Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6#ifndef _ASM_RISCV_PGTABLE_H
7#define _ASM_RISCV_PGTABLE_H
8
9#include <linux/mmzone.h>
10#include <linux/sizes.h>
11
12#include <asm/pgtable-bits.h>
13
14#ifndef CONFIG_MMU
15#define KERNEL_LINK_ADDR PAGE_OFFSET
16#define KERN_VIRT_SIZE (UL(-1))
17#else
18
19#define ADDRESS_SPACE_END (UL(-1))
20
21#ifdef CONFIG_64BIT
22/* Leave 2GB for kernel and BPF at the end of the address space */
23#define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
24#else
25#define KERNEL_LINK_ADDR PAGE_OFFSET
26#endif
27
28/* Number of entries in the page global directory */
29#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
30/* Number of entries in the page table */
31#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
32
33/*
34 * Half of the kernel address space (1/4 of the entries of the page global
35 * directory) is for the direct mapping.
36 */
37#define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38
39#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
40#define VMALLOC_END PAGE_OFFSET
41#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
42
43#define BPF_JIT_REGION_SIZE (SZ_128M)
44#ifdef CONFIG_64BIT
45#define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46#define BPF_JIT_REGION_END (MODULES_END)
47#else
48#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49#define BPF_JIT_REGION_END (VMALLOC_END)
50#endif
51
52/* Modules always live before the kernel */
53#ifdef CONFIG_64BIT
54/* This is used to define the end of the KASAN shadow region */
55#define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G)
56#define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57#define MODULES_END (PFN_ALIGN((unsigned long)&_start))
58#endif
59
60/*
61 * Roughly size the vmemmap space to be large enough to fit enough
62 * struct pages to map half the virtual address space. Then
63 * position vmemmap directly below the VMALLOC region.
64 */
65#define VA_BITS_SV32 32
66#ifdef CONFIG_64BIT
67#define VA_BITS_SV39 39
68#define VA_BITS_SV48 48
69#define VA_BITS_SV57 57
70
71#define VA_BITS (pgtable_l5_enabled ? \
72 VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
73#else
74#define VA_BITS VA_BITS_SV32
75#endif
76
77#define VMEMMAP_SHIFT \
78 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
79#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
80#define VMEMMAP_END VMALLOC_START
81#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
82
83/*
84 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
85 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
86 */
87#define vmemmap ((struct page *)VMEMMAP_START)
88
89#define PCI_IO_SIZE SZ_16M
90#define PCI_IO_END VMEMMAP_START
91#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
92
93#define FIXADDR_TOP PCI_IO_START
94#ifdef CONFIG_64BIT
95#define MAX_FDT_SIZE PMD_SIZE
96#define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M)
97#define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE)
98#else
99#define MAX_FDT_SIZE PGDIR_SIZE
100#define FIX_FDT_SIZE MAX_FDT_SIZE
101#define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE)
102#endif
103#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
104
105#endif
106
107#ifdef CONFIG_XIP_KERNEL
108#define XIP_OFFSET SZ_32M
109#define XIP_OFFSET_MASK (SZ_32M - 1)
110#else
111#define XIP_OFFSET 0
112#endif
113
114#ifndef __ASSEMBLY__
115
116#include <asm/page.h>
117#include <asm/tlbflush.h>
118#include <linux/mm_types.h>
119#include <asm/compat.h>
120
121#define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
122
123#ifdef CONFIG_64BIT
124#include <asm/pgtable-64.h>
125
126#define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
127#define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
128#define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
129
130#ifdef CONFIG_COMPAT
131#define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
132#define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
133#define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
134#define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
135#else
136#define MMAP_VA_BITS ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
137#define MMAP_MIN_VA_BITS (VA_BITS_SV39)
138#endif /* CONFIG_COMPAT */
139
140#else
141#include <asm/pgtable-32.h>
142#endif /* CONFIG_64BIT */
143
144#include <linux/page_table_check.h>
145
146#ifdef CONFIG_XIP_KERNEL
147#define XIP_FIXUP(addr) ({ \
148 uintptr_t __a = (uintptr_t)(addr); \
149 (__a >= CONFIG_XIP_PHYS_ADDR && \
150 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \
151 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
152 __a; \
153 })
154#else
155#define XIP_FIXUP(addr) (addr)
156#endif /* CONFIG_XIP_KERNEL */
157
158struct pt_alloc_ops {
159 pte_t *(*get_pte_virt)(phys_addr_t pa);
160 phys_addr_t (*alloc_pte)(uintptr_t va);
161#ifndef __PAGETABLE_PMD_FOLDED
162 pmd_t *(*get_pmd_virt)(phys_addr_t pa);
163 phys_addr_t (*alloc_pmd)(uintptr_t va);
164 pud_t *(*get_pud_virt)(phys_addr_t pa);
165 phys_addr_t (*alloc_pud)(uintptr_t va);
166 p4d_t *(*get_p4d_virt)(phys_addr_t pa);
167 phys_addr_t (*alloc_p4d)(uintptr_t va);
168#endif
169};
170
171extern struct pt_alloc_ops pt_ops __initdata;
172
173#ifdef CONFIG_MMU
174/* Number of PGD entries that a user-mode program can use */
175#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
176
177/* Page protection bits */
178#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
179
180#define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
181#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
182#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
183#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
184#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
185#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
186 _PAGE_EXEC | _PAGE_WRITE)
187
188#define PAGE_COPY PAGE_READ
189#define PAGE_COPY_EXEC PAGE_READ_EXEC
190#define PAGE_SHARED PAGE_WRITE
191#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
192
193#define _PAGE_KERNEL (_PAGE_READ \
194 | _PAGE_WRITE \
195 | _PAGE_PRESENT \
196 | _PAGE_ACCESSED \
197 | _PAGE_DIRTY \
198 | _PAGE_GLOBAL)
199
200#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
201#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
202#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
203#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
204 | _PAGE_EXEC)
205
206#define PAGE_TABLE __pgprot(_PAGE_TABLE)
207
208#define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
209#define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP)
210
211extern pgd_t swapper_pg_dir[];
212extern pgd_t trampoline_pg_dir[];
213extern pgd_t early_pg_dir[];
214
215#ifdef CONFIG_TRANSPARENT_HUGEPAGE
216static inline int pmd_present(pmd_t pmd)
217{
218 /*
219 * Checking for _PAGE_LEAF is needed too because:
220 * When splitting a THP, split_huge_page() will temporarily clear
221 * the present bit, in this situation, pmd_present() and
222 * pmd_trans_huge() still needs to return true.
223 */
224 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
225}
226#else
227static inline int pmd_present(pmd_t pmd)
228{
229 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
230}
231#endif
232
233static inline int pmd_none(pmd_t pmd)
234{
235 return (pmd_val(pmd) == 0);
236}
237
238static inline int pmd_bad(pmd_t pmd)
239{
240 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
241}
242
243#define pmd_leaf pmd_leaf
244static inline int pmd_leaf(pmd_t pmd)
245{
246 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
247}
248
249static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
250{
251 *pmdp = pmd;
252}
253
254static inline void pmd_clear(pmd_t *pmdp)
255{
256 set_pmd(pmdp, __pmd(0));
257}
258
259static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
260{
261 unsigned long prot_val = pgprot_val(prot);
262
263 ALT_THEAD_PMA(prot_val);
264
265 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
266}
267
268static inline unsigned long _pgd_pfn(pgd_t pgd)
269{
270 return __page_val_to_pfn(pgd_val(pgd));
271}
272
273static inline struct page *pmd_page(pmd_t pmd)
274{
275 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
276}
277
278static inline unsigned long pmd_page_vaddr(pmd_t pmd)
279{
280 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
281}
282
283static inline pte_t pmd_pte(pmd_t pmd)
284{
285 return __pte(pmd_val(pmd));
286}
287
288static inline pte_t pud_pte(pud_t pud)
289{
290 return __pte(pud_val(pud));
291}
292
293#ifdef CONFIG_RISCV_ISA_SVNAPOT
294#include <asm/cpufeature.h>
295
296static __always_inline bool has_svnapot(void)
297{
298 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
299}
300
301static inline unsigned long pte_napot(pte_t pte)
302{
303 return pte_val(pte) & _PAGE_NAPOT;
304}
305
306static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
307{
308 int pos = order - 1 + _PAGE_PFN_SHIFT;
309 unsigned long napot_bit = BIT(pos);
310 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
311
312 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
313}
314
315#else
316
317static __always_inline bool has_svnapot(void) { return false; }
318
319static inline unsigned long pte_napot(pte_t pte)
320{
321 return 0;
322}
323
324#endif /* CONFIG_RISCV_ISA_SVNAPOT */
325
326/* Yields the page frame number (PFN) of a page table entry */
327static inline unsigned long pte_pfn(pte_t pte)
328{
329 unsigned long res = __page_val_to_pfn(pte_val(pte));
330
331 if (has_svnapot() && pte_napot(pte))
332 res = res & (res - 1UL);
333
334 return res;
335}
336
337#define pte_page(x) pfn_to_page(pte_pfn(x))
338
339/* Constructs a page table entry */
340static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
341{
342 unsigned long prot_val = pgprot_val(prot);
343
344 ALT_THEAD_PMA(prot_val);
345
346 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
347}
348
349#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
350
351static inline int pte_present(pte_t pte)
352{
353 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
354}
355
356static inline int pte_none(pte_t pte)
357{
358 return (pte_val(pte) == 0);
359}
360
361static inline int pte_write(pte_t pte)
362{
363 return pte_val(pte) & _PAGE_WRITE;
364}
365
366static inline int pte_exec(pte_t pte)
367{
368 return pte_val(pte) & _PAGE_EXEC;
369}
370
371static inline int pte_user(pte_t pte)
372{
373 return pte_val(pte) & _PAGE_USER;
374}
375
376static inline int pte_huge(pte_t pte)
377{
378 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
379}
380
381static inline int pte_dirty(pte_t pte)
382{
383 return pte_val(pte) & _PAGE_DIRTY;
384}
385
386static inline int pte_young(pte_t pte)
387{
388 return pte_val(pte) & _PAGE_ACCESSED;
389}
390
391static inline int pte_special(pte_t pte)
392{
393 return pte_val(pte) & _PAGE_SPECIAL;
394}
395
396/* static inline pte_t pte_rdprotect(pte_t pte) */
397
398static inline pte_t pte_wrprotect(pte_t pte)
399{
400 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
401}
402
403/* static inline pte_t pte_mkread(pte_t pte) */
404
405static inline pte_t pte_mkwrite_novma(pte_t pte)
406{
407 return __pte(pte_val(pte) | _PAGE_WRITE);
408}
409
410/* static inline pte_t pte_mkexec(pte_t pte) */
411
412static inline pte_t pte_mkdirty(pte_t pte)
413{
414 return __pte(pte_val(pte) | _PAGE_DIRTY);
415}
416
417static inline pte_t pte_mkclean(pte_t pte)
418{
419 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
420}
421
422static inline pte_t pte_mkyoung(pte_t pte)
423{
424 return __pte(pte_val(pte) | _PAGE_ACCESSED);
425}
426
427static inline pte_t pte_mkold(pte_t pte)
428{
429 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
430}
431
432static inline pte_t pte_mkspecial(pte_t pte)
433{
434 return __pte(pte_val(pte) | _PAGE_SPECIAL);
435}
436
437static inline pte_t pte_mkhuge(pte_t pte)
438{
439 return pte;
440}
441
442#ifdef CONFIG_NUMA_BALANCING
443/*
444 * See the comment in include/asm-generic/pgtable.h
445 */
446static inline int pte_protnone(pte_t pte)
447{
448 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
449}
450
451static inline int pmd_protnone(pmd_t pmd)
452{
453 return pte_protnone(pmd_pte(pmd));
454}
455#endif
456
457/* Modify page protection bits */
458static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
459{
460 unsigned long newprot_val = pgprot_val(newprot);
461
462 ALT_THEAD_PMA(newprot_val);
463
464 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
465}
466
467#define pgd_ERROR(e) \
468 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
469
470
471/* Commit new configuration to MMU hardware */
472static inline void update_mmu_cache_range(struct vm_fault *vmf,
473 struct vm_area_struct *vma, unsigned long address,
474 pte_t *ptep, unsigned int nr)
475{
476 /*
477 * The kernel assumes that TLBs don't cache invalid entries, but
478 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
479 * cache flush; it is necessary even after writing invalid entries.
480 * Relying on flush_tlb_fix_spurious_fault would suffice, but
481 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
482 */
483 while (nr--)
484 local_flush_tlb_page(address + nr * PAGE_SIZE);
485}
486#define update_mmu_cache(vma, addr, ptep) \
487 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
488
489#define __HAVE_ARCH_UPDATE_MMU_TLB
490#define update_mmu_tlb update_mmu_cache
491
492static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
493 unsigned long address, pmd_t *pmdp)
494{
495 pte_t *ptep = (pte_t *)pmdp;
496
497 update_mmu_cache(vma, address, ptep);
498}
499
500#define __HAVE_ARCH_PTE_SAME
501static inline int pte_same(pte_t pte_a, pte_t pte_b)
502{
503 return pte_val(pte_a) == pte_val(pte_b);
504}
505
506/*
507 * Certain architectures need to do special things when PTEs within
508 * a page table are directly modified. Thus, the following hook is
509 * made available.
510 */
511static inline void set_pte(pte_t *ptep, pte_t pteval)
512{
513 *ptep = pteval;
514}
515
516void flush_icache_pte(pte_t pte);
517
518static inline void __set_pte_at(pte_t *ptep, pte_t pteval)
519{
520 if (pte_present(pteval) && pte_exec(pteval))
521 flush_icache_pte(pteval);
522
523 set_pte(ptep, pteval);
524}
525
526static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
527 pte_t *ptep, pte_t pteval, unsigned int nr)
528{
529 page_table_check_ptes_set(mm, ptep, pteval, nr);
530
531 for (;;) {
532 __set_pte_at(ptep, pteval);
533 if (--nr == 0)
534 break;
535 ptep++;
536 pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
537 }
538}
539#define set_ptes set_ptes
540
541static inline void pte_clear(struct mm_struct *mm,
542 unsigned long addr, pte_t *ptep)
543{
544 __set_pte_at(ptep, __pte(0));
545}
546
547#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
548static inline int ptep_set_access_flags(struct vm_area_struct *vma,
549 unsigned long address, pte_t *ptep,
550 pte_t entry, int dirty)
551{
552 if (!pte_same(*ptep, entry))
553 __set_pte_at(ptep, entry);
554 /*
555 * update_mmu_cache will unconditionally execute, handling both
556 * the case that the PTE changed and the spurious fault case.
557 */
558 return true;
559}
560
561#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
562static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
563 unsigned long address, pte_t *ptep)
564{
565 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
566
567 page_table_check_pte_clear(mm, pte);
568
569 return pte;
570}
571
572#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
573static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
574 unsigned long address,
575 pte_t *ptep)
576{
577 if (!pte_young(*ptep))
578 return 0;
579 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
580}
581
582#define __HAVE_ARCH_PTEP_SET_WRPROTECT
583static inline void ptep_set_wrprotect(struct mm_struct *mm,
584 unsigned long address, pte_t *ptep)
585{
586 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
587}
588
589#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
590static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
591 unsigned long address, pte_t *ptep)
592{
593 /*
594 * This comment is borrowed from x86, but applies equally to RISC-V:
595 *
596 * Clearing the accessed bit without a TLB flush
597 * doesn't cause data corruption. [ It could cause incorrect
598 * page aging and the (mistaken) reclaim of hot pages, but the
599 * chance of that should be relatively low. ]
600 *
601 * So as a performance optimization don't flush the TLB when
602 * clearing the accessed bit, it will eventually be flushed by
603 * a context switch or a VM operation anyway. [ In the rare
604 * event of it not getting flushed for a long time the delay
605 * shouldn't really matter because there's no real memory
606 * pressure for swapout to react to. ]
607 */
608 return ptep_test_and_clear_young(vma, address, ptep);
609}
610
611#define pgprot_noncached pgprot_noncached
612static inline pgprot_t pgprot_noncached(pgprot_t _prot)
613{
614 unsigned long prot = pgprot_val(_prot);
615
616 prot &= ~_PAGE_MTMASK;
617 prot |= _PAGE_IO;
618
619 return __pgprot(prot);
620}
621
622#define pgprot_writecombine pgprot_writecombine
623static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
624{
625 unsigned long prot = pgprot_val(_prot);
626
627 prot &= ~_PAGE_MTMASK;
628 prot |= _PAGE_NOCACHE;
629
630 return __pgprot(prot);
631}
632
633/*
634 * THP functions
635 */
636static inline pmd_t pte_pmd(pte_t pte)
637{
638 return __pmd(pte_val(pte));
639}
640
641static inline pmd_t pmd_mkhuge(pmd_t pmd)
642{
643 return pmd;
644}
645
646static inline pmd_t pmd_mkinvalid(pmd_t pmd)
647{
648 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
649}
650
651#define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
652
653static inline unsigned long pmd_pfn(pmd_t pmd)
654{
655 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
656}
657
658#define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
659
660static inline unsigned long pud_pfn(pud_t pud)
661{
662 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
663}
664
665static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
666{
667 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
668}
669
670#define pmd_write pmd_write
671static inline int pmd_write(pmd_t pmd)
672{
673 return pte_write(pmd_pte(pmd));
674}
675
676static inline int pmd_dirty(pmd_t pmd)
677{
678 return pte_dirty(pmd_pte(pmd));
679}
680
681#define pmd_young pmd_young
682static inline int pmd_young(pmd_t pmd)
683{
684 return pte_young(pmd_pte(pmd));
685}
686
687static inline int pmd_user(pmd_t pmd)
688{
689 return pte_user(pmd_pte(pmd));
690}
691
692static inline pmd_t pmd_mkold(pmd_t pmd)
693{
694 return pte_pmd(pte_mkold(pmd_pte(pmd)));
695}
696
697static inline pmd_t pmd_mkyoung(pmd_t pmd)
698{
699 return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
700}
701
702static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
703{
704 return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
705}
706
707static inline pmd_t pmd_wrprotect(pmd_t pmd)
708{
709 return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
710}
711
712static inline pmd_t pmd_mkclean(pmd_t pmd)
713{
714 return pte_pmd(pte_mkclean(pmd_pte(pmd)));
715}
716
717static inline pmd_t pmd_mkdirty(pmd_t pmd)
718{
719 return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
720}
721
722static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
723 pmd_t *pmdp, pmd_t pmd)
724{
725 page_table_check_pmd_set(mm, pmdp, pmd);
726 return __set_pte_at((pte_t *)pmdp, pmd_pte(pmd));
727}
728
729static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
730 pud_t *pudp, pud_t pud)
731{
732 page_table_check_pud_set(mm, pudp, pud);
733 return __set_pte_at((pte_t *)pudp, pud_pte(pud));
734}
735
736#ifdef CONFIG_PAGE_TABLE_CHECK
737static inline bool pte_user_accessible_page(pte_t pte)
738{
739 return pte_present(pte) && pte_user(pte);
740}
741
742static inline bool pmd_user_accessible_page(pmd_t pmd)
743{
744 return pmd_leaf(pmd) && pmd_user(pmd);
745}
746
747static inline bool pud_user_accessible_page(pud_t pud)
748{
749 return pud_leaf(pud) && pud_user(pud);
750}
751#endif
752
753#ifdef CONFIG_TRANSPARENT_HUGEPAGE
754static inline int pmd_trans_huge(pmd_t pmd)
755{
756 return pmd_leaf(pmd);
757}
758
759#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
760static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
761 unsigned long address, pmd_t *pmdp,
762 pmd_t entry, int dirty)
763{
764 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
765}
766
767#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
768static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
769 unsigned long address, pmd_t *pmdp)
770{
771 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
772}
773
774#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
775static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
776 unsigned long address, pmd_t *pmdp)
777{
778 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
779
780 page_table_check_pmd_clear(mm, pmd);
781
782 return pmd;
783}
784
785#define __HAVE_ARCH_PMDP_SET_WRPROTECT
786static inline void pmdp_set_wrprotect(struct mm_struct *mm,
787 unsigned long address, pmd_t *pmdp)
788{
789 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
790}
791
792#define pmdp_establish pmdp_establish
793static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
794 unsigned long address, pmd_t *pmdp, pmd_t pmd)
795{
796 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
797 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
798}
799
800#define pmdp_collapse_flush pmdp_collapse_flush
801extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
802 unsigned long address, pmd_t *pmdp);
803#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
804
805/*
806 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
807 * are !pte_none() && !pte_present().
808 *
809 * Format of swap PTE:
810 * bit 0: _PAGE_PRESENT (zero)
811 * bit 1 to 3: _PAGE_LEAF (zero)
812 * bit 5: _PAGE_PROT_NONE (zero)
813 * bit 6: exclusive marker
814 * bits 7 to 11: swap type
815 * bits 12 to XLEN-1: swap offset
816 */
817#define __SWP_TYPE_SHIFT 7
818#define __SWP_TYPE_BITS 5
819#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
820#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
821
822#define MAX_SWAPFILES_CHECK() \
823 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
824
825#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
826#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
827#define __swp_entry(type, offset) ((swp_entry_t) \
828 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
829 ((offset) << __SWP_OFFSET_SHIFT) })
830
831#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
832#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
833
834static inline int pte_swp_exclusive(pte_t pte)
835{
836 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
837}
838
839static inline pte_t pte_swp_mkexclusive(pte_t pte)
840{
841 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
842}
843
844static inline pte_t pte_swp_clear_exclusive(pte_t pte)
845{
846 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
847}
848
849#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
850#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
851#define __swp_entry_to_pmd(swp) __pmd((swp).val)
852#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
853
854/*
855 * In the RV64 Linux scheme, we give the user half of the virtual-address space
856 * and give the kernel the other (upper) half.
857 */
858#ifdef CONFIG_64BIT
859#define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
860#else
861#define KERN_VIRT_START FIXADDR_START
862#endif
863
864/*
865 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
866 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
867 * Task size is:
868 * - 0x9fc00000 (~2.5GB) for RV32.
869 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu
870 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
871 * - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu
872 *
873 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
874 * Instruction Set Manual Volume II: Privileged Architecture" states that
875 * "load and store effective addresses, which are 64bits, must have bits
876 * 63–48 all equal to bit 47, or else a page-fault exception will occur."
877 * Similarly for SV57, bits 63–57 must be equal to bit 56.
878 */
879#ifdef CONFIG_64BIT
880#define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2)
881#define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
882
883#ifdef CONFIG_COMPAT
884#define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE)
885#define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \
886 TASK_SIZE_32 : TASK_SIZE_64)
887#else
888#define TASK_SIZE TASK_SIZE_64
889#endif
890
891#else
892#define TASK_SIZE FIXADDR_START
893#define TASK_SIZE_MIN TASK_SIZE
894#endif
895
896#else /* CONFIG_MMU */
897
898#define PAGE_SHARED __pgprot(0)
899#define PAGE_KERNEL __pgprot(0)
900#define swapper_pg_dir NULL
901#define TASK_SIZE 0xffffffffUL
902#define VMALLOC_START _AC(0, UL)
903#define VMALLOC_END TASK_SIZE
904
905#endif /* !CONFIG_MMU */
906
907extern char _start[];
908extern void *_dtb_early_va;
909extern uintptr_t _dtb_early_pa;
910#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
911#define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va))
912#define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
913#else
914#define dtb_early_va _dtb_early_va
915#define dtb_early_pa _dtb_early_pa
916#endif /* CONFIG_XIP_KERNEL */
917extern u64 satp_mode;
918
919void paging_init(void);
920void misc_mem_init(void);
921
922/*
923 * ZERO_PAGE is a global shared page that is always zero,
924 * used for zero-mapped memory areas, etc.
925 */
926extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
927#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
928
929#endif /* !__ASSEMBLY__ */
930
931#endif /* _ASM_RISCV_PGTABLE_H */