at v6.7 1873 lines 57 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * S390 version 4 * Copyright IBM Corp. 1999, 2000 5 * Author(s): Hartmut Penner (hp@de.ibm.com) 6 * Ulrich Weigand (weigand@de.ibm.com) 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 * 9 * Derived from "include/asm-i386/pgtable.h" 10 */ 11 12#ifndef _ASM_S390_PGTABLE_H 13#define _ASM_S390_PGTABLE_H 14 15#include <linux/sched.h> 16#include <linux/mm_types.h> 17#include <linux/page-flags.h> 18#include <linux/radix-tree.h> 19#include <linux/atomic.h> 20#include <asm/sections.h> 21#include <asm/ctlreg.h> 22#include <asm/bug.h> 23#include <asm/page.h> 24#include <asm/uv.h> 25 26extern pgd_t swapper_pg_dir[]; 27extern pgd_t invalid_pg_dir[]; 28extern void paging_init(void); 29extern struct ctlreg s390_invalid_asce; 30 31enum { 32 PG_DIRECT_MAP_4K = 0, 33 PG_DIRECT_MAP_1M, 34 PG_DIRECT_MAP_2G, 35 PG_DIRECT_MAP_MAX 36}; 37 38extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]); 39 40static inline void update_page_count(int level, long count) 41{ 42 if (IS_ENABLED(CONFIG_PROC_FS)) 43 atomic_long_add(count, &direct_pages_count[level]); 44} 45 46/* 47 * The S390 doesn't have any external MMU info: the kernel page 48 * tables contain all the necessary information. 49 */ 50#define update_mmu_cache(vma, address, ptep) do { } while (0) 51#define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0) 52#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 53 54/* 55 * ZERO_PAGE is a global shared page that is always zero; used 56 * for zero-mapped memory areas etc.. 57 */ 58 59extern unsigned long empty_zero_page; 60extern unsigned long zero_page_mask; 61 62#define ZERO_PAGE(vaddr) \ 63 (virt_to_page((void *)(empty_zero_page + \ 64 (((unsigned long)(vaddr)) &zero_page_mask)))) 65#define __HAVE_COLOR_ZERO_PAGE 66 67/* TODO: s390 cannot support io_remap_pfn_range... */ 68 69#define pte_ERROR(e) \ 70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 71#define pmd_ERROR(e) \ 72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 73#define pud_ERROR(e) \ 74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) 75#define p4d_ERROR(e) \ 76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e)) 77#define pgd_ERROR(e) \ 78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 79 80/* 81 * The vmalloc and module area will always be on the topmost area of the 82 * kernel mapping. 512GB are reserved for vmalloc by default. 83 * At the top of the vmalloc area a 2GB area is reserved where modules 84 * will reside. That makes sure that inter module branches always 85 * happen without trampolines and in addition the placement within a 86 * 2GB frame is branch prediction unit friendly. 87 */ 88extern unsigned long __bootdata_preserved(VMALLOC_START); 89extern unsigned long __bootdata_preserved(VMALLOC_END); 90#define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN) 91extern struct page *__bootdata_preserved(vmemmap); 92extern unsigned long __bootdata_preserved(vmemmap_size); 93 94extern unsigned long __bootdata_preserved(MODULES_VADDR); 95extern unsigned long __bootdata_preserved(MODULES_END); 96#define MODULES_VADDR MODULES_VADDR 97#define MODULES_END MODULES_END 98#define MODULES_LEN (1UL << 31) 99 100static inline int is_module_addr(void *addr) 101{ 102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 103 if (addr < (void *)MODULES_VADDR) 104 return 0; 105 if (addr > (void *)MODULES_END) 106 return 0; 107 return 1; 108} 109 110/* 111 * A 64 bit pagetable entry of S390 has following format: 112 * | PFRA |0IPC| OS | 113 * 0000000000111111111122222222223333333333444444444455555555556666 114 * 0123456789012345678901234567890123456789012345678901234567890123 115 * 116 * I Page-Invalid Bit: Page is not available for address-translation 117 * P Page-Protection Bit: Store access not possible for page 118 * C Change-bit override: HW is not required to set change bit 119 * 120 * A 64 bit segmenttable entry of S390 has following format: 121 * | P-table origin | TT 122 * 0000000000111111111122222222223333333333444444444455555555556666 123 * 0123456789012345678901234567890123456789012345678901234567890123 124 * 125 * I Segment-Invalid Bit: Segment is not available for address-translation 126 * C Common-Segment Bit: Segment is not private (PoP 3-30) 127 * P Page-Protection Bit: Store access not possible for page 128 * TT Type 00 129 * 130 * A 64 bit region table entry of S390 has following format: 131 * | S-table origin | TF TTTL 132 * 0000000000111111111122222222223333333333444444444455555555556666 133 * 0123456789012345678901234567890123456789012345678901234567890123 134 * 135 * I Segment-Invalid Bit: Segment is not available for address-translation 136 * TT Type 01 137 * TF 138 * TL Table length 139 * 140 * The 64 bit regiontable origin of S390 has following format: 141 * | region table origon | DTTL 142 * 0000000000111111111122222222223333333333444444444455555555556666 143 * 0123456789012345678901234567890123456789012345678901234567890123 144 * 145 * X Space-Switch event: 146 * G Segment-Invalid Bit: 147 * P Private-Space Bit: 148 * S Storage-Alteration: 149 * R Real space 150 * TL Table-Length: 151 * 152 * A storage key has the following format: 153 * | ACC |F|R|C|0| 154 * 0 3 4 5 6 7 155 * ACC: access key 156 * F : fetch protection bit 157 * R : referenced bit 158 * C : changed bit 159 */ 160 161/* Hardware bits in the page table entry */ 162#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */ 163#define _PAGE_PROTECT 0x200 /* HW read-only bit */ 164#define _PAGE_INVALID 0x400 /* HW invalid bit */ 165#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 166 167/* Software bits in the page table entry */ 168#define _PAGE_PRESENT 0x001 /* SW pte present bit */ 169#define _PAGE_YOUNG 0x004 /* SW pte young bit */ 170#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 171#define _PAGE_READ 0x010 /* SW pte read bit */ 172#define _PAGE_WRITE 0x020 /* SW pte write bit */ 173#define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 174#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 175 176#ifdef CONFIG_MEM_SOFT_DIRTY 177#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 178#else 179#define _PAGE_SOFT_DIRTY 0x000 180#endif 181 182#define _PAGE_SW_BITS 0xffUL /* All SW bits */ 183 184#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */ 185 186/* Set of bits not changed in pte_modify */ 187#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 188 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 189 190/* 191 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT 192 * HW bit and all SW bits. 193 */ 194#define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS) 195 196/* 197 * handle_pte_fault uses pte_present and pte_none to find out the pte type 198 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 199 * distinguish present from not-present ptes. It is changed only with the page 200 * table lock held. 201 * 202 * The following table gives the different possible bit combinations for 203 * the pte hardware and software bits in the last 12 bits of a pte 204 * (. unassigned bit, x don't care, t swap type): 205 * 206 * 842100000000 207 * 000084210000 208 * 000000008421 209 * .IR.uswrdy.p 210 * empty .10.00000000 211 * swap .11..ttttt.0 212 * prot-none, clean, old .11.xx0000.1 213 * prot-none, clean, young .11.xx0001.1 214 * prot-none, dirty, old .11.xx0010.1 215 * prot-none, dirty, young .11.xx0011.1 216 * read-only, clean, old .11.xx0100.1 217 * read-only, clean, young .01.xx0101.1 218 * read-only, dirty, old .11.xx0110.1 219 * read-only, dirty, young .01.xx0111.1 220 * read-write, clean, old .11.xx1100.1 221 * read-write, clean, young .01.xx1101.1 222 * read-write, dirty, old .10.xx1110.1 223 * read-write, dirty, young .00.xx1111.1 224 * HW-bits: R read-only, I invalid 225 * SW-bits: p present, y young, d dirty, r read, w write, s special, 226 * u unused, l large 227 * 228 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 229 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 230 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 231 */ 232 233/* Bits in the segment/region table address-space-control-element */ 234#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */ 235#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 236#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 237#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 238#define _ASCE_REAL_SPACE 0x20 /* real space control */ 239#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 240#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 241#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 242#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 243#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 244#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 245 246/* Bits in the region table entry */ 247#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 248#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 249#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */ 250#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ 251#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 252#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */ 253#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 254#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 255#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 256#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 257 258#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 259#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 260#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 261#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 262#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 263#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 264 265#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ 266#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ 267#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ 268#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ 269#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */ 270#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */ 271 272#ifdef CONFIG_MEM_SOFT_DIRTY 273#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */ 274#else 275#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ 276#endif 277 278#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL 279 280/* Bits in the segment table entry */ 281#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 282#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL 283#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL 284#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 285#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */ 286#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */ 287#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */ 288#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 289#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */ 290 291#define _SEGMENT_ENTRY (0) 292#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 293 294#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 295#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 296#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 297#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */ 298#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */ 299 300#ifdef CONFIG_MEM_SOFT_DIRTY 301#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 302#else 303#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 304#endif 305 306#define _CRST_ENTRIES 2048 /* number of region/segment table entries */ 307#define _PAGE_ENTRIES 256 /* number of page table entries */ 308 309#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8) 310#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8) 311 312#define _REGION1_SHIFT 53 313#define _REGION2_SHIFT 42 314#define _REGION3_SHIFT 31 315#define _SEGMENT_SHIFT 20 316 317#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT) 318#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT) 319#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT) 320#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT) 321#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT) 322 323#define _REGION1_SIZE (1UL << _REGION1_SHIFT) 324#define _REGION2_SIZE (1UL << _REGION2_SHIFT) 325#define _REGION3_SIZE (1UL << _REGION3_SHIFT) 326#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT) 327 328#define _REGION1_MASK (~(_REGION1_SIZE - 1)) 329#define _REGION2_MASK (~(_REGION2_SIZE - 1)) 330#define _REGION3_MASK (~(_REGION3_SIZE - 1)) 331#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1)) 332 333#define PMD_SHIFT _SEGMENT_SHIFT 334#define PUD_SHIFT _REGION3_SHIFT 335#define P4D_SHIFT _REGION2_SHIFT 336#define PGDIR_SHIFT _REGION1_SHIFT 337 338#define PMD_SIZE _SEGMENT_SIZE 339#define PUD_SIZE _REGION3_SIZE 340#define P4D_SIZE _REGION2_SIZE 341#define PGDIR_SIZE _REGION1_SIZE 342 343#define PMD_MASK _SEGMENT_MASK 344#define PUD_MASK _REGION3_MASK 345#define P4D_MASK _REGION2_MASK 346#define PGDIR_MASK _REGION1_MASK 347 348#define PTRS_PER_PTE _PAGE_ENTRIES 349#define PTRS_PER_PMD _CRST_ENTRIES 350#define PTRS_PER_PUD _CRST_ENTRIES 351#define PTRS_PER_P4D _CRST_ENTRIES 352#define PTRS_PER_PGD _CRST_ENTRIES 353 354/* 355 * Segment table and region3 table entry encoding 356 * (R = read-only, I = invalid, y = young bit): 357 * dy..R...I...wr 358 * prot-none, clean, old 00..1...1...00 359 * prot-none, clean, young 01..1...1...00 360 * prot-none, dirty, old 10..1...1...00 361 * prot-none, dirty, young 11..1...1...00 362 * read-only, clean, old 00..1...1...01 363 * read-only, clean, young 01..1...0...01 364 * read-only, dirty, old 10..1...1...01 365 * read-only, dirty, young 11..1...0...01 366 * read-write, clean, old 00..1...1...11 367 * read-write, clean, young 01..1...0...11 368 * read-write, dirty, old 10..0...1...11 369 * read-write, dirty, young 11..0...0...11 370 * The segment table origin is used to distinguish empty (origin==0) from 371 * read-write, old segment table entries (origin!=0) 372 * HW-bits: R read-only, I invalid 373 * SW-bits: y young, d dirty, r read, w write 374 */ 375 376/* Page status table bits for virtualization */ 377#define PGSTE_ACC_BITS 0xf000000000000000UL 378#define PGSTE_FP_BIT 0x0800000000000000UL 379#define PGSTE_PCL_BIT 0x0080000000000000UL 380#define PGSTE_HR_BIT 0x0040000000000000UL 381#define PGSTE_HC_BIT 0x0020000000000000UL 382#define PGSTE_GR_BIT 0x0004000000000000UL 383#define PGSTE_GC_BIT 0x0002000000000000UL 384#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 385#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 386#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ 387 388/* Guest Page State used for virtualization */ 389#define _PGSTE_GPS_ZERO 0x0000000080000000UL 390#define _PGSTE_GPS_NODAT 0x0000000040000000UL 391#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 392#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 393#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 394#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL 395#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK 396 397/* 398 * A user page table pointer has the space-switch-event bit, the 399 * private-space-control bit and the storage-alteration-event-control 400 * bit set. A kernel page table pointer doesn't need them. 401 */ 402#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 403 _ASCE_ALT_EVENT) 404 405/* 406 * Page protection definitions. 407 */ 408#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) 409#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 410 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 411#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 412 _PAGE_INVALID | _PAGE_PROTECT) 413#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 414 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 415#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 416 _PAGE_INVALID | _PAGE_PROTECT) 417 418#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 419 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 420#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 421 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 422#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 423 _PAGE_PROTECT | _PAGE_NOEXEC) 424#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 425 _PAGE_YOUNG | _PAGE_DIRTY) 426 427/* 428 * On s390 the page table entry has an invalid bit and a read-only bit. 429 * Read permission implies execute permission and write permission 430 * implies read permission. 431 */ 432 /*xwr*/ 433 434/* 435 * Segment entry (large page) protection definitions. 436 */ 437#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 438 _SEGMENT_ENTRY_PROTECT) 439#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \ 440 _SEGMENT_ENTRY_READ | \ 441 _SEGMENT_ENTRY_NOEXEC) 442#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \ 443 _SEGMENT_ENTRY_READ) 444#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \ 445 _SEGMENT_ENTRY_WRITE | \ 446 _SEGMENT_ENTRY_NOEXEC) 447#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \ 448 _SEGMENT_ENTRY_WRITE) 449#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \ 450 _SEGMENT_ENTRY_LARGE | \ 451 _SEGMENT_ENTRY_READ | \ 452 _SEGMENT_ENTRY_WRITE | \ 453 _SEGMENT_ENTRY_YOUNG | \ 454 _SEGMENT_ENTRY_DIRTY | \ 455 _SEGMENT_ENTRY_NOEXEC) 456#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \ 457 _SEGMENT_ENTRY_LARGE | \ 458 _SEGMENT_ENTRY_READ | \ 459 _SEGMENT_ENTRY_YOUNG | \ 460 _SEGMENT_ENTRY_PROTECT | \ 461 _SEGMENT_ENTRY_NOEXEC) 462#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \ 463 _SEGMENT_ENTRY_LARGE | \ 464 _SEGMENT_ENTRY_READ | \ 465 _SEGMENT_ENTRY_WRITE | \ 466 _SEGMENT_ENTRY_YOUNG | \ 467 _SEGMENT_ENTRY_DIRTY) 468 469/* 470 * Region3 entry (large page) protection definitions. 471 */ 472 473#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \ 474 _REGION3_ENTRY_LARGE | \ 475 _REGION3_ENTRY_READ | \ 476 _REGION3_ENTRY_WRITE | \ 477 _REGION3_ENTRY_YOUNG | \ 478 _REGION3_ENTRY_DIRTY | \ 479 _REGION_ENTRY_NOEXEC) 480#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \ 481 _REGION3_ENTRY_LARGE | \ 482 _REGION3_ENTRY_READ | \ 483 _REGION3_ENTRY_YOUNG | \ 484 _REGION_ENTRY_PROTECT | \ 485 _REGION_ENTRY_NOEXEC) 486#define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \ 487 _REGION3_ENTRY_LARGE | \ 488 _REGION3_ENTRY_READ | \ 489 _REGION3_ENTRY_WRITE | \ 490 _REGION3_ENTRY_YOUNG | \ 491 _REGION3_ENTRY_DIRTY) 492 493static inline bool mm_p4d_folded(struct mm_struct *mm) 494{ 495 return mm->context.asce_limit <= _REGION1_SIZE; 496} 497#define mm_p4d_folded(mm) mm_p4d_folded(mm) 498 499static inline bool mm_pud_folded(struct mm_struct *mm) 500{ 501 return mm->context.asce_limit <= _REGION2_SIZE; 502} 503#define mm_pud_folded(mm) mm_pud_folded(mm) 504 505static inline bool mm_pmd_folded(struct mm_struct *mm) 506{ 507 return mm->context.asce_limit <= _REGION3_SIZE; 508} 509#define mm_pmd_folded(mm) mm_pmd_folded(mm) 510 511static inline int mm_has_pgste(struct mm_struct *mm) 512{ 513#ifdef CONFIG_PGSTE 514 if (unlikely(mm->context.has_pgste)) 515 return 1; 516#endif 517 return 0; 518} 519 520static inline int mm_is_protected(struct mm_struct *mm) 521{ 522#ifdef CONFIG_PGSTE 523 if (unlikely(atomic_read(&mm->context.protected_count))) 524 return 1; 525#endif 526 return 0; 527} 528 529static inline int mm_alloc_pgste(struct mm_struct *mm) 530{ 531#ifdef CONFIG_PGSTE 532 if (unlikely(mm->context.alloc_pgste)) 533 return 1; 534#endif 535 return 0; 536} 537 538static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 539{ 540 return __pte(pte_val(pte) & ~pgprot_val(prot)); 541} 542 543static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 544{ 545 return __pte(pte_val(pte) | pgprot_val(prot)); 546} 547 548static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 549{ 550 return __pmd(pmd_val(pmd) & ~pgprot_val(prot)); 551} 552 553static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 554{ 555 return __pmd(pmd_val(pmd) | pgprot_val(prot)); 556} 557 558static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot) 559{ 560 return __pud(pud_val(pud) & ~pgprot_val(prot)); 561} 562 563static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot) 564{ 565 return __pud(pud_val(pud) | pgprot_val(prot)); 566} 567 568/* 569 * In the case that a guest uses storage keys 570 * faults should no longer be backed by zero pages 571 */ 572#define mm_forbids_zeropage mm_has_pgste 573static inline int mm_uses_skeys(struct mm_struct *mm) 574{ 575#ifdef CONFIG_PGSTE 576 if (mm->context.uses_skeys) 577 return 1; 578#endif 579 return 0; 580} 581 582static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) 583{ 584 union register_pair r1 = { .even = old, .odd = new, }; 585 unsigned long address = (unsigned long)ptr | 1; 586 587 asm volatile( 588 " csp %[r1],%[address]" 589 : [r1] "+&d" (r1.pair), "+m" (*ptr) 590 : [address] "d" (address) 591 : "cc"); 592} 593 594static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new) 595{ 596 union register_pair r1 = { .even = old, .odd = new, }; 597 unsigned long address = (unsigned long)ptr | 1; 598 599 asm volatile( 600 " cspg %[r1],%[address]" 601 : [r1] "+&d" (r1.pair), "+m" (*ptr) 602 : [address] "d" (address) 603 : "cc"); 604} 605 606#define CRDTE_DTT_PAGE 0x00UL 607#define CRDTE_DTT_SEGMENT 0x10UL 608#define CRDTE_DTT_REGION3 0x14UL 609#define CRDTE_DTT_REGION2 0x18UL 610#define CRDTE_DTT_REGION1 0x1cUL 611 612static inline void crdte(unsigned long old, unsigned long new, 613 unsigned long *table, unsigned long dtt, 614 unsigned long address, unsigned long asce) 615{ 616 union register_pair r1 = { .even = old, .odd = new, }; 617 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, }; 618 619 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0" 620 : [r1] "+&d" (r1.pair) 621 : [r2] "d" (r2.pair), [asce] "a" (asce) 622 : "memory", "cc"); 623} 624 625/* 626 * pgd/p4d/pud/pmd/pte query functions 627 */ 628static inline int pgd_folded(pgd_t pgd) 629{ 630 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1; 631} 632 633static inline int pgd_present(pgd_t pgd) 634{ 635 if (pgd_folded(pgd)) 636 return 1; 637 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 638} 639 640static inline int pgd_none(pgd_t pgd) 641{ 642 if (pgd_folded(pgd)) 643 return 0; 644 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 645} 646 647static inline int pgd_bad(pgd_t pgd) 648{ 649 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1) 650 return 0; 651 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0; 652} 653 654static inline unsigned long pgd_pfn(pgd_t pgd) 655{ 656 unsigned long origin_mask; 657 658 origin_mask = _REGION_ENTRY_ORIGIN; 659 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT; 660} 661 662static inline int p4d_folded(p4d_t p4d) 663{ 664 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2; 665} 666 667static inline int p4d_present(p4d_t p4d) 668{ 669 if (p4d_folded(p4d)) 670 return 1; 671 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL; 672} 673 674static inline int p4d_none(p4d_t p4d) 675{ 676 if (p4d_folded(p4d)) 677 return 0; 678 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY; 679} 680 681static inline unsigned long p4d_pfn(p4d_t p4d) 682{ 683 unsigned long origin_mask; 684 685 origin_mask = _REGION_ENTRY_ORIGIN; 686 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT; 687} 688 689static inline int pud_folded(pud_t pud) 690{ 691 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3; 692} 693 694static inline int pud_present(pud_t pud) 695{ 696 if (pud_folded(pud)) 697 return 1; 698 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 699} 700 701static inline int pud_none(pud_t pud) 702{ 703 if (pud_folded(pud)) 704 return 0; 705 return pud_val(pud) == _REGION3_ENTRY_EMPTY; 706} 707 708#define pud_leaf pud_large 709static inline int pud_large(pud_t pud) 710{ 711 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 712 return 0; 713 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 714} 715 716#define pmd_leaf pmd_large 717static inline int pmd_large(pmd_t pmd) 718{ 719 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 720} 721 722static inline int pmd_bad(pmd_t pmd) 723{ 724 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd)) 725 return 1; 726 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 727} 728 729static inline int pud_bad(pud_t pud) 730{ 731 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK; 732 733 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud)) 734 return 1; 735 if (type < _REGION_ENTRY_TYPE_R3) 736 return 0; 737 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; 738} 739 740static inline int p4d_bad(p4d_t p4d) 741{ 742 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK; 743 744 if (type > _REGION_ENTRY_TYPE_R2) 745 return 1; 746 if (type < _REGION_ENTRY_TYPE_R2) 747 return 0; 748 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0; 749} 750 751static inline int pmd_present(pmd_t pmd) 752{ 753 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY; 754} 755 756static inline int pmd_none(pmd_t pmd) 757{ 758 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY; 759} 760 761#define pmd_write pmd_write 762static inline int pmd_write(pmd_t pmd) 763{ 764 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 765} 766 767#define pud_write pud_write 768static inline int pud_write(pud_t pud) 769{ 770 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0; 771} 772 773static inline int pmd_dirty(pmd_t pmd) 774{ 775 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 776} 777 778#define pmd_young pmd_young 779static inline int pmd_young(pmd_t pmd) 780{ 781 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 782} 783 784static inline int pte_present(pte_t pte) 785{ 786 /* Bit pattern: (pte & 0x001) == 0x001 */ 787 return (pte_val(pte) & _PAGE_PRESENT) != 0; 788} 789 790static inline int pte_none(pte_t pte) 791{ 792 /* Bit pattern: pte == 0x400 */ 793 return pte_val(pte) == _PAGE_INVALID; 794} 795 796static inline int pte_swap(pte_t pte) 797{ 798 /* Bit pattern: (pte & 0x201) == 0x200 */ 799 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 800 == _PAGE_PROTECT; 801} 802 803static inline int pte_special(pte_t pte) 804{ 805 return (pte_val(pte) & _PAGE_SPECIAL); 806} 807 808#define __HAVE_ARCH_PTE_SAME 809static inline int pte_same(pte_t a, pte_t b) 810{ 811 return pte_val(a) == pte_val(b); 812} 813 814#ifdef CONFIG_NUMA_BALANCING 815static inline int pte_protnone(pte_t pte) 816{ 817 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 818} 819 820static inline int pmd_protnone(pmd_t pmd) 821{ 822 /* pmd_large(pmd) implies pmd_present(pmd) */ 823 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 824} 825#endif 826 827static inline int pte_swp_exclusive(pte_t pte) 828{ 829 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 830} 831 832static inline pte_t pte_swp_mkexclusive(pte_t pte) 833{ 834 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE)); 835} 836 837static inline pte_t pte_swp_clear_exclusive(pte_t pte) 838{ 839 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE)); 840} 841 842static inline int pte_soft_dirty(pte_t pte) 843{ 844 return pte_val(pte) & _PAGE_SOFT_DIRTY; 845} 846#define pte_swp_soft_dirty pte_soft_dirty 847 848static inline pte_t pte_mksoft_dirty(pte_t pte) 849{ 850 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY)); 851} 852#define pte_swp_mksoft_dirty pte_mksoft_dirty 853 854static inline pte_t pte_clear_soft_dirty(pte_t pte) 855{ 856 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY)); 857} 858#define pte_swp_clear_soft_dirty pte_clear_soft_dirty 859 860static inline int pmd_soft_dirty(pmd_t pmd) 861{ 862 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 863} 864 865static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 866{ 867 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY)); 868} 869 870static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 871{ 872 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY)); 873} 874 875/* 876 * query functions pte_write/pte_dirty/pte_young only work if 877 * pte_present() is true. Undefined behaviour if not.. 878 */ 879static inline int pte_write(pte_t pte) 880{ 881 return (pte_val(pte) & _PAGE_WRITE) != 0; 882} 883 884static inline int pte_dirty(pte_t pte) 885{ 886 return (pte_val(pte) & _PAGE_DIRTY) != 0; 887} 888 889static inline int pte_young(pte_t pte) 890{ 891 return (pte_val(pte) & _PAGE_YOUNG) != 0; 892} 893 894#define __HAVE_ARCH_PTE_UNUSED 895static inline int pte_unused(pte_t pte) 896{ 897 return pte_val(pte) & _PAGE_UNUSED; 898} 899 900/* 901 * Extract the pgprot value from the given pte while at the same time making it 902 * usable for kernel address space mappings where fault driven dirty and 903 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID 904 * must not be set. 905 */ 906static inline pgprot_t pte_pgprot(pte_t pte) 907{ 908 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK; 909 910 if (pte_write(pte)) 911 pte_flags |= pgprot_val(PAGE_KERNEL); 912 else 913 pte_flags |= pgprot_val(PAGE_KERNEL_RO); 914 pte_flags |= pte_val(pte) & mio_wb_bit_mask; 915 916 return __pgprot(pte_flags); 917} 918 919/* 920 * pgd/pmd/pte modification functions 921 */ 922 923static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 924{ 925 WRITE_ONCE(*pgdp, pgd); 926} 927 928static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 929{ 930 WRITE_ONCE(*p4dp, p4d); 931} 932 933static inline void set_pud(pud_t *pudp, pud_t pud) 934{ 935 WRITE_ONCE(*pudp, pud); 936} 937 938static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 939{ 940 WRITE_ONCE(*pmdp, pmd); 941} 942 943static inline void set_pte(pte_t *ptep, pte_t pte) 944{ 945 WRITE_ONCE(*ptep, pte); 946} 947 948static inline void pgd_clear(pgd_t *pgd) 949{ 950 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 951 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY)); 952} 953 954static inline void p4d_clear(p4d_t *p4d) 955{ 956 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 957 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY)); 958} 959 960static inline void pud_clear(pud_t *pud) 961{ 962 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 963 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY)); 964} 965 966static inline void pmd_clear(pmd_t *pmdp) 967{ 968 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 969} 970 971static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 972{ 973 set_pte(ptep, __pte(_PAGE_INVALID)); 974} 975 976/* 977 * The following pte modification functions only work if 978 * pte_present() is true. Undefined behaviour if not.. 979 */ 980static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 981{ 982 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK)); 983 pte = set_pte_bit(pte, newprot); 984 /* 985 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX 986 * has the invalid bit set, clear it again for readable, young pages 987 */ 988 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 989 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID)); 990 /* 991 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page 992 * protection bit set, clear it again for writable, dirty pages 993 */ 994 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 995 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 996 return pte; 997} 998 999static inline pte_t pte_wrprotect(pte_t pte) 1000{ 1001 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE)); 1002 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1003} 1004 1005static inline pte_t pte_mkwrite_novma(pte_t pte) 1006{ 1007 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE)); 1008 if (pte_val(pte) & _PAGE_DIRTY) 1009 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1010 return pte; 1011} 1012 1013static inline pte_t pte_mkclean(pte_t pte) 1014{ 1015 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY)); 1016 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1017} 1018 1019static inline pte_t pte_mkdirty(pte_t pte) 1020{ 1021 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY)); 1022 if (pte_val(pte) & _PAGE_WRITE) 1023 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1024 return pte; 1025} 1026 1027static inline pte_t pte_mkold(pte_t pte) 1028{ 1029 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG)); 1030 return set_pte_bit(pte, __pgprot(_PAGE_INVALID)); 1031} 1032 1033static inline pte_t pte_mkyoung(pte_t pte) 1034{ 1035 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG)); 1036 if (pte_val(pte) & _PAGE_READ) 1037 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID)); 1038 return pte; 1039} 1040 1041static inline pte_t pte_mkspecial(pte_t pte) 1042{ 1043 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL)); 1044} 1045 1046#ifdef CONFIG_HUGETLB_PAGE 1047static inline pte_t pte_mkhuge(pte_t pte) 1048{ 1049 return set_pte_bit(pte, __pgprot(_PAGE_LARGE)); 1050} 1051#endif 1052 1053#define IPTE_GLOBAL 0 1054#define IPTE_LOCAL 1 1055 1056#define IPTE_NODAT 0x400 1057#define IPTE_GUEST_ASCE 0x800 1058 1059static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep, 1060 unsigned long opt, unsigned long asce, 1061 int local) 1062{ 1063 unsigned long pto; 1064 1065 pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1); 1066 asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]" 1067 : "+m" (*ptep) 1068 : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt), 1069 [asce] "a" (asce), [m4] "i" (local)); 1070} 1071 1072static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep, 1073 unsigned long opt, unsigned long asce, 1074 int local) 1075{ 1076 unsigned long pto = __pa(ptep); 1077 1078 if (__builtin_constant_p(opt) && opt == 0) { 1079 /* Invalidation + TLB flush for the pte */ 1080 asm volatile( 1081 " ipte %[r1],%[r2],0,%[m4]" 1082 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address), 1083 [m4] "i" (local)); 1084 return; 1085 } 1086 1087 /* Invalidate ptes with options + TLB flush of the ptes */ 1088 opt = opt | (asce & _ASCE_ORIGIN); 1089 asm volatile( 1090 " ipte %[r1],%[r2],%[r3],%[m4]" 1091 : [r2] "+a" (address), [r3] "+a" (opt) 1092 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1093} 1094 1095static __always_inline void __ptep_ipte_range(unsigned long address, int nr, 1096 pte_t *ptep, int local) 1097{ 1098 unsigned long pto = __pa(ptep); 1099 1100 /* Invalidate a range of ptes + TLB flush of the ptes */ 1101 do { 1102 asm volatile( 1103 " ipte %[r1],%[r2],%[r3],%[m4]" 1104 : [r2] "+a" (address), [r3] "+a" (nr) 1105 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1106 } while (nr != 255); 1107} 1108 1109/* 1110 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1111 * both clear the TLB for the unmapped pte. The reason is that 1112 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1113 * to modify an active pte. The sequence is 1114 * 1) ptep_get_and_clear 1115 * 2) set_pte_at 1116 * 3) flush_tlb_range 1117 * On s390 the tlb needs to get flushed with the modification of the pte 1118 * if the pte is active. The only way how this can be implemented is to 1119 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1120 * is a nop. 1121 */ 1122pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); 1123pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); 1124 1125#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1126static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1127 unsigned long addr, pte_t *ptep) 1128{ 1129 pte_t pte = *ptep; 1130 1131 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); 1132 return pte_young(pte); 1133} 1134 1135#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1136static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1137 unsigned long address, pte_t *ptep) 1138{ 1139 return ptep_test_and_clear_young(vma, address, ptep); 1140} 1141 1142#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1143static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1144 unsigned long addr, pte_t *ptep) 1145{ 1146 pte_t res; 1147 1148 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1149 /* At this point the reference through the mapping is still present */ 1150 if (mm_is_protected(mm) && pte_present(res)) 1151 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK); 1152 return res; 1153} 1154 1155#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1156pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); 1157void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, 1158 pte_t *, pte_t, pte_t); 1159 1160#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1161static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1162 unsigned long addr, pte_t *ptep) 1163{ 1164 pte_t res; 1165 1166 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); 1167 /* At this point the reference through the mapping is still present */ 1168 if (mm_is_protected(vma->vm_mm) && pte_present(res)) 1169 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK); 1170 return res; 1171} 1172 1173/* 1174 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1175 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1176 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1177 * cannot be accessed while the batched unmap is running. In this case 1178 * full==1 and a simple pte_clear is enough. See tlb.h. 1179 */ 1180#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1181static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1182 unsigned long addr, 1183 pte_t *ptep, int full) 1184{ 1185 pte_t res; 1186 1187 if (full) { 1188 res = *ptep; 1189 set_pte(ptep, __pte(_PAGE_INVALID)); 1190 } else { 1191 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1192 } 1193 /* Nothing to do */ 1194 if (!mm_is_protected(mm) || !pte_present(res)) 1195 return res; 1196 /* 1197 * At this point the reference through the mapping is still present. 1198 * The notifier should have destroyed all protected vCPUs at this 1199 * point, so the destroy should be successful. 1200 */ 1201 if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK)) 1202 return res; 1203 /* 1204 * If something went wrong and the page could not be destroyed, or 1205 * if this is not a mm teardown, the slower export is used as 1206 * fallback instead. 1207 */ 1208 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK); 1209 return res; 1210} 1211 1212#define __HAVE_ARCH_PTEP_SET_WRPROTECT 1213static inline void ptep_set_wrprotect(struct mm_struct *mm, 1214 unsigned long addr, pte_t *ptep) 1215{ 1216 pte_t pte = *ptep; 1217 1218 if (pte_write(pte)) 1219 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); 1220} 1221 1222/* 1223 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE 1224 * bits in the comparison. Those might change e.g. because of dirty and young 1225 * tracking. 1226 */ 1227static inline int pte_allow_rdp(pte_t old, pte_t new) 1228{ 1229 /* 1230 * Only allow changes from RO to RW 1231 */ 1232 if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT) 1233 return 0; 1234 1235 return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK); 1236} 1237 1238static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma, 1239 unsigned long address, 1240 pte_t *ptep) 1241{ 1242 /* 1243 * RDP might not have propagated the PTE protection reset to all CPUs, 1244 * so there could be spurious TLB protection faults. 1245 * NOTE: This will also be called when a racing pagetable update on 1246 * another thread already installed the correct PTE. Both cases cannot 1247 * really be distinguished. 1248 * Therefore, only do the local TLB flush when RDP can be used, and the 1249 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead. 1250 * A local RDP can be used to do the flush. 1251 */ 1252 if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT)) 1253 __ptep_rdp(address, ptep, 0, 0, 1); 1254} 1255#define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault 1256 1257void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep, 1258 pte_t new); 1259 1260#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1261static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1262 unsigned long addr, pte_t *ptep, 1263 pte_t entry, int dirty) 1264{ 1265 if (pte_same(*ptep, entry)) 1266 return 0; 1267 if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry)) 1268 ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry); 1269 else 1270 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); 1271 return 1; 1272} 1273 1274/* 1275 * Additional functions to handle KVM guest page tables 1276 */ 1277void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, 1278 pte_t *ptep, pte_t entry); 1279void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1280void ptep_notify(struct mm_struct *mm, unsigned long addr, 1281 pte_t *ptep, unsigned long bits); 1282int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, 1283 pte_t *ptep, int prot, unsigned long bit); 1284void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, 1285 pte_t *ptep , int reset); 1286void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1287int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, 1288 pte_t *sptep, pte_t *tptep, pte_t pte); 1289void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); 1290 1291bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address, 1292 pte_t *ptep); 1293int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1294 unsigned char key, bool nq); 1295int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1296 unsigned char key, unsigned char *oldkey, 1297 bool nq, bool mr, bool mc); 1298int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); 1299int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1300 unsigned char *key); 1301 1302int set_pgste_bits(struct mm_struct *mm, unsigned long addr, 1303 unsigned long bits, unsigned long value); 1304int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep); 1305int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc, 1306 unsigned long *oldpte, unsigned long *oldpgste); 1307void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr); 1308void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr); 1309void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr); 1310void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr); 1311 1312#define pgprot_writecombine pgprot_writecombine 1313pgprot_t pgprot_writecombine(pgprot_t prot); 1314 1315#define pgprot_writethrough pgprot_writethrough 1316pgprot_t pgprot_writethrough(pgprot_t prot); 1317 1318/* 1319 * Set multiple PTEs to consecutive pages with a single call. All PTEs 1320 * are within the same folio, PMD and VMA. 1321 */ 1322static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 1323 pte_t *ptep, pte_t entry, unsigned int nr) 1324{ 1325 if (pte_present(entry)) 1326 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED)); 1327 if (mm_has_pgste(mm)) { 1328 for (;;) { 1329 ptep_set_pte_at(mm, addr, ptep, entry); 1330 if (--nr == 0) 1331 break; 1332 ptep++; 1333 entry = __pte(pte_val(entry) + PAGE_SIZE); 1334 addr += PAGE_SIZE; 1335 } 1336 } else { 1337 for (;;) { 1338 set_pte(ptep, entry); 1339 if (--nr == 0) 1340 break; 1341 ptep++; 1342 entry = __pte(pte_val(entry) + PAGE_SIZE); 1343 } 1344 } 1345} 1346#define set_ptes set_ptes 1347 1348/* 1349 * Conversion functions: convert a page and protection to a page entry, 1350 * and a page entry and page directory to the page they refer to. 1351 */ 1352static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1353{ 1354 pte_t __pte; 1355 1356 __pte = __pte(physpage | pgprot_val(pgprot)); 1357 if (!MACHINE_HAS_NX) 1358 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC)); 1359 return pte_mkyoung(__pte); 1360} 1361 1362static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1363{ 1364 unsigned long physpage = page_to_phys(page); 1365 pte_t __pte = mk_pte_phys(physpage, pgprot); 1366 1367 if (pte_write(__pte) && PageDirty(page)) 1368 __pte = pte_mkdirty(__pte); 1369 return __pte; 1370} 1371 1372#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1373#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1)) 1374#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1375#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1376 1377#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN)) 1378#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN)) 1379 1380static inline unsigned long pmd_deref(pmd_t pmd) 1381{ 1382 unsigned long origin_mask; 1383 1384 origin_mask = _SEGMENT_ENTRY_ORIGIN; 1385 if (pmd_large(pmd)) 1386 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 1387 return (unsigned long)__va(pmd_val(pmd) & origin_mask); 1388} 1389 1390static inline unsigned long pmd_pfn(pmd_t pmd) 1391{ 1392 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT; 1393} 1394 1395static inline unsigned long pud_deref(pud_t pud) 1396{ 1397 unsigned long origin_mask; 1398 1399 origin_mask = _REGION_ENTRY_ORIGIN; 1400 if (pud_large(pud)) 1401 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; 1402 return (unsigned long)__va(pud_val(pud) & origin_mask); 1403} 1404 1405static inline unsigned long pud_pfn(pud_t pud) 1406{ 1407 return __pa(pud_deref(pud)) >> PAGE_SHIFT; 1408} 1409 1410/* 1411 * The pgd_offset function *always* adds the index for the top-level 1412 * region/segment table. This is done to get a sequence like the 1413 * following to work: 1414 * pgdp = pgd_offset(current->mm, addr); 1415 * pgd = READ_ONCE(*pgdp); 1416 * p4dp = p4d_offset(&pgd, addr); 1417 * ... 1418 * The subsequent p4d_offset, pud_offset and pmd_offset functions 1419 * only add an index if they dereferenced the pointer. 1420 */ 1421static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address) 1422{ 1423 unsigned long rste; 1424 unsigned int shift; 1425 1426 /* Get the first entry of the top level table */ 1427 rste = pgd_val(*pgd); 1428 /* Pick up the shift from the table type of the first entry */ 1429 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20; 1430 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1)); 1431} 1432 1433#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address) 1434 1435static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address) 1436{ 1437 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1) 1438 return (p4d_t *) pgd_deref(pgd) + p4d_index(address); 1439 return (p4d_t *) pgdp; 1440} 1441#define p4d_offset_lockless p4d_offset_lockless 1442 1443static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address) 1444{ 1445 return p4d_offset_lockless(pgdp, *pgdp, address); 1446} 1447 1448static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address) 1449{ 1450 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2) 1451 return (pud_t *) p4d_deref(p4d) + pud_index(address); 1452 return (pud_t *) p4dp; 1453} 1454#define pud_offset_lockless pud_offset_lockless 1455 1456static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address) 1457{ 1458 return pud_offset_lockless(p4dp, *p4dp, address); 1459} 1460#define pud_offset pud_offset 1461 1462static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address) 1463{ 1464 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3) 1465 return (pmd_t *) pud_deref(pud) + pmd_index(address); 1466 return (pmd_t *) pudp; 1467} 1468#define pmd_offset_lockless pmd_offset_lockless 1469 1470static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address) 1471{ 1472 return pmd_offset_lockless(pudp, *pudp, address); 1473} 1474#define pmd_offset pmd_offset 1475 1476static inline unsigned long pmd_page_vaddr(pmd_t pmd) 1477{ 1478 return (unsigned long) pmd_deref(pmd); 1479} 1480 1481static inline bool gup_fast_permitted(unsigned long start, unsigned long end) 1482{ 1483 return end <= current->mm->context.asce_limit; 1484} 1485#define gup_fast_permitted gup_fast_permitted 1486 1487#define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot)) 1488#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1489#define pte_page(x) pfn_to_page(pte_pfn(x)) 1490 1491#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1492#define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1493#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 1494#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1495 1496static inline pmd_t pmd_wrprotect(pmd_t pmd) 1497{ 1498 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE)); 1499 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1500} 1501 1502static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) 1503{ 1504 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE)); 1505 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) 1506 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1507 return pmd; 1508} 1509 1510static inline pmd_t pmd_mkclean(pmd_t pmd) 1511{ 1512 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY)); 1513 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1514} 1515 1516static inline pmd_t pmd_mkdirty(pmd_t pmd) 1517{ 1518 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY)); 1519 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1520 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1521 return pmd; 1522} 1523 1524static inline pud_t pud_wrprotect(pud_t pud) 1525{ 1526 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE)); 1527 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1528} 1529 1530static inline pud_t pud_mkwrite(pud_t pud) 1531{ 1532 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE)); 1533 if (pud_val(pud) & _REGION3_ENTRY_DIRTY) 1534 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1535 return pud; 1536} 1537 1538static inline pud_t pud_mkclean(pud_t pud) 1539{ 1540 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY)); 1541 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1542} 1543 1544static inline pud_t pud_mkdirty(pud_t pud) 1545{ 1546 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY)); 1547 if (pud_val(pud) & _REGION3_ENTRY_WRITE) 1548 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1549 return pud; 1550} 1551 1552#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1553static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1554{ 1555 /* 1556 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX 1557 * (see __Pxxx / __Sxxx). Convert to segment table entry format. 1558 */ 1559 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1560 return pgprot_val(SEGMENT_NONE); 1561 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1562 return pgprot_val(SEGMENT_RO); 1563 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX)) 1564 return pgprot_val(SEGMENT_RX); 1565 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW)) 1566 return pgprot_val(SEGMENT_RW); 1567 return pgprot_val(SEGMENT_RWX); 1568} 1569 1570static inline pmd_t pmd_mkyoung(pmd_t pmd) 1571{ 1572 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1573 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1574 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1575 return pmd; 1576} 1577 1578static inline pmd_t pmd_mkold(pmd_t pmd) 1579{ 1580 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1581 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1582} 1583 1584static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1585{ 1586 unsigned long mask; 1587 1588 mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 1589 mask |= _SEGMENT_ENTRY_DIRTY; 1590 mask |= _SEGMENT_ENTRY_YOUNG; 1591 mask |= _SEGMENT_ENTRY_LARGE; 1592 mask |= _SEGMENT_ENTRY_SOFT_DIRTY; 1593 pmd = __pmd(pmd_val(pmd) & mask); 1594 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot))); 1595 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1596 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1597 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1598 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1599 return pmd; 1600} 1601 1602static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1603{ 1604 return __pmd(physpage + massage_pgprot_pmd(pgprot)); 1605} 1606 1607#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1608 1609static inline void __pmdp_csp(pmd_t *pmdp) 1610{ 1611 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), 1612 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1613} 1614 1615#define IDTE_GLOBAL 0 1616#define IDTE_LOCAL 1 1617 1618#define IDTE_PTOA 0x0800 1619#define IDTE_NODAT 0x1000 1620#define IDTE_GUEST_ASCE 0x2000 1621 1622static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp, 1623 unsigned long opt, unsigned long asce, 1624 int local) 1625{ 1626 unsigned long sto; 1627 1628 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t); 1629 if (__builtin_constant_p(opt) && opt == 0) { 1630 /* flush without guest asce */ 1631 asm volatile( 1632 " idte %[r1],0,%[r2],%[m4]" 1633 : "+m" (*pmdp) 1634 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)), 1635 [m4] "i" (local) 1636 : "cc" ); 1637 } else { 1638 /* flush with guest asce */ 1639 asm volatile( 1640 " idte %[r1],%[r3],%[r2],%[m4]" 1641 : "+m" (*pmdp) 1642 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt), 1643 [r3] "a" (asce), [m4] "i" (local) 1644 : "cc" ); 1645 } 1646} 1647 1648static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp, 1649 unsigned long opt, unsigned long asce, 1650 int local) 1651{ 1652 unsigned long r3o; 1653 1654 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t); 1655 r3o |= _ASCE_TYPE_REGION3; 1656 if (__builtin_constant_p(opt) && opt == 0) { 1657 /* flush without guest asce */ 1658 asm volatile( 1659 " idte %[r1],0,%[r2],%[m4]" 1660 : "+m" (*pudp) 1661 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)), 1662 [m4] "i" (local) 1663 : "cc"); 1664 } else { 1665 /* flush with guest asce */ 1666 asm volatile( 1667 " idte %[r1],%[r3],%[r2],%[m4]" 1668 : "+m" (*pudp) 1669 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt), 1670 [r3] "a" (asce), [m4] "i" (local) 1671 : "cc" ); 1672 } 1673} 1674 1675pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1676pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1677pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); 1678 1679#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1680 1681#define __HAVE_ARCH_PGTABLE_DEPOSIT 1682void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1683 pgtable_t pgtable); 1684 1685#define __HAVE_ARCH_PGTABLE_WITHDRAW 1686pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1687 1688#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1689static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1690 unsigned long addr, pmd_t *pmdp, 1691 pmd_t entry, int dirty) 1692{ 1693 VM_BUG_ON(addr & ~HPAGE_MASK); 1694 1695 entry = pmd_mkyoung(entry); 1696 if (dirty) 1697 entry = pmd_mkdirty(entry); 1698 if (pmd_val(*pmdp) == pmd_val(entry)) 1699 return 0; 1700 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); 1701 return 1; 1702} 1703 1704#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1705static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1706 unsigned long addr, pmd_t *pmdp) 1707{ 1708 pmd_t pmd = *pmdp; 1709 1710 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); 1711 return pmd_young(pmd); 1712} 1713 1714#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1715static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 1716 unsigned long addr, pmd_t *pmdp) 1717{ 1718 VM_BUG_ON(addr & ~HPAGE_MASK); 1719 return pmdp_test_and_clear_young(vma, addr, pmdp); 1720} 1721 1722static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1723 pmd_t *pmdp, pmd_t entry) 1724{ 1725 if (!MACHINE_HAS_NX) 1726 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC)); 1727 set_pmd(pmdp, entry); 1728} 1729 1730static inline pmd_t pmd_mkhuge(pmd_t pmd) 1731{ 1732 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE)); 1733 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1734 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1735} 1736 1737#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1738static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1739 unsigned long addr, pmd_t *pmdp) 1740{ 1741 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1742} 1743 1744#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1745static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 1746 unsigned long addr, 1747 pmd_t *pmdp, int full) 1748{ 1749 if (full) { 1750 pmd_t pmd = *pmdp; 1751 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1752 return pmd; 1753 } 1754 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1755} 1756 1757#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1758static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1759 unsigned long addr, pmd_t *pmdp) 1760{ 1761 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 1762} 1763 1764#define __HAVE_ARCH_PMDP_INVALIDATE 1765static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma, 1766 unsigned long addr, pmd_t *pmdp) 1767{ 1768 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1769 1770 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd); 1771} 1772 1773#define __HAVE_ARCH_PMDP_SET_WRPROTECT 1774static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1775 unsigned long addr, pmd_t *pmdp) 1776{ 1777 pmd_t pmd = *pmdp; 1778 1779 if (pmd_write(pmd)) 1780 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); 1781} 1782 1783static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1784 unsigned long address, 1785 pmd_t *pmdp) 1786{ 1787 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1788} 1789#define pmdp_collapse_flush pmdp_collapse_flush 1790 1791#define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot)) 1792#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1793 1794static inline int pmd_trans_huge(pmd_t pmd) 1795{ 1796 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1797} 1798 1799#define has_transparent_hugepage has_transparent_hugepage 1800static inline int has_transparent_hugepage(void) 1801{ 1802 return MACHINE_HAS_EDAT1 ? 1 : 0; 1803} 1804#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1805 1806/* 1807 * 64 bit swap entry format: 1808 * A page-table entry has some bits we have to treat in a special way. 1809 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte 1810 * as invalid. 1811 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1812 * | offset |E11XX|type |S0| 1813 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1814 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1815 * 1816 * Bits 0-51 store the offset. 1817 * Bit 52 (E) is used to remember PG_anon_exclusive. 1818 * Bits 57-61 store the type. 1819 * Bit 62 (S) is used for softdirty tracking. 1820 * Bits 55 and 56 (X) are unused. 1821 */ 1822 1823#define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1824#define __SWP_OFFSET_SHIFT 12 1825#define __SWP_TYPE_MASK ((1UL << 5) - 1) 1826#define __SWP_TYPE_SHIFT 2 1827 1828static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1829{ 1830 unsigned long pteval; 1831 1832 pteval = _PAGE_INVALID | _PAGE_PROTECT; 1833 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1834 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1835 return __pte(pteval); 1836} 1837 1838static inline unsigned long __swp_type(swp_entry_t entry) 1839{ 1840 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1841} 1842 1843static inline unsigned long __swp_offset(swp_entry_t entry) 1844{ 1845 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1846} 1847 1848static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1849{ 1850 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1851} 1852 1853#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1854#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1855 1856extern int vmem_add_mapping(unsigned long start, unsigned long size); 1857extern void vmem_remove_mapping(unsigned long start, unsigned long size); 1858extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc); 1859extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot); 1860extern void vmem_unmap_4k_page(unsigned long addr); 1861extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc); 1862extern int s390_enable_sie(void); 1863extern int s390_enable_skey(void); 1864extern void s390_reset_cmma(struct mm_struct *mm); 1865 1866/* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1867#define HAVE_ARCH_UNMAPPED_AREA 1868#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1869 1870#define pmd_pgtable(pmd) \ 1871 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE)) 1872 1873#endif /* _S390_PAGE_H */