at v6.7-rc8 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_BITMAP_H 3#define __LINUX_BITMAP_H 4 5#ifndef __ASSEMBLY__ 6 7#include <linux/align.h> 8#include <linux/bitops.h> 9#include <linux/errno.h> 10#include <linux/find.h> 11#include <linux/limits.h> 12#include <linux/string.h> 13#include <linux/types.h> 14#include <linux/bitmap-str.h> 15 16struct device; 17 18/* 19 * bitmaps provide bit arrays that consume one or more unsigned 20 * longs. The bitmap interface and available operations are listed 21 * here, in bitmap.h 22 * 23 * Function implementations generic to all architectures are in 24 * lib/bitmap.c. Functions implementations that are architecture 25 * specific are in various include/asm-<arch>/bitops.h headers 26 * and other arch/<arch> specific files. 27 * 28 * See lib/bitmap.c for more details. 29 */ 30 31/** 32 * DOC: bitmap overview 33 * 34 * The available bitmap operations and their rough meaning in the 35 * case that the bitmap is a single unsigned long are thus: 36 * 37 * The generated code is more efficient when nbits is known at 38 * compile-time and at most BITS_PER_LONG. 39 * 40 * :: 41 * 42 * bitmap_zero(dst, nbits) *dst = 0UL 43 * bitmap_fill(dst, nbits) *dst = ~0UL 44 * bitmap_copy(dst, src, nbits) *dst = *src 45 * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2 46 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2 47 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2 48 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2) 49 * bitmap_complement(dst, src, nbits) *dst = ~(*src) 50 * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal? 51 * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap? 52 * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2? 53 * bitmap_empty(src, nbits) Are all bits zero in *src? 54 * bitmap_full(src, nbits) Are all bits set in *src? 55 * bitmap_weight(src, nbits) Hamming Weight: number set bits 56 * bitmap_weight_and(src1, src2, nbits) Hamming Weight of and'ed bitmap 57 * bitmap_set(dst, pos, nbits) Set specified bit area 58 * bitmap_clear(dst, pos, nbits) Clear specified bit area 59 * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area 60 * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above 61 * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n 62 * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n 63 * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest 64 * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask) 65 * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) 66 * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) 67 * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap 68 * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz 69 * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf 70 * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf 71 * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf 72 * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf 73 * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region 74 * bitmap_release_region(bitmap, pos, order) Free specified bit region 75 * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region 76 * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst 77 * bitmap_from_arr64(dst, buf, nbits) Copy nbits from u64[] buf to dst 78 * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst 79 * bitmap_to_arr64(buf, src, nbits) Copy nbits from buf to u64[] dst 80 * bitmap_get_value8(map, start) Get 8bit value from map at start 81 * bitmap_set_value8(map, value, start) Set 8bit value to map at start 82 * 83 * Note, bitmap_zero() and bitmap_fill() operate over the region of 84 * unsigned longs, that is, bits behind bitmap till the unsigned long 85 * boundary will be zeroed or filled as well. Consider to use 86 * bitmap_clear() or bitmap_set() to make explicit zeroing or filling 87 * respectively. 88 */ 89 90/** 91 * DOC: bitmap bitops 92 * 93 * Also the following operations in asm/bitops.h apply to bitmaps.:: 94 * 95 * set_bit(bit, addr) *addr |= bit 96 * clear_bit(bit, addr) *addr &= ~bit 97 * change_bit(bit, addr) *addr ^= bit 98 * test_bit(bit, addr) Is bit set in *addr? 99 * test_and_set_bit(bit, addr) Set bit and return old value 100 * test_and_clear_bit(bit, addr) Clear bit and return old value 101 * test_and_change_bit(bit, addr) Change bit and return old value 102 * find_first_zero_bit(addr, nbits) Position first zero bit in *addr 103 * find_first_bit(addr, nbits) Position first set bit in *addr 104 * find_next_zero_bit(addr, nbits, bit) 105 * Position next zero bit in *addr >= bit 106 * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit 107 * find_next_and_bit(addr1, addr2, nbits, bit) 108 * Same as find_next_bit, but in 109 * (*addr1 & *addr2) 110 * 111 */ 112 113/** 114 * DOC: declare bitmap 115 * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used 116 * to declare an array named 'name' of just enough unsigned longs to 117 * contain all bit positions from 0 to 'bits' - 1. 118 */ 119 120/* 121 * Allocation and deallocation of bitmap. 122 * Provided in lib/bitmap.c to avoid circular dependency. 123 */ 124unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); 125unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); 126unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node); 127unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node); 128void bitmap_free(const unsigned long *bitmap); 129 130/* Managed variants of the above. */ 131unsigned long *devm_bitmap_alloc(struct device *dev, 132 unsigned int nbits, gfp_t flags); 133unsigned long *devm_bitmap_zalloc(struct device *dev, 134 unsigned int nbits, gfp_t flags); 135 136/* 137 * lib/bitmap.c provides these functions: 138 */ 139 140bool __bitmap_equal(const unsigned long *bitmap1, 141 const unsigned long *bitmap2, unsigned int nbits); 142bool __pure __bitmap_or_equal(const unsigned long *src1, 143 const unsigned long *src2, 144 const unsigned long *src3, 145 unsigned int nbits); 146void __bitmap_complement(unsigned long *dst, const unsigned long *src, 147 unsigned int nbits); 148void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 149 unsigned int shift, unsigned int nbits); 150void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 151 unsigned int shift, unsigned int nbits); 152void bitmap_cut(unsigned long *dst, const unsigned long *src, 153 unsigned int first, unsigned int cut, unsigned int nbits); 154bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 155 const unsigned long *bitmap2, unsigned int nbits); 156void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 157 const unsigned long *bitmap2, unsigned int nbits); 158void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 159 const unsigned long *bitmap2, unsigned int nbits); 160bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 161 const unsigned long *bitmap2, unsigned int nbits); 162void __bitmap_replace(unsigned long *dst, 163 const unsigned long *old, const unsigned long *new, 164 const unsigned long *mask, unsigned int nbits); 165bool __bitmap_intersects(const unsigned long *bitmap1, 166 const unsigned long *bitmap2, unsigned int nbits); 167bool __bitmap_subset(const unsigned long *bitmap1, 168 const unsigned long *bitmap2, unsigned int nbits); 169unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); 170unsigned int __bitmap_weight_and(const unsigned long *bitmap1, 171 const unsigned long *bitmap2, unsigned int nbits); 172void __bitmap_set(unsigned long *map, unsigned int start, int len); 173void __bitmap_clear(unsigned long *map, unsigned int start, int len); 174 175unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 176 unsigned long size, 177 unsigned long start, 178 unsigned int nr, 179 unsigned long align_mask, 180 unsigned long align_offset); 181 182/** 183 * bitmap_find_next_zero_area - find a contiguous aligned zero area 184 * @map: The address to base the search on 185 * @size: The bitmap size in bits 186 * @start: The bitnumber to start searching at 187 * @nr: The number of zeroed bits we're looking for 188 * @align_mask: Alignment mask for zero area 189 * 190 * The @align_mask should be one less than a power of 2; the effect is that 191 * the bit offset of all zero areas this function finds is multiples of that 192 * power of 2. A @align_mask of 0 means no alignment is required. 193 */ 194static inline unsigned long 195bitmap_find_next_zero_area(unsigned long *map, 196 unsigned long size, 197 unsigned long start, 198 unsigned int nr, 199 unsigned long align_mask) 200{ 201 return bitmap_find_next_zero_area_off(map, size, start, nr, 202 align_mask, 0); 203} 204 205void bitmap_remap(unsigned long *dst, const unsigned long *src, 206 const unsigned long *old, const unsigned long *new, unsigned int nbits); 207int bitmap_bitremap(int oldbit, 208 const unsigned long *old, const unsigned long *new, int bits); 209void bitmap_onto(unsigned long *dst, const unsigned long *orig, 210 const unsigned long *relmap, unsigned int bits); 211void bitmap_fold(unsigned long *dst, const unsigned long *orig, 212 unsigned int sz, unsigned int nbits); 213 214#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) 215#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) 216 217static inline void bitmap_zero(unsigned long *dst, unsigned int nbits) 218{ 219 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); 220 221 if (small_const_nbits(nbits)) 222 *dst = 0; 223 else 224 memset(dst, 0, len); 225} 226 227static inline void bitmap_fill(unsigned long *dst, unsigned int nbits) 228{ 229 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); 230 231 if (small_const_nbits(nbits)) 232 *dst = ~0UL; 233 else 234 memset(dst, 0xff, len); 235} 236 237static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, 238 unsigned int nbits) 239{ 240 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); 241 242 if (small_const_nbits(nbits)) 243 *dst = *src; 244 else 245 memcpy(dst, src, len); 246} 247 248/* 249 * Copy bitmap and clear tail bits in last word. 250 */ 251static inline void bitmap_copy_clear_tail(unsigned long *dst, 252 const unsigned long *src, unsigned int nbits) 253{ 254 bitmap_copy(dst, src, nbits); 255 if (nbits % BITS_PER_LONG) 256 dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); 257} 258 259/* 260 * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64 261 * machines the order of hi and lo parts of numbers match the bitmap structure. 262 * In both cases conversion is not needed when copying data from/to arrays of 263 * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead 264 * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit 265 * architectures are not using bitmap_copy_clear_tail(). 266 */ 267#if BITS_PER_LONG == 64 268void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, 269 unsigned int nbits); 270void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, 271 unsigned int nbits); 272#else 273#define bitmap_from_arr32(bitmap, buf, nbits) \ 274 bitmap_copy_clear_tail((unsigned long *) (bitmap), \ 275 (const unsigned long *) (buf), (nbits)) 276#define bitmap_to_arr32(buf, bitmap, nbits) \ 277 bitmap_copy_clear_tail((unsigned long *) (buf), \ 278 (const unsigned long *) (bitmap), (nbits)) 279#endif 280 281/* 282 * On 64-bit systems bitmaps are represented as u64 arrays internally. So, 283 * the conversion is not needed when copying data from/to arrays of u64. 284 */ 285#if BITS_PER_LONG == 32 286void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits); 287void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits); 288#else 289#define bitmap_from_arr64(bitmap, buf, nbits) \ 290 bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits)) 291#define bitmap_to_arr64(buf, bitmap, nbits) \ 292 bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits)) 293#endif 294 295static inline bool bitmap_and(unsigned long *dst, const unsigned long *src1, 296 const unsigned long *src2, unsigned int nbits) 297{ 298 if (small_const_nbits(nbits)) 299 return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; 300 return __bitmap_and(dst, src1, src2, nbits); 301} 302 303static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, 304 const unsigned long *src2, unsigned int nbits) 305{ 306 if (small_const_nbits(nbits)) 307 *dst = *src1 | *src2; 308 else 309 __bitmap_or(dst, src1, src2, nbits); 310} 311 312static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, 313 const unsigned long *src2, unsigned int nbits) 314{ 315 if (small_const_nbits(nbits)) 316 *dst = *src1 ^ *src2; 317 else 318 __bitmap_xor(dst, src1, src2, nbits); 319} 320 321static inline bool bitmap_andnot(unsigned long *dst, const unsigned long *src1, 322 const unsigned long *src2, unsigned int nbits) 323{ 324 if (small_const_nbits(nbits)) 325 return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; 326 return __bitmap_andnot(dst, src1, src2, nbits); 327} 328 329static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, 330 unsigned int nbits) 331{ 332 if (small_const_nbits(nbits)) 333 *dst = ~(*src); 334 else 335 __bitmap_complement(dst, src, nbits); 336} 337 338#ifdef __LITTLE_ENDIAN 339#define BITMAP_MEM_ALIGNMENT 8 340#else 341#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) 342#endif 343#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) 344 345static inline bool bitmap_equal(const unsigned long *src1, 346 const unsigned long *src2, unsigned int nbits) 347{ 348 if (small_const_nbits(nbits)) 349 return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); 350 if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && 351 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 352 return !memcmp(src1, src2, nbits / 8); 353 return __bitmap_equal(src1, src2, nbits); 354} 355 356/** 357 * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third 358 * @src1: Pointer to bitmap 1 359 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1 360 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2 361 * @nbits: number of bits in each of these bitmaps 362 * 363 * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise 364 */ 365static inline bool bitmap_or_equal(const unsigned long *src1, 366 const unsigned long *src2, 367 const unsigned long *src3, 368 unsigned int nbits) 369{ 370 if (!small_const_nbits(nbits)) 371 return __bitmap_or_equal(src1, src2, src3, nbits); 372 373 return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits)); 374} 375 376static inline bool bitmap_intersects(const unsigned long *src1, 377 const unsigned long *src2, 378 unsigned int nbits) 379{ 380 if (small_const_nbits(nbits)) 381 return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; 382 else 383 return __bitmap_intersects(src1, src2, nbits); 384} 385 386static inline bool bitmap_subset(const unsigned long *src1, 387 const unsigned long *src2, unsigned int nbits) 388{ 389 if (small_const_nbits(nbits)) 390 return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); 391 else 392 return __bitmap_subset(src1, src2, nbits); 393} 394 395static inline bool bitmap_empty(const unsigned long *src, unsigned nbits) 396{ 397 if (small_const_nbits(nbits)) 398 return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); 399 400 return find_first_bit(src, nbits) == nbits; 401} 402 403static inline bool bitmap_full(const unsigned long *src, unsigned int nbits) 404{ 405 if (small_const_nbits(nbits)) 406 return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); 407 408 return find_first_zero_bit(src, nbits) == nbits; 409} 410 411static __always_inline 412unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits) 413{ 414 if (small_const_nbits(nbits)) 415 return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); 416 return __bitmap_weight(src, nbits); 417} 418 419static __always_inline 420unsigned long bitmap_weight_and(const unsigned long *src1, 421 const unsigned long *src2, unsigned int nbits) 422{ 423 if (small_const_nbits(nbits)) 424 return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)); 425 return __bitmap_weight_and(src1, src2, nbits); 426} 427 428static __always_inline void bitmap_set(unsigned long *map, unsigned int start, 429 unsigned int nbits) 430{ 431 if (__builtin_constant_p(nbits) && nbits == 1) 432 __set_bit(start, map); 433 else if (small_const_nbits(start + nbits)) 434 *map |= GENMASK(start + nbits - 1, start); 435 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && 436 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && 437 __builtin_constant_p(nbits & BITMAP_MEM_MASK) && 438 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 439 memset((char *)map + start / 8, 0xff, nbits / 8); 440 else 441 __bitmap_set(map, start, nbits); 442} 443 444static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, 445 unsigned int nbits) 446{ 447 if (__builtin_constant_p(nbits) && nbits == 1) 448 __clear_bit(start, map); 449 else if (small_const_nbits(start + nbits)) 450 *map &= ~GENMASK(start + nbits - 1, start); 451 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && 452 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && 453 __builtin_constant_p(nbits & BITMAP_MEM_MASK) && 454 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 455 memset((char *)map + start / 8, 0, nbits / 8); 456 else 457 __bitmap_clear(map, start, nbits); 458} 459 460static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, 461 unsigned int shift, unsigned int nbits) 462{ 463 if (small_const_nbits(nbits)) 464 *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; 465 else 466 __bitmap_shift_right(dst, src, shift, nbits); 467} 468 469static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, 470 unsigned int shift, unsigned int nbits) 471{ 472 if (small_const_nbits(nbits)) 473 *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); 474 else 475 __bitmap_shift_left(dst, src, shift, nbits); 476} 477 478static inline void bitmap_replace(unsigned long *dst, 479 const unsigned long *old, 480 const unsigned long *new, 481 const unsigned long *mask, 482 unsigned int nbits) 483{ 484 if (small_const_nbits(nbits)) 485 *dst = (*old & ~(*mask)) | (*new & *mask); 486 else 487 __bitmap_replace(dst, old, new, mask, nbits); 488} 489 490static inline void bitmap_next_set_region(unsigned long *bitmap, 491 unsigned int *rs, unsigned int *re, 492 unsigned int end) 493{ 494 *rs = find_next_bit(bitmap, end, *rs); 495 *re = find_next_zero_bit(bitmap, end, *rs + 1); 496} 497 498/** 499 * bitmap_release_region - release allocated bitmap region 500 * @bitmap: array of unsigned longs corresponding to the bitmap 501 * @pos: beginning of bit region to release 502 * @order: region size (log base 2 of number of bits) to release 503 * 504 * This is the complement to __bitmap_find_free_region() and releases 505 * the found region (by clearing it in the bitmap). 506 */ 507static inline void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 508{ 509 bitmap_clear(bitmap, pos, BIT(order)); 510} 511 512/** 513 * bitmap_allocate_region - allocate bitmap region 514 * @bitmap: array of unsigned longs corresponding to the bitmap 515 * @pos: beginning of bit region to allocate 516 * @order: region size (log base 2 of number of bits) to allocate 517 * 518 * Allocate (set bits in) a specified region of a bitmap. 519 * 520 * Returns: 0 on success, or %-EBUSY if specified region wasn't 521 * free (not all bits were zero). 522 */ 523static inline int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 524{ 525 unsigned int len = BIT(order); 526 527 if (find_next_bit(bitmap, pos + len, pos) < pos + len) 528 return -EBUSY; 529 bitmap_set(bitmap, pos, len); 530 return 0; 531} 532 533/** 534 * bitmap_find_free_region - find a contiguous aligned mem region 535 * @bitmap: array of unsigned longs corresponding to the bitmap 536 * @bits: number of bits in the bitmap 537 * @order: region size (log base 2 of number of bits) to find 538 * 539 * Find a region of free (zero) bits in a @bitmap of @bits bits and 540 * allocate them (set them to one). Only consider regions of length 541 * a power (@order) of two, aligned to that power of two, which 542 * makes the search algorithm much faster. 543 * 544 * Returns: the bit offset in bitmap of the allocated region, 545 * or -errno on failure. 546 */ 547static inline int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 548{ 549 unsigned int pos, end; /* scans bitmap by regions of size order */ 550 551 for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) { 552 if (!bitmap_allocate_region(bitmap, pos, order)) 553 return pos; 554 } 555 return -ENOMEM; 556} 557 558/** 559 * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. 560 * @n: u64 value 561 * 562 * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit 563 * integers in 32-bit environment, and 64-bit integers in 64-bit one. 564 * 565 * There are four combinations of endianness and length of the word in linux 566 * ABIs: LE64, BE64, LE32 and BE32. 567 * 568 * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in 569 * bitmaps and therefore don't require any special handling. 570 * 571 * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory 572 * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the 573 * other hand is represented as an array of 32-bit words and the position of 574 * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that 575 * word. For example, bit #42 is located at 10th position of 2nd word. 576 * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit 577 * values in memory as it usually does. But for BE we need to swap hi and lo 578 * words manually. 579 * 580 * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and 581 * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps 582 * hi and lo words, as is expected by bitmap. 583 */ 584#if __BITS_PER_LONG == 64 585#define BITMAP_FROM_U64(n) (n) 586#else 587#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ 588 ((unsigned long) ((u64)(n) >> 32)) 589#endif 590 591/** 592 * bitmap_from_u64 - Check and swap words within u64. 593 * @mask: source bitmap 594 * @dst: destination bitmap 595 * 596 * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` 597 * to read u64 mask, we will get the wrong word. 598 * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, 599 * but we expect the lower 32-bits of u64. 600 */ 601static inline void bitmap_from_u64(unsigned long *dst, u64 mask) 602{ 603 bitmap_from_arr64(dst, &mask, 64); 604} 605 606/** 607 * bitmap_get_value8 - get an 8-bit value within a memory region 608 * @map: address to the bitmap memory region 609 * @start: bit offset of the 8-bit value; must be a multiple of 8 610 * 611 * Returns the 8-bit value located at the @start bit offset within the @src 612 * memory region. 613 */ 614static inline unsigned long bitmap_get_value8(const unsigned long *map, 615 unsigned long start) 616{ 617 const size_t index = BIT_WORD(start); 618 const unsigned long offset = start % BITS_PER_LONG; 619 620 return (map[index] >> offset) & 0xFF; 621} 622 623/** 624 * bitmap_set_value8 - set an 8-bit value within a memory region 625 * @map: address to the bitmap memory region 626 * @value: the 8-bit value; values wider than 8 bits may clobber bitmap 627 * @start: bit offset of the 8-bit value; must be a multiple of 8 628 */ 629static inline void bitmap_set_value8(unsigned long *map, unsigned long value, 630 unsigned long start) 631{ 632 const size_t index = BIT_WORD(start); 633 const unsigned long offset = start % BITS_PER_LONG; 634 635 map[index] &= ~(0xFFUL << offset); 636 map[index] |= value << offset; 637} 638 639#endif /* __ASSEMBLY__ */ 640 641#endif /* __LINUX_BITMAP_H */