Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright © 2018 Intel Corporation.
4 *
5 * Authors: Gayatri Kammela <gayatri.kammela@intel.com>
6 * Sohil Mehta <sohil.mehta@intel.com>
7 * Jacob Pan <jacob.jun.pan@linux.intel.com>
8 * Lu Baolu <baolu.lu@linux.intel.com>
9 */
10
11#include <linux/debugfs.h>
12#include <linux/dmar.h>
13#include <linux/pci.h>
14
15#include <asm/irq_remapping.h>
16
17#include "iommu.h"
18#include "pasid.h"
19#include "perf.h"
20
21struct tbl_walk {
22 u16 bus;
23 u16 devfn;
24 u32 pasid;
25 struct root_entry *rt_entry;
26 struct context_entry *ctx_entry;
27 struct pasid_entry *pasid_tbl_entry;
28};
29
30struct iommu_regset {
31 int offset;
32 const char *regs;
33};
34
35#define DEBUG_BUFFER_SIZE 1024
36static char debug_buf[DEBUG_BUFFER_SIZE];
37
38#define IOMMU_REGSET_ENTRY(_reg_) \
39 { DMAR_##_reg_##_REG, __stringify(_reg_) }
40
41static const struct iommu_regset iommu_regs_32[] = {
42 IOMMU_REGSET_ENTRY(VER),
43 IOMMU_REGSET_ENTRY(GCMD),
44 IOMMU_REGSET_ENTRY(GSTS),
45 IOMMU_REGSET_ENTRY(FSTS),
46 IOMMU_REGSET_ENTRY(FECTL),
47 IOMMU_REGSET_ENTRY(FEDATA),
48 IOMMU_REGSET_ENTRY(FEADDR),
49 IOMMU_REGSET_ENTRY(FEUADDR),
50 IOMMU_REGSET_ENTRY(PMEN),
51 IOMMU_REGSET_ENTRY(PLMBASE),
52 IOMMU_REGSET_ENTRY(PLMLIMIT),
53 IOMMU_REGSET_ENTRY(ICS),
54 IOMMU_REGSET_ENTRY(PRS),
55 IOMMU_REGSET_ENTRY(PECTL),
56 IOMMU_REGSET_ENTRY(PEDATA),
57 IOMMU_REGSET_ENTRY(PEADDR),
58 IOMMU_REGSET_ENTRY(PEUADDR),
59};
60
61static const struct iommu_regset iommu_regs_64[] = {
62 IOMMU_REGSET_ENTRY(CAP),
63 IOMMU_REGSET_ENTRY(ECAP),
64 IOMMU_REGSET_ENTRY(RTADDR),
65 IOMMU_REGSET_ENTRY(CCMD),
66 IOMMU_REGSET_ENTRY(AFLOG),
67 IOMMU_REGSET_ENTRY(PHMBASE),
68 IOMMU_REGSET_ENTRY(PHMLIMIT),
69 IOMMU_REGSET_ENTRY(IQH),
70 IOMMU_REGSET_ENTRY(IQT),
71 IOMMU_REGSET_ENTRY(IQA),
72 IOMMU_REGSET_ENTRY(IRTA),
73 IOMMU_REGSET_ENTRY(PQH),
74 IOMMU_REGSET_ENTRY(PQT),
75 IOMMU_REGSET_ENTRY(PQA),
76 IOMMU_REGSET_ENTRY(MTRRCAP),
77 IOMMU_REGSET_ENTRY(MTRRDEF),
78 IOMMU_REGSET_ENTRY(MTRR_FIX64K_00000),
79 IOMMU_REGSET_ENTRY(MTRR_FIX16K_80000),
80 IOMMU_REGSET_ENTRY(MTRR_FIX16K_A0000),
81 IOMMU_REGSET_ENTRY(MTRR_FIX4K_C0000),
82 IOMMU_REGSET_ENTRY(MTRR_FIX4K_C8000),
83 IOMMU_REGSET_ENTRY(MTRR_FIX4K_D0000),
84 IOMMU_REGSET_ENTRY(MTRR_FIX4K_D8000),
85 IOMMU_REGSET_ENTRY(MTRR_FIX4K_E0000),
86 IOMMU_REGSET_ENTRY(MTRR_FIX4K_E8000),
87 IOMMU_REGSET_ENTRY(MTRR_FIX4K_F0000),
88 IOMMU_REGSET_ENTRY(MTRR_FIX4K_F8000),
89 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE0),
90 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK0),
91 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE1),
92 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK1),
93 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE2),
94 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK2),
95 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE3),
96 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK3),
97 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE4),
98 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK4),
99 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE5),
100 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK5),
101 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE6),
102 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK6),
103 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE7),
104 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK7),
105 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE8),
106 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK8),
107 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE9),
108 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK9),
109 IOMMU_REGSET_ENTRY(VCCAP),
110 IOMMU_REGSET_ENTRY(VCMD),
111 IOMMU_REGSET_ENTRY(VCRSP),
112};
113
114static struct dentry *intel_iommu_debug;
115
116static int iommu_regset_show(struct seq_file *m, void *unused)
117{
118 struct dmar_drhd_unit *drhd;
119 struct intel_iommu *iommu;
120 unsigned long flag;
121 int i, ret = 0;
122 u64 value;
123
124 rcu_read_lock();
125 for_each_active_iommu(iommu, drhd) {
126 if (!drhd->reg_base_addr) {
127 seq_puts(m, "IOMMU: Invalid base address\n");
128 ret = -EINVAL;
129 goto out;
130 }
131
132 seq_printf(m, "IOMMU: %s Register Base Address: %llx\n",
133 iommu->name, drhd->reg_base_addr);
134 seq_puts(m, "Name\t\t\tOffset\t\tContents\n");
135 /*
136 * Publish the contents of the 64-bit hardware registers
137 * by adding the offset to the pointer (virtual address).
138 */
139 raw_spin_lock_irqsave(&iommu->register_lock, flag);
140 for (i = 0 ; i < ARRAY_SIZE(iommu_regs_32); i++) {
141 value = dmar_readl(iommu->reg + iommu_regs_32[i].offset);
142 seq_printf(m, "%-16s\t0x%02x\t\t0x%016llx\n",
143 iommu_regs_32[i].regs, iommu_regs_32[i].offset,
144 value);
145 }
146 for (i = 0 ; i < ARRAY_SIZE(iommu_regs_64); i++) {
147 value = dmar_readq(iommu->reg + iommu_regs_64[i].offset);
148 seq_printf(m, "%-16s\t0x%02x\t\t0x%016llx\n",
149 iommu_regs_64[i].regs, iommu_regs_64[i].offset,
150 value);
151 }
152 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
153 seq_putc(m, '\n');
154 }
155out:
156 rcu_read_unlock();
157
158 return ret;
159}
160DEFINE_SHOW_ATTRIBUTE(iommu_regset);
161
162static inline void print_tbl_walk(struct seq_file *m)
163{
164 struct tbl_walk *tbl_wlk = m->private;
165
166 seq_printf(m, "%02x:%02x.%x\t0x%016llx:0x%016llx\t0x%016llx:0x%016llx\t",
167 tbl_wlk->bus, PCI_SLOT(tbl_wlk->devfn),
168 PCI_FUNC(tbl_wlk->devfn), tbl_wlk->rt_entry->hi,
169 tbl_wlk->rt_entry->lo, tbl_wlk->ctx_entry->hi,
170 tbl_wlk->ctx_entry->lo);
171
172 /*
173 * A legacy mode DMAR doesn't support PASID, hence default it to -1
174 * indicating that it's invalid. Also, default all PASID related fields
175 * to 0.
176 */
177 if (!tbl_wlk->pasid_tbl_entry)
178 seq_printf(m, "%-6d\t0x%016llx:0x%016llx:0x%016llx\n", -1,
179 (u64)0, (u64)0, (u64)0);
180 else
181 seq_printf(m, "%-6d\t0x%016llx:0x%016llx:0x%016llx\n",
182 tbl_wlk->pasid, tbl_wlk->pasid_tbl_entry->val[2],
183 tbl_wlk->pasid_tbl_entry->val[1],
184 tbl_wlk->pasid_tbl_entry->val[0]);
185}
186
187static void pasid_tbl_walk(struct seq_file *m, struct pasid_entry *tbl_entry,
188 u16 dir_idx)
189{
190 struct tbl_walk *tbl_wlk = m->private;
191 u8 tbl_idx;
192
193 for (tbl_idx = 0; tbl_idx < PASID_TBL_ENTRIES; tbl_idx++) {
194 if (pasid_pte_is_present(tbl_entry)) {
195 tbl_wlk->pasid_tbl_entry = tbl_entry;
196 tbl_wlk->pasid = (dir_idx << PASID_PDE_SHIFT) + tbl_idx;
197 print_tbl_walk(m);
198 }
199
200 tbl_entry++;
201 }
202}
203
204static void pasid_dir_walk(struct seq_file *m, u64 pasid_dir_ptr,
205 u16 pasid_dir_size)
206{
207 struct pasid_dir_entry *dir_entry = phys_to_virt(pasid_dir_ptr);
208 struct pasid_entry *pasid_tbl;
209 u16 dir_idx;
210
211 for (dir_idx = 0; dir_idx < pasid_dir_size; dir_idx++) {
212 pasid_tbl = get_pasid_table_from_pde(dir_entry);
213 if (pasid_tbl)
214 pasid_tbl_walk(m, pasid_tbl, dir_idx);
215
216 dir_entry++;
217 }
218}
219
220static void ctx_tbl_walk(struct seq_file *m, struct intel_iommu *iommu, u16 bus)
221{
222 struct context_entry *context;
223 u16 devfn, pasid_dir_size;
224 u64 pasid_dir_ptr;
225
226 for (devfn = 0; devfn < 256; devfn++) {
227 struct tbl_walk tbl_wlk = {0};
228
229 /*
230 * Scalable mode root entry points to upper scalable mode
231 * context table and lower scalable mode context table. Each
232 * scalable mode context table has 128 context entries where as
233 * legacy mode context table has 256 context entries. So in
234 * scalable mode, the context entries for former 128 devices are
235 * in the lower scalable mode context table, while the latter
236 * 128 devices are in the upper scalable mode context table.
237 * In scalable mode, when devfn > 127, iommu_context_addr()
238 * automatically refers to upper scalable mode context table and
239 * hence the caller doesn't have to worry about differences
240 * between scalable mode and non scalable mode.
241 */
242 context = iommu_context_addr(iommu, bus, devfn, 0);
243 if (!context)
244 return;
245
246 if (!context_present(context))
247 continue;
248
249 tbl_wlk.bus = bus;
250 tbl_wlk.devfn = devfn;
251 tbl_wlk.rt_entry = &iommu->root_entry[bus];
252 tbl_wlk.ctx_entry = context;
253 m->private = &tbl_wlk;
254
255 if (dmar_readq(iommu->reg + DMAR_RTADDR_REG) & DMA_RTADDR_SMT) {
256 pasid_dir_ptr = context->lo & VTD_PAGE_MASK;
257 pasid_dir_size = get_pasid_dir_size(context);
258 pasid_dir_walk(m, pasid_dir_ptr, pasid_dir_size);
259 continue;
260 }
261
262 print_tbl_walk(m);
263 }
264}
265
266static void root_tbl_walk(struct seq_file *m, struct intel_iommu *iommu)
267{
268 u16 bus;
269
270 spin_lock(&iommu->lock);
271 seq_printf(m, "IOMMU %s: Root Table Address: 0x%llx\n", iommu->name,
272 (u64)virt_to_phys(iommu->root_entry));
273 seq_puts(m, "B.D.F\tRoot_entry\t\t\t\tContext_entry\t\t\t\tPASID\tPASID_table_entry\n");
274
275 /*
276 * No need to check if the root entry is present or not because
277 * iommu_context_addr() performs the same check before returning
278 * context entry.
279 */
280 for (bus = 0; bus < 256; bus++)
281 ctx_tbl_walk(m, iommu, bus);
282 spin_unlock(&iommu->lock);
283}
284
285static int dmar_translation_struct_show(struct seq_file *m, void *unused)
286{
287 struct dmar_drhd_unit *drhd;
288 struct intel_iommu *iommu;
289 u32 sts;
290
291 rcu_read_lock();
292 for_each_active_iommu(iommu, drhd) {
293 sts = dmar_readl(iommu->reg + DMAR_GSTS_REG);
294 if (!(sts & DMA_GSTS_TES)) {
295 seq_printf(m, "DMA Remapping is not enabled on %s\n",
296 iommu->name);
297 continue;
298 }
299 root_tbl_walk(m, iommu);
300 seq_putc(m, '\n');
301 }
302 rcu_read_unlock();
303
304 return 0;
305}
306DEFINE_SHOW_ATTRIBUTE(dmar_translation_struct);
307
308static inline unsigned long level_to_directory_size(int level)
309{
310 return BIT_ULL(VTD_PAGE_SHIFT + VTD_STRIDE_SHIFT * (level - 1));
311}
312
313static inline void
314dump_page_info(struct seq_file *m, unsigned long iova, u64 *path)
315{
316 seq_printf(m, "0x%013lx |\t0x%016llx\t0x%016llx\t0x%016llx",
317 iova >> VTD_PAGE_SHIFT, path[5], path[4], path[3]);
318 if (path[2]) {
319 seq_printf(m, "\t0x%016llx", path[2]);
320 if (path[1])
321 seq_printf(m, "\t0x%016llx", path[1]);
322 }
323 seq_putc(m, '\n');
324}
325
326static void pgtable_walk_level(struct seq_file *m, struct dma_pte *pde,
327 int level, unsigned long start,
328 u64 *path)
329{
330 int i;
331
332 if (level > 5 || level < 1)
333 return;
334
335 for (i = 0; i < BIT_ULL(VTD_STRIDE_SHIFT);
336 i++, pde++, start += level_to_directory_size(level)) {
337 if (!dma_pte_present(pde))
338 continue;
339
340 path[level] = pde->val;
341 if (dma_pte_superpage(pde) || level == 1)
342 dump_page_info(m, start, path);
343 else
344 pgtable_walk_level(m, phys_to_virt(dma_pte_addr(pde)),
345 level - 1, start, path);
346 path[level] = 0;
347 }
348}
349
350static int domain_translation_struct_show(struct seq_file *m,
351 struct device_domain_info *info,
352 ioasid_t pasid)
353{
354 bool scalable, found = false;
355 struct dmar_drhd_unit *drhd;
356 struct intel_iommu *iommu;
357 u16 devfn, bus, seg;
358
359 bus = info->bus;
360 devfn = info->devfn;
361 seg = info->segment;
362
363 rcu_read_lock();
364 for_each_active_iommu(iommu, drhd) {
365 struct context_entry *context;
366 u64 pgd, path[6] = { 0 };
367 u32 sts, agaw;
368
369 if (seg != iommu->segment)
370 continue;
371
372 sts = dmar_readl(iommu->reg + DMAR_GSTS_REG);
373 if (!(sts & DMA_GSTS_TES)) {
374 seq_printf(m, "DMA Remapping is not enabled on %s\n",
375 iommu->name);
376 continue;
377 }
378 if (dmar_readq(iommu->reg + DMAR_RTADDR_REG) & DMA_RTADDR_SMT)
379 scalable = true;
380 else
381 scalable = false;
382
383 /*
384 * The iommu->lock is held across the callback, which will
385 * block calls to domain_attach/domain_detach. Hence,
386 * the domain of the device will not change during traversal.
387 *
388 * Traversing page table possibly races with the iommu_unmap()
389 * interface. This could be solved by RCU-freeing the page
390 * table pages in the iommu_unmap() path.
391 */
392 spin_lock(&iommu->lock);
393
394 context = iommu_context_addr(iommu, bus, devfn, 0);
395 if (!context || !context_present(context))
396 goto iommu_unlock;
397
398 if (scalable) { /* scalable mode */
399 struct pasid_entry *pasid_tbl, *pasid_tbl_entry;
400 struct pasid_dir_entry *dir_tbl, *dir_entry;
401 u16 dir_idx, tbl_idx, pgtt;
402 u64 pasid_dir_ptr;
403
404 pasid_dir_ptr = context->lo & VTD_PAGE_MASK;
405
406 /* Dump specified device domain mappings with PASID. */
407 dir_idx = pasid >> PASID_PDE_SHIFT;
408 tbl_idx = pasid & PASID_PTE_MASK;
409
410 dir_tbl = phys_to_virt(pasid_dir_ptr);
411 dir_entry = &dir_tbl[dir_idx];
412
413 pasid_tbl = get_pasid_table_from_pde(dir_entry);
414 if (!pasid_tbl)
415 goto iommu_unlock;
416
417 pasid_tbl_entry = &pasid_tbl[tbl_idx];
418 if (!pasid_pte_is_present(pasid_tbl_entry))
419 goto iommu_unlock;
420
421 /*
422 * According to PASID Granular Translation Type(PGTT),
423 * get the page table pointer.
424 */
425 pgtt = (u16)(pasid_tbl_entry->val[0] & GENMASK_ULL(8, 6)) >> 6;
426 agaw = (u8)(pasid_tbl_entry->val[0] & GENMASK_ULL(4, 2)) >> 2;
427
428 switch (pgtt) {
429 case PASID_ENTRY_PGTT_FL_ONLY:
430 pgd = pasid_tbl_entry->val[2];
431 break;
432 case PASID_ENTRY_PGTT_SL_ONLY:
433 case PASID_ENTRY_PGTT_NESTED:
434 pgd = pasid_tbl_entry->val[0];
435 break;
436 default:
437 goto iommu_unlock;
438 }
439 pgd &= VTD_PAGE_MASK;
440 } else { /* legacy mode */
441 pgd = context->lo & VTD_PAGE_MASK;
442 agaw = context->hi & 7;
443 }
444
445 seq_printf(m, "Device %04x:%02x:%02x.%x ",
446 iommu->segment, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
447
448 if (scalable)
449 seq_printf(m, "with pasid %x @0x%llx\n", pasid, pgd);
450 else
451 seq_printf(m, "@0x%llx\n", pgd);
452
453 seq_printf(m, "%-17s\t%-18s\t%-18s\t%-18s\t%-18s\t%-s\n",
454 "IOVA_PFN", "PML5E", "PML4E", "PDPE", "PDE", "PTE");
455 pgtable_walk_level(m, phys_to_virt(pgd), agaw + 2, 0, path);
456
457 found = true;
458iommu_unlock:
459 spin_unlock(&iommu->lock);
460 if (found)
461 break;
462 }
463 rcu_read_unlock();
464
465 return 0;
466}
467
468static int dev_domain_translation_struct_show(struct seq_file *m, void *unused)
469{
470 struct device_domain_info *info = (struct device_domain_info *)m->private;
471
472 return domain_translation_struct_show(m, info, IOMMU_NO_PASID);
473}
474DEFINE_SHOW_ATTRIBUTE(dev_domain_translation_struct);
475
476static int pasid_domain_translation_struct_show(struct seq_file *m, void *unused)
477{
478 struct dev_pasid_info *dev_pasid = (struct dev_pasid_info *)m->private;
479 struct device_domain_info *info = dev_iommu_priv_get(dev_pasid->dev);
480
481 return domain_translation_struct_show(m, info, dev_pasid->pasid);
482}
483DEFINE_SHOW_ATTRIBUTE(pasid_domain_translation_struct);
484
485static void invalidation_queue_entry_show(struct seq_file *m,
486 struct intel_iommu *iommu)
487{
488 int index, shift = qi_shift(iommu);
489 struct qi_desc *desc;
490 int offset;
491
492 if (ecap_smts(iommu->ecap))
493 seq_puts(m, "Index\t\tqw0\t\t\tqw1\t\t\tqw2\t\t\tqw3\t\t\tstatus\n");
494 else
495 seq_puts(m, "Index\t\tqw0\t\t\tqw1\t\t\tstatus\n");
496
497 for (index = 0; index < QI_LENGTH; index++) {
498 offset = index << shift;
499 desc = iommu->qi->desc + offset;
500 if (ecap_smts(iommu->ecap))
501 seq_printf(m, "%5d\t%016llx\t%016llx\t%016llx\t%016llx\t%016x\n",
502 index, desc->qw0, desc->qw1,
503 desc->qw2, desc->qw3,
504 iommu->qi->desc_status[index]);
505 else
506 seq_printf(m, "%5d\t%016llx\t%016llx\t%016x\n",
507 index, desc->qw0, desc->qw1,
508 iommu->qi->desc_status[index]);
509 }
510}
511
512static int invalidation_queue_show(struct seq_file *m, void *unused)
513{
514 struct dmar_drhd_unit *drhd;
515 struct intel_iommu *iommu;
516 unsigned long flags;
517 struct q_inval *qi;
518 int shift;
519
520 rcu_read_lock();
521 for_each_active_iommu(iommu, drhd) {
522 qi = iommu->qi;
523 shift = qi_shift(iommu);
524
525 if (!qi || !ecap_qis(iommu->ecap))
526 continue;
527
528 seq_printf(m, "Invalidation queue on IOMMU: %s\n", iommu->name);
529
530 raw_spin_lock_irqsave(&qi->q_lock, flags);
531 seq_printf(m, " Base: 0x%llx\tHead: %lld\tTail: %lld\n",
532 (u64)virt_to_phys(qi->desc),
533 dmar_readq(iommu->reg + DMAR_IQH_REG) >> shift,
534 dmar_readq(iommu->reg + DMAR_IQT_REG) >> shift);
535 invalidation_queue_entry_show(m, iommu);
536 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
537 seq_putc(m, '\n');
538 }
539 rcu_read_unlock();
540
541 return 0;
542}
543DEFINE_SHOW_ATTRIBUTE(invalidation_queue);
544
545#ifdef CONFIG_IRQ_REMAP
546static void ir_tbl_remap_entry_show(struct seq_file *m,
547 struct intel_iommu *iommu)
548{
549 struct irte *ri_entry;
550 unsigned long flags;
551 int idx;
552
553 seq_puts(m, " Entry SrcID DstID Vct IRTE_high\t\tIRTE_low\n");
554
555 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
556 for (idx = 0; idx < INTR_REMAP_TABLE_ENTRIES; idx++) {
557 ri_entry = &iommu->ir_table->base[idx];
558 if (!ri_entry->present || ri_entry->p_pst)
559 continue;
560
561 seq_printf(m, " %-5d %02x:%02x.%01x %08x %02x %016llx\t%016llx\n",
562 idx, PCI_BUS_NUM(ri_entry->sid),
563 PCI_SLOT(ri_entry->sid), PCI_FUNC(ri_entry->sid),
564 ri_entry->dest_id, ri_entry->vector,
565 ri_entry->high, ri_entry->low);
566 }
567 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
568}
569
570static void ir_tbl_posted_entry_show(struct seq_file *m,
571 struct intel_iommu *iommu)
572{
573 struct irte *pi_entry;
574 unsigned long flags;
575 int idx;
576
577 seq_puts(m, " Entry SrcID PDA_high PDA_low Vct IRTE_high\t\tIRTE_low\n");
578
579 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
580 for (idx = 0; idx < INTR_REMAP_TABLE_ENTRIES; idx++) {
581 pi_entry = &iommu->ir_table->base[idx];
582 if (!pi_entry->present || !pi_entry->p_pst)
583 continue;
584
585 seq_printf(m, " %-5d %02x:%02x.%01x %08x %08x %02x %016llx\t%016llx\n",
586 idx, PCI_BUS_NUM(pi_entry->sid),
587 PCI_SLOT(pi_entry->sid), PCI_FUNC(pi_entry->sid),
588 pi_entry->pda_h, pi_entry->pda_l << 6,
589 pi_entry->vector, pi_entry->high,
590 pi_entry->low);
591 }
592 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
593}
594
595/*
596 * For active IOMMUs go through the Interrupt remapping
597 * table and print valid entries in a table format for
598 * Remapped and Posted Interrupts.
599 */
600static int ir_translation_struct_show(struct seq_file *m, void *unused)
601{
602 struct dmar_drhd_unit *drhd;
603 struct intel_iommu *iommu;
604 u64 irta;
605 u32 sts;
606
607 rcu_read_lock();
608 for_each_active_iommu(iommu, drhd) {
609 if (!ecap_ir_support(iommu->ecap))
610 continue;
611
612 seq_printf(m, "Remapped Interrupt supported on IOMMU: %s\n",
613 iommu->name);
614
615 sts = dmar_readl(iommu->reg + DMAR_GSTS_REG);
616 if (iommu->ir_table && (sts & DMA_GSTS_IRES)) {
617 irta = virt_to_phys(iommu->ir_table->base);
618 seq_printf(m, " IR table address:%llx\n", irta);
619 ir_tbl_remap_entry_show(m, iommu);
620 } else {
621 seq_puts(m, "Interrupt Remapping is not enabled\n");
622 }
623 seq_putc(m, '\n');
624 }
625
626 seq_puts(m, "****\n\n");
627
628 for_each_active_iommu(iommu, drhd) {
629 if (!cap_pi_support(iommu->cap))
630 continue;
631
632 seq_printf(m, "Posted Interrupt supported on IOMMU: %s\n",
633 iommu->name);
634
635 if (iommu->ir_table) {
636 irta = virt_to_phys(iommu->ir_table->base);
637 seq_printf(m, " IR table address:%llx\n", irta);
638 ir_tbl_posted_entry_show(m, iommu);
639 } else {
640 seq_puts(m, "Interrupt Remapping is not enabled\n");
641 }
642 seq_putc(m, '\n');
643 }
644 rcu_read_unlock();
645
646 return 0;
647}
648DEFINE_SHOW_ATTRIBUTE(ir_translation_struct);
649#endif
650
651static void latency_show_one(struct seq_file *m, struct intel_iommu *iommu,
652 struct dmar_drhd_unit *drhd)
653{
654 int ret;
655
656 seq_printf(m, "IOMMU: %s Register Base Address: %llx\n",
657 iommu->name, drhd->reg_base_addr);
658
659 ret = dmar_latency_snapshot(iommu, debug_buf, DEBUG_BUFFER_SIZE);
660 if (ret < 0)
661 seq_puts(m, "Failed to get latency snapshot");
662 else
663 seq_puts(m, debug_buf);
664 seq_puts(m, "\n");
665}
666
667static int latency_show(struct seq_file *m, void *v)
668{
669 struct dmar_drhd_unit *drhd;
670 struct intel_iommu *iommu;
671
672 rcu_read_lock();
673 for_each_active_iommu(iommu, drhd)
674 latency_show_one(m, iommu, drhd);
675 rcu_read_unlock();
676
677 return 0;
678}
679
680static int dmar_perf_latency_open(struct inode *inode, struct file *filp)
681{
682 return single_open(filp, latency_show, NULL);
683}
684
685static ssize_t dmar_perf_latency_write(struct file *filp,
686 const char __user *ubuf,
687 size_t cnt, loff_t *ppos)
688{
689 struct dmar_drhd_unit *drhd;
690 struct intel_iommu *iommu;
691 int counting;
692 char buf[64];
693
694 if (cnt > 63)
695 cnt = 63;
696
697 if (copy_from_user(&buf, ubuf, cnt))
698 return -EFAULT;
699
700 buf[cnt] = 0;
701
702 if (kstrtoint(buf, 0, &counting))
703 return -EINVAL;
704
705 switch (counting) {
706 case 0:
707 rcu_read_lock();
708 for_each_active_iommu(iommu, drhd) {
709 dmar_latency_disable(iommu, DMAR_LATENCY_INV_IOTLB);
710 dmar_latency_disable(iommu, DMAR_LATENCY_INV_DEVTLB);
711 dmar_latency_disable(iommu, DMAR_LATENCY_INV_IEC);
712 dmar_latency_disable(iommu, DMAR_LATENCY_PRQ);
713 }
714 rcu_read_unlock();
715 break;
716 case 1:
717 rcu_read_lock();
718 for_each_active_iommu(iommu, drhd)
719 dmar_latency_enable(iommu, DMAR_LATENCY_INV_IOTLB);
720 rcu_read_unlock();
721 break;
722 case 2:
723 rcu_read_lock();
724 for_each_active_iommu(iommu, drhd)
725 dmar_latency_enable(iommu, DMAR_LATENCY_INV_DEVTLB);
726 rcu_read_unlock();
727 break;
728 case 3:
729 rcu_read_lock();
730 for_each_active_iommu(iommu, drhd)
731 dmar_latency_enable(iommu, DMAR_LATENCY_INV_IEC);
732 rcu_read_unlock();
733 break;
734 case 4:
735 rcu_read_lock();
736 for_each_active_iommu(iommu, drhd)
737 dmar_latency_enable(iommu, DMAR_LATENCY_PRQ);
738 rcu_read_unlock();
739 break;
740 default:
741 return -EINVAL;
742 }
743
744 *ppos += cnt;
745 return cnt;
746}
747
748static const struct file_operations dmar_perf_latency_fops = {
749 .open = dmar_perf_latency_open,
750 .write = dmar_perf_latency_write,
751 .read = seq_read,
752 .llseek = seq_lseek,
753 .release = single_release,
754};
755
756void __init intel_iommu_debugfs_init(void)
757{
758 intel_iommu_debug = debugfs_create_dir("intel", iommu_debugfs_dir);
759
760 debugfs_create_file("iommu_regset", 0444, intel_iommu_debug, NULL,
761 &iommu_regset_fops);
762 debugfs_create_file("dmar_translation_struct", 0444, intel_iommu_debug,
763 NULL, &dmar_translation_struct_fops);
764 debugfs_create_file("invalidation_queue", 0444, intel_iommu_debug,
765 NULL, &invalidation_queue_fops);
766#ifdef CONFIG_IRQ_REMAP
767 debugfs_create_file("ir_translation_struct", 0444, intel_iommu_debug,
768 NULL, &ir_translation_struct_fops);
769#endif
770 debugfs_create_file("dmar_perf_latency", 0644, intel_iommu_debug,
771 NULL, &dmar_perf_latency_fops);
772}
773
774/*
775 * Create a debugfs directory for each device, and then create a
776 * debugfs file in this directory for users to dump the page table
777 * of the default domain. e.g.
778 * /sys/kernel/debug/iommu/intel/0000:00:01.0/domain_translation_struct
779 */
780void intel_iommu_debugfs_create_dev(struct device_domain_info *info)
781{
782 info->debugfs_dentry = debugfs_create_dir(dev_name(info->dev), intel_iommu_debug);
783
784 debugfs_create_file("domain_translation_struct", 0444, info->debugfs_dentry,
785 info, &dev_domain_translation_struct_fops);
786}
787
788/* Remove the device debugfs directory. */
789void intel_iommu_debugfs_remove_dev(struct device_domain_info *info)
790{
791 debugfs_remove_recursive(info->debugfs_dentry);
792}
793
794/*
795 * Create a debugfs directory per pair of {device, pasid}, then create the
796 * corresponding debugfs file in this directory for users to dump its page
797 * table. e.g.
798 * /sys/kernel/debug/iommu/intel/0000:00:01.0/1/domain_translation_struct
799 *
800 * The debugfs only dumps the page tables whose mappings are created and
801 * destroyed by the iommu_map/unmap() interfaces. Check the mapping type
802 * of the domain before creating debugfs directory.
803 */
804void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid)
805{
806 struct device_domain_info *info = dev_iommu_priv_get(dev_pasid->dev);
807 char dir_name[10];
808
809 sprintf(dir_name, "%x", dev_pasid->pasid);
810 dev_pasid->debugfs_dentry = debugfs_create_dir(dir_name, info->debugfs_dentry);
811
812 debugfs_create_file("domain_translation_struct", 0444, dev_pasid->debugfs_dentry,
813 dev_pasid, &pasid_domain_translation_struct_fops);
814}
815
816/* Remove the device pasid debugfs directory. */
817void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid)
818{
819 debugfs_remove_recursive(dev_pasid->debugfs_dentry);
820}