at v6.7-rc8 46 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT) 10 11#ifndef __ASSEMBLY__ 12#ifdef CONFIG_MMU 13 14#include <linux/mm_types.h> 15#include <linux/bug.h> 16#include <linux/errno.h> 17#include <asm-generic/pgtable_uffd.h> 18#include <linux/page_table_check.h> 19 20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 23#endif 24 25/* 26 * On almost all architectures and configurations, 0 can be used as the 27 * upper ceiling to free_pgtables(): on many architectures it has the same 28 * effect as using TASK_SIZE. However, there is one configuration which 29 * must impose a more careful limit, to avoid freeing kernel pgtables. 30 */ 31#ifndef USER_PGTABLES_CEILING 32#define USER_PGTABLES_CEILING 0UL 33#endif 34 35/* 36 * This defines the first usable user address. Platforms 37 * can override its value with custom FIRST_USER_ADDRESS 38 * defined in their respective <asm/pgtable.h>. 39 */ 40#ifndef FIRST_USER_ADDRESS 41#define FIRST_USER_ADDRESS 0UL 42#endif 43 44/* 45 * This defines the generic helper for accessing PMD page 46 * table page. Although platforms can still override this 47 * via their respective <asm/pgtable.h>. 48 */ 49#ifndef pmd_pgtable 50#define pmd_pgtable(pmd) pmd_page(pmd) 51#endif 52 53/* 54 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 55 * 56 * The pXx_index() functions return the index of the entry in the page 57 * table page which would control the given virtual address 58 * 59 * As these functions may be used by the same code for different levels of 60 * the page table folding, they are always available, regardless of 61 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 62 * because in such cases PTRS_PER_PxD equals 1. 63 */ 64 65static inline unsigned long pte_index(unsigned long address) 66{ 67 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 68} 69 70#ifndef pmd_index 71static inline unsigned long pmd_index(unsigned long address) 72{ 73 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 74} 75#define pmd_index pmd_index 76#endif 77 78#ifndef pud_index 79static inline unsigned long pud_index(unsigned long address) 80{ 81 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 82} 83#define pud_index pud_index 84#endif 85 86#ifndef pgd_index 87/* Must be a compile-time constant, so implement it as a macro */ 88#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 89#endif 90 91#ifndef pte_offset_kernel 92static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 93{ 94 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 95} 96#define pte_offset_kernel pte_offset_kernel 97#endif 98 99#ifdef CONFIG_HIGHPTE 100#define __pte_map(pmd, address) \ 101 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address))) 102#define pte_unmap(pte) do { \ 103 kunmap_local((pte)); \ 104 rcu_read_unlock(); \ 105} while (0) 106#else 107static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address) 108{ 109 return pte_offset_kernel(pmd, address); 110} 111static inline void pte_unmap(pte_t *pte) 112{ 113 rcu_read_unlock(); 114} 115#endif 116 117void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable); 118 119/* Find an entry in the second-level page table.. */ 120#ifndef pmd_offset 121static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 122{ 123 return pud_pgtable(*pud) + pmd_index(address); 124} 125#define pmd_offset pmd_offset 126#endif 127 128#ifndef pud_offset 129static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 130{ 131 return p4d_pgtable(*p4d) + pud_index(address); 132} 133#define pud_offset pud_offset 134#endif 135 136static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 137{ 138 return (pgd + pgd_index(address)); 139}; 140 141/* 142 * a shortcut to get a pgd_t in a given mm 143 */ 144#ifndef pgd_offset 145#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 146#endif 147 148/* 149 * a shortcut which implies the use of the kernel's pgd, instead 150 * of a process's 151 */ 152#ifndef pgd_offset_k 153#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 154#endif 155 156/* 157 * In many cases it is known that a virtual address is mapped at PMD or PTE 158 * level, so instead of traversing all the page table levels, we can get a 159 * pointer to the PMD entry in user or kernel page table or translate a virtual 160 * address to the pointer in the PTE in the kernel page tables with simple 161 * helpers. 162 */ 163static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 164{ 165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 166} 167 168static inline pmd_t *pmd_off_k(unsigned long va) 169{ 170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 171} 172 173static inline pte_t *virt_to_kpte(unsigned long vaddr) 174{ 175 pmd_t *pmd = pmd_off_k(vaddr); 176 177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 178} 179 180#ifndef pmd_young 181static inline int pmd_young(pmd_t pmd) 182{ 183 return 0; 184} 185#endif 186 187/* 188 * A facility to provide lazy MMU batching. This allows PTE updates and 189 * page invalidations to be delayed until a call to leave lazy MMU mode 190 * is issued. Some architectures may benefit from doing this, and it is 191 * beneficial for both shadow and direct mode hypervisors, which may batch 192 * the PTE updates which happen during this window. Note that using this 193 * interface requires that read hazards be removed from the code. A read 194 * hazard could result in the direct mode hypervisor case, since the actual 195 * write to the page tables may not yet have taken place, so reads though 196 * a raw PTE pointer after it has been modified are not guaranteed to be 197 * up to date. This mode can only be entered and left under the protection of 198 * the page table locks for all page tables which may be modified. In the UP 199 * case, this is required so that preemption is disabled, and in the SMP case, 200 * it must synchronize the delayed page table writes properly on other CPUs. 201 */ 202#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 203#define arch_enter_lazy_mmu_mode() do {} while (0) 204#define arch_leave_lazy_mmu_mode() do {} while (0) 205#define arch_flush_lazy_mmu_mode() do {} while (0) 206#endif 207 208#ifndef set_ptes 209 210#ifndef pte_next_pfn 211static inline pte_t pte_next_pfn(pte_t pte) 212{ 213 return __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT)); 214} 215#endif 216 217/** 218 * set_ptes - Map consecutive pages to a contiguous range of addresses. 219 * @mm: Address space to map the pages into. 220 * @addr: Address to map the first page at. 221 * @ptep: Page table pointer for the first entry. 222 * @pte: Page table entry for the first page. 223 * @nr: Number of pages to map. 224 * 225 * May be overridden by the architecture, or the architecture can define 226 * set_pte() and PFN_PTE_SHIFT. 227 * 228 * Context: The caller holds the page table lock. The pages all belong 229 * to the same folio. The PTEs are all in the same PMD. 230 */ 231static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 232 pte_t *ptep, pte_t pte, unsigned int nr) 233{ 234 page_table_check_ptes_set(mm, ptep, pte, nr); 235 236 arch_enter_lazy_mmu_mode(); 237 for (;;) { 238 set_pte(ptep, pte); 239 if (--nr == 0) 240 break; 241 ptep++; 242 pte = pte_next_pfn(pte); 243 } 244 arch_leave_lazy_mmu_mode(); 245} 246#endif 247#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1) 248 249#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 250extern int ptep_set_access_flags(struct vm_area_struct *vma, 251 unsigned long address, pte_t *ptep, 252 pte_t entry, int dirty); 253#endif 254 255#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 256#ifdef CONFIG_TRANSPARENT_HUGEPAGE 257extern int pmdp_set_access_flags(struct vm_area_struct *vma, 258 unsigned long address, pmd_t *pmdp, 259 pmd_t entry, int dirty); 260extern int pudp_set_access_flags(struct vm_area_struct *vma, 261 unsigned long address, pud_t *pudp, 262 pud_t entry, int dirty); 263#else 264static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 265 unsigned long address, pmd_t *pmdp, 266 pmd_t entry, int dirty) 267{ 268 BUILD_BUG(); 269 return 0; 270} 271static inline int pudp_set_access_flags(struct vm_area_struct *vma, 272 unsigned long address, pud_t *pudp, 273 pud_t entry, int dirty) 274{ 275 BUILD_BUG(); 276 return 0; 277} 278#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 279#endif 280 281#ifndef ptep_get 282static inline pte_t ptep_get(pte_t *ptep) 283{ 284 return READ_ONCE(*ptep); 285} 286#endif 287 288#ifndef pmdp_get 289static inline pmd_t pmdp_get(pmd_t *pmdp) 290{ 291 return READ_ONCE(*pmdp); 292} 293#endif 294 295#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 296static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 297 unsigned long address, 298 pte_t *ptep) 299{ 300 pte_t pte = ptep_get(ptep); 301 int r = 1; 302 if (!pte_young(pte)) 303 r = 0; 304 else 305 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 306 return r; 307} 308#endif 309 310#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 311#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 312static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 313 unsigned long address, 314 pmd_t *pmdp) 315{ 316 pmd_t pmd = *pmdp; 317 int r = 1; 318 if (!pmd_young(pmd)) 319 r = 0; 320 else 321 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 322 return r; 323} 324#else 325static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 326 unsigned long address, 327 pmd_t *pmdp) 328{ 329 BUILD_BUG(); 330 return 0; 331} 332#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 333#endif 334 335#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 336int ptep_clear_flush_young(struct vm_area_struct *vma, 337 unsigned long address, pte_t *ptep); 338#endif 339 340#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 341#ifdef CONFIG_TRANSPARENT_HUGEPAGE 342extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 343 unsigned long address, pmd_t *pmdp); 344#else 345/* 346 * Despite relevant to THP only, this API is called from generic rmap code 347 * under PageTransHuge(), hence needs a dummy implementation for !THP 348 */ 349static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 350 unsigned long address, pmd_t *pmdp) 351{ 352 BUILD_BUG(); 353 return 0; 354} 355#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 356#endif 357 358#ifndef arch_has_hw_nonleaf_pmd_young 359/* 360 * Return whether the accessed bit in non-leaf PMD entries is supported on the 361 * local CPU. 362 */ 363static inline bool arch_has_hw_nonleaf_pmd_young(void) 364{ 365 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); 366} 367#endif 368 369#ifndef arch_has_hw_pte_young 370/* 371 * Return whether the accessed bit is supported on the local CPU. 372 * 373 * This stub assumes accessing through an old PTE triggers a page fault. 374 * Architectures that automatically set the access bit should overwrite it. 375 */ 376static inline bool arch_has_hw_pte_young(void) 377{ 378 return false; 379} 380#endif 381 382#ifndef arch_check_zapped_pte 383static inline void arch_check_zapped_pte(struct vm_area_struct *vma, 384 pte_t pte) 385{ 386} 387#endif 388 389#ifndef arch_check_zapped_pmd 390static inline void arch_check_zapped_pmd(struct vm_area_struct *vma, 391 pmd_t pmd) 392{ 393} 394#endif 395 396#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 397static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 398 unsigned long address, 399 pte_t *ptep) 400{ 401 pte_t pte = ptep_get(ptep); 402 pte_clear(mm, address, ptep); 403 page_table_check_pte_clear(mm, pte); 404 return pte; 405} 406#endif 407 408static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, 409 pte_t *ptep) 410{ 411 ptep_get_and_clear(mm, addr, ptep); 412} 413 414#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH 415/* 416 * For walking the pagetables without holding any locks. Some architectures 417 * (eg x86-32 PAE) cannot load the entries atomically without using expensive 418 * instructions. We are guaranteed that a PTE will only either go from not 419 * present to present, or present to not present -- it will not switch to a 420 * completely different present page without a TLB flush inbetween; which we 421 * are blocking by holding interrupts off. 422 * 423 * Setting ptes from not present to present goes: 424 * 425 * ptep->pte_high = h; 426 * smp_wmb(); 427 * ptep->pte_low = l; 428 * 429 * And present to not present goes: 430 * 431 * ptep->pte_low = 0; 432 * smp_wmb(); 433 * ptep->pte_high = 0; 434 * 435 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 436 * We load pte_high *after* loading pte_low, which ensures we don't see an older 437 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 438 * picked up a changed pte high. We might have gotten rubbish values from 439 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 440 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 441 * operates on present ptes we're safe. 442 */ 443static inline pte_t ptep_get_lockless(pte_t *ptep) 444{ 445 pte_t pte; 446 447 do { 448 pte.pte_low = ptep->pte_low; 449 smp_rmb(); 450 pte.pte_high = ptep->pte_high; 451 smp_rmb(); 452 } while (unlikely(pte.pte_low != ptep->pte_low)); 453 454 return pte; 455} 456#define ptep_get_lockless ptep_get_lockless 457 458#if CONFIG_PGTABLE_LEVELS > 2 459static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 460{ 461 pmd_t pmd; 462 463 do { 464 pmd.pmd_low = pmdp->pmd_low; 465 smp_rmb(); 466 pmd.pmd_high = pmdp->pmd_high; 467 smp_rmb(); 468 } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); 469 470 return pmd; 471} 472#define pmdp_get_lockless pmdp_get_lockless 473#define pmdp_get_lockless_sync() tlb_remove_table_sync_one() 474#endif /* CONFIG_PGTABLE_LEVELS > 2 */ 475#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ 476 477/* 478 * We require that the PTE can be read atomically. 479 */ 480#ifndef ptep_get_lockless 481static inline pte_t ptep_get_lockless(pte_t *ptep) 482{ 483 return ptep_get(ptep); 484} 485#endif 486 487#ifndef pmdp_get_lockless 488static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 489{ 490 return pmdp_get(pmdp); 491} 492static inline void pmdp_get_lockless_sync(void) 493{ 494} 495#endif 496 497#ifdef CONFIG_TRANSPARENT_HUGEPAGE 498#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 499static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 500 unsigned long address, 501 pmd_t *pmdp) 502{ 503 pmd_t pmd = *pmdp; 504 505 pmd_clear(pmdp); 506 page_table_check_pmd_clear(mm, pmd); 507 508 return pmd; 509} 510#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 511#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 512static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 513 unsigned long address, 514 pud_t *pudp) 515{ 516 pud_t pud = *pudp; 517 518 pud_clear(pudp); 519 page_table_check_pud_clear(mm, pud); 520 521 return pud; 522} 523#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 524#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 525 526#ifdef CONFIG_TRANSPARENT_HUGEPAGE 527#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 528static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 529 unsigned long address, pmd_t *pmdp, 530 int full) 531{ 532 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 533} 534#endif 535 536#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 537static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 538 unsigned long address, pud_t *pudp, 539 int full) 540{ 541 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp); 542} 543#endif 544#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 545 546#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 547static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 548 unsigned long address, pte_t *ptep, 549 int full) 550{ 551 return ptep_get_and_clear(mm, address, ptep); 552} 553#endif 554 555 556/* 557 * If two threads concurrently fault at the same page, the thread that 558 * won the race updates the PTE and its local TLB/Cache. The other thread 559 * gives up, simply does nothing, and continues; on architectures where 560 * software can update TLB, local TLB can be updated here to avoid next page 561 * fault. This function updates TLB only, do nothing with cache or others. 562 * It is the difference with function update_mmu_cache. 563 */ 564#ifndef __HAVE_ARCH_UPDATE_MMU_TLB 565static inline void update_mmu_tlb(struct vm_area_struct *vma, 566 unsigned long address, pte_t *ptep) 567{ 568} 569#define __HAVE_ARCH_UPDATE_MMU_TLB 570#endif 571 572/* 573 * Some architectures may be able to avoid expensive synchronization 574 * primitives when modifications are made to PTE's which are already 575 * not present, or in the process of an address space destruction. 576 */ 577#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 578static inline void pte_clear_not_present_full(struct mm_struct *mm, 579 unsigned long address, 580 pte_t *ptep, 581 int full) 582{ 583 pte_clear(mm, address, ptep); 584} 585#endif 586 587#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 588extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 589 unsigned long address, 590 pte_t *ptep); 591#endif 592 593#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 594extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 595 unsigned long address, 596 pmd_t *pmdp); 597extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 598 unsigned long address, 599 pud_t *pudp); 600#endif 601 602#ifndef pte_mkwrite 603static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) 604{ 605 return pte_mkwrite_novma(pte); 606} 607#endif 608 609#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite) 610static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 611{ 612 return pmd_mkwrite_novma(pmd); 613} 614#endif 615 616#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 617struct mm_struct; 618static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 619{ 620 pte_t old_pte = ptep_get(ptep); 621 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 622} 623#endif 624 625/* 626 * On some architectures hardware does not set page access bit when accessing 627 * memory page, it is responsibility of software setting this bit. It brings 628 * out extra page fault penalty to track page access bit. For optimization page 629 * access bit can be set during all page fault flow on these arches. 630 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 631 * where software maintains page access bit. 632 */ 633#ifndef pte_sw_mkyoung 634static inline pte_t pte_sw_mkyoung(pte_t pte) 635{ 636 return pte; 637} 638#define pte_sw_mkyoung pte_sw_mkyoung 639#endif 640 641#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 642#ifdef CONFIG_TRANSPARENT_HUGEPAGE 643static inline void pmdp_set_wrprotect(struct mm_struct *mm, 644 unsigned long address, pmd_t *pmdp) 645{ 646 pmd_t old_pmd = *pmdp; 647 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 648} 649#else 650static inline void pmdp_set_wrprotect(struct mm_struct *mm, 651 unsigned long address, pmd_t *pmdp) 652{ 653 BUILD_BUG(); 654} 655#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 656#endif 657#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 658#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 659#ifdef CONFIG_TRANSPARENT_HUGEPAGE 660static inline void pudp_set_wrprotect(struct mm_struct *mm, 661 unsigned long address, pud_t *pudp) 662{ 663 pud_t old_pud = *pudp; 664 665 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 666} 667#else 668static inline void pudp_set_wrprotect(struct mm_struct *mm, 669 unsigned long address, pud_t *pudp) 670{ 671 BUILD_BUG(); 672} 673#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 674#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 675#endif 676 677#ifndef pmdp_collapse_flush 678#ifdef CONFIG_TRANSPARENT_HUGEPAGE 679extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 680 unsigned long address, pmd_t *pmdp); 681#else 682static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 683 unsigned long address, 684 pmd_t *pmdp) 685{ 686 BUILD_BUG(); 687 return *pmdp; 688} 689#define pmdp_collapse_flush pmdp_collapse_flush 690#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 691#endif 692 693#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 694extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 695 pgtable_t pgtable); 696#endif 697 698#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 699extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 700#endif 701 702#ifndef arch_needs_pgtable_deposit 703#define arch_needs_pgtable_deposit() (false) 704#endif 705 706#ifdef CONFIG_TRANSPARENT_HUGEPAGE 707/* 708 * This is an implementation of pmdp_establish() that is only suitable for an 709 * architecture that doesn't have hardware dirty/accessed bits. In this case we 710 * can't race with CPU which sets these bits and non-atomic approach is fine. 711 */ 712static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 713 unsigned long address, pmd_t *pmdp, pmd_t pmd) 714{ 715 pmd_t old_pmd = *pmdp; 716 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 717 return old_pmd; 718} 719#endif 720 721#ifndef __HAVE_ARCH_PMDP_INVALIDATE 722extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 723 pmd_t *pmdp); 724#endif 725 726#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD 727 728/* 729 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent 730 * hugepage mapping in the page tables. This function is similar to 731 * pmdp_invalidate(), but should only be used if the access and dirty bits would 732 * not be cleared by the software in the new PMD value. The function ensures 733 * that hardware changes of the access and dirty bits updates would not be lost. 734 * 735 * Doing so can allow in certain architectures to avoid a TLB flush in most 736 * cases. Yet, another TLB flush might be necessary later if the PMD update 737 * itself requires such flush (e.g., if protection was set to be stricter). Yet, 738 * even when a TLB flush is needed because of the update, the caller may be able 739 * to batch these TLB flushing operations, so fewer TLB flush operations are 740 * needed. 741 */ 742extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, 743 unsigned long address, pmd_t *pmdp); 744#endif 745 746#ifndef __HAVE_ARCH_PTE_SAME 747static inline int pte_same(pte_t pte_a, pte_t pte_b) 748{ 749 return pte_val(pte_a) == pte_val(pte_b); 750} 751#endif 752 753#ifndef __HAVE_ARCH_PTE_UNUSED 754/* 755 * Some architectures provide facilities to virtualization guests 756 * so that they can flag allocated pages as unused. This allows the 757 * host to transparently reclaim unused pages. This function returns 758 * whether the pte's page is unused. 759 */ 760static inline int pte_unused(pte_t pte) 761{ 762 return 0; 763} 764#endif 765 766#ifndef pte_access_permitted 767#define pte_access_permitted(pte, write) \ 768 (pte_present(pte) && (!(write) || pte_write(pte))) 769#endif 770 771#ifndef pmd_access_permitted 772#define pmd_access_permitted(pmd, write) \ 773 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 774#endif 775 776#ifndef pud_access_permitted 777#define pud_access_permitted(pud, write) \ 778 (pud_present(pud) && (!(write) || pud_write(pud))) 779#endif 780 781#ifndef p4d_access_permitted 782#define p4d_access_permitted(p4d, write) \ 783 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 784#endif 785 786#ifndef pgd_access_permitted 787#define pgd_access_permitted(pgd, write) \ 788 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 789#endif 790 791#ifndef __HAVE_ARCH_PMD_SAME 792static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 793{ 794 return pmd_val(pmd_a) == pmd_val(pmd_b); 795} 796#endif 797 798#ifndef pud_same 799static inline int pud_same(pud_t pud_a, pud_t pud_b) 800{ 801 return pud_val(pud_a) == pud_val(pud_b); 802} 803#define pud_same pud_same 804#endif 805 806#ifndef __HAVE_ARCH_P4D_SAME 807static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 808{ 809 return p4d_val(p4d_a) == p4d_val(p4d_b); 810} 811#endif 812 813#ifndef __HAVE_ARCH_PGD_SAME 814static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 815{ 816 return pgd_val(pgd_a) == pgd_val(pgd_b); 817} 818#endif 819 820/* 821 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 822 * TLB flush will be required as a result of the "set". For example, use 823 * in scenarios where it is known ahead of time that the routine is 824 * setting non-present entries, or re-setting an existing entry to the 825 * same value. Otherwise, use the typical "set" helpers and flush the 826 * TLB. 827 */ 828#define set_pte_safe(ptep, pte) \ 829({ \ 830 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 831 set_pte(ptep, pte); \ 832}) 833 834#define set_pmd_safe(pmdp, pmd) \ 835({ \ 836 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 837 set_pmd(pmdp, pmd); \ 838}) 839 840#define set_pud_safe(pudp, pud) \ 841({ \ 842 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 843 set_pud(pudp, pud); \ 844}) 845 846#define set_p4d_safe(p4dp, p4d) \ 847({ \ 848 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 849 set_p4d(p4dp, p4d); \ 850}) 851 852#define set_pgd_safe(pgdp, pgd) \ 853({ \ 854 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 855 set_pgd(pgdp, pgd); \ 856}) 857 858#ifndef __HAVE_ARCH_DO_SWAP_PAGE 859/* 860 * Some architectures support metadata associated with a page. When a 861 * page is being swapped out, this metadata must be saved so it can be 862 * restored when the page is swapped back in. SPARC M7 and newer 863 * processors support an ADI (Application Data Integrity) tag for the 864 * page as metadata for the page. arch_do_swap_page() can restore this 865 * metadata when a page is swapped back in. 866 */ 867static inline void arch_do_swap_page(struct mm_struct *mm, 868 struct vm_area_struct *vma, 869 unsigned long addr, 870 pte_t pte, pte_t oldpte) 871{ 872 873} 874#endif 875 876#ifndef __HAVE_ARCH_UNMAP_ONE 877/* 878 * Some architectures support metadata associated with a page. When a 879 * page is being swapped out, this metadata must be saved so it can be 880 * restored when the page is swapped back in. SPARC M7 and newer 881 * processors support an ADI (Application Data Integrity) tag for the 882 * page as metadata for the page. arch_unmap_one() can save this 883 * metadata on a swap-out of a page. 884 */ 885static inline int arch_unmap_one(struct mm_struct *mm, 886 struct vm_area_struct *vma, 887 unsigned long addr, 888 pte_t orig_pte) 889{ 890 return 0; 891} 892#endif 893 894/* 895 * Allow architectures to preserve additional metadata associated with 896 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 897 * prototypes must be defined in the arch-specific asm/pgtable.h file. 898 */ 899#ifndef __HAVE_ARCH_PREPARE_TO_SWAP 900static inline int arch_prepare_to_swap(struct page *page) 901{ 902 return 0; 903} 904#endif 905 906#ifndef __HAVE_ARCH_SWAP_INVALIDATE 907static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 908{ 909} 910 911static inline void arch_swap_invalidate_area(int type) 912{ 913} 914#endif 915 916#ifndef __HAVE_ARCH_SWAP_RESTORE 917static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) 918{ 919} 920#endif 921 922#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 923#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 924#endif 925 926#ifndef __HAVE_ARCH_MOVE_PTE 927#define move_pte(pte, prot, old_addr, new_addr) (pte) 928#endif 929 930#ifndef pte_accessible 931# define pte_accessible(mm, pte) ((void)(pte), 1) 932#endif 933 934#ifndef flush_tlb_fix_spurious_fault 935#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address) 936#endif 937 938/* 939 * When walking page tables, get the address of the next boundary, 940 * or the end address of the range if that comes earlier. Although no 941 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 942 */ 943 944#define pgd_addr_end(addr, end) \ 945({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 946 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 947}) 948 949#ifndef p4d_addr_end 950#define p4d_addr_end(addr, end) \ 951({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 952 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 953}) 954#endif 955 956#ifndef pud_addr_end 957#define pud_addr_end(addr, end) \ 958({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 959 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 960}) 961#endif 962 963#ifndef pmd_addr_end 964#define pmd_addr_end(addr, end) \ 965({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 966 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 967}) 968#endif 969 970/* 971 * When walking page tables, we usually want to skip any p?d_none entries; 972 * and any p?d_bad entries - reporting the error before resetting to none. 973 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 974 */ 975void pgd_clear_bad(pgd_t *); 976 977#ifndef __PAGETABLE_P4D_FOLDED 978void p4d_clear_bad(p4d_t *); 979#else 980#define p4d_clear_bad(p4d) do { } while (0) 981#endif 982 983#ifndef __PAGETABLE_PUD_FOLDED 984void pud_clear_bad(pud_t *); 985#else 986#define pud_clear_bad(p4d) do { } while (0) 987#endif 988 989void pmd_clear_bad(pmd_t *); 990 991static inline int pgd_none_or_clear_bad(pgd_t *pgd) 992{ 993 if (pgd_none(*pgd)) 994 return 1; 995 if (unlikely(pgd_bad(*pgd))) { 996 pgd_clear_bad(pgd); 997 return 1; 998 } 999 return 0; 1000} 1001 1002static inline int p4d_none_or_clear_bad(p4d_t *p4d) 1003{ 1004 if (p4d_none(*p4d)) 1005 return 1; 1006 if (unlikely(p4d_bad(*p4d))) { 1007 p4d_clear_bad(p4d); 1008 return 1; 1009 } 1010 return 0; 1011} 1012 1013static inline int pud_none_or_clear_bad(pud_t *pud) 1014{ 1015 if (pud_none(*pud)) 1016 return 1; 1017 if (unlikely(pud_bad(*pud))) { 1018 pud_clear_bad(pud); 1019 return 1; 1020 } 1021 return 0; 1022} 1023 1024static inline int pmd_none_or_clear_bad(pmd_t *pmd) 1025{ 1026 if (pmd_none(*pmd)) 1027 return 1; 1028 if (unlikely(pmd_bad(*pmd))) { 1029 pmd_clear_bad(pmd); 1030 return 1; 1031 } 1032 return 0; 1033} 1034 1035static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 1036 unsigned long addr, 1037 pte_t *ptep) 1038{ 1039 /* 1040 * Get the current pte state, but zero it out to make it 1041 * non-present, preventing the hardware from asynchronously 1042 * updating it. 1043 */ 1044 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 1045} 1046 1047static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 1048 unsigned long addr, 1049 pte_t *ptep, pte_t pte) 1050{ 1051 /* 1052 * The pte is non-present, so there's no hardware state to 1053 * preserve. 1054 */ 1055 set_pte_at(vma->vm_mm, addr, ptep, pte); 1056} 1057 1058#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1059/* 1060 * Start a pte protection read-modify-write transaction, which 1061 * protects against asynchronous hardware modifications to the pte. 1062 * The intention is not to prevent the hardware from making pte 1063 * updates, but to prevent any updates it may make from being lost. 1064 * 1065 * This does not protect against other software modifications of the 1066 * pte; the appropriate pte lock must be held over the transaction. 1067 * 1068 * Note that this interface is intended to be batchable, meaning that 1069 * ptep_modify_prot_commit may not actually update the pte, but merely 1070 * queue the update to be done at some later time. The update must be 1071 * actually committed before the pte lock is released, however. 1072 */ 1073static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1074 unsigned long addr, 1075 pte_t *ptep) 1076{ 1077 return __ptep_modify_prot_start(vma, addr, ptep); 1078} 1079 1080/* 1081 * Commit an update to a pte, leaving any hardware-controlled bits in 1082 * the PTE unmodified. 1083 */ 1084static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 1085 unsigned long addr, 1086 pte_t *ptep, pte_t old_pte, pte_t pte) 1087{ 1088 __ptep_modify_prot_commit(vma, addr, ptep, pte); 1089} 1090#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 1091#endif /* CONFIG_MMU */ 1092 1093/* 1094 * No-op macros that just return the current protection value. Defined here 1095 * because these macros can be used even if CONFIG_MMU is not defined. 1096 */ 1097 1098#ifndef pgprot_nx 1099#define pgprot_nx(prot) (prot) 1100#endif 1101 1102#ifndef pgprot_noncached 1103#define pgprot_noncached(prot) (prot) 1104#endif 1105 1106#ifndef pgprot_writecombine 1107#define pgprot_writecombine pgprot_noncached 1108#endif 1109 1110#ifndef pgprot_writethrough 1111#define pgprot_writethrough pgprot_noncached 1112#endif 1113 1114#ifndef pgprot_device 1115#define pgprot_device pgprot_noncached 1116#endif 1117 1118#ifndef pgprot_mhp 1119#define pgprot_mhp(prot) (prot) 1120#endif 1121 1122#ifdef CONFIG_MMU 1123#ifndef pgprot_modify 1124#define pgprot_modify pgprot_modify 1125static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 1126{ 1127 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 1128 newprot = pgprot_noncached(newprot); 1129 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 1130 newprot = pgprot_writecombine(newprot); 1131 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 1132 newprot = pgprot_device(newprot); 1133 return newprot; 1134} 1135#endif 1136#endif /* CONFIG_MMU */ 1137 1138#ifndef pgprot_encrypted 1139#define pgprot_encrypted(prot) (prot) 1140#endif 1141 1142#ifndef pgprot_decrypted 1143#define pgprot_decrypted(prot) (prot) 1144#endif 1145 1146/* 1147 * A facility to provide batching of the reload of page tables and 1148 * other process state with the actual context switch code for 1149 * paravirtualized guests. By convention, only one of the batched 1150 * update (lazy) modes (CPU, MMU) should be active at any given time, 1151 * entry should never be nested, and entry and exits should always be 1152 * paired. This is for sanity of maintaining and reasoning about the 1153 * kernel code. In this case, the exit (end of the context switch) is 1154 * in architecture-specific code, and so doesn't need a generic 1155 * definition. 1156 */ 1157#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 1158#define arch_start_context_switch(prev) do {} while (0) 1159#endif 1160 1161#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1162#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 1163static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1164{ 1165 return pmd; 1166} 1167 1168static inline int pmd_swp_soft_dirty(pmd_t pmd) 1169{ 1170 return 0; 1171} 1172 1173static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1174{ 1175 return pmd; 1176} 1177#endif 1178#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1179static inline int pte_soft_dirty(pte_t pte) 1180{ 1181 return 0; 1182} 1183 1184static inline int pmd_soft_dirty(pmd_t pmd) 1185{ 1186 return 0; 1187} 1188 1189static inline pte_t pte_mksoft_dirty(pte_t pte) 1190{ 1191 return pte; 1192} 1193 1194static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1195{ 1196 return pmd; 1197} 1198 1199static inline pte_t pte_clear_soft_dirty(pte_t pte) 1200{ 1201 return pte; 1202} 1203 1204static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1205{ 1206 return pmd; 1207} 1208 1209static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1210{ 1211 return pte; 1212} 1213 1214static inline int pte_swp_soft_dirty(pte_t pte) 1215{ 1216 return 0; 1217} 1218 1219static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1220{ 1221 return pte; 1222} 1223 1224static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1225{ 1226 return pmd; 1227} 1228 1229static inline int pmd_swp_soft_dirty(pmd_t pmd) 1230{ 1231 return 0; 1232} 1233 1234static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1235{ 1236 return pmd; 1237} 1238#endif 1239 1240#ifndef __HAVE_PFNMAP_TRACKING 1241/* 1242 * Interfaces that can be used by architecture code to keep track of 1243 * memory type of pfn mappings specified by the remap_pfn_range, 1244 * vmf_insert_pfn. 1245 */ 1246 1247/* 1248 * track_pfn_remap is called when a _new_ pfn mapping is being established 1249 * by remap_pfn_range() for physical range indicated by pfn and size. 1250 */ 1251static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1252 unsigned long pfn, unsigned long addr, 1253 unsigned long size) 1254{ 1255 return 0; 1256} 1257 1258/* 1259 * track_pfn_insert is called when a _new_ single pfn is established 1260 * by vmf_insert_pfn(). 1261 */ 1262static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1263 pfn_t pfn) 1264{ 1265} 1266 1267/* 1268 * track_pfn_copy is called when vma that is covering the pfnmap gets 1269 * copied through copy_page_range(). 1270 */ 1271static inline int track_pfn_copy(struct vm_area_struct *vma) 1272{ 1273 return 0; 1274} 1275 1276/* 1277 * untrack_pfn is called while unmapping a pfnmap for a region. 1278 * untrack can be called for a specific region indicated by pfn and size or 1279 * can be for the entire vma (in which case pfn, size are zero). 1280 */ 1281static inline void untrack_pfn(struct vm_area_struct *vma, 1282 unsigned long pfn, unsigned long size, 1283 bool mm_wr_locked) 1284{ 1285} 1286 1287/* 1288 * untrack_pfn_clear is called while mremapping a pfnmap for a new region 1289 * or fails to copy pgtable during duplicate vm area. 1290 */ 1291static inline void untrack_pfn_clear(struct vm_area_struct *vma) 1292{ 1293} 1294#else 1295extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1296 unsigned long pfn, unsigned long addr, 1297 unsigned long size); 1298extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1299 pfn_t pfn); 1300extern int track_pfn_copy(struct vm_area_struct *vma); 1301extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1302 unsigned long size, bool mm_wr_locked); 1303extern void untrack_pfn_clear(struct vm_area_struct *vma); 1304#endif 1305 1306#ifdef CONFIG_MMU 1307#ifdef __HAVE_COLOR_ZERO_PAGE 1308static inline int is_zero_pfn(unsigned long pfn) 1309{ 1310 extern unsigned long zero_pfn; 1311 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1312 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1313} 1314 1315#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1316 1317#else 1318static inline int is_zero_pfn(unsigned long pfn) 1319{ 1320 extern unsigned long zero_pfn; 1321 return pfn == zero_pfn; 1322} 1323 1324static inline unsigned long my_zero_pfn(unsigned long addr) 1325{ 1326 extern unsigned long zero_pfn; 1327 return zero_pfn; 1328} 1329#endif 1330#else 1331static inline int is_zero_pfn(unsigned long pfn) 1332{ 1333 return 0; 1334} 1335 1336static inline unsigned long my_zero_pfn(unsigned long addr) 1337{ 1338 return 0; 1339} 1340#endif /* CONFIG_MMU */ 1341 1342#ifdef CONFIG_MMU 1343 1344#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1345static inline int pmd_trans_huge(pmd_t pmd) 1346{ 1347 return 0; 1348} 1349#ifndef pmd_write 1350static inline int pmd_write(pmd_t pmd) 1351{ 1352 BUG(); 1353 return 0; 1354} 1355#endif /* pmd_write */ 1356#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1357 1358#ifndef pud_write 1359static inline int pud_write(pud_t pud) 1360{ 1361 BUG(); 1362 return 0; 1363} 1364#endif /* pud_write */ 1365 1366#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1367static inline int pmd_devmap(pmd_t pmd) 1368{ 1369 return 0; 1370} 1371static inline int pud_devmap(pud_t pud) 1372{ 1373 return 0; 1374} 1375static inline int pgd_devmap(pgd_t pgd) 1376{ 1377 return 0; 1378} 1379#endif 1380 1381#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1382 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1383static inline int pud_trans_huge(pud_t pud) 1384{ 1385 return 0; 1386} 1387#endif 1388 1389static inline int pud_trans_unstable(pud_t *pud) 1390{ 1391#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1392 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1393 pud_t pudval = READ_ONCE(*pud); 1394 1395 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1396 return 1; 1397 if (unlikely(pud_bad(pudval))) { 1398 pud_clear_bad(pud); 1399 return 1; 1400 } 1401#endif 1402 return 0; 1403} 1404 1405#ifndef CONFIG_NUMA_BALANCING 1406/* 1407 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is 1408 * perfectly valid to indicate "no" in that case, which is why our default 1409 * implementation defaults to "always no". 1410 * 1411 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE 1412 * page protection due to NUMA hinting. NUMA hinting faults only apply in 1413 * accessible VMAs. 1414 * 1415 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault, 1416 * looking at the VMA accessibility is sufficient. 1417 */ 1418static inline int pte_protnone(pte_t pte) 1419{ 1420 return 0; 1421} 1422 1423static inline int pmd_protnone(pmd_t pmd) 1424{ 1425 return 0; 1426} 1427#endif /* CONFIG_NUMA_BALANCING */ 1428 1429#endif /* CONFIG_MMU */ 1430 1431#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1432 1433#ifndef __PAGETABLE_P4D_FOLDED 1434int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1435void p4d_clear_huge(p4d_t *p4d); 1436#else 1437static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1438{ 1439 return 0; 1440} 1441static inline void p4d_clear_huge(p4d_t *p4d) { } 1442#endif /* !__PAGETABLE_P4D_FOLDED */ 1443 1444int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1445int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1446int pud_clear_huge(pud_t *pud); 1447int pmd_clear_huge(pmd_t *pmd); 1448int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1449int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1450int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1451#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1452static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1453{ 1454 return 0; 1455} 1456static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1457{ 1458 return 0; 1459} 1460static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1461{ 1462 return 0; 1463} 1464static inline void p4d_clear_huge(p4d_t *p4d) { } 1465static inline int pud_clear_huge(pud_t *pud) 1466{ 1467 return 0; 1468} 1469static inline int pmd_clear_huge(pmd_t *pmd) 1470{ 1471 return 0; 1472} 1473static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1474{ 1475 return 0; 1476} 1477static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1478{ 1479 return 0; 1480} 1481static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1482{ 1483 return 0; 1484} 1485#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1486 1487#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1488#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1489/* 1490 * ARCHes with special requirements for evicting THP backing TLB entries can 1491 * implement this. Otherwise also, it can help optimize normal TLB flush in 1492 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1493 * entire TLB if flush span is greater than a threshold, which will 1494 * likely be true for a single huge page. Thus a single THP flush will 1495 * invalidate the entire TLB which is not desirable. 1496 * e.g. see arch/arc: flush_pmd_tlb_range 1497 */ 1498#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1499#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1500#else 1501#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1502#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1503#endif 1504#endif 1505 1506struct file; 1507int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1508 unsigned long size, pgprot_t *vma_prot); 1509 1510#ifndef CONFIG_X86_ESPFIX64 1511static inline void init_espfix_bsp(void) { } 1512#endif 1513 1514extern void __init pgtable_cache_init(void); 1515 1516#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1517static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1518{ 1519 return true; 1520} 1521 1522static inline bool arch_has_pfn_modify_check(void) 1523{ 1524 return false; 1525} 1526#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1527 1528/* 1529 * Architecture PAGE_KERNEL_* fallbacks 1530 * 1531 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1532 * because they really don't support them, or the port needs to be updated to 1533 * reflect the required functionality. Below are a set of relatively safe 1534 * fallbacks, as best effort, which we can count on in lieu of the architectures 1535 * not defining them on their own yet. 1536 */ 1537 1538#ifndef PAGE_KERNEL_RO 1539# define PAGE_KERNEL_RO PAGE_KERNEL 1540#endif 1541 1542#ifndef PAGE_KERNEL_EXEC 1543# define PAGE_KERNEL_EXEC PAGE_KERNEL 1544#endif 1545 1546/* 1547 * Page Table Modification bits for pgtbl_mod_mask. 1548 * 1549 * These are used by the p?d_alloc_track*() set of functions an in the generic 1550 * vmalloc/ioremap code to track at which page-table levels entries have been 1551 * modified. Based on that the code can better decide when vmalloc and ioremap 1552 * mapping changes need to be synchronized to other page-tables in the system. 1553 */ 1554#define __PGTBL_PGD_MODIFIED 0 1555#define __PGTBL_P4D_MODIFIED 1 1556#define __PGTBL_PUD_MODIFIED 2 1557#define __PGTBL_PMD_MODIFIED 3 1558#define __PGTBL_PTE_MODIFIED 4 1559 1560#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1561#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1562#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1563#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1564#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1565 1566/* Page-Table Modification Mask */ 1567typedef unsigned int pgtbl_mod_mask; 1568 1569#endif /* !__ASSEMBLY__ */ 1570 1571#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1572#ifdef CONFIG_PHYS_ADDR_T_64BIT 1573/* 1574 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1575 * with physical address space extension, but falls back to 1576 * BITS_PER_LONG otherwise. 1577 */ 1578#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1579#else 1580#define MAX_POSSIBLE_PHYSMEM_BITS 32 1581#endif 1582#endif 1583 1584#ifndef has_transparent_hugepage 1585#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) 1586#endif 1587 1588#ifndef has_transparent_pud_hugepage 1589#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1590#endif 1591/* 1592 * On some architectures it depends on the mm if the p4d/pud or pmd 1593 * layer of the page table hierarchy is folded or not. 1594 */ 1595#ifndef mm_p4d_folded 1596#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1597#endif 1598 1599#ifndef mm_pud_folded 1600#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1601#endif 1602 1603#ifndef mm_pmd_folded 1604#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1605#endif 1606 1607#ifndef p4d_offset_lockless 1608#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1609#endif 1610#ifndef pud_offset_lockless 1611#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1612#endif 1613#ifndef pmd_offset_lockless 1614#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1615#endif 1616 1617/* 1618 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1619 * This differs from p?d_huge() by the fact that they are always available (if 1620 * the architecture supports large pages at the appropriate level) even 1621 * if CONFIG_HUGETLB_PAGE is not defined. 1622 * Only meaningful when called on a valid entry. 1623 */ 1624#ifndef pgd_leaf 1625#define pgd_leaf(x) 0 1626#endif 1627#ifndef p4d_leaf 1628#define p4d_leaf(x) 0 1629#endif 1630#ifndef pud_leaf 1631#define pud_leaf(x) 0 1632#endif 1633#ifndef pmd_leaf 1634#define pmd_leaf(x) 0 1635#endif 1636 1637#ifndef pgd_leaf_size 1638#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 1639#endif 1640#ifndef p4d_leaf_size 1641#define p4d_leaf_size(x) P4D_SIZE 1642#endif 1643#ifndef pud_leaf_size 1644#define pud_leaf_size(x) PUD_SIZE 1645#endif 1646#ifndef pmd_leaf_size 1647#define pmd_leaf_size(x) PMD_SIZE 1648#endif 1649#ifndef pte_leaf_size 1650#define pte_leaf_size(x) PAGE_SIZE 1651#endif 1652 1653/* 1654 * Some architectures have MMUs that are configurable or selectable at boot 1655 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it 1656 * helps to have a static maximum value. 1657 */ 1658 1659#ifndef MAX_PTRS_PER_PTE 1660#define MAX_PTRS_PER_PTE PTRS_PER_PTE 1661#endif 1662 1663#ifndef MAX_PTRS_PER_PMD 1664#define MAX_PTRS_PER_PMD PTRS_PER_PMD 1665#endif 1666 1667#ifndef MAX_PTRS_PER_PUD 1668#define MAX_PTRS_PER_PUD PTRS_PER_PUD 1669#endif 1670 1671#ifndef MAX_PTRS_PER_P4D 1672#define MAX_PTRS_PER_P4D PTRS_PER_P4D 1673#endif 1674 1675/* description of effects of mapping type and prot in current implementation. 1676 * this is due to the limited x86 page protection hardware. The expected 1677 * behavior is in parens: 1678 * 1679 * map_type prot 1680 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 1681 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1682 * w: (no) no w: (no) no w: (yes) yes w: (no) no 1683 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1684 * 1685 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1686 * w: (no) no w: (no) no w: (copy) copy w: (no) no 1687 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1688 * 1689 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 1690 * MAP_PRIVATE (with Enhanced PAN supported): 1691 * r: (no) no 1692 * w: (no) no 1693 * x: (yes) yes 1694 */ 1695#define DECLARE_VM_GET_PAGE_PROT \ 1696pgprot_t vm_get_page_prot(unsigned long vm_flags) \ 1697{ \ 1698 return protection_map[vm_flags & \ 1699 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ 1700} \ 1701EXPORT_SYMBOL(vm_get_page_prot); 1702 1703#endif /* _LINUX_PGTABLE_H */