at v6.7-rc3 39 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_SEQLOCK_H 3#define __LINUX_SEQLOCK_H 4 5/* 6 * seqcount_t / seqlock_t - a reader-writer consistency mechanism with 7 * lockless readers (read-only retry loops), and no writer starvation. 8 * 9 * See Documentation/locking/seqlock.rst 10 * 11 * Copyrights: 12 * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli 13 * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH 14 */ 15 16#include <linux/compiler.h> 17#include <linux/kcsan-checks.h> 18#include <linux/lockdep.h> 19#include <linux/mutex.h> 20#include <linux/preempt.h> 21#include <linux/spinlock.h> 22 23#include <asm/processor.h> 24 25/* 26 * The seqlock seqcount_t interface does not prescribe a precise sequence of 27 * read begin/retry/end. For readers, typically there is a call to 28 * read_seqcount_begin() and read_seqcount_retry(), however, there are more 29 * esoteric cases which do not follow this pattern. 30 * 31 * As a consequence, we take the following best-effort approach for raw usage 32 * via seqcount_t under KCSAN: upon beginning a seq-reader critical section, 33 * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as 34 * atomics; if there is a matching read_seqcount_retry() call, no following 35 * memory operations are considered atomic. Usage of the seqlock_t interface 36 * is not affected. 37 */ 38#define KCSAN_SEQLOCK_REGION_MAX 1000 39 40/* 41 * Sequence counters (seqcount_t) 42 * 43 * This is the raw counting mechanism, without any writer protection. 44 * 45 * Write side critical sections must be serialized and non-preemptible. 46 * 47 * If readers can be invoked from hardirq or softirq contexts, 48 * interrupts or bottom halves must also be respectively disabled before 49 * entering the write section. 50 * 51 * This mechanism can't be used if the protected data contains pointers, 52 * as the writer can invalidate a pointer that a reader is following. 53 * 54 * If the write serialization mechanism is one of the common kernel 55 * locking primitives, use a sequence counter with associated lock 56 * (seqcount_LOCKNAME_t) instead. 57 * 58 * If it's desired to automatically handle the sequence counter writer 59 * serialization and non-preemptibility requirements, use a sequential 60 * lock (seqlock_t) instead. 61 * 62 * See Documentation/locking/seqlock.rst 63 */ 64typedef struct seqcount { 65 unsigned sequence; 66#ifdef CONFIG_DEBUG_LOCK_ALLOC 67 struct lockdep_map dep_map; 68#endif 69} seqcount_t; 70 71static inline void __seqcount_init(seqcount_t *s, const char *name, 72 struct lock_class_key *key) 73{ 74 /* 75 * Make sure we are not reinitializing a held lock: 76 */ 77 lockdep_init_map(&s->dep_map, name, key, 0); 78 s->sequence = 0; 79} 80 81#ifdef CONFIG_DEBUG_LOCK_ALLOC 82 83# define SEQCOUNT_DEP_MAP_INIT(lockname) \ 84 .dep_map = { .name = #lockname } 85 86/** 87 * seqcount_init() - runtime initializer for seqcount_t 88 * @s: Pointer to the seqcount_t instance 89 */ 90# define seqcount_init(s) \ 91 do { \ 92 static struct lock_class_key __key; \ 93 __seqcount_init((s), #s, &__key); \ 94 } while (0) 95 96static inline void seqcount_lockdep_reader_access(const seqcount_t *s) 97{ 98 seqcount_t *l = (seqcount_t *)s; 99 unsigned long flags; 100 101 local_irq_save(flags); 102 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_); 103 seqcount_release(&l->dep_map, _RET_IP_); 104 local_irq_restore(flags); 105} 106 107#else 108# define SEQCOUNT_DEP_MAP_INIT(lockname) 109# define seqcount_init(s) __seqcount_init(s, NULL, NULL) 110# define seqcount_lockdep_reader_access(x) 111#endif 112 113/** 114 * SEQCNT_ZERO() - static initializer for seqcount_t 115 * @name: Name of the seqcount_t instance 116 */ 117#define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } 118 119/* 120 * Sequence counters with associated locks (seqcount_LOCKNAME_t) 121 * 122 * A sequence counter which associates the lock used for writer 123 * serialization at initialization time. This enables lockdep to validate 124 * that the write side critical section is properly serialized. 125 * 126 * For associated locks which do not implicitly disable preemption, 127 * preemption protection is enforced in the write side function. 128 * 129 * Lockdep is never used in any for the raw write variants. 130 * 131 * See Documentation/locking/seqlock.rst 132 */ 133 134/* 135 * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot 136 * disable preemption. It can lead to higher latencies, and the write side 137 * sections will not be able to acquire locks which become sleeping locks 138 * (e.g. spinlock_t). 139 * 140 * To remain preemptible while avoiding a possible livelock caused by the 141 * reader preempting the writer, use a different technique: let the reader 142 * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the 143 * case, acquire then release the associated LOCKNAME writer serialization 144 * lock. This will allow any possibly-preempted writer to make progress 145 * until the end of its writer serialization lock critical section. 146 * 147 * This lock-unlock technique must be implemented for all of PREEMPT_RT 148 * sleeping locks. See Documentation/locking/locktypes.rst 149 */ 150#if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT) 151#define __SEQ_LOCK(expr) expr 152#else 153#define __SEQ_LOCK(expr) 154#endif 155 156/* 157 * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated 158 * @seqcount: The real sequence counter 159 * @lock: Pointer to the associated lock 160 * 161 * A plain sequence counter with external writer synchronization by 162 * LOCKNAME @lock. The lock is associated to the sequence counter in the 163 * static initializer or init function. This enables lockdep to validate 164 * that the write side critical section is properly serialized. 165 * 166 * LOCKNAME: raw_spinlock, spinlock, rwlock or mutex 167 */ 168 169/* 170 * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t 171 * @s: Pointer to the seqcount_LOCKNAME_t instance 172 * @lock: Pointer to the associated lock 173 */ 174 175#define seqcount_LOCKNAME_init(s, _lock, lockname) \ 176 do { \ 177 seqcount_##lockname##_t *____s = (s); \ 178 seqcount_init(&____s->seqcount); \ 179 __SEQ_LOCK(____s->lock = (_lock)); \ 180 } while (0) 181 182#define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock) 183#define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock) 184#define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock) 185#define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex) 186 187/* 188 * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers 189 * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t 190 * 191 * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t 192 * @locktype: LOCKNAME canonical C data type 193 * @preemptible: preemptibility of above locktype 194 * @lockbase: prefix for associated lock/unlock 195 */ 196#define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockbase) \ 197typedef struct seqcount_##lockname { \ 198 seqcount_t seqcount; \ 199 __SEQ_LOCK(locktype *lock); \ 200} seqcount_##lockname##_t; \ 201 \ 202static __always_inline seqcount_t * \ 203__seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \ 204{ \ 205 return &s->seqcount; \ 206} \ 207 \ 208static __always_inline const seqcount_t * \ 209__seqprop_##lockname##_const_ptr(const seqcount_##lockname##_t *s) \ 210{ \ 211 return &s->seqcount; \ 212} \ 213 \ 214static __always_inline unsigned \ 215__seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \ 216{ \ 217 unsigned seq = READ_ONCE(s->seqcount.sequence); \ 218 \ 219 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 220 return seq; \ 221 \ 222 if (preemptible && unlikely(seq & 1)) { \ 223 __SEQ_LOCK(lockbase##_lock(s->lock)); \ 224 __SEQ_LOCK(lockbase##_unlock(s->lock)); \ 225 \ 226 /* \ 227 * Re-read the sequence counter since the (possibly \ 228 * preempted) writer made progress. \ 229 */ \ 230 seq = READ_ONCE(s->seqcount.sequence); \ 231 } \ 232 \ 233 return seq; \ 234} \ 235 \ 236static __always_inline bool \ 237__seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \ 238{ \ 239 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 240 return preemptible; \ 241 \ 242 /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \ 243 return false; \ 244} \ 245 \ 246static __always_inline void \ 247__seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \ 248{ \ 249 __SEQ_LOCK(lockdep_assert_held(s->lock)); \ 250} 251 252/* 253 * __seqprop() for seqcount_t 254 */ 255 256static inline seqcount_t *__seqprop_ptr(seqcount_t *s) 257{ 258 return s; 259} 260 261static inline const seqcount_t *__seqprop_const_ptr(const seqcount_t *s) 262{ 263 return s; 264} 265 266static inline unsigned __seqprop_sequence(const seqcount_t *s) 267{ 268 return READ_ONCE(s->sequence); 269} 270 271static inline bool __seqprop_preemptible(const seqcount_t *s) 272{ 273 return false; 274} 275 276static inline void __seqprop_assert(const seqcount_t *s) 277{ 278 lockdep_assert_preemption_disabled(); 279} 280 281#define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT) 282 283SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, raw_spin) 284SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, spin) 285SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, read) 286SEQCOUNT_LOCKNAME(mutex, struct mutex, true, mutex) 287 288/* 289 * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t 290 * @name: Name of the seqcount_LOCKNAME_t instance 291 * @lock: Pointer to the associated LOCKNAME 292 */ 293 294#define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \ 295 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ 296 __SEQ_LOCK(.lock = (assoc_lock)) \ 297} 298 299#define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 300#define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 301#define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 302#define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 303#define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 304 305#define __seqprop_case(s, lockname, prop) \ 306 seqcount_##lockname##_t: __seqprop_##lockname##_##prop 307 308#define __seqprop(s, prop) _Generic(*(s), \ 309 seqcount_t: __seqprop_##prop, \ 310 __seqprop_case((s), raw_spinlock, prop), \ 311 __seqprop_case((s), spinlock, prop), \ 312 __seqprop_case((s), rwlock, prop), \ 313 __seqprop_case((s), mutex, prop)) 314 315#define seqprop_ptr(s) __seqprop(s, ptr)(s) 316#define seqprop_const_ptr(s) __seqprop(s, const_ptr)(s) 317#define seqprop_sequence(s) __seqprop(s, sequence)(s) 318#define seqprop_preemptible(s) __seqprop(s, preemptible)(s) 319#define seqprop_assert(s) __seqprop(s, assert)(s) 320 321/** 322 * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier 323 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 324 * 325 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() 326 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 327 * provided before actually loading any of the variables that are to be 328 * protected in this critical section. 329 * 330 * Use carefully, only in critical code, and comment how the barrier is 331 * provided. 332 * 333 * Return: count to be passed to read_seqcount_retry() 334 */ 335#define __read_seqcount_begin(s) \ 336({ \ 337 unsigned __seq; \ 338 \ 339 while ((__seq = seqprop_sequence(s)) & 1) \ 340 cpu_relax(); \ 341 \ 342 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ 343 __seq; \ 344}) 345 346/** 347 * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep 348 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 349 * 350 * Return: count to be passed to read_seqcount_retry() 351 */ 352#define raw_read_seqcount_begin(s) \ 353({ \ 354 unsigned _seq = __read_seqcount_begin(s); \ 355 \ 356 smp_rmb(); \ 357 _seq; \ 358}) 359 360/** 361 * read_seqcount_begin() - begin a seqcount_t read critical section 362 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 363 * 364 * Return: count to be passed to read_seqcount_retry() 365 */ 366#define read_seqcount_begin(s) \ 367({ \ 368 seqcount_lockdep_reader_access(seqprop_const_ptr(s)); \ 369 raw_read_seqcount_begin(s); \ 370}) 371 372/** 373 * raw_read_seqcount() - read the raw seqcount_t counter value 374 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 375 * 376 * raw_read_seqcount opens a read critical section of the given 377 * seqcount_t, without any lockdep checking, and without checking or 378 * masking the sequence counter LSB. Calling code is responsible for 379 * handling that. 380 * 381 * Return: count to be passed to read_seqcount_retry() 382 */ 383#define raw_read_seqcount(s) \ 384({ \ 385 unsigned __seq = seqprop_sequence(s); \ 386 \ 387 smp_rmb(); \ 388 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ 389 __seq; \ 390}) 391 392/** 393 * raw_seqcount_begin() - begin a seqcount_t read critical section w/o 394 * lockdep and w/o counter stabilization 395 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 396 * 397 * raw_seqcount_begin opens a read critical section of the given 398 * seqcount_t. Unlike read_seqcount_begin(), this function will not wait 399 * for the count to stabilize. If a writer is active when it begins, it 400 * will fail the read_seqcount_retry() at the end of the read critical 401 * section instead of stabilizing at the beginning of it. 402 * 403 * Use this only in special kernel hot paths where the read section is 404 * small and has a high probability of success through other external 405 * means. It will save a single branching instruction. 406 * 407 * Return: count to be passed to read_seqcount_retry() 408 */ 409#define raw_seqcount_begin(s) \ 410({ \ 411 /* \ 412 * If the counter is odd, let read_seqcount_retry() fail \ 413 * by decrementing the counter. \ 414 */ \ 415 raw_read_seqcount(s) & ~1; \ 416}) 417 418/** 419 * __read_seqcount_retry() - end a seqcount_t read section w/o barrier 420 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 421 * @start: count, from read_seqcount_begin() 422 * 423 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() 424 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 425 * provided before actually loading any of the variables that are to be 426 * protected in this critical section. 427 * 428 * Use carefully, only in critical code, and comment how the barrier is 429 * provided. 430 * 431 * Return: true if a read section retry is required, else false 432 */ 433#define __read_seqcount_retry(s, start) \ 434 do___read_seqcount_retry(seqprop_const_ptr(s), start) 435 436static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start) 437{ 438 kcsan_atomic_next(0); 439 return unlikely(READ_ONCE(s->sequence) != start); 440} 441 442/** 443 * read_seqcount_retry() - end a seqcount_t read critical section 444 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 445 * @start: count, from read_seqcount_begin() 446 * 447 * read_seqcount_retry closes the read critical section of given 448 * seqcount_t. If the critical section was invalid, it must be ignored 449 * (and typically retried). 450 * 451 * Return: true if a read section retry is required, else false 452 */ 453#define read_seqcount_retry(s, start) \ 454 do_read_seqcount_retry(seqprop_const_ptr(s), start) 455 456static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start) 457{ 458 smp_rmb(); 459 return do___read_seqcount_retry(s, start); 460} 461 462/** 463 * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep 464 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 465 * 466 * Context: check write_seqcount_begin() 467 */ 468#define raw_write_seqcount_begin(s) \ 469do { \ 470 if (seqprop_preemptible(s)) \ 471 preempt_disable(); \ 472 \ 473 do_raw_write_seqcount_begin(seqprop_ptr(s)); \ 474} while (0) 475 476static inline void do_raw_write_seqcount_begin(seqcount_t *s) 477{ 478 kcsan_nestable_atomic_begin(); 479 s->sequence++; 480 smp_wmb(); 481} 482 483/** 484 * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep 485 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 486 * 487 * Context: check write_seqcount_end() 488 */ 489#define raw_write_seqcount_end(s) \ 490do { \ 491 do_raw_write_seqcount_end(seqprop_ptr(s)); \ 492 \ 493 if (seqprop_preemptible(s)) \ 494 preempt_enable(); \ 495} while (0) 496 497static inline void do_raw_write_seqcount_end(seqcount_t *s) 498{ 499 smp_wmb(); 500 s->sequence++; 501 kcsan_nestable_atomic_end(); 502} 503 504/** 505 * write_seqcount_begin_nested() - start a seqcount_t write section with 506 * custom lockdep nesting level 507 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 508 * @subclass: lockdep nesting level 509 * 510 * See Documentation/locking/lockdep-design.rst 511 * Context: check write_seqcount_begin() 512 */ 513#define write_seqcount_begin_nested(s, subclass) \ 514do { \ 515 seqprop_assert(s); \ 516 \ 517 if (seqprop_preemptible(s)) \ 518 preempt_disable(); \ 519 \ 520 do_write_seqcount_begin_nested(seqprop_ptr(s), subclass); \ 521} while (0) 522 523static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass) 524{ 525 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); 526 do_raw_write_seqcount_begin(s); 527} 528 529/** 530 * write_seqcount_begin() - start a seqcount_t write side critical section 531 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 532 * 533 * Context: sequence counter write side sections must be serialized and 534 * non-preemptible. Preemption will be automatically disabled if and 535 * only if the seqcount write serialization lock is associated, and 536 * preemptible. If readers can be invoked from hardirq or softirq 537 * context, interrupts or bottom halves must be respectively disabled. 538 */ 539#define write_seqcount_begin(s) \ 540do { \ 541 seqprop_assert(s); \ 542 \ 543 if (seqprop_preemptible(s)) \ 544 preempt_disable(); \ 545 \ 546 do_write_seqcount_begin(seqprop_ptr(s)); \ 547} while (0) 548 549static inline void do_write_seqcount_begin(seqcount_t *s) 550{ 551 do_write_seqcount_begin_nested(s, 0); 552} 553 554/** 555 * write_seqcount_end() - end a seqcount_t write side critical section 556 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 557 * 558 * Context: Preemption will be automatically re-enabled if and only if 559 * the seqcount write serialization lock is associated, and preemptible. 560 */ 561#define write_seqcount_end(s) \ 562do { \ 563 do_write_seqcount_end(seqprop_ptr(s)); \ 564 \ 565 if (seqprop_preemptible(s)) \ 566 preempt_enable(); \ 567} while (0) 568 569static inline void do_write_seqcount_end(seqcount_t *s) 570{ 571 seqcount_release(&s->dep_map, _RET_IP_); 572 do_raw_write_seqcount_end(s); 573} 574 575/** 576 * raw_write_seqcount_barrier() - do a seqcount_t write barrier 577 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 578 * 579 * This can be used to provide an ordering guarantee instead of the usual 580 * consistency guarantee. It is one wmb cheaper, because it can collapse 581 * the two back-to-back wmb()s. 582 * 583 * Note that writes surrounding the barrier should be declared atomic (e.g. 584 * via WRITE_ONCE): a) to ensure the writes become visible to other threads 585 * atomically, avoiding compiler optimizations; b) to document which writes are 586 * meant to propagate to the reader critical section. This is necessary because 587 * neither writes before nor after the barrier are enclosed in a seq-writer 588 * critical section that would ensure readers are aware of ongoing writes:: 589 * 590 * seqcount_t seq; 591 * bool X = true, Y = false; 592 * 593 * void read(void) 594 * { 595 * bool x, y; 596 * 597 * do { 598 * int s = read_seqcount_begin(&seq); 599 * 600 * x = X; y = Y; 601 * 602 * } while (read_seqcount_retry(&seq, s)); 603 * 604 * BUG_ON(!x && !y); 605 * } 606 * 607 * void write(void) 608 * { 609 * WRITE_ONCE(Y, true); 610 * 611 * raw_write_seqcount_barrier(seq); 612 * 613 * WRITE_ONCE(X, false); 614 * } 615 */ 616#define raw_write_seqcount_barrier(s) \ 617 do_raw_write_seqcount_barrier(seqprop_ptr(s)) 618 619static inline void do_raw_write_seqcount_barrier(seqcount_t *s) 620{ 621 kcsan_nestable_atomic_begin(); 622 s->sequence++; 623 smp_wmb(); 624 s->sequence++; 625 kcsan_nestable_atomic_end(); 626} 627 628/** 629 * write_seqcount_invalidate() - invalidate in-progress seqcount_t read 630 * side operations 631 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 632 * 633 * After write_seqcount_invalidate, no seqcount_t read side operations 634 * will complete successfully and see data older than this. 635 */ 636#define write_seqcount_invalidate(s) \ 637 do_write_seqcount_invalidate(seqprop_ptr(s)) 638 639static inline void do_write_seqcount_invalidate(seqcount_t *s) 640{ 641 smp_wmb(); 642 kcsan_nestable_atomic_begin(); 643 s->sequence+=2; 644 kcsan_nestable_atomic_end(); 645} 646 647/* 648 * Latch sequence counters (seqcount_latch_t) 649 * 650 * A sequence counter variant where the counter even/odd value is used to 651 * switch between two copies of protected data. This allows the read path, 652 * typically NMIs, to safely interrupt the write side critical section. 653 * 654 * As the write sections are fully preemptible, no special handling for 655 * PREEMPT_RT is needed. 656 */ 657typedef struct { 658 seqcount_t seqcount; 659} seqcount_latch_t; 660 661/** 662 * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t 663 * @seq_name: Name of the seqcount_latch_t instance 664 */ 665#define SEQCNT_LATCH_ZERO(seq_name) { \ 666 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ 667} 668 669/** 670 * seqcount_latch_init() - runtime initializer for seqcount_latch_t 671 * @s: Pointer to the seqcount_latch_t instance 672 */ 673#define seqcount_latch_init(s) seqcount_init(&(s)->seqcount) 674 675/** 676 * raw_read_seqcount_latch() - pick even/odd latch data copy 677 * @s: Pointer to seqcount_latch_t 678 * 679 * See raw_write_seqcount_latch() for details and a full reader/writer 680 * usage example. 681 * 682 * Return: sequence counter raw value. Use the lowest bit as an index for 683 * picking which data copy to read. The full counter must then be checked 684 * with raw_read_seqcount_latch_retry(). 685 */ 686static __always_inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s) 687{ 688 /* 689 * Pairs with the first smp_wmb() in raw_write_seqcount_latch(). 690 * Due to the dependent load, a full smp_rmb() is not needed. 691 */ 692 return READ_ONCE(s->seqcount.sequence); 693} 694 695/** 696 * raw_read_seqcount_latch_retry() - end a seqcount_latch_t read section 697 * @s: Pointer to seqcount_latch_t 698 * @start: count, from raw_read_seqcount_latch() 699 * 700 * Return: true if a read section retry is required, else false 701 */ 702static __always_inline int 703raw_read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) 704{ 705 smp_rmb(); 706 return unlikely(READ_ONCE(s->seqcount.sequence) != start); 707} 708 709/** 710 * raw_write_seqcount_latch() - redirect latch readers to even/odd copy 711 * @s: Pointer to seqcount_latch_t 712 * 713 * The latch technique is a multiversion concurrency control method that allows 714 * queries during non-atomic modifications. If you can guarantee queries never 715 * interrupt the modification -- e.g. the concurrency is strictly between CPUs 716 * -- you most likely do not need this. 717 * 718 * Where the traditional RCU/lockless data structures rely on atomic 719 * modifications to ensure queries observe either the old or the new state the 720 * latch allows the same for non-atomic updates. The trade-off is doubling the 721 * cost of storage; we have to maintain two copies of the entire data 722 * structure. 723 * 724 * Very simply put: we first modify one copy and then the other. This ensures 725 * there is always one copy in a stable state, ready to give us an answer. 726 * 727 * The basic form is a data structure like:: 728 * 729 * struct latch_struct { 730 * seqcount_latch_t seq; 731 * struct data_struct data[2]; 732 * }; 733 * 734 * Where a modification, which is assumed to be externally serialized, does the 735 * following:: 736 * 737 * void latch_modify(struct latch_struct *latch, ...) 738 * { 739 * smp_wmb(); // Ensure that the last data[1] update is visible 740 * latch->seq.sequence++; 741 * smp_wmb(); // Ensure that the seqcount update is visible 742 * 743 * modify(latch->data[0], ...); 744 * 745 * smp_wmb(); // Ensure that the data[0] update is visible 746 * latch->seq.sequence++; 747 * smp_wmb(); // Ensure that the seqcount update is visible 748 * 749 * modify(latch->data[1], ...); 750 * } 751 * 752 * The query will have a form like:: 753 * 754 * struct entry *latch_query(struct latch_struct *latch, ...) 755 * { 756 * struct entry *entry; 757 * unsigned seq, idx; 758 * 759 * do { 760 * seq = raw_read_seqcount_latch(&latch->seq); 761 * 762 * idx = seq & 0x01; 763 * entry = data_query(latch->data[idx], ...); 764 * 765 * // This includes needed smp_rmb() 766 * } while (raw_read_seqcount_latch_retry(&latch->seq, seq)); 767 * 768 * return entry; 769 * } 770 * 771 * So during the modification, queries are first redirected to data[1]. Then we 772 * modify data[0]. When that is complete, we redirect queries back to data[0] 773 * and we can modify data[1]. 774 * 775 * NOTE: 776 * 777 * The non-requirement for atomic modifications does _NOT_ include 778 * the publishing of new entries in the case where data is a dynamic 779 * data structure. 780 * 781 * An iteration might start in data[0] and get suspended long enough 782 * to miss an entire modification sequence, once it resumes it might 783 * observe the new entry. 784 * 785 * NOTE2: 786 * 787 * When data is a dynamic data structure; one should use regular RCU 788 * patterns to manage the lifetimes of the objects within. 789 */ 790static inline void raw_write_seqcount_latch(seqcount_latch_t *s) 791{ 792 smp_wmb(); /* prior stores before incrementing "sequence" */ 793 s->seqcount.sequence++; 794 smp_wmb(); /* increment "sequence" before following stores */ 795} 796 797/* 798 * Sequential locks (seqlock_t) 799 * 800 * Sequence counters with an embedded spinlock for writer serialization 801 * and non-preemptibility. 802 * 803 * For more info, see: 804 * - Comments on top of seqcount_t 805 * - Documentation/locking/seqlock.rst 806 */ 807typedef struct { 808 /* 809 * Make sure that readers don't starve writers on PREEMPT_RT: use 810 * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK(). 811 */ 812 seqcount_spinlock_t seqcount; 813 spinlock_t lock; 814} seqlock_t; 815 816#define __SEQLOCK_UNLOCKED(lockname) \ 817 { \ 818 .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \ 819 .lock = __SPIN_LOCK_UNLOCKED(lockname) \ 820 } 821 822/** 823 * seqlock_init() - dynamic initializer for seqlock_t 824 * @sl: Pointer to the seqlock_t instance 825 */ 826#define seqlock_init(sl) \ 827 do { \ 828 spin_lock_init(&(sl)->lock); \ 829 seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \ 830 } while (0) 831 832/** 833 * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t 834 * @sl: Name of the seqlock_t instance 835 */ 836#define DEFINE_SEQLOCK(sl) \ 837 seqlock_t sl = __SEQLOCK_UNLOCKED(sl) 838 839/** 840 * read_seqbegin() - start a seqlock_t read side critical section 841 * @sl: Pointer to seqlock_t 842 * 843 * Return: count, to be passed to read_seqretry() 844 */ 845static inline unsigned read_seqbegin(const seqlock_t *sl) 846{ 847 unsigned ret = read_seqcount_begin(&sl->seqcount); 848 849 kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */ 850 kcsan_flat_atomic_begin(); 851 return ret; 852} 853 854/** 855 * read_seqretry() - end a seqlock_t read side section 856 * @sl: Pointer to seqlock_t 857 * @start: count, from read_seqbegin() 858 * 859 * read_seqretry closes the read side critical section of given seqlock_t. 860 * If the critical section was invalid, it must be ignored (and typically 861 * retried). 862 * 863 * Return: true if a read section retry is required, else false 864 */ 865static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) 866{ 867 /* 868 * Assume not nested: read_seqretry() may be called multiple times when 869 * completing read critical section. 870 */ 871 kcsan_flat_atomic_end(); 872 873 return read_seqcount_retry(&sl->seqcount, start); 874} 875 876/* 877 * For all seqlock_t write side functions, use the internal 878 * do_write_seqcount_begin() instead of generic write_seqcount_begin(). 879 * This way, no redundant lockdep_assert_held() checks are added. 880 */ 881 882/** 883 * write_seqlock() - start a seqlock_t write side critical section 884 * @sl: Pointer to seqlock_t 885 * 886 * write_seqlock opens a write side critical section for the given 887 * seqlock_t. It also implicitly acquires the spinlock_t embedded inside 888 * that sequential lock. All seqlock_t write side sections are thus 889 * automatically serialized and non-preemptible. 890 * 891 * Context: if the seqlock_t read section, or other write side critical 892 * sections, can be invoked from hardirq or softirq contexts, use the 893 * _irqsave or _bh variants of this function instead. 894 */ 895static inline void write_seqlock(seqlock_t *sl) 896{ 897 spin_lock(&sl->lock); 898 do_write_seqcount_begin(&sl->seqcount.seqcount); 899} 900 901/** 902 * write_sequnlock() - end a seqlock_t write side critical section 903 * @sl: Pointer to seqlock_t 904 * 905 * write_sequnlock closes the (serialized and non-preemptible) write side 906 * critical section of given seqlock_t. 907 */ 908static inline void write_sequnlock(seqlock_t *sl) 909{ 910 do_write_seqcount_end(&sl->seqcount.seqcount); 911 spin_unlock(&sl->lock); 912} 913 914/** 915 * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section 916 * @sl: Pointer to seqlock_t 917 * 918 * _bh variant of write_seqlock(). Use only if the read side section, or 919 * other write side sections, can be invoked from softirq contexts. 920 */ 921static inline void write_seqlock_bh(seqlock_t *sl) 922{ 923 spin_lock_bh(&sl->lock); 924 do_write_seqcount_begin(&sl->seqcount.seqcount); 925} 926 927/** 928 * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section 929 * @sl: Pointer to seqlock_t 930 * 931 * write_sequnlock_bh closes the serialized, non-preemptible, and 932 * softirqs-disabled, seqlock_t write side critical section opened with 933 * write_seqlock_bh(). 934 */ 935static inline void write_sequnlock_bh(seqlock_t *sl) 936{ 937 do_write_seqcount_end(&sl->seqcount.seqcount); 938 spin_unlock_bh(&sl->lock); 939} 940 941/** 942 * write_seqlock_irq() - start a non-interruptible seqlock_t write section 943 * @sl: Pointer to seqlock_t 944 * 945 * _irq variant of write_seqlock(). Use only if the read side section, or 946 * other write sections, can be invoked from hardirq contexts. 947 */ 948static inline void write_seqlock_irq(seqlock_t *sl) 949{ 950 spin_lock_irq(&sl->lock); 951 do_write_seqcount_begin(&sl->seqcount.seqcount); 952} 953 954/** 955 * write_sequnlock_irq() - end a non-interruptible seqlock_t write section 956 * @sl: Pointer to seqlock_t 957 * 958 * write_sequnlock_irq closes the serialized and non-interruptible 959 * seqlock_t write side section opened with write_seqlock_irq(). 960 */ 961static inline void write_sequnlock_irq(seqlock_t *sl) 962{ 963 do_write_seqcount_end(&sl->seqcount.seqcount); 964 spin_unlock_irq(&sl->lock); 965} 966 967static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) 968{ 969 unsigned long flags; 970 971 spin_lock_irqsave(&sl->lock, flags); 972 do_write_seqcount_begin(&sl->seqcount.seqcount); 973 return flags; 974} 975 976/** 977 * write_seqlock_irqsave() - start a non-interruptible seqlock_t write 978 * section 979 * @lock: Pointer to seqlock_t 980 * @flags: Stack-allocated storage for saving caller's local interrupt 981 * state, to be passed to write_sequnlock_irqrestore(). 982 * 983 * _irqsave variant of write_seqlock(). Use it only if the read side 984 * section, or other write sections, can be invoked from hardirq context. 985 */ 986#define write_seqlock_irqsave(lock, flags) \ 987 do { flags = __write_seqlock_irqsave(lock); } while (0) 988 989/** 990 * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write 991 * section 992 * @sl: Pointer to seqlock_t 993 * @flags: Caller's saved interrupt state, from write_seqlock_irqsave() 994 * 995 * write_sequnlock_irqrestore closes the serialized and non-interruptible 996 * seqlock_t write section previously opened with write_seqlock_irqsave(). 997 */ 998static inline void 999write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) 1000{ 1001 do_write_seqcount_end(&sl->seqcount.seqcount); 1002 spin_unlock_irqrestore(&sl->lock, flags); 1003} 1004 1005/** 1006 * read_seqlock_excl() - begin a seqlock_t locking reader section 1007 * @sl: Pointer to seqlock_t 1008 * 1009 * read_seqlock_excl opens a seqlock_t locking reader critical section. A 1010 * locking reader exclusively locks out *both* other writers *and* other 1011 * locking readers, but it does not update the embedded sequence number. 1012 * 1013 * Locking readers act like a normal spin_lock()/spin_unlock(). 1014 * 1015 * Context: if the seqlock_t write section, *or other read sections*, can 1016 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh 1017 * variant of this function instead. 1018 * 1019 * The opened read section must be closed with read_sequnlock_excl(). 1020 */ 1021static inline void read_seqlock_excl(seqlock_t *sl) 1022{ 1023 spin_lock(&sl->lock); 1024} 1025 1026/** 1027 * read_sequnlock_excl() - end a seqlock_t locking reader critical section 1028 * @sl: Pointer to seqlock_t 1029 */ 1030static inline void read_sequnlock_excl(seqlock_t *sl) 1031{ 1032 spin_unlock(&sl->lock); 1033} 1034 1035/** 1036 * read_seqlock_excl_bh() - start a seqlock_t locking reader section with 1037 * softirqs disabled 1038 * @sl: Pointer to seqlock_t 1039 * 1040 * _bh variant of read_seqlock_excl(). Use this variant only if the 1041 * seqlock_t write side section, *or other read sections*, can be invoked 1042 * from softirq contexts. 1043 */ 1044static inline void read_seqlock_excl_bh(seqlock_t *sl) 1045{ 1046 spin_lock_bh(&sl->lock); 1047} 1048 1049/** 1050 * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking 1051 * reader section 1052 * @sl: Pointer to seqlock_t 1053 */ 1054static inline void read_sequnlock_excl_bh(seqlock_t *sl) 1055{ 1056 spin_unlock_bh(&sl->lock); 1057} 1058 1059/** 1060 * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking 1061 * reader section 1062 * @sl: Pointer to seqlock_t 1063 * 1064 * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t 1065 * write side section, *or other read sections*, can be invoked from a 1066 * hardirq context. 1067 */ 1068static inline void read_seqlock_excl_irq(seqlock_t *sl) 1069{ 1070 spin_lock_irq(&sl->lock); 1071} 1072 1073/** 1074 * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t 1075 * locking reader section 1076 * @sl: Pointer to seqlock_t 1077 */ 1078static inline void read_sequnlock_excl_irq(seqlock_t *sl) 1079{ 1080 spin_unlock_irq(&sl->lock); 1081} 1082 1083static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) 1084{ 1085 unsigned long flags; 1086 1087 spin_lock_irqsave(&sl->lock, flags); 1088 return flags; 1089} 1090 1091/** 1092 * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t 1093 * locking reader section 1094 * @lock: Pointer to seqlock_t 1095 * @flags: Stack-allocated storage for saving caller's local interrupt 1096 * state, to be passed to read_sequnlock_excl_irqrestore(). 1097 * 1098 * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t 1099 * write side section, *or other read sections*, can be invoked from a 1100 * hardirq context. 1101 */ 1102#define read_seqlock_excl_irqsave(lock, flags) \ 1103 do { flags = __read_seqlock_excl_irqsave(lock); } while (0) 1104 1105/** 1106 * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t 1107 * locking reader section 1108 * @sl: Pointer to seqlock_t 1109 * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave() 1110 */ 1111static inline void 1112read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) 1113{ 1114 spin_unlock_irqrestore(&sl->lock, flags); 1115} 1116 1117/** 1118 * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader 1119 * @lock: Pointer to seqlock_t 1120 * @seq : Marker and return parameter. If the passed value is even, the 1121 * reader will become a *lockless* seqlock_t reader as in read_seqbegin(). 1122 * If the passed value is odd, the reader will become a *locking* reader 1123 * as in read_seqlock_excl(). In the first call to this function, the 1124 * caller *must* initialize and pass an even value to @seq; this way, a 1125 * lockless read can be optimistically tried first. 1126 * 1127 * read_seqbegin_or_lock is an API designed to optimistically try a normal 1128 * lockless seqlock_t read section first. If an odd counter is found, the 1129 * lockless read trial has failed, and the next read iteration transforms 1130 * itself into a full seqlock_t locking reader. 1131 * 1132 * This is typically used to avoid seqlock_t lockless readers starvation 1133 * (too much retry loops) in the case of a sharp spike in write side 1134 * activity. 1135 * 1136 * Context: if the seqlock_t write section, *or other read sections*, can 1137 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh 1138 * variant of this function instead. 1139 * 1140 * Check Documentation/locking/seqlock.rst for template example code. 1141 * 1142 * Return: the encountered sequence counter value, through the @seq 1143 * parameter, which is overloaded as a return parameter. This returned 1144 * value must be checked with need_seqretry(). If the read section need to 1145 * be retried, this returned value must also be passed as the @seq 1146 * parameter of the next read_seqbegin_or_lock() iteration. 1147 */ 1148static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) 1149{ 1150 if (!(*seq & 1)) /* Even */ 1151 *seq = read_seqbegin(lock); 1152 else /* Odd */ 1153 read_seqlock_excl(lock); 1154} 1155 1156/** 1157 * need_seqretry() - validate seqlock_t "locking or lockless" read section 1158 * @lock: Pointer to seqlock_t 1159 * @seq: sequence count, from read_seqbegin_or_lock() 1160 * 1161 * Return: true if a read section retry is required, false otherwise 1162 */ 1163static inline int need_seqretry(seqlock_t *lock, int seq) 1164{ 1165 return !(seq & 1) && read_seqretry(lock, seq); 1166} 1167 1168/** 1169 * done_seqretry() - end seqlock_t "locking or lockless" reader section 1170 * @lock: Pointer to seqlock_t 1171 * @seq: count, from read_seqbegin_or_lock() 1172 * 1173 * done_seqretry finishes the seqlock_t read side critical section started 1174 * with read_seqbegin_or_lock() and validated by need_seqretry(). 1175 */ 1176static inline void done_seqretry(seqlock_t *lock, int seq) 1177{ 1178 if (seq & 1) 1179 read_sequnlock_excl(lock); 1180} 1181 1182/** 1183 * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or 1184 * a non-interruptible locking reader 1185 * @lock: Pointer to seqlock_t 1186 * @seq: Marker and return parameter. Check read_seqbegin_or_lock(). 1187 * 1188 * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if 1189 * the seqlock_t write section, *or other read sections*, can be invoked 1190 * from hardirq context. 1191 * 1192 * Note: Interrupts will be disabled only for "locking reader" mode. 1193 * 1194 * Return: 1195 * 1196 * 1. The saved local interrupts state in case of a locking reader, to 1197 * be passed to done_seqretry_irqrestore(). 1198 * 1199 * 2. The encountered sequence counter value, returned through @seq 1200 * overloaded as a return parameter. Check read_seqbegin_or_lock(). 1201 */ 1202static inline unsigned long 1203read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) 1204{ 1205 unsigned long flags = 0; 1206 1207 if (!(*seq & 1)) /* Even */ 1208 *seq = read_seqbegin(lock); 1209 else /* Odd */ 1210 read_seqlock_excl_irqsave(lock, flags); 1211 1212 return flags; 1213} 1214 1215/** 1216 * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a 1217 * non-interruptible locking reader section 1218 * @lock: Pointer to seqlock_t 1219 * @seq: Count, from read_seqbegin_or_lock_irqsave() 1220 * @flags: Caller's saved local interrupt state in case of a locking 1221 * reader, also from read_seqbegin_or_lock_irqsave() 1222 * 1223 * This is the _irqrestore variant of done_seqretry(). The read section 1224 * must've been opened with read_seqbegin_or_lock_irqsave(), and validated 1225 * by need_seqretry(). 1226 */ 1227static inline void 1228done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags) 1229{ 1230 if (seq & 1) 1231 read_sequnlock_excl_irqrestore(lock, flags); 1232} 1233#endif /* __LINUX_SEQLOCK_H */