BTREE_ITER_SLOTS);
1254 while (1) {
1255 struct bio *bio = &op->wbio.bio;
1256
1257 buckets.nr = 0;
1258
1259 k = bch2_btree_iter_peek_slot(&iter);
1260 ret = bkey_err(k);
1261 if (ret)
1262 break;
1263
1264 /* fall back to normal cow write path? */
1265 if (unlikely(k.k->p.snapshot != snapshot ||
1266 !bch2_extent_is_writeable(op, k)))
1267 break;
1268
1269 if (bch2_keylist_realloc(&op->insert_keys,
1270 op->inline_keys,
1271 ARRAY_SIZE(op->inline_keys),
1272 k.k->u64s))
1273 break;
1274
1275 /* Get iorefs before dropping btree locks: */
1276 ptrs = bch2_bkey_ptrs_c(k);
1277 bkey_for_each_ptr(ptrs, ptr) {
1278 struct bpos b = PTR_BUCKET_POS(c, ptr);
1279 struct nocow_lock_bucket *l =
1280 bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b));
1281 prefetch(l);
1282
1283 if (unlikely(!bch2_dev_get_ioref(bch_dev_bkey_exists(c, ptr->dev), WRITE)))
1284 goto err_get_ioref;
1285
1286 /* XXX allocating memory with btree locks held - rare */
1287 darray_push_gfp(&buckets, ((struct bucket_to_lock) {
1288 .b = b, .gen = ptr->gen, .l = l,
1289 }), GFP_KERNEL|__GFP_NOFAIL);
1290
1291 if (ptr->unwritten)
1292 op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
1293 }
1294
1295 /* Unlock before taking nocow locks, doing IO: */
1296 bkey_reassemble(op->insert_keys.top, k);
1297 bch2_trans_unlock(trans);
1298
1299 bch2_cut_front(op->pos, op->insert_keys.top);
1300 if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
1301 bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top);
1302
1303 darray_for_each(buckets, i) {
1304 struct bch_dev *ca = bch_dev_bkey_exists(c, i->b.inode);
1305
1306 __bch2_bucket_nocow_lock(&c->nocow_locks, i->l,
1307 bucket_to_u64(i->b),
1308 BUCKET_NOCOW_LOCK_UPDATE);
1309
1310 rcu_read_lock();
1311 bool stale = gen_after(*bucket_gen(ca, i->b.offset), i->gen);
1312 rcu_read_unlock();
1313
1314 if (unlikely(stale)) {
1315 stale_at = i;
1316 goto err_bucket_stale;
1317 }
1318 }
1319
1320 bio = &op->wbio.bio;
1321 if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
1322 bio = bio_split(bio, k.k->p.offset - op->pos.offset,
1323 GFP_KERNEL, &c->bio_write);
1324 wbio_init(bio)->put_bio = true;
1325 bio->bi_opf = op->wbio.bio.bi_opf;
1326 } else {
1327 op->flags |= BCH_WRITE_DONE;
1328 }
1329
1330 op->pos.offset += bio_sectors(bio);
1331 op->written += bio_sectors(bio);
1332
1333 bio->bi_end_io = bch2_write_endio;
1334 bio->bi_private = &op->cl;
1335 bio->bi_opf |= REQ_OP_WRITE;
1336 closure_get(&op->cl);
1337 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1338 op->insert_keys.top, true);
1339
1340 bch2_keylist_push(&op->insert_keys);
1341 if (op->flags & BCH_WRITE_DONE)
1342 break;
1343 bch2_btree_iter_advance(&iter);
1344 }
1345out:
1346 bch2_trans_iter_exit(trans, &iter);
1347err:
1348 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1349 goto retry;
1350
1351 if (ret) {
1352 bch_err_inum_offset_ratelimited(c,
1353 op->pos.inode, op->pos.offset << 9,
1354 "%s: btree lookup error %s", __func__, bch2_err_str(ret));
1355 op->error = ret;
1356 op->flags |= BCH_WRITE_DONE;
1357 }
1358
1359 bch2_trans_put(trans);
1360 darray_exit(&buckets);
1361
1362 /* fallback to cow write path? */
1363 if (!(op->flags & BCH_WRITE_DONE)) {
1364 closure_sync(&op->cl);
1365 __bch2_nocow_write_done(op);
1366 op->insert_keys.top = op->insert_keys.keys;
1367 } else if (op->flags & BCH_WRITE_SYNC) {
1368 closure_sync(&op->cl);
1369 bch2_nocow_write_done(&op->cl.work);
1370 } else {
1371 /*
1372 * XXX
1373 * needs to run out of process context because ei_quota_lock is
1374 * a mutex
1375 */
1376 continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
1377 }
1378 return;
1379err_get_ioref:
1380 darray_for_each(buckets, i)
1381 percpu_ref_put(&bch_dev_bkey_exists(c, i->b.inode)->io_ref);
1382
1383 /* Fall back to COW path: */
1384 goto out;
1385err_bucket_stale:
1386 darray_for_each(buckets, i) {
1387 bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE);
1388 if (i == stale_at)
1389 break;
1390 }
1391
1392 /* We can retry this: */
1393 ret = -BCH_ERR_transaction_restart;
1394 goto err_get_ioref;
1395}
1396
1397static void __bch2_write(struct bch_write_op *op)
1398{
1399 struct bch_fs *c = op->c;
1400 struct write_point *wp = NULL;
1401 struct bio *bio = NULL;
1402 unsigned nofs_flags;
1403 int ret;
1404
1405 nofs_flags = memalloc_nofs_save();
1406
1407 if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
1408 bch2_nocow_write(op);
1409 if (op->flags & BCH_WRITE_DONE)
1410 goto out_nofs_restore;
1411 }
1412again:
1413 memset(&op->failed, 0, sizeof(op->failed));
1414
1415 do {
1416 struct bkey_i *key_to_write;
1417 unsigned key_to_write_offset = op->insert_keys.top_p -
1418 op->insert_keys.keys_p;
1419
1420 /* +1 for possible cache device: */
1421 if (op->open_buckets.nr + op->nr_replicas + 1 >
1422 ARRAY_SIZE(op->open_buckets.v))
1423 break;
1424
1425 if (bch2_keylist_realloc(&op->insert_keys,
1426 op->inline_keys,
1427 ARRAY_SIZE(op->inline_keys),
1428 BKEY_EXTENT_U64s_MAX))
1429 break;
1430
1431 /*
1432 * The copygc thread is now global, which means it's no longer
1433 * freeing up space on specific disks, which means that
1434 * allocations for specific disks may hang arbitrarily long:
1435 */
1436 ret = bch2_trans_do(c, NULL, NULL, 0,
1437 bch2_alloc_sectors_start_trans(trans,
1438 op->target,
1439 op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
1440 op->write_point,
1441 &op->devs_have,
1442 op->nr_replicas,
1443 op->nr_replicas_required,
1444 op->watermark,
1445 op->flags,
1446 (op->flags & (BCH_WRITE_ALLOC_NOWAIT|
1447 BCH_WRITE_ONLY_SPECIFIED_DEVS))
1448 ? NULL : &op->cl, &wp));
1449 if (unlikely(ret)) {
1450 if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
1451 break;
1452
1453 goto err;
1454 }
1455
1456 EBUG_ON(!wp);
1457
1458 bch2_open_bucket_get(c, wp, &op->open_buckets);
1459 ret = bch2_write_extent(op, wp, &bio);
1460
1461 bch2_alloc_sectors_done_inlined(c, wp);
1462err:
1463 if (ret <= 0) {
1464 op->flags |= BCH_WRITE_DONE;
1465
1466 if (ret < 0) {
1467 op->error = ret;
1468 break;
1469 }
1470 }
1471
1472 bio->bi_end_io = bch2_write_endio;
1473 bio->bi_private = &op->cl;
1474 bio->bi_opf |= REQ_OP_WRITE;
1475
1476 closure_get(bio->bi_private);
1477
1478 key_to_write = (void *) (op->insert_keys.keys_p +
1479 key_to_write_offset);
1480
1481 bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
1482 key_to_write, false);
1483 } while (ret);
1484
1485 /*
1486 * Sync or no?
1487 *
1488 * If we're running asynchronously, wne may still want to block
1489 * synchronously here if we weren't able to submit all of the IO at
1490 * once, as that signals backpressure to the caller.
1491 */
1492 if ((op->flags & BCH_WRITE_SYNC) ||
1493 (!(op->flags & BCH_WRITE_DONE) &&
1494 !(op->flags & BCH_WRITE_IN_WORKER))) {
1495 closure_sync(&op->cl);
1496 __bch2_write_index(op);
1497
1498 if (!(op->flags & BCH_WRITE_DONE))
1499 goto again;
1500 bch2_write_done(&op->cl);
1501 } else {
1502 bch2_write_queue(op, wp);
1503 continue_at(&op->cl, bch2_write_index, NULL);
1504 }
1505out_nofs_restore:
1506 memalloc_nofs_restore(nofs_flags);
1507}
1508
1509static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
1510{
1511 struct bio *bio = &op->wbio.bio;
1512 struct bvec_iter iter;
1513 struct bkey_i_inline_data *id;
1514 unsigned sectors;
1515 int ret;
1516
1517 op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
1518 op->flags |= BCH_WRITE_DONE;
1519
1520 bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
1521
1522 ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
1523 ARRAY_SIZE(op->inline_keys),
1524 BKEY_U64s + DIV_ROUND_UP(data_len, 8));
1525 if (ret) {
1526 op->error = ret;
1527 goto err;
1528 }
1529
1530 sectors = bio_sectors(bio);
1531 op->pos.offset += sectors;
1532
1533 id = bkey_inline_data_init(op->insert_keys.top);
1534 id->k.p = op->pos;
1535 id->k.version = op->version;
1536 id->k.size = sectors;
1537
1538 iter = bio->bi_iter;
1539 iter.bi_size = data_len;
1540 memcpy_from_bio(id->v.data, bio, iter);
1541
1542 while (data_len & 7)
1543 id->v.data[data_len++] = '\0';
1544 set_bkey_val_bytes(&id->k, data_len);
1545 bch2_keylist_push(&op->insert_keys);
1546
1547 __bch2_write_index(op);
1548err:
1549 bch2_write_done(&op->cl);
1550}
1551
1552/**
1553 * bch2_write() - handle a write to a cache device or flash only volume
1554 * @cl: &bch_write_op->cl
1555 *
1556 * This is the starting point for any data to end up in a cache device; it could
1557 * be from a normal write, or a writeback write, or a write to a flash only
1558 * volume - it's also used by the moving garbage collector to compact data in
1559 * mostly empty buckets.
1560 *
1561 * It first writes the data to the cache, creating a list of keys to be inserted
1562 * (if the data won't fit in a single open bucket, there will be multiple keys);
1563 * after the data is written it calls bch_journal, and after the keys have been
1564 * added to the next journal write they're inserted into the btree.
1565 *
1566 * If op->discard is true, instead of inserting the data it invalidates the
1567 * region of the cache represented by op->bio and op->inode.
1568 */
1569CLOSURE_CALLBACK(bch2_write)
1570{
1571 closure_type(op, struct bch_write_op, cl);
1572 struct bio *bio = &op->wbio.bio;
1573 struct bch_fs *c = op->c;
1574 unsigned data_len;
1575
1576 EBUG_ON(op->cl.parent);
1577 BUG_ON(!op->nr_replicas);
1578 BUG_ON(!op->write_point.v);
1579 BUG_ON(bkey_eq(op->pos, POS_MAX));
1580
1581 op->start_time = local_clock();
1582 bch2_keylist_init(&op->insert_keys, op->inline_keys);
1583 wbio_init(bio)->put_bio = false;
1584
1585 if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) {
1586 bch_err_inum_offset_ratelimited(c,
1587 op->pos.inode,
1588 op->pos.offset << 9,
1589 "misaligned write");
1590 op->error = -EIO;
1591 goto err;
1592 }
1593
1594 if (c->opts.nochanges) {
1595 op->error = -BCH_ERR_erofs_no_writes;
1596 goto err;
1597 }
1598
1599 if (!(op->flags & BCH_WRITE_MOVE) &&
1600 !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) {
1601 op->error = -BCH_ERR_erofs_no_writes;
1602 goto err;
1603 }
1604
1605 this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
1606 bch2_increment_clock(c, bio_sectors(bio), WRITE);
1607
1608 data_len = min_t(u64, bio->bi_iter.bi_size,
1609 op->new_i_size - (op->pos.offset << 9));
1610
1611 if (c->opts.inline_data &&
1612 data_len <= min(block_bytes(c) / 2, 1024U)) {
1613 bch2_write_data_inline(op, data_len);
1614 return;
1615 }
1616
1617 __bch2_write(op);
1618 return;
1619err:
1620 bch2_disk_reservation_put(c, &op->res);
1621
1622 closure_debug_destroy(&op->cl);
1623 if (op->end_io)
1624 op->end_io(op);
1625}
1626
1627static const char * const bch2_write_flags[] = {
1628#define x(f) #f,
1629 BCH_WRITE_FLAGS()
1630#undef x
1631 NULL
1632};
1633
1634void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
1635{
1636 prt_str(out, "pos: ");
1637 bch2_bpos_to_text(out, op->pos);
1638 prt_newline(out);
1639 printbuf_indent_add(out, 2);
1640
1641 prt_str(out, "started: ");
1642 bch2_pr_time_units(out, local_clock() - op->start_time);
1643 prt_newline(out);
1644
1645 prt_str(out, "flags: ");
1646 prt_bitflags(out, bch2_write_flags, op->flags);
1647 prt_newline(out);
1648
1649 prt_printf(out, "ref: %u", closure_nr_remaining(&op->cl));
1650 prt_newline(out);
1651
1652 printbuf_indent_sub(out, 2);
1653}
1654
1655void bch2_fs_io_write_exit(struct bch_fs *c)
1656{
1657 mempool_exit(&c->bio_bounce_pages);
1658 bioset_exit(&c->bio_write);
1659}
1660
1661int bch2_fs_io_write_init(struct bch_fs *c)
1662{
1663 if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio),
1664 BIOSET_NEED_BVECS))
1665 return -BCH_ERR_ENOMEM_bio_write_init;
1666
1667 if (mempool_init_page_pool(&c->bio_bounce_pages,
1668 max_t(unsigned,
1669 c->opts.btree_node_size,
1670 c->opts.encoded_extent_max) /
1671 PAGE_SIZE, 0))
1672 return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
1673
1674 return 0;
1675}