Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/sections.h>
21#include <asm/ctlreg.h>
22#include <asm/bug.h>
23#include <asm/page.h>
24#include <asm/uv.h>
25
26extern pgd_t swapper_pg_dir[];
27extern pgd_t invalid_pg_dir[];
28extern void paging_init(void);
29extern struct ctlreg s390_invalid_asce;
30
31enum {
32 PG_DIRECT_MAP_4K = 0,
33 PG_DIRECT_MAP_1M,
34 PG_DIRECT_MAP_2G,
35 PG_DIRECT_MAP_MAX
36};
37
38extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]);
39
40static inline void update_page_count(int level, long count)
41{
42 if (IS_ENABLED(CONFIG_PROC_FS))
43 atomic_long_add(count, &direct_pages_count[level]);
44}
45
46/*
47 * The S390 doesn't have any external MMU info: the kernel page
48 * tables contain all the necessary information.
49 */
50#define update_mmu_cache(vma, address, ptep) do { } while (0)
51#define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
52#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53
54/*
55 * ZERO_PAGE is a global shared page that is always zero; used
56 * for zero-mapped memory areas etc..
57 */
58
59extern unsigned long empty_zero_page;
60extern unsigned long zero_page_mask;
61
62#define ZERO_PAGE(vaddr) \
63 (virt_to_page((void *)(empty_zero_page + \
64 (((unsigned long)(vaddr)) &zero_page_mask))))
65#define __HAVE_COLOR_ZERO_PAGE
66
67/* TODO: s390 cannot support io_remap_pfn_range... */
68
69#define pte_ERROR(e) \
70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71#define pmd_ERROR(e) \
72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73#define pud_ERROR(e) \
74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75#define p4d_ERROR(e) \
76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77#define pgd_ERROR(e) \
78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79
80/*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. 512GB are reserved for vmalloc by default.
83 * At the top of the vmalloc area a 2GB area is reserved where modules
84 * will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a
86 * 2GB frame is branch prediction unit friendly.
87 */
88extern unsigned long __bootdata_preserved(VMALLOC_START);
89extern unsigned long __bootdata_preserved(VMALLOC_END);
90#define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
91extern struct page *__bootdata_preserved(vmemmap);
92extern unsigned long __bootdata_preserved(vmemmap_size);
93
94extern unsigned long __bootdata_preserved(MODULES_VADDR);
95extern unsigned long __bootdata_preserved(MODULES_END);
96#define MODULES_VADDR MODULES_VADDR
97#define MODULES_END MODULES_END
98#define MODULES_LEN (1UL << 31)
99
100static inline int is_module_addr(void *addr)
101{
102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 if (addr < (void *)MODULES_VADDR)
104 return 0;
105 if (addr > (void *)MODULES_END)
106 return 0;
107 return 1;
108}
109
110/*
111 * A 64 bit pagetable entry of S390 has following format:
112 * | PFRA |0IPC| OS |
113 * 0000000000111111111122222222223333333333444444444455555555556666
114 * 0123456789012345678901234567890123456789012345678901234567890123
115 *
116 * I Page-Invalid Bit: Page is not available for address-translation
117 * P Page-Protection Bit: Store access not possible for page
118 * C Change-bit override: HW is not required to set change bit
119 *
120 * A 64 bit segmenttable entry of S390 has following format:
121 * | P-table origin | TT
122 * 0000000000111111111122222222223333333333444444444455555555556666
123 * 0123456789012345678901234567890123456789012345678901234567890123
124 *
125 * I Segment-Invalid Bit: Segment is not available for address-translation
126 * C Common-Segment Bit: Segment is not private (PoP 3-30)
127 * P Page-Protection Bit: Store access not possible for page
128 * TT Type 00
129 *
130 * A 64 bit region table entry of S390 has following format:
131 * | S-table origin | TF TTTL
132 * 0000000000111111111122222222223333333333444444444455555555556666
133 * 0123456789012345678901234567890123456789012345678901234567890123
134 *
135 * I Segment-Invalid Bit: Segment is not available for address-translation
136 * TT Type 01
137 * TF
138 * TL Table length
139 *
140 * The 64 bit regiontable origin of S390 has following format:
141 * | region table origon | DTTL
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * X Space-Switch event:
146 * G Segment-Invalid Bit:
147 * P Private-Space Bit:
148 * S Storage-Alteration:
149 * R Real space
150 * TL Table-Length:
151 *
152 * A storage key has the following format:
153 * | ACC |F|R|C|0|
154 * 0 3 4 5 6 7
155 * ACC: access key
156 * F : fetch protection bit
157 * R : referenced bit
158 * C : changed bit
159 */
160
161/* Hardware bits in the page table entry */
162#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
163#define _PAGE_PROTECT 0x200 /* HW read-only bit */
164#define _PAGE_INVALID 0x400 /* HW invalid bit */
165#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
166
167/* Software bits in the page table entry */
168#define _PAGE_PRESENT 0x001 /* SW pte present bit */
169#define _PAGE_YOUNG 0x004 /* SW pte young bit */
170#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
171#define _PAGE_READ 0x010 /* SW pte read bit */
172#define _PAGE_WRITE 0x020 /* SW pte write bit */
173#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
174#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
175
176#ifdef CONFIG_MEM_SOFT_DIRTY
177#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
178#else
179#define _PAGE_SOFT_DIRTY 0x000
180#endif
181
182#define _PAGE_SW_BITS 0xffUL /* All SW bits */
183
184#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
185
186/* Set of bits not changed in pte_modify */
187#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
188 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
189
190/*
191 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
192 * HW bit and all SW bits.
193 */
194#define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS)
195
196/*
197 * handle_pte_fault uses pte_present and pte_none to find out the pte type
198 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
199 * distinguish present from not-present ptes. It is changed only with the page
200 * table lock held.
201 *
202 * The following table gives the different possible bit combinations for
203 * the pte hardware and software bits in the last 12 bits of a pte
204 * (. unassigned bit, x don't care, t swap type):
205 *
206 * 842100000000
207 * 000084210000
208 * 000000008421
209 * .IR.uswrdy.p
210 * empty .10.00000000
211 * swap .11..ttttt.0
212 * prot-none, clean, old .11.xx0000.1
213 * prot-none, clean, young .11.xx0001.1
214 * prot-none, dirty, old .11.xx0010.1
215 * prot-none, dirty, young .11.xx0011.1
216 * read-only, clean, old .11.xx0100.1
217 * read-only, clean, young .01.xx0101.1
218 * read-only, dirty, old .11.xx0110.1
219 * read-only, dirty, young .01.xx0111.1
220 * read-write, clean, old .11.xx1100.1
221 * read-write, clean, young .01.xx1101.1
222 * read-write, dirty, old .10.xx1110.1
223 * read-write, dirty, young .00.xx1111.1
224 * HW-bits: R read-only, I invalid
225 * SW-bits: p present, y young, d dirty, r read, w write, s special,
226 * u unused, l large
227 *
228 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
229 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
230 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
231 */
232
233/* Bits in the segment/region table address-space-control-element */
234#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
235#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
236#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
237#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
238#define _ASCE_REAL_SPACE 0x20 /* real space control */
239#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
240#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
241#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
242#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
243#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
244#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
245
246/* Bits in the region table entry */
247#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
248#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
249#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
250#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
251#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
252#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
253#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
254#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
255#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
256#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
257
258#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
259#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
260#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
261#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
262#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
263#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
264
265#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
266#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
267#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
268#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
269#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
270#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
271
272#ifdef CONFIG_MEM_SOFT_DIRTY
273#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
274#else
275#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
276#endif
277
278#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
279
280/* Bits in the segment table entry */
281#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
282#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
283#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
284#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
285#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
286#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
287#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
288#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
289#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
290
291#define _SEGMENT_ENTRY (0)
292#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
293
294#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
295#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
296#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
297#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
298#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
299
300#ifdef CONFIG_MEM_SOFT_DIRTY
301#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
302#else
303#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
304#endif
305
306#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
307#define _PAGE_ENTRIES 256 /* number of page table entries */
308
309#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
310#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
311
312#define _REGION1_SHIFT 53
313#define _REGION2_SHIFT 42
314#define _REGION3_SHIFT 31
315#define _SEGMENT_SHIFT 20
316
317#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
318#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
319#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
320#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
321#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
322
323#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
324#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
325#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
326#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
327
328#define _REGION1_MASK (~(_REGION1_SIZE - 1))
329#define _REGION2_MASK (~(_REGION2_SIZE - 1))
330#define _REGION3_MASK (~(_REGION3_SIZE - 1))
331#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
332
333#define PMD_SHIFT _SEGMENT_SHIFT
334#define PUD_SHIFT _REGION3_SHIFT
335#define P4D_SHIFT _REGION2_SHIFT
336#define PGDIR_SHIFT _REGION1_SHIFT
337
338#define PMD_SIZE _SEGMENT_SIZE
339#define PUD_SIZE _REGION3_SIZE
340#define P4D_SIZE _REGION2_SIZE
341#define PGDIR_SIZE _REGION1_SIZE
342
343#define PMD_MASK _SEGMENT_MASK
344#define PUD_MASK _REGION3_MASK
345#define P4D_MASK _REGION2_MASK
346#define PGDIR_MASK _REGION1_MASK
347
348#define PTRS_PER_PTE _PAGE_ENTRIES
349#define PTRS_PER_PMD _CRST_ENTRIES
350#define PTRS_PER_PUD _CRST_ENTRIES
351#define PTRS_PER_P4D _CRST_ENTRIES
352#define PTRS_PER_PGD _CRST_ENTRIES
353
354/*
355 * Segment table and region3 table entry encoding
356 * (R = read-only, I = invalid, y = young bit):
357 * dy..R...I...wr
358 * prot-none, clean, old 00..1...1...00
359 * prot-none, clean, young 01..1...1...00
360 * prot-none, dirty, old 10..1...1...00
361 * prot-none, dirty, young 11..1...1...00
362 * read-only, clean, old 00..1...1...01
363 * read-only, clean, young 01..1...0...01
364 * read-only, dirty, old 10..1...1...01
365 * read-only, dirty, young 11..1...0...01
366 * read-write, clean, old 00..1...1...11
367 * read-write, clean, young 01..1...0...11
368 * read-write, dirty, old 10..0...1...11
369 * read-write, dirty, young 11..0...0...11
370 * The segment table origin is used to distinguish empty (origin==0) from
371 * read-write, old segment table entries (origin!=0)
372 * HW-bits: R read-only, I invalid
373 * SW-bits: y young, d dirty, r read, w write
374 */
375
376/* Page status table bits for virtualization */
377#define PGSTE_ACC_BITS 0xf000000000000000UL
378#define PGSTE_FP_BIT 0x0800000000000000UL
379#define PGSTE_PCL_BIT 0x0080000000000000UL
380#define PGSTE_HR_BIT 0x0040000000000000UL
381#define PGSTE_HC_BIT 0x0020000000000000UL
382#define PGSTE_GR_BIT 0x0004000000000000UL
383#define PGSTE_GC_BIT 0x0002000000000000UL
384#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
385#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
386#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
387
388/* Guest Page State used for virtualization */
389#define _PGSTE_GPS_ZERO 0x0000000080000000UL
390#define _PGSTE_GPS_NODAT 0x0000000040000000UL
391#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
392#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
393#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
394#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
395#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
396
397/*
398 * A user page table pointer has the space-switch-event bit, the
399 * private-space-control bit and the storage-alteration-event-control
400 * bit set. A kernel page table pointer doesn't need them.
401 */
402#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
403 _ASCE_ALT_EVENT)
404
405/*
406 * Page protection definitions.
407 */
408#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
409#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
410 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
411#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
412 _PAGE_INVALID | _PAGE_PROTECT)
413#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
415#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
416 _PAGE_INVALID | _PAGE_PROTECT)
417
418#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
420#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
421 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
422#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
423 _PAGE_PROTECT | _PAGE_NOEXEC)
424#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
425 _PAGE_YOUNG | _PAGE_DIRTY)
426
427/*
428 * On s390 the page table entry has an invalid bit and a read-only bit.
429 * Read permission implies execute permission and write permission
430 * implies read permission.
431 */
432 /*xwr*/
433
434/*
435 * Segment entry (large page) protection definitions.
436 */
437#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
438 _SEGMENT_ENTRY_PROTECT)
439#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
440 _SEGMENT_ENTRY_READ | \
441 _SEGMENT_ENTRY_NOEXEC)
442#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
443 _SEGMENT_ENTRY_READ)
444#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
445 _SEGMENT_ENTRY_WRITE | \
446 _SEGMENT_ENTRY_NOEXEC)
447#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
448 _SEGMENT_ENTRY_WRITE)
449#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
450 _SEGMENT_ENTRY_LARGE | \
451 _SEGMENT_ENTRY_READ | \
452 _SEGMENT_ENTRY_WRITE | \
453 _SEGMENT_ENTRY_YOUNG | \
454 _SEGMENT_ENTRY_DIRTY | \
455 _SEGMENT_ENTRY_NOEXEC)
456#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
457 _SEGMENT_ENTRY_LARGE | \
458 _SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_YOUNG | \
460 _SEGMENT_ENTRY_PROTECT | \
461 _SEGMENT_ENTRY_NOEXEC)
462#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
463 _SEGMENT_ENTRY_LARGE | \
464 _SEGMENT_ENTRY_READ | \
465 _SEGMENT_ENTRY_WRITE | \
466 _SEGMENT_ENTRY_YOUNG | \
467 _SEGMENT_ENTRY_DIRTY)
468
469/*
470 * Region3 entry (large page) protection definitions.
471 */
472
473#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
474 _REGION3_ENTRY_LARGE | \
475 _REGION3_ENTRY_READ | \
476 _REGION3_ENTRY_WRITE | \
477 _REGION3_ENTRY_YOUNG | \
478 _REGION3_ENTRY_DIRTY | \
479 _REGION_ENTRY_NOEXEC)
480#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
481 _REGION3_ENTRY_LARGE | \
482 _REGION3_ENTRY_READ | \
483 _REGION3_ENTRY_YOUNG | \
484 _REGION_ENTRY_PROTECT | \
485 _REGION_ENTRY_NOEXEC)
486#define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \
487 _REGION3_ENTRY_LARGE | \
488 _REGION3_ENTRY_READ | \
489 _REGION3_ENTRY_WRITE | \
490 _REGION3_ENTRY_YOUNG | \
491 _REGION3_ENTRY_DIRTY)
492
493static inline bool mm_p4d_folded(struct mm_struct *mm)
494{
495 return mm->context.asce_limit <= _REGION1_SIZE;
496}
497#define mm_p4d_folded(mm) mm_p4d_folded(mm)
498
499static inline bool mm_pud_folded(struct mm_struct *mm)
500{
501 return mm->context.asce_limit <= _REGION2_SIZE;
502}
503#define mm_pud_folded(mm) mm_pud_folded(mm)
504
505static inline bool mm_pmd_folded(struct mm_struct *mm)
506{
507 return mm->context.asce_limit <= _REGION3_SIZE;
508}
509#define mm_pmd_folded(mm) mm_pmd_folded(mm)
510
511static inline int mm_has_pgste(struct mm_struct *mm)
512{
513#ifdef CONFIG_PGSTE
514 if (unlikely(mm->context.has_pgste))
515 return 1;
516#endif
517 return 0;
518}
519
520static inline int mm_is_protected(struct mm_struct *mm)
521{
522#ifdef CONFIG_PGSTE
523 if (unlikely(atomic_read(&mm->context.protected_count)))
524 return 1;
525#endif
526 return 0;
527}
528
529static inline int mm_alloc_pgste(struct mm_struct *mm)
530{
531#ifdef CONFIG_PGSTE
532 if (unlikely(mm->context.alloc_pgste))
533 return 1;
534#endif
535 return 0;
536}
537
538static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
539{
540 return __pte(pte_val(pte) & ~pgprot_val(prot));
541}
542
543static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
544{
545 return __pte(pte_val(pte) | pgprot_val(prot));
546}
547
548static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
549{
550 return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
551}
552
553static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
554{
555 return __pmd(pmd_val(pmd) | pgprot_val(prot));
556}
557
558static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
559{
560 return __pud(pud_val(pud) & ~pgprot_val(prot));
561}
562
563static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
564{
565 return __pud(pud_val(pud) | pgprot_val(prot));
566}
567
568/*
569 * In the case that a guest uses storage keys
570 * faults should no longer be backed by zero pages
571 */
572#define mm_forbids_zeropage mm_has_pgste
573static inline int mm_uses_skeys(struct mm_struct *mm)
574{
575#ifdef CONFIG_PGSTE
576 if (mm->context.uses_skeys)
577 return 1;
578#endif
579 return 0;
580}
581
582static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
583{
584 union register_pair r1 = { .even = old, .odd = new, };
585 unsigned long address = (unsigned long)ptr | 1;
586
587 asm volatile(
588 " csp %[r1],%[address]"
589 : [r1] "+&d" (r1.pair), "+m" (*ptr)
590 : [address] "d" (address)
591 : "cc");
592}
593
594static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
595{
596 union register_pair r1 = { .even = old, .odd = new, };
597 unsigned long address = (unsigned long)ptr | 1;
598
599 asm volatile(
600 " cspg %[r1],%[address]"
601 : [r1] "+&d" (r1.pair), "+m" (*ptr)
602 : [address] "d" (address)
603 : "cc");
604}
605
606#define CRDTE_DTT_PAGE 0x00UL
607#define CRDTE_DTT_SEGMENT 0x10UL
608#define CRDTE_DTT_REGION3 0x14UL
609#define CRDTE_DTT_REGION2 0x18UL
610#define CRDTE_DTT_REGION1 0x1cUL
611
612static inline void crdte(unsigned long old, unsigned long new,
613 unsigned long *table, unsigned long dtt,
614 unsigned long address, unsigned long asce)
615{
616 union register_pair r1 = { .even = old, .odd = new, };
617 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
618
619 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
620 : [r1] "+&d" (r1.pair)
621 : [r2] "d" (r2.pair), [asce] "a" (asce)
622 : "memory", "cc");
623}
624
625/*
626 * pgd/p4d/pud/pmd/pte query functions
627 */
628static inline int pgd_folded(pgd_t pgd)
629{
630 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
631}
632
633static inline int pgd_present(pgd_t pgd)
634{
635 if (pgd_folded(pgd))
636 return 1;
637 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
638}
639
640static inline int pgd_none(pgd_t pgd)
641{
642 if (pgd_folded(pgd))
643 return 0;
644 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
645}
646
647static inline int pgd_bad(pgd_t pgd)
648{
649 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
650 return 0;
651 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
652}
653
654static inline unsigned long pgd_pfn(pgd_t pgd)
655{
656 unsigned long origin_mask;
657
658 origin_mask = _REGION_ENTRY_ORIGIN;
659 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
660}
661
662static inline int p4d_folded(p4d_t p4d)
663{
664 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
665}
666
667static inline int p4d_present(p4d_t p4d)
668{
669 if (p4d_folded(p4d))
670 return 1;
671 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
672}
673
674static inline int p4d_none(p4d_t p4d)
675{
676 if (p4d_folded(p4d))
677 return 0;
678 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
679}
680
681static inline unsigned long p4d_pfn(p4d_t p4d)
682{
683 unsigned long origin_mask;
684
685 origin_mask = _REGION_ENTRY_ORIGIN;
686 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
687}
688
689static inline int pud_folded(pud_t pud)
690{
691 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
692}
693
694static inline int pud_present(pud_t pud)
695{
696 if (pud_folded(pud))
697 return 1;
698 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
699}
700
701static inline int pud_none(pud_t pud)
702{
703 if (pud_folded(pud))
704 return 0;
705 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
706}
707
708#define pud_leaf pud_large
709static inline int pud_large(pud_t pud)
710{
711 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
712 return 0;
713 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
714}
715
716#define pmd_leaf pmd_large
717static inline int pmd_large(pmd_t pmd)
718{
719 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
720}
721
722static inline int pmd_bad(pmd_t pmd)
723{
724 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
725 return 1;
726 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
727}
728
729static inline int pud_bad(pud_t pud)
730{
731 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
732
733 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
734 return 1;
735 if (type < _REGION_ENTRY_TYPE_R3)
736 return 0;
737 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
738}
739
740static inline int p4d_bad(p4d_t p4d)
741{
742 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
743
744 if (type > _REGION_ENTRY_TYPE_R2)
745 return 1;
746 if (type < _REGION_ENTRY_TYPE_R2)
747 return 0;
748 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
749}
750
751static inline int pmd_present(pmd_t pmd)
752{
753 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
754}
755
756static inline int pmd_none(pmd_t pmd)
757{
758 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
759}
760
761#define pmd_write pmd_write
762static inline int pmd_write(pmd_t pmd)
763{
764 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
765}
766
767#define pud_write pud_write
768static inline int pud_write(pud_t pud)
769{
770 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
771}
772
773static inline int pmd_dirty(pmd_t pmd)
774{
775 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
776}
777
778#define pmd_young pmd_young
779static inline int pmd_young(pmd_t pmd)
780{
781 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
782}
783
784static inline int pte_present(pte_t pte)
785{
786 /* Bit pattern: (pte & 0x001) == 0x001 */
787 return (pte_val(pte) & _PAGE_PRESENT) != 0;
788}
789
790static inline int pte_none(pte_t pte)
791{
792 /* Bit pattern: pte == 0x400 */
793 return pte_val(pte) == _PAGE_INVALID;
794}
795
796static inline int pte_swap(pte_t pte)
797{
798 /* Bit pattern: (pte & 0x201) == 0x200 */
799 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
800 == _PAGE_PROTECT;
801}
802
803static inline int pte_special(pte_t pte)
804{
805 return (pte_val(pte) & _PAGE_SPECIAL);
806}
807
808#define __HAVE_ARCH_PTE_SAME
809static inline int pte_same(pte_t a, pte_t b)
810{
811 return pte_val(a) == pte_val(b);
812}
813
814#ifdef CONFIG_NUMA_BALANCING
815static inline int pte_protnone(pte_t pte)
816{
817 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
818}
819
820static inline int pmd_protnone(pmd_t pmd)
821{
822 /* pmd_large(pmd) implies pmd_present(pmd) */
823 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
824}
825#endif
826
827static inline int pte_swp_exclusive(pte_t pte)
828{
829 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
830}
831
832static inline pte_t pte_swp_mkexclusive(pte_t pte)
833{
834 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
835}
836
837static inline pte_t pte_swp_clear_exclusive(pte_t pte)
838{
839 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
840}
841
842static inline int pte_soft_dirty(pte_t pte)
843{
844 return pte_val(pte) & _PAGE_SOFT_DIRTY;
845}
846#define pte_swp_soft_dirty pte_soft_dirty
847
848static inline pte_t pte_mksoft_dirty(pte_t pte)
849{
850 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
851}
852#define pte_swp_mksoft_dirty pte_mksoft_dirty
853
854static inline pte_t pte_clear_soft_dirty(pte_t pte)
855{
856 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
857}
858#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
859
860static inline int pmd_soft_dirty(pmd_t pmd)
861{
862 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
863}
864
865static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
866{
867 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
868}
869
870static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
871{
872 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
873}
874
875/*
876 * query functions pte_write/pte_dirty/pte_young only work if
877 * pte_present() is true. Undefined behaviour if not..
878 */
879static inline int pte_write(pte_t pte)
880{
881 return (pte_val(pte) & _PAGE_WRITE) != 0;
882}
883
884static inline int pte_dirty(pte_t pte)
885{
886 return (pte_val(pte) & _PAGE_DIRTY) != 0;
887}
888
889static inline int pte_young(pte_t pte)
890{
891 return (pte_val(pte) & _PAGE_YOUNG) != 0;
892}
893
894#define __HAVE_ARCH_PTE_UNUSED
895static inline int pte_unused(pte_t pte)
896{
897 return pte_val(pte) & _PAGE_UNUSED;
898}
899
900/*
901 * Extract the pgprot value from the given pte while at the same time making it
902 * usable for kernel address space mappings where fault driven dirty and
903 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
904 * must not be set.
905 */
906static inline pgprot_t pte_pgprot(pte_t pte)
907{
908 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
909
910 if (pte_write(pte))
911 pte_flags |= pgprot_val(PAGE_KERNEL);
912 else
913 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
914 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
915
916 return __pgprot(pte_flags);
917}
918
919/*
920 * pgd/pmd/pte modification functions
921 */
922
923static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
924{
925 WRITE_ONCE(*pgdp, pgd);
926}
927
928static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
929{
930 WRITE_ONCE(*p4dp, p4d);
931}
932
933static inline void set_pud(pud_t *pudp, pud_t pud)
934{
935 WRITE_ONCE(*pudp, pud);
936}
937
938static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
939{
940 WRITE_ONCE(*pmdp, pmd);
941}
942
943static inline void set_pte(pte_t *ptep, pte_t pte)
944{
945 WRITE_ONCE(*ptep, pte);
946}
947
948static inline void pgd_clear(pgd_t *pgd)
949{
950 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
951 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
952}
953
954static inline void p4d_clear(p4d_t *p4d)
955{
956 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
957 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
958}
959
960static inline void pud_clear(pud_t *pud)
961{
962 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
963 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
964}
965
966static inline void pmd_clear(pmd_t *pmdp)
967{
968 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
969}
970
971static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
972{
973 set_pte(ptep, __pte(_PAGE_INVALID));
974}
975
976/*
977 * The following pte modification functions only work if
978 * pte_present() is true. Undefined behaviour if not..
979 */
980static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
981{
982 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
983 pte = set_pte_bit(pte, newprot);
984 /*
985 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
986 * has the invalid bit set, clear it again for readable, young pages
987 */
988 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
989 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
990 /*
991 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
992 * protection bit set, clear it again for writable, dirty pages
993 */
994 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
995 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
996 return pte;
997}
998
999static inline pte_t pte_wrprotect(pte_t pte)
1000{
1001 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1002 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1003}
1004
1005static inline pte_t pte_mkwrite_novma(pte_t pte)
1006{
1007 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1008 if (pte_val(pte) & _PAGE_DIRTY)
1009 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1010 return pte;
1011}
1012
1013static inline pte_t pte_mkclean(pte_t pte)
1014{
1015 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1016 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1017}
1018
1019static inline pte_t pte_mkdirty(pte_t pte)
1020{
1021 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1022 if (pte_val(pte) & _PAGE_WRITE)
1023 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1024 return pte;
1025}
1026
1027static inline pte_t pte_mkold(pte_t pte)
1028{
1029 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1030 return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1031}
1032
1033static inline pte_t pte_mkyoung(pte_t pte)
1034{
1035 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1036 if (pte_val(pte) & _PAGE_READ)
1037 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1038 return pte;
1039}
1040
1041static inline pte_t pte_mkspecial(pte_t pte)
1042{
1043 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1044}
1045
1046#ifdef CONFIG_HUGETLB_PAGE
1047static inline pte_t pte_mkhuge(pte_t pte)
1048{
1049 return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1050}
1051#endif
1052
1053#define IPTE_GLOBAL 0
1054#define IPTE_LOCAL 1
1055
1056#define IPTE_NODAT 0x400
1057#define IPTE_GUEST_ASCE 0x800
1058
1059static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1060 unsigned long opt, unsigned long asce,
1061 int local)
1062{
1063 unsigned long pto;
1064
1065 pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1066 asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1067 : "+m" (*ptep)
1068 : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1069 [asce] "a" (asce), [m4] "i" (local));
1070}
1071
1072static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1073 unsigned long opt, unsigned long asce,
1074 int local)
1075{
1076 unsigned long pto = __pa(ptep);
1077
1078 if (__builtin_constant_p(opt) && opt == 0) {
1079 /* Invalidation + TLB flush for the pte */
1080 asm volatile(
1081 " ipte %[r1],%[r2],0,%[m4]"
1082 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1083 [m4] "i" (local));
1084 return;
1085 }
1086
1087 /* Invalidate ptes with options + TLB flush of the ptes */
1088 opt = opt | (asce & _ASCE_ORIGIN);
1089 asm volatile(
1090 " ipte %[r1],%[r2],%[r3],%[m4]"
1091 : [r2] "+a" (address), [r3] "+a" (opt)
1092 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1093}
1094
1095static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1096 pte_t *ptep, int local)
1097{
1098 unsigned long pto = __pa(ptep);
1099
1100 /* Invalidate a range of ptes + TLB flush of the ptes */
1101 do {
1102 asm volatile(
1103 " ipte %[r1],%[r2],%[r3],%[m4]"
1104 : [r2] "+a" (address), [r3] "+a" (nr)
1105 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1106 } while (nr != 255);
1107}
1108
1109/*
1110 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1111 * both clear the TLB for the unmapped pte. The reason is that
1112 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1113 * to modify an active pte. The sequence is
1114 * 1) ptep_get_and_clear
1115 * 2) set_pte_at
1116 * 3) flush_tlb_range
1117 * On s390 the tlb needs to get flushed with the modification of the pte
1118 * if the pte is active. The only way how this can be implemented is to
1119 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1120 * is a nop.
1121 */
1122pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1123pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1124
1125#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1126static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1127 unsigned long addr, pte_t *ptep)
1128{
1129 pte_t pte = *ptep;
1130
1131 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1132 return pte_young(pte);
1133}
1134
1135#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1136static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1137 unsigned long address, pte_t *ptep)
1138{
1139 return ptep_test_and_clear_young(vma, address, ptep);
1140}
1141
1142#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1143static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1144 unsigned long addr, pte_t *ptep)
1145{
1146 pte_t res;
1147
1148 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1149 /* At this point the reference through the mapping is still present */
1150 if (mm_is_protected(mm) && pte_present(res))
1151 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1152 return res;
1153}
1154
1155#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1156pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1157void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1158 pte_t *, pte_t, pte_t);
1159
1160#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1161static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1162 unsigned long addr, pte_t *ptep)
1163{
1164 pte_t res;
1165
1166 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1167 /* At this point the reference through the mapping is still present */
1168 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1169 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1170 return res;
1171}
1172
1173/*
1174 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1175 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1176 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1177 * cannot be accessed while the batched unmap is running. In this case
1178 * full==1 and a simple pte_clear is enough. See tlb.h.
1179 */
1180#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1181static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1182 unsigned long addr,
1183 pte_t *ptep, int full)
1184{
1185 pte_t res;
1186
1187 if (full) {
1188 res = *ptep;
1189 set_pte(ptep, __pte(_PAGE_INVALID));
1190 } else {
1191 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1192 }
1193 /* Nothing to do */
1194 if (!mm_is_protected(mm) || !pte_present(res))
1195 return res;
1196 /*
1197 * At this point the reference through the mapping is still present.
1198 * The notifier should have destroyed all protected vCPUs at this
1199 * point, so the destroy should be successful.
1200 */
1201 if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1202 return res;
1203 /*
1204 * If something went wrong and the page could not be destroyed, or
1205 * if this is not a mm teardown, the slower export is used as
1206 * fallback instead.
1207 */
1208 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1209 return res;
1210}
1211
1212#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1213static inline void ptep_set_wrprotect(struct mm_struct *mm,
1214 unsigned long addr, pte_t *ptep)
1215{
1216 pte_t pte = *ptep;
1217
1218 if (pte_write(pte))
1219 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1220}
1221
1222/*
1223 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1224 * bits in the comparison. Those might change e.g. because of dirty and young
1225 * tracking.
1226 */
1227static inline int pte_allow_rdp(pte_t old, pte_t new)
1228{
1229 /*
1230 * Only allow changes from RO to RW
1231 */
1232 if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1233 return 0;
1234
1235 return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1236}
1237
1238static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1239 unsigned long address,
1240 pte_t *ptep)
1241{
1242 /*
1243 * RDP might not have propagated the PTE protection reset to all CPUs,
1244 * so there could be spurious TLB protection faults.
1245 * NOTE: This will also be called when a racing pagetable update on
1246 * another thread already installed the correct PTE. Both cases cannot
1247 * really be distinguished.
1248 * Therefore, only do the local TLB flush when RDP can be used, and the
1249 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1250 * A local RDP can be used to do the flush.
1251 */
1252 if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT))
1253 __ptep_rdp(address, ptep, 0, 0, 1);
1254}
1255#define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1256
1257void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1258 pte_t new);
1259
1260#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1261static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1262 unsigned long addr, pte_t *ptep,
1263 pte_t entry, int dirty)
1264{
1265 if (pte_same(*ptep, entry))
1266 return 0;
1267 if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1268 ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1269 else
1270 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1271 return 1;
1272}
1273
1274/*
1275 * Additional functions to handle KVM guest page tables
1276 */
1277void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1278 pte_t *ptep, pte_t entry);
1279void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1280void ptep_notify(struct mm_struct *mm, unsigned long addr,
1281 pte_t *ptep, unsigned long bits);
1282int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1283 pte_t *ptep, int prot, unsigned long bit);
1284void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1285 pte_t *ptep , int reset);
1286void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1287int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1288 pte_t *sptep, pte_t *tptep, pte_t pte);
1289void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1290
1291bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1292 pte_t *ptep);
1293int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1294 unsigned char key, bool nq);
1295int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1296 unsigned char key, unsigned char *oldkey,
1297 bool nq, bool mr, bool mc);
1298int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1299int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1300 unsigned char *key);
1301
1302int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1303 unsigned long bits, unsigned long value);
1304int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1305int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1306 unsigned long *oldpte, unsigned long *oldpgste);
1307void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1308void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1309void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1310void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1311
1312#define pgprot_writecombine pgprot_writecombine
1313pgprot_t pgprot_writecombine(pgprot_t prot);
1314
1315#define pgprot_writethrough pgprot_writethrough
1316pgprot_t pgprot_writethrough(pgprot_t prot);
1317
1318/*
1319 * Set multiple PTEs to consecutive pages with a single call. All PTEs
1320 * are within the same folio, PMD and VMA.
1321 */
1322static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1323 pte_t *ptep, pte_t entry, unsigned int nr)
1324{
1325 if (pte_present(entry))
1326 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1327 if (mm_has_pgste(mm)) {
1328 for (;;) {
1329 ptep_set_pte_at(mm, addr, ptep, entry);
1330 if (--nr == 0)
1331 break;
1332 ptep++;
1333 entry = __pte(pte_val(entry) + PAGE_SIZE);
1334 addr += PAGE_SIZE;
1335 }
1336 } else {
1337 for (;;) {
1338 set_pte(ptep, entry);
1339 if (--nr == 0)
1340 break;
1341 ptep++;
1342 entry = __pte(pte_val(entry) + PAGE_SIZE);
1343 }
1344 }
1345}
1346#define set_ptes set_ptes
1347
1348/*
1349 * Conversion functions: convert a page and protection to a page entry,
1350 * and a page entry and page directory to the page they refer to.
1351 */
1352static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1353{
1354 pte_t __pte;
1355
1356 __pte = __pte(physpage | pgprot_val(pgprot));
1357 if (!MACHINE_HAS_NX)
1358 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1359 return pte_mkyoung(__pte);
1360}
1361
1362static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1363{
1364 unsigned long physpage = page_to_phys(page);
1365 pte_t __pte = mk_pte_phys(physpage, pgprot);
1366
1367 if (pte_write(__pte) && PageDirty(page))
1368 __pte = pte_mkdirty(__pte);
1369 return __pte;
1370}
1371
1372#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1373#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1374#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1375#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1376
1377#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1378#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1379
1380static inline unsigned long pmd_deref(pmd_t pmd)
1381{
1382 unsigned long origin_mask;
1383
1384 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1385 if (pmd_large(pmd))
1386 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1387 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1388}
1389
1390static inline unsigned long pmd_pfn(pmd_t pmd)
1391{
1392 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1393}
1394
1395static inline unsigned long pud_deref(pud_t pud)
1396{
1397 unsigned long origin_mask;
1398
1399 origin_mask = _REGION_ENTRY_ORIGIN;
1400 if (pud_large(pud))
1401 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1402 return (unsigned long)__va(pud_val(pud) & origin_mask);
1403}
1404
1405static inline unsigned long pud_pfn(pud_t pud)
1406{
1407 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1408}
1409
1410/*
1411 * The pgd_offset function *always* adds the index for the top-level
1412 * region/segment table. This is done to get a sequence like the
1413 * following to work:
1414 * pgdp = pgd_offset(current->mm, addr);
1415 * pgd = READ_ONCE(*pgdp);
1416 * p4dp = p4d_offset(&pgd, addr);
1417 * ...
1418 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1419 * only add an index if they dereferenced the pointer.
1420 */
1421static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1422{
1423 unsigned long rste;
1424 unsigned int shift;
1425
1426 /* Get the first entry of the top level table */
1427 rste = pgd_val(*pgd);
1428 /* Pick up the shift from the table type of the first entry */
1429 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1430 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1431}
1432
1433#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1434
1435static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1436{
1437 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1438 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1439 return (p4d_t *) pgdp;
1440}
1441#define p4d_offset_lockless p4d_offset_lockless
1442
1443static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1444{
1445 return p4d_offset_lockless(pgdp, *pgdp, address);
1446}
1447
1448static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1449{
1450 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1451 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1452 return (pud_t *) p4dp;
1453}
1454#define pud_offset_lockless pud_offset_lockless
1455
1456static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1457{
1458 return pud_offset_lockless(p4dp, *p4dp, address);
1459}
1460#define pud_offset pud_offset
1461
1462static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1463{
1464 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1465 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1466 return (pmd_t *) pudp;
1467}
1468#define pmd_offset_lockless pmd_offset_lockless
1469
1470static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1471{
1472 return pmd_offset_lockless(pudp, *pudp, address);
1473}
1474#define pmd_offset pmd_offset
1475
1476static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1477{
1478 return (unsigned long) pmd_deref(pmd);
1479}
1480
1481static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1482{
1483 return end <= current->mm->context.asce_limit;
1484}
1485#define gup_fast_permitted gup_fast_permitted
1486
1487#define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1488#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1489#define pte_page(x) pfn_to_page(pte_pfn(x))
1490
1491#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1492#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1493#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1494#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1495
1496static inline pmd_t pmd_wrprotect(pmd_t pmd)
1497{
1498 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1499 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1500}
1501
1502static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1503{
1504 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1505 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1506 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1507 return pmd;
1508}
1509
1510static inline pmd_t pmd_mkclean(pmd_t pmd)
1511{
1512 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1513 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1514}
1515
1516static inline pmd_t pmd_mkdirty(pmd_t pmd)
1517{
1518 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1519 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1520 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1521 return pmd;
1522}
1523
1524static inline pud_t pud_wrprotect(pud_t pud)
1525{
1526 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1527 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1528}
1529
1530static inline pud_t pud_mkwrite(pud_t pud)
1531{
1532 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1533 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1534 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1535 return pud;
1536}
1537
1538static inline pud_t pud_mkclean(pud_t pud)
1539{
1540 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1541 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1542}
1543
1544static inline pud_t pud_mkdirty(pud_t pud)
1545{
1546 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1547 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1548 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1549 return pud;
1550}
1551
1552#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1553static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1554{
1555 /*
1556 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1557 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1558 */
1559 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1560 return pgprot_val(SEGMENT_NONE);
1561 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1562 return pgprot_val(SEGMENT_RO);
1563 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1564 return pgprot_val(SEGMENT_RX);
1565 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1566 return pgprot_val(SEGMENT_RW);
1567 return pgprot_val(SEGMENT_RWX);
1568}
1569
1570static inline pmd_t pmd_mkyoung(pmd_t pmd)
1571{
1572 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1573 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1574 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1575 return pmd;
1576}
1577
1578static inline pmd_t pmd_mkold(pmd_t pmd)
1579{
1580 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1581 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1582}
1583
1584static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1585{
1586 unsigned long mask;
1587
1588 mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1589 mask |= _SEGMENT_ENTRY_DIRTY;
1590 mask |= _SEGMENT_ENTRY_YOUNG;
1591 mask |= _SEGMENT_ENTRY_LARGE;
1592 mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1593 pmd = __pmd(pmd_val(pmd) & mask);
1594 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1595 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1596 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1597 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1598 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1599 return pmd;
1600}
1601
1602static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1603{
1604 return __pmd(physpage + massage_pgprot_pmd(pgprot));
1605}
1606
1607#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1608
1609static inline void __pmdp_csp(pmd_t *pmdp)
1610{
1611 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1612 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1613}
1614
1615#define IDTE_GLOBAL 0
1616#define IDTE_LOCAL 1
1617
1618#define IDTE_PTOA 0x0800
1619#define IDTE_NODAT 0x1000
1620#define IDTE_GUEST_ASCE 0x2000
1621
1622static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1623 unsigned long opt, unsigned long asce,
1624 int local)
1625{
1626 unsigned long sto;
1627
1628 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1629 if (__builtin_constant_p(opt) && opt == 0) {
1630 /* flush without guest asce */
1631 asm volatile(
1632 " idte %[r1],0,%[r2],%[m4]"
1633 : "+m" (*pmdp)
1634 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1635 [m4] "i" (local)
1636 : "cc" );
1637 } else {
1638 /* flush with guest asce */
1639 asm volatile(
1640 " idte %[r1],%[r3],%[r2],%[m4]"
1641 : "+m" (*pmdp)
1642 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1643 [r3] "a" (asce), [m4] "i" (local)
1644 : "cc" );
1645 }
1646}
1647
1648static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1649 unsigned long opt, unsigned long asce,
1650 int local)
1651{
1652 unsigned long r3o;
1653
1654 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1655 r3o |= _ASCE_TYPE_REGION3;
1656 if (__builtin_constant_p(opt) && opt == 0) {
1657 /* flush without guest asce */
1658 asm volatile(
1659 " idte %[r1],0,%[r2],%[m4]"
1660 : "+m" (*pudp)
1661 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1662 [m4] "i" (local)
1663 : "cc");
1664 } else {
1665 /* flush with guest asce */
1666 asm volatile(
1667 " idte %[r1],%[r3],%[r2],%[m4]"
1668 : "+m" (*pudp)
1669 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1670 [r3] "a" (asce), [m4] "i" (local)
1671 : "cc" );
1672 }
1673}
1674
1675pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1676pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1677pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1678
1679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1680
1681#define __HAVE_ARCH_PGTABLE_DEPOSIT
1682void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1683 pgtable_t pgtable);
1684
1685#define __HAVE_ARCH_PGTABLE_WITHDRAW
1686pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1687
1688#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1689static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1690 unsigned long addr, pmd_t *pmdp,
1691 pmd_t entry, int dirty)
1692{
1693 VM_BUG_ON(addr & ~HPAGE_MASK);
1694
1695 entry = pmd_mkyoung(entry);
1696 if (dirty)
1697 entry = pmd_mkdirty(entry);
1698 if (pmd_val(*pmdp) == pmd_val(entry))
1699 return 0;
1700 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1701 return 1;
1702}
1703
1704#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1705static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1706 unsigned long addr, pmd_t *pmdp)
1707{
1708 pmd_t pmd = *pmdp;
1709
1710 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1711 return pmd_young(pmd);
1712}
1713
1714#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1715static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1716 unsigned long addr, pmd_t *pmdp)
1717{
1718 VM_BUG_ON(addr & ~HPAGE_MASK);
1719 return pmdp_test_and_clear_young(vma, addr, pmdp);
1720}
1721
1722static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1723 pmd_t *pmdp, pmd_t entry)
1724{
1725 if (!MACHINE_HAS_NX)
1726 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1727 set_pmd(pmdp, entry);
1728}
1729
1730static inline pmd_t pmd_mkhuge(pmd_t pmd)
1731{
1732 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1733 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1734 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1735}
1736
1737#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1738static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1739 unsigned long addr, pmd_t *pmdp)
1740{
1741 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1742}
1743
1744#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1745static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1746 unsigned long addr,
1747 pmd_t *pmdp, int full)
1748{
1749 if (full) {
1750 pmd_t pmd = *pmdp;
1751 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1752 return pmd;
1753 }
1754 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1755}
1756
1757#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1758static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1759 unsigned long addr, pmd_t *pmdp)
1760{
1761 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1762}
1763
1764#define __HAVE_ARCH_PMDP_INVALIDATE
1765static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1766 unsigned long addr, pmd_t *pmdp)
1767{
1768 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1769
1770 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1771}
1772
1773#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1774static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1775 unsigned long addr, pmd_t *pmdp)
1776{
1777 pmd_t pmd = *pmdp;
1778
1779 if (pmd_write(pmd))
1780 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1781}
1782
1783static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1784 unsigned long address,
1785 pmd_t *pmdp)
1786{
1787 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1788}
1789#define pmdp_collapse_flush pmdp_collapse_flush
1790
1791#define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1792#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1793
1794static inline int pmd_trans_huge(pmd_t pmd)
1795{
1796 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1797}
1798
1799#define has_transparent_hugepage has_transparent_hugepage
1800static inline int has_transparent_hugepage(void)
1801{
1802 return MACHINE_HAS_EDAT1 ? 1 : 0;
1803}
1804#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1805
1806/*
1807 * 64 bit swap entry format:
1808 * A page-table entry has some bits we have to treat in a special way.
1809 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1810 * as invalid.
1811 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1812 * | offset |E11XX|type |S0|
1813 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1814 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1815 *
1816 * Bits 0-51 store the offset.
1817 * Bit 52 (E) is used to remember PG_anon_exclusive.
1818 * Bits 57-61 store the type.
1819 * Bit 62 (S) is used for softdirty tracking.
1820 * Bits 55 and 56 (X) are unused.
1821 */
1822
1823#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1824#define __SWP_OFFSET_SHIFT 12
1825#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1826#define __SWP_TYPE_SHIFT 2
1827
1828static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1829{
1830 unsigned long pteval;
1831
1832 pteval = _PAGE_INVALID | _PAGE_PROTECT;
1833 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1834 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1835 return __pte(pteval);
1836}
1837
1838static inline unsigned long __swp_type(swp_entry_t entry)
1839{
1840 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1841}
1842
1843static inline unsigned long __swp_offset(swp_entry_t entry)
1844{
1845 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1846}
1847
1848static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1849{
1850 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1851}
1852
1853#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1854#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1855
1856extern int vmem_add_mapping(unsigned long start, unsigned long size);
1857extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1858extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1859extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1860extern void vmem_unmap_4k_page(unsigned long addr);
1861extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1862extern int s390_enable_sie(void);
1863extern int s390_enable_skey(void);
1864extern void s390_reset_cmma(struct mm_struct *mm);
1865
1866/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1867#define HAVE_ARCH_UNMAPPED_AREA
1868#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1869
1870#define pmd_pgtable(pmd) \
1871 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1872
1873#endif /* _S390_PAGE_H */