Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2
3#include "bcachefs.h"
4#include "bkey_buf.h"
5#include "btree_cache.h"
6#include "btree_io.h"
7#include "btree_iter.h"
8#include "btree_locking.h"
9#include "debug.h"
10#include "errcode.h"
11#include "error.h"
12#include "journal.h"
13#include "trace.h"
14
15#include <linux/prefetch.h>
16#include <linux/sched/mm.h>
17
18const char * const bch2_btree_node_flags[] = {
19#define x(f) #f,
20 BTREE_FLAGS()
21#undef x
22 NULL
23};
24
25void bch2_recalc_btree_reserve(struct bch_fs *c)
26{
27 unsigned i, reserve = 16;
28
29 if (!c->btree_roots_known[0].b)
30 reserve += 8;
31
32 for (i = 0; i < btree_id_nr_alive(c); i++) {
33 struct btree_root *r = bch2_btree_id_root(c, i);
34
35 if (r->b)
36 reserve += min_t(unsigned, 1, r->b->c.level) * 8;
37 }
38
39 c->btree_cache.reserve = reserve;
40}
41
42static inline unsigned btree_cache_can_free(struct btree_cache *bc)
43{
44 return max_t(int, 0, bc->used - bc->reserve);
45}
46
47static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b)
48{
49 if (b->c.lock.readers)
50 list_move(&b->list, &bc->freed_pcpu);
51 else
52 list_move(&b->list, &bc->freed_nonpcpu);
53}
54
55static void btree_node_data_free(struct bch_fs *c, struct btree *b)
56{
57 struct btree_cache *bc = &c->btree_cache;
58
59 EBUG_ON(btree_node_write_in_flight(b));
60
61 clear_btree_node_just_written(b);
62
63 kvpfree(b->data, btree_bytes(c));
64 b->data = NULL;
65#ifdef __KERNEL__
66 kvfree(b->aux_data);
67#else
68 munmap(b->aux_data, btree_aux_data_bytes(b));
69#endif
70 b->aux_data = NULL;
71
72 bc->used--;
73
74 btree_node_to_freedlist(bc, b);
75}
76
77static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
78 const void *obj)
79{
80 const struct btree *b = obj;
81 const u64 *v = arg->key;
82
83 return b->hash_val == *v ? 0 : 1;
84}
85
86static const struct rhashtable_params bch_btree_cache_params = {
87 .head_offset = offsetof(struct btree, hash),
88 .key_offset = offsetof(struct btree, hash_val),
89 .key_len = sizeof(u64),
90 .obj_cmpfn = bch2_btree_cache_cmp_fn,
91};
92
93static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
94{
95 BUG_ON(b->data || b->aux_data);
96
97 b->data = kvpmalloc(btree_bytes(c), gfp);
98 if (!b->data)
99 return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
100#ifdef __KERNEL__
101 b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
102#else
103 b->aux_data = mmap(NULL, btree_aux_data_bytes(b),
104 PROT_READ|PROT_WRITE|PROT_EXEC,
105 MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
106 if (b->aux_data == MAP_FAILED)
107 b->aux_data = NULL;
108#endif
109 if (!b->aux_data) {
110 kvpfree(b->data, btree_bytes(c));
111 b->data = NULL;
112 return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
113 }
114
115 return 0;
116}
117
118static struct btree *__btree_node_mem_alloc(struct bch_fs *c, gfp_t gfp)
119{
120 struct btree *b;
121
122 b = kzalloc(sizeof(struct btree), gfp);
123 if (!b)
124 return NULL;
125
126 bkey_btree_ptr_init(&b->key);
127 INIT_LIST_HEAD(&b->list);
128 INIT_LIST_HEAD(&b->write_blocked);
129 b->byte_order = ilog2(btree_bytes(c));
130 return b;
131}
132
133struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c)
134{
135 struct btree_cache *bc = &c->btree_cache;
136 struct btree *b;
137
138 b = __btree_node_mem_alloc(c, GFP_KERNEL);
139 if (!b)
140 return NULL;
141
142 if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
143 kfree(b);
144 return NULL;
145 }
146
147 bch2_btree_lock_init(&b->c, 0);
148
149 bc->used++;
150 list_add(&b->list, &bc->freeable);
151 return b;
152}
153
154/* Btree in memory cache - hash table */
155
156void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
157{
158 int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
159
160 BUG_ON(ret);
161
162 /* Cause future lookups for this node to fail: */
163 b->hash_val = 0;
164}
165
166int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
167{
168 BUG_ON(b->hash_val);
169 b->hash_val = btree_ptr_hash_val(&b->key);
170
171 return rhashtable_lookup_insert_fast(&bc->table, &b->hash,
172 bch_btree_cache_params);
173}
174
175int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
176 unsigned level, enum btree_id id)
177{
178 int ret;
179
180 b->c.level = level;
181 b->c.btree_id = id;
182
183 mutex_lock(&bc->lock);
184 ret = __bch2_btree_node_hash_insert(bc, b);
185 if (!ret)
186 list_add_tail(&b->list, &bc->live);
187 mutex_unlock(&bc->lock);
188
189 return ret;
190}
191
192__flatten
193static inline struct btree *btree_cache_find(struct btree_cache *bc,
194 const struct bkey_i *k)
195{
196 u64 v = btree_ptr_hash_val(k);
197
198 return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
199}
200
201/*
202 * this version is for btree nodes that have already been freed (we're not
203 * reaping a real btree node)
204 */
205static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush)
206{
207 struct btree_cache *bc = &c->btree_cache;
208 int ret = 0;
209
210 lockdep_assert_held(&bc->lock);
211wait_on_io:
212 if (b->flags & ((1U << BTREE_NODE_dirty)|
213 (1U << BTREE_NODE_read_in_flight)|
214 (1U << BTREE_NODE_write_in_flight))) {
215 if (!flush)
216 return -BCH_ERR_ENOMEM_btree_node_reclaim;
217
218 /* XXX: waiting on IO with btree cache lock held */
219 bch2_btree_node_wait_on_read(b);
220 bch2_btree_node_wait_on_write(b);
221 }
222
223 if (!six_trylock_intent(&b->c.lock))
224 return -BCH_ERR_ENOMEM_btree_node_reclaim;
225
226 if (!six_trylock_write(&b->c.lock))
227 goto out_unlock_intent;
228
229 /* recheck under lock */
230 if (b->flags & ((1U << BTREE_NODE_read_in_flight)|
231 (1U << BTREE_NODE_write_in_flight))) {
232 if (!flush)
233 goto out_unlock;
234 six_unlock_write(&b->c.lock);
235 six_unlock_intent(&b->c.lock);
236 goto wait_on_io;
237 }
238
239 if (btree_node_noevict(b) ||
240 btree_node_write_blocked(b) ||
241 btree_node_will_make_reachable(b))
242 goto out_unlock;
243
244 if (btree_node_dirty(b)) {
245 if (!flush)
246 goto out_unlock;
247 /*
248 * Using the underscore version because we don't want to compact
249 * bsets after the write, since this node is about to be evicted
250 * - unless btree verify mode is enabled, since it runs out of
251 * the post write cleanup:
252 */
253 if (bch2_verify_btree_ondisk)
254 bch2_btree_node_write(c, b, SIX_LOCK_intent,
255 BTREE_WRITE_cache_reclaim);
256 else
257 __bch2_btree_node_write(c, b,
258 BTREE_WRITE_cache_reclaim);
259
260 six_unlock_write(&b->c.lock);
261 six_unlock_intent(&b->c.lock);
262 goto wait_on_io;
263 }
264out:
265 if (b->hash_val && !ret)
266 trace_and_count(c, btree_cache_reap, c, b);
267 return ret;
268out_unlock:
269 six_unlock_write(&b->c.lock);
270out_unlock_intent:
271 six_unlock_intent(&b->c.lock);
272 ret = -BCH_ERR_ENOMEM_btree_node_reclaim;
273 goto out;
274}
275
276static int btree_node_reclaim(struct bch_fs *c, struct btree *b)
277{
278 return __btree_node_reclaim(c, b, false);
279}
280
281static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
282{
283 return __btree_node_reclaim(c, b, true);
284}
285
286static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
287 struct shrink_control *sc)
288{
289 struct bch_fs *c = shrink->private_data;
290 struct btree_cache *bc = &c->btree_cache;
291 struct btree *b, *t;
292 unsigned long nr = sc->nr_to_scan;
293 unsigned long can_free = 0;
294 unsigned long freed = 0;
295 unsigned long touched = 0;
296 unsigned i, flags;
297 unsigned long ret = SHRINK_STOP;
298 bool trigger_writes = atomic_read(&bc->dirty) + nr >=
299 bc->used * 3 / 4;
300
301 if (bch2_btree_shrinker_disabled)
302 return SHRINK_STOP;
303
304 mutex_lock(&bc->lock);
305 flags = memalloc_nofs_save();
306
307 /*
308 * It's _really_ critical that we don't free too many btree nodes - we
309 * have to always leave ourselves a reserve. The reserve is how we
310 * guarantee that allocating memory for a new btree node can always
311 * succeed, so that inserting keys into the btree can always succeed and
312 * IO can always make forward progress:
313 */
314 can_free = btree_cache_can_free(bc);
315 nr = min_t(unsigned long, nr, can_free);
316
317 i = 0;
318 list_for_each_entry_safe(b, t, &bc->freeable, list) {
319 /*
320 * Leave a few nodes on the freeable list, so that a btree split
321 * won't have to hit the system allocator:
322 */
323 if (++i <= 3)
324 continue;
325
326 touched++;
327
328 if (touched >= nr)
329 goto out;
330
331 if (!btree_node_reclaim(c, b)) {
332 btree_node_data_free(c, b);
333 six_unlock_write(&b->c.lock);
334 six_unlock_intent(&b->c.lock);
335 freed++;
336 }
337 }
338restart:
339 list_for_each_entry_safe(b, t, &bc->live, list) {
340 touched++;
341
342 if (btree_node_accessed(b)) {
343 clear_btree_node_accessed(b);
344 } else if (!btree_node_reclaim(c, b)) {
345 freed++;
346 btree_node_data_free(c, b);
347
348 bch2_btree_node_hash_remove(bc, b);
349 six_unlock_write(&b->c.lock);
350 six_unlock_intent(&b->c.lock);
351
352 if (freed == nr)
353 goto out_rotate;
354 } else if (trigger_writes &&
355 btree_node_dirty(b) &&
356 !btree_node_will_make_reachable(b) &&
357 !btree_node_write_blocked(b) &&
358 six_trylock_read(&b->c.lock)) {
359 list_move(&bc->live, &b->list);
360 mutex_unlock(&bc->lock);
361 __bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
362 six_unlock_read(&b->c.lock);
363 if (touched >= nr)
364 goto out_nounlock;
365 mutex_lock(&bc->lock);
366 goto restart;
367 }
368
369 if (touched >= nr)
370 break;
371 }
372out_rotate:
373 if (&t->list != &bc->live)
374 list_move_tail(&bc->live, &t->list);
375out:
376 mutex_unlock(&bc->lock);
377out_nounlock:
378 ret = freed;
379 memalloc_nofs_restore(flags);
380 trace_and_count(c, btree_cache_scan, sc->nr_to_scan, can_free, ret);
381 return ret;
382}
383
384static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
385 struct shrink_control *sc)
386{
387 struct bch_fs *c = shrink->private_data;
388 struct btree_cache *bc = &c->btree_cache;
389
390 if (bch2_btree_shrinker_disabled)
391 return 0;
392
393 return btree_cache_can_free(bc);
394}
395
396void bch2_fs_btree_cache_exit(struct bch_fs *c)
397{
398 struct btree_cache *bc = &c->btree_cache;
399 struct btree *b;
400 unsigned i, flags;
401
402 shrinker_free(bc->shrink);
403
404 /* vfree() can allocate memory: */
405 flags = memalloc_nofs_save();
406 mutex_lock(&bc->lock);
407
408 if (c->verify_data)
409 list_move(&c->verify_data->list, &bc->live);
410
411 kvpfree(c->verify_ondisk, btree_bytes(c));
412
413 for (i = 0; i < btree_id_nr_alive(c); i++) {
414 struct btree_root *r = bch2_btree_id_root(c, i);
415
416 if (r->b)
417 list_add(&r->b->list, &bc->live);
418 }
419
420 list_splice(&bc->freeable, &bc->live);
421
422 while (!list_empty(&bc->live)) {
423 b = list_first_entry(&bc->live, struct btree, list);
424
425 BUG_ON(btree_node_read_in_flight(b) ||
426 btree_node_write_in_flight(b));
427
428 btree_node_data_free(c, b);
429 }
430
431 BUG_ON(!bch2_journal_error(&c->journal) &&
432 atomic_read(&c->btree_cache.dirty));
433
434 list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu);
435
436 while (!list_empty(&bc->freed_nonpcpu)) {
437 b = list_first_entry(&bc->freed_nonpcpu, struct btree, list);
438 list_del(&b->list);
439 six_lock_exit(&b->c.lock);
440 kfree(b);
441 }
442
443 mutex_unlock(&bc->lock);
444 memalloc_nofs_restore(flags);
445
446 if (bc->table_init_done)
447 rhashtable_destroy(&bc->table);
448}
449
450int bch2_fs_btree_cache_init(struct bch_fs *c)
451{
452 struct btree_cache *bc = &c->btree_cache;
453 struct shrinker *shrink;
454 unsigned i;
455 int ret = 0;
456
457 ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
458 if (ret)
459 goto err;
460
461 bc->table_init_done = true;
462
463 bch2_recalc_btree_reserve(c);
464
465 for (i = 0; i < bc->reserve; i++)
466 if (!__bch2_btree_node_mem_alloc(c))
467 goto err;
468
469 list_splice_init(&bc->live, &bc->freeable);
470
471 mutex_init(&c->verify_lock);
472
473 shrink = shrinker_alloc(0, "%s-btree_cache", c->name);
474 if (!shrink)
475 goto err;
476 bc->shrink = shrink;
477 shrink->count_objects = bch2_btree_cache_count;
478 shrink->scan_objects = bch2_btree_cache_scan;
479 shrink->seeks = 4;
480 shrink->private_data = c;
481 shrinker_register(shrink);
482
483 return 0;
484err:
485 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
486}
487
488void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
489{
490 mutex_init(&bc->lock);
491 INIT_LIST_HEAD(&bc->live);
492 INIT_LIST_HEAD(&bc->freeable);
493 INIT_LIST_HEAD(&bc->freed_pcpu);
494 INIT_LIST_HEAD(&bc->freed_nonpcpu);
495}
496
497/*
498 * We can only have one thread cannibalizing other cached btree nodes at a time,
499 * or we'll deadlock. We use an open coded mutex to ensure that, which a
500 * cannibalize_bucket() will take. This means every time we unlock the root of
501 * the btree, we need to release this lock if we have it held.
502 */
503void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c)
504{
505 struct btree_cache *bc = &c->btree_cache;
506
507 if (bc->alloc_lock == current) {
508 trace_and_count(c, btree_cache_cannibalize_unlock, c);
509 bc->alloc_lock = NULL;
510 closure_wake_up(&bc->alloc_wait);
511 }
512}
513
514int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl)
515{
516 struct btree_cache *bc = &c->btree_cache;
517 struct task_struct *old;
518
519 old = cmpxchg(&bc->alloc_lock, NULL, current);
520 if (old == NULL || old == current)
521 goto success;
522
523 if (!cl) {
524 trace_and_count(c, btree_cache_cannibalize_lock_fail, c);
525 return -BCH_ERR_ENOMEM_btree_cache_cannibalize_lock;
526 }
527
528 closure_wait(&bc->alloc_wait, cl);
529
530 /* Try again, after adding ourselves to waitlist */
531 old = cmpxchg(&bc->alloc_lock, NULL, current);
532 if (old == NULL || old == current) {
533 /* We raced */
534 closure_wake_up(&bc->alloc_wait);
535 goto success;
536 }
537
538 trace_and_count(c, btree_cache_cannibalize_lock_fail, c);
539 return -BCH_ERR_btree_cache_cannibalize_lock_blocked;
540
541success:
542 trace_and_count(c, btree_cache_cannibalize_lock, c);
543 return 0;
544}
545
546static struct btree *btree_node_cannibalize(struct bch_fs *c)
547{
548 struct btree_cache *bc = &c->btree_cache;
549 struct btree *b;
550
551 list_for_each_entry_reverse(b, &bc->live, list)
552 if (!btree_node_reclaim(c, b))
553 return b;
554
555 while (1) {
556 list_for_each_entry_reverse(b, &bc->live, list)
557 if (!btree_node_write_and_reclaim(c, b))
558 return b;
559
560 /*
561 * Rare case: all nodes were intent-locked.
562 * Just busy-wait.
563 */
564 WARN_ONCE(1, "btree cache cannibalize failed\n");
565 cond_resched();
566 }
567}
568
569struct btree *bch2_btree_node_mem_alloc(struct btree_trans *trans, bool pcpu_read_locks)
570{
571 struct bch_fs *c = trans->c;
572 struct btree_cache *bc = &c->btree_cache;
573 struct list_head *freed = pcpu_read_locks
574 ? &bc->freed_pcpu
575 : &bc->freed_nonpcpu;
576 struct btree *b, *b2;
577 u64 start_time = local_clock();
578 unsigned flags;
579
580 flags = memalloc_nofs_save();
581 mutex_lock(&bc->lock);
582
583 /*
584 * We never free struct btree itself, just the memory that holds the on
585 * disk node. Check the freed list before allocating a new one:
586 */
587 list_for_each_entry(b, freed, list)
588 if (!btree_node_reclaim(c, b)) {
589 list_del_init(&b->list);
590 goto got_node;
591 }
592
593 b = __btree_node_mem_alloc(c, GFP_NOWAIT|__GFP_NOWARN);
594 if (!b) {
595 mutex_unlock(&bc->lock);
596 bch2_trans_unlock(trans);
597 b = __btree_node_mem_alloc(c, GFP_KERNEL);
598 if (!b)
599 goto err;
600 mutex_lock(&bc->lock);
601 }
602
603 bch2_btree_lock_init(&b->c, pcpu_read_locks ? SIX_LOCK_INIT_PCPU : 0);
604
605 BUG_ON(!six_trylock_intent(&b->c.lock));
606 BUG_ON(!six_trylock_write(&b->c.lock));
607got_node:
608
609 /*
610 * btree_free() doesn't free memory; it sticks the node on the end of
611 * the list. Check if there's any freed nodes there:
612 */
613 list_for_each_entry(b2, &bc->freeable, list)
614 if (!btree_node_reclaim(c, b2)) {
615 swap(b->data, b2->data);
616 swap(b->aux_data, b2->aux_data);
617 btree_node_to_freedlist(bc, b2);
618 six_unlock_write(&b2->c.lock);
619 six_unlock_intent(&b2->c.lock);
620 goto got_mem;
621 }
622
623 mutex_unlock(&bc->lock);
624
625 if (btree_node_data_alloc(c, b, GFP_NOWAIT|__GFP_NOWARN)) {
626 bch2_trans_unlock(trans);
627 if (btree_node_data_alloc(c, b, GFP_KERNEL|__GFP_NOWARN))
628 goto err;
629 }
630
631 mutex_lock(&bc->lock);
632 bc->used++;
633got_mem:
634 mutex_unlock(&bc->lock);
635
636 BUG_ON(btree_node_hashed(b));
637 BUG_ON(btree_node_dirty(b));
638 BUG_ON(btree_node_write_in_flight(b));
639out:
640 b->flags = 0;
641 b->written = 0;
642 b->nsets = 0;
643 b->sib_u64s[0] = 0;
644 b->sib_u64s[1] = 0;
645 b->whiteout_u64s = 0;
646 bch2_btree_keys_init(b);
647 set_btree_node_accessed(b);
648
649 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
650 start_time);
651
652 memalloc_nofs_restore(flags);
653 return b;
654err:
655 mutex_lock(&bc->lock);
656
657 /* Try to cannibalize another cached btree node: */
658 if (bc->alloc_lock == current) {
659 b2 = btree_node_cannibalize(c);
660 clear_btree_node_just_written(b2);
661 bch2_btree_node_hash_remove(bc, b2);
662
663 if (b) {
664 swap(b->data, b2->data);
665 swap(b->aux_data, b2->aux_data);
666 btree_node_to_freedlist(bc, b2);
667 six_unlock_write(&b2->c.lock);
668 six_unlock_intent(&b2->c.lock);
669 } else {
670 b = b2;
671 list_del_init(&b->list);
672 }
673
674 mutex_unlock(&bc->lock);
675
676 trace_and_count(c, btree_cache_cannibalize, c);
677 goto out;
678 }
679
680 mutex_unlock(&bc->lock);
681 memalloc_nofs_restore(flags);
682 return ERR_PTR(-BCH_ERR_ENOMEM_btree_node_mem_alloc);
683}
684
685/* Slowpath, don't want it inlined into btree_iter_traverse() */
686static noinline struct btree *bch2_btree_node_fill(struct btree_trans *trans,
687 struct btree_path *path,
688 const struct bkey_i *k,
689 enum btree_id btree_id,
690 unsigned level,
691 enum six_lock_type lock_type,
692 bool sync)
693{
694 struct bch_fs *c = trans->c;
695 struct btree_cache *bc = &c->btree_cache;
696 struct btree *b;
697 u32 seq;
698
699 BUG_ON(level + 1 >= BTREE_MAX_DEPTH);
700 /*
701 * Parent node must be locked, else we could read in a btree node that's
702 * been freed:
703 */
704 if (path && !bch2_btree_node_relock(trans, path, level + 1)) {
705 trace_and_count(c, trans_restart_relock_parent_for_fill, trans, _THIS_IP_, path);
706 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock));
707 }
708
709 b = bch2_btree_node_mem_alloc(trans, level != 0);
710
711 if (bch2_err_matches(PTR_ERR_OR_ZERO(b), ENOMEM)) {
712 trans->memory_allocation_failure = true;
713 trace_and_count(c, trans_restart_memory_allocation_failure, trans, _THIS_IP_, path);
714 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail));
715 }
716
717 if (IS_ERR(b))
718 return b;
719
720 /*
721 * Btree nodes read in from disk should not have the accessed bit set
722 * initially, so that linear scans don't thrash the cache:
723 */
724 clear_btree_node_accessed(b);
725
726 bkey_copy(&b->key, k);
727 if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
728 /* raced with another fill: */
729
730 /* mark as unhashed... */
731 b->hash_val = 0;
732
733 mutex_lock(&bc->lock);
734 list_add(&b->list, &bc->freeable);
735 mutex_unlock(&bc->lock);
736
737 six_unlock_write(&b->c.lock);
738 six_unlock_intent(&b->c.lock);
739 return NULL;
740 }
741
742 set_btree_node_read_in_flight(b);
743
744 six_unlock_write(&b->c.lock);
745 seq = six_lock_seq(&b->c.lock);
746 six_unlock_intent(&b->c.lock);
747
748 /* Unlock before doing IO: */
749 if (path && sync)
750 bch2_trans_unlock_noassert(trans);
751
752 bch2_btree_node_read(c, b, sync);
753
754 if (!sync)
755 return NULL;
756
757 if (path) {
758 int ret = bch2_trans_relock(trans) ?:
759 bch2_btree_path_relock_intent(trans, path);
760 if (ret) {
761 BUG_ON(!trans->restarted);
762 return ERR_PTR(ret);
763 }
764 }
765
766 if (!six_relock_type(&b->c.lock, lock_type, seq)) {
767 if (path)
768 trace_and_count(c, trans_restart_relock_after_fill, trans, _THIS_IP_, path);
769 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_after_fill));
770 }
771
772 return b;
773}
774
775static noinline void btree_bad_header(struct bch_fs *c, struct btree *b)
776{
777 struct printbuf buf = PRINTBUF;
778
779 if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_allocations)
780 return;
781
782 prt_printf(&buf,
783 "btree node header doesn't match ptr\n"
784 "btree %s level %u\n"
785 "ptr: ",
786 bch2_btree_id_str(b->c.btree_id), b->c.level);
787 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
788
789 prt_printf(&buf, "\nheader: btree %s level %llu\n"
790 "min ",
791 bch2_btree_id_str(BTREE_NODE_ID(b->data)),
792 BTREE_NODE_LEVEL(b->data));
793 bch2_bpos_to_text(&buf, b->data->min_key);
794
795 prt_printf(&buf, "\nmax ");
796 bch2_bpos_to_text(&buf, b->data->max_key);
797
798 bch2_fs_inconsistent(c, "%s", buf.buf);
799 printbuf_exit(&buf);
800}
801
802static inline void btree_check_header(struct bch_fs *c, struct btree *b)
803{
804 if (b->c.btree_id != BTREE_NODE_ID(b->data) ||
805 b->c.level != BTREE_NODE_LEVEL(b->data) ||
806 !bpos_eq(b->data->max_key, b->key.k.p) ||
807 (b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
808 !bpos_eq(b->data->min_key,
809 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key)))
810 btree_bad_header(c, b);
811}
812
813static struct btree *__bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
814 const struct bkey_i *k, unsigned level,
815 enum six_lock_type lock_type,
816 unsigned long trace_ip)
817{
818 struct bch_fs *c = trans->c;
819 struct btree_cache *bc = &c->btree_cache;
820 struct btree *b;
821 struct bset_tree *t;
822 bool need_relock = false;
823 int ret;
824
825 EBUG_ON(level >= BTREE_MAX_DEPTH);
826retry:
827 b = btree_cache_find(bc, k);
828 if (unlikely(!b)) {
829 /*
830 * We must have the parent locked to call bch2_btree_node_fill(),
831 * else we could read in a btree node from disk that's been
832 * freed:
833 */
834 b = bch2_btree_node_fill(trans, path, k, path->btree_id,
835 level, lock_type, true);
836 need_relock = true;
837
838 /* We raced and found the btree node in the cache */
839 if (!b)
840 goto retry;
841
842 if (IS_ERR(b))
843 return b;
844 } else {
845 if (btree_node_read_locked(path, level + 1))
846 btree_node_unlock(trans, path, level + 1);
847
848 ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
849 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
850 return ERR_PTR(ret);
851
852 BUG_ON(ret);
853
854 if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
855 b->c.level != level ||
856 race_fault())) {
857 six_unlock_type(&b->c.lock, lock_type);
858 if (bch2_btree_node_relock(trans, path, level + 1))
859 goto retry;
860
861 trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
862 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
863 }
864
865 /* avoid atomic set bit if it's not needed: */
866 if (!btree_node_accessed(b))
867 set_btree_node_accessed(b);
868 }
869
870 if (unlikely(btree_node_read_in_flight(b))) {
871 u32 seq = six_lock_seq(&b->c.lock);
872
873 six_unlock_type(&b->c.lock, lock_type);
874 bch2_trans_unlock(trans);
875 need_relock = true;
876
877 bch2_btree_node_wait_on_read(b);
878
879 /*
880 * should_be_locked is not set on this path yet, so we need to
881 * relock it specifically:
882 */
883 if (!six_relock_type(&b->c.lock, lock_type, seq))
884 goto retry;
885 }
886
887 if (unlikely(need_relock)) {
888 ret = bch2_trans_relock(trans) ?:
889 bch2_btree_path_relock_intent(trans, path);
890 if (ret) {
891 six_unlock_type(&b->c.lock, lock_type);
892 return ERR_PTR(ret);
893 }
894 }
895
896 prefetch(b->aux_data);
897
898 for_each_bset(b, t) {
899 void *p = (u64 *) b->aux_data + t->aux_data_offset;
900
901 prefetch(p + L1_CACHE_BYTES * 0);
902 prefetch(p + L1_CACHE_BYTES * 1);
903 prefetch(p + L1_CACHE_BYTES * 2);
904 }
905
906 if (unlikely(btree_node_read_error(b))) {
907 six_unlock_type(&b->c.lock, lock_type);
908 return ERR_PTR(-EIO);
909 }
910
911 EBUG_ON(b->c.btree_id != path->btree_id);
912 EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
913 btree_check_header(c, b);
914
915 return b;
916}
917
918/**
919 * bch2_btree_node_get - find a btree node in the cache and lock it, reading it
920 * in from disk if necessary.
921 *
922 * @trans: btree transaction object
923 * @path: btree_path being traversed
924 * @k: pointer to btree node (generally KEY_TYPE_btree_ptr_v2)
925 * @level: level of btree node being looked up (0 == leaf node)
926 * @lock_type: SIX_LOCK_read or SIX_LOCK_intent
927 * @trace_ip: ip of caller of btree iterator code (i.e. caller of bch2_btree_iter_peek())
928 *
929 * The btree node will have either a read or a write lock held, depending on
930 * the @write parameter.
931 *
932 * Returns: btree node or ERR_PTR()
933 */
934struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
935 const struct bkey_i *k, unsigned level,
936 enum six_lock_type lock_type,
937 unsigned long trace_ip)
938{
939 struct bch_fs *c = trans->c;
940 struct btree *b;
941 struct bset_tree *t;
942 int ret;
943
944 EBUG_ON(level >= BTREE_MAX_DEPTH);
945
946 b = btree_node_mem_ptr(k);
947
948 /*
949 * Check b->hash_val _before_ calling btree_node_lock() - this might not
950 * be the node we want anymore, and trying to lock the wrong node could
951 * cause an unneccessary transaction restart:
952 */
953 if (unlikely(!c->opts.btree_node_mem_ptr_optimization ||
954 !b ||
955 b->hash_val != btree_ptr_hash_val(k)))
956 return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
957
958 if (btree_node_read_locked(path, level + 1))
959 btree_node_unlock(trans, path, level + 1);
960
961 ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
962 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
963 return ERR_PTR(ret);
964
965 BUG_ON(ret);
966
967 if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
968 b->c.level != level ||
969 race_fault())) {
970 six_unlock_type(&b->c.lock, lock_type);
971 if (bch2_btree_node_relock(trans, path, level + 1))
972 return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
973
974 trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
975 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
976 }
977
978 if (unlikely(btree_node_read_in_flight(b))) {
979 six_unlock_type(&b->c.lock, lock_type);
980 return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
981 }
982
983 prefetch(b->aux_data);
984
985 for_each_bset(b, t) {
986 void *p = (u64 *) b->aux_data + t->aux_data_offset;
987
988 prefetch(p + L1_CACHE_BYTES * 0);
989 prefetch(p + L1_CACHE_BYTES * 1);
990 prefetch(p + L1_CACHE_BYTES * 2);
991 }
992
993 /* avoid atomic set bit if it's not needed: */
994 if (!btree_node_accessed(b))
995 set_btree_node_accessed(b);
996
997 if (unlikely(btree_node_read_error(b))) {
998 six_unlock_type(&b->c.lock, lock_type);
999 return ERR_PTR(-EIO);
1000 }
1001
1002 EBUG_ON(b->c.btree_id != path->btree_id);
1003 EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1004 btree_check_header(c, b);
1005
1006 return b;
1007}
1008
1009struct btree *bch2_btree_node_get_noiter(struct btree_trans *trans,
1010 const struct bkey_i *k,
1011 enum btree_id btree_id,
1012 unsigned level,
1013 bool nofill)
1014{
1015 struct bch_fs *c = trans->c;
1016 struct btree_cache *bc = &c->btree_cache;
1017 struct btree *b;
1018 struct bset_tree *t;
1019 int ret;
1020
1021 EBUG_ON(level >= BTREE_MAX_DEPTH);
1022
1023 if (c->opts.btree_node_mem_ptr_optimization) {
1024 b = btree_node_mem_ptr(k);
1025 if (b)
1026 goto lock_node;
1027 }
1028retry:
1029 b = btree_cache_find(bc, k);
1030 if (unlikely(!b)) {
1031 if (nofill)
1032 goto out;
1033
1034 b = bch2_btree_node_fill(trans, NULL, k, btree_id,
1035 level, SIX_LOCK_read, true);
1036
1037 /* We raced and found the btree node in the cache */
1038 if (!b)
1039 goto retry;
1040
1041 if (IS_ERR(b) &&
1042 !bch2_btree_cache_cannibalize_lock(c, NULL))
1043 goto retry;
1044
1045 if (IS_ERR(b))
1046 goto out;
1047 } else {
1048lock_node:
1049 ret = btree_node_lock_nopath(trans, &b->c, SIX_LOCK_read, _THIS_IP_);
1050 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1051 return ERR_PTR(ret);
1052
1053 BUG_ON(ret);
1054
1055 if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
1056 b->c.btree_id != btree_id ||
1057 b->c.level != level)) {
1058 six_unlock_read(&b->c.lock);
1059 goto retry;
1060 }
1061 }
1062
1063 /* XXX: waiting on IO with btree locks held: */
1064 __bch2_btree_node_wait_on_read(b);
1065
1066 prefetch(b->aux_data);
1067
1068 for_each_bset(b, t) {
1069 void *p = (u64 *) b->aux_data + t->aux_data_offset;
1070
1071 prefetch(p + L1_CACHE_BYTES * 0);
1072 prefetch(p + L1_CACHE_BYTES * 1);
1073 prefetch(p + L1_CACHE_BYTES * 2);
1074 }
1075
1076 /* avoid atomic set bit if it's not needed: */
1077 if (!btree_node_accessed(b))
1078 set_btree_node_accessed(b);
1079
1080 if (unlikely(btree_node_read_error(b))) {
1081 six_unlock_read(&b->c.lock);
1082 b = ERR_PTR(-EIO);
1083 goto out;
1084 }
1085
1086 EBUG_ON(b->c.btree_id != btree_id);
1087 EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1088 btree_check_header(c, b);
1089out:
1090 bch2_btree_cache_cannibalize_unlock(c);
1091 return b;
1092}
1093
1094int bch2_btree_node_prefetch(struct btree_trans *trans,
1095 struct btree_path *path,
1096 const struct bkey_i *k,
1097 enum btree_id btree_id, unsigned level)
1098{
1099 struct bch_fs *c = trans->c;
1100 struct btree_cache *bc = &c->btree_cache;
1101 struct btree *b;
1102
1103 BUG_ON(trans && !btree_node_locked(path, level + 1));
1104 BUG_ON(level >= BTREE_MAX_DEPTH);
1105
1106 b = btree_cache_find(bc, k);
1107 if (b)
1108 return 0;
1109
1110 b = bch2_btree_node_fill(trans, path, k, btree_id,
1111 level, SIX_LOCK_read, false);
1112 return PTR_ERR_OR_ZERO(b);
1113}
1114
1115void bch2_btree_node_evict(struct btree_trans *trans, const struct bkey_i *k)
1116{
1117 struct bch_fs *c = trans->c;
1118 struct btree_cache *bc = &c->btree_cache;
1119 struct btree *b;
1120
1121 b = btree_cache_find(bc, k);
1122 if (!b)
1123 return;
1124wait_on_io:
1125 /* not allowed to wait on io with btree locks held: */
1126
1127 /* XXX we're called from btree_gc which will be holding other btree
1128 * nodes locked
1129 */
1130 __bch2_btree_node_wait_on_read(b);
1131 __bch2_btree_node_wait_on_write(b);
1132
1133 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
1134 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
1135
1136 if (btree_node_dirty(b)) {
1137 __bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
1138 six_unlock_write(&b->c.lock);
1139 six_unlock_intent(&b->c.lock);
1140 goto wait_on_io;
1141 }
1142
1143 BUG_ON(btree_node_dirty(b));
1144
1145 mutex_lock(&bc->lock);
1146 btree_node_data_free(c, b);
1147 bch2_btree_node_hash_remove(bc, b);
1148 mutex_unlock(&bc->lock);
1149
1150 six_unlock_write(&b->c.lock);
1151 six_unlock_intent(&b->c.lock);
1152}
1153
1154const char *bch2_btree_id_str(enum btree_id btree)
1155{
1156 return btree < BTREE_ID_NR ? __bch2_btree_ids[btree] : "(unknown)";
1157}
1158
1159void bch2_btree_pos_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
1160{
1161 prt_printf(out, "%s level %u/%u\n ",
1162 bch2_btree_id_str(b->c.btree_id),
1163 b->c.level,
1164 bch2_btree_id_root(c, b->c.btree_id)->level);
1165 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1166}
1167
1168void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
1169{
1170 struct bset_stats stats;
1171
1172 memset(&stats, 0, sizeof(stats));
1173
1174 bch2_btree_keys_stats(b, &stats);
1175
1176 prt_printf(out, "l %u ", b->c.level);
1177 bch2_bpos_to_text(out, b->data->min_key);
1178 prt_printf(out, " - ");
1179 bch2_bpos_to_text(out, b->data->max_key);
1180 prt_printf(out, ":\n"
1181 " ptrs: ");
1182 bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1183 prt_newline(out);
1184
1185 prt_printf(out,
1186 " format: ");
1187 bch2_bkey_format_to_text(out, &b->format);
1188
1189 prt_printf(out,
1190 " unpack fn len: %u\n"
1191 " bytes used %zu/%zu (%zu%% full)\n"
1192 " sib u64s: %u, %u (merge threshold %u)\n"
1193 " nr packed keys %u\n"
1194 " nr unpacked keys %u\n"
1195 " floats %zu\n"
1196 " failed unpacked %zu\n",
1197 b->unpack_fn_len,
1198 b->nr.live_u64s * sizeof(u64),
1199 btree_bytes(c) - sizeof(struct btree_node),
1200 b->nr.live_u64s * 100 / btree_max_u64s(c),
1201 b->sib_u64s[0],
1202 b->sib_u64s[1],
1203 c->btree_foreground_merge_threshold,
1204 b->nr.packed_keys,
1205 b->nr.unpacked_keys,
1206 stats.floats,
1207 stats.failed);
1208}
1209
1210void bch2_btree_cache_to_text(struct printbuf *out, const struct bch_fs *c)
1211{
1212 prt_printf(out, "nr nodes:\t\t%u\n", c->btree_cache.used);
1213 prt_printf(out, "nr dirty:\t\t%u\n", atomic_read(&c->btree_cache.dirty));
1214 prt_printf(out, "cannibalize lock:\t%p\n", c->btree_cache.alloc_lock);
1215}