Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitmap.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <net/tcx.h>
111#include <linux/highmem.h>
112#include <linux/init.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <net/mpls.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <trace/events/net.h>
134#include <trace/events/skb.h>
135#include <trace/events/qdisc.h>
136#include <trace/events/xdp.h>
137#include <linux/inetdevice.h>
138#include <linux/cpu_rmap.h>
139#include <linux/static_key.h>
140#include <linux/hashtable.h>
141#include <linux/vmalloc.h>
142#include <linux/if_macvlan.h>
143#include <linux/errqueue.h>
144#include <linux/hrtimer.h>
145#include <linux/netfilter_netdev.h>
146#include <linux/crash_dump.h>
147#include <linux/sctp.h>
148#include <net/udp_tunnel.h>
149#include <linux/net_namespace.h>
150#include <linux/indirect_call_wrapper.h>
151#include <net/devlink.h>
152#include <linux/pm_runtime.h>
153#include <linux/prandom.h>
154#include <linux/once_lite.h>
155#include <net/netdev_rx_queue.h>
156
157#include "dev.h"
158#include "net-sysfs.h"
159
160static DEFINE_SPINLOCK(ptype_lock);
161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162struct list_head ptype_all __read_mostly; /* Taps */
163
164static int netif_rx_internal(struct sk_buff *skb);
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170/*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189DEFINE_RWLOCK(dev_base_lock);
190EXPORT_SYMBOL(dev_base_lock);
191
192static DEFINE_MUTEX(ifalias_mutex);
193
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
197static unsigned int napi_gen_id = NR_CPUS;
198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200static DECLARE_RWSEM(devnet_rename_sem);
201
202static inline void dev_base_seq_inc(struct net *net)
203{
204 while (++net->dev_base_seq == 0)
205 ;
206}
207
208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209{
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213}
214
215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216{
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218}
219
220static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222{
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227}
228
229static inline void rps_lock_irq_disable(struct softnet_data *sd)
230{
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235}
236
237static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239{
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244}
245
246static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247{
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252}
253
254static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256{
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266}
267
268static struct netdev_name_node *
269netdev_name_node_head_alloc(struct net_device *dev)
270{
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278}
279
280static void netdev_name_node_free(struct netdev_name_node *name_node)
281{
282 kfree(name_node);
283}
284
285static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287{
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290}
291
292static void netdev_name_node_del(struct netdev_name_node *name_node)
293{
294 hlist_del_rcu(&name_node->hlist);
295}
296
297static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299{
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307}
308
309static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311{
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319}
320
321bool netdev_name_in_use(struct net *net, const char *name)
322{
323 return netdev_name_node_lookup(net, name);
324}
325EXPORT_SYMBOL(netdev_name_in_use);
326
327int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343}
344
345static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346{
347 list_del(&name_node->list);
348 kfree(name_node->name);
349 netdev_name_node_free(name_node);
350}
351
352int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353{
354 struct netdev_name_node *name_node;
355 struct net *net = dev_net(dev);
356
357 name_node = netdev_name_node_lookup(net, name);
358 if (!name_node)
359 return -ENOENT;
360 /* lookup might have found our primary name or a name belonging
361 * to another device.
362 */
363 if (name_node == dev->name_node || name_node->dev != dev)
364 return -EINVAL;
365
366 netdev_name_node_del(name_node);
367 synchronize_rcu();
368 __netdev_name_node_alt_destroy(name_node);
369
370 return 0;
371}
372
373static void netdev_name_node_alt_flush(struct net_device *dev)
374{
375 struct netdev_name_node *name_node, *tmp;
376
377 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 __netdev_name_node_alt_destroy(name_node);
379}
380
381/* Device list insertion */
382static void list_netdevice(struct net_device *dev)
383{
384 struct netdev_name_node *name_node;
385 struct net *net = dev_net(dev);
386
387 ASSERT_RTNL();
388
389 write_lock(&dev_base_lock);
390 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 netdev_name_node_add(net, dev->name_node);
392 hlist_add_head_rcu(&dev->index_hlist,
393 dev_index_hash(net, dev->ifindex));
394 write_unlock(&dev_base_lock);
395
396 netdev_for_each_altname(dev, name_node)
397 netdev_name_node_add(net, name_node);
398
399 /* We reserved the ifindex, this can't fail */
400 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401
402 dev_base_seq_inc(net);
403}
404
405/* Device list removal
406 * caller must respect a RCU grace period before freeing/reusing dev
407 */
408static void unlist_netdevice(struct net_device *dev, bool lock)
409{
410 struct netdev_name_node *name_node;
411 struct net *net = dev_net(dev);
412
413 ASSERT_RTNL();
414
415 xa_erase(&net->dev_by_index, dev->ifindex);
416
417 netdev_for_each_altname(dev, name_node)
418 netdev_name_node_del(name_node);
419
420 /* Unlink dev from the device chain */
421 if (lock)
422 write_lock(&dev_base_lock);
423 list_del_rcu(&dev->dev_list);
424 netdev_name_node_del(dev->name_node);
425 hlist_del_rcu(&dev->index_hlist);
426 if (lock)
427 write_unlock(&dev_base_lock);
428
429 dev_base_seq_inc(dev_net(dev));
430}
431
432/*
433 * Our notifier list
434 */
435
436static RAW_NOTIFIER_HEAD(netdev_chain);
437
438/*
439 * Device drivers call our routines to queue packets here. We empty the
440 * queue in the local softnet handler.
441 */
442
443DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444EXPORT_PER_CPU_SYMBOL(softnet_data);
445
446#ifdef CONFIG_LOCKDEP
447/*
448 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449 * according to dev->type
450 */
451static const unsigned short netdev_lock_type[] = {
452 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467
468static const char *const netdev_lock_name[] = {
469 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484
485static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487
488static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489{
490 int i;
491
492 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 if (netdev_lock_type[i] == dev_type)
494 return i;
495 /* the last key is used by default */
496 return ARRAY_SIZE(netdev_lock_type) - 1;
497}
498
499static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 unsigned short dev_type)
501{
502 int i;
503
504 i = netdev_lock_pos(dev_type);
505 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 netdev_lock_name[i]);
507}
508
509static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510{
511 int i;
512
513 i = netdev_lock_pos(dev->type);
514 lockdep_set_class_and_name(&dev->addr_list_lock,
515 &netdev_addr_lock_key[i],
516 netdev_lock_name[i]);
517}
518#else
519static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 unsigned short dev_type)
521{
522}
523
524static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525{
526}
527#endif
528
529/*******************************************************************************
530 *
531 * Protocol management and registration routines
532 *
533 *******************************************************************************/
534
535
536/*
537 * Add a protocol ID to the list. Now that the input handler is
538 * smarter we can dispense with all the messy stuff that used to be
539 * here.
540 *
541 * BEWARE!!! Protocol handlers, mangling input packets,
542 * MUST BE last in hash buckets and checking protocol handlers
543 * MUST start from promiscuous ptype_all chain in net_bh.
544 * It is true now, do not change it.
545 * Explanation follows: if protocol handler, mangling packet, will
546 * be the first on list, it is not able to sense, that packet
547 * is cloned and should be copied-on-write, so that it will
548 * change it and subsequent readers will get broken packet.
549 * --ANK (980803)
550 */
551
552static inline struct list_head *ptype_head(const struct packet_type *pt)
553{
554 if (pt->type == htons(ETH_P_ALL))
555 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 else
557 return pt->dev ? &pt->dev->ptype_specific :
558 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559}
560
561/**
562 * dev_add_pack - add packet handler
563 * @pt: packet type declaration
564 *
565 * Add a protocol handler to the networking stack. The passed &packet_type
566 * is linked into kernel lists and may not be freed until it has been
567 * removed from the kernel lists.
568 *
569 * This call does not sleep therefore it can not
570 * guarantee all CPU's that are in middle of receiving packets
571 * will see the new packet type (until the next received packet).
572 */
573
574void dev_add_pack(struct packet_type *pt)
575{
576 struct list_head *head = ptype_head(pt);
577
578 spin_lock(&ptype_lock);
579 list_add_rcu(&pt->list, head);
580 spin_unlock(&ptype_lock);
581}
582EXPORT_SYMBOL(dev_add_pack);
583
584/**
585 * __dev_remove_pack - remove packet handler
586 * @pt: packet type declaration
587 *
588 * Remove a protocol handler that was previously added to the kernel
589 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
590 * from the kernel lists and can be freed or reused once this function
591 * returns.
592 *
593 * The packet type might still be in use by receivers
594 * and must not be freed until after all the CPU's have gone
595 * through a quiescent state.
596 */
597void __dev_remove_pack(struct packet_type *pt)
598{
599 struct list_head *head = ptype_head(pt);
600 struct packet_type *pt1;
601
602 spin_lock(&ptype_lock);
603
604 list_for_each_entry(pt1, head, list) {
605 if (pt == pt1) {
606 list_del_rcu(&pt->list);
607 goto out;
608 }
609 }
610
611 pr_warn("dev_remove_pack: %p not found\n", pt);
612out:
613 spin_unlock(&ptype_lock);
614}
615EXPORT_SYMBOL(__dev_remove_pack);
616
617/**
618 * dev_remove_pack - remove packet handler
619 * @pt: packet type declaration
620 *
621 * Remove a protocol handler that was previously added to the kernel
622 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
623 * from the kernel lists and can be freed or reused once this function
624 * returns.
625 *
626 * This call sleeps to guarantee that no CPU is looking at the packet
627 * type after return.
628 */
629void dev_remove_pack(struct packet_type *pt)
630{
631 __dev_remove_pack(pt);
632
633 synchronize_net();
634}
635EXPORT_SYMBOL(dev_remove_pack);
636
637
638/*******************************************************************************
639 *
640 * Device Interface Subroutines
641 *
642 *******************************************************************************/
643
644/**
645 * dev_get_iflink - get 'iflink' value of a interface
646 * @dev: targeted interface
647 *
648 * Indicates the ifindex the interface is linked to.
649 * Physical interfaces have the same 'ifindex' and 'iflink' values.
650 */
651
652int dev_get_iflink(const struct net_device *dev)
653{
654 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 return dev->netdev_ops->ndo_get_iflink(dev);
656
657 return dev->ifindex;
658}
659EXPORT_SYMBOL(dev_get_iflink);
660
661/**
662 * dev_fill_metadata_dst - Retrieve tunnel egress information.
663 * @dev: targeted interface
664 * @skb: The packet.
665 *
666 * For better visibility of tunnel traffic OVS needs to retrieve
667 * egress tunnel information for a packet. Following API allows
668 * user to get this info.
669 */
670int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671{
672 struct ip_tunnel_info *info;
673
674 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
675 return -EINVAL;
676
677 info = skb_tunnel_info_unclone(skb);
678 if (!info)
679 return -ENOMEM;
680 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 return -EINVAL;
682
683 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684}
685EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686
687static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688{
689 int k = stack->num_paths++;
690
691 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 return NULL;
693
694 return &stack->path[k];
695}
696
697int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 struct net_device_path_stack *stack)
699{
700 const struct net_device *last_dev;
701 struct net_device_path_ctx ctx = {
702 .dev = dev,
703 };
704 struct net_device_path *path;
705 int ret = 0;
706
707 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 stack->num_paths = 0;
709 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 last_dev = ctx.dev;
711 path = dev_fwd_path(stack);
712 if (!path)
713 return -1;
714
715 memset(path, 0, sizeof(struct net_device_path));
716 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 if (ret < 0)
718 return -1;
719
720 if (WARN_ON_ONCE(last_dev == ctx.dev))
721 return -1;
722 }
723
724 if (!ctx.dev)
725 return ret;
726
727 path = dev_fwd_path(stack);
728 if (!path)
729 return -1;
730 path->type = DEV_PATH_ETHERNET;
731 path->dev = ctx.dev;
732
733 return ret;
734}
735EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736
737/**
738 * __dev_get_by_name - find a device by its name
739 * @net: the applicable net namespace
740 * @name: name to find
741 *
742 * Find an interface by name. Must be called under RTNL semaphore
743 * or @dev_base_lock. If the name is found a pointer to the device
744 * is returned. If the name is not found then %NULL is returned. The
745 * reference counters are not incremented so the caller must be
746 * careful with locks.
747 */
748
749struct net_device *__dev_get_by_name(struct net *net, const char *name)
750{
751 struct netdev_name_node *node_name;
752
753 node_name = netdev_name_node_lookup(net, name);
754 return node_name ? node_name->dev : NULL;
755}
756EXPORT_SYMBOL(__dev_get_by_name);
757
758/**
759 * dev_get_by_name_rcu - find a device by its name
760 * @net: the applicable net namespace
761 * @name: name to find
762 *
763 * Find an interface by name.
764 * If the name is found a pointer to the device is returned.
765 * If the name is not found then %NULL is returned.
766 * The reference counters are not incremented so the caller must be
767 * careful with locks. The caller must hold RCU lock.
768 */
769
770struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771{
772 struct netdev_name_node *node_name;
773
774 node_name = netdev_name_node_lookup_rcu(net, name);
775 return node_name ? node_name->dev : NULL;
776}
777EXPORT_SYMBOL(dev_get_by_name_rcu);
778
779/* Deprecated for new users, call netdev_get_by_name() instead */
780struct net_device *dev_get_by_name(struct net *net, const char *name)
781{
782 struct net_device *dev;
783
784 rcu_read_lock();
785 dev = dev_get_by_name_rcu(net, name);
786 dev_hold(dev);
787 rcu_read_unlock();
788 return dev;
789}
790EXPORT_SYMBOL(dev_get_by_name);
791
792/**
793 * netdev_get_by_name() - find a device by its name
794 * @net: the applicable net namespace
795 * @name: name to find
796 * @tracker: tracking object for the acquired reference
797 * @gfp: allocation flags for the tracker
798 *
799 * Find an interface by name. This can be called from any
800 * context and does its own locking. The returned handle has
801 * the usage count incremented and the caller must use netdev_put() to
802 * release it when it is no longer needed. %NULL is returned if no
803 * matching device is found.
804 */
805struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 netdevice_tracker *tracker, gfp_t gfp)
807{
808 struct net_device *dev;
809
810 dev = dev_get_by_name(net, name);
811 if (dev)
812 netdev_tracker_alloc(dev, tracker, gfp);
813 return dev;
814}
815EXPORT_SYMBOL(netdev_get_by_name);
816
817/**
818 * __dev_get_by_index - find a device by its ifindex
819 * @net: the applicable net namespace
820 * @ifindex: index of device
821 *
822 * Search for an interface by index. Returns %NULL if the device
823 * is not found or a pointer to the device. The device has not
824 * had its reference counter increased so the caller must be careful
825 * about locking. The caller must hold either the RTNL semaphore
826 * or @dev_base_lock.
827 */
828
829struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830{
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
833
834 hlist_for_each_entry(dev, head, index_hlist)
835 if (dev->ifindex == ifindex)
836 return dev;
837
838 return NULL;
839}
840EXPORT_SYMBOL(__dev_get_by_index);
841
842/**
843 * dev_get_by_index_rcu - find a device by its ifindex
844 * @net: the applicable net namespace
845 * @ifindex: index of device
846 *
847 * Search for an interface by index. Returns %NULL if the device
848 * is not found or a pointer to the device. The device has not
849 * had its reference counter increased so the caller must be careful
850 * about locking. The caller must hold RCU lock.
851 */
852
853struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854{
855 struct net_device *dev;
856 struct hlist_head *head = dev_index_hash(net, ifindex);
857
858 hlist_for_each_entry_rcu(dev, head, index_hlist)
859 if (dev->ifindex == ifindex)
860 return dev;
861
862 return NULL;
863}
864EXPORT_SYMBOL(dev_get_by_index_rcu);
865
866/* Deprecated for new users, call netdev_get_by_index() instead */
867struct net_device *dev_get_by_index(struct net *net, int ifindex)
868{
869 struct net_device *dev;
870
871 rcu_read_lock();
872 dev = dev_get_by_index_rcu(net, ifindex);
873 dev_hold(dev);
874 rcu_read_unlock();
875 return dev;
876}
877EXPORT_SYMBOL(dev_get_by_index);
878
879/**
880 * netdev_get_by_index() - find a device by its ifindex
881 * @net: the applicable net namespace
882 * @ifindex: index of device
883 * @tracker: tracking object for the acquired reference
884 * @gfp: allocation flags for the tracker
885 *
886 * Search for an interface by index. Returns NULL if the device
887 * is not found or a pointer to the device. The device returned has
888 * had a reference added and the pointer is safe until the user calls
889 * netdev_put() to indicate they have finished with it.
890 */
891struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 netdevice_tracker *tracker, gfp_t gfp)
893{
894 struct net_device *dev;
895
896 dev = dev_get_by_index(net, ifindex);
897 if (dev)
898 netdev_tracker_alloc(dev, tracker, gfp);
899 return dev;
900}
901EXPORT_SYMBOL(netdev_get_by_index);
902
903/**
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
906 *
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
911 */
912
913struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914{
915 struct napi_struct *napi;
916
917 WARN_ON_ONCE(!rcu_read_lock_held());
918
919 if (napi_id < MIN_NAPI_ID)
920 return NULL;
921
922 napi = napi_by_id(napi_id);
923
924 return napi ? napi->dev : NULL;
925}
926EXPORT_SYMBOL(dev_get_by_napi_id);
927
928/**
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
933 */
934int netdev_get_name(struct net *net, char *name, int ifindex)
935{
936 struct net_device *dev;
937 int ret;
938
939 down_read(&devnet_rename_sem);
940 rcu_read_lock();
941
942 dev = dev_get_by_index_rcu(net, ifindex);
943 if (!dev) {
944 ret = -ENODEV;
945 goto out;
946 }
947
948 strcpy(name, dev->name);
949
950 ret = 0;
951out:
952 rcu_read_unlock();
953 up_read(&devnet_rename_sem);
954 return ret;
955}
956
957/**
958 * dev_getbyhwaddr_rcu - find a device by its hardware address
959 * @net: the applicable net namespace
960 * @type: media type of device
961 * @ha: hardware address
962 *
963 * Search for an interface by MAC address. Returns NULL if the device
964 * is not found or a pointer to the device.
965 * The caller must hold RCU or RTNL.
966 * The returned device has not had its ref count increased
967 * and the caller must therefore be careful about locking
968 *
969 */
970
971struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 const char *ha)
973{
974 struct net_device *dev;
975
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type &&
978 !memcmp(dev->dev_addr, ha, dev->addr_len))
979 return dev;
980
981 return NULL;
982}
983EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986{
987 struct net_device *dev, *ret = NULL;
988
989 rcu_read_lock();
990 for_each_netdev_rcu(net, dev)
991 if (dev->type == type) {
992 dev_hold(dev);
993 ret = dev;
994 break;
995 }
996 rcu_read_unlock();
997 return ret;
998}
999EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000
1001/**
1002 * __dev_get_by_flags - find any device with given flags
1003 * @net: the applicable net namespace
1004 * @if_flags: IFF_* values
1005 * @mask: bitmask of bits in if_flags to check
1006 *
1007 * Search for any interface with the given flags. Returns NULL if a device
1008 * is not found or a pointer to the device. Must be called inside
1009 * rtnl_lock(), and result refcount is unchanged.
1010 */
1011
1012struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 unsigned short mask)
1014{
1015 struct net_device *dev, *ret;
1016
1017 ASSERT_RTNL();
1018
1019 ret = NULL;
1020 for_each_netdev(net, dev) {
1021 if (((dev->flags ^ if_flags) & mask) == 0) {
1022 ret = dev;
1023 break;
1024 }
1025 }
1026 return ret;
1027}
1028EXPORT_SYMBOL(__dev_get_by_flags);
1029
1030/**
1031 * dev_valid_name - check if name is okay for network device
1032 * @name: name string
1033 *
1034 * Network device names need to be valid file names to
1035 * allow sysfs to work. We also disallow any kind of
1036 * whitespace.
1037 */
1038bool dev_valid_name(const char *name)
1039{
1040 if (*name == '\0')
1041 return false;
1042 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043 return false;
1044 if (!strcmp(name, ".") || !strcmp(name, ".."))
1045 return false;
1046
1047 while (*name) {
1048 if (*name == '/' || *name == ':' || isspace(*name))
1049 return false;
1050 name++;
1051 }
1052 return true;
1053}
1054EXPORT_SYMBOL(dev_valid_name);
1055
1056/**
1057 * __dev_alloc_name - allocate a name for a device
1058 * @net: network namespace to allocate the device name in
1059 * @name: name format string
1060 * @res: result name string
1061 *
1062 * Passed a format string - eg "lt%d" it will try and find a suitable
1063 * id. It scans list of devices to build up a free map, then chooses
1064 * the first empty slot. The caller must hold the dev_base or rtnl lock
1065 * while allocating the name and adding the device in order to avoid
1066 * duplicates.
1067 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068 * Returns the number of the unit assigned or a negative errno code.
1069 */
1070
1071static int __dev_alloc_name(struct net *net, const char *name, char *res)
1072{
1073 int i = 0;
1074 const char *p;
1075 const int max_netdevices = 8*PAGE_SIZE;
1076 unsigned long *inuse;
1077 struct net_device *d;
1078 char buf[IFNAMSIZ];
1079
1080 /* Verify the string as this thing may have come from the user.
1081 * There must be one "%d" and no other "%" characters.
1082 */
1083 p = strchr(name, '%');
1084 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1085 return -EINVAL;
1086
1087 /* Use one page as a bit array of possible slots */
1088 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1089 if (!inuse)
1090 return -ENOMEM;
1091
1092 for_each_netdev(net, d) {
1093 struct netdev_name_node *name_node;
1094
1095 netdev_for_each_altname(d, name_node) {
1096 if (!sscanf(name_node->name, name, &i))
1097 continue;
1098 if (i < 0 || i >= max_netdevices)
1099 continue;
1100
1101 /* avoid cases where sscanf is not exact inverse of printf */
1102 snprintf(buf, IFNAMSIZ, name, i);
1103 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1104 __set_bit(i, inuse);
1105 }
1106 if (!sscanf(d->name, name, &i))
1107 continue;
1108 if (i < 0 || i >= max_netdevices)
1109 continue;
1110
1111 /* avoid cases where sscanf is not exact inverse of printf */
1112 snprintf(buf, IFNAMSIZ, name, i);
1113 if (!strncmp(buf, d->name, IFNAMSIZ))
1114 __set_bit(i, inuse);
1115 }
1116
1117 i = find_first_zero_bit(inuse, max_netdevices);
1118 bitmap_free(inuse);
1119 if (i == max_netdevices)
1120 return -ENFILE;
1121
1122 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1123 strscpy(buf, name, IFNAMSIZ);
1124 snprintf(res, IFNAMSIZ, buf, i);
1125 return i;
1126}
1127
1128/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1129static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1130 const char *want_name, char *out_name,
1131 int dup_errno)
1132{
1133 if (!dev_valid_name(want_name))
1134 return -EINVAL;
1135
1136 if (strchr(want_name, '%'))
1137 return __dev_alloc_name(net, want_name, out_name);
1138
1139 if (netdev_name_in_use(net, want_name))
1140 return -dup_errno;
1141 if (out_name != want_name)
1142 strscpy(out_name, want_name, IFNAMSIZ);
1143 return 0;
1144}
1145
1146/**
1147 * dev_alloc_name - allocate a name for a device
1148 * @dev: device
1149 * @name: name format string
1150 *
1151 * Passed a format string - eg "lt%d" it will try and find a suitable
1152 * id. It scans list of devices to build up a free map, then chooses
1153 * the first empty slot. The caller must hold the dev_base or rtnl lock
1154 * while allocating the name and adding the device in order to avoid
1155 * duplicates.
1156 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157 * Returns the number of the unit assigned or a negative errno code.
1158 */
1159
1160int dev_alloc_name(struct net_device *dev, const char *name)
1161{
1162 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1163}
1164EXPORT_SYMBOL(dev_alloc_name);
1165
1166static int dev_get_valid_name(struct net *net, struct net_device *dev,
1167 const char *name)
1168{
1169 int ret;
1170
1171 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1172 return ret < 0 ? ret : 0;
1173}
1174
1175/**
1176 * dev_change_name - change name of a device
1177 * @dev: device
1178 * @newname: name (or format string) must be at least IFNAMSIZ
1179 *
1180 * Change name of a device, can pass format strings "eth%d".
1181 * for wildcarding.
1182 */
1183int dev_change_name(struct net_device *dev, const char *newname)
1184{
1185 unsigned char old_assign_type;
1186 char oldname[IFNAMSIZ];
1187 int err = 0;
1188 int ret;
1189 struct net *net;
1190
1191 ASSERT_RTNL();
1192 BUG_ON(!dev_net(dev));
1193
1194 net = dev_net(dev);
1195
1196 down_write(&devnet_rename_sem);
1197
1198 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1199 up_write(&devnet_rename_sem);
1200 return 0;
1201 }
1202
1203 memcpy(oldname, dev->name, IFNAMSIZ);
1204
1205 err = dev_get_valid_name(net, dev, newname);
1206 if (err < 0) {
1207 up_write(&devnet_rename_sem);
1208 return err;
1209 }
1210
1211 if (oldname[0] && !strchr(oldname, '%'))
1212 netdev_info(dev, "renamed from %s%s\n", oldname,
1213 dev->flags & IFF_UP ? " (while UP)" : "");
1214
1215 old_assign_type = dev->name_assign_type;
1216 dev->name_assign_type = NET_NAME_RENAMED;
1217
1218rollback:
1219 ret = device_rename(&dev->dev, dev->name);
1220 if (ret) {
1221 memcpy(dev->name, oldname, IFNAMSIZ);
1222 dev->name_assign_type = old_assign_type;
1223 up_write(&devnet_rename_sem);
1224 return ret;
1225 }
1226
1227 up_write(&devnet_rename_sem);
1228
1229 netdev_adjacent_rename_links(dev, oldname);
1230
1231 write_lock(&dev_base_lock);
1232 netdev_name_node_del(dev->name_node);
1233 write_unlock(&dev_base_lock);
1234
1235 synchronize_rcu();
1236
1237 write_lock(&dev_base_lock);
1238 netdev_name_node_add(net, dev->name_node);
1239 write_unlock(&dev_base_lock);
1240
1241 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1242 ret = notifier_to_errno(ret);
1243
1244 if (ret) {
1245 /* err >= 0 after dev_alloc_name() or stores the first errno */
1246 if (err >= 0) {
1247 err = ret;
1248 down_write(&devnet_rename_sem);
1249 memcpy(dev->name, oldname, IFNAMSIZ);
1250 memcpy(oldname, newname, IFNAMSIZ);
1251 dev->name_assign_type = old_assign_type;
1252 old_assign_type = NET_NAME_RENAMED;
1253 goto rollback;
1254 } else {
1255 netdev_err(dev, "name change rollback failed: %d\n",
1256 ret);
1257 }
1258 }
1259
1260 return err;
1261}
1262
1263/**
1264 * dev_set_alias - change ifalias of a device
1265 * @dev: device
1266 * @alias: name up to IFALIASZ
1267 * @len: limit of bytes to copy from info
1268 *
1269 * Set ifalias for a device,
1270 */
1271int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1272{
1273 struct dev_ifalias *new_alias = NULL;
1274
1275 if (len >= IFALIASZ)
1276 return -EINVAL;
1277
1278 if (len) {
1279 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1280 if (!new_alias)
1281 return -ENOMEM;
1282
1283 memcpy(new_alias->ifalias, alias, len);
1284 new_alias->ifalias[len] = 0;
1285 }
1286
1287 mutex_lock(&ifalias_mutex);
1288 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1289 mutex_is_locked(&ifalias_mutex));
1290 mutex_unlock(&ifalias_mutex);
1291
1292 if (new_alias)
1293 kfree_rcu(new_alias, rcuhead);
1294
1295 return len;
1296}
1297EXPORT_SYMBOL(dev_set_alias);
1298
1299/**
1300 * dev_get_alias - get ifalias of a device
1301 * @dev: device
1302 * @name: buffer to store name of ifalias
1303 * @len: size of buffer
1304 *
1305 * get ifalias for a device. Caller must make sure dev cannot go
1306 * away, e.g. rcu read lock or own a reference count to device.
1307 */
1308int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1309{
1310 const struct dev_ifalias *alias;
1311 int ret = 0;
1312
1313 rcu_read_lock();
1314 alias = rcu_dereference(dev->ifalias);
1315 if (alias)
1316 ret = snprintf(name, len, "%s", alias->ifalias);
1317 rcu_read_unlock();
1318
1319 return ret;
1320}
1321
1322/**
1323 * netdev_features_change - device changes features
1324 * @dev: device to cause notification
1325 *
1326 * Called to indicate a device has changed features.
1327 */
1328void netdev_features_change(struct net_device *dev)
1329{
1330 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1331}
1332EXPORT_SYMBOL(netdev_features_change);
1333
1334/**
1335 * netdev_state_change - device changes state
1336 * @dev: device to cause notification
1337 *
1338 * Called to indicate a device has changed state. This function calls
1339 * the notifier chains for netdev_chain and sends a NEWLINK message
1340 * to the routing socket.
1341 */
1342void netdev_state_change(struct net_device *dev)
1343{
1344 if (dev->flags & IFF_UP) {
1345 struct netdev_notifier_change_info change_info = {
1346 .info.dev = dev,
1347 };
1348
1349 call_netdevice_notifiers_info(NETDEV_CHANGE,
1350 &change_info.info);
1351 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1352 }
1353}
1354EXPORT_SYMBOL(netdev_state_change);
1355
1356/**
1357 * __netdev_notify_peers - notify network peers about existence of @dev,
1358 * to be called when rtnl lock is already held.
1359 * @dev: network device
1360 *
1361 * Generate traffic such that interested network peers are aware of
1362 * @dev, such as by generating a gratuitous ARP. This may be used when
1363 * a device wants to inform the rest of the network about some sort of
1364 * reconfiguration such as a failover event or virtual machine
1365 * migration.
1366 */
1367void __netdev_notify_peers(struct net_device *dev)
1368{
1369 ASSERT_RTNL();
1370 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1371 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1372}
1373EXPORT_SYMBOL(__netdev_notify_peers);
1374
1375/**
1376 * netdev_notify_peers - notify network peers about existence of @dev
1377 * @dev: network device
1378 *
1379 * Generate traffic such that interested network peers are aware of
1380 * @dev, such as by generating a gratuitous ARP. This may be used when
1381 * a device wants to inform the rest of the network about some sort of
1382 * reconfiguration such as a failover event or virtual machine
1383 * migration.
1384 */
1385void netdev_notify_peers(struct net_device *dev)
1386{
1387 rtnl_lock();
1388 __netdev_notify_peers(dev);
1389 rtnl_unlock();
1390}
1391EXPORT_SYMBOL(netdev_notify_peers);
1392
1393static int napi_threaded_poll(void *data);
1394
1395static int napi_kthread_create(struct napi_struct *n)
1396{
1397 int err = 0;
1398
1399 /* Create and wake up the kthread once to put it in
1400 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1401 * warning and work with loadavg.
1402 */
1403 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1404 n->dev->name, n->napi_id);
1405 if (IS_ERR(n->thread)) {
1406 err = PTR_ERR(n->thread);
1407 pr_err("kthread_run failed with err %d\n", err);
1408 n->thread = NULL;
1409 }
1410
1411 return err;
1412}
1413
1414static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1415{
1416 const struct net_device_ops *ops = dev->netdev_ops;
1417 int ret;
1418
1419 ASSERT_RTNL();
1420 dev_addr_check(dev);
1421
1422 if (!netif_device_present(dev)) {
1423 /* may be detached because parent is runtime-suspended */
1424 if (dev->dev.parent)
1425 pm_runtime_resume(dev->dev.parent);
1426 if (!netif_device_present(dev))
1427 return -ENODEV;
1428 }
1429
1430 /* Block netpoll from trying to do any rx path servicing.
1431 * If we don't do this there is a chance ndo_poll_controller
1432 * or ndo_poll may be running while we open the device
1433 */
1434 netpoll_poll_disable(dev);
1435
1436 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1437 ret = notifier_to_errno(ret);
1438 if (ret)
1439 return ret;
1440
1441 set_bit(__LINK_STATE_START, &dev->state);
1442
1443 if (ops->ndo_validate_addr)
1444 ret = ops->ndo_validate_addr(dev);
1445
1446 if (!ret && ops->ndo_open)
1447 ret = ops->ndo_open(dev);
1448
1449 netpoll_poll_enable(dev);
1450
1451 if (ret)
1452 clear_bit(__LINK_STATE_START, &dev->state);
1453 else {
1454 dev->flags |= IFF_UP;
1455 dev_set_rx_mode(dev);
1456 dev_activate(dev);
1457 add_device_randomness(dev->dev_addr, dev->addr_len);
1458 }
1459
1460 return ret;
1461}
1462
1463/**
1464 * dev_open - prepare an interface for use.
1465 * @dev: device to open
1466 * @extack: netlink extended ack
1467 *
1468 * Takes a device from down to up state. The device's private open
1469 * function is invoked and then the multicast lists are loaded. Finally
1470 * the device is moved into the up state and a %NETDEV_UP message is
1471 * sent to the netdev notifier chain.
1472 *
1473 * Calling this function on an active interface is a nop. On a failure
1474 * a negative errno code is returned.
1475 */
1476int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1477{
1478 int ret;
1479
1480 if (dev->flags & IFF_UP)
1481 return 0;
1482
1483 ret = __dev_open(dev, extack);
1484 if (ret < 0)
1485 return ret;
1486
1487 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1488 call_netdevice_notifiers(NETDEV_UP, dev);
1489
1490 return ret;
1491}
1492EXPORT_SYMBOL(dev_open);
1493
1494static void __dev_close_many(struct list_head *head)
1495{
1496 struct net_device *dev;
1497
1498 ASSERT_RTNL();
1499 might_sleep();
1500
1501 list_for_each_entry(dev, head, close_list) {
1502 /* Temporarily disable netpoll until the interface is down */
1503 netpoll_poll_disable(dev);
1504
1505 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1506
1507 clear_bit(__LINK_STATE_START, &dev->state);
1508
1509 /* Synchronize to scheduled poll. We cannot touch poll list, it
1510 * can be even on different cpu. So just clear netif_running().
1511 *
1512 * dev->stop() will invoke napi_disable() on all of it's
1513 * napi_struct instances on this device.
1514 */
1515 smp_mb__after_atomic(); /* Commit netif_running(). */
1516 }
1517
1518 dev_deactivate_many(head);
1519
1520 list_for_each_entry(dev, head, close_list) {
1521 const struct net_device_ops *ops = dev->netdev_ops;
1522
1523 /*
1524 * Call the device specific close. This cannot fail.
1525 * Only if device is UP
1526 *
1527 * We allow it to be called even after a DETACH hot-plug
1528 * event.
1529 */
1530 if (ops->ndo_stop)
1531 ops->ndo_stop(dev);
1532
1533 dev->flags &= ~IFF_UP;
1534 netpoll_poll_enable(dev);
1535 }
1536}
1537
1538static void __dev_close(struct net_device *dev)
1539{
1540 LIST_HEAD(single);
1541
1542 list_add(&dev->close_list, &single);
1543 __dev_close_many(&single);
1544 list_del(&single);
1545}
1546
1547void dev_close_many(struct list_head *head, bool unlink)
1548{
1549 struct net_device *dev, *tmp;
1550
1551 /* Remove the devices that don't need to be closed */
1552 list_for_each_entry_safe(dev, tmp, head, close_list)
1553 if (!(dev->flags & IFF_UP))
1554 list_del_init(&dev->close_list);
1555
1556 __dev_close_many(head);
1557
1558 list_for_each_entry_safe(dev, tmp, head, close_list) {
1559 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1560 call_netdevice_notifiers(NETDEV_DOWN, dev);
1561 if (unlink)
1562 list_del_init(&dev->close_list);
1563 }
1564}
1565EXPORT_SYMBOL(dev_close_many);
1566
1567/**
1568 * dev_close - shutdown an interface.
1569 * @dev: device to shutdown
1570 *
1571 * This function moves an active device into down state. A
1572 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1573 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1574 * chain.
1575 */
1576void dev_close(struct net_device *dev)
1577{
1578 if (dev->flags & IFF_UP) {
1579 LIST_HEAD(single);
1580
1581 list_add(&dev->close_list, &single);
1582 dev_close_many(&single, true);
1583 list_del(&single);
1584 }
1585}
1586EXPORT_SYMBOL(dev_close);
1587
1588
1589/**
1590 * dev_disable_lro - disable Large Receive Offload on a device
1591 * @dev: device
1592 *
1593 * Disable Large Receive Offload (LRO) on a net device. Must be
1594 * called under RTNL. This is needed if received packets may be
1595 * forwarded to another interface.
1596 */
1597void dev_disable_lro(struct net_device *dev)
1598{
1599 struct net_device *lower_dev;
1600 struct list_head *iter;
1601
1602 dev->wanted_features &= ~NETIF_F_LRO;
1603 netdev_update_features(dev);
1604
1605 if (unlikely(dev->features & NETIF_F_LRO))
1606 netdev_WARN(dev, "failed to disable LRO!\n");
1607
1608 netdev_for_each_lower_dev(dev, lower_dev, iter)
1609 dev_disable_lro(lower_dev);
1610}
1611EXPORT_SYMBOL(dev_disable_lro);
1612
1613/**
1614 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1615 * @dev: device
1616 *
1617 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1618 * called under RTNL. This is needed if Generic XDP is installed on
1619 * the device.
1620 */
1621static void dev_disable_gro_hw(struct net_device *dev)
1622{
1623 dev->wanted_features &= ~NETIF_F_GRO_HW;
1624 netdev_update_features(dev);
1625
1626 if (unlikely(dev->features & NETIF_F_GRO_HW))
1627 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1628}
1629
1630const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1631{
1632#define N(val) \
1633 case NETDEV_##val: \
1634 return "NETDEV_" __stringify(val);
1635 switch (cmd) {
1636 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1637 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1638 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1639 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1640 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1641 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1642 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1643 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1644 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1645 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1646 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1647 N(XDP_FEAT_CHANGE)
1648 }
1649#undef N
1650 return "UNKNOWN_NETDEV_EVENT";
1651}
1652EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1653
1654static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1655 struct net_device *dev)
1656{
1657 struct netdev_notifier_info info = {
1658 .dev = dev,
1659 };
1660
1661 return nb->notifier_call(nb, val, &info);
1662}
1663
1664static int call_netdevice_register_notifiers(struct notifier_block *nb,
1665 struct net_device *dev)
1666{
1667 int err;
1668
1669 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1670 err = notifier_to_errno(err);
1671 if (err)
1672 return err;
1673
1674 if (!(dev->flags & IFF_UP))
1675 return 0;
1676
1677 call_netdevice_notifier(nb, NETDEV_UP, dev);
1678 return 0;
1679}
1680
1681static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1682 struct net_device *dev)
1683{
1684 if (dev->flags & IFF_UP) {
1685 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1686 dev);
1687 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1688 }
1689 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1690}
1691
1692static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1693 struct net *net)
1694{
1695 struct net_device *dev;
1696 int err;
1697
1698 for_each_netdev(net, dev) {
1699 err = call_netdevice_register_notifiers(nb, dev);
1700 if (err)
1701 goto rollback;
1702 }
1703 return 0;
1704
1705rollback:
1706 for_each_netdev_continue_reverse(net, dev)
1707 call_netdevice_unregister_notifiers(nb, dev);
1708 return err;
1709}
1710
1711static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1712 struct net *net)
1713{
1714 struct net_device *dev;
1715
1716 for_each_netdev(net, dev)
1717 call_netdevice_unregister_notifiers(nb, dev);
1718}
1719
1720static int dev_boot_phase = 1;
1721
1722/**
1723 * register_netdevice_notifier - register a network notifier block
1724 * @nb: notifier
1725 *
1726 * Register a notifier to be called when network device events occur.
1727 * The notifier passed is linked into the kernel structures and must
1728 * not be reused until it has been unregistered. A negative errno code
1729 * is returned on a failure.
1730 *
1731 * When registered all registration and up events are replayed
1732 * to the new notifier to allow device to have a race free
1733 * view of the network device list.
1734 */
1735
1736int register_netdevice_notifier(struct notifier_block *nb)
1737{
1738 struct net *net;
1739 int err;
1740
1741 /* Close race with setup_net() and cleanup_net() */
1742 down_write(&pernet_ops_rwsem);
1743 rtnl_lock();
1744 err = raw_notifier_chain_register(&netdev_chain, nb);
1745 if (err)
1746 goto unlock;
1747 if (dev_boot_phase)
1748 goto unlock;
1749 for_each_net(net) {
1750 err = call_netdevice_register_net_notifiers(nb, net);
1751 if (err)
1752 goto rollback;
1753 }
1754
1755unlock:
1756 rtnl_unlock();
1757 up_write(&pernet_ops_rwsem);
1758 return err;
1759
1760rollback:
1761 for_each_net_continue_reverse(net)
1762 call_netdevice_unregister_net_notifiers(nb, net);
1763
1764 raw_notifier_chain_unregister(&netdev_chain, nb);
1765 goto unlock;
1766}
1767EXPORT_SYMBOL(register_netdevice_notifier);
1768
1769/**
1770 * unregister_netdevice_notifier - unregister a network notifier block
1771 * @nb: notifier
1772 *
1773 * Unregister a notifier previously registered by
1774 * register_netdevice_notifier(). The notifier is unlinked into the
1775 * kernel structures and may then be reused. A negative errno code
1776 * is returned on a failure.
1777 *
1778 * After unregistering unregister and down device events are synthesized
1779 * for all devices on the device list to the removed notifier to remove
1780 * the need for special case cleanup code.
1781 */
1782
1783int unregister_netdevice_notifier(struct notifier_block *nb)
1784{
1785 struct net *net;
1786 int err;
1787
1788 /* Close race with setup_net() and cleanup_net() */
1789 down_write(&pernet_ops_rwsem);
1790 rtnl_lock();
1791 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1792 if (err)
1793 goto unlock;
1794
1795 for_each_net(net)
1796 call_netdevice_unregister_net_notifiers(nb, net);
1797
1798unlock:
1799 rtnl_unlock();
1800 up_write(&pernet_ops_rwsem);
1801 return err;
1802}
1803EXPORT_SYMBOL(unregister_netdevice_notifier);
1804
1805static int __register_netdevice_notifier_net(struct net *net,
1806 struct notifier_block *nb,
1807 bool ignore_call_fail)
1808{
1809 int err;
1810
1811 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1812 if (err)
1813 return err;
1814 if (dev_boot_phase)
1815 return 0;
1816
1817 err = call_netdevice_register_net_notifiers(nb, net);
1818 if (err && !ignore_call_fail)
1819 goto chain_unregister;
1820
1821 return 0;
1822
1823chain_unregister:
1824 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1825 return err;
1826}
1827
1828static int __unregister_netdevice_notifier_net(struct net *net,
1829 struct notifier_block *nb)
1830{
1831 int err;
1832
1833 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1834 if (err)
1835 return err;
1836
1837 call_netdevice_unregister_net_notifiers(nb, net);
1838 return 0;
1839}
1840
1841/**
1842 * register_netdevice_notifier_net - register a per-netns network notifier block
1843 * @net: network namespace
1844 * @nb: notifier
1845 *
1846 * Register a notifier to be called when network device events occur.
1847 * The notifier passed is linked into the kernel structures and must
1848 * not be reused until it has been unregistered. A negative errno code
1849 * is returned on a failure.
1850 *
1851 * When registered all registration and up events are replayed
1852 * to the new notifier to allow device to have a race free
1853 * view of the network device list.
1854 */
1855
1856int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1857{
1858 int err;
1859
1860 rtnl_lock();
1861 err = __register_netdevice_notifier_net(net, nb, false);
1862 rtnl_unlock();
1863 return err;
1864}
1865EXPORT_SYMBOL(register_netdevice_notifier_net);
1866
1867/**
1868 * unregister_netdevice_notifier_net - unregister a per-netns
1869 * network notifier block
1870 * @net: network namespace
1871 * @nb: notifier
1872 *
1873 * Unregister a notifier previously registered by
1874 * register_netdevice_notifier_net(). The notifier is unlinked from the
1875 * kernel structures and may then be reused. A negative errno code
1876 * is returned on a failure.
1877 *
1878 * After unregistering unregister and down device events are synthesized
1879 * for all devices on the device list to the removed notifier to remove
1880 * the need for special case cleanup code.
1881 */
1882
1883int unregister_netdevice_notifier_net(struct net *net,
1884 struct notifier_block *nb)
1885{
1886 int err;
1887
1888 rtnl_lock();
1889 err = __unregister_netdevice_notifier_net(net, nb);
1890 rtnl_unlock();
1891 return err;
1892}
1893EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1894
1895static void __move_netdevice_notifier_net(struct net *src_net,
1896 struct net *dst_net,
1897 struct notifier_block *nb)
1898{
1899 __unregister_netdevice_notifier_net(src_net, nb);
1900 __register_netdevice_notifier_net(dst_net, nb, true);
1901}
1902
1903int register_netdevice_notifier_dev_net(struct net_device *dev,
1904 struct notifier_block *nb,
1905 struct netdev_net_notifier *nn)
1906{
1907 int err;
1908
1909 rtnl_lock();
1910 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1911 if (!err) {
1912 nn->nb = nb;
1913 list_add(&nn->list, &dev->net_notifier_list);
1914 }
1915 rtnl_unlock();
1916 return err;
1917}
1918EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1919
1920int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1921 struct notifier_block *nb,
1922 struct netdev_net_notifier *nn)
1923{
1924 int err;
1925
1926 rtnl_lock();
1927 list_del(&nn->list);
1928 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1929 rtnl_unlock();
1930 return err;
1931}
1932EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1933
1934static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1935 struct net *net)
1936{
1937 struct netdev_net_notifier *nn;
1938
1939 list_for_each_entry(nn, &dev->net_notifier_list, list)
1940 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1941}
1942
1943/**
1944 * call_netdevice_notifiers_info - call all network notifier blocks
1945 * @val: value passed unmodified to notifier function
1946 * @info: notifier information data
1947 *
1948 * Call all network notifier blocks. Parameters and return value
1949 * are as for raw_notifier_call_chain().
1950 */
1951
1952int call_netdevice_notifiers_info(unsigned long val,
1953 struct netdev_notifier_info *info)
1954{
1955 struct net *net = dev_net(info->dev);
1956 int ret;
1957
1958 ASSERT_RTNL();
1959
1960 /* Run per-netns notifier block chain first, then run the global one.
1961 * Hopefully, one day, the global one is going to be removed after
1962 * all notifier block registrators get converted to be per-netns.
1963 */
1964 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1965 if (ret & NOTIFY_STOP_MASK)
1966 return ret;
1967 return raw_notifier_call_chain(&netdev_chain, val, info);
1968}
1969
1970/**
1971 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1972 * for and rollback on error
1973 * @val_up: value passed unmodified to notifier function
1974 * @val_down: value passed unmodified to the notifier function when
1975 * recovering from an error on @val_up
1976 * @info: notifier information data
1977 *
1978 * Call all per-netns network notifier blocks, but not notifier blocks on
1979 * the global notifier chain. Parameters and return value are as for
1980 * raw_notifier_call_chain_robust().
1981 */
1982
1983static int
1984call_netdevice_notifiers_info_robust(unsigned long val_up,
1985 unsigned long val_down,
1986 struct netdev_notifier_info *info)
1987{
1988 struct net *net = dev_net(info->dev);
1989
1990 ASSERT_RTNL();
1991
1992 return raw_notifier_call_chain_robust(&net->netdev_chain,
1993 val_up, val_down, info);
1994}
1995
1996static int call_netdevice_notifiers_extack(unsigned long val,
1997 struct net_device *dev,
1998 struct netlink_ext_ack *extack)
1999{
2000 struct netdev_notifier_info info = {
2001 .dev = dev,
2002 .extack = extack,
2003 };
2004
2005 return call_netdevice_notifiers_info(val, &info);
2006}
2007
2008/**
2009 * call_netdevice_notifiers - call all network notifier blocks
2010 * @val: value passed unmodified to notifier function
2011 * @dev: net_device pointer passed unmodified to notifier function
2012 *
2013 * Call all network notifier blocks. Parameters and return value
2014 * are as for raw_notifier_call_chain().
2015 */
2016
2017int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2018{
2019 return call_netdevice_notifiers_extack(val, dev, NULL);
2020}
2021EXPORT_SYMBOL(call_netdevice_notifiers);
2022
2023/**
2024 * call_netdevice_notifiers_mtu - call all network notifier blocks
2025 * @val: value passed unmodified to notifier function
2026 * @dev: net_device pointer passed unmodified to notifier function
2027 * @arg: additional u32 argument passed to the notifier function
2028 *
2029 * Call all network notifier blocks. Parameters and return value
2030 * are as for raw_notifier_call_chain().
2031 */
2032static int call_netdevice_notifiers_mtu(unsigned long val,
2033 struct net_device *dev, u32 arg)
2034{
2035 struct netdev_notifier_info_ext info = {
2036 .info.dev = dev,
2037 .ext.mtu = arg,
2038 };
2039
2040 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2041
2042 return call_netdevice_notifiers_info(val, &info.info);
2043}
2044
2045#ifdef CONFIG_NET_INGRESS
2046static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2047
2048void net_inc_ingress_queue(void)
2049{
2050 static_branch_inc(&ingress_needed_key);
2051}
2052EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2053
2054void net_dec_ingress_queue(void)
2055{
2056 static_branch_dec(&ingress_needed_key);
2057}
2058EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2059#endif
2060
2061#ifdef CONFIG_NET_EGRESS
2062static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2063
2064void net_inc_egress_queue(void)
2065{
2066 static_branch_inc(&egress_needed_key);
2067}
2068EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2069
2070void net_dec_egress_queue(void)
2071{
2072 static_branch_dec(&egress_needed_key);
2073}
2074EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2075#endif
2076
2077DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2078EXPORT_SYMBOL(netstamp_needed_key);
2079#ifdef CONFIG_JUMP_LABEL
2080static atomic_t netstamp_needed_deferred;
2081static atomic_t netstamp_wanted;
2082static void netstamp_clear(struct work_struct *work)
2083{
2084 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2085 int wanted;
2086
2087 wanted = atomic_add_return(deferred, &netstamp_wanted);
2088 if (wanted > 0)
2089 static_branch_enable(&netstamp_needed_key);
2090 else
2091 static_branch_disable(&netstamp_needed_key);
2092}
2093static DECLARE_WORK(netstamp_work, netstamp_clear);
2094#endif
2095
2096void net_enable_timestamp(void)
2097{
2098#ifdef CONFIG_JUMP_LABEL
2099 int wanted = atomic_read(&netstamp_wanted);
2100
2101 while (wanted > 0) {
2102 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2103 return;
2104 }
2105 atomic_inc(&netstamp_needed_deferred);
2106 schedule_work(&netstamp_work);
2107#else
2108 static_branch_inc(&netstamp_needed_key);
2109#endif
2110}
2111EXPORT_SYMBOL(net_enable_timestamp);
2112
2113void net_disable_timestamp(void)
2114{
2115#ifdef CONFIG_JUMP_LABEL
2116 int wanted = atomic_read(&netstamp_wanted);
2117
2118 while (wanted > 1) {
2119 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2120 return;
2121 }
2122 atomic_dec(&netstamp_needed_deferred);
2123 schedule_work(&netstamp_work);
2124#else
2125 static_branch_dec(&netstamp_needed_key);
2126#endif
2127}
2128EXPORT_SYMBOL(net_disable_timestamp);
2129
2130static inline void net_timestamp_set(struct sk_buff *skb)
2131{
2132 skb->tstamp = 0;
2133 skb->mono_delivery_time = 0;
2134 if (static_branch_unlikely(&netstamp_needed_key))
2135 skb->tstamp = ktime_get_real();
2136}
2137
2138#define net_timestamp_check(COND, SKB) \
2139 if (static_branch_unlikely(&netstamp_needed_key)) { \
2140 if ((COND) && !(SKB)->tstamp) \
2141 (SKB)->tstamp = ktime_get_real(); \
2142 } \
2143
2144bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2145{
2146 return __is_skb_forwardable(dev, skb, true);
2147}
2148EXPORT_SYMBOL_GPL(is_skb_forwardable);
2149
2150static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2151 bool check_mtu)
2152{
2153 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2154
2155 if (likely(!ret)) {
2156 skb->protocol = eth_type_trans(skb, dev);
2157 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2158 }
2159
2160 return ret;
2161}
2162
2163int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2164{
2165 return __dev_forward_skb2(dev, skb, true);
2166}
2167EXPORT_SYMBOL_GPL(__dev_forward_skb);
2168
2169/**
2170 * dev_forward_skb - loopback an skb to another netif
2171 *
2172 * @dev: destination network device
2173 * @skb: buffer to forward
2174 *
2175 * return values:
2176 * NET_RX_SUCCESS (no congestion)
2177 * NET_RX_DROP (packet was dropped, but freed)
2178 *
2179 * dev_forward_skb can be used for injecting an skb from the
2180 * start_xmit function of one device into the receive queue
2181 * of another device.
2182 *
2183 * The receiving device may be in another namespace, so
2184 * we have to clear all information in the skb that could
2185 * impact namespace isolation.
2186 */
2187int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2188{
2189 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2190}
2191EXPORT_SYMBOL_GPL(dev_forward_skb);
2192
2193int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2194{
2195 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2196}
2197
2198static inline int deliver_skb(struct sk_buff *skb,
2199 struct packet_type *pt_prev,
2200 struct net_device *orig_dev)
2201{
2202 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2203 return -ENOMEM;
2204 refcount_inc(&skb->users);
2205 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2206}
2207
2208static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2209 struct packet_type **pt,
2210 struct net_device *orig_dev,
2211 __be16 type,
2212 struct list_head *ptype_list)
2213{
2214 struct packet_type *ptype, *pt_prev = *pt;
2215
2216 list_for_each_entry_rcu(ptype, ptype_list, list) {
2217 if (ptype->type != type)
2218 continue;
2219 if (pt_prev)
2220 deliver_skb(skb, pt_prev, orig_dev);
2221 pt_prev = ptype;
2222 }
2223 *pt = pt_prev;
2224}
2225
2226static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2227{
2228 if (!ptype->af_packet_priv || !skb->sk)
2229 return false;
2230
2231 if (ptype->id_match)
2232 return ptype->id_match(ptype, skb->sk);
2233 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2234 return true;
2235
2236 return false;
2237}
2238
2239/**
2240 * dev_nit_active - return true if any network interface taps are in use
2241 *
2242 * @dev: network device to check for the presence of taps
2243 */
2244bool dev_nit_active(struct net_device *dev)
2245{
2246 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2247}
2248EXPORT_SYMBOL_GPL(dev_nit_active);
2249
2250/*
2251 * Support routine. Sends outgoing frames to any network
2252 * taps currently in use.
2253 */
2254
2255void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2256{
2257 struct packet_type *ptype;
2258 struct sk_buff *skb2 = NULL;
2259 struct packet_type *pt_prev = NULL;
2260 struct list_head *ptype_list = &ptype_all;
2261
2262 rcu_read_lock();
2263again:
2264 list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 if (ptype->ignore_outgoing)
2266 continue;
2267
2268 /* Never send packets back to the socket
2269 * they originated from - MvS (miquels@drinkel.ow.org)
2270 */
2271 if (skb_loop_sk(ptype, skb))
2272 continue;
2273
2274 if (pt_prev) {
2275 deliver_skb(skb2, pt_prev, skb->dev);
2276 pt_prev = ptype;
2277 continue;
2278 }
2279
2280 /* need to clone skb, done only once */
2281 skb2 = skb_clone(skb, GFP_ATOMIC);
2282 if (!skb2)
2283 goto out_unlock;
2284
2285 net_timestamp_set(skb2);
2286
2287 /* skb->nh should be correctly
2288 * set by sender, so that the second statement is
2289 * just protection against buggy protocols.
2290 */
2291 skb_reset_mac_header(skb2);
2292
2293 if (skb_network_header(skb2) < skb2->data ||
2294 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2295 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2296 ntohs(skb2->protocol),
2297 dev->name);
2298 skb_reset_network_header(skb2);
2299 }
2300
2301 skb2->transport_header = skb2->network_header;
2302 skb2->pkt_type = PACKET_OUTGOING;
2303 pt_prev = ptype;
2304 }
2305
2306 if (ptype_list == &ptype_all) {
2307 ptype_list = &dev->ptype_all;
2308 goto again;
2309 }
2310out_unlock:
2311 if (pt_prev) {
2312 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2313 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2314 else
2315 kfree_skb(skb2);
2316 }
2317 rcu_read_unlock();
2318}
2319EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2320
2321/**
2322 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2323 * @dev: Network device
2324 * @txq: number of queues available
2325 *
2326 * If real_num_tx_queues is changed the tc mappings may no longer be
2327 * valid. To resolve this verify the tc mapping remains valid and if
2328 * not NULL the mapping. With no priorities mapping to this
2329 * offset/count pair it will no longer be used. In the worst case TC0
2330 * is invalid nothing can be done so disable priority mappings. If is
2331 * expected that drivers will fix this mapping if they can before
2332 * calling netif_set_real_num_tx_queues.
2333 */
2334static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2335{
2336 int i;
2337 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2338
2339 /* If TC0 is invalidated disable TC mapping */
2340 if (tc->offset + tc->count > txq) {
2341 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2342 dev->num_tc = 0;
2343 return;
2344 }
2345
2346 /* Invalidated prio to tc mappings set to TC0 */
2347 for (i = 1; i < TC_BITMASK + 1; i++) {
2348 int q = netdev_get_prio_tc_map(dev, i);
2349
2350 tc = &dev->tc_to_txq[q];
2351 if (tc->offset + tc->count > txq) {
2352 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2353 i, q);
2354 netdev_set_prio_tc_map(dev, i, 0);
2355 }
2356 }
2357}
2358
2359int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2360{
2361 if (dev->num_tc) {
2362 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2363 int i;
2364
2365 /* walk through the TCs and see if it falls into any of them */
2366 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2367 if ((txq - tc->offset) < tc->count)
2368 return i;
2369 }
2370
2371 /* didn't find it, just return -1 to indicate no match */
2372 return -1;
2373 }
2374
2375 return 0;
2376}
2377EXPORT_SYMBOL(netdev_txq_to_tc);
2378
2379#ifdef CONFIG_XPS
2380static struct static_key xps_needed __read_mostly;
2381static struct static_key xps_rxqs_needed __read_mostly;
2382static DEFINE_MUTEX(xps_map_mutex);
2383#define xmap_dereference(P) \
2384 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2385
2386static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2387 struct xps_dev_maps *old_maps, int tci, u16 index)
2388{
2389 struct xps_map *map = NULL;
2390 int pos;
2391
2392 map = xmap_dereference(dev_maps->attr_map[tci]);
2393 if (!map)
2394 return false;
2395
2396 for (pos = map->len; pos--;) {
2397 if (map->queues[pos] != index)
2398 continue;
2399
2400 if (map->len > 1) {
2401 map->queues[pos] = map->queues[--map->len];
2402 break;
2403 }
2404
2405 if (old_maps)
2406 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2407 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2408 kfree_rcu(map, rcu);
2409 return false;
2410 }
2411
2412 return true;
2413}
2414
2415static bool remove_xps_queue_cpu(struct net_device *dev,
2416 struct xps_dev_maps *dev_maps,
2417 int cpu, u16 offset, u16 count)
2418{
2419 int num_tc = dev_maps->num_tc;
2420 bool active = false;
2421 int tci;
2422
2423 for (tci = cpu * num_tc; num_tc--; tci++) {
2424 int i, j;
2425
2426 for (i = count, j = offset; i--; j++) {
2427 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2428 break;
2429 }
2430
2431 active |= i < 0;
2432 }
2433
2434 return active;
2435}
2436
2437static void reset_xps_maps(struct net_device *dev,
2438 struct xps_dev_maps *dev_maps,
2439 enum xps_map_type type)
2440{
2441 static_key_slow_dec_cpuslocked(&xps_needed);
2442 if (type == XPS_RXQS)
2443 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2444
2445 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2446
2447 kfree_rcu(dev_maps, rcu);
2448}
2449
2450static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2451 u16 offset, u16 count)
2452{
2453 struct xps_dev_maps *dev_maps;
2454 bool active = false;
2455 int i, j;
2456
2457 dev_maps = xmap_dereference(dev->xps_maps[type]);
2458 if (!dev_maps)
2459 return;
2460
2461 for (j = 0; j < dev_maps->nr_ids; j++)
2462 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2463 if (!active)
2464 reset_xps_maps(dev, dev_maps, type);
2465
2466 if (type == XPS_CPUS) {
2467 for (i = offset + (count - 1); count--; i--)
2468 netdev_queue_numa_node_write(
2469 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2470 }
2471}
2472
2473static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2474 u16 count)
2475{
2476 if (!static_key_false(&xps_needed))
2477 return;
2478
2479 cpus_read_lock();
2480 mutex_lock(&xps_map_mutex);
2481
2482 if (static_key_false(&xps_rxqs_needed))
2483 clean_xps_maps(dev, XPS_RXQS, offset, count);
2484
2485 clean_xps_maps(dev, XPS_CPUS, offset, count);
2486
2487 mutex_unlock(&xps_map_mutex);
2488 cpus_read_unlock();
2489}
2490
2491static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2492{
2493 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2494}
2495
2496static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2497 u16 index, bool is_rxqs_map)
2498{
2499 struct xps_map *new_map;
2500 int alloc_len = XPS_MIN_MAP_ALLOC;
2501 int i, pos;
2502
2503 for (pos = 0; map && pos < map->len; pos++) {
2504 if (map->queues[pos] != index)
2505 continue;
2506 return map;
2507 }
2508
2509 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2510 if (map) {
2511 if (pos < map->alloc_len)
2512 return map;
2513
2514 alloc_len = map->alloc_len * 2;
2515 }
2516
2517 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2518 * map
2519 */
2520 if (is_rxqs_map)
2521 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2522 else
2523 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2524 cpu_to_node(attr_index));
2525 if (!new_map)
2526 return NULL;
2527
2528 for (i = 0; i < pos; i++)
2529 new_map->queues[i] = map->queues[i];
2530 new_map->alloc_len = alloc_len;
2531 new_map->len = pos;
2532
2533 return new_map;
2534}
2535
2536/* Copy xps maps at a given index */
2537static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2538 struct xps_dev_maps *new_dev_maps, int index,
2539 int tc, bool skip_tc)
2540{
2541 int i, tci = index * dev_maps->num_tc;
2542 struct xps_map *map;
2543
2544 /* copy maps belonging to foreign traffic classes */
2545 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2546 if (i == tc && skip_tc)
2547 continue;
2548
2549 /* fill in the new device map from the old device map */
2550 map = xmap_dereference(dev_maps->attr_map[tci]);
2551 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2552 }
2553}
2554
2555/* Must be called under cpus_read_lock */
2556int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2557 u16 index, enum xps_map_type type)
2558{
2559 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2560 const unsigned long *online_mask = NULL;
2561 bool active = false, copy = false;
2562 int i, j, tci, numa_node_id = -2;
2563 int maps_sz, num_tc = 1, tc = 0;
2564 struct xps_map *map, *new_map;
2565 unsigned int nr_ids;
2566
2567 WARN_ON_ONCE(index >= dev->num_tx_queues);
2568
2569 if (dev->num_tc) {
2570 /* Do not allow XPS on subordinate device directly */
2571 num_tc = dev->num_tc;
2572 if (num_tc < 0)
2573 return -EINVAL;
2574
2575 /* If queue belongs to subordinate dev use its map */
2576 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2577
2578 tc = netdev_txq_to_tc(dev, index);
2579 if (tc < 0)
2580 return -EINVAL;
2581 }
2582
2583 mutex_lock(&xps_map_mutex);
2584
2585 dev_maps = xmap_dereference(dev->xps_maps[type]);
2586 if (type == XPS_RXQS) {
2587 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2588 nr_ids = dev->num_rx_queues;
2589 } else {
2590 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2591 if (num_possible_cpus() > 1)
2592 online_mask = cpumask_bits(cpu_online_mask);
2593 nr_ids = nr_cpu_ids;
2594 }
2595
2596 if (maps_sz < L1_CACHE_BYTES)
2597 maps_sz = L1_CACHE_BYTES;
2598
2599 /* The old dev_maps could be larger or smaller than the one we're
2600 * setting up now, as dev->num_tc or nr_ids could have been updated in
2601 * between. We could try to be smart, but let's be safe instead and only
2602 * copy foreign traffic classes if the two map sizes match.
2603 */
2604 if (dev_maps &&
2605 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2606 copy = true;
2607
2608 /* allocate memory for queue storage */
2609 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2610 j < nr_ids;) {
2611 if (!new_dev_maps) {
2612 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2613 if (!new_dev_maps) {
2614 mutex_unlock(&xps_map_mutex);
2615 return -ENOMEM;
2616 }
2617
2618 new_dev_maps->nr_ids = nr_ids;
2619 new_dev_maps->num_tc = num_tc;
2620 }
2621
2622 tci = j * num_tc + tc;
2623 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2624
2625 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2626 if (!map)
2627 goto error;
2628
2629 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2630 }
2631
2632 if (!new_dev_maps)
2633 goto out_no_new_maps;
2634
2635 if (!dev_maps) {
2636 /* Increment static keys at most once per type */
2637 static_key_slow_inc_cpuslocked(&xps_needed);
2638 if (type == XPS_RXQS)
2639 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2640 }
2641
2642 for (j = 0; j < nr_ids; j++) {
2643 bool skip_tc = false;
2644
2645 tci = j * num_tc + tc;
2646 if (netif_attr_test_mask(j, mask, nr_ids) &&
2647 netif_attr_test_online(j, online_mask, nr_ids)) {
2648 /* add tx-queue to CPU/rx-queue maps */
2649 int pos = 0;
2650
2651 skip_tc = true;
2652
2653 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2654 while ((pos < map->len) && (map->queues[pos] != index))
2655 pos++;
2656
2657 if (pos == map->len)
2658 map->queues[map->len++] = index;
2659#ifdef CONFIG_NUMA
2660 if (type == XPS_CPUS) {
2661 if (numa_node_id == -2)
2662 numa_node_id = cpu_to_node(j);
2663 else if (numa_node_id != cpu_to_node(j))
2664 numa_node_id = -1;
2665 }
2666#endif
2667 }
2668
2669 if (copy)
2670 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2671 skip_tc);
2672 }
2673
2674 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2675
2676 /* Cleanup old maps */
2677 if (!dev_maps)
2678 goto out_no_old_maps;
2679
2680 for (j = 0; j < dev_maps->nr_ids; j++) {
2681 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2682 map = xmap_dereference(dev_maps->attr_map[tci]);
2683 if (!map)
2684 continue;
2685
2686 if (copy) {
2687 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688 if (map == new_map)
2689 continue;
2690 }
2691
2692 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2693 kfree_rcu(map, rcu);
2694 }
2695 }
2696
2697 old_dev_maps = dev_maps;
2698
2699out_no_old_maps:
2700 dev_maps = new_dev_maps;
2701 active = true;
2702
2703out_no_new_maps:
2704 if (type == XPS_CPUS)
2705 /* update Tx queue numa node */
2706 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2707 (numa_node_id >= 0) ?
2708 numa_node_id : NUMA_NO_NODE);
2709
2710 if (!dev_maps)
2711 goto out_no_maps;
2712
2713 /* removes tx-queue from unused CPUs/rx-queues */
2714 for (j = 0; j < dev_maps->nr_ids; j++) {
2715 tci = j * dev_maps->num_tc;
2716
2717 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2718 if (i == tc &&
2719 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2720 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2721 continue;
2722
2723 active |= remove_xps_queue(dev_maps,
2724 copy ? old_dev_maps : NULL,
2725 tci, index);
2726 }
2727 }
2728
2729 if (old_dev_maps)
2730 kfree_rcu(old_dev_maps, rcu);
2731
2732 /* free map if not active */
2733 if (!active)
2734 reset_xps_maps(dev, dev_maps, type);
2735
2736out_no_maps:
2737 mutex_unlock(&xps_map_mutex);
2738
2739 return 0;
2740error:
2741 /* remove any maps that we added */
2742 for (j = 0; j < nr_ids; j++) {
2743 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2744 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2745 map = copy ?
2746 xmap_dereference(dev_maps->attr_map[tci]) :
2747 NULL;
2748 if (new_map && new_map != map)
2749 kfree(new_map);
2750 }
2751 }
2752
2753 mutex_unlock(&xps_map_mutex);
2754
2755 kfree(new_dev_maps);
2756 return -ENOMEM;
2757}
2758EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2759
2760int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2761 u16 index)
2762{
2763 int ret;
2764
2765 cpus_read_lock();
2766 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2767 cpus_read_unlock();
2768
2769 return ret;
2770}
2771EXPORT_SYMBOL(netif_set_xps_queue);
2772
2773#endif
2774static void netdev_unbind_all_sb_channels(struct net_device *dev)
2775{
2776 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2777
2778 /* Unbind any subordinate channels */
2779 while (txq-- != &dev->_tx[0]) {
2780 if (txq->sb_dev)
2781 netdev_unbind_sb_channel(dev, txq->sb_dev);
2782 }
2783}
2784
2785void netdev_reset_tc(struct net_device *dev)
2786{
2787#ifdef CONFIG_XPS
2788 netif_reset_xps_queues_gt(dev, 0);
2789#endif
2790 netdev_unbind_all_sb_channels(dev);
2791
2792 /* Reset TC configuration of device */
2793 dev->num_tc = 0;
2794 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2795 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2796}
2797EXPORT_SYMBOL(netdev_reset_tc);
2798
2799int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2800{
2801 if (tc >= dev->num_tc)
2802 return -EINVAL;
2803
2804#ifdef CONFIG_XPS
2805 netif_reset_xps_queues(dev, offset, count);
2806#endif
2807 dev->tc_to_txq[tc].count = count;
2808 dev->tc_to_txq[tc].offset = offset;
2809 return 0;
2810}
2811EXPORT_SYMBOL(netdev_set_tc_queue);
2812
2813int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2814{
2815 if (num_tc > TC_MAX_QUEUE)
2816 return -EINVAL;
2817
2818#ifdef CONFIG_XPS
2819 netif_reset_xps_queues_gt(dev, 0);
2820#endif
2821 netdev_unbind_all_sb_channels(dev);
2822
2823 dev->num_tc = num_tc;
2824 return 0;
2825}
2826EXPORT_SYMBOL(netdev_set_num_tc);
2827
2828void netdev_unbind_sb_channel(struct net_device *dev,
2829 struct net_device *sb_dev)
2830{
2831 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2832
2833#ifdef CONFIG_XPS
2834 netif_reset_xps_queues_gt(sb_dev, 0);
2835#endif
2836 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2837 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2838
2839 while (txq-- != &dev->_tx[0]) {
2840 if (txq->sb_dev == sb_dev)
2841 txq->sb_dev = NULL;
2842 }
2843}
2844EXPORT_SYMBOL(netdev_unbind_sb_channel);
2845
2846int netdev_bind_sb_channel_queue(struct net_device *dev,
2847 struct net_device *sb_dev,
2848 u8 tc, u16 count, u16 offset)
2849{
2850 /* Make certain the sb_dev and dev are already configured */
2851 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2852 return -EINVAL;
2853
2854 /* We cannot hand out queues we don't have */
2855 if ((offset + count) > dev->real_num_tx_queues)
2856 return -EINVAL;
2857
2858 /* Record the mapping */
2859 sb_dev->tc_to_txq[tc].count = count;
2860 sb_dev->tc_to_txq[tc].offset = offset;
2861
2862 /* Provide a way for Tx queue to find the tc_to_txq map or
2863 * XPS map for itself.
2864 */
2865 while (count--)
2866 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2867
2868 return 0;
2869}
2870EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2871
2872int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2873{
2874 /* Do not use a multiqueue device to represent a subordinate channel */
2875 if (netif_is_multiqueue(dev))
2876 return -ENODEV;
2877
2878 /* We allow channels 1 - 32767 to be used for subordinate channels.
2879 * Channel 0 is meant to be "native" mode and used only to represent
2880 * the main root device. We allow writing 0 to reset the device back
2881 * to normal mode after being used as a subordinate channel.
2882 */
2883 if (channel > S16_MAX)
2884 return -EINVAL;
2885
2886 dev->num_tc = -channel;
2887
2888 return 0;
2889}
2890EXPORT_SYMBOL(netdev_set_sb_channel);
2891
2892/*
2893 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2894 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2895 */
2896int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2897{
2898 bool disabling;
2899 int rc;
2900
2901 disabling = txq < dev->real_num_tx_queues;
2902
2903 if (txq < 1 || txq > dev->num_tx_queues)
2904 return -EINVAL;
2905
2906 if (dev->reg_state == NETREG_REGISTERED ||
2907 dev->reg_state == NETREG_UNREGISTERING) {
2908 ASSERT_RTNL();
2909
2910 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2911 txq);
2912 if (rc)
2913 return rc;
2914
2915 if (dev->num_tc)
2916 netif_setup_tc(dev, txq);
2917
2918 dev_qdisc_change_real_num_tx(dev, txq);
2919
2920 dev->real_num_tx_queues = txq;
2921
2922 if (disabling) {
2923 synchronize_net();
2924 qdisc_reset_all_tx_gt(dev, txq);
2925#ifdef CONFIG_XPS
2926 netif_reset_xps_queues_gt(dev, txq);
2927#endif
2928 }
2929 } else {
2930 dev->real_num_tx_queues = txq;
2931 }
2932
2933 return 0;
2934}
2935EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2936
2937#ifdef CONFIG_SYSFS
2938/**
2939 * netif_set_real_num_rx_queues - set actual number of RX queues used
2940 * @dev: Network device
2941 * @rxq: Actual number of RX queues
2942 *
2943 * This must be called either with the rtnl_lock held or before
2944 * registration of the net device. Returns 0 on success, or a
2945 * negative error code. If called before registration, it always
2946 * succeeds.
2947 */
2948int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2949{
2950 int rc;
2951
2952 if (rxq < 1 || rxq > dev->num_rx_queues)
2953 return -EINVAL;
2954
2955 if (dev->reg_state == NETREG_REGISTERED) {
2956 ASSERT_RTNL();
2957
2958 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2959 rxq);
2960 if (rc)
2961 return rc;
2962 }
2963
2964 dev->real_num_rx_queues = rxq;
2965 return 0;
2966}
2967EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2968#endif
2969
2970/**
2971 * netif_set_real_num_queues - set actual number of RX and TX queues used
2972 * @dev: Network device
2973 * @txq: Actual number of TX queues
2974 * @rxq: Actual number of RX queues
2975 *
2976 * Set the real number of both TX and RX queues.
2977 * Does nothing if the number of queues is already correct.
2978 */
2979int netif_set_real_num_queues(struct net_device *dev,
2980 unsigned int txq, unsigned int rxq)
2981{
2982 unsigned int old_rxq = dev->real_num_rx_queues;
2983 int err;
2984
2985 if (txq < 1 || txq > dev->num_tx_queues ||
2986 rxq < 1 || rxq > dev->num_rx_queues)
2987 return -EINVAL;
2988
2989 /* Start from increases, so the error path only does decreases -
2990 * decreases can't fail.
2991 */
2992 if (rxq > dev->real_num_rx_queues) {
2993 err = netif_set_real_num_rx_queues(dev, rxq);
2994 if (err)
2995 return err;
2996 }
2997 if (txq > dev->real_num_tx_queues) {
2998 err = netif_set_real_num_tx_queues(dev, txq);
2999 if (err)
3000 goto undo_rx;
3001 }
3002 if (rxq < dev->real_num_rx_queues)
3003 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3004 if (txq < dev->real_num_tx_queues)
3005 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3006
3007 return 0;
3008undo_rx:
3009 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3010 return err;
3011}
3012EXPORT_SYMBOL(netif_set_real_num_queues);
3013
3014/**
3015 * netif_set_tso_max_size() - set the max size of TSO frames supported
3016 * @dev: netdev to update
3017 * @size: max skb->len of a TSO frame
3018 *
3019 * Set the limit on the size of TSO super-frames the device can handle.
3020 * Unless explicitly set the stack will assume the value of
3021 * %GSO_LEGACY_MAX_SIZE.
3022 */
3023void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3024{
3025 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3026 if (size < READ_ONCE(dev->gso_max_size))
3027 netif_set_gso_max_size(dev, size);
3028 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3029 netif_set_gso_ipv4_max_size(dev, size);
3030}
3031EXPORT_SYMBOL(netif_set_tso_max_size);
3032
3033/**
3034 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3035 * @dev: netdev to update
3036 * @segs: max number of TCP segments
3037 *
3038 * Set the limit on the number of TCP segments the device can generate from
3039 * a single TSO super-frame.
3040 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3041 */
3042void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3043{
3044 dev->tso_max_segs = segs;
3045 if (segs < READ_ONCE(dev->gso_max_segs))
3046 netif_set_gso_max_segs(dev, segs);
3047}
3048EXPORT_SYMBOL(netif_set_tso_max_segs);
3049
3050/**
3051 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3052 * @to: netdev to update
3053 * @from: netdev from which to copy the limits
3054 */
3055void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3056{
3057 netif_set_tso_max_size(to, from->tso_max_size);
3058 netif_set_tso_max_segs(to, from->tso_max_segs);
3059}
3060EXPORT_SYMBOL(netif_inherit_tso_max);
3061
3062/**
3063 * netif_get_num_default_rss_queues - default number of RSS queues
3064 *
3065 * Default value is the number of physical cores if there are only 1 or 2, or
3066 * divided by 2 if there are more.
3067 */
3068int netif_get_num_default_rss_queues(void)
3069{
3070 cpumask_var_t cpus;
3071 int cpu, count = 0;
3072
3073 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3074 return 1;
3075
3076 cpumask_copy(cpus, cpu_online_mask);
3077 for_each_cpu(cpu, cpus) {
3078 ++count;
3079 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3080 }
3081 free_cpumask_var(cpus);
3082
3083 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3084}
3085EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3086
3087static void __netif_reschedule(struct Qdisc *q)
3088{
3089 struct softnet_data *sd;
3090 unsigned long flags;
3091
3092 local_irq_save(flags);
3093 sd = this_cpu_ptr(&softnet_data);
3094 q->next_sched = NULL;
3095 *sd->output_queue_tailp = q;
3096 sd->output_queue_tailp = &q->next_sched;
3097 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 local_irq_restore(flags);
3099}
3100
3101void __netif_schedule(struct Qdisc *q)
3102{
3103 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3104 __netif_reschedule(q);
3105}
3106EXPORT_SYMBOL(__netif_schedule);
3107
3108struct dev_kfree_skb_cb {
3109 enum skb_drop_reason reason;
3110};
3111
3112static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3113{
3114 return (struct dev_kfree_skb_cb *)skb->cb;
3115}
3116
3117void netif_schedule_queue(struct netdev_queue *txq)
3118{
3119 rcu_read_lock();
3120 if (!netif_xmit_stopped(txq)) {
3121 struct Qdisc *q = rcu_dereference(txq->qdisc);
3122
3123 __netif_schedule(q);
3124 }
3125 rcu_read_unlock();
3126}
3127EXPORT_SYMBOL(netif_schedule_queue);
3128
3129void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3130{
3131 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3132 struct Qdisc *q;
3133
3134 rcu_read_lock();
3135 q = rcu_dereference(dev_queue->qdisc);
3136 __netif_schedule(q);
3137 rcu_read_unlock();
3138 }
3139}
3140EXPORT_SYMBOL(netif_tx_wake_queue);
3141
3142void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3143{
3144 unsigned long flags;
3145
3146 if (unlikely(!skb))
3147 return;
3148
3149 if (likely(refcount_read(&skb->users) == 1)) {
3150 smp_rmb();
3151 refcount_set(&skb->users, 0);
3152 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3153 return;
3154 }
3155 get_kfree_skb_cb(skb)->reason = reason;
3156 local_irq_save(flags);
3157 skb->next = __this_cpu_read(softnet_data.completion_queue);
3158 __this_cpu_write(softnet_data.completion_queue, skb);
3159 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3160 local_irq_restore(flags);
3161}
3162EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3163
3164void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3165{
3166 if (in_hardirq() || irqs_disabled())
3167 dev_kfree_skb_irq_reason(skb, reason);
3168 else
3169 kfree_skb_reason(skb, reason);
3170}
3171EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3172
3173
3174/**
3175 * netif_device_detach - mark device as removed
3176 * @dev: network device
3177 *
3178 * Mark device as removed from system and therefore no longer available.
3179 */
3180void netif_device_detach(struct net_device *dev)
3181{
3182 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3183 netif_running(dev)) {
3184 netif_tx_stop_all_queues(dev);
3185 }
3186}
3187EXPORT_SYMBOL(netif_device_detach);
3188
3189/**
3190 * netif_device_attach - mark device as attached
3191 * @dev: network device
3192 *
3193 * Mark device as attached from system and restart if needed.
3194 */
3195void netif_device_attach(struct net_device *dev)
3196{
3197 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3198 netif_running(dev)) {
3199 netif_tx_wake_all_queues(dev);
3200 __netdev_watchdog_up(dev);
3201 }
3202}
3203EXPORT_SYMBOL(netif_device_attach);
3204
3205/*
3206 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3207 * to be used as a distribution range.
3208 */
3209static u16 skb_tx_hash(const struct net_device *dev,
3210 const struct net_device *sb_dev,
3211 struct sk_buff *skb)
3212{
3213 u32 hash;
3214 u16 qoffset = 0;
3215 u16 qcount = dev->real_num_tx_queues;
3216
3217 if (dev->num_tc) {
3218 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3219
3220 qoffset = sb_dev->tc_to_txq[tc].offset;
3221 qcount = sb_dev->tc_to_txq[tc].count;
3222 if (unlikely(!qcount)) {
3223 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3224 sb_dev->name, qoffset, tc);
3225 qoffset = 0;
3226 qcount = dev->real_num_tx_queues;
3227 }
3228 }
3229
3230 if (skb_rx_queue_recorded(skb)) {
3231 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3232 hash = skb_get_rx_queue(skb);
3233 if (hash >= qoffset)
3234 hash -= qoffset;
3235 while (unlikely(hash >= qcount))
3236 hash -= qcount;
3237 return hash + qoffset;
3238 }
3239
3240 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3241}
3242
3243void skb_warn_bad_offload(const struct sk_buff *skb)
3244{
3245 static const netdev_features_t null_features;
3246 struct net_device *dev = skb->dev;
3247 const char *name = "";
3248
3249 if (!net_ratelimit())
3250 return;
3251
3252 if (dev) {
3253 if (dev->dev.parent)
3254 name = dev_driver_string(dev->dev.parent);
3255 else
3256 name = netdev_name(dev);
3257 }
3258 skb_dump(KERN_WARNING, skb, false);
3259 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3260 name, dev ? &dev->features : &null_features,
3261 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3262}
3263
3264/*
3265 * Invalidate hardware checksum when packet is to be mangled, and
3266 * complete checksum manually on outgoing path.
3267 */
3268int skb_checksum_help(struct sk_buff *skb)
3269{
3270 __wsum csum;
3271 int ret = 0, offset;
3272
3273 if (skb->ip_summed == CHECKSUM_COMPLETE)
3274 goto out_set_summed;
3275
3276 if (unlikely(skb_is_gso(skb))) {
3277 skb_warn_bad_offload(skb);
3278 return -EINVAL;
3279 }
3280
3281 /* Before computing a checksum, we should make sure no frag could
3282 * be modified by an external entity : checksum could be wrong.
3283 */
3284 if (skb_has_shared_frag(skb)) {
3285 ret = __skb_linearize(skb);
3286 if (ret)
3287 goto out;
3288 }
3289
3290 offset = skb_checksum_start_offset(skb);
3291 ret = -EINVAL;
3292 if (unlikely(offset >= skb_headlen(skb))) {
3293 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3294 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3295 offset, skb_headlen(skb));
3296 goto out;
3297 }
3298 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3299
3300 offset += skb->csum_offset;
3301 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3302 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3303 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3304 offset + sizeof(__sum16), skb_headlen(skb));
3305 goto out;
3306 }
3307 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3308 if (ret)
3309 goto out;
3310
3311 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3312out_set_summed:
3313 skb->ip_summed = CHECKSUM_NONE;
3314out:
3315 return ret;
3316}
3317EXPORT_SYMBOL(skb_checksum_help);
3318
3319int skb_crc32c_csum_help(struct sk_buff *skb)
3320{
3321 __le32 crc32c_csum;
3322 int ret = 0, offset, start;
3323
3324 if (skb->ip_summed != CHECKSUM_PARTIAL)
3325 goto out;
3326
3327 if (unlikely(skb_is_gso(skb)))
3328 goto out;
3329
3330 /* Before computing a checksum, we should make sure no frag could
3331 * be modified by an external entity : checksum could be wrong.
3332 */
3333 if (unlikely(skb_has_shared_frag(skb))) {
3334 ret = __skb_linearize(skb);
3335 if (ret)
3336 goto out;
3337 }
3338 start = skb_checksum_start_offset(skb);
3339 offset = start + offsetof(struct sctphdr, checksum);
3340 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3341 ret = -EINVAL;
3342 goto out;
3343 }
3344
3345 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3346 if (ret)
3347 goto out;
3348
3349 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3350 skb->len - start, ~(__u32)0,
3351 crc32c_csum_stub));
3352 *(__le32 *)(skb->data + offset) = crc32c_csum;
3353 skb_reset_csum_not_inet(skb);
3354out:
3355 return ret;
3356}
3357
3358__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3359{
3360 __be16 type = skb->protocol;
3361
3362 /* Tunnel gso handlers can set protocol to ethernet. */
3363 if (type == htons(ETH_P_TEB)) {
3364 struct ethhdr *eth;
3365
3366 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3367 return 0;
3368
3369 eth = (struct ethhdr *)skb->data;
3370 type = eth->h_proto;
3371 }
3372
3373 return vlan_get_protocol_and_depth(skb, type, depth);
3374}
3375
3376
3377/* Take action when hardware reception checksum errors are detected. */
3378#ifdef CONFIG_BUG
3379static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3380{
3381 netdev_err(dev, "hw csum failure\n");
3382 skb_dump(KERN_ERR, skb, true);
3383 dump_stack();
3384}
3385
3386void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3387{
3388 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3389}
3390EXPORT_SYMBOL(netdev_rx_csum_fault);
3391#endif
3392
3393/* XXX: check that highmem exists at all on the given machine. */
3394static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3395{
3396#ifdef CONFIG_HIGHMEM
3397 int i;
3398
3399 if (!(dev->features & NETIF_F_HIGHDMA)) {
3400 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3401 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3402
3403 if (PageHighMem(skb_frag_page(frag)))
3404 return 1;
3405 }
3406 }
3407#endif
3408 return 0;
3409}
3410
3411/* If MPLS offload request, verify we are testing hardware MPLS features
3412 * instead of standard features for the netdev.
3413 */
3414#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3415static netdev_features_t net_mpls_features(struct sk_buff *skb,
3416 netdev_features_t features,
3417 __be16 type)
3418{
3419 if (eth_p_mpls(type))
3420 features &= skb->dev->mpls_features;
3421
3422 return features;
3423}
3424#else
3425static netdev_features_t net_mpls_features(struct sk_buff *skb,
3426 netdev_features_t features,
3427 __be16 type)
3428{
3429 return features;
3430}
3431#endif
3432
3433static netdev_features_t harmonize_features(struct sk_buff *skb,
3434 netdev_features_t features)
3435{
3436 __be16 type;
3437
3438 type = skb_network_protocol(skb, NULL);
3439 features = net_mpls_features(skb, features, type);
3440
3441 if (skb->ip_summed != CHECKSUM_NONE &&
3442 !can_checksum_protocol(features, type)) {
3443 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3444 }
3445 if (illegal_highdma(skb->dev, skb))
3446 features &= ~NETIF_F_SG;
3447
3448 return features;
3449}
3450
3451netdev_features_t passthru_features_check(struct sk_buff *skb,
3452 struct net_device *dev,
3453 netdev_features_t features)
3454{
3455 return features;
3456}
3457EXPORT_SYMBOL(passthru_features_check);
3458
3459static netdev_features_t dflt_features_check(struct sk_buff *skb,
3460 struct net_device *dev,
3461 netdev_features_t features)
3462{
3463 return vlan_features_check(skb, features);
3464}
3465
3466static netdev_features_t gso_features_check(const struct sk_buff *skb,
3467 struct net_device *dev,
3468 netdev_features_t features)
3469{
3470 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3471
3472 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3473 return features & ~NETIF_F_GSO_MASK;
3474
3475 if (!skb_shinfo(skb)->gso_type) {
3476 skb_warn_bad_offload(skb);
3477 return features & ~NETIF_F_GSO_MASK;
3478 }
3479
3480 /* Support for GSO partial features requires software
3481 * intervention before we can actually process the packets
3482 * so we need to strip support for any partial features now
3483 * and we can pull them back in after we have partially
3484 * segmented the frame.
3485 */
3486 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3487 features &= ~dev->gso_partial_features;
3488
3489 /* Make sure to clear the IPv4 ID mangling feature if the
3490 * IPv4 header has the potential to be fragmented.
3491 */
3492 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3493 struct iphdr *iph = skb->encapsulation ?
3494 inner_ip_hdr(skb) : ip_hdr(skb);
3495
3496 if (!(iph->frag_off & htons(IP_DF)))
3497 features &= ~NETIF_F_TSO_MANGLEID;
3498 }
3499
3500 return features;
3501}
3502
3503netdev_features_t netif_skb_features(struct sk_buff *skb)
3504{
3505 struct net_device *dev = skb->dev;
3506 netdev_features_t features = dev->features;
3507
3508 if (skb_is_gso(skb))
3509 features = gso_features_check(skb, dev, features);
3510
3511 /* If encapsulation offload request, verify we are testing
3512 * hardware encapsulation features instead of standard
3513 * features for the netdev
3514 */
3515 if (skb->encapsulation)
3516 features &= dev->hw_enc_features;
3517
3518 if (skb_vlan_tagged(skb))
3519 features = netdev_intersect_features(features,
3520 dev->vlan_features |
3521 NETIF_F_HW_VLAN_CTAG_TX |
3522 NETIF_F_HW_VLAN_STAG_TX);
3523
3524 if (dev->netdev_ops->ndo_features_check)
3525 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3526 features);
3527 else
3528 features &= dflt_features_check(skb, dev, features);
3529
3530 return harmonize_features(skb, features);
3531}
3532EXPORT_SYMBOL(netif_skb_features);
3533
3534static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3535 struct netdev_queue *txq, bool more)
3536{
3537 unsigned int len;
3538 int rc;
3539
3540 if (dev_nit_active(dev))
3541 dev_queue_xmit_nit(skb, dev);
3542
3543 len = skb->len;
3544 trace_net_dev_start_xmit(skb, dev);
3545 rc = netdev_start_xmit(skb, dev, txq, more);
3546 trace_net_dev_xmit(skb, rc, dev, len);
3547
3548 return rc;
3549}
3550
3551struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3552 struct netdev_queue *txq, int *ret)
3553{
3554 struct sk_buff *skb = first;
3555 int rc = NETDEV_TX_OK;
3556
3557 while (skb) {
3558 struct sk_buff *next = skb->next;
3559
3560 skb_mark_not_on_list(skb);
3561 rc = xmit_one(skb, dev, txq, next != NULL);
3562 if (unlikely(!dev_xmit_complete(rc))) {
3563 skb->next = next;
3564 goto out;
3565 }
3566
3567 skb = next;
3568 if (netif_tx_queue_stopped(txq) && skb) {
3569 rc = NETDEV_TX_BUSY;
3570 break;
3571 }
3572 }
3573
3574out:
3575 *ret = rc;
3576 return skb;
3577}
3578
3579static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3580 netdev_features_t features)
3581{
3582 if (skb_vlan_tag_present(skb) &&
3583 !vlan_hw_offload_capable(features, skb->vlan_proto))
3584 skb = __vlan_hwaccel_push_inside(skb);
3585 return skb;
3586}
3587
3588int skb_csum_hwoffload_help(struct sk_buff *skb,
3589 const netdev_features_t features)
3590{
3591 if (unlikely(skb_csum_is_sctp(skb)))
3592 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3593 skb_crc32c_csum_help(skb);
3594
3595 if (features & NETIF_F_HW_CSUM)
3596 return 0;
3597
3598 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3599 switch (skb->csum_offset) {
3600 case offsetof(struct tcphdr, check):
3601 case offsetof(struct udphdr, check):
3602 return 0;
3603 }
3604 }
3605
3606 return skb_checksum_help(skb);
3607}
3608EXPORT_SYMBOL(skb_csum_hwoffload_help);
3609
3610static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3611{
3612 netdev_features_t features;
3613
3614 features = netif_skb_features(skb);
3615 skb = validate_xmit_vlan(skb, features);
3616 if (unlikely(!skb))
3617 goto out_null;
3618
3619 skb = sk_validate_xmit_skb(skb, dev);
3620 if (unlikely(!skb))
3621 goto out_null;
3622
3623 if (netif_needs_gso(skb, features)) {
3624 struct sk_buff *segs;
3625
3626 segs = skb_gso_segment(skb, features);
3627 if (IS_ERR(segs)) {
3628 goto out_kfree_skb;
3629 } else if (segs) {
3630 consume_skb(skb);
3631 skb = segs;
3632 }
3633 } else {
3634 if (skb_needs_linearize(skb, features) &&
3635 __skb_linearize(skb))
3636 goto out_kfree_skb;
3637
3638 /* If packet is not checksummed and device does not
3639 * support checksumming for this protocol, complete
3640 * checksumming here.
3641 */
3642 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3643 if (skb->encapsulation)
3644 skb_set_inner_transport_header(skb,
3645 skb_checksum_start_offset(skb));
3646 else
3647 skb_set_transport_header(skb,
3648 skb_checksum_start_offset(skb));
3649 if (skb_csum_hwoffload_help(skb, features))
3650 goto out_kfree_skb;
3651 }
3652 }
3653
3654 skb = validate_xmit_xfrm(skb, features, again);
3655
3656 return skb;
3657
3658out_kfree_skb:
3659 kfree_skb(skb);
3660out_null:
3661 dev_core_stats_tx_dropped_inc(dev);
3662 return NULL;
3663}
3664
3665struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3666{
3667 struct sk_buff *next, *head = NULL, *tail;
3668
3669 for (; skb != NULL; skb = next) {
3670 next = skb->next;
3671 skb_mark_not_on_list(skb);
3672
3673 /* in case skb wont be segmented, point to itself */
3674 skb->prev = skb;
3675
3676 skb = validate_xmit_skb(skb, dev, again);
3677 if (!skb)
3678 continue;
3679
3680 if (!head)
3681 head = skb;
3682 else
3683 tail->next = skb;
3684 /* If skb was segmented, skb->prev points to
3685 * the last segment. If not, it still contains skb.
3686 */
3687 tail = skb->prev;
3688 }
3689 return head;
3690}
3691EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3692
3693static void qdisc_pkt_len_init(struct sk_buff *skb)
3694{
3695 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3696
3697 qdisc_skb_cb(skb)->pkt_len = skb->len;
3698
3699 /* To get more precise estimation of bytes sent on wire,
3700 * we add to pkt_len the headers size of all segments
3701 */
3702 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3703 u16 gso_segs = shinfo->gso_segs;
3704 unsigned int hdr_len;
3705
3706 /* mac layer + network layer */
3707 hdr_len = skb_transport_offset(skb);
3708
3709 /* + transport layer */
3710 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3711 const struct tcphdr *th;
3712 struct tcphdr _tcphdr;
3713
3714 th = skb_header_pointer(skb, hdr_len,
3715 sizeof(_tcphdr), &_tcphdr);
3716 if (likely(th))
3717 hdr_len += __tcp_hdrlen(th);
3718 } else {
3719 struct udphdr _udphdr;
3720
3721 if (skb_header_pointer(skb, hdr_len,
3722 sizeof(_udphdr), &_udphdr))
3723 hdr_len += sizeof(struct udphdr);
3724 }
3725
3726 if (shinfo->gso_type & SKB_GSO_DODGY)
3727 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3728 shinfo->gso_size);
3729
3730 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3731 }
3732}
3733
3734static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3735 struct sk_buff **to_free,
3736 struct netdev_queue *txq)
3737{
3738 int rc;
3739
3740 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3741 if (rc == NET_XMIT_SUCCESS)
3742 trace_qdisc_enqueue(q, txq, skb);
3743 return rc;
3744}
3745
3746static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3747 struct net_device *dev,
3748 struct netdev_queue *txq)
3749{
3750 spinlock_t *root_lock = qdisc_lock(q);
3751 struct sk_buff *to_free = NULL;
3752 bool contended;
3753 int rc;
3754
3755 qdisc_calculate_pkt_len(skb, q);
3756
3757 if (q->flags & TCQ_F_NOLOCK) {
3758 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3759 qdisc_run_begin(q)) {
3760 /* Retest nolock_qdisc_is_empty() within the protection
3761 * of q->seqlock to protect from racing with requeuing.
3762 */
3763 if (unlikely(!nolock_qdisc_is_empty(q))) {
3764 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3765 __qdisc_run(q);
3766 qdisc_run_end(q);
3767
3768 goto no_lock_out;
3769 }
3770
3771 qdisc_bstats_cpu_update(q, skb);
3772 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3773 !nolock_qdisc_is_empty(q))
3774 __qdisc_run(q);
3775
3776 qdisc_run_end(q);
3777 return NET_XMIT_SUCCESS;
3778 }
3779
3780 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3781 qdisc_run(q);
3782
3783no_lock_out:
3784 if (unlikely(to_free))
3785 kfree_skb_list_reason(to_free,
3786 SKB_DROP_REASON_QDISC_DROP);
3787 return rc;
3788 }
3789
3790 /*
3791 * Heuristic to force contended enqueues to serialize on a
3792 * separate lock before trying to get qdisc main lock.
3793 * This permits qdisc->running owner to get the lock more
3794 * often and dequeue packets faster.
3795 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3796 * and then other tasks will only enqueue packets. The packets will be
3797 * sent after the qdisc owner is scheduled again. To prevent this
3798 * scenario the task always serialize on the lock.
3799 */
3800 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3801 if (unlikely(contended))
3802 spin_lock(&q->busylock);
3803
3804 spin_lock(root_lock);
3805 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3806 __qdisc_drop(skb, &to_free);
3807 rc = NET_XMIT_DROP;
3808 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3809 qdisc_run_begin(q)) {
3810 /*
3811 * This is a work-conserving queue; there are no old skbs
3812 * waiting to be sent out; and the qdisc is not running -
3813 * xmit the skb directly.
3814 */
3815
3816 qdisc_bstats_update(q, skb);
3817
3818 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3819 if (unlikely(contended)) {
3820 spin_unlock(&q->busylock);
3821 contended = false;
3822 }
3823 __qdisc_run(q);
3824 }
3825
3826 qdisc_run_end(q);
3827 rc = NET_XMIT_SUCCESS;
3828 } else {
3829 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3830 if (qdisc_run_begin(q)) {
3831 if (unlikely(contended)) {
3832 spin_unlock(&q->busylock);
3833 contended = false;
3834 }
3835 __qdisc_run(q);
3836 qdisc_run_end(q);
3837 }
3838 }
3839 spin_unlock(root_lock);
3840 if (unlikely(to_free))
3841 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3842 if (unlikely(contended))
3843 spin_unlock(&q->busylock);
3844 return rc;
3845}
3846
3847#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3848static void skb_update_prio(struct sk_buff *skb)
3849{
3850 const struct netprio_map *map;
3851 const struct sock *sk;
3852 unsigned int prioidx;
3853
3854 if (skb->priority)
3855 return;
3856 map = rcu_dereference_bh(skb->dev->priomap);
3857 if (!map)
3858 return;
3859 sk = skb_to_full_sk(skb);
3860 if (!sk)
3861 return;
3862
3863 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3864
3865 if (prioidx < map->priomap_len)
3866 skb->priority = map->priomap[prioidx];
3867}
3868#else
3869#define skb_update_prio(skb)
3870#endif
3871
3872/**
3873 * dev_loopback_xmit - loop back @skb
3874 * @net: network namespace this loopback is happening in
3875 * @sk: sk needed to be a netfilter okfn
3876 * @skb: buffer to transmit
3877 */
3878int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3879{
3880 skb_reset_mac_header(skb);
3881 __skb_pull(skb, skb_network_offset(skb));
3882 skb->pkt_type = PACKET_LOOPBACK;
3883 if (skb->ip_summed == CHECKSUM_NONE)
3884 skb->ip_summed = CHECKSUM_UNNECESSARY;
3885 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3886 skb_dst_force(skb);
3887 netif_rx(skb);
3888 return 0;
3889}
3890EXPORT_SYMBOL(dev_loopback_xmit);
3891
3892#ifdef CONFIG_NET_EGRESS
3893static struct netdev_queue *
3894netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3895{
3896 int qm = skb_get_queue_mapping(skb);
3897
3898 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3899}
3900
3901static bool netdev_xmit_txqueue_skipped(void)
3902{
3903 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3904}
3905
3906void netdev_xmit_skip_txqueue(bool skip)
3907{
3908 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3909}
3910EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3911#endif /* CONFIG_NET_EGRESS */
3912
3913#ifdef CONFIG_NET_XGRESS
3914static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3915 enum skb_drop_reason *drop_reason)
3916{
3917 int ret = TC_ACT_UNSPEC;
3918#ifdef CONFIG_NET_CLS_ACT
3919 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3920 struct tcf_result res;
3921
3922 if (!miniq)
3923 return ret;
3924
3925 tc_skb_cb(skb)->mru = 0;
3926 tc_skb_cb(skb)->post_ct = false;
3927 res.drop_reason = *drop_reason;
3928
3929 mini_qdisc_bstats_cpu_update(miniq, skb);
3930 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3931 /* Only tcf related quirks below. */
3932 switch (ret) {
3933 case TC_ACT_SHOT:
3934 *drop_reason = res.drop_reason;
3935 mini_qdisc_qstats_cpu_drop(miniq);
3936 break;
3937 case TC_ACT_OK:
3938 case TC_ACT_RECLASSIFY:
3939 skb->tc_index = TC_H_MIN(res.classid);
3940 break;
3941 }
3942#endif /* CONFIG_NET_CLS_ACT */
3943 return ret;
3944}
3945
3946static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3947
3948void tcx_inc(void)
3949{
3950 static_branch_inc(&tcx_needed_key);
3951}
3952
3953void tcx_dec(void)
3954{
3955 static_branch_dec(&tcx_needed_key);
3956}
3957
3958static __always_inline enum tcx_action_base
3959tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3960 const bool needs_mac)
3961{
3962 const struct bpf_mprog_fp *fp;
3963 const struct bpf_prog *prog;
3964 int ret = TCX_NEXT;
3965
3966 if (needs_mac)
3967 __skb_push(skb, skb->mac_len);
3968 bpf_mprog_foreach_prog(entry, fp, prog) {
3969 bpf_compute_data_pointers(skb);
3970 ret = bpf_prog_run(prog, skb);
3971 if (ret != TCX_NEXT)
3972 break;
3973 }
3974 if (needs_mac)
3975 __skb_pull(skb, skb->mac_len);
3976 return tcx_action_code(skb, ret);
3977}
3978
3979static __always_inline struct sk_buff *
3980sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3981 struct net_device *orig_dev, bool *another)
3982{
3983 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3984 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3985 int sch_ret;
3986
3987 if (!entry)
3988 return skb;
3989 if (*pt_prev) {
3990 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3991 *pt_prev = NULL;
3992 }
3993
3994 qdisc_skb_cb(skb)->pkt_len = skb->len;
3995 tcx_set_ingress(skb, true);
3996
3997 if (static_branch_unlikely(&tcx_needed_key)) {
3998 sch_ret = tcx_run(entry, skb, true);
3999 if (sch_ret != TC_ACT_UNSPEC)
4000 goto ingress_verdict;
4001 }
4002 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4003ingress_verdict:
4004 switch (sch_ret) {
4005 case TC_ACT_REDIRECT:
4006 /* skb_mac_header check was done by BPF, so we can safely
4007 * push the L2 header back before redirecting to another
4008 * netdev.
4009 */
4010 __skb_push(skb, skb->mac_len);
4011 if (skb_do_redirect(skb) == -EAGAIN) {
4012 __skb_pull(skb, skb->mac_len);
4013 *another = true;
4014 break;
4015 }
4016 *ret = NET_RX_SUCCESS;
4017 return NULL;
4018 case TC_ACT_SHOT:
4019 kfree_skb_reason(skb, drop_reason);
4020 *ret = NET_RX_DROP;
4021 return NULL;
4022 /* used by tc_run */
4023 case TC_ACT_STOLEN:
4024 case TC_ACT_QUEUED:
4025 case TC_ACT_TRAP:
4026 consume_skb(skb);
4027 fallthrough;
4028 case TC_ACT_CONSUMED:
4029 *ret = NET_RX_SUCCESS;
4030 return NULL;
4031 }
4032
4033 return skb;
4034}
4035
4036static __always_inline struct sk_buff *
4037sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4038{
4039 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4040 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4041 int sch_ret;
4042
4043 if (!entry)
4044 return skb;
4045
4046 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4047 * already set by the caller.
4048 */
4049 if (static_branch_unlikely(&tcx_needed_key)) {
4050 sch_ret = tcx_run(entry, skb, false);
4051 if (sch_ret != TC_ACT_UNSPEC)
4052 goto egress_verdict;
4053 }
4054 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4055egress_verdict:
4056 switch (sch_ret) {
4057 case TC_ACT_REDIRECT:
4058 /* No need to push/pop skb's mac_header here on egress! */
4059 skb_do_redirect(skb);
4060 *ret = NET_XMIT_SUCCESS;
4061 return NULL;
4062 case TC_ACT_SHOT:
4063 kfree_skb_reason(skb, drop_reason);
4064 *ret = NET_XMIT_DROP;
4065 return NULL;
4066 /* used by tc_run */
4067 case TC_ACT_STOLEN:
4068 case TC_ACT_QUEUED:
4069 case TC_ACT_TRAP:
4070 consume_skb(skb);
4071 fallthrough;
4072 case TC_ACT_CONSUMED:
4073 *ret = NET_XMIT_SUCCESS;
4074 return NULL;
4075 }
4076
4077 return skb;
4078}
4079#else
4080static __always_inline struct sk_buff *
4081sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4082 struct net_device *orig_dev, bool *another)
4083{
4084 return skb;
4085}
4086
4087static __always_inline struct sk_buff *
4088sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4089{
4090 return skb;
4091}
4092#endif /* CONFIG_NET_XGRESS */
4093
4094#ifdef CONFIG_XPS
4095static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4096 struct xps_dev_maps *dev_maps, unsigned int tci)
4097{
4098 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4099 struct xps_map *map;
4100 int queue_index = -1;
4101
4102 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4103 return queue_index;
4104
4105 tci *= dev_maps->num_tc;
4106 tci += tc;
4107
4108 map = rcu_dereference(dev_maps->attr_map[tci]);
4109 if (map) {
4110 if (map->len == 1)
4111 queue_index = map->queues[0];
4112 else
4113 queue_index = map->queues[reciprocal_scale(
4114 skb_get_hash(skb), map->len)];
4115 if (unlikely(queue_index >= dev->real_num_tx_queues))
4116 queue_index = -1;
4117 }
4118 return queue_index;
4119}
4120#endif
4121
4122static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4123 struct sk_buff *skb)
4124{
4125#ifdef CONFIG_XPS
4126 struct xps_dev_maps *dev_maps;
4127 struct sock *sk = skb->sk;
4128 int queue_index = -1;
4129
4130 if (!static_key_false(&xps_needed))
4131 return -1;
4132
4133 rcu_read_lock();
4134 if (!static_key_false(&xps_rxqs_needed))
4135 goto get_cpus_map;
4136
4137 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4138 if (dev_maps) {
4139 int tci = sk_rx_queue_get(sk);
4140
4141 if (tci >= 0)
4142 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4143 tci);
4144 }
4145
4146get_cpus_map:
4147 if (queue_index < 0) {
4148 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4149 if (dev_maps) {
4150 unsigned int tci = skb->sender_cpu - 1;
4151
4152 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4153 tci);
4154 }
4155 }
4156 rcu_read_unlock();
4157
4158 return queue_index;
4159#else
4160 return -1;
4161#endif
4162}
4163
4164u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4165 struct net_device *sb_dev)
4166{
4167 return 0;
4168}
4169EXPORT_SYMBOL(dev_pick_tx_zero);
4170
4171u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4172 struct net_device *sb_dev)
4173{
4174 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4175}
4176EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4177
4178u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4179 struct net_device *sb_dev)
4180{
4181 struct sock *sk = skb->sk;
4182 int queue_index = sk_tx_queue_get(sk);
4183
4184 sb_dev = sb_dev ? : dev;
4185
4186 if (queue_index < 0 || skb->ooo_okay ||
4187 queue_index >= dev->real_num_tx_queues) {
4188 int new_index = get_xps_queue(dev, sb_dev, skb);
4189
4190 if (new_index < 0)
4191 new_index = skb_tx_hash(dev, sb_dev, skb);
4192
4193 if (queue_index != new_index && sk &&
4194 sk_fullsock(sk) &&
4195 rcu_access_pointer(sk->sk_dst_cache))
4196 sk_tx_queue_set(sk, new_index);
4197
4198 queue_index = new_index;
4199 }
4200
4201 return queue_index;
4202}
4203EXPORT_SYMBOL(netdev_pick_tx);
4204
4205struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4206 struct sk_buff *skb,
4207 struct net_device *sb_dev)
4208{
4209 int queue_index = 0;
4210
4211#ifdef CONFIG_XPS
4212 u32 sender_cpu = skb->sender_cpu - 1;
4213
4214 if (sender_cpu >= (u32)NR_CPUS)
4215 skb->sender_cpu = raw_smp_processor_id() + 1;
4216#endif
4217
4218 if (dev->real_num_tx_queues != 1) {
4219 const struct net_device_ops *ops = dev->netdev_ops;
4220
4221 if (ops->ndo_select_queue)
4222 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4223 else
4224 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4225
4226 queue_index = netdev_cap_txqueue(dev, queue_index);
4227 }
4228
4229 skb_set_queue_mapping(skb, queue_index);
4230 return netdev_get_tx_queue(dev, queue_index);
4231}
4232
4233/**
4234 * __dev_queue_xmit() - transmit a buffer
4235 * @skb: buffer to transmit
4236 * @sb_dev: suboordinate device used for L2 forwarding offload
4237 *
4238 * Queue a buffer for transmission to a network device. The caller must
4239 * have set the device and priority and built the buffer before calling
4240 * this function. The function can be called from an interrupt.
4241 *
4242 * When calling this method, interrupts MUST be enabled. This is because
4243 * the BH enable code must have IRQs enabled so that it will not deadlock.
4244 *
4245 * Regardless of the return value, the skb is consumed, so it is currently
4246 * difficult to retry a send to this method. (You can bump the ref count
4247 * before sending to hold a reference for retry if you are careful.)
4248 *
4249 * Return:
4250 * * 0 - buffer successfully transmitted
4251 * * positive qdisc return code - NET_XMIT_DROP etc.
4252 * * negative errno - other errors
4253 */
4254int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4255{
4256 struct net_device *dev = skb->dev;
4257 struct netdev_queue *txq = NULL;
4258 struct Qdisc *q;
4259 int rc = -ENOMEM;
4260 bool again = false;
4261
4262 skb_reset_mac_header(skb);
4263 skb_assert_len(skb);
4264
4265 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4266 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4267
4268 /* Disable soft irqs for various locks below. Also
4269 * stops preemption for RCU.
4270 */
4271 rcu_read_lock_bh();
4272
4273 skb_update_prio(skb);
4274
4275 qdisc_pkt_len_init(skb);
4276 tcx_set_ingress(skb, false);
4277#ifdef CONFIG_NET_EGRESS
4278 if (static_branch_unlikely(&egress_needed_key)) {
4279 if (nf_hook_egress_active()) {
4280 skb = nf_hook_egress(skb, &rc, dev);
4281 if (!skb)
4282 goto out;
4283 }
4284
4285 netdev_xmit_skip_txqueue(false);
4286
4287 nf_skip_egress(skb, true);
4288 skb = sch_handle_egress(skb, &rc, dev);
4289 if (!skb)
4290 goto out;
4291 nf_skip_egress(skb, false);
4292
4293 if (netdev_xmit_txqueue_skipped())
4294 txq = netdev_tx_queue_mapping(dev, skb);
4295 }
4296#endif
4297 /* If device/qdisc don't need skb->dst, release it right now while
4298 * its hot in this cpu cache.
4299 */
4300 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4301 skb_dst_drop(skb);
4302 else
4303 skb_dst_force(skb);
4304
4305 if (!txq)
4306 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4307
4308 q = rcu_dereference_bh(txq->qdisc);
4309
4310 trace_net_dev_queue(skb);
4311 if (q->enqueue) {
4312 rc = __dev_xmit_skb(skb, q, dev, txq);
4313 goto out;
4314 }
4315
4316 /* The device has no queue. Common case for software devices:
4317 * loopback, all the sorts of tunnels...
4318
4319 * Really, it is unlikely that netif_tx_lock protection is necessary
4320 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4321 * counters.)
4322 * However, it is possible, that they rely on protection
4323 * made by us here.
4324
4325 * Check this and shot the lock. It is not prone from deadlocks.
4326 *Either shot noqueue qdisc, it is even simpler 8)
4327 */
4328 if (dev->flags & IFF_UP) {
4329 int cpu = smp_processor_id(); /* ok because BHs are off */
4330
4331 /* Other cpus might concurrently change txq->xmit_lock_owner
4332 * to -1 or to their cpu id, but not to our id.
4333 */
4334 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4335 if (dev_xmit_recursion())
4336 goto recursion_alert;
4337
4338 skb = validate_xmit_skb(skb, dev, &again);
4339 if (!skb)
4340 goto out;
4341
4342 HARD_TX_LOCK(dev, txq, cpu);
4343
4344 if (!netif_xmit_stopped(txq)) {
4345 dev_xmit_recursion_inc();
4346 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4347 dev_xmit_recursion_dec();
4348 if (dev_xmit_complete(rc)) {
4349 HARD_TX_UNLOCK(dev, txq);
4350 goto out;
4351 }
4352 }
4353 HARD_TX_UNLOCK(dev, txq);
4354 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4355 dev->name);
4356 } else {
4357 /* Recursion is detected! It is possible,
4358 * unfortunately
4359 */
4360recursion_alert:
4361 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4362 dev->name);
4363 }
4364 }
4365
4366 rc = -ENETDOWN;
4367 rcu_read_unlock_bh();
4368
4369 dev_core_stats_tx_dropped_inc(dev);
4370 kfree_skb_list(skb);
4371 return rc;
4372out:
4373 rcu_read_unlock_bh();
4374 return rc;
4375}
4376EXPORT_SYMBOL(__dev_queue_xmit);
4377
4378int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4379{
4380 struct net_device *dev = skb->dev;
4381 struct sk_buff *orig_skb = skb;
4382 struct netdev_queue *txq;
4383 int ret = NETDEV_TX_BUSY;
4384 bool again = false;
4385
4386 if (unlikely(!netif_running(dev) ||
4387 !netif_carrier_ok(dev)))
4388 goto drop;
4389
4390 skb = validate_xmit_skb_list(skb, dev, &again);
4391 if (skb != orig_skb)
4392 goto drop;
4393
4394 skb_set_queue_mapping(skb, queue_id);
4395 txq = skb_get_tx_queue(dev, skb);
4396
4397 local_bh_disable();
4398
4399 dev_xmit_recursion_inc();
4400 HARD_TX_LOCK(dev, txq, smp_processor_id());
4401 if (!netif_xmit_frozen_or_drv_stopped(txq))
4402 ret = netdev_start_xmit(skb, dev, txq, false);
4403 HARD_TX_UNLOCK(dev, txq);
4404 dev_xmit_recursion_dec();
4405
4406 local_bh_enable();
4407 return ret;
4408drop:
4409 dev_core_stats_tx_dropped_inc(dev);
4410 kfree_skb_list(skb);
4411 return NET_XMIT_DROP;
4412}
4413EXPORT_SYMBOL(__dev_direct_xmit);
4414
4415/*************************************************************************
4416 * Receiver routines
4417 *************************************************************************/
4418
4419int netdev_max_backlog __read_mostly = 1000;
4420EXPORT_SYMBOL(netdev_max_backlog);
4421
4422int netdev_tstamp_prequeue __read_mostly = 1;
4423unsigned int sysctl_skb_defer_max __read_mostly = 64;
4424int netdev_budget __read_mostly = 300;
4425/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4426unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4427int weight_p __read_mostly = 64; /* old backlog weight */
4428int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4429int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4430int dev_rx_weight __read_mostly = 64;
4431int dev_tx_weight __read_mostly = 64;
4432
4433/* Called with irq disabled */
4434static inline void ____napi_schedule(struct softnet_data *sd,
4435 struct napi_struct *napi)
4436{
4437 struct task_struct *thread;
4438
4439 lockdep_assert_irqs_disabled();
4440
4441 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4442 /* Paired with smp_mb__before_atomic() in
4443 * napi_enable()/dev_set_threaded().
4444 * Use READ_ONCE() to guarantee a complete
4445 * read on napi->thread. Only call
4446 * wake_up_process() when it's not NULL.
4447 */
4448 thread = READ_ONCE(napi->thread);
4449 if (thread) {
4450 /* Avoid doing set_bit() if the thread is in
4451 * INTERRUPTIBLE state, cause napi_thread_wait()
4452 * makes sure to proceed with napi polling
4453 * if the thread is explicitly woken from here.
4454 */
4455 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4456 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4457 wake_up_process(thread);
4458 return;
4459 }
4460 }
4461
4462 list_add_tail(&napi->poll_list, &sd->poll_list);
4463 WRITE_ONCE(napi->list_owner, smp_processor_id());
4464 /* If not called from net_rx_action()
4465 * we have to raise NET_RX_SOFTIRQ.
4466 */
4467 if (!sd->in_net_rx_action)
4468 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4469}
4470
4471#ifdef CONFIG_RPS
4472
4473/* One global table that all flow-based protocols share. */
4474struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4475EXPORT_SYMBOL(rps_sock_flow_table);
4476u32 rps_cpu_mask __read_mostly;
4477EXPORT_SYMBOL(rps_cpu_mask);
4478
4479struct static_key_false rps_needed __read_mostly;
4480EXPORT_SYMBOL(rps_needed);
4481struct static_key_false rfs_needed __read_mostly;
4482EXPORT_SYMBOL(rfs_needed);
4483
4484static struct rps_dev_flow *
4485set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4486 struct rps_dev_flow *rflow, u16 next_cpu)
4487{
4488 if (next_cpu < nr_cpu_ids) {
4489#ifdef CONFIG_RFS_ACCEL
4490 struct netdev_rx_queue *rxqueue;
4491 struct rps_dev_flow_table *flow_table;
4492 struct rps_dev_flow *old_rflow;
4493 u32 flow_id;
4494 u16 rxq_index;
4495 int rc;
4496
4497 /* Should we steer this flow to a different hardware queue? */
4498 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4499 !(dev->features & NETIF_F_NTUPLE))
4500 goto out;
4501 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4502 if (rxq_index == skb_get_rx_queue(skb))
4503 goto out;
4504
4505 rxqueue = dev->_rx + rxq_index;
4506 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4507 if (!flow_table)
4508 goto out;
4509 flow_id = skb_get_hash(skb) & flow_table->mask;
4510 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4511 rxq_index, flow_id);
4512 if (rc < 0)
4513 goto out;
4514 old_rflow = rflow;
4515 rflow = &flow_table->flows[flow_id];
4516 rflow->filter = rc;
4517 if (old_rflow->filter == rflow->filter)
4518 old_rflow->filter = RPS_NO_FILTER;
4519 out:
4520#endif
4521 rflow->last_qtail =
4522 per_cpu(softnet_data, next_cpu).input_queue_head;
4523 }
4524
4525 rflow->cpu = next_cpu;
4526 return rflow;
4527}
4528
4529/*
4530 * get_rps_cpu is called from netif_receive_skb and returns the target
4531 * CPU from the RPS map of the receiving queue for a given skb.
4532 * rcu_read_lock must be held on entry.
4533 */
4534static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4535 struct rps_dev_flow **rflowp)
4536{
4537 const struct rps_sock_flow_table *sock_flow_table;
4538 struct netdev_rx_queue *rxqueue = dev->_rx;
4539 struct rps_dev_flow_table *flow_table;
4540 struct rps_map *map;
4541 int cpu = -1;
4542 u32 tcpu;
4543 u32 hash;
4544
4545 if (skb_rx_queue_recorded(skb)) {
4546 u16 index = skb_get_rx_queue(skb);
4547
4548 if (unlikely(index >= dev->real_num_rx_queues)) {
4549 WARN_ONCE(dev->real_num_rx_queues > 1,
4550 "%s received packet on queue %u, but number "
4551 "of RX queues is %u\n",
4552 dev->name, index, dev->real_num_rx_queues);
4553 goto done;
4554 }
4555 rxqueue += index;
4556 }
4557
4558 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4559
4560 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4561 map = rcu_dereference(rxqueue->rps_map);
4562 if (!flow_table && !map)
4563 goto done;
4564
4565 skb_reset_network_header(skb);
4566 hash = skb_get_hash(skb);
4567 if (!hash)
4568 goto done;
4569
4570 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4571 if (flow_table && sock_flow_table) {
4572 struct rps_dev_flow *rflow;
4573 u32 next_cpu;
4574 u32 ident;
4575
4576 /* First check into global flow table if there is a match.
4577 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4578 */
4579 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4580 if ((ident ^ hash) & ~rps_cpu_mask)
4581 goto try_rps;
4582
4583 next_cpu = ident & rps_cpu_mask;
4584
4585 /* OK, now we know there is a match,
4586 * we can look at the local (per receive queue) flow table
4587 */
4588 rflow = &flow_table->flows[hash & flow_table->mask];
4589 tcpu = rflow->cpu;
4590
4591 /*
4592 * If the desired CPU (where last recvmsg was done) is
4593 * different from current CPU (one in the rx-queue flow
4594 * table entry), switch if one of the following holds:
4595 * - Current CPU is unset (>= nr_cpu_ids).
4596 * - Current CPU is offline.
4597 * - The current CPU's queue tail has advanced beyond the
4598 * last packet that was enqueued using this table entry.
4599 * This guarantees that all previous packets for the flow
4600 * have been dequeued, thus preserving in order delivery.
4601 */
4602 if (unlikely(tcpu != next_cpu) &&
4603 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4604 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4605 rflow->last_qtail)) >= 0)) {
4606 tcpu = next_cpu;
4607 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4608 }
4609
4610 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4611 *rflowp = rflow;
4612 cpu = tcpu;
4613 goto done;
4614 }
4615 }
4616
4617try_rps:
4618
4619 if (map) {
4620 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4621 if (cpu_online(tcpu)) {
4622 cpu = tcpu;
4623 goto done;
4624 }
4625 }
4626
4627done:
4628 return cpu;
4629}
4630
4631#ifdef CONFIG_RFS_ACCEL
4632
4633/**
4634 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4635 * @dev: Device on which the filter was set
4636 * @rxq_index: RX queue index
4637 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4638 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4639 *
4640 * Drivers that implement ndo_rx_flow_steer() should periodically call
4641 * this function for each installed filter and remove the filters for
4642 * which it returns %true.
4643 */
4644bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4645 u32 flow_id, u16 filter_id)
4646{
4647 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4648 struct rps_dev_flow_table *flow_table;
4649 struct rps_dev_flow *rflow;
4650 bool expire = true;
4651 unsigned int cpu;
4652
4653 rcu_read_lock();
4654 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4655 if (flow_table && flow_id <= flow_table->mask) {
4656 rflow = &flow_table->flows[flow_id];
4657 cpu = READ_ONCE(rflow->cpu);
4658 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4659 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4660 rflow->last_qtail) <
4661 (int)(10 * flow_table->mask)))
4662 expire = false;
4663 }
4664 rcu_read_unlock();
4665 return expire;
4666}
4667EXPORT_SYMBOL(rps_may_expire_flow);
4668
4669#endif /* CONFIG_RFS_ACCEL */
4670
4671/* Called from hardirq (IPI) context */
4672static void rps_trigger_softirq(void *data)
4673{
4674 struct softnet_data *sd = data;
4675
4676 ____napi_schedule(sd, &sd->backlog);
4677 sd->received_rps++;
4678}
4679
4680#endif /* CONFIG_RPS */
4681
4682/* Called from hardirq (IPI) context */
4683static void trigger_rx_softirq(void *data)
4684{
4685 struct softnet_data *sd = data;
4686
4687 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4688 smp_store_release(&sd->defer_ipi_scheduled, 0);
4689}
4690
4691/*
4692 * After we queued a packet into sd->input_pkt_queue,
4693 * we need to make sure this queue is serviced soon.
4694 *
4695 * - If this is another cpu queue, link it to our rps_ipi_list,
4696 * and make sure we will process rps_ipi_list from net_rx_action().
4697 *
4698 * - If this is our own queue, NAPI schedule our backlog.
4699 * Note that this also raises NET_RX_SOFTIRQ.
4700 */
4701static void napi_schedule_rps(struct softnet_data *sd)
4702{
4703 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4704
4705#ifdef CONFIG_RPS
4706 if (sd != mysd) {
4707 sd->rps_ipi_next = mysd->rps_ipi_list;
4708 mysd->rps_ipi_list = sd;
4709
4710 /* If not called from net_rx_action() or napi_threaded_poll()
4711 * we have to raise NET_RX_SOFTIRQ.
4712 */
4713 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4714 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4715 return;
4716 }
4717#endif /* CONFIG_RPS */
4718 __napi_schedule_irqoff(&mysd->backlog);
4719}
4720
4721#ifdef CONFIG_NET_FLOW_LIMIT
4722int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4723#endif
4724
4725static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4726{
4727#ifdef CONFIG_NET_FLOW_LIMIT
4728 struct sd_flow_limit *fl;
4729 struct softnet_data *sd;
4730 unsigned int old_flow, new_flow;
4731
4732 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4733 return false;
4734
4735 sd = this_cpu_ptr(&softnet_data);
4736
4737 rcu_read_lock();
4738 fl = rcu_dereference(sd->flow_limit);
4739 if (fl) {
4740 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4741 old_flow = fl->history[fl->history_head];
4742 fl->history[fl->history_head] = new_flow;
4743
4744 fl->history_head++;
4745 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4746
4747 if (likely(fl->buckets[old_flow]))
4748 fl->buckets[old_flow]--;
4749
4750 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4751 fl->count++;
4752 rcu_read_unlock();
4753 return true;
4754 }
4755 }
4756 rcu_read_unlock();
4757#endif
4758 return false;
4759}
4760
4761/*
4762 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4763 * queue (may be a remote CPU queue).
4764 */
4765static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4766 unsigned int *qtail)
4767{
4768 enum skb_drop_reason reason;
4769 struct softnet_data *sd;
4770 unsigned long flags;
4771 unsigned int qlen;
4772
4773 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4774 sd = &per_cpu(softnet_data, cpu);
4775
4776 rps_lock_irqsave(sd, &flags);
4777 if (!netif_running(skb->dev))
4778 goto drop;
4779 qlen = skb_queue_len(&sd->input_pkt_queue);
4780 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4781 if (qlen) {
4782enqueue:
4783 __skb_queue_tail(&sd->input_pkt_queue, skb);
4784 input_queue_tail_incr_save(sd, qtail);
4785 rps_unlock_irq_restore(sd, &flags);
4786 return NET_RX_SUCCESS;
4787 }
4788
4789 /* Schedule NAPI for backlog device
4790 * We can use non atomic operation since we own the queue lock
4791 */
4792 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4793 napi_schedule_rps(sd);
4794 goto enqueue;
4795 }
4796 reason = SKB_DROP_REASON_CPU_BACKLOG;
4797
4798drop:
4799 sd->dropped++;
4800 rps_unlock_irq_restore(sd, &flags);
4801
4802 dev_core_stats_rx_dropped_inc(skb->dev);
4803 kfree_skb_reason(skb, reason);
4804 return NET_RX_DROP;
4805}
4806
4807static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4808{
4809 struct net_device *dev = skb->dev;
4810 struct netdev_rx_queue *rxqueue;
4811
4812 rxqueue = dev->_rx;
4813
4814 if (skb_rx_queue_recorded(skb)) {
4815 u16 index = skb_get_rx_queue(skb);
4816
4817 if (unlikely(index >= dev->real_num_rx_queues)) {
4818 WARN_ONCE(dev->real_num_rx_queues > 1,
4819 "%s received packet on queue %u, but number "
4820 "of RX queues is %u\n",
4821 dev->name, index, dev->real_num_rx_queues);
4822
4823 return rxqueue; /* Return first rxqueue */
4824 }
4825 rxqueue += index;
4826 }
4827 return rxqueue;
4828}
4829
4830u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4831 struct bpf_prog *xdp_prog)
4832{
4833 void *orig_data, *orig_data_end, *hard_start;
4834 struct netdev_rx_queue *rxqueue;
4835 bool orig_bcast, orig_host;
4836 u32 mac_len, frame_sz;
4837 __be16 orig_eth_type;
4838 struct ethhdr *eth;
4839 u32 metalen, act;
4840 int off;
4841
4842 /* The XDP program wants to see the packet starting at the MAC
4843 * header.
4844 */
4845 mac_len = skb->data - skb_mac_header(skb);
4846 hard_start = skb->data - skb_headroom(skb);
4847
4848 /* SKB "head" area always have tailroom for skb_shared_info */
4849 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4850 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4851
4852 rxqueue = netif_get_rxqueue(skb);
4853 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4854 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4855 skb_headlen(skb) + mac_len, true);
4856
4857 orig_data_end = xdp->data_end;
4858 orig_data = xdp->data;
4859 eth = (struct ethhdr *)xdp->data;
4860 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4861 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4862 orig_eth_type = eth->h_proto;
4863
4864 act = bpf_prog_run_xdp(xdp_prog, xdp);
4865
4866 /* check if bpf_xdp_adjust_head was used */
4867 off = xdp->data - orig_data;
4868 if (off) {
4869 if (off > 0)
4870 __skb_pull(skb, off);
4871 else if (off < 0)
4872 __skb_push(skb, -off);
4873
4874 skb->mac_header += off;
4875 skb_reset_network_header(skb);
4876 }
4877
4878 /* check if bpf_xdp_adjust_tail was used */
4879 off = xdp->data_end - orig_data_end;
4880 if (off != 0) {
4881 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4882 skb->len += off; /* positive on grow, negative on shrink */
4883 }
4884
4885 /* check if XDP changed eth hdr such SKB needs update */
4886 eth = (struct ethhdr *)xdp->data;
4887 if ((orig_eth_type != eth->h_proto) ||
4888 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4889 skb->dev->dev_addr)) ||
4890 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4891 __skb_push(skb, ETH_HLEN);
4892 skb->pkt_type = PACKET_HOST;
4893 skb->protocol = eth_type_trans(skb, skb->dev);
4894 }
4895
4896 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4897 * before calling us again on redirect path. We do not call do_redirect
4898 * as we leave that up to the caller.
4899 *
4900 * Caller is responsible for managing lifetime of skb (i.e. calling
4901 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4902 */
4903 switch (act) {
4904 case XDP_REDIRECT:
4905 case XDP_TX:
4906 __skb_push(skb, mac_len);
4907 break;
4908 case XDP_PASS:
4909 metalen = xdp->data - xdp->data_meta;
4910 if (metalen)
4911 skb_metadata_set(skb, metalen);
4912 break;
4913 }
4914
4915 return act;
4916}
4917
4918static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4919 struct xdp_buff *xdp,
4920 struct bpf_prog *xdp_prog)
4921{
4922 u32 act = XDP_DROP;
4923
4924 /* Reinjected packets coming from act_mirred or similar should
4925 * not get XDP generic processing.
4926 */
4927 if (skb_is_redirected(skb))
4928 return XDP_PASS;
4929
4930 /* XDP packets must be linear and must have sufficient headroom
4931 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4932 * native XDP provides, thus we need to do it here as well.
4933 */
4934 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4935 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4936 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4937 int troom = skb->tail + skb->data_len - skb->end;
4938
4939 /* In case we have to go down the path and also linearize,
4940 * then lets do the pskb_expand_head() work just once here.
4941 */
4942 if (pskb_expand_head(skb,
4943 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4944 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4945 goto do_drop;
4946 if (skb_linearize(skb))
4947 goto do_drop;
4948 }
4949
4950 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4951 switch (act) {
4952 case XDP_REDIRECT:
4953 case XDP_TX:
4954 case XDP_PASS:
4955 break;
4956 default:
4957 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4958 fallthrough;
4959 case XDP_ABORTED:
4960 trace_xdp_exception(skb->dev, xdp_prog, act);
4961 fallthrough;
4962 case XDP_DROP:
4963 do_drop:
4964 kfree_skb(skb);
4965 break;
4966 }
4967
4968 return act;
4969}
4970
4971/* When doing generic XDP we have to bypass the qdisc layer and the
4972 * network taps in order to match in-driver-XDP behavior. This also means
4973 * that XDP packets are able to starve other packets going through a qdisc,
4974 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4975 * queues, so they do not have this starvation issue.
4976 */
4977void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4978{
4979 struct net_device *dev = skb->dev;
4980 struct netdev_queue *txq;
4981 bool free_skb = true;
4982 int cpu, rc;
4983
4984 txq = netdev_core_pick_tx(dev, skb, NULL);
4985 cpu = smp_processor_id();
4986 HARD_TX_LOCK(dev, txq, cpu);
4987 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4988 rc = netdev_start_xmit(skb, dev, txq, 0);
4989 if (dev_xmit_complete(rc))
4990 free_skb = false;
4991 }
4992 HARD_TX_UNLOCK(dev, txq);
4993 if (free_skb) {
4994 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4995 dev_core_stats_tx_dropped_inc(dev);
4996 kfree_skb(skb);
4997 }
4998}
4999
5000static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5001
5002int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5003{
5004 if (xdp_prog) {
5005 struct xdp_buff xdp;
5006 u32 act;
5007 int err;
5008
5009 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5010 if (act != XDP_PASS) {
5011 switch (act) {
5012 case XDP_REDIRECT:
5013 err = xdp_do_generic_redirect(skb->dev, skb,
5014 &xdp, xdp_prog);
5015 if (err)
5016 goto out_redir;
5017 break;
5018 case XDP_TX:
5019 generic_xdp_tx(skb, xdp_prog);
5020 break;
5021 }
5022 return XDP_DROP;
5023 }
5024 }
5025 return XDP_PASS;
5026out_redir:
5027 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5028 return XDP_DROP;
5029}
5030EXPORT_SYMBOL_GPL(do_xdp_generic);
5031
5032static int netif_rx_internal(struct sk_buff *skb)
5033{
5034 int ret;
5035
5036 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5037
5038 trace_netif_rx(skb);
5039
5040#ifdef CONFIG_RPS
5041 if (static_branch_unlikely(&rps_needed)) {
5042 struct rps_dev_flow voidflow, *rflow = &voidflow;
5043 int cpu;
5044
5045 rcu_read_lock();
5046
5047 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5048 if (cpu < 0)
5049 cpu = smp_processor_id();
5050
5051 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5052
5053 rcu_read_unlock();
5054 } else
5055#endif
5056 {
5057 unsigned int qtail;
5058
5059 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5060 }
5061 return ret;
5062}
5063
5064/**
5065 * __netif_rx - Slightly optimized version of netif_rx
5066 * @skb: buffer to post
5067 *
5068 * This behaves as netif_rx except that it does not disable bottom halves.
5069 * As a result this function may only be invoked from the interrupt context
5070 * (either hard or soft interrupt).
5071 */
5072int __netif_rx(struct sk_buff *skb)
5073{
5074 int ret;
5075
5076 lockdep_assert_once(hardirq_count() | softirq_count());
5077
5078 trace_netif_rx_entry(skb);
5079 ret = netif_rx_internal(skb);
5080 trace_netif_rx_exit(ret);
5081 return ret;
5082}
5083EXPORT_SYMBOL(__netif_rx);
5084
5085/**
5086 * netif_rx - post buffer to the network code
5087 * @skb: buffer to post
5088 *
5089 * This function receives a packet from a device driver and queues it for
5090 * the upper (protocol) levels to process via the backlog NAPI device. It
5091 * always succeeds. The buffer may be dropped during processing for
5092 * congestion control or by the protocol layers.
5093 * The network buffer is passed via the backlog NAPI device. Modern NIC
5094 * driver should use NAPI and GRO.
5095 * This function can used from interrupt and from process context. The
5096 * caller from process context must not disable interrupts before invoking
5097 * this function.
5098 *
5099 * return values:
5100 * NET_RX_SUCCESS (no congestion)
5101 * NET_RX_DROP (packet was dropped)
5102 *
5103 */
5104int netif_rx(struct sk_buff *skb)
5105{
5106 bool need_bh_off = !(hardirq_count() | softirq_count());
5107 int ret;
5108
5109 if (need_bh_off)
5110 local_bh_disable();
5111 trace_netif_rx_entry(skb);
5112 ret = netif_rx_internal(skb);
5113 trace_netif_rx_exit(ret);
5114 if (need_bh_off)
5115 local_bh_enable();
5116 return ret;
5117}
5118EXPORT_SYMBOL(netif_rx);
5119
5120static __latent_entropy void net_tx_action(struct softirq_action *h)
5121{
5122 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5123
5124 if (sd->completion_queue) {
5125 struct sk_buff *clist;
5126
5127 local_irq_disable();
5128 clist = sd->completion_queue;
5129 sd->completion_queue = NULL;
5130 local_irq_enable();
5131
5132 while (clist) {
5133 struct sk_buff *skb = clist;
5134
5135 clist = clist->next;
5136
5137 WARN_ON(refcount_read(&skb->users));
5138 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5139 trace_consume_skb(skb, net_tx_action);
5140 else
5141 trace_kfree_skb(skb, net_tx_action,
5142 get_kfree_skb_cb(skb)->reason);
5143
5144 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5145 __kfree_skb(skb);
5146 else
5147 __napi_kfree_skb(skb,
5148 get_kfree_skb_cb(skb)->reason);
5149 }
5150 }
5151
5152 if (sd->output_queue) {
5153 struct Qdisc *head;
5154
5155 local_irq_disable();
5156 head = sd->output_queue;
5157 sd->output_queue = NULL;
5158 sd->output_queue_tailp = &sd->output_queue;
5159 local_irq_enable();
5160
5161 rcu_read_lock();
5162
5163 while (head) {
5164 struct Qdisc *q = head;
5165 spinlock_t *root_lock = NULL;
5166
5167 head = head->next_sched;
5168
5169 /* We need to make sure head->next_sched is read
5170 * before clearing __QDISC_STATE_SCHED
5171 */
5172 smp_mb__before_atomic();
5173
5174 if (!(q->flags & TCQ_F_NOLOCK)) {
5175 root_lock = qdisc_lock(q);
5176 spin_lock(root_lock);
5177 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5178 &q->state))) {
5179 /* There is a synchronize_net() between
5180 * STATE_DEACTIVATED flag being set and
5181 * qdisc_reset()/some_qdisc_is_busy() in
5182 * dev_deactivate(), so we can safely bail out
5183 * early here to avoid data race between
5184 * qdisc_deactivate() and some_qdisc_is_busy()
5185 * for lockless qdisc.
5186 */
5187 clear_bit(__QDISC_STATE_SCHED, &q->state);
5188 continue;
5189 }
5190
5191 clear_bit(__QDISC_STATE_SCHED, &q->state);
5192 qdisc_run(q);
5193 if (root_lock)
5194 spin_unlock(root_lock);
5195 }
5196
5197 rcu_read_unlock();
5198 }
5199
5200 xfrm_dev_backlog(sd);
5201}
5202
5203#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5204/* This hook is defined here for ATM LANE */
5205int (*br_fdb_test_addr_hook)(struct net_device *dev,
5206 unsigned char *addr) __read_mostly;
5207EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5208#endif
5209
5210/**
5211 * netdev_is_rx_handler_busy - check if receive handler is registered
5212 * @dev: device to check
5213 *
5214 * Check if a receive handler is already registered for a given device.
5215 * Return true if there one.
5216 *
5217 * The caller must hold the rtnl_mutex.
5218 */
5219bool netdev_is_rx_handler_busy(struct net_device *dev)
5220{
5221 ASSERT_RTNL();
5222 return dev && rtnl_dereference(dev->rx_handler);
5223}
5224EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5225
5226/**
5227 * netdev_rx_handler_register - register receive handler
5228 * @dev: device to register a handler for
5229 * @rx_handler: receive handler to register
5230 * @rx_handler_data: data pointer that is used by rx handler
5231 *
5232 * Register a receive handler for a device. This handler will then be
5233 * called from __netif_receive_skb. A negative errno code is returned
5234 * on a failure.
5235 *
5236 * The caller must hold the rtnl_mutex.
5237 *
5238 * For a general description of rx_handler, see enum rx_handler_result.
5239 */
5240int netdev_rx_handler_register(struct net_device *dev,
5241 rx_handler_func_t *rx_handler,
5242 void *rx_handler_data)
5243{
5244 if (netdev_is_rx_handler_busy(dev))
5245 return -EBUSY;
5246
5247 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5248 return -EINVAL;
5249
5250 /* Note: rx_handler_data must be set before rx_handler */
5251 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5252 rcu_assign_pointer(dev->rx_handler, rx_handler);
5253
5254 return 0;
5255}
5256EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5257
5258/**
5259 * netdev_rx_handler_unregister - unregister receive handler
5260 * @dev: device to unregister a handler from
5261 *
5262 * Unregister a receive handler from a device.
5263 *
5264 * The caller must hold the rtnl_mutex.
5265 */
5266void netdev_rx_handler_unregister(struct net_device *dev)
5267{
5268
5269 ASSERT_RTNL();
5270 RCU_INIT_POINTER(dev->rx_handler, NULL);
5271 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5272 * section has a guarantee to see a non NULL rx_handler_data
5273 * as well.
5274 */
5275 synchronize_net();
5276 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5277}
5278EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5279
5280/*
5281 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5282 * the special handling of PFMEMALLOC skbs.
5283 */
5284static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5285{
5286 switch (skb->protocol) {
5287 case htons(ETH_P_ARP):
5288 case htons(ETH_P_IP):
5289 case htons(ETH_P_IPV6):
5290 case htons(ETH_P_8021Q):
5291 case htons(ETH_P_8021AD):
5292 return true;
5293 default:
5294 return false;
5295 }
5296}
5297
5298static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5299 int *ret, struct net_device *orig_dev)
5300{
5301 if (nf_hook_ingress_active(skb)) {
5302 int ingress_retval;
5303
5304 if (*pt_prev) {
5305 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5306 *pt_prev = NULL;
5307 }
5308
5309 rcu_read_lock();
5310 ingress_retval = nf_hook_ingress(skb);
5311 rcu_read_unlock();
5312 return ingress_retval;
5313 }
5314 return 0;
5315}
5316
5317static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5318 struct packet_type **ppt_prev)
5319{
5320 struct packet_type *ptype, *pt_prev;
5321 rx_handler_func_t *rx_handler;
5322 struct sk_buff *skb = *pskb;
5323 struct net_device *orig_dev;
5324 bool deliver_exact = false;
5325 int ret = NET_RX_DROP;
5326 __be16 type;
5327
5328 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5329
5330 trace_netif_receive_skb(skb);
5331
5332 orig_dev = skb->dev;
5333
5334 skb_reset_network_header(skb);
5335 if (!skb_transport_header_was_set(skb))
5336 skb_reset_transport_header(skb);
5337 skb_reset_mac_len(skb);
5338
5339 pt_prev = NULL;
5340
5341another_round:
5342 skb->skb_iif = skb->dev->ifindex;
5343
5344 __this_cpu_inc(softnet_data.processed);
5345
5346 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5347 int ret2;
5348
5349 migrate_disable();
5350 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5351 migrate_enable();
5352
5353 if (ret2 != XDP_PASS) {
5354 ret = NET_RX_DROP;
5355 goto out;
5356 }
5357 }
5358
5359 if (eth_type_vlan(skb->protocol)) {
5360 skb = skb_vlan_untag(skb);
5361 if (unlikely(!skb))
5362 goto out;
5363 }
5364
5365 if (skb_skip_tc_classify(skb))
5366 goto skip_classify;
5367
5368 if (pfmemalloc)
5369 goto skip_taps;
5370
5371 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5372 if (pt_prev)
5373 ret = deliver_skb(skb, pt_prev, orig_dev);
5374 pt_prev = ptype;
5375 }
5376
5377 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5378 if (pt_prev)
5379 ret = deliver_skb(skb, pt_prev, orig_dev);
5380 pt_prev = ptype;
5381 }
5382
5383skip_taps:
5384#ifdef CONFIG_NET_INGRESS
5385 if (static_branch_unlikely(&ingress_needed_key)) {
5386 bool another = false;
5387
5388 nf_skip_egress(skb, true);
5389 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5390 &another);
5391 if (another)
5392 goto another_round;
5393 if (!skb)
5394 goto out;
5395
5396 nf_skip_egress(skb, false);
5397 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5398 goto out;
5399 }
5400#endif
5401 skb_reset_redirect(skb);
5402skip_classify:
5403 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5404 goto drop;
5405
5406 if (skb_vlan_tag_present(skb)) {
5407 if (pt_prev) {
5408 ret = deliver_skb(skb, pt_prev, orig_dev);
5409 pt_prev = NULL;
5410 }
5411 if (vlan_do_receive(&skb))
5412 goto another_round;
5413 else if (unlikely(!skb))
5414 goto out;
5415 }
5416
5417 rx_handler = rcu_dereference(skb->dev->rx_handler);
5418 if (rx_handler) {
5419 if (pt_prev) {
5420 ret = deliver_skb(skb, pt_prev, orig_dev);
5421 pt_prev = NULL;
5422 }
5423 switch (rx_handler(&skb)) {
5424 case RX_HANDLER_CONSUMED:
5425 ret = NET_RX_SUCCESS;
5426 goto out;
5427 case RX_HANDLER_ANOTHER:
5428 goto another_round;
5429 case RX_HANDLER_EXACT:
5430 deliver_exact = true;
5431 break;
5432 case RX_HANDLER_PASS:
5433 break;
5434 default:
5435 BUG();
5436 }
5437 }
5438
5439 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5440check_vlan_id:
5441 if (skb_vlan_tag_get_id(skb)) {
5442 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5443 * find vlan device.
5444 */
5445 skb->pkt_type = PACKET_OTHERHOST;
5446 } else if (eth_type_vlan(skb->protocol)) {
5447 /* Outer header is 802.1P with vlan 0, inner header is
5448 * 802.1Q or 802.1AD and vlan_do_receive() above could
5449 * not find vlan dev for vlan id 0.
5450 */
5451 __vlan_hwaccel_clear_tag(skb);
5452 skb = skb_vlan_untag(skb);
5453 if (unlikely(!skb))
5454 goto out;
5455 if (vlan_do_receive(&skb))
5456 /* After stripping off 802.1P header with vlan 0
5457 * vlan dev is found for inner header.
5458 */
5459 goto another_round;
5460 else if (unlikely(!skb))
5461 goto out;
5462 else
5463 /* We have stripped outer 802.1P vlan 0 header.
5464 * But could not find vlan dev.
5465 * check again for vlan id to set OTHERHOST.
5466 */
5467 goto check_vlan_id;
5468 }
5469 /* Note: we might in the future use prio bits
5470 * and set skb->priority like in vlan_do_receive()
5471 * For the time being, just ignore Priority Code Point
5472 */
5473 __vlan_hwaccel_clear_tag(skb);
5474 }
5475
5476 type = skb->protocol;
5477
5478 /* deliver only exact match when indicated */
5479 if (likely(!deliver_exact)) {
5480 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5481 &ptype_base[ntohs(type) &
5482 PTYPE_HASH_MASK]);
5483 }
5484
5485 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5486 &orig_dev->ptype_specific);
5487
5488 if (unlikely(skb->dev != orig_dev)) {
5489 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5490 &skb->dev->ptype_specific);
5491 }
5492
5493 if (pt_prev) {
5494 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5495 goto drop;
5496 *ppt_prev = pt_prev;
5497 } else {
5498drop:
5499 if (!deliver_exact)
5500 dev_core_stats_rx_dropped_inc(skb->dev);
5501 else
5502 dev_core_stats_rx_nohandler_inc(skb->dev);
5503 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5504 /* Jamal, now you will not able to escape explaining
5505 * me how you were going to use this. :-)
5506 */
5507 ret = NET_RX_DROP;
5508 }
5509
5510out:
5511 /* The invariant here is that if *ppt_prev is not NULL
5512 * then skb should also be non-NULL.
5513 *
5514 * Apparently *ppt_prev assignment above holds this invariant due to
5515 * skb dereferencing near it.
5516 */
5517 *pskb = skb;
5518 return ret;
5519}
5520
5521static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5522{
5523 struct net_device *orig_dev = skb->dev;
5524 struct packet_type *pt_prev = NULL;
5525 int ret;
5526
5527 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5528 if (pt_prev)
5529 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5530 skb->dev, pt_prev, orig_dev);
5531 return ret;
5532}
5533
5534/**
5535 * netif_receive_skb_core - special purpose version of netif_receive_skb
5536 * @skb: buffer to process
5537 *
5538 * More direct receive version of netif_receive_skb(). It should
5539 * only be used by callers that have a need to skip RPS and Generic XDP.
5540 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5541 *
5542 * This function may only be called from softirq context and interrupts
5543 * should be enabled.
5544 *
5545 * Return values (usually ignored):
5546 * NET_RX_SUCCESS: no congestion
5547 * NET_RX_DROP: packet was dropped
5548 */
5549int netif_receive_skb_core(struct sk_buff *skb)
5550{
5551 int ret;
5552
5553 rcu_read_lock();
5554 ret = __netif_receive_skb_one_core(skb, false);
5555 rcu_read_unlock();
5556
5557 return ret;
5558}
5559EXPORT_SYMBOL(netif_receive_skb_core);
5560
5561static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5562 struct packet_type *pt_prev,
5563 struct net_device *orig_dev)
5564{
5565 struct sk_buff *skb, *next;
5566
5567 if (!pt_prev)
5568 return;
5569 if (list_empty(head))
5570 return;
5571 if (pt_prev->list_func != NULL)
5572 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5573 ip_list_rcv, head, pt_prev, orig_dev);
5574 else
5575 list_for_each_entry_safe(skb, next, head, list) {
5576 skb_list_del_init(skb);
5577 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5578 }
5579}
5580
5581static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5582{
5583 /* Fast-path assumptions:
5584 * - There is no RX handler.
5585 * - Only one packet_type matches.
5586 * If either of these fails, we will end up doing some per-packet
5587 * processing in-line, then handling the 'last ptype' for the whole
5588 * sublist. This can't cause out-of-order delivery to any single ptype,
5589 * because the 'last ptype' must be constant across the sublist, and all
5590 * other ptypes are handled per-packet.
5591 */
5592 /* Current (common) ptype of sublist */
5593 struct packet_type *pt_curr = NULL;
5594 /* Current (common) orig_dev of sublist */
5595 struct net_device *od_curr = NULL;
5596 struct list_head sublist;
5597 struct sk_buff *skb, *next;
5598
5599 INIT_LIST_HEAD(&sublist);
5600 list_for_each_entry_safe(skb, next, head, list) {
5601 struct net_device *orig_dev = skb->dev;
5602 struct packet_type *pt_prev = NULL;
5603
5604 skb_list_del_init(skb);
5605 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5606 if (!pt_prev)
5607 continue;
5608 if (pt_curr != pt_prev || od_curr != orig_dev) {
5609 /* dispatch old sublist */
5610 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5611 /* start new sublist */
5612 INIT_LIST_HEAD(&sublist);
5613 pt_curr = pt_prev;
5614 od_curr = orig_dev;
5615 }
5616 list_add_tail(&skb->list, &sublist);
5617 }
5618
5619 /* dispatch final sublist */
5620 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5621}
5622
5623static int __netif_receive_skb(struct sk_buff *skb)
5624{
5625 int ret;
5626
5627 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5628 unsigned int noreclaim_flag;
5629
5630 /*
5631 * PFMEMALLOC skbs are special, they should
5632 * - be delivered to SOCK_MEMALLOC sockets only
5633 * - stay away from userspace
5634 * - have bounded memory usage
5635 *
5636 * Use PF_MEMALLOC as this saves us from propagating the allocation
5637 * context down to all allocation sites.
5638 */
5639 noreclaim_flag = memalloc_noreclaim_save();
5640 ret = __netif_receive_skb_one_core(skb, true);
5641 memalloc_noreclaim_restore(noreclaim_flag);
5642 } else
5643 ret = __netif_receive_skb_one_core(skb, false);
5644
5645 return ret;
5646}
5647
5648static void __netif_receive_skb_list(struct list_head *head)
5649{
5650 unsigned long noreclaim_flag = 0;
5651 struct sk_buff *skb, *next;
5652 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5653
5654 list_for_each_entry_safe(skb, next, head, list) {
5655 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5656 struct list_head sublist;
5657
5658 /* Handle the previous sublist */
5659 list_cut_before(&sublist, head, &skb->list);
5660 if (!list_empty(&sublist))
5661 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5662 pfmemalloc = !pfmemalloc;
5663 /* See comments in __netif_receive_skb */
5664 if (pfmemalloc)
5665 noreclaim_flag = memalloc_noreclaim_save();
5666 else
5667 memalloc_noreclaim_restore(noreclaim_flag);
5668 }
5669 }
5670 /* Handle the remaining sublist */
5671 if (!list_empty(head))
5672 __netif_receive_skb_list_core(head, pfmemalloc);
5673 /* Restore pflags */
5674 if (pfmemalloc)
5675 memalloc_noreclaim_restore(noreclaim_flag);
5676}
5677
5678static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5679{
5680 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5681 struct bpf_prog *new = xdp->prog;
5682 int ret = 0;
5683
5684 switch (xdp->command) {
5685 case XDP_SETUP_PROG:
5686 rcu_assign_pointer(dev->xdp_prog, new);
5687 if (old)
5688 bpf_prog_put(old);
5689
5690 if (old && !new) {
5691 static_branch_dec(&generic_xdp_needed_key);
5692 } else if (new && !old) {
5693 static_branch_inc(&generic_xdp_needed_key);
5694 dev_disable_lro(dev);
5695 dev_disable_gro_hw(dev);
5696 }
5697 break;
5698
5699 default:
5700 ret = -EINVAL;
5701 break;
5702 }
5703
5704 return ret;
5705}
5706
5707static int netif_receive_skb_internal(struct sk_buff *skb)
5708{
5709 int ret;
5710
5711 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5712
5713 if (skb_defer_rx_timestamp(skb))
5714 return NET_RX_SUCCESS;
5715
5716 rcu_read_lock();
5717#ifdef CONFIG_RPS
5718 if (static_branch_unlikely(&rps_needed)) {
5719 struct rps_dev_flow voidflow, *rflow = &voidflow;
5720 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5721
5722 if (cpu >= 0) {
5723 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5724 rcu_read_unlock();
5725 return ret;
5726 }
5727 }
5728#endif
5729 ret = __netif_receive_skb(skb);
5730 rcu_read_unlock();
5731 return ret;
5732}
5733
5734void netif_receive_skb_list_internal(struct list_head *head)
5735{
5736 struct sk_buff *skb, *next;
5737 struct list_head sublist;
5738
5739 INIT_LIST_HEAD(&sublist);
5740 list_for_each_entry_safe(skb, next, head, list) {
5741 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5742 skb_list_del_init(skb);
5743 if (!skb_defer_rx_timestamp(skb))
5744 list_add_tail(&skb->list, &sublist);
5745 }
5746 list_splice_init(&sublist, head);
5747
5748 rcu_read_lock();
5749#ifdef CONFIG_RPS
5750 if (static_branch_unlikely(&rps_needed)) {
5751 list_for_each_entry_safe(skb, next, head, list) {
5752 struct rps_dev_flow voidflow, *rflow = &voidflow;
5753 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5754
5755 if (cpu >= 0) {
5756 /* Will be handled, remove from list */
5757 skb_list_del_init(skb);
5758 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5759 }
5760 }
5761 }
5762#endif
5763 __netif_receive_skb_list(head);
5764 rcu_read_unlock();
5765}
5766
5767/**
5768 * netif_receive_skb - process receive buffer from network
5769 * @skb: buffer to process
5770 *
5771 * netif_receive_skb() is the main receive data processing function.
5772 * It always succeeds. The buffer may be dropped during processing
5773 * for congestion control or by the protocol layers.
5774 *
5775 * This function may only be called from softirq context and interrupts
5776 * should be enabled.
5777 *
5778 * Return values (usually ignored):
5779 * NET_RX_SUCCESS: no congestion
5780 * NET_RX_DROP: packet was dropped
5781 */
5782int netif_receive_skb(struct sk_buff *skb)
5783{
5784 int ret;
5785
5786 trace_netif_receive_skb_entry(skb);
5787
5788 ret = netif_receive_skb_internal(skb);
5789 trace_netif_receive_skb_exit(ret);
5790
5791 return ret;
5792}
5793EXPORT_SYMBOL(netif_receive_skb);
5794
5795/**
5796 * netif_receive_skb_list - process many receive buffers from network
5797 * @head: list of skbs to process.
5798 *
5799 * Since return value of netif_receive_skb() is normally ignored, and
5800 * wouldn't be meaningful for a list, this function returns void.
5801 *
5802 * This function may only be called from softirq context and interrupts
5803 * should be enabled.
5804 */
5805void netif_receive_skb_list(struct list_head *head)
5806{
5807 struct sk_buff *skb;
5808
5809 if (list_empty(head))
5810 return;
5811 if (trace_netif_receive_skb_list_entry_enabled()) {
5812 list_for_each_entry(skb, head, list)
5813 trace_netif_receive_skb_list_entry(skb);
5814 }
5815 netif_receive_skb_list_internal(head);
5816 trace_netif_receive_skb_list_exit(0);
5817}
5818EXPORT_SYMBOL(netif_receive_skb_list);
5819
5820static DEFINE_PER_CPU(struct work_struct, flush_works);
5821
5822/* Network device is going away, flush any packets still pending */
5823static void flush_backlog(struct work_struct *work)
5824{
5825 struct sk_buff *skb, *tmp;
5826 struct softnet_data *sd;
5827
5828 local_bh_disable();
5829 sd = this_cpu_ptr(&softnet_data);
5830
5831 rps_lock_irq_disable(sd);
5832 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5833 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5834 __skb_unlink(skb, &sd->input_pkt_queue);
5835 dev_kfree_skb_irq(skb);
5836 input_queue_head_incr(sd);
5837 }
5838 }
5839 rps_unlock_irq_enable(sd);
5840
5841 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5842 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5843 __skb_unlink(skb, &sd->process_queue);
5844 kfree_skb(skb);
5845 input_queue_head_incr(sd);
5846 }
5847 }
5848 local_bh_enable();
5849}
5850
5851static bool flush_required(int cpu)
5852{
5853#if IS_ENABLED(CONFIG_RPS)
5854 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5855 bool do_flush;
5856
5857 rps_lock_irq_disable(sd);
5858
5859 /* as insertion into process_queue happens with the rps lock held,
5860 * process_queue access may race only with dequeue
5861 */
5862 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5863 !skb_queue_empty_lockless(&sd->process_queue);
5864 rps_unlock_irq_enable(sd);
5865
5866 return do_flush;
5867#endif
5868 /* without RPS we can't safely check input_pkt_queue: during a
5869 * concurrent remote skb_queue_splice() we can detect as empty both
5870 * input_pkt_queue and process_queue even if the latter could end-up
5871 * containing a lot of packets.
5872 */
5873 return true;
5874}
5875
5876static void flush_all_backlogs(void)
5877{
5878 static cpumask_t flush_cpus;
5879 unsigned int cpu;
5880
5881 /* since we are under rtnl lock protection we can use static data
5882 * for the cpumask and avoid allocating on stack the possibly
5883 * large mask
5884 */
5885 ASSERT_RTNL();
5886
5887 cpus_read_lock();
5888
5889 cpumask_clear(&flush_cpus);
5890 for_each_online_cpu(cpu) {
5891 if (flush_required(cpu)) {
5892 queue_work_on(cpu, system_highpri_wq,
5893 per_cpu_ptr(&flush_works, cpu));
5894 cpumask_set_cpu(cpu, &flush_cpus);
5895 }
5896 }
5897
5898 /* we can have in flight packet[s] on the cpus we are not flushing,
5899 * synchronize_net() in unregister_netdevice_many() will take care of
5900 * them
5901 */
5902 for_each_cpu(cpu, &flush_cpus)
5903 flush_work(per_cpu_ptr(&flush_works, cpu));
5904
5905 cpus_read_unlock();
5906}
5907
5908static void net_rps_send_ipi(struct softnet_data *remsd)
5909{
5910#ifdef CONFIG_RPS
5911 while (remsd) {
5912 struct softnet_data *next = remsd->rps_ipi_next;
5913
5914 if (cpu_online(remsd->cpu))
5915 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5916 remsd = next;
5917 }
5918#endif
5919}
5920
5921/*
5922 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5923 * Note: called with local irq disabled, but exits with local irq enabled.
5924 */
5925static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5926{
5927#ifdef CONFIG_RPS
5928 struct softnet_data *remsd = sd->rps_ipi_list;
5929
5930 if (remsd) {
5931 sd->rps_ipi_list = NULL;
5932
5933 local_irq_enable();
5934
5935 /* Send pending IPI's to kick RPS processing on remote cpus. */
5936 net_rps_send_ipi(remsd);
5937 } else
5938#endif
5939 local_irq_enable();
5940}
5941
5942static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5943{
5944#ifdef CONFIG_RPS
5945 return sd->rps_ipi_list != NULL;
5946#else
5947 return false;
5948#endif
5949}
5950
5951static int process_backlog(struct napi_struct *napi, int quota)
5952{
5953 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5954 bool again = true;
5955 int work = 0;
5956
5957 /* Check if we have pending ipi, its better to send them now,
5958 * not waiting net_rx_action() end.
5959 */
5960 if (sd_has_rps_ipi_waiting(sd)) {
5961 local_irq_disable();
5962 net_rps_action_and_irq_enable(sd);
5963 }
5964
5965 napi->weight = READ_ONCE(dev_rx_weight);
5966 while (again) {
5967 struct sk_buff *skb;
5968
5969 while ((skb = __skb_dequeue(&sd->process_queue))) {
5970 rcu_read_lock();
5971 __netif_receive_skb(skb);
5972 rcu_read_unlock();
5973 input_queue_head_incr(sd);
5974 if (++work >= quota)
5975 return work;
5976
5977 }
5978
5979 rps_lock_irq_disable(sd);
5980 if (skb_queue_empty(&sd->input_pkt_queue)) {
5981 /*
5982 * Inline a custom version of __napi_complete().
5983 * only current cpu owns and manipulates this napi,
5984 * and NAPI_STATE_SCHED is the only possible flag set
5985 * on backlog.
5986 * We can use a plain write instead of clear_bit(),
5987 * and we dont need an smp_mb() memory barrier.
5988 */
5989 napi->state = 0;
5990 again = false;
5991 } else {
5992 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5993 &sd->process_queue);
5994 }
5995 rps_unlock_irq_enable(sd);
5996 }
5997
5998 return work;
5999}
6000
6001/**
6002 * __napi_schedule - schedule for receive
6003 * @n: entry to schedule
6004 *
6005 * The entry's receive function will be scheduled to run.
6006 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6007 */
6008void __napi_schedule(struct napi_struct *n)
6009{
6010 unsigned long flags;
6011
6012 local_irq_save(flags);
6013 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6014 local_irq_restore(flags);
6015}
6016EXPORT_SYMBOL(__napi_schedule);
6017
6018/**
6019 * napi_schedule_prep - check if napi can be scheduled
6020 * @n: napi context
6021 *
6022 * Test if NAPI routine is already running, and if not mark
6023 * it as running. This is used as a condition variable to
6024 * insure only one NAPI poll instance runs. We also make
6025 * sure there is no pending NAPI disable.
6026 */
6027bool napi_schedule_prep(struct napi_struct *n)
6028{
6029 unsigned long new, val = READ_ONCE(n->state);
6030
6031 do {
6032 if (unlikely(val & NAPIF_STATE_DISABLE))
6033 return false;
6034 new = val | NAPIF_STATE_SCHED;
6035
6036 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6037 * This was suggested by Alexander Duyck, as compiler
6038 * emits better code than :
6039 * if (val & NAPIF_STATE_SCHED)
6040 * new |= NAPIF_STATE_MISSED;
6041 */
6042 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6043 NAPIF_STATE_MISSED;
6044 } while (!try_cmpxchg(&n->state, &val, new));
6045
6046 return !(val & NAPIF_STATE_SCHED);
6047}
6048EXPORT_SYMBOL(napi_schedule_prep);
6049
6050/**
6051 * __napi_schedule_irqoff - schedule for receive
6052 * @n: entry to schedule
6053 *
6054 * Variant of __napi_schedule() assuming hard irqs are masked.
6055 *
6056 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6057 * because the interrupt disabled assumption might not be true
6058 * due to force-threaded interrupts and spinlock substitution.
6059 */
6060void __napi_schedule_irqoff(struct napi_struct *n)
6061{
6062 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6063 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6064 else
6065 __napi_schedule(n);
6066}
6067EXPORT_SYMBOL(__napi_schedule_irqoff);
6068
6069bool napi_complete_done(struct napi_struct *n, int work_done)
6070{
6071 unsigned long flags, val, new, timeout = 0;
6072 bool ret = true;
6073
6074 /*
6075 * 1) Don't let napi dequeue from the cpu poll list
6076 * just in case its running on a different cpu.
6077 * 2) If we are busy polling, do nothing here, we have
6078 * the guarantee we will be called later.
6079 */
6080 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6081 NAPIF_STATE_IN_BUSY_POLL)))
6082 return false;
6083
6084 if (work_done) {
6085 if (n->gro_bitmask)
6086 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6087 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6088 }
6089 if (n->defer_hard_irqs_count > 0) {
6090 n->defer_hard_irqs_count--;
6091 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6092 if (timeout)
6093 ret = false;
6094 }
6095 if (n->gro_bitmask) {
6096 /* When the NAPI instance uses a timeout and keeps postponing
6097 * it, we need to bound somehow the time packets are kept in
6098 * the GRO layer
6099 */
6100 napi_gro_flush(n, !!timeout);
6101 }
6102
6103 gro_normal_list(n);
6104
6105 if (unlikely(!list_empty(&n->poll_list))) {
6106 /* If n->poll_list is not empty, we need to mask irqs */
6107 local_irq_save(flags);
6108 list_del_init(&n->poll_list);
6109 local_irq_restore(flags);
6110 }
6111 WRITE_ONCE(n->list_owner, -1);
6112
6113 val = READ_ONCE(n->state);
6114 do {
6115 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6116
6117 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6118 NAPIF_STATE_SCHED_THREADED |
6119 NAPIF_STATE_PREFER_BUSY_POLL);
6120
6121 /* If STATE_MISSED was set, leave STATE_SCHED set,
6122 * because we will call napi->poll() one more time.
6123 * This C code was suggested by Alexander Duyck to help gcc.
6124 */
6125 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6126 NAPIF_STATE_SCHED;
6127 } while (!try_cmpxchg(&n->state, &val, new));
6128
6129 if (unlikely(val & NAPIF_STATE_MISSED)) {
6130 __napi_schedule(n);
6131 return false;
6132 }
6133
6134 if (timeout)
6135 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6136 HRTIMER_MODE_REL_PINNED);
6137 return ret;
6138}
6139EXPORT_SYMBOL(napi_complete_done);
6140
6141/* must be called under rcu_read_lock(), as we dont take a reference */
6142static struct napi_struct *napi_by_id(unsigned int napi_id)
6143{
6144 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6145 struct napi_struct *napi;
6146
6147 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6148 if (napi->napi_id == napi_id)
6149 return napi;
6150
6151 return NULL;
6152}
6153
6154#if defined(CONFIG_NET_RX_BUSY_POLL)
6155
6156static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6157{
6158 if (!skip_schedule) {
6159 gro_normal_list(napi);
6160 __napi_schedule(napi);
6161 return;
6162 }
6163
6164 if (napi->gro_bitmask) {
6165 /* flush too old packets
6166 * If HZ < 1000, flush all packets.
6167 */
6168 napi_gro_flush(napi, HZ >= 1000);
6169 }
6170
6171 gro_normal_list(napi);
6172 clear_bit(NAPI_STATE_SCHED, &napi->state);
6173}
6174
6175static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6176 u16 budget)
6177{
6178 bool skip_schedule = false;
6179 unsigned long timeout;
6180 int rc;
6181
6182 /* Busy polling means there is a high chance device driver hard irq
6183 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6184 * set in napi_schedule_prep().
6185 * Since we are about to call napi->poll() once more, we can safely
6186 * clear NAPI_STATE_MISSED.
6187 *
6188 * Note: x86 could use a single "lock and ..." instruction
6189 * to perform these two clear_bit()
6190 */
6191 clear_bit(NAPI_STATE_MISSED, &napi->state);
6192 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6193
6194 local_bh_disable();
6195
6196 if (prefer_busy_poll) {
6197 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6198 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6199 if (napi->defer_hard_irqs_count && timeout) {
6200 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6201 skip_schedule = true;
6202 }
6203 }
6204
6205 /* All we really want here is to re-enable device interrupts.
6206 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6207 */
6208 rc = napi->poll(napi, budget);
6209 /* We can't gro_normal_list() here, because napi->poll() might have
6210 * rearmed the napi (napi_complete_done()) in which case it could
6211 * already be running on another CPU.
6212 */
6213 trace_napi_poll(napi, rc, budget);
6214 netpoll_poll_unlock(have_poll_lock);
6215 if (rc == budget)
6216 __busy_poll_stop(napi, skip_schedule);
6217 local_bh_enable();
6218}
6219
6220void napi_busy_loop(unsigned int napi_id,
6221 bool (*loop_end)(void *, unsigned long),
6222 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6223{
6224 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6225 int (*napi_poll)(struct napi_struct *napi, int budget);
6226 void *have_poll_lock = NULL;
6227 struct napi_struct *napi;
6228
6229restart:
6230 napi_poll = NULL;
6231
6232 rcu_read_lock();
6233
6234 napi = napi_by_id(napi_id);
6235 if (!napi)
6236 goto out;
6237
6238 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6239 preempt_disable();
6240 for (;;) {
6241 int work = 0;
6242
6243 local_bh_disable();
6244 if (!napi_poll) {
6245 unsigned long val = READ_ONCE(napi->state);
6246
6247 /* If multiple threads are competing for this napi,
6248 * we avoid dirtying napi->state as much as we can.
6249 */
6250 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6251 NAPIF_STATE_IN_BUSY_POLL)) {
6252 if (prefer_busy_poll)
6253 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6254 goto count;
6255 }
6256 if (cmpxchg(&napi->state, val,
6257 val | NAPIF_STATE_IN_BUSY_POLL |
6258 NAPIF_STATE_SCHED) != val) {
6259 if (prefer_busy_poll)
6260 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6261 goto count;
6262 }
6263 have_poll_lock = netpoll_poll_lock(napi);
6264 napi_poll = napi->poll;
6265 }
6266 work = napi_poll(napi, budget);
6267 trace_napi_poll(napi, work, budget);
6268 gro_normal_list(napi);
6269count:
6270 if (work > 0)
6271 __NET_ADD_STATS(dev_net(napi->dev),
6272 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6273 local_bh_enable();
6274
6275 if (!loop_end || loop_end(loop_end_arg, start_time))
6276 break;
6277
6278 if (unlikely(need_resched())) {
6279 if (napi_poll)
6280 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6281 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6282 preempt_enable();
6283 rcu_read_unlock();
6284 cond_resched();
6285 if (loop_end(loop_end_arg, start_time))
6286 return;
6287 goto restart;
6288 }
6289 cpu_relax();
6290 }
6291 if (napi_poll)
6292 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6293 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6294 preempt_enable();
6295out:
6296 rcu_read_unlock();
6297}
6298EXPORT_SYMBOL(napi_busy_loop);
6299
6300#endif /* CONFIG_NET_RX_BUSY_POLL */
6301
6302static void napi_hash_add(struct napi_struct *napi)
6303{
6304 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6305 return;
6306
6307 spin_lock(&napi_hash_lock);
6308
6309 /* 0..NR_CPUS range is reserved for sender_cpu use */
6310 do {
6311 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6312 napi_gen_id = MIN_NAPI_ID;
6313 } while (napi_by_id(napi_gen_id));
6314 napi->napi_id = napi_gen_id;
6315
6316 hlist_add_head_rcu(&napi->napi_hash_node,
6317 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6318
6319 spin_unlock(&napi_hash_lock);
6320}
6321
6322/* Warning : caller is responsible to make sure rcu grace period
6323 * is respected before freeing memory containing @napi
6324 */
6325static void napi_hash_del(struct napi_struct *napi)
6326{
6327 spin_lock(&napi_hash_lock);
6328
6329 hlist_del_init_rcu(&napi->napi_hash_node);
6330
6331 spin_unlock(&napi_hash_lock);
6332}
6333
6334static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6335{
6336 struct napi_struct *napi;
6337
6338 napi = container_of(timer, struct napi_struct, timer);
6339
6340 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6341 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6342 */
6343 if (!napi_disable_pending(napi) &&
6344 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6345 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6346 __napi_schedule_irqoff(napi);
6347 }
6348
6349 return HRTIMER_NORESTART;
6350}
6351
6352static void init_gro_hash(struct napi_struct *napi)
6353{
6354 int i;
6355
6356 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6357 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6358 napi->gro_hash[i].count = 0;
6359 }
6360 napi->gro_bitmask = 0;
6361}
6362
6363int dev_set_threaded(struct net_device *dev, bool threaded)
6364{
6365 struct napi_struct *napi;
6366 int err = 0;
6367
6368 if (dev->threaded == threaded)
6369 return 0;
6370
6371 if (threaded) {
6372 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6373 if (!napi->thread) {
6374 err = napi_kthread_create(napi);
6375 if (err) {
6376 threaded = false;
6377 break;
6378 }
6379 }
6380 }
6381 }
6382
6383 dev->threaded = threaded;
6384
6385 /* Make sure kthread is created before THREADED bit
6386 * is set.
6387 */
6388 smp_mb__before_atomic();
6389
6390 /* Setting/unsetting threaded mode on a napi might not immediately
6391 * take effect, if the current napi instance is actively being
6392 * polled. In this case, the switch between threaded mode and
6393 * softirq mode will happen in the next round of napi_schedule().
6394 * This should not cause hiccups/stalls to the live traffic.
6395 */
6396 list_for_each_entry(napi, &dev->napi_list, dev_list)
6397 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6398
6399 return err;
6400}
6401EXPORT_SYMBOL(dev_set_threaded);
6402
6403void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6404 int (*poll)(struct napi_struct *, int), int weight)
6405{
6406 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6407 return;
6408
6409 INIT_LIST_HEAD(&napi->poll_list);
6410 INIT_HLIST_NODE(&napi->napi_hash_node);
6411 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6412 napi->timer.function = napi_watchdog;
6413 init_gro_hash(napi);
6414 napi->skb = NULL;
6415 INIT_LIST_HEAD(&napi->rx_list);
6416 napi->rx_count = 0;
6417 napi->poll = poll;
6418 if (weight > NAPI_POLL_WEIGHT)
6419 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6420 weight);
6421 napi->weight = weight;
6422 napi->dev = dev;
6423#ifdef CONFIG_NETPOLL
6424 napi->poll_owner = -1;
6425#endif
6426 napi->list_owner = -1;
6427 set_bit(NAPI_STATE_SCHED, &napi->state);
6428 set_bit(NAPI_STATE_NPSVC, &napi->state);
6429 list_add_rcu(&napi->dev_list, &dev->napi_list);
6430 napi_hash_add(napi);
6431 napi_get_frags_check(napi);
6432 /* Create kthread for this napi if dev->threaded is set.
6433 * Clear dev->threaded if kthread creation failed so that
6434 * threaded mode will not be enabled in napi_enable().
6435 */
6436 if (dev->threaded && napi_kthread_create(napi))
6437 dev->threaded = 0;
6438}
6439EXPORT_SYMBOL(netif_napi_add_weight);
6440
6441void napi_disable(struct napi_struct *n)
6442{
6443 unsigned long val, new;
6444
6445 might_sleep();
6446 set_bit(NAPI_STATE_DISABLE, &n->state);
6447
6448 val = READ_ONCE(n->state);
6449 do {
6450 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6451 usleep_range(20, 200);
6452 val = READ_ONCE(n->state);
6453 }
6454
6455 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6456 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6457 } while (!try_cmpxchg(&n->state, &val, new));
6458
6459 hrtimer_cancel(&n->timer);
6460
6461 clear_bit(NAPI_STATE_DISABLE, &n->state);
6462}
6463EXPORT_SYMBOL(napi_disable);
6464
6465/**
6466 * napi_enable - enable NAPI scheduling
6467 * @n: NAPI context
6468 *
6469 * Resume NAPI from being scheduled on this context.
6470 * Must be paired with napi_disable.
6471 */
6472void napi_enable(struct napi_struct *n)
6473{
6474 unsigned long new, val = READ_ONCE(n->state);
6475
6476 do {
6477 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6478
6479 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6480 if (n->dev->threaded && n->thread)
6481 new |= NAPIF_STATE_THREADED;
6482 } while (!try_cmpxchg(&n->state, &val, new));
6483}
6484EXPORT_SYMBOL(napi_enable);
6485
6486static void flush_gro_hash(struct napi_struct *napi)
6487{
6488 int i;
6489
6490 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6491 struct sk_buff *skb, *n;
6492
6493 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6494 kfree_skb(skb);
6495 napi->gro_hash[i].count = 0;
6496 }
6497}
6498
6499/* Must be called in process context */
6500void __netif_napi_del(struct napi_struct *napi)
6501{
6502 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6503 return;
6504
6505 napi_hash_del(napi);
6506 list_del_rcu(&napi->dev_list);
6507 napi_free_frags(napi);
6508
6509 flush_gro_hash(napi);
6510 napi->gro_bitmask = 0;
6511
6512 if (napi->thread) {
6513 kthread_stop(napi->thread);
6514 napi->thread = NULL;
6515 }
6516}
6517EXPORT_SYMBOL(__netif_napi_del);
6518
6519static int __napi_poll(struct napi_struct *n, bool *repoll)
6520{
6521 int work, weight;
6522
6523 weight = n->weight;
6524
6525 /* This NAPI_STATE_SCHED test is for avoiding a race
6526 * with netpoll's poll_napi(). Only the entity which
6527 * obtains the lock and sees NAPI_STATE_SCHED set will
6528 * actually make the ->poll() call. Therefore we avoid
6529 * accidentally calling ->poll() when NAPI is not scheduled.
6530 */
6531 work = 0;
6532 if (napi_is_scheduled(n)) {
6533 work = n->poll(n, weight);
6534 trace_napi_poll(n, work, weight);
6535
6536 xdp_do_check_flushed(n);
6537 }
6538
6539 if (unlikely(work > weight))
6540 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6541 n->poll, work, weight);
6542
6543 if (likely(work < weight))
6544 return work;
6545
6546 /* Drivers must not modify the NAPI state if they
6547 * consume the entire weight. In such cases this code
6548 * still "owns" the NAPI instance and therefore can
6549 * move the instance around on the list at-will.
6550 */
6551 if (unlikely(napi_disable_pending(n))) {
6552 napi_complete(n);
6553 return work;
6554 }
6555
6556 /* The NAPI context has more processing work, but busy-polling
6557 * is preferred. Exit early.
6558 */
6559 if (napi_prefer_busy_poll(n)) {
6560 if (napi_complete_done(n, work)) {
6561 /* If timeout is not set, we need to make sure
6562 * that the NAPI is re-scheduled.
6563 */
6564 napi_schedule(n);
6565 }
6566 return work;
6567 }
6568
6569 if (n->gro_bitmask) {
6570 /* flush too old packets
6571 * If HZ < 1000, flush all packets.
6572 */
6573 napi_gro_flush(n, HZ >= 1000);
6574 }
6575
6576 gro_normal_list(n);
6577
6578 /* Some drivers may have called napi_schedule
6579 * prior to exhausting their budget.
6580 */
6581 if (unlikely(!list_empty(&n->poll_list))) {
6582 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6583 n->dev ? n->dev->name : "backlog");
6584 return work;
6585 }
6586
6587 *repoll = true;
6588
6589 return work;
6590}
6591
6592static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6593{
6594 bool do_repoll = false;
6595 void *have;
6596 int work;
6597
6598 list_del_init(&n->poll_list);
6599
6600 have = netpoll_poll_lock(n);
6601
6602 work = __napi_poll(n, &do_repoll);
6603
6604 if (do_repoll)
6605 list_add_tail(&n->poll_list, repoll);
6606
6607 netpoll_poll_unlock(have);
6608
6609 return work;
6610}
6611
6612static int napi_thread_wait(struct napi_struct *napi)
6613{
6614 bool woken = false;
6615
6616 set_current_state(TASK_INTERRUPTIBLE);
6617
6618 while (!kthread_should_stop()) {
6619 /* Testing SCHED_THREADED bit here to make sure the current
6620 * kthread owns this napi and could poll on this napi.
6621 * Testing SCHED bit is not enough because SCHED bit might be
6622 * set by some other busy poll thread or by napi_disable().
6623 */
6624 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6625 WARN_ON(!list_empty(&napi->poll_list));
6626 __set_current_state(TASK_RUNNING);
6627 return 0;
6628 }
6629
6630 schedule();
6631 /* woken being true indicates this thread owns this napi. */
6632 woken = true;
6633 set_current_state(TASK_INTERRUPTIBLE);
6634 }
6635 __set_current_state(TASK_RUNNING);
6636
6637 return -1;
6638}
6639
6640static void skb_defer_free_flush(struct softnet_data *sd)
6641{
6642 struct sk_buff *skb, *next;
6643
6644 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6645 if (!READ_ONCE(sd->defer_list))
6646 return;
6647
6648 spin_lock(&sd->defer_lock);
6649 skb = sd->defer_list;
6650 sd->defer_list = NULL;
6651 sd->defer_count = 0;
6652 spin_unlock(&sd->defer_lock);
6653
6654 while (skb != NULL) {
6655 next = skb->next;
6656 napi_consume_skb(skb, 1);
6657 skb = next;
6658 }
6659}
6660
6661static int napi_threaded_poll(void *data)
6662{
6663 struct napi_struct *napi = data;
6664 struct softnet_data *sd;
6665 void *have;
6666
6667 while (!napi_thread_wait(napi)) {
6668 for (;;) {
6669 bool repoll = false;
6670
6671 local_bh_disable();
6672 sd = this_cpu_ptr(&softnet_data);
6673 sd->in_napi_threaded_poll = true;
6674
6675 have = netpoll_poll_lock(napi);
6676 __napi_poll(napi, &repoll);
6677 netpoll_poll_unlock(have);
6678
6679 sd->in_napi_threaded_poll = false;
6680 barrier();
6681
6682 if (sd_has_rps_ipi_waiting(sd)) {
6683 local_irq_disable();
6684 net_rps_action_and_irq_enable(sd);
6685 }
6686 skb_defer_free_flush(sd);
6687 local_bh_enable();
6688
6689 if (!repoll)
6690 break;
6691
6692 cond_resched();
6693 }
6694 }
6695 return 0;
6696}
6697
6698static __latent_entropy void net_rx_action(struct softirq_action *h)
6699{
6700 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6701 unsigned long time_limit = jiffies +
6702 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6703 int budget = READ_ONCE(netdev_budget);
6704 LIST_HEAD(list);
6705 LIST_HEAD(repoll);
6706
6707start:
6708 sd->in_net_rx_action = true;
6709 local_irq_disable();
6710 list_splice_init(&sd->poll_list, &list);
6711 local_irq_enable();
6712
6713 for (;;) {
6714 struct napi_struct *n;
6715
6716 skb_defer_free_flush(sd);
6717
6718 if (list_empty(&list)) {
6719 if (list_empty(&repoll)) {
6720 sd->in_net_rx_action = false;
6721 barrier();
6722 /* We need to check if ____napi_schedule()
6723 * had refilled poll_list while
6724 * sd->in_net_rx_action was true.
6725 */
6726 if (!list_empty(&sd->poll_list))
6727 goto start;
6728 if (!sd_has_rps_ipi_waiting(sd))
6729 goto end;
6730 }
6731 break;
6732 }
6733
6734 n = list_first_entry(&list, struct napi_struct, poll_list);
6735 budget -= napi_poll(n, &repoll);
6736
6737 /* If softirq window is exhausted then punt.
6738 * Allow this to run for 2 jiffies since which will allow
6739 * an average latency of 1.5/HZ.
6740 */
6741 if (unlikely(budget <= 0 ||
6742 time_after_eq(jiffies, time_limit))) {
6743 sd->time_squeeze++;
6744 break;
6745 }
6746 }
6747
6748 local_irq_disable();
6749
6750 list_splice_tail_init(&sd->poll_list, &list);
6751 list_splice_tail(&repoll, &list);
6752 list_splice(&list, &sd->poll_list);
6753 if (!list_empty(&sd->poll_list))
6754 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6755 else
6756 sd->in_net_rx_action = false;
6757
6758 net_rps_action_and_irq_enable(sd);
6759end:;
6760}
6761
6762struct netdev_adjacent {
6763 struct net_device *dev;
6764 netdevice_tracker dev_tracker;
6765
6766 /* upper master flag, there can only be one master device per list */
6767 bool master;
6768
6769 /* lookup ignore flag */
6770 bool ignore;
6771
6772 /* counter for the number of times this device was added to us */
6773 u16 ref_nr;
6774
6775 /* private field for the users */
6776 void *private;
6777
6778 struct list_head list;
6779 struct rcu_head rcu;
6780};
6781
6782static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6783 struct list_head *adj_list)
6784{
6785 struct netdev_adjacent *adj;
6786
6787 list_for_each_entry(adj, adj_list, list) {
6788 if (adj->dev == adj_dev)
6789 return adj;
6790 }
6791 return NULL;
6792}
6793
6794static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6795 struct netdev_nested_priv *priv)
6796{
6797 struct net_device *dev = (struct net_device *)priv->data;
6798
6799 return upper_dev == dev;
6800}
6801
6802/**
6803 * netdev_has_upper_dev - Check if device is linked to an upper device
6804 * @dev: device
6805 * @upper_dev: upper device to check
6806 *
6807 * Find out if a device is linked to specified upper device and return true
6808 * in case it is. Note that this checks only immediate upper device,
6809 * not through a complete stack of devices. The caller must hold the RTNL lock.
6810 */
6811bool netdev_has_upper_dev(struct net_device *dev,
6812 struct net_device *upper_dev)
6813{
6814 struct netdev_nested_priv priv = {
6815 .data = (void *)upper_dev,
6816 };
6817
6818 ASSERT_RTNL();
6819
6820 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6821 &priv);
6822}
6823EXPORT_SYMBOL(netdev_has_upper_dev);
6824
6825/**
6826 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6827 * @dev: device
6828 * @upper_dev: upper device to check
6829 *
6830 * Find out if a device is linked to specified upper device and return true
6831 * in case it is. Note that this checks the entire upper device chain.
6832 * The caller must hold rcu lock.
6833 */
6834
6835bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6836 struct net_device *upper_dev)
6837{
6838 struct netdev_nested_priv priv = {
6839 .data = (void *)upper_dev,
6840 };
6841
6842 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6843 &priv);
6844}
6845EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6846
6847/**
6848 * netdev_has_any_upper_dev - Check if device is linked to some device
6849 * @dev: device
6850 *
6851 * Find out if a device is linked to an upper device and return true in case
6852 * it is. The caller must hold the RTNL lock.
6853 */
6854bool netdev_has_any_upper_dev(struct net_device *dev)
6855{
6856 ASSERT_RTNL();
6857
6858 return !list_empty(&dev->adj_list.upper);
6859}
6860EXPORT_SYMBOL(netdev_has_any_upper_dev);
6861
6862/**
6863 * netdev_master_upper_dev_get - Get master upper device
6864 * @dev: device
6865 *
6866 * Find a master upper device and return pointer to it or NULL in case
6867 * it's not there. The caller must hold the RTNL lock.
6868 */
6869struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6870{
6871 struct netdev_adjacent *upper;
6872
6873 ASSERT_RTNL();
6874
6875 if (list_empty(&dev->adj_list.upper))
6876 return NULL;
6877
6878 upper = list_first_entry(&dev->adj_list.upper,
6879 struct netdev_adjacent, list);
6880 if (likely(upper->master))
6881 return upper->dev;
6882 return NULL;
6883}
6884EXPORT_SYMBOL(netdev_master_upper_dev_get);
6885
6886static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6887{
6888 struct netdev_adjacent *upper;
6889
6890 ASSERT_RTNL();
6891
6892 if (list_empty(&dev->adj_list.upper))
6893 return NULL;
6894
6895 upper = list_first_entry(&dev->adj_list.upper,
6896 struct netdev_adjacent, list);
6897 if (likely(upper->master) && !upper->ignore)
6898 return upper->dev;
6899 return NULL;
6900}
6901
6902/**
6903 * netdev_has_any_lower_dev - Check if device is linked to some device
6904 * @dev: device
6905 *
6906 * Find out if a device is linked to a lower device and return true in case
6907 * it is. The caller must hold the RTNL lock.
6908 */
6909static bool netdev_has_any_lower_dev(struct net_device *dev)
6910{
6911 ASSERT_RTNL();
6912
6913 return !list_empty(&dev->adj_list.lower);
6914}
6915
6916void *netdev_adjacent_get_private(struct list_head *adj_list)
6917{
6918 struct netdev_adjacent *adj;
6919
6920 adj = list_entry(adj_list, struct netdev_adjacent, list);
6921
6922 return adj->private;
6923}
6924EXPORT_SYMBOL(netdev_adjacent_get_private);
6925
6926/**
6927 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6928 * @dev: device
6929 * @iter: list_head ** of the current position
6930 *
6931 * Gets the next device from the dev's upper list, starting from iter
6932 * position. The caller must hold RCU read lock.
6933 */
6934struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6935 struct list_head **iter)
6936{
6937 struct netdev_adjacent *upper;
6938
6939 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6940
6941 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6942
6943 if (&upper->list == &dev->adj_list.upper)
6944 return NULL;
6945
6946 *iter = &upper->list;
6947
6948 return upper->dev;
6949}
6950EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6951
6952static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6953 struct list_head **iter,
6954 bool *ignore)
6955{
6956 struct netdev_adjacent *upper;
6957
6958 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6959
6960 if (&upper->list == &dev->adj_list.upper)
6961 return NULL;
6962
6963 *iter = &upper->list;
6964 *ignore = upper->ignore;
6965
6966 return upper->dev;
6967}
6968
6969static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6970 struct list_head **iter)
6971{
6972 struct netdev_adjacent *upper;
6973
6974 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6975
6976 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6977
6978 if (&upper->list == &dev->adj_list.upper)
6979 return NULL;
6980
6981 *iter = &upper->list;
6982
6983 return upper->dev;
6984}
6985
6986static int __netdev_walk_all_upper_dev(struct net_device *dev,
6987 int (*fn)(struct net_device *dev,
6988 struct netdev_nested_priv *priv),
6989 struct netdev_nested_priv *priv)
6990{
6991 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6992 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6993 int ret, cur = 0;
6994 bool ignore;
6995
6996 now = dev;
6997 iter = &dev->adj_list.upper;
6998
6999 while (1) {
7000 if (now != dev) {
7001 ret = fn(now, priv);
7002 if (ret)
7003 return ret;
7004 }
7005
7006 next = NULL;
7007 while (1) {
7008 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7009 if (!udev)
7010 break;
7011 if (ignore)
7012 continue;
7013
7014 next = udev;
7015 niter = &udev->adj_list.upper;
7016 dev_stack[cur] = now;
7017 iter_stack[cur++] = iter;
7018 break;
7019 }
7020
7021 if (!next) {
7022 if (!cur)
7023 return 0;
7024 next = dev_stack[--cur];
7025 niter = iter_stack[cur];
7026 }
7027
7028 now = next;
7029 iter = niter;
7030 }
7031
7032 return 0;
7033}
7034
7035int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7036 int (*fn)(struct net_device *dev,
7037 struct netdev_nested_priv *priv),
7038 struct netdev_nested_priv *priv)
7039{
7040 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7041 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7042 int ret, cur = 0;
7043
7044 now = dev;
7045 iter = &dev->adj_list.upper;
7046
7047 while (1) {
7048 if (now != dev) {
7049 ret = fn(now, priv);
7050 if (ret)
7051 return ret;
7052 }
7053
7054 next = NULL;
7055 while (1) {
7056 udev = netdev_next_upper_dev_rcu(now, &iter);
7057 if (!udev)
7058 break;
7059
7060 next = udev;
7061 niter = &udev->adj_list.upper;
7062 dev_stack[cur] = now;
7063 iter_stack[cur++] = iter;
7064 break;
7065 }
7066
7067 if (!next) {
7068 if (!cur)
7069 return 0;
7070 next = dev_stack[--cur];
7071 niter = iter_stack[cur];
7072 }
7073
7074 now = next;
7075 iter = niter;
7076 }
7077
7078 return 0;
7079}
7080EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7081
7082static bool __netdev_has_upper_dev(struct net_device *dev,
7083 struct net_device *upper_dev)
7084{
7085 struct netdev_nested_priv priv = {
7086 .flags = 0,
7087 .data = (void *)upper_dev,
7088 };
7089
7090 ASSERT_RTNL();
7091
7092 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7093 &priv);
7094}
7095
7096/**
7097 * netdev_lower_get_next_private - Get the next ->private from the
7098 * lower neighbour list
7099 * @dev: device
7100 * @iter: list_head ** of the current position
7101 *
7102 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7103 * list, starting from iter position. The caller must hold either hold the
7104 * RTNL lock or its own locking that guarantees that the neighbour lower
7105 * list will remain unchanged.
7106 */
7107void *netdev_lower_get_next_private(struct net_device *dev,
7108 struct list_head **iter)
7109{
7110 struct netdev_adjacent *lower;
7111
7112 lower = list_entry(*iter, struct netdev_adjacent, list);
7113
7114 if (&lower->list == &dev->adj_list.lower)
7115 return NULL;
7116
7117 *iter = lower->list.next;
7118
7119 return lower->private;
7120}
7121EXPORT_SYMBOL(netdev_lower_get_next_private);
7122
7123/**
7124 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7125 * lower neighbour list, RCU
7126 * variant
7127 * @dev: device
7128 * @iter: list_head ** of the current position
7129 *
7130 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7131 * list, starting from iter position. The caller must hold RCU read lock.
7132 */
7133void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7134 struct list_head **iter)
7135{
7136 struct netdev_adjacent *lower;
7137
7138 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7139
7140 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7141
7142 if (&lower->list == &dev->adj_list.lower)
7143 return NULL;
7144
7145 *iter = &lower->list;
7146
7147 return lower->private;
7148}
7149EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7150
7151/**
7152 * netdev_lower_get_next - Get the next device from the lower neighbour
7153 * list
7154 * @dev: device
7155 * @iter: list_head ** of the current position
7156 *
7157 * Gets the next netdev_adjacent from the dev's lower neighbour
7158 * list, starting from iter position. The caller must hold RTNL lock or
7159 * its own locking that guarantees that the neighbour lower
7160 * list will remain unchanged.
7161 */
7162void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7163{
7164 struct netdev_adjacent *lower;
7165
7166 lower = list_entry(*iter, struct netdev_adjacent, list);
7167
7168 if (&lower->list == &dev->adj_list.lower)
7169 return NULL;
7170
7171 *iter = lower->list.next;
7172
7173 return lower->dev;
7174}
7175EXPORT_SYMBOL(netdev_lower_get_next);
7176
7177static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7178 struct list_head **iter)
7179{
7180 struct netdev_adjacent *lower;
7181
7182 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7183
7184 if (&lower->list == &dev->adj_list.lower)
7185 return NULL;
7186
7187 *iter = &lower->list;
7188
7189 return lower->dev;
7190}
7191
7192static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7193 struct list_head **iter,
7194 bool *ignore)
7195{
7196 struct netdev_adjacent *lower;
7197
7198 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7199
7200 if (&lower->list == &dev->adj_list.lower)
7201 return NULL;
7202
7203 *iter = &lower->list;
7204 *ignore = lower->ignore;
7205
7206 return lower->dev;
7207}
7208
7209int netdev_walk_all_lower_dev(struct net_device *dev,
7210 int (*fn)(struct net_device *dev,
7211 struct netdev_nested_priv *priv),
7212 struct netdev_nested_priv *priv)
7213{
7214 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7215 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7216 int ret, cur = 0;
7217
7218 now = dev;
7219 iter = &dev->adj_list.lower;
7220
7221 while (1) {
7222 if (now != dev) {
7223 ret = fn(now, priv);
7224 if (ret)
7225 return ret;
7226 }
7227
7228 next = NULL;
7229 while (1) {
7230 ldev = netdev_next_lower_dev(now, &iter);
7231 if (!ldev)
7232 break;
7233
7234 next = ldev;
7235 niter = &ldev->adj_list.lower;
7236 dev_stack[cur] = now;
7237 iter_stack[cur++] = iter;
7238 break;
7239 }
7240
7241 if (!next) {
7242 if (!cur)
7243 return 0;
7244 next = dev_stack[--cur];
7245 niter = iter_stack[cur];
7246 }
7247
7248 now = next;
7249 iter = niter;
7250 }
7251
7252 return 0;
7253}
7254EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7255
7256static int __netdev_walk_all_lower_dev(struct net_device *dev,
7257 int (*fn)(struct net_device *dev,
7258 struct netdev_nested_priv *priv),
7259 struct netdev_nested_priv *priv)
7260{
7261 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7262 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7263 int ret, cur = 0;
7264 bool ignore;
7265
7266 now = dev;
7267 iter = &dev->adj_list.lower;
7268
7269 while (1) {
7270 if (now != dev) {
7271 ret = fn(now, priv);
7272 if (ret)
7273 return ret;
7274 }
7275
7276 next = NULL;
7277 while (1) {
7278 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7279 if (!ldev)
7280 break;
7281 if (ignore)
7282 continue;
7283
7284 next = ldev;
7285 niter = &ldev->adj_list.lower;
7286 dev_stack[cur] = now;
7287 iter_stack[cur++] = iter;
7288 break;
7289 }
7290
7291 if (!next) {
7292 if (!cur)
7293 return 0;
7294 next = dev_stack[--cur];
7295 niter = iter_stack[cur];
7296 }
7297
7298 now = next;
7299 iter = niter;
7300 }
7301
7302 return 0;
7303}
7304
7305struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7306 struct list_head **iter)
7307{
7308 struct netdev_adjacent *lower;
7309
7310 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7311 if (&lower->list == &dev->adj_list.lower)
7312 return NULL;
7313
7314 *iter = &lower->list;
7315
7316 return lower->dev;
7317}
7318EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7319
7320static u8 __netdev_upper_depth(struct net_device *dev)
7321{
7322 struct net_device *udev;
7323 struct list_head *iter;
7324 u8 max_depth = 0;
7325 bool ignore;
7326
7327 for (iter = &dev->adj_list.upper,
7328 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7329 udev;
7330 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7331 if (ignore)
7332 continue;
7333 if (max_depth < udev->upper_level)
7334 max_depth = udev->upper_level;
7335 }
7336
7337 return max_depth;
7338}
7339
7340static u8 __netdev_lower_depth(struct net_device *dev)
7341{
7342 struct net_device *ldev;
7343 struct list_head *iter;
7344 u8 max_depth = 0;
7345 bool ignore;
7346
7347 for (iter = &dev->adj_list.lower,
7348 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7349 ldev;
7350 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7351 if (ignore)
7352 continue;
7353 if (max_depth < ldev->lower_level)
7354 max_depth = ldev->lower_level;
7355 }
7356
7357 return max_depth;
7358}
7359
7360static int __netdev_update_upper_level(struct net_device *dev,
7361 struct netdev_nested_priv *__unused)
7362{
7363 dev->upper_level = __netdev_upper_depth(dev) + 1;
7364 return 0;
7365}
7366
7367#ifdef CONFIG_LOCKDEP
7368static LIST_HEAD(net_unlink_list);
7369
7370static void net_unlink_todo(struct net_device *dev)
7371{
7372 if (list_empty(&dev->unlink_list))
7373 list_add_tail(&dev->unlink_list, &net_unlink_list);
7374}
7375#endif
7376
7377static int __netdev_update_lower_level(struct net_device *dev,
7378 struct netdev_nested_priv *priv)
7379{
7380 dev->lower_level = __netdev_lower_depth(dev) + 1;
7381
7382#ifdef CONFIG_LOCKDEP
7383 if (!priv)
7384 return 0;
7385
7386 if (priv->flags & NESTED_SYNC_IMM)
7387 dev->nested_level = dev->lower_level - 1;
7388 if (priv->flags & NESTED_SYNC_TODO)
7389 net_unlink_todo(dev);
7390#endif
7391 return 0;
7392}
7393
7394int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7395 int (*fn)(struct net_device *dev,
7396 struct netdev_nested_priv *priv),
7397 struct netdev_nested_priv *priv)
7398{
7399 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7400 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7401 int ret, cur = 0;
7402
7403 now = dev;
7404 iter = &dev->adj_list.lower;
7405
7406 while (1) {
7407 if (now != dev) {
7408 ret = fn(now, priv);
7409 if (ret)
7410 return ret;
7411 }
7412
7413 next = NULL;
7414 while (1) {
7415 ldev = netdev_next_lower_dev_rcu(now, &iter);
7416 if (!ldev)
7417 break;
7418
7419 next = ldev;
7420 niter = &ldev->adj_list.lower;
7421 dev_stack[cur] = now;
7422 iter_stack[cur++] = iter;
7423 break;
7424 }
7425
7426 if (!next) {
7427 if (!cur)
7428 return 0;
7429 next = dev_stack[--cur];
7430 niter = iter_stack[cur];
7431 }
7432
7433 now = next;
7434 iter = niter;
7435 }
7436
7437 return 0;
7438}
7439EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7440
7441/**
7442 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7443 * lower neighbour list, RCU
7444 * variant
7445 * @dev: device
7446 *
7447 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7448 * list. The caller must hold RCU read lock.
7449 */
7450void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7451{
7452 struct netdev_adjacent *lower;
7453
7454 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7455 struct netdev_adjacent, list);
7456 if (lower)
7457 return lower->private;
7458 return NULL;
7459}
7460EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7461
7462/**
7463 * netdev_master_upper_dev_get_rcu - Get master upper device
7464 * @dev: device
7465 *
7466 * Find a master upper device and return pointer to it or NULL in case
7467 * it's not there. The caller must hold the RCU read lock.
7468 */
7469struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7470{
7471 struct netdev_adjacent *upper;
7472
7473 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7474 struct netdev_adjacent, list);
7475 if (upper && likely(upper->master))
7476 return upper->dev;
7477 return NULL;
7478}
7479EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7480
7481static int netdev_adjacent_sysfs_add(struct net_device *dev,
7482 struct net_device *adj_dev,
7483 struct list_head *dev_list)
7484{
7485 char linkname[IFNAMSIZ+7];
7486
7487 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7488 "upper_%s" : "lower_%s", adj_dev->name);
7489 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7490 linkname);
7491}
7492static void netdev_adjacent_sysfs_del(struct net_device *dev,
7493 char *name,
7494 struct list_head *dev_list)
7495{
7496 char linkname[IFNAMSIZ+7];
7497
7498 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7499 "upper_%s" : "lower_%s", name);
7500 sysfs_remove_link(&(dev->dev.kobj), linkname);
7501}
7502
7503static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7504 struct net_device *adj_dev,
7505 struct list_head *dev_list)
7506{
7507 return (dev_list == &dev->adj_list.upper ||
7508 dev_list == &dev->adj_list.lower) &&
7509 net_eq(dev_net(dev), dev_net(adj_dev));
7510}
7511
7512static int __netdev_adjacent_dev_insert(struct net_device *dev,
7513 struct net_device *adj_dev,
7514 struct list_head *dev_list,
7515 void *private, bool master)
7516{
7517 struct netdev_adjacent *adj;
7518 int ret;
7519
7520 adj = __netdev_find_adj(adj_dev, dev_list);
7521
7522 if (adj) {
7523 adj->ref_nr += 1;
7524 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7525 dev->name, adj_dev->name, adj->ref_nr);
7526
7527 return 0;
7528 }
7529
7530 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7531 if (!adj)
7532 return -ENOMEM;
7533
7534 adj->dev = adj_dev;
7535 adj->master = master;
7536 adj->ref_nr = 1;
7537 adj->private = private;
7538 adj->ignore = false;
7539 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7540
7541 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7542 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7543
7544 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7545 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7546 if (ret)
7547 goto free_adj;
7548 }
7549
7550 /* Ensure that master link is always the first item in list. */
7551 if (master) {
7552 ret = sysfs_create_link(&(dev->dev.kobj),
7553 &(adj_dev->dev.kobj), "master");
7554 if (ret)
7555 goto remove_symlinks;
7556
7557 list_add_rcu(&adj->list, dev_list);
7558 } else {
7559 list_add_tail_rcu(&adj->list, dev_list);
7560 }
7561
7562 return 0;
7563
7564remove_symlinks:
7565 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7566 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7567free_adj:
7568 netdev_put(adj_dev, &adj->dev_tracker);
7569 kfree(adj);
7570
7571 return ret;
7572}
7573
7574static void __netdev_adjacent_dev_remove(struct net_device *dev,
7575 struct net_device *adj_dev,
7576 u16 ref_nr,
7577 struct list_head *dev_list)
7578{
7579 struct netdev_adjacent *adj;
7580
7581 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7582 dev->name, adj_dev->name, ref_nr);
7583
7584 adj = __netdev_find_adj(adj_dev, dev_list);
7585
7586 if (!adj) {
7587 pr_err("Adjacency does not exist for device %s from %s\n",
7588 dev->name, adj_dev->name);
7589 WARN_ON(1);
7590 return;
7591 }
7592
7593 if (adj->ref_nr > ref_nr) {
7594 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7595 dev->name, adj_dev->name, ref_nr,
7596 adj->ref_nr - ref_nr);
7597 adj->ref_nr -= ref_nr;
7598 return;
7599 }
7600
7601 if (adj->master)
7602 sysfs_remove_link(&(dev->dev.kobj), "master");
7603
7604 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7605 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7606
7607 list_del_rcu(&adj->list);
7608 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7609 adj_dev->name, dev->name, adj_dev->name);
7610 netdev_put(adj_dev, &adj->dev_tracker);
7611 kfree_rcu(adj, rcu);
7612}
7613
7614static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7615 struct net_device *upper_dev,
7616 struct list_head *up_list,
7617 struct list_head *down_list,
7618 void *private, bool master)
7619{
7620 int ret;
7621
7622 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7623 private, master);
7624 if (ret)
7625 return ret;
7626
7627 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7628 private, false);
7629 if (ret) {
7630 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7631 return ret;
7632 }
7633
7634 return 0;
7635}
7636
7637static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7638 struct net_device *upper_dev,
7639 u16 ref_nr,
7640 struct list_head *up_list,
7641 struct list_head *down_list)
7642{
7643 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7644 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7645}
7646
7647static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7648 struct net_device *upper_dev,
7649 void *private, bool master)
7650{
7651 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7652 &dev->adj_list.upper,
7653 &upper_dev->adj_list.lower,
7654 private, master);
7655}
7656
7657static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7658 struct net_device *upper_dev)
7659{
7660 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7661 &dev->adj_list.upper,
7662 &upper_dev->adj_list.lower);
7663}
7664
7665static int __netdev_upper_dev_link(struct net_device *dev,
7666 struct net_device *upper_dev, bool master,
7667 void *upper_priv, void *upper_info,
7668 struct netdev_nested_priv *priv,
7669 struct netlink_ext_ack *extack)
7670{
7671 struct netdev_notifier_changeupper_info changeupper_info = {
7672 .info = {
7673 .dev = dev,
7674 .extack = extack,
7675 },
7676 .upper_dev = upper_dev,
7677 .master = master,
7678 .linking = true,
7679 .upper_info = upper_info,
7680 };
7681 struct net_device *master_dev;
7682 int ret = 0;
7683
7684 ASSERT_RTNL();
7685
7686 if (dev == upper_dev)
7687 return -EBUSY;
7688
7689 /* To prevent loops, check if dev is not upper device to upper_dev. */
7690 if (__netdev_has_upper_dev(upper_dev, dev))
7691 return -EBUSY;
7692
7693 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7694 return -EMLINK;
7695
7696 if (!master) {
7697 if (__netdev_has_upper_dev(dev, upper_dev))
7698 return -EEXIST;
7699 } else {
7700 master_dev = __netdev_master_upper_dev_get(dev);
7701 if (master_dev)
7702 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7703 }
7704
7705 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7706 &changeupper_info.info);
7707 ret = notifier_to_errno(ret);
7708 if (ret)
7709 return ret;
7710
7711 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7712 master);
7713 if (ret)
7714 return ret;
7715
7716 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7717 &changeupper_info.info);
7718 ret = notifier_to_errno(ret);
7719 if (ret)
7720 goto rollback;
7721
7722 __netdev_update_upper_level(dev, NULL);
7723 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7724
7725 __netdev_update_lower_level(upper_dev, priv);
7726 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7727 priv);
7728
7729 return 0;
7730
7731rollback:
7732 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7733
7734 return ret;
7735}
7736
7737/**
7738 * netdev_upper_dev_link - Add a link to the upper device
7739 * @dev: device
7740 * @upper_dev: new upper device
7741 * @extack: netlink extended ack
7742 *
7743 * Adds a link to device which is upper to this one. The caller must hold
7744 * the RTNL lock. On a failure a negative errno code is returned.
7745 * On success the reference counts are adjusted and the function
7746 * returns zero.
7747 */
7748int netdev_upper_dev_link(struct net_device *dev,
7749 struct net_device *upper_dev,
7750 struct netlink_ext_ack *extack)
7751{
7752 struct netdev_nested_priv priv = {
7753 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7754 .data = NULL,
7755 };
7756
7757 return __netdev_upper_dev_link(dev, upper_dev, false,
7758 NULL, NULL, &priv, extack);
7759}
7760EXPORT_SYMBOL(netdev_upper_dev_link);
7761
7762/**
7763 * netdev_master_upper_dev_link - Add a master link to the upper device
7764 * @dev: device
7765 * @upper_dev: new upper device
7766 * @upper_priv: upper device private
7767 * @upper_info: upper info to be passed down via notifier
7768 * @extack: netlink extended ack
7769 *
7770 * Adds a link to device which is upper to this one. In this case, only
7771 * one master upper device can be linked, although other non-master devices
7772 * might be linked as well. The caller must hold the RTNL lock.
7773 * On a failure a negative errno code is returned. On success the reference
7774 * counts are adjusted and the function returns zero.
7775 */
7776int netdev_master_upper_dev_link(struct net_device *dev,
7777 struct net_device *upper_dev,
7778 void *upper_priv, void *upper_info,
7779 struct netlink_ext_ack *extack)
7780{
7781 struct netdev_nested_priv priv = {
7782 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7783 .data = NULL,
7784 };
7785
7786 return __netdev_upper_dev_link(dev, upper_dev, true,
7787 upper_priv, upper_info, &priv, extack);
7788}
7789EXPORT_SYMBOL(netdev_master_upper_dev_link);
7790
7791static void __netdev_upper_dev_unlink(struct net_device *dev,
7792 struct net_device *upper_dev,
7793 struct netdev_nested_priv *priv)
7794{
7795 struct netdev_notifier_changeupper_info changeupper_info = {
7796 .info = {
7797 .dev = dev,
7798 },
7799 .upper_dev = upper_dev,
7800 .linking = false,
7801 };
7802
7803 ASSERT_RTNL();
7804
7805 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7806
7807 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7808 &changeupper_info.info);
7809
7810 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7811
7812 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7813 &changeupper_info.info);
7814
7815 __netdev_update_upper_level(dev, NULL);
7816 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7817
7818 __netdev_update_lower_level(upper_dev, priv);
7819 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7820 priv);
7821}
7822
7823/**
7824 * netdev_upper_dev_unlink - Removes a link to upper device
7825 * @dev: device
7826 * @upper_dev: new upper device
7827 *
7828 * Removes a link to device which is upper to this one. The caller must hold
7829 * the RTNL lock.
7830 */
7831void netdev_upper_dev_unlink(struct net_device *dev,
7832 struct net_device *upper_dev)
7833{
7834 struct netdev_nested_priv priv = {
7835 .flags = NESTED_SYNC_TODO,
7836 .data = NULL,
7837 };
7838
7839 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7840}
7841EXPORT_SYMBOL(netdev_upper_dev_unlink);
7842
7843static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7844 struct net_device *lower_dev,
7845 bool val)
7846{
7847 struct netdev_adjacent *adj;
7848
7849 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7850 if (adj)
7851 adj->ignore = val;
7852
7853 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7854 if (adj)
7855 adj->ignore = val;
7856}
7857
7858static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7859 struct net_device *lower_dev)
7860{
7861 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7862}
7863
7864static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7865 struct net_device *lower_dev)
7866{
7867 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7868}
7869
7870int netdev_adjacent_change_prepare(struct net_device *old_dev,
7871 struct net_device *new_dev,
7872 struct net_device *dev,
7873 struct netlink_ext_ack *extack)
7874{
7875 struct netdev_nested_priv priv = {
7876 .flags = 0,
7877 .data = NULL,
7878 };
7879 int err;
7880
7881 if (!new_dev)
7882 return 0;
7883
7884 if (old_dev && new_dev != old_dev)
7885 netdev_adjacent_dev_disable(dev, old_dev);
7886 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7887 extack);
7888 if (err) {
7889 if (old_dev && new_dev != old_dev)
7890 netdev_adjacent_dev_enable(dev, old_dev);
7891 return err;
7892 }
7893
7894 return 0;
7895}
7896EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7897
7898void netdev_adjacent_change_commit(struct net_device *old_dev,
7899 struct net_device *new_dev,
7900 struct net_device *dev)
7901{
7902 struct netdev_nested_priv priv = {
7903 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7904 .data = NULL,
7905 };
7906
7907 if (!new_dev || !old_dev)
7908 return;
7909
7910 if (new_dev == old_dev)
7911 return;
7912
7913 netdev_adjacent_dev_enable(dev, old_dev);
7914 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7915}
7916EXPORT_SYMBOL(netdev_adjacent_change_commit);
7917
7918void netdev_adjacent_change_abort(struct net_device *old_dev,
7919 struct net_device *new_dev,
7920 struct net_device *dev)
7921{
7922 struct netdev_nested_priv priv = {
7923 .flags = 0,
7924 .data = NULL,
7925 };
7926
7927 if (!new_dev)
7928 return;
7929
7930 if (old_dev && new_dev != old_dev)
7931 netdev_adjacent_dev_enable(dev, old_dev);
7932
7933 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7934}
7935EXPORT_SYMBOL(netdev_adjacent_change_abort);
7936
7937/**
7938 * netdev_bonding_info_change - Dispatch event about slave change
7939 * @dev: device
7940 * @bonding_info: info to dispatch
7941 *
7942 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7943 * The caller must hold the RTNL lock.
7944 */
7945void netdev_bonding_info_change(struct net_device *dev,
7946 struct netdev_bonding_info *bonding_info)
7947{
7948 struct netdev_notifier_bonding_info info = {
7949 .info.dev = dev,
7950 };
7951
7952 memcpy(&info.bonding_info, bonding_info,
7953 sizeof(struct netdev_bonding_info));
7954 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7955 &info.info);
7956}
7957EXPORT_SYMBOL(netdev_bonding_info_change);
7958
7959static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7960 struct netlink_ext_ack *extack)
7961{
7962 struct netdev_notifier_offload_xstats_info info = {
7963 .info.dev = dev,
7964 .info.extack = extack,
7965 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7966 };
7967 int err;
7968 int rc;
7969
7970 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7971 GFP_KERNEL);
7972 if (!dev->offload_xstats_l3)
7973 return -ENOMEM;
7974
7975 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7976 NETDEV_OFFLOAD_XSTATS_DISABLE,
7977 &info.info);
7978 err = notifier_to_errno(rc);
7979 if (err)
7980 goto free_stats;
7981
7982 return 0;
7983
7984free_stats:
7985 kfree(dev->offload_xstats_l3);
7986 dev->offload_xstats_l3 = NULL;
7987 return err;
7988}
7989
7990int netdev_offload_xstats_enable(struct net_device *dev,
7991 enum netdev_offload_xstats_type type,
7992 struct netlink_ext_ack *extack)
7993{
7994 ASSERT_RTNL();
7995
7996 if (netdev_offload_xstats_enabled(dev, type))
7997 return -EALREADY;
7998
7999 switch (type) {
8000 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8001 return netdev_offload_xstats_enable_l3(dev, extack);
8002 }
8003
8004 WARN_ON(1);
8005 return -EINVAL;
8006}
8007EXPORT_SYMBOL(netdev_offload_xstats_enable);
8008
8009static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8010{
8011 struct netdev_notifier_offload_xstats_info info = {
8012 .info.dev = dev,
8013 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8014 };
8015
8016 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8017 &info.info);
8018 kfree(dev->offload_xstats_l3);
8019 dev->offload_xstats_l3 = NULL;
8020}
8021
8022int netdev_offload_xstats_disable(struct net_device *dev,
8023 enum netdev_offload_xstats_type type)
8024{
8025 ASSERT_RTNL();
8026
8027 if (!netdev_offload_xstats_enabled(dev, type))
8028 return -EALREADY;
8029
8030 switch (type) {
8031 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8032 netdev_offload_xstats_disable_l3(dev);
8033 return 0;
8034 }
8035
8036 WARN_ON(1);
8037 return -EINVAL;
8038}
8039EXPORT_SYMBOL(netdev_offload_xstats_disable);
8040
8041static void netdev_offload_xstats_disable_all(struct net_device *dev)
8042{
8043 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8044}
8045
8046static struct rtnl_hw_stats64 *
8047netdev_offload_xstats_get_ptr(const struct net_device *dev,
8048 enum netdev_offload_xstats_type type)
8049{
8050 switch (type) {
8051 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8052 return dev->offload_xstats_l3;
8053 }
8054
8055 WARN_ON(1);
8056 return NULL;
8057}
8058
8059bool netdev_offload_xstats_enabled(const struct net_device *dev,
8060 enum netdev_offload_xstats_type type)
8061{
8062 ASSERT_RTNL();
8063
8064 return netdev_offload_xstats_get_ptr(dev, type);
8065}
8066EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8067
8068struct netdev_notifier_offload_xstats_ru {
8069 bool used;
8070};
8071
8072struct netdev_notifier_offload_xstats_rd {
8073 struct rtnl_hw_stats64 stats;
8074 bool used;
8075};
8076
8077static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8078 const struct rtnl_hw_stats64 *src)
8079{
8080 dest->rx_packets += src->rx_packets;
8081 dest->tx_packets += src->tx_packets;
8082 dest->rx_bytes += src->rx_bytes;
8083 dest->tx_bytes += src->tx_bytes;
8084 dest->rx_errors += src->rx_errors;
8085 dest->tx_errors += src->tx_errors;
8086 dest->rx_dropped += src->rx_dropped;
8087 dest->tx_dropped += src->tx_dropped;
8088 dest->multicast += src->multicast;
8089}
8090
8091static int netdev_offload_xstats_get_used(struct net_device *dev,
8092 enum netdev_offload_xstats_type type,
8093 bool *p_used,
8094 struct netlink_ext_ack *extack)
8095{
8096 struct netdev_notifier_offload_xstats_ru report_used = {};
8097 struct netdev_notifier_offload_xstats_info info = {
8098 .info.dev = dev,
8099 .info.extack = extack,
8100 .type = type,
8101 .report_used = &report_used,
8102 };
8103 int rc;
8104
8105 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8106 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8107 &info.info);
8108 *p_used = report_used.used;
8109 return notifier_to_errno(rc);
8110}
8111
8112static int netdev_offload_xstats_get_stats(struct net_device *dev,
8113 enum netdev_offload_xstats_type type,
8114 struct rtnl_hw_stats64 *p_stats,
8115 bool *p_used,
8116 struct netlink_ext_ack *extack)
8117{
8118 struct netdev_notifier_offload_xstats_rd report_delta = {};
8119 struct netdev_notifier_offload_xstats_info info = {
8120 .info.dev = dev,
8121 .info.extack = extack,
8122 .type = type,
8123 .report_delta = &report_delta,
8124 };
8125 struct rtnl_hw_stats64 *stats;
8126 int rc;
8127
8128 stats = netdev_offload_xstats_get_ptr(dev, type);
8129 if (WARN_ON(!stats))
8130 return -EINVAL;
8131
8132 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8133 &info.info);
8134
8135 /* Cache whatever we got, even if there was an error, otherwise the
8136 * successful stats retrievals would get lost.
8137 */
8138 netdev_hw_stats64_add(stats, &report_delta.stats);
8139
8140 if (p_stats)
8141 *p_stats = *stats;
8142 *p_used = report_delta.used;
8143
8144 return notifier_to_errno(rc);
8145}
8146
8147int netdev_offload_xstats_get(struct net_device *dev,
8148 enum netdev_offload_xstats_type type,
8149 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8150 struct netlink_ext_ack *extack)
8151{
8152 ASSERT_RTNL();
8153
8154 if (p_stats)
8155 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8156 p_used, extack);
8157 else
8158 return netdev_offload_xstats_get_used(dev, type, p_used,
8159 extack);
8160}
8161EXPORT_SYMBOL(netdev_offload_xstats_get);
8162
8163void
8164netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8165 const struct rtnl_hw_stats64 *stats)
8166{
8167 report_delta->used = true;
8168 netdev_hw_stats64_add(&report_delta->stats, stats);
8169}
8170EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8171
8172void
8173netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8174{
8175 report_used->used = true;
8176}
8177EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8178
8179void netdev_offload_xstats_push_delta(struct net_device *dev,
8180 enum netdev_offload_xstats_type type,
8181 const struct rtnl_hw_stats64 *p_stats)
8182{
8183 struct rtnl_hw_stats64 *stats;
8184
8185 ASSERT_RTNL();
8186
8187 stats = netdev_offload_xstats_get_ptr(dev, type);
8188 if (WARN_ON(!stats))
8189 return;
8190
8191 netdev_hw_stats64_add(stats, p_stats);
8192}
8193EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8194
8195/**
8196 * netdev_get_xmit_slave - Get the xmit slave of master device
8197 * @dev: device
8198 * @skb: The packet
8199 * @all_slaves: assume all the slaves are active
8200 *
8201 * The reference counters are not incremented so the caller must be
8202 * careful with locks. The caller must hold RCU lock.
8203 * %NULL is returned if no slave is found.
8204 */
8205
8206struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8207 struct sk_buff *skb,
8208 bool all_slaves)
8209{
8210 const struct net_device_ops *ops = dev->netdev_ops;
8211
8212 if (!ops->ndo_get_xmit_slave)
8213 return NULL;
8214 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8215}
8216EXPORT_SYMBOL(netdev_get_xmit_slave);
8217
8218static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8219 struct sock *sk)
8220{
8221 const struct net_device_ops *ops = dev->netdev_ops;
8222
8223 if (!ops->ndo_sk_get_lower_dev)
8224 return NULL;
8225 return ops->ndo_sk_get_lower_dev(dev, sk);
8226}
8227
8228/**
8229 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8230 * @dev: device
8231 * @sk: the socket
8232 *
8233 * %NULL is returned if no lower device is found.
8234 */
8235
8236struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8237 struct sock *sk)
8238{
8239 struct net_device *lower;
8240
8241 lower = netdev_sk_get_lower_dev(dev, sk);
8242 while (lower) {
8243 dev = lower;
8244 lower = netdev_sk_get_lower_dev(dev, sk);
8245 }
8246
8247 return dev;
8248}
8249EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8250
8251static void netdev_adjacent_add_links(struct net_device *dev)
8252{
8253 struct netdev_adjacent *iter;
8254
8255 struct net *net = dev_net(dev);
8256
8257 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8258 if (!net_eq(net, dev_net(iter->dev)))
8259 continue;
8260 netdev_adjacent_sysfs_add(iter->dev, dev,
8261 &iter->dev->adj_list.lower);
8262 netdev_adjacent_sysfs_add(dev, iter->dev,
8263 &dev->adj_list.upper);
8264 }
8265
8266 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8267 if (!net_eq(net, dev_net(iter->dev)))
8268 continue;
8269 netdev_adjacent_sysfs_add(iter->dev, dev,
8270 &iter->dev->adj_list.upper);
8271 netdev_adjacent_sysfs_add(dev, iter->dev,
8272 &dev->adj_list.lower);
8273 }
8274}
8275
8276static void netdev_adjacent_del_links(struct net_device *dev)
8277{
8278 struct netdev_adjacent *iter;
8279
8280 struct net *net = dev_net(dev);
8281
8282 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8283 if (!net_eq(net, dev_net(iter->dev)))
8284 continue;
8285 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8286 &iter->dev->adj_list.lower);
8287 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8288 &dev->adj_list.upper);
8289 }
8290
8291 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8292 if (!net_eq(net, dev_net(iter->dev)))
8293 continue;
8294 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8295 &iter->dev->adj_list.upper);
8296 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8297 &dev->adj_list.lower);
8298 }
8299}
8300
8301void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8302{
8303 struct netdev_adjacent *iter;
8304
8305 struct net *net = dev_net(dev);
8306
8307 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8308 if (!net_eq(net, dev_net(iter->dev)))
8309 continue;
8310 netdev_adjacent_sysfs_del(iter->dev, oldname,
8311 &iter->dev->adj_list.lower);
8312 netdev_adjacent_sysfs_add(iter->dev, dev,
8313 &iter->dev->adj_list.lower);
8314 }
8315
8316 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8317 if (!net_eq(net, dev_net(iter->dev)))
8318 continue;
8319 netdev_adjacent_sysfs_del(iter->dev, oldname,
8320 &iter->dev->adj_list.upper);
8321 netdev_adjacent_sysfs_add(iter->dev, dev,
8322 &iter->dev->adj_list.upper);
8323 }
8324}
8325
8326void *netdev_lower_dev_get_private(struct net_device *dev,
8327 struct net_device *lower_dev)
8328{
8329 struct netdev_adjacent *lower;
8330
8331 if (!lower_dev)
8332 return NULL;
8333 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8334 if (!lower)
8335 return NULL;
8336
8337 return lower->private;
8338}
8339EXPORT_SYMBOL(netdev_lower_dev_get_private);
8340
8341
8342/**
8343 * netdev_lower_state_changed - Dispatch event about lower device state change
8344 * @lower_dev: device
8345 * @lower_state_info: state to dispatch
8346 *
8347 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8348 * The caller must hold the RTNL lock.
8349 */
8350void netdev_lower_state_changed(struct net_device *lower_dev,
8351 void *lower_state_info)
8352{
8353 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8354 .info.dev = lower_dev,
8355 };
8356
8357 ASSERT_RTNL();
8358 changelowerstate_info.lower_state_info = lower_state_info;
8359 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8360 &changelowerstate_info.info);
8361}
8362EXPORT_SYMBOL(netdev_lower_state_changed);
8363
8364static void dev_change_rx_flags(struct net_device *dev, int flags)
8365{
8366 const struct net_device_ops *ops = dev->netdev_ops;
8367
8368 if (ops->ndo_change_rx_flags)
8369 ops->ndo_change_rx_flags(dev, flags);
8370}
8371
8372static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8373{
8374 unsigned int old_flags = dev->flags;
8375 kuid_t uid;
8376 kgid_t gid;
8377
8378 ASSERT_RTNL();
8379
8380 dev->flags |= IFF_PROMISC;
8381 dev->promiscuity += inc;
8382 if (dev->promiscuity == 0) {
8383 /*
8384 * Avoid overflow.
8385 * If inc causes overflow, untouch promisc and return error.
8386 */
8387 if (inc < 0)
8388 dev->flags &= ~IFF_PROMISC;
8389 else {
8390 dev->promiscuity -= inc;
8391 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8392 return -EOVERFLOW;
8393 }
8394 }
8395 if (dev->flags != old_flags) {
8396 netdev_info(dev, "%s promiscuous mode\n",
8397 dev->flags & IFF_PROMISC ? "entered" : "left");
8398 if (audit_enabled) {
8399 current_uid_gid(&uid, &gid);
8400 audit_log(audit_context(), GFP_ATOMIC,
8401 AUDIT_ANOM_PROMISCUOUS,
8402 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8403 dev->name, (dev->flags & IFF_PROMISC),
8404 (old_flags & IFF_PROMISC),
8405 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8406 from_kuid(&init_user_ns, uid),
8407 from_kgid(&init_user_ns, gid),
8408 audit_get_sessionid(current));
8409 }
8410
8411 dev_change_rx_flags(dev, IFF_PROMISC);
8412 }
8413 if (notify)
8414 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8415 return 0;
8416}
8417
8418/**
8419 * dev_set_promiscuity - update promiscuity count on a device
8420 * @dev: device
8421 * @inc: modifier
8422 *
8423 * Add or remove promiscuity from a device. While the count in the device
8424 * remains above zero the interface remains promiscuous. Once it hits zero
8425 * the device reverts back to normal filtering operation. A negative inc
8426 * value is used to drop promiscuity on the device.
8427 * Return 0 if successful or a negative errno code on error.
8428 */
8429int dev_set_promiscuity(struct net_device *dev, int inc)
8430{
8431 unsigned int old_flags = dev->flags;
8432 int err;
8433
8434 err = __dev_set_promiscuity(dev, inc, true);
8435 if (err < 0)
8436 return err;
8437 if (dev->flags != old_flags)
8438 dev_set_rx_mode(dev);
8439 return err;
8440}
8441EXPORT_SYMBOL(dev_set_promiscuity);
8442
8443static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8444{
8445 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8446
8447 ASSERT_RTNL();
8448
8449 dev->flags |= IFF_ALLMULTI;
8450 dev->allmulti += inc;
8451 if (dev->allmulti == 0) {
8452 /*
8453 * Avoid overflow.
8454 * If inc causes overflow, untouch allmulti and return error.
8455 */
8456 if (inc < 0)
8457 dev->flags &= ~IFF_ALLMULTI;
8458 else {
8459 dev->allmulti -= inc;
8460 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8461 return -EOVERFLOW;
8462 }
8463 }
8464 if (dev->flags ^ old_flags) {
8465 netdev_info(dev, "%s allmulticast mode\n",
8466 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8467 dev_change_rx_flags(dev, IFF_ALLMULTI);
8468 dev_set_rx_mode(dev);
8469 if (notify)
8470 __dev_notify_flags(dev, old_flags,
8471 dev->gflags ^ old_gflags, 0, NULL);
8472 }
8473 return 0;
8474}
8475
8476/**
8477 * dev_set_allmulti - update allmulti count on a device
8478 * @dev: device
8479 * @inc: modifier
8480 *
8481 * Add or remove reception of all multicast frames to a device. While the
8482 * count in the device remains above zero the interface remains listening
8483 * to all interfaces. Once it hits zero the device reverts back to normal
8484 * filtering operation. A negative @inc value is used to drop the counter
8485 * when releasing a resource needing all multicasts.
8486 * Return 0 if successful or a negative errno code on error.
8487 */
8488
8489int dev_set_allmulti(struct net_device *dev, int inc)
8490{
8491 return __dev_set_allmulti(dev, inc, true);
8492}
8493EXPORT_SYMBOL(dev_set_allmulti);
8494
8495/*
8496 * Upload unicast and multicast address lists to device and
8497 * configure RX filtering. When the device doesn't support unicast
8498 * filtering it is put in promiscuous mode while unicast addresses
8499 * are present.
8500 */
8501void __dev_set_rx_mode(struct net_device *dev)
8502{
8503 const struct net_device_ops *ops = dev->netdev_ops;
8504
8505 /* dev_open will call this function so the list will stay sane. */
8506 if (!(dev->flags&IFF_UP))
8507 return;
8508
8509 if (!netif_device_present(dev))
8510 return;
8511
8512 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8513 /* Unicast addresses changes may only happen under the rtnl,
8514 * therefore calling __dev_set_promiscuity here is safe.
8515 */
8516 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8517 __dev_set_promiscuity(dev, 1, false);
8518 dev->uc_promisc = true;
8519 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8520 __dev_set_promiscuity(dev, -1, false);
8521 dev->uc_promisc = false;
8522 }
8523 }
8524
8525 if (ops->ndo_set_rx_mode)
8526 ops->ndo_set_rx_mode(dev);
8527}
8528
8529void dev_set_rx_mode(struct net_device *dev)
8530{
8531 netif_addr_lock_bh(dev);
8532 __dev_set_rx_mode(dev);
8533 netif_addr_unlock_bh(dev);
8534}
8535
8536/**
8537 * dev_get_flags - get flags reported to userspace
8538 * @dev: device
8539 *
8540 * Get the combination of flag bits exported through APIs to userspace.
8541 */
8542unsigned int dev_get_flags(const struct net_device *dev)
8543{
8544 unsigned int flags;
8545
8546 flags = (dev->flags & ~(IFF_PROMISC |
8547 IFF_ALLMULTI |
8548 IFF_RUNNING |
8549 IFF_LOWER_UP |
8550 IFF_DORMANT)) |
8551 (dev->gflags & (IFF_PROMISC |
8552 IFF_ALLMULTI));
8553
8554 if (netif_running(dev)) {
8555 if (netif_oper_up(dev))
8556 flags |= IFF_RUNNING;
8557 if (netif_carrier_ok(dev))
8558 flags |= IFF_LOWER_UP;
8559 if (netif_dormant(dev))
8560 flags |= IFF_DORMANT;
8561 }
8562
8563 return flags;
8564}
8565EXPORT_SYMBOL(dev_get_flags);
8566
8567int __dev_change_flags(struct net_device *dev, unsigned int flags,
8568 struct netlink_ext_ack *extack)
8569{
8570 unsigned int old_flags = dev->flags;
8571 int ret;
8572
8573 ASSERT_RTNL();
8574
8575 /*
8576 * Set the flags on our device.
8577 */
8578
8579 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8580 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8581 IFF_AUTOMEDIA)) |
8582 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8583 IFF_ALLMULTI));
8584
8585 /*
8586 * Load in the correct multicast list now the flags have changed.
8587 */
8588
8589 if ((old_flags ^ flags) & IFF_MULTICAST)
8590 dev_change_rx_flags(dev, IFF_MULTICAST);
8591
8592 dev_set_rx_mode(dev);
8593
8594 /*
8595 * Have we downed the interface. We handle IFF_UP ourselves
8596 * according to user attempts to set it, rather than blindly
8597 * setting it.
8598 */
8599
8600 ret = 0;
8601 if ((old_flags ^ flags) & IFF_UP) {
8602 if (old_flags & IFF_UP)
8603 __dev_close(dev);
8604 else
8605 ret = __dev_open(dev, extack);
8606 }
8607
8608 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8609 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8610 unsigned int old_flags = dev->flags;
8611
8612 dev->gflags ^= IFF_PROMISC;
8613
8614 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8615 if (dev->flags != old_flags)
8616 dev_set_rx_mode(dev);
8617 }
8618
8619 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8620 * is important. Some (broken) drivers set IFF_PROMISC, when
8621 * IFF_ALLMULTI is requested not asking us and not reporting.
8622 */
8623 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8624 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8625
8626 dev->gflags ^= IFF_ALLMULTI;
8627 __dev_set_allmulti(dev, inc, false);
8628 }
8629
8630 return ret;
8631}
8632
8633void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8634 unsigned int gchanges, u32 portid,
8635 const struct nlmsghdr *nlh)
8636{
8637 unsigned int changes = dev->flags ^ old_flags;
8638
8639 if (gchanges)
8640 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8641
8642 if (changes & IFF_UP) {
8643 if (dev->flags & IFF_UP)
8644 call_netdevice_notifiers(NETDEV_UP, dev);
8645 else
8646 call_netdevice_notifiers(NETDEV_DOWN, dev);
8647 }
8648
8649 if (dev->flags & IFF_UP &&
8650 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8651 struct netdev_notifier_change_info change_info = {
8652 .info = {
8653 .dev = dev,
8654 },
8655 .flags_changed = changes,
8656 };
8657
8658 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8659 }
8660}
8661
8662/**
8663 * dev_change_flags - change device settings
8664 * @dev: device
8665 * @flags: device state flags
8666 * @extack: netlink extended ack
8667 *
8668 * Change settings on device based state flags. The flags are
8669 * in the userspace exported format.
8670 */
8671int dev_change_flags(struct net_device *dev, unsigned int flags,
8672 struct netlink_ext_ack *extack)
8673{
8674 int ret;
8675 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8676
8677 ret = __dev_change_flags(dev, flags, extack);
8678 if (ret < 0)
8679 return ret;
8680
8681 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8682 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8683 return ret;
8684}
8685EXPORT_SYMBOL(dev_change_flags);
8686
8687int __dev_set_mtu(struct net_device *dev, int new_mtu)
8688{
8689 const struct net_device_ops *ops = dev->netdev_ops;
8690
8691 if (ops->ndo_change_mtu)
8692 return ops->ndo_change_mtu(dev, new_mtu);
8693
8694 /* Pairs with all the lockless reads of dev->mtu in the stack */
8695 WRITE_ONCE(dev->mtu, new_mtu);
8696 return 0;
8697}
8698EXPORT_SYMBOL(__dev_set_mtu);
8699
8700int dev_validate_mtu(struct net_device *dev, int new_mtu,
8701 struct netlink_ext_ack *extack)
8702{
8703 /* MTU must be positive, and in range */
8704 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8705 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8706 return -EINVAL;
8707 }
8708
8709 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8710 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8711 return -EINVAL;
8712 }
8713 return 0;
8714}
8715
8716/**
8717 * dev_set_mtu_ext - Change maximum transfer unit
8718 * @dev: device
8719 * @new_mtu: new transfer unit
8720 * @extack: netlink extended ack
8721 *
8722 * Change the maximum transfer size of the network device.
8723 */
8724int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8725 struct netlink_ext_ack *extack)
8726{
8727 int err, orig_mtu;
8728
8729 if (new_mtu == dev->mtu)
8730 return 0;
8731
8732 err = dev_validate_mtu(dev, new_mtu, extack);
8733 if (err)
8734 return err;
8735
8736 if (!netif_device_present(dev))
8737 return -ENODEV;
8738
8739 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8740 err = notifier_to_errno(err);
8741 if (err)
8742 return err;
8743
8744 orig_mtu = dev->mtu;
8745 err = __dev_set_mtu(dev, new_mtu);
8746
8747 if (!err) {
8748 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8749 orig_mtu);
8750 err = notifier_to_errno(err);
8751 if (err) {
8752 /* setting mtu back and notifying everyone again,
8753 * so that they have a chance to revert changes.
8754 */
8755 __dev_set_mtu(dev, orig_mtu);
8756 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8757 new_mtu);
8758 }
8759 }
8760 return err;
8761}
8762
8763int dev_set_mtu(struct net_device *dev, int new_mtu)
8764{
8765 struct netlink_ext_ack extack;
8766 int err;
8767
8768 memset(&extack, 0, sizeof(extack));
8769 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8770 if (err && extack._msg)
8771 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8772 return err;
8773}
8774EXPORT_SYMBOL(dev_set_mtu);
8775
8776/**
8777 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8778 * @dev: device
8779 * @new_len: new tx queue length
8780 */
8781int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8782{
8783 unsigned int orig_len = dev->tx_queue_len;
8784 int res;
8785
8786 if (new_len != (unsigned int)new_len)
8787 return -ERANGE;
8788
8789 if (new_len != orig_len) {
8790 dev->tx_queue_len = new_len;
8791 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8792 res = notifier_to_errno(res);
8793 if (res)
8794 goto err_rollback;
8795 res = dev_qdisc_change_tx_queue_len(dev);
8796 if (res)
8797 goto err_rollback;
8798 }
8799
8800 return 0;
8801
8802err_rollback:
8803 netdev_err(dev, "refused to change device tx_queue_len\n");
8804 dev->tx_queue_len = orig_len;
8805 return res;
8806}
8807
8808/**
8809 * dev_set_group - Change group this device belongs to
8810 * @dev: device
8811 * @new_group: group this device should belong to
8812 */
8813void dev_set_group(struct net_device *dev, int new_group)
8814{
8815 dev->group = new_group;
8816}
8817
8818/**
8819 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8820 * @dev: device
8821 * @addr: new address
8822 * @extack: netlink extended ack
8823 */
8824int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8825 struct netlink_ext_ack *extack)
8826{
8827 struct netdev_notifier_pre_changeaddr_info info = {
8828 .info.dev = dev,
8829 .info.extack = extack,
8830 .dev_addr = addr,
8831 };
8832 int rc;
8833
8834 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8835 return notifier_to_errno(rc);
8836}
8837EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8838
8839/**
8840 * dev_set_mac_address - Change Media Access Control Address
8841 * @dev: device
8842 * @sa: new address
8843 * @extack: netlink extended ack
8844 *
8845 * Change the hardware (MAC) address of the device
8846 */
8847int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8848 struct netlink_ext_ack *extack)
8849{
8850 const struct net_device_ops *ops = dev->netdev_ops;
8851 int err;
8852
8853 if (!ops->ndo_set_mac_address)
8854 return -EOPNOTSUPP;
8855 if (sa->sa_family != dev->type)
8856 return -EINVAL;
8857 if (!netif_device_present(dev))
8858 return -ENODEV;
8859 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8860 if (err)
8861 return err;
8862 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8863 err = ops->ndo_set_mac_address(dev, sa);
8864 if (err)
8865 return err;
8866 }
8867 dev->addr_assign_type = NET_ADDR_SET;
8868 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8869 add_device_randomness(dev->dev_addr, dev->addr_len);
8870 return 0;
8871}
8872EXPORT_SYMBOL(dev_set_mac_address);
8873
8874static DECLARE_RWSEM(dev_addr_sem);
8875
8876int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8877 struct netlink_ext_ack *extack)
8878{
8879 int ret;
8880
8881 down_write(&dev_addr_sem);
8882 ret = dev_set_mac_address(dev, sa, extack);
8883 up_write(&dev_addr_sem);
8884 return ret;
8885}
8886EXPORT_SYMBOL(dev_set_mac_address_user);
8887
8888int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8889{
8890 size_t size = sizeof(sa->sa_data_min);
8891 struct net_device *dev;
8892 int ret = 0;
8893
8894 down_read(&dev_addr_sem);
8895 rcu_read_lock();
8896
8897 dev = dev_get_by_name_rcu(net, dev_name);
8898 if (!dev) {
8899 ret = -ENODEV;
8900 goto unlock;
8901 }
8902 if (!dev->addr_len)
8903 memset(sa->sa_data, 0, size);
8904 else
8905 memcpy(sa->sa_data, dev->dev_addr,
8906 min_t(size_t, size, dev->addr_len));
8907 sa->sa_family = dev->type;
8908
8909unlock:
8910 rcu_read_unlock();
8911 up_read(&dev_addr_sem);
8912 return ret;
8913}
8914EXPORT_SYMBOL(dev_get_mac_address);
8915
8916/**
8917 * dev_change_carrier - Change device carrier
8918 * @dev: device
8919 * @new_carrier: new value
8920 *
8921 * Change device carrier
8922 */
8923int dev_change_carrier(struct net_device *dev, bool new_carrier)
8924{
8925 const struct net_device_ops *ops = dev->netdev_ops;
8926
8927 if (!ops->ndo_change_carrier)
8928 return -EOPNOTSUPP;
8929 if (!netif_device_present(dev))
8930 return -ENODEV;
8931 return ops->ndo_change_carrier(dev, new_carrier);
8932}
8933
8934/**
8935 * dev_get_phys_port_id - Get device physical port ID
8936 * @dev: device
8937 * @ppid: port ID
8938 *
8939 * Get device physical port ID
8940 */
8941int dev_get_phys_port_id(struct net_device *dev,
8942 struct netdev_phys_item_id *ppid)
8943{
8944 const struct net_device_ops *ops = dev->netdev_ops;
8945
8946 if (!ops->ndo_get_phys_port_id)
8947 return -EOPNOTSUPP;
8948 return ops->ndo_get_phys_port_id(dev, ppid);
8949}
8950
8951/**
8952 * dev_get_phys_port_name - Get device physical port name
8953 * @dev: device
8954 * @name: port name
8955 * @len: limit of bytes to copy to name
8956 *
8957 * Get device physical port name
8958 */
8959int dev_get_phys_port_name(struct net_device *dev,
8960 char *name, size_t len)
8961{
8962 const struct net_device_ops *ops = dev->netdev_ops;
8963 int err;
8964
8965 if (ops->ndo_get_phys_port_name) {
8966 err = ops->ndo_get_phys_port_name(dev, name, len);
8967 if (err != -EOPNOTSUPP)
8968 return err;
8969 }
8970 return devlink_compat_phys_port_name_get(dev, name, len);
8971}
8972
8973/**
8974 * dev_get_port_parent_id - Get the device's port parent identifier
8975 * @dev: network device
8976 * @ppid: pointer to a storage for the port's parent identifier
8977 * @recurse: allow/disallow recursion to lower devices
8978 *
8979 * Get the devices's port parent identifier
8980 */
8981int dev_get_port_parent_id(struct net_device *dev,
8982 struct netdev_phys_item_id *ppid,
8983 bool recurse)
8984{
8985 const struct net_device_ops *ops = dev->netdev_ops;
8986 struct netdev_phys_item_id first = { };
8987 struct net_device *lower_dev;
8988 struct list_head *iter;
8989 int err;
8990
8991 if (ops->ndo_get_port_parent_id) {
8992 err = ops->ndo_get_port_parent_id(dev, ppid);
8993 if (err != -EOPNOTSUPP)
8994 return err;
8995 }
8996
8997 err = devlink_compat_switch_id_get(dev, ppid);
8998 if (!recurse || err != -EOPNOTSUPP)
8999 return err;
9000
9001 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9002 err = dev_get_port_parent_id(lower_dev, ppid, true);
9003 if (err)
9004 break;
9005 if (!first.id_len)
9006 first = *ppid;
9007 else if (memcmp(&first, ppid, sizeof(*ppid)))
9008 return -EOPNOTSUPP;
9009 }
9010
9011 return err;
9012}
9013EXPORT_SYMBOL(dev_get_port_parent_id);
9014
9015/**
9016 * netdev_port_same_parent_id - Indicate if two network devices have
9017 * the same port parent identifier
9018 * @a: first network device
9019 * @b: second network device
9020 */
9021bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9022{
9023 struct netdev_phys_item_id a_id = { };
9024 struct netdev_phys_item_id b_id = { };
9025
9026 if (dev_get_port_parent_id(a, &a_id, true) ||
9027 dev_get_port_parent_id(b, &b_id, true))
9028 return false;
9029
9030 return netdev_phys_item_id_same(&a_id, &b_id);
9031}
9032EXPORT_SYMBOL(netdev_port_same_parent_id);
9033
9034static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9035{
9036#if IS_ENABLED(CONFIG_DPLL)
9037 rtnl_lock();
9038 dev->dpll_pin = dpll_pin;
9039 rtnl_unlock();
9040#endif
9041}
9042
9043void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9044{
9045 WARN_ON(!dpll_pin);
9046 netdev_dpll_pin_assign(dev, dpll_pin);
9047}
9048EXPORT_SYMBOL(netdev_dpll_pin_set);
9049
9050void netdev_dpll_pin_clear(struct net_device *dev)
9051{
9052 netdev_dpll_pin_assign(dev, NULL);
9053}
9054EXPORT_SYMBOL(netdev_dpll_pin_clear);
9055
9056/**
9057 * dev_change_proto_down - set carrier according to proto_down.
9058 *
9059 * @dev: device
9060 * @proto_down: new value
9061 */
9062int dev_change_proto_down(struct net_device *dev, bool proto_down)
9063{
9064 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9065 return -EOPNOTSUPP;
9066 if (!netif_device_present(dev))
9067 return -ENODEV;
9068 if (proto_down)
9069 netif_carrier_off(dev);
9070 else
9071 netif_carrier_on(dev);
9072 dev->proto_down = proto_down;
9073 return 0;
9074}
9075
9076/**
9077 * dev_change_proto_down_reason - proto down reason
9078 *
9079 * @dev: device
9080 * @mask: proto down mask
9081 * @value: proto down value
9082 */
9083void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9084 u32 value)
9085{
9086 int b;
9087
9088 if (!mask) {
9089 dev->proto_down_reason = value;
9090 } else {
9091 for_each_set_bit(b, &mask, 32) {
9092 if (value & (1 << b))
9093 dev->proto_down_reason |= BIT(b);
9094 else
9095 dev->proto_down_reason &= ~BIT(b);
9096 }
9097 }
9098}
9099
9100struct bpf_xdp_link {
9101 struct bpf_link link;
9102 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9103 int flags;
9104};
9105
9106static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9107{
9108 if (flags & XDP_FLAGS_HW_MODE)
9109 return XDP_MODE_HW;
9110 if (flags & XDP_FLAGS_DRV_MODE)
9111 return XDP_MODE_DRV;
9112 if (flags & XDP_FLAGS_SKB_MODE)
9113 return XDP_MODE_SKB;
9114 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9115}
9116
9117static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9118{
9119 switch (mode) {
9120 case XDP_MODE_SKB:
9121 return generic_xdp_install;
9122 case XDP_MODE_DRV:
9123 case XDP_MODE_HW:
9124 return dev->netdev_ops->ndo_bpf;
9125 default:
9126 return NULL;
9127 }
9128}
9129
9130static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9131 enum bpf_xdp_mode mode)
9132{
9133 return dev->xdp_state[mode].link;
9134}
9135
9136static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9137 enum bpf_xdp_mode mode)
9138{
9139 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9140
9141 if (link)
9142 return link->link.prog;
9143 return dev->xdp_state[mode].prog;
9144}
9145
9146u8 dev_xdp_prog_count(struct net_device *dev)
9147{
9148 u8 count = 0;
9149 int i;
9150
9151 for (i = 0; i < __MAX_XDP_MODE; i++)
9152 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9153 count++;
9154 return count;
9155}
9156EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9157
9158u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9159{
9160 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9161
9162 return prog ? prog->aux->id : 0;
9163}
9164
9165static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9166 struct bpf_xdp_link *link)
9167{
9168 dev->xdp_state[mode].link = link;
9169 dev->xdp_state[mode].prog = NULL;
9170}
9171
9172static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9173 struct bpf_prog *prog)
9174{
9175 dev->xdp_state[mode].link = NULL;
9176 dev->xdp_state[mode].prog = prog;
9177}
9178
9179static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9180 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9181 u32 flags, struct bpf_prog *prog)
9182{
9183 struct netdev_bpf xdp;
9184 int err;
9185
9186 memset(&xdp, 0, sizeof(xdp));
9187 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9188 xdp.extack = extack;
9189 xdp.flags = flags;
9190 xdp.prog = prog;
9191
9192 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9193 * "moved" into driver), so they don't increment it on their own, but
9194 * they do decrement refcnt when program is detached or replaced.
9195 * Given net_device also owns link/prog, we need to bump refcnt here
9196 * to prevent drivers from underflowing it.
9197 */
9198 if (prog)
9199 bpf_prog_inc(prog);
9200 err = bpf_op(dev, &xdp);
9201 if (err) {
9202 if (prog)
9203 bpf_prog_put(prog);
9204 return err;
9205 }
9206
9207 if (mode != XDP_MODE_HW)
9208 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9209
9210 return 0;
9211}
9212
9213static void dev_xdp_uninstall(struct net_device *dev)
9214{
9215 struct bpf_xdp_link *link;
9216 struct bpf_prog *prog;
9217 enum bpf_xdp_mode mode;
9218 bpf_op_t bpf_op;
9219
9220 ASSERT_RTNL();
9221
9222 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9223 prog = dev_xdp_prog(dev, mode);
9224 if (!prog)
9225 continue;
9226
9227 bpf_op = dev_xdp_bpf_op(dev, mode);
9228 if (!bpf_op)
9229 continue;
9230
9231 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9232
9233 /* auto-detach link from net device */
9234 link = dev_xdp_link(dev, mode);
9235 if (link)
9236 link->dev = NULL;
9237 else
9238 bpf_prog_put(prog);
9239
9240 dev_xdp_set_link(dev, mode, NULL);
9241 }
9242}
9243
9244static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9245 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9246 struct bpf_prog *old_prog, u32 flags)
9247{
9248 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9249 struct bpf_prog *cur_prog;
9250 struct net_device *upper;
9251 struct list_head *iter;
9252 enum bpf_xdp_mode mode;
9253 bpf_op_t bpf_op;
9254 int err;
9255
9256 ASSERT_RTNL();
9257
9258 /* either link or prog attachment, never both */
9259 if (link && (new_prog || old_prog))
9260 return -EINVAL;
9261 /* link supports only XDP mode flags */
9262 if (link && (flags & ~XDP_FLAGS_MODES)) {
9263 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9264 return -EINVAL;
9265 }
9266 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9267 if (num_modes > 1) {
9268 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9269 return -EINVAL;
9270 }
9271 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9272 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9273 NL_SET_ERR_MSG(extack,
9274 "More than one program loaded, unset mode is ambiguous");
9275 return -EINVAL;
9276 }
9277 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9278 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9279 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9280 return -EINVAL;
9281 }
9282
9283 mode = dev_xdp_mode(dev, flags);
9284 /* can't replace attached link */
9285 if (dev_xdp_link(dev, mode)) {
9286 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9287 return -EBUSY;
9288 }
9289
9290 /* don't allow if an upper device already has a program */
9291 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9292 if (dev_xdp_prog_count(upper) > 0) {
9293 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9294 return -EEXIST;
9295 }
9296 }
9297
9298 cur_prog = dev_xdp_prog(dev, mode);
9299 /* can't replace attached prog with link */
9300 if (link && cur_prog) {
9301 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9302 return -EBUSY;
9303 }
9304 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9305 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9306 return -EEXIST;
9307 }
9308
9309 /* put effective new program into new_prog */
9310 if (link)
9311 new_prog = link->link.prog;
9312
9313 if (new_prog) {
9314 bool offload = mode == XDP_MODE_HW;
9315 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9316 ? XDP_MODE_DRV : XDP_MODE_SKB;
9317
9318 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9319 NL_SET_ERR_MSG(extack, "XDP program already attached");
9320 return -EBUSY;
9321 }
9322 if (!offload && dev_xdp_prog(dev, other_mode)) {
9323 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9324 return -EEXIST;
9325 }
9326 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9327 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9328 return -EINVAL;
9329 }
9330 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9331 NL_SET_ERR_MSG(extack, "Program bound to different device");
9332 return -EINVAL;
9333 }
9334 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9335 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9336 return -EINVAL;
9337 }
9338 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9339 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9340 return -EINVAL;
9341 }
9342 }
9343
9344 /* don't call drivers if the effective program didn't change */
9345 if (new_prog != cur_prog) {
9346 bpf_op = dev_xdp_bpf_op(dev, mode);
9347 if (!bpf_op) {
9348 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9349 return -EOPNOTSUPP;
9350 }
9351
9352 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9353 if (err)
9354 return err;
9355 }
9356
9357 if (link)
9358 dev_xdp_set_link(dev, mode, link);
9359 else
9360 dev_xdp_set_prog(dev, mode, new_prog);
9361 if (cur_prog)
9362 bpf_prog_put(cur_prog);
9363
9364 return 0;
9365}
9366
9367static int dev_xdp_attach_link(struct net_device *dev,
9368 struct netlink_ext_ack *extack,
9369 struct bpf_xdp_link *link)
9370{
9371 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9372}
9373
9374static int dev_xdp_detach_link(struct net_device *dev,
9375 struct netlink_ext_ack *extack,
9376 struct bpf_xdp_link *link)
9377{
9378 enum bpf_xdp_mode mode;
9379 bpf_op_t bpf_op;
9380
9381 ASSERT_RTNL();
9382
9383 mode = dev_xdp_mode(dev, link->flags);
9384 if (dev_xdp_link(dev, mode) != link)
9385 return -EINVAL;
9386
9387 bpf_op = dev_xdp_bpf_op(dev, mode);
9388 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9389 dev_xdp_set_link(dev, mode, NULL);
9390 return 0;
9391}
9392
9393static void bpf_xdp_link_release(struct bpf_link *link)
9394{
9395 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9396
9397 rtnl_lock();
9398
9399 /* if racing with net_device's tear down, xdp_link->dev might be
9400 * already NULL, in which case link was already auto-detached
9401 */
9402 if (xdp_link->dev) {
9403 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9404 xdp_link->dev = NULL;
9405 }
9406
9407 rtnl_unlock();
9408}
9409
9410static int bpf_xdp_link_detach(struct bpf_link *link)
9411{
9412 bpf_xdp_link_release(link);
9413 return 0;
9414}
9415
9416static void bpf_xdp_link_dealloc(struct bpf_link *link)
9417{
9418 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9419
9420 kfree(xdp_link);
9421}
9422
9423static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9424 struct seq_file *seq)
9425{
9426 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9427 u32 ifindex = 0;
9428
9429 rtnl_lock();
9430 if (xdp_link->dev)
9431 ifindex = xdp_link->dev->ifindex;
9432 rtnl_unlock();
9433
9434 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9435}
9436
9437static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9438 struct bpf_link_info *info)
9439{
9440 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9441 u32 ifindex = 0;
9442
9443 rtnl_lock();
9444 if (xdp_link->dev)
9445 ifindex = xdp_link->dev->ifindex;
9446 rtnl_unlock();
9447
9448 info->xdp.ifindex = ifindex;
9449 return 0;
9450}
9451
9452static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9453 struct bpf_prog *old_prog)
9454{
9455 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9456 enum bpf_xdp_mode mode;
9457 bpf_op_t bpf_op;
9458 int err = 0;
9459
9460 rtnl_lock();
9461
9462 /* link might have been auto-released already, so fail */
9463 if (!xdp_link->dev) {
9464 err = -ENOLINK;
9465 goto out_unlock;
9466 }
9467
9468 if (old_prog && link->prog != old_prog) {
9469 err = -EPERM;
9470 goto out_unlock;
9471 }
9472 old_prog = link->prog;
9473 if (old_prog->type != new_prog->type ||
9474 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9475 err = -EINVAL;
9476 goto out_unlock;
9477 }
9478
9479 if (old_prog == new_prog) {
9480 /* no-op, don't disturb drivers */
9481 bpf_prog_put(new_prog);
9482 goto out_unlock;
9483 }
9484
9485 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9486 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9487 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9488 xdp_link->flags, new_prog);
9489 if (err)
9490 goto out_unlock;
9491
9492 old_prog = xchg(&link->prog, new_prog);
9493 bpf_prog_put(old_prog);
9494
9495out_unlock:
9496 rtnl_unlock();
9497 return err;
9498}
9499
9500static const struct bpf_link_ops bpf_xdp_link_lops = {
9501 .release = bpf_xdp_link_release,
9502 .dealloc = bpf_xdp_link_dealloc,
9503 .detach = bpf_xdp_link_detach,
9504 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9505 .fill_link_info = bpf_xdp_link_fill_link_info,
9506 .update_prog = bpf_xdp_link_update,
9507};
9508
9509int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9510{
9511 struct net *net = current->nsproxy->net_ns;
9512 struct bpf_link_primer link_primer;
9513 struct netlink_ext_ack extack = {};
9514 struct bpf_xdp_link *link;
9515 struct net_device *dev;
9516 int err, fd;
9517
9518 rtnl_lock();
9519 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9520 if (!dev) {
9521 rtnl_unlock();
9522 return -EINVAL;
9523 }
9524
9525 link = kzalloc(sizeof(*link), GFP_USER);
9526 if (!link) {
9527 err = -ENOMEM;
9528 goto unlock;
9529 }
9530
9531 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9532 link->dev = dev;
9533 link->flags = attr->link_create.flags;
9534
9535 err = bpf_link_prime(&link->link, &link_primer);
9536 if (err) {
9537 kfree(link);
9538 goto unlock;
9539 }
9540
9541 err = dev_xdp_attach_link(dev, &extack, link);
9542 rtnl_unlock();
9543
9544 if (err) {
9545 link->dev = NULL;
9546 bpf_link_cleanup(&link_primer);
9547 trace_bpf_xdp_link_attach_failed(extack._msg);
9548 goto out_put_dev;
9549 }
9550
9551 fd = bpf_link_settle(&link_primer);
9552 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9553 dev_put(dev);
9554 return fd;
9555
9556unlock:
9557 rtnl_unlock();
9558
9559out_put_dev:
9560 dev_put(dev);
9561 return err;
9562}
9563
9564/**
9565 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9566 * @dev: device
9567 * @extack: netlink extended ack
9568 * @fd: new program fd or negative value to clear
9569 * @expected_fd: old program fd that userspace expects to replace or clear
9570 * @flags: xdp-related flags
9571 *
9572 * Set or clear a bpf program for a device
9573 */
9574int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9575 int fd, int expected_fd, u32 flags)
9576{
9577 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9578 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9579 int err;
9580
9581 ASSERT_RTNL();
9582
9583 if (fd >= 0) {
9584 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9585 mode != XDP_MODE_SKB);
9586 if (IS_ERR(new_prog))
9587 return PTR_ERR(new_prog);
9588 }
9589
9590 if (expected_fd >= 0) {
9591 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9592 mode != XDP_MODE_SKB);
9593 if (IS_ERR(old_prog)) {
9594 err = PTR_ERR(old_prog);
9595 old_prog = NULL;
9596 goto err_out;
9597 }
9598 }
9599
9600 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9601
9602err_out:
9603 if (err && new_prog)
9604 bpf_prog_put(new_prog);
9605 if (old_prog)
9606 bpf_prog_put(old_prog);
9607 return err;
9608}
9609
9610/**
9611 * dev_index_reserve() - allocate an ifindex in a namespace
9612 * @net: the applicable net namespace
9613 * @ifindex: requested ifindex, pass %0 to get one allocated
9614 *
9615 * Allocate a ifindex for a new device. Caller must either use the ifindex
9616 * to store the device (via list_netdevice()) or call dev_index_release()
9617 * to give the index up.
9618 *
9619 * Return: a suitable unique value for a new device interface number or -errno.
9620 */
9621static int dev_index_reserve(struct net *net, u32 ifindex)
9622{
9623 int err;
9624
9625 if (ifindex > INT_MAX) {
9626 DEBUG_NET_WARN_ON_ONCE(1);
9627 return -EINVAL;
9628 }
9629
9630 if (!ifindex)
9631 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9632 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9633 else
9634 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9635 if (err < 0)
9636 return err;
9637
9638 return ifindex;
9639}
9640
9641static void dev_index_release(struct net *net, int ifindex)
9642{
9643 /* Expect only unused indexes, unlist_netdevice() removes the used */
9644 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9645}
9646
9647/* Delayed registration/unregisteration */
9648LIST_HEAD(net_todo_list);
9649DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9650
9651static void net_set_todo(struct net_device *dev)
9652{
9653 list_add_tail(&dev->todo_list, &net_todo_list);
9654 atomic_inc(&dev_net(dev)->dev_unreg_count);
9655}
9656
9657static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9658 struct net_device *upper, netdev_features_t features)
9659{
9660 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9661 netdev_features_t feature;
9662 int feature_bit;
9663
9664 for_each_netdev_feature(upper_disables, feature_bit) {
9665 feature = __NETIF_F_BIT(feature_bit);
9666 if (!(upper->wanted_features & feature)
9667 && (features & feature)) {
9668 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9669 &feature, upper->name);
9670 features &= ~feature;
9671 }
9672 }
9673
9674 return features;
9675}
9676
9677static void netdev_sync_lower_features(struct net_device *upper,
9678 struct net_device *lower, netdev_features_t features)
9679{
9680 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9681 netdev_features_t feature;
9682 int feature_bit;
9683
9684 for_each_netdev_feature(upper_disables, feature_bit) {
9685 feature = __NETIF_F_BIT(feature_bit);
9686 if (!(features & feature) && (lower->features & feature)) {
9687 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9688 &feature, lower->name);
9689 lower->wanted_features &= ~feature;
9690 __netdev_update_features(lower);
9691
9692 if (unlikely(lower->features & feature))
9693 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9694 &feature, lower->name);
9695 else
9696 netdev_features_change(lower);
9697 }
9698 }
9699}
9700
9701static netdev_features_t netdev_fix_features(struct net_device *dev,
9702 netdev_features_t features)
9703{
9704 /* Fix illegal checksum combinations */
9705 if ((features & NETIF_F_HW_CSUM) &&
9706 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9707 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9708 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9709 }
9710
9711 /* TSO requires that SG is present as well. */
9712 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9713 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9714 features &= ~NETIF_F_ALL_TSO;
9715 }
9716
9717 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9718 !(features & NETIF_F_IP_CSUM)) {
9719 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9720 features &= ~NETIF_F_TSO;
9721 features &= ~NETIF_F_TSO_ECN;
9722 }
9723
9724 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9725 !(features & NETIF_F_IPV6_CSUM)) {
9726 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9727 features &= ~NETIF_F_TSO6;
9728 }
9729
9730 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9731 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9732 features &= ~NETIF_F_TSO_MANGLEID;
9733
9734 /* TSO ECN requires that TSO is present as well. */
9735 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9736 features &= ~NETIF_F_TSO_ECN;
9737
9738 /* Software GSO depends on SG. */
9739 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9740 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9741 features &= ~NETIF_F_GSO;
9742 }
9743
9744 /* GSO partial features require GSO partial be set */
9745 if ((features & dev->gso_partial_features) &&
9746 !(features & NETIF_F_GSO_PARTIAL)) {
9747 netdev_dbg(dev,
9748 "Dropping partially supported GSO features since no GSO partial.\n");
9749 features &= ~dev->gso_partial_features;
9750 }
9751
9752 if (!(features & NETIF_F_RXCSUM)) {
9753 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9754 * successfully merged by hardware must also have the
9755 * checksum verified by hardware. If the user does not
9756 * want to enable RXCSUM, logically, we should disable GRO_HW.
9757 */
9758 if (features & NETIF_F_GRO_HW) {
9759 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9760 features &= ~NETIF_F_GRO_HW;
9761 }
9762 }
9763
9764 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9765 if (features & NETIF_F_RXFCS) {
9766 if (features & NETIF_F_LRO) {
9767 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9768 features &= ~NETIF_F_LRO;
9769 }
9770
9771 if (features & NETIF_F_GRO_HW) {
9772 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9773 features &= ~NETIF_F_GRO_HW;
9774 }
9775 }
9776
9777 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9778 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9779 features &= ~NETIF_F_LRO;
9780 }
9781
9782 if (features & NETIF_F_HW_TLS_TX) {
9783 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9784 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9785 bool hw_csum = features & NETIF_F_HW_CSUM;
9786
9787 if (!ip_csum && !hw_csum) {
9788 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9789 features &= ~NETIF_F_HW_TLS_TX;
9790 }
9791 }
9792
9793 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9794 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9795 features &= ~NETIF_F_HW_TLS_RX;
9796 }
9797
9798 return features;
9799}
9800
9801int __netdev_update_features(struct net_device *dev)
9802{
9803 struct net_device *upper, *lower;
9804 netdev_features_t features;
9805 struct list_head *iter;
9806 int err = -1;
9807
9808 ASSERT_RTNL();
9809
9810 features = netdev_get_wanted_features(dev);
9811
9812 if (dev->netdev_ops->ndo_fix_features)
9813 features = dev->netdev_ops->ndo_fix_features(dev, features);
9814
9815 /* driver might be less strict about feature dependencies */
9816 features = netdev_fix_features(dev, features);
9817
9818 /* some features can't be enabled if they're off on an upper device */
9819 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9820 features = netdev_sync_upper_features(dev, upper, features);
9821
9822 if (dev->features == features)
9823 goto sync_lower;
9824
9825 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9826 &dev->features, &features);
9827
9828 if (dev->netdev_ops->ndo_set_features)
9829 err = dev->netdev_ops->ndo_set_features(dev, features);
9830 else
9831 err = 0;
9832
9833 if (unlikely(err < 0)) {
9834 netdev_err(dev,
9835 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9836 err, &features, &dev->features);
9837 /* return non-0 since some features might have changed and
9838 * it's better to fire a spurious notification than miss it
9839 */
9840 return -1;
9841 }
9842
9843sync_lower:
9844 /* some features must be disabled on lower devices when disabled
9845 * on an upper device (think: bonding master or bridge)
9846 */
9847 netdev_for_each_lower_dev(dev, lower, iter)
9848 netdev_sync_lower_features(dev, lower, features);
9849
9850 if (!err) {
9851 netdev_features_t diff = features ^ dev->features;
9852
9853 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9854 /* udp_tunnel_{get,drop}_rx_info both need
9855 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9856 * device, or they won't do anything.
9857 * Thus we need to update dev->features
9858 * *before* calling udp_tunnel_get_rx_info,
9859 * but *after* calling udp_tunnel_drop_rx_info.
9860 */
9861 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9862 dev->features = features;
9863 udp_tunnel_get_rx_info(dev);
9864 } else {
9865 udp_tunnel_drop_rx_info(dev);
9866 }
9867 }
9868
9869 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9870 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9871 dev->features = features;
9872 err |= vlan_get_rx_ctag_filter_info(dev);
9873 } else {
9874 vlan_drop_rx_ctag_filter_info(dev);
9875 }
9876 }
9877
9878 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9879 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9880 dev->features = features;
9881 err |= vlan_get_rx_stag_filter_info(dev);
9882 } else {
9883 vlan_drop_rx_stag_filter_info(dev);
9884 }
9885 }
9886
9887 dev->features = features;
9888 }
9889
9890 return err < 0 ? 0 : 1;
9891}
9892
9893/**
9894 * netdev_update_features - recalculate device features
9895 * @dev: the device to check
9896 *
9897 * Recalculate dev->features set and send notifications if it
9898 * has changed. Should be called after driver or hardware dependent
9899 * conditions might have changed that influence the features.
9900 */
9901void netdev_update_features(struct net_device *dev)
9902{
9903 if (__netdev_update_features(dev))
9904 netdev_features_change(dev);
9905}
9906EXPORT_SYMBOL(netdev_update_features);
9907
9908/**
9909 * netdev_change_features - recalculate device features
9910 * @dev: the device to check
9911 *
9912 * Recalculate dev->features set and send notifications even
9913 * if they have not changed. Should be called instead of
9914 * netdev_update_features() if also dev->vlan_features might
9915 * have changed to allow the changes to be propagated to stacked
9916 * VLAN devices.
9917 */
9918void netdev_change_features(struct net_device *dev)
9919{
9920 __netdev_update_features(dev);
9921 netdev_features_change(dev);
9922}
9923EXPORT_SYMBOL(netdev_change_features);
9924
9925/**
9926 * netif_stacked_transfer_operstate - transfer operstate
9927 * @rootdev: the root or lower level device to transfer state from
9928 * @dev: the device to transfer operstate to
9929 *
9930 * Transfer operational state from root to device. This is normally
9931 * called when a stacking relationship exists between the root
9932 * device and the device(a leaf device).
9933 */
9934void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9935 struct net_device *dev)
9936{
9937 if (rootdev->operstate == IF_OPER_DORMANT)
9938 netif_dormant_on(dev);
9939 else
9940 netif_dormant_off(dev);
9941
9942 if (rootdev->operstate == IF_OPER_TESTING)
9943 netif_testing_on(dev);
9944 else
9945 netif_testing_off(dev);
9946
9947 if (netif_carrier_ok(rootdev))
9948 netif_carrier_on(dev);
9949 else
9950 netif_carrier_off(dev);
9951}
9952EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9953
9954static int netif_alloc_rx_queues(struct net_device *dev)
9955{
9956 unsigned int i, count = dev->num_rx_queues;
9957 struct netdev_rx_queue *rx;
9958 size_t sz = count * sizeof(*rx);
9959 int err = 0;
9960
9961 BUG_ON(count < 1);
9962
9963 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9964 if (!rx)
9965 return -ENOMEM;
9966
9967 dev->_rx = rx;
9968
9969 for (i = 0; i < count; i++) {
9970 rx[i].dev = dev;
9971
9972 /* XDP RX-queue setup */
9973 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9974 if (err < 0)
9975 goto err_rxq_info;
9976 }
9977 return 0;
9978
9979err_rxq_info:
9980 /* Rollback successful reg's and free other resources */
9981 while (i--)
9982 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9983 kvfree(dev->_rx);
9984 dev->_rx = NULL;
9985 return err;
9986}
9987
9988static void netif_free_rx_queues(struct net_device *dev)
9989{
9990 unsigned int i, count = dev->num_rx_queues;
9991
9992 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9993 if (!dev->_rx)
9994 return;
9995
9996 for (i = 0; i < count; i++)
9997 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9998
9999 kvfree(dev->_rx);
10000}
10001
10002static void netdev_init_one_queue(struct net_device *dev,
10003 struct netdev_queue *queue, void *_unused)
10004{
10005 /* Initialize queue lock */
10006 spin_lock_init(&queue->_xmit_lock);
10007 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10008 queue->xmit_lock_owner = -1;
10009 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10010 queue->dev = dev;
10011#ifdef CONFIG_BQL
10012 dql_init(&queue->dql, HZ);
10013#endif
10014}
10015
10016static void netif_free_tx_queues(struct net_device *dev)
10017{
10018 kvfree(dev->_tx);
10019}
10020
10021static int netif_alloc_netdev_queues(struct net_device *dev)
10022{
10023 unsigned int count = dev->num_tx_queues;
10024 struct netdev_queue *tx;
10025 size_t sz = count * sizeof(*tx);
10026
10027 if (count < 1 || count > 0xffff)
10028 return -EINVAL;
10029
10030 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10031 if (!tx)
10032 return -ENOMEM;
10033
10034 dev->_tx = tx;
10035
10036 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10037 spin_lock_init(&dev->tx_global_lock);
10038
10039 return 0;
10040}
10041
10042void netif_tx_stop_all_queues(struct net_device *dev)
10043{
10044 unsigned int i;
10045
10046 for (i = 0; i < dev->num_tx_queues; i++) {
10047 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10048
10049 netif_tx_stop_queue(txq);
10050 }
10051}
10052EXPORT_SYMBOL(netif_tx_stop_all_queues);
10053
10054/**
10055 * register_netdevice() - register a network device
10056 * @dev: device to register
10057 *
10058 * Take a prepared network device structure and make it externally accessible.
10059 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10060 * Callers must hold the rtnl lock - you may want register_netdev()
10061 * instead of this.
10062 */
10063int register_netdevice(struct net_device *dev)
10064{
10065 int ret;
10066 struct net *net = dev_net(dev);
10067
10068 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10069 NETDEV_FEATURE_COUNT);
10070 BUG_ON(dev_boot_phase);
10071 ASSERT_RTNL();
10072
10073 might_sleep();
10074
10075 /* When net_device's are persistent, this will be fatal. */
10076 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10077 BUG_ON(!net);
10078
10079 ret = ethtool_check_ops(dev->ethtool_ops);
10080 if (ret)
10081 return ret;
10082
10083 spin_lock_init(&dev->addr_list_lock);
10084 netdev_set_addr_lockdep_class(dev);
10085
10086 ret = dev_get_valid_name(net, dev, dev->name);
10087 if (ret < 0)
10088 goto out;
10089
10090 ret = -ENOMEM;
10091 dev->name_node = netdev_name_node_head_alloc(dev);
10092 if (!dev->name_node)
10093 goto out;
10094
10095 /* Init, if this function is available */
10096 if (dev->netdev_ops->ndo_init) {
10097 ret = dev->netdev_ops->ndo_init(dev);
10098 if (ret) {
10099 if (ret > 0)
10100 ret = -EIO;
10101 goto err_free_name;
10102 }
10103 }
10104
10105 if (((dev->hw_features | dev->features) &
10106 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10107 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10108 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10109 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10110 ret = -EINVAL;
10111 goto err_uninit;
10112 }
10113
10114 ret = dev_index_reserve(net, dev->ifindex);
10115 if (ret < 0)
10116 goto err_uninit;
10117 dev->ifindex = ret;
10118
10119 /* Transfer changeable features to wanted_features and enable
10120 * software offloads (GSO and GRO).
10121 */
10122 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10123 dev->features |= NETIF_F_SOFT_FEATURES;
10124
10125 if (dev->udp_tunnel_nic_info) {
10126 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10127 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10128 }
10129
10130 dev->wanted_features = dev->features & dev->hw_features;
10131
10132 if (!(dev->flags & IFF_LOOPBACK))
10133 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10134
10135 /* If IPv4 TCP segmentation offload is supported we should also
10136 * allow the device to enable segmenting the frame with the option
10137 * of ignoring a static IP ID value. This doesn't enable the
10138 * feature itself but allows the user to enable it later.
10139 */
10140 if (dev->hw_features & NETIF_F_TSO)
10141 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10142 if (dev->vlan_features & NETIF_F_TSO)
10143 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10144 if (dev->mpls_features & NETIF_F_TSO)
10145 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10146 if (dev->hw_enc_features & NETIF_F_TSO)
10147 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10148
10149 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10150 */
10151 dev->vlan_features |= NETIF_F_HIGHDMA;
10152
10153 /* Make NETIF_F_SG inheritable to tunnel devices.
10154 */
10155 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10156
10157 /* Make NETIF_F_SG inheritable to MPLS.
10158 */
10159 dev->mpls_features |= NETIF_F_SG;
10160
10161 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10162 ret = notifier_to_errno(ret);
10163 if (ret)
10164 goto err_ifindex_release;
10165
10166 ret = netdev_register_kobject(dev);
10167 write_lock(&dev_base_lock);
10168 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10169 write_unlock(&dev_base_lock);
10170 if (ret)
10171 goto err_uninit_notify;
10172
10173 __netdev_update_features(dev);
10174
10175 /*
10176 * Default initial state at registry is that the
10177 * device is present.
10178 */
10179
10180 set_bit(__LINK_STATE_PRESENT, &dev->state);
10181
10182 linkwatch_init_dev(dev);
10183
10184 dev_init_scheduler(dev);
10185
10186 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10187 list_netdevice(dev);
10188
10189 add_device_randomness(dev->dev_addr, dev->addr_len);
10190
10191 /* If the device has permanent device address, driver should
10192 * set dev_addr and also addr_assign_type should be set to
10193 * NET_ADDR_PERM (default value).
10194 */
10195 if (dev->addr_assign_type == NET_ADDR_PERM)
10196 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10197
10198 /* Notify protocols, that a new device appeared. */
10199 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10200 ret = notifier_to_errno(ret);
10201 if (ret) {
10202 /* Expect explicit free_netdev() on failure */
10203 dev->needs_free_netdev = false;
10204 unregister_netdevice_queue(dev, NULL);
10205 goto out;
10206 }
10207 /*
10208 * Prevent userspace races by waiting until the network
10209 * device is fully setup before sending notifications.
10210 */
10211 if (!dev->rtnl_link_ops ||
10212 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10213 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10214
10215out:
10216 return ret;
10217
10218err_uninit_notify:
10219 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10220err_ifindex_release:
10221 dev_index_release(net, dev->ifindex);
10222err_uninit:
10223 if (dev->netdev_ops->ndo_uninit)
10224 dev->netdev_ops->ndo_uninit(dev);
10225 if (dev->priv_destructor)
10226 dev->priv_destructor(dev);
10227err_free_name:
10228 netdev_name_node_free(dev->name_node);
10229 goto out;
10230}
10231EXPORT_SYMBOL(register_netdevice);
10232
10233/**
10234 * init_dummy_netdev - init a dummy network device for NAPI
10235 * @dev: device to init
10236 *
10237 * This takes a network device structure and initialize the minimum
10238 * amount of fields so it can be used to schedule NAPI polls without
10239 * registering a full blown interface. This is to be used by drivers
10240 * that need to tie several hardware interfaces to a single NAPI
10241 * poll scheduler due to HW limitations.
10242 */
10243int init_dummy_netdev(struct net_device *dev)
10244{
10245 /* Clear everything. Note we don't initialize spinlocks
10246 * are they aren't supposed to be taken by any of the
10247 * NAPI code and this dummy netdev is supposed to be
10248 * only ever used for NAPI polls
10249 */
10250 memset(dev, 0, sizeof(struct net_device));
10251
10252 /* make sure we BUG if trying to hit standard
10253 * register/unregister code path
10254 */
10255 dev->reg_state = NETREG_DUMMY;
10256
10257 /* NAPI wants this */
10258 INIT_LIST_HEAD(&dev->napi_list);
10259
10260 /* a dummy interface is started by default */
10261 set_bit(__LINK_STATE_PRESENT, &dev->state);
10262 set_bit(__LINK_STATE_START, &dev->state);
10263
10264 /* napi_busy_loop stats accounting wants this */
10265 dev_net_set(dev, &init_net);
10266
10267 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10268 * because users of this 'device' dont need to change
10269 * its refcount.
10270 */
10271
10272 return 0;
10273}
10274EXPORT_SYMBOL_GPL(init_dummy_netdev);
10275
10276
10277/**
10278 * register_netdev - register a network device
10279 * @dev: device to register
10280 *
10281 * Take a completed network device structure and add it to the kernel
10282 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10283 * chain. 0 is returned on success. A negative errno code is returned
10284 * on a failure to set up the device, or if the name is a duplicate.
10285 *
10286 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10287 * and expands the device name if you passed a format string to
10288 * alloc_netdev.
10289 */
10290int register_netdev(struct net_device *dev)
10291{
10292 int err;
10293
10294 if (rtnl_lock_killable())
10295 return -EINTR;
10296 err = register_netdevice(dev);
10297 rtnl_unlock();
10298 return err;
10299}
10300EXPORT_SYMBOL(register_netdev);
10301
10302int netdev_refcnt_read(const struct net_device *dev)
10303{
10304#ifdef CONFIG_PCPU_DEV_REFCNT
10305 int i, refcnt = 0;
10306
10307 for_each_possible_cpu(i)
10308 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10309 return refcnt;
10310#else
10311 return refcount_read(&dev->dev_refcnt);
10312#endif
10313}
10314EXPORT_SYMBOL(netdev_refcnt_read);
10315
10316int netdev_unregister_timeout_secs __read_mostly = 10;
10317
10318#define WAIT_REFS_MIN_MSECS 1
10319#define WAIT_REFS_MAX_MSECS 250
10320/**
10321 * netdev_wait_allrefs_any - wait until all references are gone.
10322 * @list: list of net_devices to wait on
10323 *
10324 * This is called when unregistering network devices.
10325 *
10326 * Any protocol or device that holds a reference should register
10327 * for netdevice notification, and cleanup and put back the
10328 * reference if they receive an UNREGISTER event.
10329 * We can get stuck here if buggy protocols don't correctly
10330 * call dev_put.
10331 */
10332static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10333{
10334 unsigned long rebroadcast_time, warning_time;
10335 struct net_device *dev;
10336 int wait = 0;
10337
10338 rebroadcast_time = warning_time = jiffies;
10339
10340 list_for_each_entry(dev, list, todo_list)
10341 if (netdev_refcnt_read(dev) == 1)
10342 return dev;
10343
10344 while (true) {
10345 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10346 rtnl_lock();
10347
10348 /* Rebroadcast unregister notification */
10349 list_for_each_entry(dev, list, todo_list)
10350 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10351
10352 __rtnl_unlock();
10353 rcu_barrier();
10354 rtnl_lock();
10355
10356 list_for_each_entry(dev, list, todo_list)
10357 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10358 &dev->state)) {
10359 /* We must not have linkwatch events
10360 * pending on unregister. If this
10361 * happens, we simply run the queue
10362 * unscheduled, resulting in a noop
10363 * for this device.
10364 */
10365 linkwatch_run_queue();
10366 break;
10367 }
10368
10369 __rtnl_unlock();
10370
10371 rebroadcast_time = jiffies;
10372 }
10373
10374 if (!wait) {
10375 rcu_barrier();
10376 wait = WAIT_REFS_MIN_MSECS;
10377 } else {
10378 msleep(wait);
10379 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10380 }
10381
10382 list_for_each_entry(dev, list, todo_list)
10383 if (netdev_refcnt_read(dev) == 1)
10384 return dev;
10385
10386 if (time_after(jiffies, warning_time +
10387 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10388 list_for_each_entry(dev, list, todo_list) {
10389 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10390 dev->name, netdev_refcnt_read(dev));
10391 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10392 }
10393
10394 warning_time = jiffies;
10395 }
10396 }
10397}
10398
10399/* The sequence is:
10400 *
10401 * rtnl_lock();
10402 * ...
10403 * register_netdevice(x1);
10404 * register_netdevice(x2);
10405 * ...
10406 * unregister_netdevice(y1);
10407 * unregister_netdevice(y2);
10408 * ...
10409 * rtnl_unlock();
10410 * free_netdev(y1);
10411 * free_netdev(y2);
10412 *
10413 * We are invoked by rtnl_unlock().
10414 * This allows us to deal with problems:
10415 * 1) We can delete sysfs objects which invoke hotplug
10416 * without deadlocking with linkwatch via keventd.
10417 * 2) Since we run with the RTNL semaphore not held, we can sleep
10418 * safely in order to wait for the netdev refcnt to drop to zero.
10419 *
10420 * We must not return until all unregister events added during
10421 * the interval the lock was held have been completed.
10422 */
10423void netdev_run_todo(void)
10424{
10425 struct net_device *dev, *tmp;
10426 struct list_head list;
10427#ifdef CONFIG_LOCKDEP
10428 struct list_head unlink_list;
10429
10430 list_replace_init(&net_unlink_list, &unlink_list);
10431
10432 while (!list_empty(&unlink_list)) {
10433 struct net_device *dev = list_first_entry(&unlink_list,
10434 struct net_device,
10435 unlink_list);
10436 list_del_init(&dev->unlink_list);
10437 dev->nested_level = dev->lower_level - 1;
10438 }
10439#endif
10440
10441 /* Snapshot list, allow later requests */
10442 list_replace_init(&net_todo_list, &list);
10443
10444 __rtnl_unlock();
10445
10446 /* Wait for rcu callbacks to finish before next phase */
10447 if (!list_empty(&list))
10448 rcu_barrier();
10449
10450 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10451 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10452 netdev_WARN(dev, "run_todo but not unregistering\n");
10453 list_del(&dev->todo_list);
10454 continue;
10455 }
10456
10457 write_lock(&dev_base_lock);
10458 dev->reg_state = NETREG_UNREGISTERED;
10459 write_unlock(&dev_base_lock);
10460 linkwatch_forget_dev(dev);
10461 }
10462
10463 while (!list_empty(&list)) {
10464 dev = netdev_wait_allrefs_any(&list);
10465 list_del(&dev->todo_list);
10466
10467 /* paranoia */
10468 BUG_ON(netdev_refcnt_read(dev) != 1);
10469 BUG_ON(!list_empty(&dev->ptype_all));
10470 BUG_ON(!list_empty(&dev->ptype_specific));
10471 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10472 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10473
10474 if (dev->priv_destructor)
10475 dev->priv_destructor(dev);
10476 if (dev->needs_free_netdev)
10477 free_netdev(dev);
10478
10479 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10480 wake_up(&netdev_unregistering_wq);
10481
10482 /* Free network device */
10483 kobject_put(&dev->dev.kobj);
10484 }
10485}
10486
10487/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10488 * all the same fields in the same order as net_device_stats, with only
10489 * the type differing, but rtnl_link_stats64 may have additional fields
10490 * at the end for newer counters.
10491 */
10492void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10493 const struct net_device_stats *netdev_stats)
10494{
10495 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10496 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10497 u64 *dst = (u64 *)stats64;
10498
10499 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10500 for (i = 0; i < n; i++)
10501 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10502 /* zero out counters that only exist in rtnl_link_stats64 */
10503 memset((char *)stats64 + n * sizeof(u64), 0,
10504 sizeof(*stats64) - n * sizeof(u64));
10505}
10506EXPORT_SYMBOL(netdev_stats_to_stats64);
10507
10508static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10509 struct net_device *dev)
10510{
10511 struct net_device_core_stats __percpu *p;
10512
10513 p = alloc_percpu_gfp(struct net_device_core_stats,
10514 GFP_ATOMIC | __GFP_NOWARN);
10515
10516 if (p && cmpxchg(&dev->core_stats, NULL, p))
10517 free_percpu(p);
10518
10519 /* This READ_ONCE() pairs with the cmpxchg() above */
10520 return READ_ONCE(dev->core_stats);
10521}
10522
10523noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10524{
10525 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10526 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10527 unsigned long __percpu *field;
10528
10529 if (unlikely(!p)) {
10530 p = netdev_core_stats_alloc(dev);
10531 if (!p)
10532 return;
10533 }
10534
10535 field = (__force unsigned long __percpu *)((__force void *)p + offset);
10536 this_cpu_inc(*field);
10537}
10538EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10539
10540/**
10541 * dev_get_stats - get network device statistics
10542 * @dev: device to get statistics from
10543 * @storage: place to store stats
10544 *
10545 * Get network statistics from device. Return @storage.
10546 * The device driver may provide its own method by setting
10547 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10548 * otherwise the internal statistics structure is used.
10549 */
10550struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10551 struct rtnl_link_stats64 *storage)
10552{
10553 const struct net_device_ops *ops = dev->netdev_ops;
10554 const struct net_device_core_stats __percpu *p;
10555
10556 if (ops->ndo_get_stats64) {
10557 memset(storage, 0, sizeof(*storage));
10558 ops->ndo_get_stats64(dev, storage);
10559 } else if (ops->ndo_get_stats) {
10560 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10561 } else {
10562 netdev_stats_to_stats64(storage, &dev->stats);
10563 }
10564
10565 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10566 p = READ_ONCE(dev->core_stats);
10567 if (p) {
10568 const struct net_device_core_stats *core_stats;
10569 int i;
10570
10571 for_each_possible_cpu(i) {
10572 core_stats = per_cpu_ptr(p, i);
10573 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10574 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10575 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10576 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10577 }
10578 }
10579 return storage;
10580}
10581EXPORT_SYMBOL(dev_get_stats);
10582
10583/**
10584 * dev_fetch_sw_netstats - get per-cpu network device statistics
10585 * @s: place to store stats
10586 * @netstats: per-cpu network stats to read from
10587 *
10588 * Read per-cpu network statistics and populate the related fields in @s.
10589 */
10590void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10591 const struct pcpu_sw_netstats __percpu *netstats)
10592{
10593 int cpu;
10594
10595 for_each_possible_cpu(cpu) {
10596 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10597 const struct pcpu_sw_netstats *stats;
10598 unsigned int start;
10599
10600 stats = per_cpu_ptr(netstats, cpu);
10601 do {
10602 start = u64_stats_fetch_begin(&stats->syncp);
10603 rx_packets = u64_stats_read(&stats->rx_packets);
10604 rx_bytes = u64_stats_read(&stats->rx_bytes);
10605 tx_packets = u64_stats_read(&stats->tx_packets);
10606 tx_bytes = u64_stats_read(&stats->tx_bytes);
10607 } while (u64_stats_fetch_retry(&stats->syncp, start));
10608
10609 s->rx_packets += rx_packets;
10610 s->rx_bytes += rx_bytes;
10611 s->tx_packets += tx_packets;
10612 s->tx_bytes += tx_bytes;
10613 }
10614}
10615EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10616
10617/**
10618 * dev_get_tstats64 - ndo_get_stats64 implementation
10619 * @dev: device to get statistics from
10620 * @s: place to store stats
10621 *
10622 * Populate @s from dev->stats and dev->tstats. Can be used as
10623 * ndo_get_stats64() callback.
10624 */
10625void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10626{
10627 netdev_stats_to_stats64(s, &dev->stats);
10628 dev_fetch_sw_netstats(s, dev->tstats);
10629}
10630EXPORT_SYMBOL_GPL(dev_get_tstats64);
10631
10632struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10633{
10634 struct netdev_queue *queue = dev_ingress_queue(dev);
10635
10636#ifdef CONFIG_NET_CLS_ACT
10637 if (queue)
10638 return queue;
10639 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10640 if (!queue)
10641 return NULL;
10642 netdev_init_one_queue(dev, queue, NULL);
10643 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10644 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10645 rcu_assign_pointer(dev->ingress_queue, queue);
10646#endif
10647 return queue;
10648}
10649
10650static const struct ethtool_ops default_ethtool_ops;
10651
10652void netdev_set_default_ethtool_ops(struct net_device *dev,
10653 const struct ethtool_ops *ops)
10654{
10655 if (dev->ethtool_ops == &default_ethtool_ops)
10656 dev->ethtool_ops = ops;
10657}
10658EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10659
10660/**
10661 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10662 * @dev: netdev to enable the IRQ coalescing on
10663 *
10664 * Sets a conservative default for SW IRQ coalescing. Users can use
10665 * sysfs attributes to override the default values.
10666 */
10667void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10668{
10669 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10670
10671 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10672 dev->gro_flush_timeout = 20000;
10673 dev->napi_defer_hard_irqs = 1;
10674 }
10675}
10676EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10677
10678void netdev_freemem(struct net_device *dev)
10679{
10680 char *addr = (char *)dev - dev->padded;
10681
10682 kvfree(addr);
10683}
10684
10685/**
10686 * alloc_netdev_mqs - allocate network device
10687 * @sizeof_priv: size of private data to allocate space for
10688 * @name: device name format string
10689 * @name_assign_type: origin of device name
10690 * @setup: callback to initialize device
10691 * @txqs: the number of TX subqueues to allocate
10692 * @rxqs: the number of RX subqueues to allocate
10693 *
10694 * Allocates a struct net_device with private data area for driver use
10695 * and performs basic initialization. Also allocates subqueue structs
10696 * for each queue on the device.
10697 */
10698struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10699 unsigned char name_assign_type,
10700 void (*setup)(struct net_device *),
10701 unsigned int txqs, unsigned int rxqs)
10702{
10703 struct net_device *dev;
10704 unsigned int alloc_size;
10705 struct net_device *p;
10706
10707 BUG_ON(strlen(name) >= sizeof(dev->name));
10708
10709 if (txqs < 1) {
10710 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10711 return NULL;
10712 }
10713
10714 if (rxqs < 1) {
10715 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10716 return NULL;
10717 }
10718
10719 alloc_size = sizeof(struct net_device);
10720 if (sizeof_priv) {
10721 /* ensure 32-byte alignment of private area */
10722 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10723 alloc_size += sizeof_priv;
10724 }
10725 /* ensure 32-byte alignment of whole construct */
10726 alloc_size += NETDEV_ALIGN - 1;
10727
10728 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10729 if (!p)
10730 return NULL;
10731
10732 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10733 dev->padded = (char *)dev - (char *)p;
10734
10735 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10736#ifdef CONFIG_PCPU_DEV_REFCNT
10737 dev->pcpu_refcnt = alloc_percpu(int);
10738 if (!dev->pcpu_refcnt)
10739 goto free_dev;
10740 __dev_hold(dev);
10741#else
10742 refcount_set(&dev->dev_refcnt, 1);
10743#endif
10744
10745 if (dev_addr_init(dev))
10746 goto free_pcpu;
10747
10748 dev_mc_init(dev);
10749 dev_uc_init(dev);
10750
10751 dev_net_set(dev, &init_net);
10752
10753 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10754 dev->xdp_zc_max_segs = 1;
10755 dev->gso_max_segs = GSO_MAX_SEGS;
10756 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10757 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10758 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10759 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10760 dev->tso_max_segs = TSO_MAX_SEGS;
10761 dev->upper_level = 1;
10762 dev->lower_level = 1;
10763#ifdef CONFIG_LOCKDEP
10764 dev->nested_level = 0;
10765 INIT_LIST_HEAD(&dev->unlink_list);
10766#endif
10767
10768 INIT_LIST_HEAD(&dev->napi_list);
10769 INIT_LIST_HEAD(&dev->unreg_list);
10770 INIT_LIST_HEAD(&dev->close_list);
10771 INIT_LIST_HEAD(&dev->link_watch_list);
10772 INIT_LIST_HEAD(&dev->adj_list.upper);
10773 INIT_LIST_HEAD(&dev->adj_list.lower);
10774 INIT_LIST_HEAD(&dev->ptype_all);
10775 INIT_LIST_HEAD(&dev->ptype_specific);
10776 INIT_LIST_HEAD(&dev->net_notifier_list);
10777#ifdef CONFIG_NET_SCHED
10778 hash_init(dev->qdisc_hash);
10779#endif
10780 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10781 setup(dev);
10782
10783 if (!dev->tx_queue_len) {
10784 dev->priv_flags |= IFF_NO_QUEUE;
10785 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10786 }
10787
10788 dev->num_tx_queues = txqs;
10789 dev->real_num_tx_queues = txqs;
10790 if (netif_alloc_netdev_queues(dev))
10791 goto free_all;
10792
10793 dev->num_rx_queues = rxqs;
10794 dev->real_num_rx_queues = rxqs;
10795 if (netif_alloc_rx_queues(dev))
10796 goto free_all;
10797
10798 strcpy(dev->name, name);
10799 dev->name_assign_type = name_assign_type;
10800 dev->group = INIT_NETDEV_GROUP;
10801 if (!dev->ethtool_ops)
10802 dev->ethtool_ops = &default_ethtool_ops;
10803
10804 nf_hook_netdev_init(dev);
10805
10806 return dev;
10807
10808free_all:
10809 free_netdev(dev);
10810 return NULL;
10811
10812free_pcpu:
10813#ifdef CONFIG_PCPU_DEV_REFCNT
10814 free_percpu(dev->pcpu_refcnt);
10815free_dev:
10816#endif
10817 netdev_freemem(dev);
10818 return NULL;
10819}
10820EXPORT_SYMBOL(alloc_netdev_mqs);
10821
10822/**
10823 * free_netdev - free network device
10824 * @dev: device
10825 *
10826 * This function does the last stage of destroying an allocated device
10827 * interface. The reference to the device object is released. If this
10828 * is the last reference then it will be freed.Must be called in process
10829 * context.
10830 */
10831void free_netdev(struct net_device *dev)
10832{
10833 struct napi_struct *p, *n;
10834
10835 might_sleep();
10836
10837 /* When called immediately after register_netdevice() failed the unwind
10838 * handling may still be dismantling the device. Handle that case by
10839 * deferring the free.
10840 */
10841 if (dev->reg_state == NETREG_UNREGISTERING) {
10842 ASSERT_RTNL();
10843 dev->needs_free_netdev = true;
10844 return;
10845 }
10846
10847 netif_free_tx_queues(dev);
10848 netif_free_rx_queues(dev);
10849
10850 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10851
10852 /* Flush device addresses */
10853 dev_addr_flush(dev);
10854
10855 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10856 netif_napi_del(p);
10857
10858 ref_tracker_dir_exit(&dev->refcnt_tracker);
10859#ifdef CONFIG_PCPU_DEV_REFCNT
10860 free_percpu(dev->pcpu_refcnt);
10861 dev->pcpu_refcnt = NULL;
10862#endif
10863 free_percpu(dev->core_stats);
10864 dev->core_stats = NULL;
10865 free_percpu(dev->xdp_bulkq);
10866 dev->xdp_bulkq = NULL;
10867
10868 /* Compatibility with error handling in drivers */
10869 if (dev->reg_state == NETREG_UNINITIALIZED) {
10870 netdev_freemem(dev);
10871 return;
10872 }
10873
10874 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10875 dev->reg_state = NETREG_RELEASED;
10876
10877 /* will free via device release */
10878 put_device(&dev->dev);
10879}
10880EXPORT_SYMBOL(free_netdev);
10881
10882/**
10883 * synchronize_net - Synchronize with packet receive processing
10884 *
10885 * Wait for packets currently being received to be done.
10886 * Does not block later packets from starting.
10887 */
10888void synchronize_net(void)
10889{
10890 might_sleep();
10891 if (rtnl_is_locked())
10892 synchronize_rcu_expedited();
10893 else
10894 synchronize_rcu();
10895}
10896EXPORT_SYMBOL(synchronize_net);
10897
10898/**
10899 * unregister_netdevice_queue - remove device from the kernel
10900 * @dev: device
10901 * @head: list
10902 *
10903 * This function shuts down a device interface and removes it
10904 * from the kernel tables.
10905 * If head not NULL, device is queued to be unregistered later.
10906 *
10907 * Callers must hold the rtnl semaphore. You may want
10908 * unregister_netdev() instead of this.
10909 */
10910
10911void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10912{
10913 ASSERT_RTNL();
10914
10915 if (head) {
10916 list_move_tail(&dev->unreg_list, head);
10917 } else {
10918 LIST_HEAD(single);
10919
10920 list_add(&dev->unreg_list, &single);
10921 unregister_netdevice_many(&single);
10922 }
10923}
10924EXPORT_SYMBOL(unregister_netdevice_queue);
10925
10926void unregister_netdevice_many_notify(struct list_head *head,
10927 u32 portid, const struct nlmsghdr *nlh)
10928{
10929 struct net_device *dev, *tmp;
10930 LIST_HEAD(close_head);
10931
10932 BUG_ON(dev_boot_phase);
10933 ASSERT_RTNL();
10934
10935 if (list_empty(head))
10936 return;
10937
10938 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10939 /* Some devices call without registering
10940 * for initialization unwind. Remove those
10941 * devices and proceed with the remaining.
10942 */
10943 if (dev->reg_state == NETREG_UNINITIALIZED) {
10944 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10945 dev->name, dev);
10946
10947 WARN_ON(1);
10948 list_del(&dev->unreg_list);
10949 continue;
10950 }
10951 dev->dismantle = true;
10952 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10953 }
10954
10955 /* If device is running, close it first. */
10956 list_for_each_entry(dev, head, unreg_list)
10957 list_add_tail(&dev->close_list, &close_head);
10958 dev_close_many(&close_head, true);
10959
10960 list_for_each_entry(dev, head, unreg_list) {
10961 /* And unlink it from device chain. */
10962 write_lock(&dev_base_lock);
10963 unlist_netdevice(dev, false);
10964 dev->reg_state = NETREG_UNREGISTERING;
10965 write_unlock(&dev_base_lock);
10966 }
10967 flush_all_backlogs();
10968
10969 synchronize_net();
10970
10971 list_for_each_entry(dev, head, unreg_list) {
10972 struct sk_buff *skb = NULL;
10973
10974 /* Shutdown queueing discipline. */
10975 dev_shutdown(dev);
10976 dev_tcx_uninstall(dev);
10977 dev_xdp_uninstall(dev);
10978 bpf_dev_bound_netdev_unregister(dev);
10979
10980 netdev_offload_xstats_disable_all(dev);
10981
10982 /* Notify protocols, that we are about to destroy
10983 * this device. They should clean all the things.
10984 */
10985 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10986
10987 if (!dev->rtnl_link_ops ||
10988 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10989 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10990 GFP_KERNEL, NULL, 0,
10991 portid, nlh);
10992
10993 /*
10994 * Flush the unicast and multicast chains
10995 */
10996 dev_uc_flush(dev);
10997 dev_mc_flush(dev);
10998
10999 netdev_name_node_alt_flush(dev);
11000 netdev_name_node_free(dev->name_node);
11001
11002 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11003
11004 if (dev->netdev_ops->ndo_uninit)
11005 dev->netdev_ops->ndo_uninit(dev);
11006
11007 if (skb)
11008 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11009
11010 /* Notifier chain MUST detach us all upper devices. */
11011 WARN_ON(netdev_has_any_upper_dev(dev));
11012 WARN_ON(netdev_has_any_lower_dev(dev));
11013
11014 /* Remove entries from kobject tree */
11015 netdev_unregister_kobject(dev);
11016#ifdef CONFIG_XPS
11017 /* Remove XPS queueing entries */
11018 netif_reset_xps_queues_gt(dev, 0);
11019#endif
11020 }
11021
11022 synchronize_net();
11023
11024 list_for_each_entry(dev, head, unreg_list) {
11025 netdev_put(dev, &dev->dev_registered_tracker);
11026 net_set_todo(dev);
11027 }
11028
11029 list_del(head);
11030}
11031
11032/**
11033 * unregister_netdevice_many - unregister many devices
11034 * @head: list of devices
11035 *
11036 * Note: As most callers use a stack allocated list_head,
11037 * we force a list_del() to make sure stack wont be corrupted later.
11038 */
11039void unregister_netdevice_many(struct list_head *head)
11040{
11041 unregister_netdevice_many_notify(head, 0, NULL);
11042}
11043EXPORT_SYMBOL(unregister_netdevice_many);
11044
11045/**
11046 * unregister_netdev - remove device from the kernel
11047 * @dev: device
11048 *
11049 * This function shuts down a device interface and removes it
11050 * from the kernel tables.
11051 *
11052 * This is just a wrapper for unregister_netdevice that takes
11053 * the rtnl semaphore. In general you want to use this and not
11054 * unregister_netdevice.
11055 */
11056void unregister_netdev(struct net_device *dev)
11057{
11058 rtnl_lock();
11059 unregister_netdevice(dev);
11060 rtnl_unlock();
11061}
11062EXPORT_SYMBOL(unregister_netdev);
11063
11064/**
11065 * __dev_change_net_namespace - move device to different nethost namespace
11066 * @dev: device
11067 * @net: network namespace
11068 * @pat: If not NULL name pattern to try if the current device name
11069 * is already taken in the destination network namespace.
11070 * @new_ifindex: If not zero, specifies device index in the target
11071 * namespace.
11072 *
11073 * This function shuts down a device interface and moves it
11074 * to a new network namespace. On success 0 is returned, on
11075 * a failure a netagive errno code is returned.
11076 *
11077 * Callers must hold the rtnl semaphore.
11078 */
11079
11080int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11081 const char *pat, int new_ifindex)
11082{
11083 struct netdev_name_node *name_node;
11084 struct net *net_old = dev_net(dev);
11085 char new_name[IFNAMSIZ] = {};
11086 int err, new_nsid;
11087
11088 ASSERT_RTNL();
11089
11090 /* Don't allow namespace local devices to be moved. */
11091 err = -EINVAL;
11092 if (dev->features & NETIF_F_NETNS_LOCAL)
11093 goto out;
11094
11095 /* Ensure the device has been registrered */
11096 if (dev->reg_state != NETREG_REGISTERED)
11097 goto out;
11098
11099 /* Get out if there is nothing todo */
11100 err = 0;
11101 if (net_eq(net_old, net))
11102 goto out;
11103
11104 /* Pick the destination device name, and ensure
11105 * we can use it in the destination network namespace.
11106 */
11107 err = -EEXIST;
11108 if (netdev_name_in_use(net, dev->name)) {
11109 /* We get here if we can't use the current device name */
11110 if (!pat)
11111 goto out;
11112 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11113 if (err < 0)
11114 goto out;
11115 }
11116 /* Check that none of the altnames conflicts. */
11117 err = -EEXIST;
11118 netdev_for_each_altname(dev, name_node)
11119 if (netdev_name_in_use(net, name_node->name))
11120 goto out;
11121
11122 /* Check that new_ifindex isn't used yet. */
11123 if (new_ifindex) {
11124 err = dev_index_reserve(net, new_ifindex);
11125 if (err < 0)
11126 goto out;
11127 } else {
11128 /* If there is an ifindex conflict assign a new one */
11129 err = dev_index_reserve(net, dev->ifindex);
11130 if (err == -EBUSY)
11131 err = dev_index_reserve(net, 0);
11132 if (err < 0)
11133 goto out;
11134 new_ifindex = err;
11135 }
11136
11137 /*
11138 * And now a mini version of register_netdevice unregister_netdevice.
11139 */
11140
11141 /* If device is running close it first. */
11142 dev_close(dev);
11143
11144 /* And unlink it from device chain */
11145 unlist_netdevice(dev, true);
11146
11147 synchronize_net();
11148
11149 /* Shutdown queueing discipline. */
11150 dev_shutdown(dev);
11151
11152 /* Notify protocols, that we are about to destroy
11153 * this device. They should clean all the things.
11154 *
11155 * Note that dev->reg_state stays at NETREG_REGISTERED.
11156 * This is wanted because this way 8021q and macvlan know
11157 * the device is just moving and can keep their slaves up.
11158 */
11159 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11160 rcu_barrier();
11161
11162 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11163
11164 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11165 new_ifindex);
11166
11167 /*
11168 * Flush the unicast and multicast chains
11169 */
11170 dev_uc_flush(dev);
11171 dev_mc_flush(dev);
11172
11173 /* Send a netdev-removed uevent to the old namespace */
11174 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11175 netdev_adjacent_del_links(dev);
11176
11177 /* Move per-net netdevice notifiers that are following the netdevice */
11178 move_netdevice_notifiers_dev_net(dev, net);
11179
11180 /* Actually switch the network namespace */
11181 dev_net_set(dev, net);
11182 dev->ifindex = new_ifindex;
11183
11184 /* Send a netdev-add uevent to the new namespace */
11185 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11186 netdev_adjacent_add_links(dev);
11187
11188 if (new_name[0]) /* Rename the netdev to prepared name */
11189 strscpy(dev->name, new_name, IFNAMSIZ);
11190
11191 /* Fixup kobjects */
11192 err = device_rename(&dev->dev, dev->name);
11193 WARN_ON(err);
11194
11195 /* Adapt owner in case owning user namespace of target network
11196 * namespace is different from the original one.
11197 */
11198 err = netdev_change_owner(dev, net_old, net);
11199 WARN_ON(err);
11200
11201 /* Add the device back in the hashes */
11202 list_netdevice(dev);
11203
11204 /* Notify protocols, that a new device appeared. */
11205 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11206
11207 /*
11208 * Prevent userspace races by waiting until the network
11209 * device is fully setup before sending notifications.
11210 */
11211 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11212
11213 synchronize_net();
11214 err = 0;
11215out:
11216 return err;
11217}
11218EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11219
11220static int dev_cpu_dead(unsigned int oldcpu)
11221{
11222 struct sk_buff **list_skb;
11223 struct sk_buff *skb;
11224 unsigned int cpu;
11225 struct softnet_data *sd, *oldsd, *remsd = NULL;
11226
11227 local_irq_disable();
11228 cpu = smp_processor_id();
11229 sd = &per_cpu(softnet_data, cpu);
11230 oldsd = &per_cpu(softnet_data, oldcpu);
11231
11232 /* Find end of our completion_queue. */
11233 list_skb = &sd->completion_queue;
11234 while (*list_skb)
11235 list_skb = &(*list_skb)->next;
11236 /* Append completion queue from offline CPU. */
11237 *list_skb = oldsd->completion_queue;
11238 oldsd->completion_queue = NULL;
11239
11240 /* Append output queue from offline CPU. */
11241 if (oldsd->output_queue) {
11242 *sd->output_queue_tailp = oldsd->output_queue;
11243 sd->output_queue_tailp = oldsd->output_queue_tailp;
11244 oldsd->output_queue = NULL;
11245 oldsd->output_queue_tailp = &oldsd->output_queue;
11246 }
11247 /* Append NAPI poll list from offline CPU, with one exception :
11248 * process_backlog() must be called by cpu owning percpu backlog.
11249 * We properly handle process_queue & input_pkt_queue later.
11250 */
11251 while (!list_empty(&oldsd->poll_list)) {
11252 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11253 struct napi_struct,
11254 poll_list);
11255
11256 list_del_init(&napi->poll_list);
11257 if (napi->poll == process_backlog)
11258 napi->state = 0;
11259 else
11260 ____napi_schedule(sd, napi);
11261 }
11262
11263 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11264 local_irq_enable();
11265
11266#ifdef CONFIG_RPS
11267 remsd = oldsd->rps_ipi_list;
11268 oldsd->rps_ipi_list = NULL;
11269#endif
11270 /* send out pending IPI's on offline CPU */
11271 net_rps_send_ipi(remsd);
11272
11273 /* Process offline CPU's input_pkt_queue */
11274 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11275 netif_rx(skb);
11276 input_queue_head_incr(oldsd);
11277 }
11278 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11279 netif_rx(skb);
11280 input_queue_head_incr(oldsd);
11281 }
11282
11283 return 0;
11284}
11285
11286/**
11287 * netdev_increment_features - increment feature set by one
11288 * @all: current feature set
11289 * @one: new feature set
11290 * @mask: mask feature set
11291 *
11292 * Computes a new feature set after adding a device with feature set
11293 * @one to the master device with current feature set @all. Will not
11294 * enable anything that is off in @mask. Returns the new feature set.
11295 */
11296netdev_features_t netdev_increment_features(netdev_features_t all,
11297 netdev_features_t one, netdev_features_t mask)
11298{
11299 if (mask & NETIF_F_HW_CSUM)
11300 mask |= NETIF_F_CSUM_MASK;
11301 mask |= NETIF_F_VLAN_CHALLENGED;
11302
11303 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11304 all &= one | ~NETIF_F_ALL_FOR_ALL;
11305
11306 /* If one device supports hw checksumming, set for all. */
11307 if (all & NETIF_F_HW_CSUM)
11308 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11309
11310 return all;
11311}
11312EXPORT_SYMBOL(netdev_increment_features);
11313
11314static struct hlist_head * __net_init netdev_create_hash(void)
11315{
11316 int i;
11317 struct hlist_head *hash;
11318
11319 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11320 if (hash != NULL)
11321 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11322 INIT_HLIST_HEAD(&hash[i]);
11323
11324 return hash;
11325}
11326
11327/* Initialize per network namespace state */
11328static int __net_init netdev_init(struct net *net)
11329{
11330 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11331 8 * sizeof_field(struct napi_struct, gro_bitmask));
11332
11333 INIT_LIST_HEAD(&net->dev_base_head);
11334
11335 net->dev_name_head = netdev_create_hash();
11336 if (net->dev_name_head == NULL)
11337 goto err_name;
11338
11339 net->dev_index_head = netdev_create_hash();
11340 if (net->dev_index_head == NULL)
11341 goto err_idx;
11342
11343 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11344
11345 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11346
11347 return 0;
11348
11349err_idx:
11350 kfree(net->dev_name_head);
11351err_name:
11352 return -ENOMEM;
11353}
11354
11355/**
11356 * netdev_drivername - network driver for the device
11357 * @dev: network device
11358 *
11359 * Determine network driver for device.
11360 */
11361const char *netdev_drivername(const struct net_device *dev)
11362{
11363 const struct device_driver *driver;
11364 const struct device *parent;
11365 const char *empty = "";
11366
11367 parent = dev->dev.parent;
11368 if (!parent)
11369 return empty;
11370
11371 driver = parent->driver;
11372 if (driver && driver->name)
11373 return driver->name;
11374 return empty;
11375}
11376
11377static void __netdev_printk(const char *level, const struct net_device *dev,
11378 struct va_format *vaf)
11379{
11380 if (dev && dev->dev.parent) {
11381 dev_printk_emit(level[1] - '0',
11382 dev->dev.parent,
11383 "%s %s %s%s: %pV",
11384 dev_driver_string(dev->dev.parent),
11385 dev_name(dev->dev.parent),
11386 netdev_name(dev), netdev_reg_state(dev),
11387 vaf);
11388 } else if (dev) {
11389 printk("%s%s%s: %pV",
11390 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11391 } else {
11392 printk("%s(NULL net_device): %pV", level, vaf);
11393 }
11394}
11395
11396void netdev_printk(const char *level, const struct net_device *dev,
11397 const char *format, ...)
11398{
11399 struct va_format vaf;
11400 va_list args;
11401
11402 va_start(args, format);
11403
11404 vaf.fmt = format;
11405 vaf.va = &args;
11406
11407 __netdev_printk(level, dev, &vaf);
11408
11409 va_end(args);
11410}
11411EXPORT_SYMBOL(netdev_printk);
11412
11413#define define_netdev_printk_level(func, level) \
11414void func(const struct net_device *dev, const char *fmt, ...) \
11415{ \
11416 struct va_format vaf; \
11417 va_list args; \
11418 \
11419 va_start(args, fmt); \
11420 \
11421 vaf.fmt = fmt; \
11422 vaf.va = &args; \
11423 \
11424 __netdev_printk(level, dev, &vaf); \
11425 \
11426 va_end(args); \
11427} \
11428EXPORT_SYMBOL(func);
11429
11430define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11431define_netdev_printk_level(netdev_alert, KERN_ALERT);
11432define_netdev_printk_level(netdev_crit, KERN_CRIT);
11433define_netdev_printk_level(netdev_err, KERN_ERR);
11434define_netdev_printk_level(netdev_warn, KERN_WARNING);
11435define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11436define_netdev_printk_level(netdev_info, KERN_INFO);
11437
11438static void __net_exit netdev_exit(struct net *net)
11439{
11440 kfree(net->dev_name_head);
11441 kfree(net->dev_index_head);
11442 xa_destroy(&net->dev_by_index);
11443 if (net != &init_net)
11444 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11445}
11446
11447static struct pernet_operations __net_initdata netdev_net_ops = {
11448 .init = netdev_init,
11449 .exit = netdev_exit,
11450};
11451
11452static void __net_exit default_device_exit_net(struct net *net)
11453{
11454 struct net_device *dev, *aux;
11455 /*
11456 * Push all migratable network devices back to the
11457 * initial network namespace
11458 */
11459 ASSERT_RTNL();
11460 for_each_netdev_safe(net, dev, aux) {
11461 int err;
11462 char fb_name[IFNAMSIZ];
11463
11464 /* Ignore unmoveable devices (i.e. loopback) */
11465 if (dev->features & NETIF_F_NETNS_LOCAL)
11466 continue;
11467
11468 /* Leave virtual devices for the generic cleanup */
11469 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11470 continue;
11471
11472 /* Push remaining network devices to init_net */
11473 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11474 if (netdev_name_in_use(&init_net, fb_name))
11475 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11476 err = dev_change_net_namespace(dev, &init_net, fb_name);
11477 if (err) {
11478 pr_emerg("%s: failed to move %s to init_net: %d\n",
11479 __func__, dev->name, err);
11480 BUG();
11481 }
11482 }
11483}
11484
11485static void __net_exit default_device_exit_batch(struct list_head *net_list)
11486{
11487 /* At exit all network devices most be removed from a network
11488 * namespace. Do this in the reverse order of registration.
11489 * Do this across as many network namespaces as possible to
11490 * improve batching efficiency.
11491 */
11492 struct net_device *dev;
11493 struct net *net;
11494 LIST_HEAD(dev_kill_list);
11495
11496 rtnl_lock();
11497 list_for_each_entry(net, net_list, exit_list) {
11498 default_device_exit_net(net);
11499 cond_resched();
11500 }
11501
11502 list_for_each_entry(net, net_list, exit_list) {
11503 for_each_netdev_reverse(net, dev) {
11504 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11505 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11506 else
11507 unregister_netdevice_queue(dev, &dev_kill_list);
11508 }
11509 }
11510 unregister_netdevice_many(&dev_kill_list);
11511 rtnl_unlock();
11512}
11513
11514static struct pernet_operations __net_initdata default_device_ops = {
11515 .exit_batch = default_device_exit_batch,
11516};
11517
11518/*
11519 * Initialize the DEV module. At boot time this walks the device list and
11520 * unhooks any devices that fail to initialise (normally hardware not
11521 * present) and leaves us with a valid list of present and active devices.
11522 *
11523 */
11524
11525/*
11526 * This is called single threaded during boot, so no need
11527 * to take the rtnl semaphore.
11528 */
11529static int __init net_dev_init(void)
11530{
11531 int i, rc = -ENOMEM;
11532
11533 BUG_ON(!dev_boot_phase);
11534
11535 if (dev_proc_init())
11536 goto out;
11537
11538 if (netdev_kobject_init())
11539 goto out;
11540
11541 INIT_LIST_HEAD(&ptype_all);
11542 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11543 INIT_LIST_HEAD(&ptype_base[i]);
11544
11545 if (register_pernet_subsys(&netdev_net_ops))
11546 goto out;
11547
11548 /*
11549 * Initialise the packet receive queues.
11550 */
11551
11552 for_each_possible_cpu(i) {
11553 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11554 struct softnet_data *sd = &per_cpu(softnet_data, i);
11555
11556 INIT_WORK(flush, flush_backlog);
11557
11558 skb_queue_head_init(&sd->input_pkt_queue);
11559 skb_queue_head_init(&sd->process_queue);
11560#ifdef CONFIG_XFRM_OFFLOAD
11561 skb_queue_head_init(&sd->xfrm_backlog);
11562#endif
11563 INIT_LIST_HEAD(&sd->poll_list);
11564 sd->output_queue_tailp = &sd->output_queue;
11565#ifdef CONFIG_RPS
11566 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11567 sd->cpu = i;
11568#endif
11569 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11570 spin_lock_init(&sd->defer_lock);
11571
11572 init_gro_hash(&sd->backlog);
11573 sd->backlog.poll = process_backlog;
11574 sd->backlog.weight = weight_p;
11575 }
11576
11577 dev_boot_phase = 0;
11578
11579 /* The loopback device is special if any other network devices
11580 * is present in a network namespace the loopback device must
11581 * be present. Since we now dynamically allocate and free the
11582 * loopback device ensure this invariant is maintained by
11583 * keeping the loopback device as the first device on the
11584 * list of network devices. Ensuring the loopback devices
11585 * is the first device that appears and the last network device
11586 * that disappears.
11587 */
11588 if (register_pernet_device(&loopback_net_ops))
11589 goto out;
11590
11591 if (register_pernet_device(&default_device_ops))
11592 goto out;
11593
11594 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11595 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11596
11597 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11598 NULL, dev_cpu_dead);
11599 WARN_ON(rc < 0);
11600 rc = 0;
11601out:
11602 return rc;
11603}
11604
11605subsys_initcall(net_dev_init);