Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "path.h"
20#include "srcline.h"
21#include "symbol.h"
22#include "sort.h"
23#include "strlist.h"
24#include "target.h"
25#include "thread.h"
26#include "util.h"
27#include "vdso.h"
28#include <stdbool.h>
29#include <sys/types.h>
30#include <sys/stat.h>
31#include <unistd.h>
32#include "unwind.h"
33#include "linux/hash.h"
34#include "asm/bug.h"
35#include "bpf-event.h"
36#include <internal/lib.h> // page_size
37#include "cgroup.h"
38#include "arm64-frame-pointer-unwind-support.h"
39
40#include <linux/ctype.h>
41#include <symbol/kallsyms.h>
42#include <linux/mman.h>
43#include <linux/string.h>
44#include <linux/zalloc.h>
45
46static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
47 struct thread *th, bool lock);
48
49static struct dso *machine__kernel_dso(struct machine *machine)
50{
51 return map__dso(machine->vmlinux_map);
52}
53
54static void dsos__init(struct dsos *dsos)
55{
56 INIT_LIST_HEAD(&dsos->head);
57 dsos->root = RB_ROOT;
58 init_rwsem(&dsos->lock);
59}
60
61static void machine__threads_init(struct machine *machine)
62{
63 int i;
64
65 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
66 struct threads *threads = &machine->threads[i];
67 threads->entries = RB_ROOT_CACHED;
68 init_rwsem(&threads->lock);
69 threads->nr = 0;
70 threads->last_match = NULL;
71 }
72}
73
74static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd)
75{
76 int to_find = (int) *((pid_t *)key);
77
78 return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread);
79}
80
81static struct thread_rb_node *thread_rb_node__find(const struct thread *th,
82 struct rb_root *tree)
83{
84 pid_t to_find = thread__tid(th);
85 struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid);
86
87 return rb_entry(nd, struct thread_rb_node, rb_node);
88}
89
90static int machine__set_mmap_name(struct machine *machine)
91{
92 if (machine__is_host(machine))
93 machine->mmap_name = strdup("[kernel.kallsyms]");
94 else if (machine__is_default_guest(machine))
95 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
96 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
97 machine->pid) < 0)
98 machine->mmap_name = NULL;
99
100 return machine->mmap_name ? 0 : -ENOMEM;
101}
102
103static void thread__set_guest_comm(struct thread *thread, pid_t pid)
104{
105 char comm[64];
106
107 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
108 thread__set_comm(thread, comm, 0);
109}
110
111int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
112{
113 int err = -ENOMEM;
114
115 memset(machine, 0, sizeof(*machine));
116 machine->kmaps = maps__new(machine);
117 if (machine->kmaps == NULL)
118 return -ENOMEM;
119
120 RB_CLEAR_NODE(&machine->rb_node);
121 dsos__init(&machine->dsos);
122
123 machine__threads_init(machine);
124
125 machine->vdso_info = NULL;
126 machine->env = NULL;
127
128 machine->pid = pid;
129
130 machine->id_hdr_size = 0;
131 machine->kptr_restrict_warned = false;
132 machine->comm_exec = false;
133 machine->kernel_start = 0;
134 machine->vmlinux_map = NULL;
135
136 machine->root_dir = strdup(root_dir);
137 if (machine->root_dir == NULL)
138 goto out;
139
140 if (machine__set_mmap_name(machine))
141 goto out;
142
143 if (pid != HOST_KERNEL_ID) {
144 struct thread *thread = machine__findnew_thread(machine, -1,
145 pid);
146
147 if (thread == NULL)
148 goto out;
149
150 thread__set_guest_comm(thread, pid);
151 thread__put(thread);
152 }
153
154 machine->current_tid = NULL;
155 err = 0;
156
157out:
158 if (err) {
159 zfree(&machine->kmaps);
160 zfree(&machine->root_dir);
161 zfree(&machine->mmap_name);
162 }
163 return 0;
164}
165
166struct machine *machine__new_host(void)
167{
168 struct machine *machine = malloc(sizeof(*machine));
169
170 if (machine != NULL) {
171 machine__init(machine, "", HOST_KERNEL_ID);
172
173 if (machine__create_kernel_maps(machine) < 0)
174 goto out_delete;
175 }
176
177 return machine;
178out_delete:
179 free(machine);
180 return NULL;
181}
182
183struct machine *machine__new_kallsyms(void)
184{
185 struct machine *machine = machine__new_host();
186 /*
187 * FIXME:
188 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
189 * ask for not using the kcore parsing code, once this one is fixed
190 * to create a map per module.
191 */
192 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
193 machine__delete(machine);
194 machine = NULL;
195 }
196
197 return machine;
198}
199
200static void dsos__purge(struct dsos *dsos)
201{
202 struct dso *pos, *n;
203
204 down_write(&dsos->lock);
205
206 list_for_each_entry_safe(pos, n, &dsos->head, node) {
207 RB_CLEAR_NODE(&pos->rb_node);
208 pos->root = NULL;
209 list_del_init(&pos->node);
210 dso__put(pos);
211 }
212
213 up_write(&dsos->lock);
214}
215
216static void dsos__exit(struct dsos *dsos)
217{
218 dsos__purge(dsos);
219 exit_rwsem(&dsos->lock);
220}
221
222void machine__delete_threads(struct machine *machine)
223{
224 struct rb_node *nd;
225 int i;
226
227 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
228 struct threads *threads = &machine->threads[i];
229 down_write(&threads->lock);
230 nd = rb_first_cached(&threads->entries);
231 while (nd) {
232 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
233
234 nd = rb_next(nd);
235 __machine__remove_thread(machine, trb, trb->thread, false);
236 }
237 up_write(&threads->lock);
238 }
239}
240
241void machine__exit(struct machine *machine)
242{
243 int i;
244
245 if (machine == NULL)
246 return;
247
248 machine__destroy_kernel_maps(machine);
249 maps__zput(machine->kmaps);
250 dsos__exit(&machine->dsos);
251 machine__exit_vdso(machine);
252 zfree(&machine->root_dir);
253 zfree(&machine->mmap_name);
254 zfree(&machine->current_tid);
255 zfree(&machine->kallsyms_filename);
256
257 machine__delete_threads(machine);
258 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
259 struct threads *threads = &machine->threads[i];
260
261 exit_rwsem(&threads->lock);
262 }
263}
264
265void machine__delete(struct machine *machine)
266{
267 if (machine) {
268 machine__exit(machine);
269 free(machine);
270 }
271}
272
273void machines__init(struct machines *machines)
274{
275 machine__init(&machines->host, "", HOST_KERNEL_ID);
276 machines->guests = RB_ROOT_CACHED;
277}
278
279void machines__exit(struct machines *machines)
280{
281 machine__exit(&machines->host);
282 /* XXX exit guest */
283}
284
285struct machine *machines__add(struct machines *machines, pid_t pid,
286 const char *root_dir)
287{
288 struct rb_node **p = &machines->guests.rb_root.rb_node;
289 struct rb_node *parent = NULL;
290 struct machine *pos, *machine = malloc(sizeof(*machine));
291 bool leftmost = true;
292
293 if (machine == NULL)
294 return NULL;
295
296 if (machine__init(machine, root_dir, pid) != 0) {
297 free(machine);
298 return NULL;
299 }
300
301 while (*p != NULL) {
302 parent = *p;
303 pos = rb_entry(parent, struct machine, rb_node);
304 if (pid < pos->pid)
305 p = &(*p)->rb_left;
306 else {
307 p = &(*p)->rb_right;
308 leftmost = false;
309 }
310 }
311
312 rb_link_node(&machine->rb_node, parent, p);
313 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
314
315 machine->machines = machines;
316
317 return machine;
318}
319
320void machines__set_comm_exec(struct machines *machines, bool comm_exec)
321{
322 struct rb_node *nd;
323
324 machines->host.comm_exec = comm_exec;
325
326 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
327 struct machine *machine = rb_entry(nd, struct machine, rb_node);
328
329 machine->comm_exec = comm_exec;
330 }
331}
332
333struct machine *machines__find(struct machines *machines, pid_t pid)
334{
335 struct rb_node **p = &machines->guests.rb_root.rb_node;
336 struct rb_node *parent = NULL;
337 struct machine *machine;
338 struct machine *default_machine = NULL;
339
340 if (pid == HOST_KERNEL_ID)
341 return &machines->host;
342
343 while (*p != NULL) {
344 parent = *p;
345 machine = rb_entry(parent, struct machine, rb_node);
346 if (pid < machine->pid)
347 p = &(*p)->rb_left;
348 else if (pid > machine->pid)
349 p = &(*p)->rb_right;
350 else
351 return machine;
352 if (!machine->pid)
353 default_machine = machine;
354 }
355
356 return default_machine;
357}
358
359struct machine *machines__findnew(struct machines *machines, pid_t pid)
360{
361 char path[PATH_MAX];
362 const char *root_dir = "";
363 struct machine *machine = machines__find(machines, pid);
364
365 if (machine && (machine->pid == pid))
366 goto out;
367
368 if ((pid != HOST_KERNEL_ID) &&
369 (pid != DEFAULT_GUEST_KERNEL_ID) &&
370 (symbol_conf.guestmount)) {
371 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
372 if (access(path, R_OK)) {
373 static struct strlist *seen;
374
375 if (!seen)
376 seen = strlist__new(NULL, NULL);
377
378 if (!strlist__has_entry(seen, path)) {
379 pr_err("Can't access file %s\n", path);
380 strlist__add(seen, path);
381 }
382 machine = NULL;
383 goto out;
384 }
385 root_dir = path;
386 }
387
388 machine = machines__add(machines, pid, root_dir);
389out:
390 return machine;
391}
392
393struct machine *machines__find_guest(struct machines *machines, pid_t pid)
394{
395 struct machine *machine = machines__find(machines, pid);
396
397 if (!machine)
398 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
399 return machine;
400}
401
402/*
403 * A common case for KVM test programs is that the test program acts as the
404 * hypervisor, creating, running and destroying the virtual machine, and
405 * providing the guest object code from its own object code. In this case,
406 * the VM is not running an OS, but only the functions loaded into it by the
407 * hypervisor test program, and conveniently, loaded at the same virtual
408 * addresses.
409 *
410 * Normally to resolve addresses, MMAP events are needed to map addresses
411 * back to the object code and debug symbols for that object code.
412 *
413 * Currently, there is no way to get such mapping information from guests
414 * but, in the scenario described above, the guest has the same mappings
415 * as the hypervisor, so support for that scenario can be achieved.
416 *
417 * To support that, copy the host thread's maps to the guest thread's maps.
418 * Note, we do not discover the guest until we encounter a guest event,
419 * which works well because it is not until then that we know that the host
420 * thread's maps have been set up.
421 *
422 * This function returns the guest thread. Apart from keeping the data
423 * structures sane, using a thread belonging to the guest machine, instead
424 * of the host thread, allows it to have its own comm (refer
425 * thread__set_guest_comm()).
426 */
427static struct thread *findnew_guest_code(struct machine *machine,
428 struct machine *host_machine,
429 pid_t pid)
430{
431 struct thread *host_thread;
432 struct thread *thread;
433 int err;
434
435 if (!machine)
436 return NULL;
437
438 thread = machine__findnew_thread(machine, -1, pid);
439 if (!thread)
440 return NULL;
441
442 /* Assume maps are set up if there are any */
443 if (maps__nr_maps(thread__maps(thread)))
444 return thread;
445
446 host_thread = machine__find_thread(host_machine, -1, pid);
447 if (!host_thread)
448 goto out_err;
449
450 thread__set_guest_comm(thread, pid);
451
452 /*
453 * Guest code can be found in hypervisor process at the same address
454 * so copy host maps.
455 */
456 err = maps__clone(thread, thread__maps(host_thread));
457 thread__put(host_thread);
458 if (err)
459 goto out_err;
460
461 return thread;
462
463out_err:
464 thread__zput(thread);
465 return NULL;
466}
467
468struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
469{
470 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
471 struct machine *machine = machines__findnew(machines, pid);
472
473 return findnew_guest_code(machine, host_machine, pid);
474}
475
476struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
477{
478 struct machines *machines = machine->machines;
479 struct machine *host_machine;
480
481 if (!machines)
482 return NULL;
483
484 host_machine = machines__find(machines, HOST_KERNEL_ID);
485
486 return findnew_guest_code(machine, host_machine, pid);
487}
488
489void machines__process_guests(struct machines *machines,
490 machine__process_t process, void *data)
491{
492 struct rb_node *nd;
493
494 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
495 struct machine *pos = rb_entry(nd, struct machine, rb_node);
496 process(pos, data);
497 }
498}
499
500void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
501{
502 struct rb_node *node;
503 struct machine *machine;
504
505 machines->host.id_hdr_size = id_hdr_size;
506
507 for (node = rb_first_cached(&machines->guests); node;
508 node = rb_next(node)) {
509 machine = rb_entry(node, struct machine, rb_node);
510 machine->id_hdr_size = id_hdr_size;
511 }
512
513 return;
514}
515
516static void machine__update_thread_pid(struct machine *machine,
517 struct thread *th, pid_t pid)
518{
519 struct thread *leader;
520
521 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
522 return;
523
524 thread__set_pid(th, pid);
525
526 if (thread__pid(th) == thread__tid(th))
527 return;
528
529 leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
530 if (!leader)
531 goto out_err;
532
533 if (!thread__maps(leader))
534 thread__set_maps(leader, maps__new(machine));
535
536 if (!thread__maps(leader))
537 goto out_err;
538
539 if (thread__maps(th) == thread__maps(leader))
540 goto out_put;
541
542 if (thread__maps(th)) {
543 /*
544 * Maps are created from MMAP events which provide the pid and
545 * tid. Consequently there never should be any maps on a thread
546 * with an unknown pid. Just print an error if there are.
547 */
548 if (!maps__empty(thread__maps(th)))
549 pr_err("Discarding thread maps for %d:%d\n",
550 thread__pid(th), thread__tid(th));
551 maps__put(thread__maps(th));
552 }
553
554 thread__set_maps(th, maps__get(thread__maps(leader)));
555out_put:
556 thread__put(leader);
557 return;
558out_err:
559 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
560 goto out_put;
561}
562
563/*
564 * Front-end cache - TID lookups come in blocks,
565 * so most of the time we dont have to look up
566 * the full rbtree:
567 */
568static struct thread*
569__threads__get_last_match(struct threads *threads, struct machine *machine,
570 int pid, int tid)
571{
572 struct thread *th;
573
574 th = threads->last_match;
575 if (th != NULL) {
576 if (thread__tid(th) == tid) {
577 machine__update_thread_pid(machine, th, pid);
578 return thread__get(th);
579 }
580 thread__put(threads->last_match);
581 threads->last_match = NULL;
582 }
583
584 return NULL;
585}
586
587static struct thread*
588threads__get_last_match(struct threads *threads, struct machine *machine,
589 int pid, int tid)
590{
591 struct thread *th = NULL;
592
593 if (perf_singlethreaded)
594 th = __threads__get_last_match(threads, machine, pid, tid);
595
596 return th;
597}
598
599static void
600__threads__set_last_match(struct threads *threads, struct thread *th)
601{
602 thread__put(threads->last_match);
603 threads->last_match = thread__get(th);
604}
605
606static void
607threads__set_last_match(struct threads *threads, struct thread *th)
608{
609 if (perf_singlethreaded)
610 __threads__set_last_match(threads, th);
611}
612
613/*
614 * Caller must eventually drop thread->refcnt returned with a successful
615 * lookup/new thread inserted.
616 */
617static struct thread *____machine__findnew_thread(struct machine *machine,
618 struct threads *threads,
619 pid_t pid, pid_t tid,
620 bool create)
621{
622 struct rb_node **p = &threads->entries.rb_root.rb_node;
623 struct rb_node *parent = NULL;
624 struct thread *th;
625 struct thread_rb_node *nd;
626 bool leftmost = true;
627
628 th = threads__get_last_match(threads, machine, pid, tid);
629 if (th)
630 return th;
631
632 while (*p != NULL) {
633 parent = *p;
634 th = rb_entry(parent, struct thread_rb_node, rb_node)->thread;
635
636 if (thread__tid(th) == tid) {
637 threads__set_last_match(threads, th);
638 machine__update_thread_pid(machine, th, pid);
639 return thread__get(th);
640 }
641
642 if (tid < thread__tid(th))
643 p = &(*p)->rb_left;
644 else {
645 p = &(*p)->rb_right;
646 leftmost = false;
647 }
648 }
649
650 if (!create)
651 return NULL;
652
653 th = thread__new(pid, tid);
654 if (th == NULL)
655 return NULL;
656
657 nd = malloc(sizeof(*nd));
658 if (nd == NULL) {
659 thread__put(th);
660 return NULL;
661 }
662 nd->thread = th;
663
664 rb_link_node(&nd->rb_node, parent, p);
665 rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost);
666 /*
667 * We have to initialize maps separately after rb tree is updated.
668 *
669 * The reason is that we call machine__findnew_thread within
670 * thread__init_maps to find the thread leader and that would screwed
671 * the rb tree.
672 */
673 if (thread__init_maps(th, machine)) {
674 pr_err("Thread init failed thread %d\n", pid);
675 rb_erase_cached(&nd->rb_node, &threads->entries);
676 RB_CLEAR_NODE(&nd->rb_node);
677 free(nd);
678 thread__put(th);
679 return NULL;
680 }
681 /*
682 * It is now in the rbtree, get a ref
683 */
684 threads__set_last_match(threads, th);
685 ++threads->nr;
686
687 return thread__get(th);
688}
689
690struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
691{
692 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
693}
694
695struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
696 pid_t tid)
697{
698 struct threads *threads = machine__threads(machine, tid);
699 struct thread *th;
700
701 down_write(&threads->lock);
702 th = __machine__findnew_thread(machine, pid, tid);
703 up_write(&threads->lock);
704 return th;
705}
706
707struct thread *machine__find_thread(struct machine *machine, pid_t pid,
708 pid_t tid)
709{
710 struct threads *threads = machine__threads(machine, tid);
711 struct thread *th;
712
713 down_read(&threads->lock);
714 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
715 up_read(&threads->lock);
716 return th;
717}
718
719/*
720 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
721 * So here a single thread is created for that, but actually there is a separate
722 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
723 * is only 1. That causes problems for some tools, requiring workarounds. For
724 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
725 */
726struct thread *machine__idle_thread(struct machine *machine)
727{
728 struct thread *thread = machine__findnew_thread(machine, 0, 0);
729
730 if (!thread || thread__set_comm(thread, "swapper", 0) ||
731 thread__set_namespaces(thread, 0, NULL))
732 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
733
734 return thread;
735}
736
737struct comm *machine__thread_exec_comm(struct machine *machine,
738 struct thread *thread)
739{
740 if (machine->comm_exec)
741 return thread__exec_comm(thread);
742 else
743 return thread__comm(thread);
744}
745
746int machine__process_comm_event(struct machine *machine, union perf_event *event,
747 struct perf_sample *sample)
748{
749 struct thread *thread = machine__findnew_thread(machine,
750 event->comm.pid,
751 event->comm.tid);
752 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
753 int err = 0;
754
755 if (exec)
756 machine->comm_exec = true;
757
758 if (dump_trace)
759 perf_event__fprintf_comm(event, stdout);
760
761 if (thread == NULL ||
762 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
763 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
764 err = -1;
765 }
766
767 thread__put(thread);
768
769 return err;
770}
771
772int machine__process_namespaces_event(struct machine *machine __maybe_unused,
773 union perf_event *event,
774 struct perf_sample *sample __maybe_unused)
775{
776 struct thread *thread = machine__findnew_thread(machine,
777 event->namespaces.pid,
778 event->namespaces.tid);
779 int err = 0;
780
781 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
782 "\nWARNING: kernel seems to support more namespaces than perf"
783 " tool.\nTry updating the perf tool..\n\n");
784
785 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
786 "\nWARNING: perf tool seems to support more namespaces than"
787 " the kernel.\nTry updating the kernel..\n\n");
788
789 if (dump_trace)
790 perf_event__fprintf_namespaces(event, stdout);
791
792 if (thread == NULL ||
793 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
794 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
795 err = -1;
796 }
797
798 thread__put(thread);
799
800 return err;
801}
802
803int machine__process_cgroup_event(struct machine *machine,
804 union perf_event *event,
805 struct perf_sample *sample __maybe_unused)
806{
807 struct cgroup *cgrp;
808
809 if (dump_trace)
810 perf_event__fprintf_cgroup(event, stdout);
811
812 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
813 if (cgrp == NULL)
814 return -ENOMEM;
815
816 return 0;
817}
818
819int machine__process_lost_event(struct machine *machine __maybe_unused,
820 union perf_event *event, struct perf_sample *sample __maybe_unused)
821{
822 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
823 event->lost.id, event->lost.lost);
824 return 0;
825}
826
827int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
828 union perf_event *event, struct perf_sample *sample)
829{
830 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
831 sample->id, event->lost_samples.lost);
832 return 0;
833}
834
835static struct dso *machine__findnew_module_dso(struct machine *machine,
836 struct kmod_path *m,
837 const char *filename)
838{
839 struct dso *dso;
840
841 down_write(&machine->dsos.lock);
842
843 dso = __dsos__find(&machine->dsos, m->name, true);
844 if (!dso) {
845 dso = __dsos__addnew(&machine->dsos, m->name);
846 if (dso == NULL)
847 goto out_unlock;
848
849 dso__set_module_info(dso, m, machine);
850 dso__set_long_name(dso, strdup(filename), true);
851 dso->kernel = DSO_SPACE__KERNEL;
852 }
853
854 dso__get(dso);
855out_unlock:
856 up_write(&machine->dsos.lock);
857 return dso;
858}
859
860int machine__process_aux_event(struct machine *machine __maybe_unused,
861 union perf_event *event)
862{
863 if (dump_trace)
864 perf_event__fprintf_aux(event, stdout);
865 return 0;
866}
867
868int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
869 union perf_event *event)
870{
871 if (dump_trace)
872 perf_event__fprintf_itrace_start(event, stdout);
873 return 0;
874}
875
876int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
877 union perf_event *event)
878{
879 if (dump_trace)
880 perf_event__fprintf_aux_output_hw_id(event, stdout);
881 return 0;
882}
883
884int machine__process_switch_event(struct machine *machine __maybe_unused,
885 union perf_event *event)
886{
887 if (dump_trace)
888 perf_event__fprintf_switch(event, stdout);
889 return 0;
890}
891
892static int machine__process_ksymbol_register(struct machine *machine,
893 union perf_event *event,
894 struct perf_sample *sample __maybe_unused)
895{
896 struct symbol *sym;
897 struct dso *dso;
898 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
899 bool put_map = false;
900 int err = 0;
901
902 if (!map) {
903 dso = dso__new(event->ksymbol.name);
904
905 if (!dso) {
906 err = -ENOMEM;
907 goto out;
908 }
909 dso->kernel = DSO_SPACE__KERNEL;
910 map = map__new2(0, dso);
911 dso__put(dso);
912 if (!map) {
913 err = -ENOMEM;
914 goto out;
915 }
916 /*
917 * The inserted map has a get on it, we need to put to release
918 * the reference count here, but do it after all accesses are
919 * done.
920 */
921 put_map = true;
922 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
923 dso->binary_type = DSO_BINARY_TYPE__OOL;
924 dso->data.file_size = event->ksymbol.len;
925 dso__set_loaded(dso);
926 }
927
928 map__set_start(map, event->ksymbol.addr);
929 map__set_end(map, map__start(map) + event->ksymbol.len);
930 err = maps__insert(machine__kernel_maps(machine), map);
931 if (err) {
932 err = -ENOMEM;
933 goto out;
934 }
935
936 dso__set_loaded(dso);
937
938 if (is_bpf_image(event->ksymbol.name)) {
939 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
940 dso__set_long_name(dso, "", false);
941 }
942 } else {
943 dso = map__dso(map);
944 }
945
946 sym = symbol__new(map__map_ip(map, map__start(map)),
947 event->ksymbol.len,
948 0, 0, event->ksymbol.name);
949 if (!sym) {
950 err = -ENOMEM;
951 goto out;
952 }
953 dso__insert_symbol(dso, sym);
954out:
955 if (put_map)
956 map__put(map);
957 return err;
958}
959
960static int machine__process_ksymbol_unregister(struct machine *machine,
961 union perf_event *event,
962 struct perf_sample *sample __maybe_unused)
963{
964 struct symbol *sym;
965 struct map *map;
966
967 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
968 if (!map)
969 return 0;
970
971 if (!RC_CHK_EQUAL(map, machine->vmlinux_map))
972 maps__remove(machine__kernel_maps(machine), map);
973 else {
974 struct dso *dso = map__dso(map);
975
976 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
977 if (sym)
978 dso__delete_symbol(dso, sym);
979 }
980
981 return 0;
982}
983
984int machine__process_ksymbol(struct machine *machine __maybe_unused,
985 union perf_event *event,
986 struct perf_sample *sample)
987{
988 if (dump_trace)
989 perf_event__fprintf_ksymbol(event, stdout);
990
991 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
992 return machine__process_ksymbol_unregister(machine, event,
993 sample);
994 return machine__process_ksymbol_register(machine, event, sample);
995}
996
997int machine__process_text_poke(struct machine *machine, union perf_event *event,
998 struct perf_sample *sample __maybe_unused)
999{
1000 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
1001 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1002 struct dso *dso = map ? map__dso(map) : NULL;
1003
1004 if (dump_trace)
1005 perf_event__fprintf_text_poke(event, machine, stdout);
1006
1007 if (!event->text_poke.new_len)
1008 return 0;
1009
1010 if (cpumode != PERF_RECORD_MISC_KERNEL) {
1011 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
1012 return 0;
1013 }
1014
1015 if (dso) {
1016 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
1017 int ret;
1018
1019 /*
1020 * Kernel maps might be changed when loading symbols so loading
1021 * must be done prior to using kernel maps.
1022 */
1023 map__load(map);
1024 ret = dso__data_write_cache_addr(dso, map, machine,
1025 event->text_poke.addr,
1026 new_bytes,
1027 event->text_poke.new_len);
1028 if (ret != event->text_poke.new_len)
1029 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1030 event->text_poke.addr);
1031 } else {
1032 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1033 event->text_poke.addr);
1034 }
1035
1036 return 0;
1037}
1038
1039static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1040 const char *filename)
1041{
1042 struct map *map = NULL;
1043 struct kmod_path m;
1044 struct dso *dso;
1045 int err;
1046
1047 if (kmod_path__parse_name(&m, filename))
1048 return NULL;
1049
1050 dso = machine__findnew_module_dso(machine, &m, filename);
1051 if (dso == NULL)
1052 goto out;
1053
1054 map = map__new2(start, dso);
1055 if (map == NULL)
1056 goto out;
1057
1058 err = maps__insert(machine__kernel_maps(machine), map);
1059 /* If maps__insert failed, return NULL. */
1060 if (err) {
1061 map__put(map);
1062 map = NULL;
1063 }
1064out:
1065 /* put the dso here, corresponding to machine__findnew_module_dso */
1066 dso__put(dso);
1067 zfree(&m.name);
1068 return map;
1069}
1070
1071size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1072{
1073 struct rb_node *nd;
1074 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1075
1076 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1077 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1078 ret += __dsos__fprintf(&pos->dsos.head, fp);
1079 }
1080
1081 return ret;
1082}
1083
1084size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1085 bool (skip)(struct dso *dso, int parm), int parm)
1086{
1087 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1088}
1089
1090size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1091 bool (skip)(struct dso *dso, int parm), int parm)
1092{
1093 struct rb_node *nd;
1094 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1095
1096 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1097 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1098 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1099 }
1100 return ret;
1101}
1102
1103size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1104{
1105 int i;
1106 size_t printed = 0;
1107 struct dso *kdso = machine__kernel_dso(machine);
1108
1109 if (kdso->has_build_id) {
1110 char filename[PATH_MAX];
1111 if (dso__build_id_filename(kdso, filename, sizeof(filename),
1112 false))
1113 printed += fprintf(fp, "[0] %s\n", filename);
1114 }
1115
1116 for (i = 0; i < vmlinux_path__nr_entries; ++i)
1117 printed += fprintf(fp, "[%d] %s\n",
1118 i + kdso->has_build_id, vmlinux_path[i]);
1119
1120 return printed;
1121}
1122
1123size_t machine__fprintf(struct machine *machine, FILE *fp)
1124{
1125 struct rb_node *nd;
1126 size_t ret;
1127 int i;
1128
1129 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1130 struct threads *threads = &machine->threads[i];
1131
1132 down_read(&threads->lock);
1133
1134 ret = fprintf(fp, "Threads: %u\n", threads->nr);
1135
1136 for (nd = rb_first_cached(&threads->entries); nd;
1137 nd = rb_next(nd)) {
1138 struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread;
1139
1140 ret += thread__fprintf(pos, fp);
1141 }
1142
1143 up_read(&threads->lock);
1144 }
1145 return ret;
1146}
1147
1148static struct dso *machine__get_kernel(struct machine *machine)
1149{
1150 const char *vmlinux_name = machine->mmap_name;
1151 struct dso *kernel;
1152
1153 if (machine__is_host(machine)) {
1154 if (symbol_conf.vmlinux_name)
1155 vmlinux_name = symbol_conf.vmlinux_name;
1156
1157 kernel = machine__findnew_kernel(machine, vmlinux_name,
1158 "[kernel]", DSO_SPACE__KERNEL);
1159 } else {
1160 if (symbol_conf.default_guest_vmlinux_name)
1161 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1162
1163 kernel = machine__findnew_kernel(machine, vmlinux_name,
1164 "[guest.kernel]",
1165 DSO_SPACE__KERNEL_GUEST);
1166 }
1167
1168 if (kernel != NULL && (!kernel->has_build_id))
1169 dso__read_running_kernel_build_id(kernel, machine);
1170
1171 return kernel;
1172}
1173
1174void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1175 size_t bufsz)
1176{
1177 if (machine__is_default_guest(machine))
1178 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1179 else
1180 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1181}
1182
1183const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1184
1185/* Figure out the start address of kernel map from /proc/kallsyms.
1186 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1187 * symbol_name if it's not that important.
1188 */
1189static int machine__get_running_kernel_start(struct machine *machine,
1190 const char **symbol_name,
1191 u64 *start, u64 *end)
1192{
1193 char filename[PATH_MAX];
1194 int i, err = -1;
1195 const char *name;
1196 u64 addr = 0;
1197
1198 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1199
1200 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1201 return 0;
1202
1203 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1204 err = kallsyms__get_function_start(filename, name, &addr);
1205 if (!err)
1206 break;
1207 }
1208
1209 if (err)
1210 return -1;
1211
1212 if (symbol_name)
1213 *symbol_name = name;
1214
1215 *start = addr;
1216
1217 err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1218 if (err)
1219 err = kallsyms__get_function_start(filename, "_etext", &addr);
1220 if (!err)
1221 *end = addr;
1222
1223 return 0;
1224}
1225
1226int machine__create_extra_kernel_map(struct machine *machine,
1227 struct dso *kernel,
1228 struct extra_kernel_map *xm)
1229{
1230 struct kmap *kmap;
1231 struct map *map;
1232 int err;
1233
1234 map = map__new2(xm->start, kernel);
1235 if (!map)
1236 return -ENOMEM;
1237
1238 map__set_end(map, xm->end);
1239 map__set_pgoff(map, xm->pgoff);
1240
1241 kmap = map__kmap(map);
1242
1243 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1244
1245 err = maps__insert(machine__kernel_maps(machine), map);
1246
1247 if (!err) {
1248 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1249 kmap->name, map__start(map), map__end(map));
1250 }
1251
1252 map__put(map);
1253
1254 return err;
1255}
1256
1257static u64 find_entry_trampoline(struct dso *dso)
1258{
1259 /* Duplicates are removed so lookup all aliases */
1260 const char *syms[] = {
1261 "_entry_trampoline",
1262 "__entry_trampoline_start",
1263 "entry_SYSCALL_64_trampoline",
1264 };
1265 struct symbol *sym = dso__first_symbol(dso);
1266 unsigned int i;
1267
1268 for (; sym; sym = dso__next_symbol(sym)) {
1269 if (sym->binding != STB_GLOBAL)
1270 continue;
1271 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1272 if (!strcmp(sym->name, syms[i]))
1273 return sym->start;
1274 }
1275 }
1276
1277 return 0;
1278}
1279
1280/*
1281 * These values can be used for kernels that do not have symbols for the entry
1282 * trampolines in kallsyms.
1283 */
1284#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1285#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1286#define X86_64_ENTRY_TRAMPOLINE 0x6000
1287
1288/* Map x86_64 PTI entry trampolines */
1289int machine__map_x86_64_entry_trampolines(struct machine *machine,
1290 struct dso *kernel)
1291{
1292 struct maps *kmaps = machine__kernel_maps(machine);
1293 int nr_cpus_avail, cpu;
1294 bool found = false;
1295 struct map_rb_node *rb_node;
1296 u64 pgoff;
1297
1298 /*
1299 * In the vmlinux case, pgoff is a virtual address which must now be
1300 * mapped to a vmlinux offset.
1301 */
1302 maps__for_each_entry(kmaps, rb_node) {
1303 struct map *dest_map, *map = rb_node->map;
1304 struct kmap *kmap = __map__kmap(map);
1305
1306 if (!kmap || !is_entry_trampoline(kmap->name))
1307 continue;
1308
1309 dest_map = maps__find(kmaps, map__pgoff(map));
1310 if (dest_map != map)
1311 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1312 found = true;
1313 }
1314 if (found || machine->trampolines_mapped)
1315 return 0;
1316
1317 pgoff = find_entry_trampoline(kernel);
1318 if (!pgoff)
1319 return 0;
1320
1321 nr_cpus_avail = machine__nr_cpus_avail(machine);
1322
1323 /* Add a 1 page map for each CPU's entry trampoline */
1324 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1325 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1326 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1327 X86_64_ENTRY_TRAMPOLINE;
1328 struct extra_kernel_map xm = {
1329 .start = va,
1330 .end = va + page_size,
1331 .pgoff = pgoff,
1332 };
1333
1334 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1335
1336 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1337 return -1;
1338 }
1339
1340 machine->trampolines_mapped = nr_cpus_avail;
1341
1342 return 0;
1343}
1344
1345int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1346 struct dso *kernel __maybe_unused)
1347{
1348 return 0;
1349}
1350
1351static int
1352__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1353{
1354 /* In case of renewal the kernel map, destroy previous one */
1355 machine__destroy_kernel_maps(machine);
1356
1357 map__put(machine->vmlinux_map);
1358 machine->vmlinux_map = map__new2(0, kernel);
1359 if (machine->vmlinux_map == NULL)
1360 return -ENOMEM;
1361
1362 map__set_map_ip(machine->vmlinux_map, identity__map_ip);
1363 map__set_unmap_ip(machine->vmlinux_map, identity__map_ip);
1364 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1365}
1366
1367void machine__destroy_kernel_maps(struct machine *machine)
1368{
1369 struct kmap *kmap;
1370 struct map *map = machine__kernel_map(machine);
1371
1372 if (map == NULL)
1373 return;
1374
1375 kmap = map__kmap(map);
1376 maps__remove(machine__kernel_maps(machine), map);
1377 if (kmap && kmap->ref_reloc_sym) {
1378 zfree((char **)&kmap->ref_reloc_sym->name);
1379 zfree(&kmap->ref_reloc_sym);
1380 }
1381
1382 map__zput(machine->vmlinux_map);
1383}
1384
1385int machines__create_guest_kernel_maps(struct machines *machines)
1386{
1387 int ret = 0;
1388 struct dirent **namelist = NULL;
1389 int i, items = 0;
1390 char path[PATH_MAX];
1391 pid_t pid;
1392 char *endp;
1393
1394 if (symbol_conf.default_guest_vmlinux_name ||
1395 symbol_conf.default_guest_modules ||
1396 symbol_conf.default_guest_kallsyms) {
1397 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1398 }
1399
1400 if (symbol_conf.guestmount) {
1401 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1402 if (items <= 0)
1403 return -ENOENT;
1404 for (i = 0; i < items; i++) {
1405 if (!isdigit(namelist[i]->d_name[0])) {
1406 /* Filter out . and .. */
1407 continue;
1408 }
1409 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1410 if ((*endp != '\0') ||
1411 (endp == namelist[i]->d_name) ||
1412 (errno == ERANGE)) {
1413 pr_debug("invalid directory (%s). Skipping.\n",
1414 namelist[i]->d_name);
1415 continue;
1416 }
1417 sprintf(path, "%s/%s/proc/kallsyms",
1418 symbol_conf.guestmount,
1419 namelist[i]->d_name);
1420 ret = access(path, R_OK);
1421 if (ret) {
1422 pr_debug("Can't access file %s\n", path);
1423 goto failure;
1424 }
1425 machines__create_kernel_maps(machines, pid);
1426 }
1427failure:
1428 free(namelist);
1429 }
1430
1431 return ret;
1432}
1433
1434void machines__destroy_kernel_maps(struct machines *machines)
1435{
1436 struct rb_node *next = rb_first_cached(&machines->guests);
1437
1438 machine__destroy_kernel_maps(&machines->host);
1439
1440 while (next) {
1441 struct machine *pos = rb_entry(next, struct machine, rb_node);
1442
1443 next = rb_next(&pos->rb_node);
1444 rb_erase_cached(&pos->rb_node, &machines->guests);
1445 machine__delete(pos);
1446 }
1447}
1448
1449int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1450{
1451 struct machine *machine = machines__findnew(machines, pid);
1452
1453 if (machine == NULL)
1454 return -1;
1455
1456 return machine__create_kernel_maps(machine);
1457}
1458
1459int machine__load_kallsyms(struct machine *machine, const char *filename)
1460{
1461 struct map *map = machine__kernel_map(machine);
1462 struct dso *dso = map__dso(map);
1463 int ret = __dso__load_kallsyms(dso, filename, map, true);
1464
1465 if (ret > 0) {
1466 dso__set_loaded(dso);
1467 /*
1468 * Since /proc/kallsyms will have multiple sessions for the
1469 * kernel, with modules between them, fixup the end of all
1470 * sections.
1471 */
1472 maps__fixup_end(machine__kernel_maps(machine));
1473 }
1474
1475 return ret;
1476}
1477
1478int machine__load_vmlinux_path(struct machine *machine)
1479{
1480 struct map *map = machine__kernel_map(machine);
1481 struct dso *dso = map__dso(map);
1482 int ret = dso__load_vmlinux_path(dso, map);
1483
1484 if (ret > 0)
1485 dso__set_loaded(dso);
1486
1487 return ret;
1488}
1489
1490static char *get_kernel_version(const char *root_dir)
1491{
1492 char version[PATH_MAX];
1493 FILE *file;
1494 char *name, *tmp;
1495 const char *prefix = "Linux version ";
1496
1497 sprintf(version, "%s/proc/version", root_dir);
1498 file = fopen(version, "r");
1499 if (!file)
1500 return NULL;
1501
1502 tmp = fgets(version, sizeof(version), file);
1503 fclose(file);
1504 if (!tmp)
1505 return NULL;
1506
1507 name = strstr(version, prefix);
1508 if (!name)
1509 return NULL;
1510 name += strlen(prefix);
1511 tmp = strchr(name, ' ');
1512 if (tmp)
1513 *tmp = '\0';
1514
1515 return strdup(name);
1516}
1517
1518static bool is_kmod_dso(struct dso *dso)
1519{
1520 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1521 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1522}
1523
1524static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1525{
1526 char *long_name;
1527 struct dso *dso;
1528 struct map *map = maps__find_by_name(maps, m->name);
1529
1530 if (map == NULL)
1531 return 0;
1532
1533 long_name = strdup(path);
1534 if (long_name == NULL)
1535 return -ENOMEM;
1536
1537 dso = map__dso(map);
1538 dso__set_long_name(dso, long_name, true);
1539 dso__kernel_module_get_build_id(dso, "");
1540
1541 /*
1542 * Full name could reveal us kmod compression, so
1543 * we need to update the symtab_type if needed.
1544 */
1545 if (m->comp && is_kmod_dso(dso)) {
1546 dso->symtab_type++;
1547 dso->comp = m->comp;
1548 }
1549
1550 return 0;
1551}
1552
1553static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1554{
1555 struct dirent *dent;
1556 DIR *dir = opendir(dir_name);
1557 int ret = 0;
1558
1559 if (!dir) {
1560 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1561 return -1;
1562 }
1563
1564 while ((dent = readdir(dir)) != NULL) {
1565 char path[PATH_MAX];
1566 struct stat st;
1567
1568 /*sshfs might return bad dent->d_type, so we have to stat*/
1569 path__join(path, sizeof(path), dir_name, dent->d_name);
1570 if (stat(path, &st))
1571 continue;
1572
1573 if (S_ISDIR(st.st_mode)) {
1574 if (!strcmp(dent->d_name, ".") ||
1575 !strcmp(dent->d_name, ".."))
1576 continue;
1577
1578 /* Do not follow top-level source and build symlinks */
1579 if (depth == 0) {
1580 if (!strcmp(dent->d_name, "source") ||
1581 !strcmp(dent->d_name, "build"))
1582 continue;
1583 }
1584
1585 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1586 if (ret < 0)
1587 goto out;
1588 } else {
1589 struct kmod_path m;
1590
1591 ret = kmod_path__parse_name(&m, dent->d_name);
1592 if (ret)
1593 goto out;
1594
1595 if (m.kmod)
1596 ret = maps__set_module_path(maps, path, &m);
1597
1598 zfree(&m.name);
1599
1600 if (ret)
1601 goto out;
1602 }
1603 }
1604
1605out:
1606 closedir(dir);
1607 return ret;
1608}
1609
1610static int machine__set_modules_path(struct machine *machine)
1611{
1612 char *version;
1613 char modules_path[PATH_MAX];
1614
1615 version = get_kernel_version(machine->root_dir);
1616 if (!version)
1617 return -1;
1618
1619 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1620 machine->root_dir, version);
1621 free(version);
1622
1623 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1624}
1625int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1626 u64 *size __maybe_unused,
1627 const char *name __maybe_unused)
1628{
1629 return 0;
1630}
1631
1632static int machine__create_module(void *arg, const char *name, u64 start,
1633 u64 size)
1634{
1635 struct machine *machine = arg;
1636 struct map *map;
1637
1638 if (arch__fix_module_text_start(&start, &size, name) < 0)
1639 return -1;
1640
1641 map = machine__addnew_module_map(machine, start, name);
1642 if (map == NULL)
1643 return -1;
1644 map__set_end(map, start + size);
1645
1646 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1647 map__put(map);
1648 return 0;
1649}
1650
1651static int machine__create_modules(struct machine *machine)
1652{
1653 const char *modules;
1654 char path[PATH_MAX];
1655
1656 if (machine__is_default_guest(machine)) {
1657 modules = symbol_conf.default_guest_modules;
1658 } else {
1659 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1660 modules = path;
1661 }
1662
1663 if (symbol__restricted_filename(modules, "/proc/modules"))
1664 return -1;
1665
1666 if (modules__parse(modules, machine, machine__create_module))
1667 return -1;
1668
1669 if (!machine__set_modules_path(machine))
1670 return 0;
1671
1672 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1673
1674 return 0;
1675}
1676
1677static void machine__set_kernel_mmap(struct machine *machine,
1678 u64 start, u64 end)
1679{
1680 map__set_start(machine->vmlinux_map, start);
1681 map__set_end(machine->vmlinux_map, end);
1682 /*
1683 * Be a bit paranoid here, some perf.data file came with
1684 * a zero sized synthesized MMAP event for the kernel.
1685 */
1686 if (start == 0 && end == 0)
1687 map__set_end(machine->vmlinux_map, ~0ULL);
1688}
1689
1690static int machine__update_kernel_mmap(struct machine *machine,
1691 u64 start, u64 end)
1692{
1693 struct map *orig, *updated;
1694 int err;
1695
1696 orig = machine->vmlinux_map;
1697 updated = map__get(orig);
1698
1699 machine->vmlinux_map = updated;
1700 machine__set_kernel_mmap(machine, start, end);
1701 maps__remove(machine__kernel_maps(machine), orig);
1702 err = maps__insert(machine__kernel_maps(machine), updated);
1703 map__put(orig);
1704
1705 return err;
1706}
1707
1708int machine__create_kernel_maps(struct machine *machine)
1709{
1710 struct dso *kernel = machine__get_kernel(machine);
1711 const char *name = NULL;
1712 u64 start = 0, end = ~0ULL;
1713 int ret;
1714
1715 if (kernel == NULL)
1716 return -1;
1717
1718 ret = __machine__create_kernel_maps(machine, kernel);
1719 if (ret < 0)
1720 goto out_put;
1721
1722 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1723 if (machine__is_host(machine))
1724 pr_debug("Problems creating module maps, "
1725 "continuing anyway...\n");
1726 else
1727 pr_debug("Problems creating module maps for guest %d, "
1728 "continuing anyway...\n", machine->pid);
1729 }
1730
1731 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1732 if (name &&
1733 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1734 machine__destroy_kernel_maps(machine);
1735 ret = -1;
1736 goto out_put;
1737 }
1738
1739 /*
1740 * we have a real start address now, so re-order the kmaps
1741 * assume it's the last in the kmaps
1742 */
1743 ret = machine__update_kernel_mmap(machine, start, end);
1744 if (ret < 0)
1745 goto out_put;
1746 }
1747
1748 if (machine__create_extra_kernel_maps(machine, kernel))
1749 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1750
1751 if (end == ~0ULL) {
1752 /* update end address of the kernel map using adjacent module address */
1753 struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine),
1754 machine__kernel_map(machine));
1755 struct map_rb_node *next = map_rb_node__next(rb_node);
1756
1757 if (next)
1758 machine__set_kernel_mmap(machine, start, map__start(next->map));
1759 }
1760
1761out_put:
1762 dso__put(kernel);
1763 return ret;
1764}
1765
1766static bool machine__uses_kcore(struct machine *machine)
1767{
1768 struct dso *dso;
1769
1770 list_for_each_entry(dso, &machine->dsos.head, node) {
1771 if (dso__is_kcore(dso))
1772 return true;
1773 }
1774
1775 return false;
1776}
1777
1778static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1779 struct extra_kernel_map *xm)
1780{
1781 return machine__is(machine, "x86_64") &&
1782 is_entry_trampoline(xm->name);
1783}
1784
1785static int machine__process_extra_kernel_map(struct machine *machine,
1786 struct extra_kernel_map *xm)
1787{
1788 struct dso *kernel = machine__kernel_dso(machine);
1789
1790 if (kernel == NULL)
1791 return -1;
1792
1793 return machine__create_extra_kernel_map(machine, kernel, xm);
1794}
1795
1796static int machine__process_kernel_mmap_event(struct machine *machine,
1797 struct extra_kernel_map *xm,
1798 struct build_id *bid)
1799{
1800 enum dso_space_type dso_space;
1801 bool is_kernel_mmap;
1802 const char *mmap_name = machine->mmap_name;
1803
1804 /* If we have maps from kcore then we do not need or want any others */
1805 if (machine__uses_kcore(machine))
1806 return 0;
1807
1808 if (machine__is_host(machine))
1809 dso_space = DSO_SPACE__KERNEL;
1810 else
1811 dso_space = DSO_SPACE__KERNEL_GUEST;
1812
1813 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1814 if (!is_kernel_mmap && !machine__is_host(machine)) {
1815 /*
1816 * If the event was recorded inside the guest and injected into
1817 * the host perf.data file, then it will match a host mmap_name,
1818 * so try that - see machine__set_mmap_name().
1819 */
1820 mmap_name = "[kernel.kallsyms]";
1821 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1822 }
1823 if (xm->name[0] == '/' ||
1824 (!is_kernel_mmap && xm->name[0] == '[')) {
1825 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1826
1827 if (map == NULL)
1828 goto out_problem;
1829
1830 map__set_end(map, map__start(map) + xm->end - xm->start);
1831
1832 if (build_id__is_defined(bid))
1833 dso__set_build_id(map__dso(map), bid);
1834
1835 map__put(map);
1836 } else if (is_kernel_mmap) {
1837 const char *symbol_name = xm->name + strlen(mmap_name);
1838 /*
1839 * Should be there already, from the build-id table in
1840 * the header.
1841 */
1842 struct dso *kernel = NULL;
1843 struct dso *dso;
1844
1845 down_read(&machine->dsos.lock);
1846
1847 list_for_each_entry(dso, &machine->dsos.head, node) {
1848
1849 /*
1850 * The cpumode passed to is_kernel_module is not the
1851 * cpumode of *this* event. If we insist on passing
1852 * correct cpumode to is_kernel_module, we should
1853 * record the cpumode when we adding this dso to the
1854 * linked list.
1855 *
1856 * However we don't really need passing correct
1857 * cpumode. We know the correct cpumode must be kernel
1858 * mode (if not, we should not link it onto kernel_dsos
1859 * list).
1860 *
1861 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1862 * is_kernel_module() treats it as a kernel cpumode.
1863 */
1864
1865 if (!dso->kernel ||
1866 is_kernel_module(dso->long_name,
1867 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1868 continue;
1869
1870
1871 kernel = dso__get(dso);
1872 break;
1873 }
1874
1875 up_read(&machine->dsos.lock);
1876
1877 if (kernel == NULL)
1878 kernel = machine__findnew_dso(machine, machine->mmap_name);
1879 if (kernel == NULL)
1880 goto out_problem;
1881
1882 kernel->kernel = dso_space;
1883 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1884 dso__put(kernel);
1885 goto out_problem;
1886 }
1887
1888 if (strstr(kernel->long_name, "vmlinux"))
1889 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1890
1891 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1892 dso__put(kernel);
1893 goto out_problem;
1894 }
1895
1896 if (build_id__is_defined(bid))
1897 dso__set_build_id(kernel, bid);
1898
1899 /*
1900 * Avoid using a zero address (kptr_restrict) for the ref reloc
1901 * symbol. Effectively having zero here means that at record
1902 * time /proc/sys/kernel/kptr_restrict was non zero.
1903 */
1904 if (xm->pgoff != 0) {
1905 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1906 symbol_name,
1907 xm->pgoff);
1908 }
1909
1910 if (machine__is_default_guest(machine)) {
1911 /*
1912 * preload dso of guest kernel and modules
1913 */
1914 dso__load(kernel, machine__kernel_map(machine));
1915 }
1916 dso__put(kernel);
1917 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1918 return machine__process_extra_kernel_map(machine, xm);
1919 }
1920 return 0;
1921out_problem:
1922 return -1;
1923}
1924
1925int machine__process_mmap2_event(struct machine *machine,
1926 union perf_event *event,
1927 struct perf_sample *sample)
1928{
1929 struct thread *thread;
1930 struct map *map;
1931 struct dso_id dso_id = {
1932 .maj = event->mmap2.maj,
1933 .min = event->mmap2.min,
1934 .ino = event->mmap2.ino,
1935 .ino_generation = event->mmap2.ino_generation,
1936 };
1937 struct build_id __bid, *bid = NULL;
1938 int ret = 0;
1939
1940 if (dump_trace)
1941 perf_event__fprintf_mmap2(event, stdout);
1942
1943 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1944 bid = &__bid;
1945 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1946 }
1947
1948 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1949 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1950 struct extra_kernel_map xm = {
1951 .start = event->mmap2.start,
1952 .end = event->mmap2.start + event->mmap2.len,
1953 .pgoff = event->mmap2.pgoff,
1954 };
1955
1956 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1957 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1958 if (ret < 0)
1959 goto out_problem;
1960 return 0;
1961 }
1962
1963 thread = machine__findnew_thread(machine, event->mmap2.pid,
1964 event->mmap2.tid);
1965 if (thread == NULL)
1966 goto out_problem;
1967
1968 map = map__new(machine, event->mmap2.start,
1969 event->mmap2.len, event->mmap2.pgoff,
1970 &dso_id, event->mmap2.prot,
1971 event->mmap2.flags, bid,
1972 event->mmap2.filename, thread);
1973
1974 if (map == NULL)
1975 goto out_problem_map;
1976
1977 ret = thread__insert_map(thread, map);
1978 if (ret)
1979 goto out_problem_insert;
1980
1981 thread__put(thread);
1982 map__put(map);
1983 return 0;
1984
1985out_problem_insert:
1986 map__put(map);
1987out_problem_map:
1988 thread__put(thread);
1989out_problem:
1990 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1991 return 0;
1992}
1993
1994int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1995 struct perf_sample *sample)
1996{
1997 struct thread *thread;
1998 struct map *map;
1999 u32 prot = 0;
2000 int ret = 0;
2001
2002 if (dump_trace)
2003 perf_event__fprintf_mmap(event, stdout);
2004
2005 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
2006 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
2007 struct extra_kernel_map xm = {
2008 .start = event->mmap.start,
2009 .end = event->mmap.start + event->mmap.len,
2010 .pgoff = event->mmap.pgoff,
2011 };
2012
2013 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
2014 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
2015 if (ret < 0)
2016 goto out_problem;
2017 return 0;
2018 }
2019
2020 thread = machine__findnew_thread(machine, event->mmap.pid,
2021 event->mmap.tid);
2022 if (thread == NULL)
2023 goto out_problem;
2024
2025 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
2026 prot = PROT_EXEC;
2027
2028 map = map__new(machine, event->mmap.start,
2029 event->mmap.len, event->mmap.pgoff,
2030 NULL, prot, 0, NULL, event->mmap.filename, thread);
2031
2032 if (map == NULL)
2033 goto out_problem_map;
2034
2035 ret = thread__insert_map(thread, map);
2036 if (ret)
2037 goto out_problem_insert;
2038
2039 thread__put(thread);
2040 map__put(map);
2041 return 0;
2042
2043out_problem_insert:
2044 map__put(map);
2045out_problem_map:
2046 thread__put(thread);
2047out_problem:
2048 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2049 return 0;
2050}
2051
2052static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
2053 struct thread *th, bool lock)
2054{
2055 struct threads *threads = machine__threads(machine, thread__tid(th));
2056
2057 if (!nd)
2058 nd = thread_rb_node__find(th, &threads->entries.rb_root);
2059
2060 if (threads->last_match && RC_CHK_EQUAL(threads->last_match, th))
2061 threads__set_last_match(threads, NULL);
2062
2063 if (lock)
2064 down_write(&threads->lock);
2065
2066 BUG_ON(refcount_read(thread__refcnt(th)) == 0);
2067
2068 thread__put(nd->thread);
2069 rb_erase_cached(&nd->rb_node, &threads->entries);
2070 RB_CLEAR_NODE(&nd->rb_node);
2071 --threads->nr;
2072
2073 free(nd);
2074
2075 if (lock)
2076 up_write(&threads->lock);
2077}
2078
2079void machine__remove_thread(struct machine *machine, struct thread *th)
2080{
2081 return __machine__remove_thread(machine, NULL, th, true);
2082}
2083
2084int machine__process_fork_event(struct machine *machine, union perf_event *event,
2085 struct perf_sample *sample)
2086{
2087 struct thread *thread = machine__find_thread(machine,
2088 event->fork.pid,
2089 event->fork.tid);
2090 struct thread *parent = machine__findnew_thread(machine,
2091 event->fork.ppid,
2092 event->fork.ptid);
2093 bool do_maps_clone = true;
2094 int err = 0;
2095
2096 if (dump_trace)
2097 perf_event__fprintf_task(event, stdout);
2098
2099 /*
2100 * There may be an existing thread that is not actually the parent,
2101 * either because we are processing events out of order, or because the
2102 * (fork) event that would have removed the thread was lost. Assume the
2103 * latter case and continue on as best we can.
2104 */
2105 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
2106 dump_printf("removing erroneous parent thread %d/%d\n",
2107 thread__pid(parent), thread__tid(parent));
2108 machine__remove_thread(machine, parent);
2109 thread__put(parent);
2110 parent = machine__findnew_thread(machine, event->fork.ppid,
2111 event->fork.ptid);
2112 }
2113
2114 /* if a thread currently exists for the thread id remove it */
2115 if (thread != NULL) {
2116 machine__remove_thread(machine, thread);
2117 thread__put(thread);
2118 }
2119
2120 thread = machine__findnew_thread(machine, event->fork.pid,
2121 event->fork.tid);
2122 /*
2123 * When synthesizing FORK events, we are trying to create thread
2124 * objects for the already running tasks on the machine.
2125 *
2126 * Normally, for a kernel FORK event, we want to clone the parent's
2127 * maps because that is what the kernel just did.
2128 *
2129 * But when synthesizing, this should not be done. If we do, we end up
2130 * with overlapping maps as we process the synthesized MMAP2 events that
2131 * get delivered shortly thereafter.
2132 *
2133 * Use the FORK event misc flags in an internal way to signal this
2134 * situation, so we can elide the map clone when appropriate.
2135 */
2136 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2137 do_maps_clone = false;
2138
2139 if (thread == NULL || parent == NULL ||
2140 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2141 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2142 err = -1;
2143 }
2144 thread__put(thread);
2145 thread__put(parent);
2146
2147 return err;
2148}
2149
2150int machine__process_exit_event(struct machine *machine, union perf_event *event,
2151 struct perf_sample *sample __maybe_unused)
2152{
2153 struct thread *thread = machine__find_thread(machine,
2154 event->fork.pid,
2155 event->fork.tid);
2156
2157 if (dump_trace)
2158 perf_event__fprintf_task(event, stdout);
2159
2160 if (thread != NULL)
2161 thread__put(thread);
2162
2163 return 0;
2164}
2165
2166int machine__process_event(struct machine *machine, union perf_event *event,
2167 struct perf_sample *sample)
2168{
2169 int ret;
2170
2171 switch (event->header.type) {
2172 case PERF_RECORD_COMM:
2173 ret = machine__process_comm_event(machine, event, sample); break;
2174 case PERF_RECORD_MMAP:
2175 ret = machine__process_mmap_event(machine, event, sample); break;
2176 case PERF_RECORD_NAMESPACES:
2177 ret = machine__process_namespaces_event(machine, event, sample); break;
2178 case PERF_RECORD_CGROUP:
2179 ret = machine__process_cgroup_event(machine, event, sample); break;
2180 case PERF_RECORD_MMAP2:
2181 ret = machine__process_mmap2_event(machine, event, sample); break;
2182 case PERF_RECORD_FORK:
2183 ret = machine__process_fork_event(machine, event, sample); break;
2184 case PERF_RECORD_EXIT:
2185 ret = machine__process_exit_event(machine, event, sample); break;
2186 case PERF_RECORD_LOST:
2187 ret = machine__process_lost_event(machine, event, sample); break;
2188 case PERF_RECORD_AUX:
2189 ret = machine__process_aux_event(machine, event); break;
2190 case PERF_RECORD_ITRACE_START:
2191 ret = machine__process_itrace_start_event(machine, event); break;
2192 case PERF_RECORD_LOST_SAMPLES:
2193 ret = machine__process_lost_samples_event(machine, event, sample); break;
2194 case PERF_RECORD_SWITCH:
2195 case PERF_RECORD_SWITCH_CPU_WIDE:
2196 ret = machine__process_switch_event(machine, event); break;
2197 case PERF_RECORD_KSYMBOL:
2198 ret = machine__process_ksymbol(machine, event, sample); break;
2199 case PERF_RECORD_BPF_EVENT:
2200 ret = machine__process_bpf(machine, event, sample); break;
2201 case PERF_RECORD_TEXT_POKE:
2202 ret = machine__process_text_poke(machine, event, sample); break;
2203 case PERF_RECORD_AUX_OUTPUT_HW_ID:
2204 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2205 default:
2206 ret = -1;
2207 break;
2208 }
2209
2210 return ret;
2211}
2212
2213static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2214{
2215 return regexec(regex, sym->name, 0, NULL, 0) == 0;
2216}
2217
2218static void ip__resolve_ams(struct thread *thread,
2219 struct addr_map_symbol *ams,
2220 u64 ip)
2221{
2222 struct addr_location al;
2223
2224 addr_location__init(&al);
2225 /*
2226 * We cannot use the header.misc hint to determine whether a
2227 * branch stack address is user, kernel, guest, hypervisor.
2228 * Branches may straddle the kernel/user/hypervisor boundaries.
2229 * Thus, we have to try consecutively until we find a match
2230 * or else, the symbol is unknown
2231 */
2232 thread__find_cpumode_addr_location(thread, ip, &al);
2233
2234 ams->addr = ip;
2235 ams->al_addr = al.addr;
2236 ams->al_level = al.level;
2237 ams->ms.maps = maps__get(al.maps);
2238 ams->ms.sym = al.sym;
2239 ams->ms.map = map__get(al.map);
2240 ams->phys_addr = 0;
2241 ams->data_page_size = 0;
2242 addr_location__exit(&al);
2243}
2244
2245static void ip__resolve_data(struct thread *thread,
2246 u8 m, struct addr_map_symbol *ams,
2247 u64 addr, u64 phys_addr, u64 daddr_page_size)
2248{
2249 struct addr_location al;
2250
2251 addr_location__init(&al);
2252
2253 thread__find_symbol(thread, m, addr, &al);
2254
2255 ams->addr = addr;
2256 ams->al_addr = al.addr;
2257 ams->al_level = al.level;
2258 ams->ms.maps = maps__get(al.maps);
2259 ams->ms.sym = al.sym;
2260 ams->ms.map = map__get(al.map);
2261 ams->phys_addr = phys_addr;
2262 ams->data_page_size = daddr_page_size;
2263 addr_location__exit(&al);
2264}
2265
2266struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2267 struct addr_location *al)
2268{
2269 struct mem_info *mi = mem_info__new();
2270
2271 if (!mi)
2272 return NULL;
2273
2274 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2275 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2276 sample->addr, sample->phys_addr,
2277 sample->data_page_size);
2278 mi->data_src.val = sample->data_src;
2279
2280 return mi;
2281}
2282
2283static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2284{
2285 struct map *map = ms->map;
2286 char *srcline = NULL;
2287 struct dso *dso;
2288
2289 if (!map || callchain_param.key == CCKEY_FUNCTION)
2290 return srcline;
2291
2292 dso = map__dso(map);
2293 srcline = srcline__tree_find(&dso->srclines, ip);
2294 if (!srcline) {
2295 bool show_sym = false;
2296 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2297
2298 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2299 ms->sym, show_sym, show_addr, ip);
2300 srcline__tree_insert(&dso->srclines, ip, srcline);
2301 }
2302
2303 return srcline;
2304}
2305
2306struct iterations {
2307 int nr_loop_iter;
2308 u64 cycles;
2309};
2310
2311static int add_callchain_ip(struct thread *thread,
2312 struct callchain_cursor *cursor,
2313 struct symbol **parent,
2314 struct addr_location *root_al,
2315 u8 *cpumode,
2316 u64 ip,
2317 bool branch,
2318 struct branch_flags *flags,
2319 struct iterations *iter,
2320 u64 branch_from)
2321{
2322 struct map_symbol ms = {};
2323 struct addr_location al;
2324 int nr_loop_iter = 0, err = 0;
2325 u64 iter_cycles = 0;
2326 const char *srcline = NULL;
2327
2328 addr_location__init(&al);
2329 al.filtered = 0;
2330 al.sym = NULL;
2331 al.srcline = NULL;
2332 if (!cpumode) {
2333 thread__find_cpumode_addr_location(thread, ip, &al);
2334 } else {
2335 if (ip >= PERF_CONTEXT_MAX) {
2336 switch (ip) {
2337 case PERF_CONTEXT_HV:
2338 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2339 break;
2340 case PERF_CONTEXT_KERNEL:
2341 *cpumode = PERF_RECORD_MISC_KERNEL;
2342 break;
2343 case PERF_CONTEXT_USER:
2344 *cpumode = PERF_RECORD_MISC_USER;
2345 break;
2346 default:
2347 pr_debug("invalid callchain context: "
2348 "%"PRId64"\n", (s64) ip);
2349 /*
2350 * It seems the callchain is corrupted.
2351 * Discard all.
2352 */
2353 callchain_cursor_reset(cursor);
2354 err = 1;
2355 goto out;
2356 }
2357 goto out;
2358 }
2359 thread__find_symbol(thread, *cpumode, ip, &al);
2360 }
2361
2362 if (al.sym != NULL) {
2363 if (perf_hpp_list.parent && !*parent &&
2364 symbol__match_regex(al.sym, &parent_regex))
2365 *parent = al.sym;
2366 else if (have_ignore_callees && root_al &&
2367 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2368 /* Treat this symbol as the root,
2369 forgetting its callees. */
2370 addr_location__copy(root_al, &al);
2371 callchain_cursor_reset(cursor);
2372 }
2373 }
2374
2375 if (symbol_conf.hide_unresolved && al.sym == NULL)
2376 goto out;
2377
2378 if (iter) {
2379 nr_loop_iter = iter->nr_loop_iter;
2380 iter_cycles = iter->cycles;
2381 }
2382
2383 ms.maps = maps__get(al.maps);
2384 ms.map = map__get(al.map);
2385 ms.sym = al.sym;
2386 srcline = callchain_srcline(&ms, al.addr);
2387 err = callchain_cursor_append(cursor, ip, &ms,
2388 branch, flags, nr_loop_iter,
2389 iter_cycles, branch_from, srcline);
2390out:
2391 addr_location__exit(&al);
2392 map_symbol__exit(&ms);
2393 return err;
2394}
2395
2396struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2397 struct addr_location *al)
2398{
2399 unsigned int i;
2400 const struct branch_stack *bs = sample->branch_stack;
2401 struct branch_entry *entries = perf_sample__branch_entries(sample);
2402 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2403
2404 if (!bi)
2405 return NULL;
2406
2407 for (i = 0; i < bs->nr; i++) {
2408 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2409 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2410 bi[i].flags = entries[i].flags;
2411 }
2412 return bi;
2413}
2414
2415static void save_iterations(struct iterations *iter,
2416 struct branch_entry *be, int nr)
2417{
2418 int i;
2419
2420 iter->nr_loop_iter++;
2421 iter->cycles = 0;
2422
2423 for (i = 0; i < nr; i++)
2424 iter->cycles += be[i].flags.cycles;
2425}
2426
2427#define CHASHSZ 127
2428#define CHASHBITS 7
2429#define NO_ENTRY 0xff
2430
2431#define PERF_MAX_BRANCH_DEPTH 127
2432
2433/* Remove loops. */
2434static int remove_loops(struct branch_entry *l, int nr,
2435 struct iterations *iter)
2436{
2437 int i, j, off;
2438 unsigned char chash[CHASHSZ];
2439
2440 memset(chash, NO_ENTRY, sizeof(chash));
2441
2442 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2443
2444 for (i = 0; i < nr; i++) {
2445 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2446
2447 /* no collision handling for now */
2448 if (chash[h] == NO_ENTRY) {
2449 chash[h] = i;
2450 } else if (l[chash[h]].from == l[i].from) {
2451 bool is_loop = true;
2452 /* check if it is a real loop */
2453 off = 0;
2454 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2455 if (l[j].from != l[i + off].from) {
2456 is_loop = false;
2457 break;
2458 }
2459 if (is_loop) {
2460 j = nr - (i + off);
2461 if (j > 0) {
2462 save_iterations(iter + i + off,
2463 l + i, off);
2464
2465 memmove(iter + i, iter + i + off,
2466 j * sizeof(*iter));
2467
2468 memmove(l + i, l + i + off,
2469 j * sizeof(*l));
2470 }
2471
2472 nr -= off;
2473 }
2474 }
2475 }
2476 return nr;
2477}
2478
2479static int lbr_callchain_add_kernel_ip(struct thread *thread,
2480 struct callchain_cursor *cursor,
2481 struct perf_sample *sample,
2482 struct symbol **parent,
2483 struct addr_location *root_al,
2484 u64 branch_from,
2485 bool callee, int end)
2486{
2487 struct ip_callchain *chain = sample->callchain;
2488 u8 cpumode = PERF_RECORD_MISC_USER;
2489 int err, i;
2490
2491 if (callee) {
2492 for (i = 0; i < end + 1; i++) {
2493 err = add_callchain_ip(thread, cursor, parent,
2494 root_al, &cpumode, chain->ips[i],
2495 false, NULL, NULL, branch_from);
2496 if (err)
2497 return err;
2498 }
2499 return 0;
2500 }
2501
2502 for (i = end; i >= 0; i--) {
2503 err = add_callchain_ip(thread, cursor, parent,
2504 root_al, &cpumode, chain->ips[i],
2505 false, NULL, NULL, branch_from);
2506 if (err)
2507 return err;
2508 }
2509
2510 return 0;
2511}
2512
2513static void save_lbr_cursor_node(struct thread *thread,
2514 struct callchain_cursor *cursor,
2515 int idx)
2516{
2517 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2518
2519 if (!lbr_stitch)
2520 return;
2521
2522 if (cursor->pos == cursor->nr) {
2523 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2524 return;
2525 }
2526
2527 if (!cursor->curr)
2528 cursor->curr = cursor->first;
2529 else
2530 cursor->curr = cursor->curr->next;
2531 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2532 sizeof(struct callchain_cursor_node));
2533
2534 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2535 cursor->pos++;
2536}
2537
2538static int lbr_callchain_add_lbr_ip(struct thread *thread,
2539 struct callchain_cursor *cursor,
2540 struct perf_sample *sample,
2541 struct symbol **parent,
2542 struct addr_location *root_al,
2543 u64 *branch_from,
2544 bool callee)
2545{
2546 struct branch_stack *lbr_stack = sample->branch_stack;
2547 struct branch_entry *entries = perf_sample__branch_entries(sample);
2548 u8 cpumode = PERF_RECORD_MISC_USER;
2549 int lbr_nr = lbr_stack->nr;
2550 struct branch_flags *flags;
2551 int err, i;
2552 u64 ip;
2553
2554 /*
2555 * The curr and pos are not used in writing session. They are cleared
2556 * in callchain_cursor_commit() when the writing session is closed.
2557 * Using curr and pos to track the current cursor node.
2558 */
2559 if (thread__lbr_stitch(thread)) {
2560 cursor->curr = NULL;
2561 cursor->pos = cursor->nr;
2562 if (cursor->nr) {
2563 cursor->curr = cursor->first;
2564 for (i = 0; i < (int)(cursor->nr - 1); i++)
2565 cursor->curr = cursor->curr->next;
2566 }
2567 }
2568
2569 if (callee) {
2570 /* Add LBR ip from first entries.to */
2571 ip = entries[0].to;
2572 flags = &entries[0].flags;
2573 *branch_from = entries[0].from;
2574 err = add_callchain_ip(thread, cursor, parent,
2575 root_al, &cpumode, ip,
2576 true, flags, NULL,
2577 *branch_from);
2578 if (err)
2579 return err;
2580
2581 /*
2582 * The number of cursor node increases.
2583 * Move the current cursor node.
2584 * But does not need to save current cursor node for entry 0.
2585 * It's impossible to stitch the whole LBRs of previous sample.
2586 */
2587 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2588 if (!cursor->curr)
2589 cursor->curr = cursor->first;
2590 else
2591 cursor->curr = cursor->curr->next;
2592 cursor->pos++;
2593 }
2594
2595 /* Add LBR ip from entries.from one by one. */
2596 for (i = 0; i < lbr_nr; i++) {
2597 ip = entries[i].from;
2598 flags = &entries[i].flags;
2599 err = add_callchain_ip(thread, cursor, parent,
2600 root_al, &cpumode, ip,
2601 true, flags, NULL,
2602 *branch_from);
2603 if (err)
2604 return err;
2605 save_lbr_cursor_node(thread, cursor, i);
2606 }
2607 return 0;
2608 }
2609
2610 /* Add LBR ip from entries.from one by one. */
2611 for (i = lbr_nr - 1; i >= 0; i--) {
2612 ip = entries[i].from;
2613 flags = &entries[i].flags;
2614 err = add_callchain_ip(thread, cursor, parent,
2615 root_al, &cpumode, ip,
2616 true, flags, NULL,
2617 *branch_from);
2618 if (err)
2619 return err;
2620 save_lbr_cursor_node(thread, cursor, i);
2621 }
2622
2623 if (lbr_nr > 0) {
2624 /* Add LBR ip from first entries.to */
2625 ip = entries[0].to;
2626 flags = &entries[0].flags;
2627 *branch_from = entries[0].from;
2628 err = add_callchain_ip(thread, cursor, parent,
2629 root_al, &cpumode, ip,
2630 true, flags, NULL,
2631 *branch_from);
2632 if (err)
2633 return err;
2634 }
2635
2636 return 0;
2637}
2638
2639static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2640 struct callchain_cursor *cursor)
2641{
2642 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2643 struct callchain_cursor_node *cnode;
2644 struct stitch_list *stitch_node;
2645 int err;
2646
2647 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2648 cnode = &stitch_node->cursor;
2649
2650 err = callchain_cursor_append(cursor, cnode->ip,
2651 &cnode->ms,
2652 cnode->branch,
2653 &cnode->branch_flags,
2654 cnode->nr_loop_iter,
2655 cnode->iter_cycles,
2656 cnode->branch_from,
2657 cnode->srcline);
2658 if (err)
2659 return err;
2660 }
2661 return 0;
2662}
2663
2664static struct stitch_list *get_stitch_node(struct thread *thread)
2665{
2666 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2667 struct stitch_list *stitch_node;
2668
2669 if (!list_empty(&lbr_stitch->free_lists)) {
2670 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2671 struct stitch_list, node);
2672 list_del(&stitch_node->node);
2673
2674 return stitch_node;
2675 }
2676
2677 return malloc(sizeof(struct stitch_list));
2678}
2679
2680static bool has_stitched_lbr(struct thread *thread,
2681 struct perf_sample *cur,
2682 struct perf_sample *prev,
2683 unsigned int max_lbr,
2684 bool callee)
2685{
2686 struct branch_stack *cur_stack = cur->branch_stack;
2687 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2688 struct branch_stack *prev_stack = prev->branch_stack;
2689 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2690 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2691 int i, j, nr_identical_branches = 0;
2692 struct stitch_list *stitch_node;
2693 u64 cur_base, distance;
2694
2695 if (!cur_stack || !prev_stack)
2696 return false;
2697
2698 /* Find the physical index of the base-of-stack for current sample. */
2699 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2700
2701 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2702 (max_lbr + prev_stack->hw_idx - cur_base);
2703 /* Previous sample has shorter stack. Nothing can be stitched. */
2704 if (distance + 1 > prev_stack->nr)
2705 return false;
2706
2707 /*
2708 * Check if there are identical LBRs between two samples.
2709 * Identical LBRs must have same from, to and flags values. Also,
2710 * they have to be saved in the same LBR registers (same physical
2711 * index).
2712 *
2713 * Starts from the base-of-stack of current sample.
2714 */
2715 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2716 if ((prev_entries[i].from != cur_entries[j].from) ||
2717 (prev_entries[i].to != cur_entries[j].to) ||
2718 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2719 break;
2720 nr_identical_branches++;
2721 }
2722
2723 if (!nr_identical_branches)
2724 return false;
2725
2726 /*
2727 * Save the LBRs between the base-of-stack of previous sample
2728 * and the base-of-stack of current sample into lbr_stitch->lists.
2729 * These LBRs will be stitched later.
2730 */
2731 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2732
2733 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2734 continue;
2735
2736 stitch_node = get_stitch_node(thread);
2737 if (!stitch_node)
2738 return false;
2739
2740 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2741 sizeof(struct callchain_cursor_node));
2742
2743 if (callee)
2744 list_add(&stitch_node->node, &lbr_stitch->lists);
2745 else
2746 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2747 }
2748
2749 return true;
2750}
2751
2752static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2753{
2754 if (thread__lbr_stitch(thread))
2755 return true;
2756
2757 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2758 if (!thread__lbr_stitch(thread))
2759 goto err;
2760
2761 thread__lbr_stitch(thread)->prev_lbr_cursor =
2762 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2763 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2764 goto free_lbr_stitch;
2765
2766 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2767 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2768
2769 return true;
2770
2771free_lbr_stitch:
2772 free(thread__lbr_stitch(thread));
2773 thread__set_lbr_stitch(thread, NULL);
2774err:
2775 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2776 thread__set_lbr_stitch_enable(thread, false);
2777 return false;
2778}
2779
2780/*
2781 * Resolve LBR callstack chain sample
2782 * Return:
2783 * 1 on success get LBR callchain information
2784 * 0 no available LBR callchain information, should try fp
2785 * negative error code on other errors.
2786 */
2787static int resolve_lbr_callchain_sample(struct thread *thread,
2788 struct callchain_cursor *cursor,
2789 struct perf_sample *sample,
2790 struct symbol **parent,
2791 struct addr_location *root_al,
2792 int max_stack,
2793 unsigned int max_lbr)
2794{
2795 bool callee = (callchain_param.order == ORDER_CALLEE);
2796 struct ip_callchain *chain = sample->callchain;
2797 int chain_nr = min(max_stack, (int)chain->nr), i;
2798 struct lbr_stitch *lbr_stitch;
2799 bool stitched_lbr = false;
2800 u64 branch_from = 0;
2801 int err;
2802
2803 for (i = 0; i < chain_nr; i++) {
2804 if (chain->ips[i] == PERF_CONTEXT_USER)
2805 break;
2806 }
2807
2808 /* LBR only affects the user callchain */
2809 if (i == chain_nr)
2810 return 0;
2811
2812 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2813 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2814 lbr_stitch = thread__lbr_stitch(thread);
2815
2816 stitched_lbr = has_stitched_lbr(thread, sample,
2817 &lbr_stitch->prev_sample,
2818 max_lbr, callee);
2819
2820 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2821 list_replace_init(&lbr_stitch->lists,
2822 &lbr_stitch->free_lists);
2823 }
2824 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2825 }
2826
2827 if (callee) {
2828 /* Add kernel ip */
2829 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2830 parent, root_al, branch_from,
2831 true, i);
2832 if (err)
2833 goto error;
2834
2835 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2836 root_al, &branch_from, true);
2837 if (err)
2838 goto error;
2839
2840 if (stitched_lbr) {
2841 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2842 if (err)
2843 goto error;
2844 }
2845
2846 } else {
2847 if (stitched_lbr) {
2848 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2849 if (err)
2850 goto error;
2851 }
2852 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2853 root_al, &branch_from, false);
2854 if (err)
2855 goto error;
2856
2857 /* Add kernel ip */
2858 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2859 parent, root_al, branch_from,
2860 false, i);
2861 if (err)
2862 goto error;
2863 }
2864 return 1;
2865
2866error:
2867 return (err < 0) ? err : 0;
2868}
2869
2870static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2871 struct callchain_cursor *cursor,
2872 struct symbol **parent,
2873 struct addr_location *root_al,
2874 u8 *cpumode, int ent)
2875{
2876 int err = 0;
2877
2878 while (--ent >= 0) {
2879 u64 ip = chain->ips[ent];
2880
2881 if (ip >= PERF_CONTEXT_MAX) {
2882 err = add_callchain_ip(thread, cursor, parent,
2883 root_al, cpumode, ip,
2884 false, NULL, NULL, 0);
2885 break;
2886 }
2887 }
2888 return err;
2889}
2890
2891static u64 get_leaf_frame_caller(struct perf_sample *sample,
2892 struct thread *thread, int usr_idx)
2893{
2894 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2895 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2896 else
2897 return 0;
2898}
2899
2900static int thread__resolve_callchain_sample(struct thread *thread,
2901 struct callchain_cursor *cursor,
2902 struct evsel *evsel,
2903 struct perf_sample *sample,
2904 struct symbol **parent,
2905 struct addr_location *root_al,
2906 int max_stack)
2907{
2908 struct branch_stack *branch = sample->branch_stack;
2909 struct branch_entry *entries = perf_sample__branch_entries(sample);
2910 struct ip_callchain *chain = sample->callchain;
2911 int chain_nr = 0;
2912 u8 cpumode = PERF_RECORD_MISC_USER;
2913 int i, j, err, nr_entries, usr_idx;
2914 int skip_idx = -1;
2915 int first_call = 0;
2916 u64 leaf_frame_caller;
2917
2918 if (chain)
2919 chain_nr = chain->nr;
2920
2921 if (evsel__has_branch_callstack(evsel)) {
2922 struct perf_env *env = evsel__env(evsel);
2923
2924 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2925 root_al, max_stack,
2926 !env ? 0 : env->max_branches);
2927 if (err)
2928 return (err < 0) ? err : 0;
2929 }
2930
2931 /*
2932 * Based on DWARF debug information, some architectures skip
2933 * a callchain entry saved by the kernel.
2934 */
2935 skip_idx = arch_skip_callchain_idx(thread, chain);
2936
2937 /*
2938 * Add branches to call stack for easier browsing. This gives
2939 * more context for a sample than just the callers.
2940 *
2941 * This uses individual histograms of paths compared to the
2942 * aggregated histograms the normal LBR mode uses.
2943 *
2944 * Limitations for now:
2945 * - No extra filters
2946 * - No annotations (should annotate somehow)
2947 */
2948
2949 if (branch && callchain_param.branch_callstack) {
2950 int nr = min(max_stack, (int)branch->nr);
2951 struct branch_entry be[nr];
2952 struct iterations iter[nr];
2953
2954 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2955 pr_warning("corrupted branch chain. skipping...\n");
2956 goto check_calls;
2957 }
2958
2959 for (i = 0; i < nr; i++) {
2960 if (callchain_param.order == ORDER_CALLEE) {
2961 be[i] = entries[i];
2962
2963 if (chain == NULL)
2964 continue;
2965
2966 /*
2967 * Check for overlap into the callchain.
2968 * The return address is one off compared to
2969 * the branch entry. To adjust for this
2970 * assume the calling instruction is not longer
2971 * than 8 bytes.
2972 */
2973 if (i == skip_idx ||
2974 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2975 first_call++;
2976 else if (be[i].from < chain->ips[first_call] &&
2977 be[i].from >= chain->ips[first_call] - 8)
2978 first_call++;
2979 } else
2980 be[i] = entries[branch->nr - i - 1];
2981 }
2982
2983 memset(iter, 0, sizeof(struct iterations) * nr);
2984 nr = remove_loops(be, nr, iter);
2985
2986 for (i = 0; i < nr; i++) {
2987 err = add_callchain_ip(thread, cursor, parent,
2988 root_al,
2989 NULL, be[i].to,
2990 true, &be[i].flags,
2991 NULL, be[i].from);
2992
2993 if (!err)
2994 err = add_callchain_ip(thread, cursor, parent, root_al,
2995 NULL, be[i].from,
2996 true, &be[i].flags,
2997 &iter[i], 0);
2998 if (err == -EINVAL)
2999 break;
3000 if (err)
3001 return err;
3002 }
3003
3004 if (chain_nr == 0)
3005 return 0;
3006
3007 chain_nr -= nr;
3008 }
3009
3010check_calls:
3011 if (chain && callchain_param.order != ORDER_CALLEE) {
3012 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
3013 &cpumode, chain->nr - first_call);
3014 if (err)
3015 return (err < 0) ? err : 0;
3016 }
3017 for (i = first_call, nr_entries = 0;
3018 i < chain_nr && nr_entries < max_stack; i++) {
3019 u64 ip;
3020
3021 if (callchain_param.order == ORDER_CALLEE)
3022 j = i;
3023 else
3024 j = chain->nr - i - 1;
3025
3026#ifdef HAVE_SKIP_CALLCHAIN_IDX
3027 if (j == skip_idx)
3028 continue;
3029#endif
3030 ip = chain->ips[j];
3031 if (ip < PERF_CONTEXT_MAX)
3032 ++nr_entries;
3033 else if (callchain_param.order != ORDER_CALLEE) {
3034 err = find_prev_cpumode(chain, thread, cursor, parent,
3035 root_al, &cpumode, j);
3036 if (err)
3037 return (err < 0) ? err : 0;
3038 continue;
3039 }
3040
3041 /*
3042 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3043 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3044 * the index will be different in order to add the missing frame
3045 * at the right place.
3046 */
3047
3048 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3049
3050 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3051
3052 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3053
3054 /*
3055 * check if leaf_frame_Caller != ip to not add the same
3056 * value twice.
3057 */
3058
3059 if (leaf_frame_caller && leaf_frame_caller != ip) {
3060
3061 err = add_callchain_ip(thread, cursor, parent,
3062 root_al, &cpumode, leaf_frame_caller,
3063 false, NULL, NULL, 0);
3064 if (err)
3065 return (err < 0) ? err : 0;
3066 }
3067 }
3068
3069 err = add_callchain_ip(thread, cursor, parent,
3070 root_al, &cpumode, ip,
3071 false, NULL, NULL, 0);
3072
3073 if (err)
3074 return (err < 0) ? err : 0;
3075 }
3076
3077 return 0;
3078}
3079
3080static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3081{
3082 struct symbol *sym = ms->sym;
3083 struct map *map = ms->map;
3084 struct inline_node *inline_node;
3085 struct inline_list *ilist;
3086 struct dso *dso;
3087 u64 addr;
3088 int ret = 1;
3089 struct map_symbol ilist_ms;
3090
3091 if (!symbol_conf.inline_name || !map || !sym)
3092 return ret;
3093
3094 addr = map__dso_map_ip(map, ip);
3095 addr = map__rip_2objdump(map, addr);
3096 dso = map__dso(map);
3097
3098 inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3099 if (!inline_node) {
3100 inline_node = dso__parse_addr_inlines(dso, addr, sym);
3101 if (!inline_node)
3102 return ret;
3103 inlines__tree_insert(&dso->inlined_nodes, inline_node);
3104 }
3105
3106 ilist_ms = (struct map_symbol) {
3107 .maps = maps__get(ms->maps),
3108 .map = map__get(map),
3109 };
3110 list_for_each_entry(ilist, &inline_node->val, list) {
3111 ilist_ms.sym = ilist->symbol;
3112 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3113 NULL, 0, 0, 0, ilist->srcline);
3114
3115 if (ret != 0)
3116 return ret;
3117 }
3118 map_symbol__exit(&ilist_ms);
3119
3120 return ret;
3121}
3122
3123static int unwind_entry(struct unwind_entry *entry, void *arg)
3124{
3125 struct callchain_cursor *cursor = arg;
3126 const char *srcline = NULL;
3127 u64 addr = entry->ip;
3128
3129 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3130 return 0;
3131
3132 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3133 return 0;
3134
3135 /*
3136 * Convert entry->ip from a virtual address to an offset in
3137 * its corresponding binary.
3138 */
3139 if (entry->ms.map)
3140 addr = map__dso_map_ip(entry->ms.map, entry->ip);
3141
3142 srcline = callchain_srcline(&entry->ms, addr);
3143 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3144 false, NULL, 0, 0, 0, srcline);
3145}
3146
3147static int thread__resolve_callchain_unwind(struct thread *thread,
3148 struct callchain_cursor *cursor,
3149 struct evsel *evsel,
3150 struct perf_sample *sample,
3151 int max_stack)
3152{
3153 /* Can we do dwarf post unwind? */
3154 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3155 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3156 return 0;
3157
3158 /* Bail out if nothing was captured. */
3159 if ((!sample->user_regs.regs) ||
3160 (!sample->user_stack.size))
3161 return 0;
3162
3163 return unwind__get_entries(unwind_entry, cursor,
3164 thread, sample, max_stack, false);
3165}
3166
3167int thread__resolve_callchain(struct thread *thread,
3168 struct callchain_cursor *cursor,
3169 struct evsel *evsel,
3170 struct perf_sample *sample,
3171 struct symbol **parent,
3172 struct addr_location *root_al,
3173 int max_stack)
3174{
3175 int ret = 0;
3176
3177 if (cursor == NULL)
3178 return -ENOMEM;
3179
3180 callchain_cursor_reset(cursor);
3181
3182 if (callchain_param.order == ORDER_CALLEE) {
3183 ret = thread__resolve_callchain_sample(thread, cursor,
3184 evsel, sample,
3185 parent, root_al,
3186 max_stack);
3187 if (ret)
3188 return ret;
3189 ret = thread__resolve_callchain_unwind(thread, cursor,
3190 evsel, sample,
3191 max_stack);
3192 } else {
3193 ret = thread__resolve_callchain_unwind(thread, cursor,
3194 evsel, sample,
3195 max_stack);
3196 if (ret)
3197 return ret;
3198 ret = thread__resolve_callchain_sample(thread, cursor,
3199 evsel, sample,
3200 parent, root_al,
3201 max_stack);
3202 }
3203
3204 return ret;
3205}
3206
3207int machine__for_each_thread(struct machine *machine,
3208 int (*fn)(struct thread *thread, void *p),
3209 void *priv)
3210{
3211 struct threads *threads;
3212 struct rb_node *nd;
3213 int rc = 0;
3214 int i;
3215
3216 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3217 threads = &machine->threads[i];
3218 for (nd = rb_first_cached(&threads->entries); nd;
3219 nd = rb_next(nd)) {
3220 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
3221
3222 rc = fn(trb->thread, priv);
3223 if (rc != 0)
3224 return rc;
3225 }
3226 }
3227 return rc;
3228}
3229
3230int machines__for_each_thread(struct machines *machines,
3231 int (*fn)(struct thread *thread, void *p),
3232 void *priv)
3233{
3234 struct rb_node *nd;
3235 int rc = 0;
3236
3237 rc = machine__for_each_thread(&machines->host, fn, priv);
3238 if (rc != 0)
3239 return rc;
3240
3241 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3242 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3243
3244 rc = machine__for_each_thread(machine, fn, priv);
3245 if (rc != 0)
3246 return rc;
3247 }
3248 return rc;
3249}
3250
3251pid_t machine__get_current_tid(struct machine *machine, int cpu)
3252{
3253 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3254 return -1;
3255
3256 return machine->current_tid[cpu];
3257}
3258
3259int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3260 pid_t tid)
3261{
3262 struct thread *thread;
3263 const pid_t init_val = -1;
3264
3265 if (cpu < 0)
3266 return -EINVAL;
3267
3268 if (realloc_array_as_needed(machine->current_tid,
3269 machine->current_tid_sz,
3270 (unsigned int)cpu,
3271 &init_val))
3272 return -ENOMEM;
3273
3274 machine->current_tid[cpu] = tid;
3275
3276 thread = machine__findnew_thread(machine, pid, tid);
3277 if (!thread)
3278 return -ENOMEM;
3279
3280 thread__set_cpu(thread, cpu);
3281 thread__put(thread);
3282
3283 return 0;
3284}
3285
3286/*
3287 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3288 * machine__normalized_is() if a normalized arch is needed.
3289 */
3290bool machine__is(struct machine *machine, const char *arch)
3291{
3292 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3293}
3294
3295bool machine__normalized_is(struct machine *machine, const char *arch)
3296{
3297 return machine && !strcmp(perf_env__arch(machine->env), arch);
3298}
3299
3300int machine__nr_cpus_avail(struct machine *machine)
3301{
3302 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3303}
3304
3305int machine__get_kernel_start(struct machine *machine)
3306{
3307 struct map *map = machine__kernel_map(machine);
3308 int err = 0;
3309
3310 /*
3311 * The only addresses above 2^63 are kernel addresses of a 64-bit
3312 * kernel. Note that addresses are unsigned so that on a 32-bit system
3313 * all addresses including kernel addresses are less than 2^32. In
3314 * that case (32-bit system), if the kernel mapping is unknown, all
3315 * addresses will be assumed to be in user space - see
3316 * machine__kernel_ip().
3317 */
3318 machine->kernel_start = 1ULL << 63;
3319 if (map) {
3320 err = map__load(map);
3321 /*
3322 * On x86_64, PTI entry trampolines are less than the
3323 * start of kernel text, but still above 2^63. So leave
3324 * kernel_start = 1ULL << 63 for x86_64.
3325 */
3326 if (!err && !machine__is(machine, "x86_64"))
3327 machine->kernel_start = map__start(map);
3328 }
3329 return err;
3330}
3331
3332u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3333{
3334 u8 addr_cpumode = cpumode;
3335 bool kernel_ip;
3336
3337 if (!machine->single_address_space)
3338 goto out;
3339
3340 kernel_ip = machine__kernel_ip(machine, addr);
3341 switch (cpumode) {
3342 case PERF_RECORD_MISC_KERNEL:
3343 case PERF_RECORD_MISC_USER:
3344 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3345 PERF_RECORD_MISC_USER;
3346 break;
3347 case PERF_RECORD_MISC_GUEST_KERNEL:
3348 case PERF_RECORD_MISC_GUEST_USER:
3349 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3350 PERF_RECORD_MISC_GUEST_USER;
3351 break;
3352 default:
3353 break;
3354 }
3355out:
3356 return addr_cpumode;
3357}
3358
3359struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3360{
3361 return dsos__findnew_id(&machine->dsos, filename, id);
3362}
3363
3364struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3365{
3366 return machine__findnew_dso_id(machine, filename, NULL);
3367}
3368
3369char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3370{
3371 struct machine *machine = vmachine;
3372 struct map *map;
3373 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3374
3375 if (sym == NULL)
3376 return NULL;
3377
3378 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3379 *addrp = map__unmap_ip(map, sym->start);
3380 return sym->name;
3381}
3382
3383int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3384{
3385 struct dso *pos;
3386 int err = 0;
3387
3388 list_for_each_entry(pos, &machine->dsos.head, node) {
3389 if (fn(pos, machine, priv))
3390 err = -1;
3391 }
3392 return err;
3393}
3394
3395int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3396{
3397 struct maps *maps = machine__kernel_maps(machine);
3398 struct map_rb_node *pos;
3399 int err = 0;
3400
3401 maps__for_each_entry(maps, pos) {
3402 err = fn(pos->map, priv);
3403 if (err != 0) {
3404 break;
3405 }
3406 }
3407 return err;
3408}
3409
3410bool machine__is_lock_function(struct machine *machine, u64 addr)
3411{
3412 if (!machine->sched.text_start) {
3413 struct map *kmap;
3414 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3415
3416 if (!sym) {
3417 /* to avoid retry */
3418 machine->sched.text_start = 1;
3419 return false;
3420 }
3421
3422 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3423
3424 /* should not fail from here */
3425 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3426 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3427
3428 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3429 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3430
3431 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3432 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3433 }
3434
3435 /* failed to get kernel symbols */
3436 if (machine->sched.text_start == 1)
3437 return false;
3438
3439 /* mutex and rwsem functions are in sched text section */
3440 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3441 return true;
3442
3443 /* spinlock functions are in lock text section */
3444 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3445 return true;
3446
3447 return false;
3448}