at v6.7-rc2 167 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21#ifndef _LINUX_NETDEVICE_H 22#define _LINUX_NETDEVICE_H 23 24#include <linux/timer.h> 25#include <linux/bug.h> 26#include <linux/delay.h> 27#include <linux/atomic.h> 28#include <linux/prefetch.h> 29#include <asm/cache.h> 30#include <asm/byteorder.h> 31#include <asm/local.h> 32 33#include <linux/percpu.h> 34#include <linux/rculist.h> 35#include <linux/workqueue.h> 36#include <linux/dynamic_queue_limits.h> 37 38#include <net/net_namespace.h> 39#ifdef CONFIG_DCB 40#include <net/dcbnl.h> 41#endif 42#include <net/netprio_cgroup.h> 43 44#include <linux/netdev_features.h> 45#include <linux/neighbour.h> 46#include <uapi/linux/netdevice.h> 47#include <uapi/linux/if_bonding.h> 48#include <uapi/linux/pkt_cls.h> 49#include <uapi/linux/netdev.h> 50#include <linux/hashtable.h> 51#include <linux/rbtree.h> 52#include <net/net_trackers.h> 53#include <net/net_debug.h> 54#include <net/dropreason-core.h> 55 56struct netpoll_info; 57struct device; 58struct ethtool_ops; 59struct kernel_hwtstamp_config; 60struct phy_device; 61struct dsa_port; 62struct ip_tunnel_parm; 63struct macsec_context; 64struct macsec_ops; 65struct netdev_name_node; 66struct sd_flow_limit; 67struct sfp_bus; 68/* 802.11 specific */ 69struct wireless_dev; 70/* 802.15.4 specific */ 71struct wpan_dev; 72struct mpls_dev; 73/* UDP Tunnel offloads */ 74struct udp_tunnel_info; 75struct udp_tunnel_nic_info; 76struct udp_tunnel_nic; 77struct bpf_prog; 78struct xdp_buff; 79struct xdp_frame; 80struct xdp_metadata_ops; 81struct xdp_md; 82/* DPLL specific */ 83struct dpll_pin; 84 85typedef u32 xdp_features_t; 86 87void synchronize_net(void); 88void netdev_set_default_ethtool_ops(struct net_device *dev, 89 const struct ethtool_ops *ops); 90void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 91 92/* Backlog congestion levels */ 93#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 94#define NET_RX_DROP 1 /* packet dropped */ 95 96#define MAX_NEST_DEV 8 97 98/* 99 * Transmit return codes: transmit return codes originate from three different 100 * namespaces: 101 * 102 * - qdisc return codes 103 * - driver transmit return codes 104 * - errno values 105 * 106 * Drivers are allowed to return any one of those in their hard_start_xmit() 107 * function. Real network devices commonly used with qdiscs should only return 108 * the driver transmit return codes though - when qdiscs are used, the actual 109 * transmission happens asynchronously, so the value is not propagated to 110 * higher layers. Virtual network devices transmit synchronously; in this case 111 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 112 * others are propagated to higher layers. 113 */ 114 115/* qdisc ->enqueue() return codes. */ 116#define NET_XMIT_SUCCESS 0x00 117#define NET_XMIT_DROP 0x01 /* skb dropped */ 118#define NET_XMIT_CN 0x02 /* congestion notification */ 119#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 120 121/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 122 * indicates that the device will soon be dropping packets, or already drops 123 * some packets of the same priority; prompting us to send less aggressively. */ 124#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 125#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 126 127/* Driver transmit return codes */ 128#define NETDEV_TX_MASK 0xf0 129 130enum netdev_tx { 131 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 132 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 133 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 134}; 135typedef enum netdev_tx netdev_tx_t; 136 137/* 138 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 139 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 140 */ 141static inline bool dev_xmit_complete(int rc) 142{ 143 /* 144 * Positive cases with an skb consumed by a driver: 145 * - successful transmission (rc == NETDEV_TX_OK) 146 * - error while transmitting (rc < 0) 147 * - error while queueing to a different device (rc & NET_XMIT_MASK) 148 */ 149 if (likely(rc < NET_XMIT_MASK)) 150 return true; 151 152 return false; 153} 154 155/* 156 * Compute the worst-case header length according to the protocols 157 * used. 158 */ 159 160#if defined(CONFIG_HYPERV_NET) 161# define LL_MAX_HEADER 128 162#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 163# if defined(CONFIG_MAC80211_MESH) 164# define LL_MAX_HEADER 128 165# else 166# define LL_MAX_HEADER 96 167# endif 168#else 169# define LL_MAX_HEADER 32 170#endif 171 172#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 173 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 174#define MAX_HEADER LL_MAX_HEADER 175#else 176#define MAX_HEADER (LL_MAX_HEADER + 48) 177#endif 178 179/* 180 * Old network device statistics. Fields are native words 181 * (unsigned long) so they can be read and written atomically. 182 */ 183 184#define NET_DEV_STAT(FIELD) \ 185 union { \ 186 unsigned long FIELD; \ 187 atomic_long_t __##FIELD; \ 188 } 189 190struct net_device_stats { 191 NET_DEV_STAT(rx_packets); 192 NET_DEV_STAT(tx_packets); 193 NET_DEV_STAT(rx_bytes); 194 NET_DEV_STAT(tx_bytes); 195 NET_DEV_STAT(rx_errors); 196 NET_DEV_STAT(tx_errors); 197 NET_DEV_STAT(rx_dropped); 198 NET_DEV_STAT(tx_dropped); 199 NET_DEV_STAT(multicast); 200 NET_DEV_STAT(collisions); 201 NET_DEV_STAT(rx_length_errors); 202 NET_DEV_STAT(rx_over_errors); 203 NET_DEV_STAT(rx_crc_errors); 204 NET_DEV_STAT(rx_frame_errors); 205 NET_DEV_STAT(rx_fifo_errors); 206 NET_DEV_STAT(rx_missed_errors); 207 NET_DEV_STAT(tx_aborted_errors); 208 NET_DEV_STAT(tx_carrier_errors); 209 NET_DEV_STAT(tx_fifo_errors); 210 NET_DEV_STAT(tx_heartbeat_errors); 211 NET_DEV_STAT(tx_window_errors); 212 NET_DEV_STAT(rx_compressed); 213 NET_DEV_STAT(tx_compressed); 214}; 215#undef NET_DEV_STAT 216 217/* per-cpu stats, allocated on demand. 218 * Try to fit them in a single cache line, for dev_get_stats() sake. 219 */ 220struct net_device_core_stats { 221 unsigned long rx_dropped; 222 unsigned long tx_dropped; 223 unsigned long rx_nohandler; 224 unsigned long rx_otherhost_dropped; 225} __aligned(4 * sizeof(unsigned long)); 226 227#include <linux/cache.h> 228#include <linux/skbuff.h> 229 230#ifdef CONFIG_RPS 231#include <linux/static_key.h> 232extern struct static_key_false rps_needed; 233extern struct static_key_false rfs_needed; 234#endif 235 236struct neighbour; 237struct neigh_parms; 238struct sk_buff; 239 240struct netdev_hw_addr { 241 struct list_head list; 242 struct rb_node node; 243 unsigned char addr[MAX_ADDR_LEN]; 244 unsigned char type; 245#define NETDEV_HW_ADDR_T_LAN 1 246#define NETDEV_HW_ADDR_T_SAN 2 247#define NETDEV_HW_ADDR_T_UNICAST 3 248#define NETDEV_HW_ADDR_T_MULTICAST 4 249 bool global_use; 250 int sync_cnt; 251 int refcount; 252 int synced; 253 struct rcu_head rcu_head; 254}; 255 256struct netdev_hw_addr_list { 257 struct list_head list; 258 int count; 259 260 /* Auxiliary tree for faster lookup on addition and deletion */ 261 struct rb_root tree; 262}; 263 264#define netdev_hw_addr_list_count(l) ((l)->count) 265#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 266#define netdev_hw_addr_list_for_each(ha, l) \ 267 list_for_each_entry(ha, &(l)->list, list) 268 269#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 270#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 271#define netdev_for_each_uc_addr(ha, dev) \ 272 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 273#define netdev_for_each_synced_uc_addr(_ha, _dev) \ 274 netdev_for_each_uc_addr((_ha), (_dev)) \ 275 if ((_ha)->sync_cnt) 276 277#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 278#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 279#define netdev_for_each_mc_addr(ha, dev) \ 280 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 281#define netdev_for_each_synced_mc_addr(_ha, _dev) \ 282 netdev_for_each_mc_addr((_ha), (_dev)) \ 283 if ((_ha)->sync_cnt) 284 285struct hh_cache { 286 unsigned int hh_len; 287 seqlock_t hh_lock; 288 289 /* cached hardware header; allow for machine alignment needs. */ 290#define HH_DATA_MOD 16 291#define HH_DATA_OFF(__len) \ 292 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 293#define HH_DATA_ALIGN(__len) \ 294 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 295 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 296}; 297 298/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 299 * Alternative is: 300 * dev->hard_header_len ? (dev->hard_header_len + 301 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 302 * 303 * We could use other alignment values, but we must maintain the 304 * relationship HH alignment <= LL alignment. 305 */ 306#define LL_RESERVED_SPACE(dev) \ 307 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 308 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 309#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 310 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 311 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 312 313struct header_ops { 314 int (*create) (struct sk_buff *skb, struct net_device *dev, 315 unsigned short type, const void *daddr, 316 const void *saddr, unsigned int len); 317 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 319 void (*cache_update)(struct hh_cache *hh, 320 const struct net_device *dev, 321 const unsigned char *haddr); 322 bool (*validate)(const char *ll_header, unsigned int len); 323 __be16 (*parse_protocol)(const struct sk_buff *skb); 324}; 325 326/* These flag bits are private to the generic network queueing 327 * layer; they may not be explicitly referenced by any other 328 * code. 329 */ 330 331enum netdev_state_t { 332 __LINK_STATE_START, 333 __LINK_STATE_PRESENT, 334 __LINK_STATE_NOCARRIER, 335 __LINK_STATE_LINKWATCH_PENDING, 336 __LINK_STATE_DORMANT, 337 __LINK_STATE_TESTING, 338}; 339 340struct gro_list { 341 struct list_head list; 342 int count; 343}; 344 345/* 346 * size of gro hash buckets, must less than bit number of 347 * napi_struct::gro_bitmask 348 */ 349#define GRO_HASH_BUCKETS 8 350 351/* 352 * Structure for NAPI scheduling similar to tasklet but with weighting 353 */ 354struct napi_struct { 355 /* The poll_list must only be managed by the entity which 356 * changes the state of the NAPI_STATE_SCHED bit. This means 357 * whoever atomically sets that bit can add this napi_struct 358 * to the per-CPU poll_list, and whoever clears that bit 359 * can remove from the list right before clearing the bit. 360 */ 361 struct list_head poll_list; 362 363 unsigned long state; 364 int weight; 365 int defer_hard_irqs_count; 366 unsigned long gro_bitmask; 367 int (*poll)(struct napi_struct *, int); 368#ifdef CONFIG_NETPOLL 369 /* CPU actively polling if netpoll is configured */ 370 int poll_owner; 371#endif 372 /* CPU on which NAPI has been scheduled for processing */ 373 int list_owner; 374 struct net_device *dev; 375 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 376 struct sk_buff *skb; 377 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 378 int rx_count; /* length of rx_list */ 379 unsigned int napi_id; 380 struct hrtimer timer; 381 struct task_struct *thread; 382 /* control-path-only fields follow */ 383 struct list_head dev_list; 384 struct hlist_node napi_hash_node; 385}; 386 387enum { 388 NAPI_STATE_SCHED, /* Poll is scheduled */ 389 NAPI_STATE_MISSED, /* reschedule a napi */ 390 NAPI_STATE_DISABLE, /* Disable pending */ 391 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 392 NAPI_STATE_LISTED, /* NAPI added to system lists */ 393 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 394 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 395 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 396 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 397 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 398}; 399 400enum { 401 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 402 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 403 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 404 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 405 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 406 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 407 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 408 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 409 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 410 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 411}; 412 413enum gro_result { 414 GRO_MERGED, 415 GRO_MERGED_FREE, 416 GRO_HELD, 417 GRO_NORMAL, 418 GRO_CONSUMED, 419}; 420typedef enum gro_result gro_result_t; 421 422/* 423 * enum rx_handler_result - Possible return values for rx_handlers. 424 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 425 * further. 426 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 427 * case skb->dev was changed by rx_handler. 428 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 429 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 430 * 431 * rx_handlers are functions called from inside __netif_receive_skb(), to do 432 * special processing of the skb, prior to delivery to protocol handlers. 433 * 434 * Currently, a net_device can only have a single rx_handler registered. Trying 435 * to register a second rx_handler will return -EBUSY. 436 * 437 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 438 * To unregister a rx_handler on a net_device, use 439 * netdev_rx_handler_unregister(). 440 * 441 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 442 * do with the skb. 443 * 444 * If the rx_handler consumed the skb in some way, it should return 445 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 446 * the skb to be delivered in some other way. 447 * 448 * If the rx_handler changed skb->dev, to divert the skb to another 449 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 450 * new device will be called if it exists. 451 * 452 * If the rx_handler decides the skb should be ignored, it should return 453 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 454 * are registered on exact device (ptype->dev == skb->dev). 455 * 456 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 457 * delivered, it should return RX_HANDLER_PASS. 458 * 459 * A device without a registered rx_handler will behave as if rx_handler 460 * returned RX_HANDLER_PASS. 461 */ 462 463enum rx_handler_result { 464 RX_HANDLER_CONSUMED, 465 RX_HANDLER_ANOTHER, 466 RX_HANDLER_EXACT, 467 RX_HANDLER_PASS, 468}; 469typedef enum rx_handler_result rx_handler_result_t; 470typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 471 472void __napi_schedule(struct napi_struct *n); 473void __napi_schedule_irqoff(struct napi_struct *n); 474 475static inline bool napi_disable_pending(struct napi_struct *n) 476{ 477 return test_bit(NAPI_STATE_DISABLE, &n->state); 478} 479 480static inline bool napi_prefer_busy_poll(struct napi_struct *n) 481{ 482 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 483} 484 485/** 486 * napi_is_scheduled - test if NAPI is scheduled 487 * @n: NAPI context 488 * 489 * This check is "best-effort". With no locking implemented, 490 * a NAPI can be scheduled or terminate right after this check 491 * and produce not precise results. 492 * 493 * NAPI_STATE_SCHED is an internal state, napi_is_scheduled 494 * should not be used normally and napi_schedule should be 495 * used instead. 496 * 497 * Use only if the driver really needs to check if a NAPI 498 * is scheduled for example in the context of delayed timer 499 * that can be skipped if a NAPI is already scheduled. 500 * 501 * Return True if NAPI is scheduled, False otherwise. 502 */ 503static inline bool napi_is_scheduled(struct napi_struct *n) 504{ 505 return test_bit(NAPI_STATE_SCHED, &n->state); 506} 507 508bool napi_schedule_prep(struct napi_struct *n); 509 510/** 511 * napi_schedule - schedule NAPI poll 512 * @n: NAPI context 513 * 514 * Schedule NAPI poll routine to be called if it is not already 515 * running. 516 * Return true if we schedule a NAPI or false if not. 517 * Refer to napi_schedule_prep() for additional reason on why 518 * a NAPI might not be scheduled. 519 */ 520static inline bool napi_schedule(struct napi_struct *n) 521{ 522 if (napi_schedule_prep(n)) { 523 __napi_schedule(n); 524 return true; 525 } 526 527 return false; 528} 529 530/** 531 * napi_schedule_irqoff - schedule NAPI poll 532 * @n: NAPI context 533 * 534 * Variant of napi_schedule(), assuming hard irqs are masked. 535 */ 536static inline void napi_schedule_irqoff(struct napi_struct *n) 537{ 538 if (napi_schedule_prep(n)) 539 __napi_schedule_irqoff(n); 540} 541 542/** 543 * napi_complete_done - NAPI processing complete 544 * @n: NAPI context 545 * @work_done: number of packets processed 546 * 547 * Mark NAPI processing as complete. Should only be called if poll budget 548 * has not been completely consumed. 549 * Prefer over napi_complete(). 550 * Return false if device should avoid rearming interrupts. 551 */ 552bool napi_complete_done(struct napi_struct *n, int work_done); 553 554static inline bool napi_complete(struct napi_struct *n) 555{ 556 return napi_complete_done(n, 0); 557} 558 559int dev_set_threaded(struct net_device *dev, bool threaded); 560 561/** 562 * napi_disable - prevent NAPI from scheduling 563 * @n: NAPI context 564 * 565 * Stop NAPI from being scheduled on this context. 566 * Waits till any outstanding processing completes. 567 */ 568void napi_disable(struct napi_struct *n); 569 570void napi_enable(struct napi_struct *n); 571 572/** 573 * napi_synchronize - wait until NAPI is not running 574 * @n: NAPI context 575 * 576 * Wait until NAPI is done being scheduled on this context. 577 * Waits till any outstanding processing completes but 578 * does not disable future activations. 579 */ 580static inline void napi_synchronize(const struct napi_struct *n) 581{ 582 if (IS_ENABLED(CONFIG_SMP)) 583 while (test_bit(NAPI_STATE_SCHED, &n->state)) 584 msleep(1); 585 else 586 barrier(); 587} 588 589/** 590 * napi_if_scheduled_mark_missed - if napi is running, set the 591 * NAPIF_STATE_MISSED 592 * @n: NAPI context 593 * 594 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 595 * NAPI is scheduled. 596 **/ 597static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 598{ 599 unsigned long val, new; 600 601 val = READ_ONCE(n->state); 602 do { 603 if (val & NAPIF_STATE_DISABLE) 604 return true; 605 606 if (!(val & NAPIF_STATE_SCHED)) 607 return false; 608 609 new = val | NAPIF_STATE_MISSED; 610 } while (!try_cmpxchg(&n->state, &val, new)); 611 612 return true; 613} 614 615enum netdev_queue_state_t { 616 __QUEUE_STATE_DRV_XOFF, 617 __QUEUE_STATE_STACK_XOFF, 618 __QUEUE_STATE_FROZEN, 619}; 620 621#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 622#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 623#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 624 625#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 626#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 627 QUEUE_STATE_FROZEN) 628#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 629 QUEUE_STATE_FROZEN) 630 631/* 632 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 633 * netif_tx_* functions below are used to manipulate this flag. The 634 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 635 * queue independently. The netif_xmit_*stopped functions below are called 636 * to check if the queue has been stopped by the driver or stack (either 637 * of the XOFF bits are set in the state). Drivers should not need to call 638 * netif_xmit*stopped functions, they should only be using netif_tx_*. 639 */ 640 641struct netdev_queue { 642/* 643 * read-mostly part 644 */ 645 struct net_device *dev; 646 netdevice_tracker dev_tracker; 647 648 struct Qdisc __rcu *qdisc; 649 struct Qdisc __rcu *qdisc_sleeping; 650#ifdef CONFIG_SYSFS 651 struct kobject kobj; 652#endif 653#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 654 int numa_node; 655#endif 656 unsigned long tx_maxrate; 657 /* 658 * Number of TX timeouts for this queue 659 * (/sys/class/net/DEV/Q/trans_timeout) 660 */ 661 atomic_long_t trans_timeout; 662 663 /* Subordinate device that the queue has been assigned to */ 664 struct net_device *sb_dev; 665#ifdef CONFIG_XDP_SOCKETS 666 struct xsk_buff_pool *pool; 667#endif 668/* 669 * write-mostly part 670 */ 671 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 672 int xmit_lock_owner; 673 /* 674 * Time (in jiffies) of last Tx 675 */ 676 unsigned long trans_start; 677 678 unsigned long state; 679 680#ifdef CONFIG_BQL 681 struct dql dql; 682#endif 683} ____cacheline_aligned_in_smp; 684 685extern int sysctl_fb_tunnels_only_for_init_net; 686extern int sysctl_devconf_inherit_init_net; 687 688/* 689 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 690 * == 1 : For initns only 691 * == 2 : For none. 692 */ 693static inline bool net_has_fallback_tunnels(const struct net *net) 694{ 695#if IS_ENABLED(CONFIG_SYSCTL) 696 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 697 698 return !fb_tunnels_only_for_init_net || 699 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 700#else 701 return true; 702#endif 703} 704 705static inline int net_inherit_devconf(void) 706{ 707#if IS_ENABLED(CONFIG_SYSCTL) 708 return READ_ONCE(sysctl_devconf_inherit_init_net); 709#else 710 return 0; 711#endif 712} 713 714static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 715{ 716#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 717 return q->numa_node; 718#else 719 return NUMA_NO_NODE; 720#endif 721} 722 723static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 724{ 725#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 726 q->numa_node = node; 727#endif 728} 729 730#ifdef CONFIG_RPS 731/* 732 * This structure holds an RPS map which can be of variable length. The 733 * map is an array of CPUs. 734 */ 735struct rps_map { 736 unsigned int len; 737 struct rcu_head rcu; 738 u16 cpus[]; 739}; 740#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 741 742/* 743 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 744 * tail pointer for that CPU's input queue at the time of last enqueue, and 745 * a hardware filter index. 746 */ 747struct rps_dev_flow { 748 u16 cpu; 749 u16 filter; 750 unsigned int last_qtail; 751}; 752#define RPS_NO_FILTER 0xffff 753 754/* 755 * The rps_dev_flow_table structure contains a table of flow mappings. 756 */ 757struct rps_dev_flow_table { 758 unsigned int mask; 759 struct rcu_head rcu; 760 struct rps_dev_flow flows[]; 761}; 762#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 763 ((_num) * sizeof(struct rps_dev_flow))) 764 765/* 766 * The rps_sock_flow_table contains mappings of flows to the last CPU 767 * on which they were processed by the application (set in recvmsg). 768 * Each entry is a 32bit value. Upper part is the high-order bits 769 * of flow hash, lower part is CPU number. 770 * rps_cpu_mask is used to partition the space, depending on number of 771 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 772 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 773 * meaning we use 32-6=26 bits for the hash. 774 */ 775struct rps_sock_flow_table { 776 u32 mask; 777 778 u32 ents[] ____cacheline_aligned_in_smp; 779}; 780#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 781 782#define RPS_NO_CPU 0xffff 783 784extern u32 rps_cpu_mask; 785extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 786 787static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 788 u32 hash) 789{ 790 if (table && hash) { 791 unsigned int index = hash & table->mask; 792 u32 val = hash & ~rps_cpu_mask; 793 794 /* We only give a hint, preemption can change CPU under us */ 795 val |= raw_smp_processor_id(); 796 797 /* The following WRITE_ONCE() is paired with the READ_ONCE() 798 * here, and another one in get_rps_cpu(). 799 */ 800 if (READ_ONCE(table->ents[index]) != val) 801 WRITE_ONCE(table->ents[index], val); 802 } 803} 804 805#ifdef CONFIG_RFS_ACCEL 806bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 807 u16 filter_id); 808#endif 809#endif /* CONFIG_RPS */ 810 811/* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 812enum xps_map_type { 813 XPS_CPUS = 0, 814 XPS_RXQS, 815 XPS_MAPS_MAX, 816}; 817 818#ifdef CONFIG_XPS 819/* 820 * This structure holds an XPS map which can be of variable length. The 821 * map is an array of queues. 822 */ 823struct xps_map { 824 unsigned int len; 825 unsigned int alloc_len; 826 struct rcu_head rcu; 827 u16 queues[]; 828}; 829#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 830#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 831 - sizeof(struct xps_map)) / sizeof(u16)) 832 833/* 834 * This structure holds all XPS maps for device. Maps are indexed by CPU. 835 * 836 * We keep track of the number of cpus/rxqs used when the struct is allocated, 837 * in nr_ids. This will help not accessing out-of-bound memory. 838 * 839 * We keep track of the number of traffic classes used when the struct is 840 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 841 * not crossing its upper bound, as the original dev->num_tc can be updated in 842 * the meantime. 843 */ 844struct xps_dev_maps { 845 struct rcu_head rcu; 846 unsigned int nr_ids; 847 s16 num_tc; 848 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 849}; 850 851#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 852 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 853 854#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 855 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 856 857#endif /* CONFIG_XPS */ 858 859#define TC_MAX_QUEUE 16 860#define TC_BITMASK 15 861/* HW offloaded queuing disciplines txq count and offset maps */ 862struct netdev_tc_txq { 863 u16 count; 864 u16 offset; 865}; 866 867#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 868/* 869 * This structure is to hold information about the device 870 * configured to run FCoE protocol stack. 871 */ 872struct netdev_fcoe_hbainfo { 873 char manufacturer[64]; 874 char serial_number[64]; 875 char hardware_version[64]; 876 char driver_version[64]; 877 char optionrom_version[64]; 878 char firmware_version[64]; 879 char model[256]; 880 char model_description[256]; 881}; 882#endif 883 884#define MAX_PHYS_ITEM_ID_LEN 32 885 886/* This structure holds a unique identifier to identify some 887 * physical item (port for example) used by a netdevice. 888 */ 889struct netdev_phys_item_id { 890 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 891 unsigned char id_len; 892}; 893 894static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 895 struct netdev_phys_item_id *b) 896{ 897 return a->id_len == b->id_len && 898 memcmp(a->id, b->id, a->id_len) == 0; 899} 900 901typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 902 struct sk_buff *skb, 903 struct net_device *sb_dev); 904 905enum net_device_path_type { 906 DEV_PATH_ETHERNET = 0, 907 DEV_PATH_VLAN, 908 DEV_PATH_BRIDGE, 909 DEV_PATH_PPPOE, 910 DEV_PATH_DSA, 911 DEV_PATH_MTK_WDMA, 912}; 913 914struct net_device_path { 915 enum net_device_path_type type; 916 const struct net_device *dev; 917 union { 918 struct { 919 u16 id; 920 __be16 proto; 921 u8 h_dest[ETH_ALEN]; 922 } encap; 923 struct { 924 enum { 925 DEV_PATH_BR_VLAN_KEEP, 926 DEV_PATH_BR_VLAN_TAG, 927 DEV_PATH_BR_VLAN_UNTAG, 928 DEV_PATH_BR_VLAN_UNTAG_HW, 929 } vlan_mode; 930 u16 vlan_id; 931 __be16 vlan_proto; 932 } bridge; 933 struct { 934 int port; 935 u16 proto; 936 } dsa; 937 struct { 938 u8 wdma_idx; 939 u8 queue; 940 u16 wcid; 941 u8 bss; 942 u8 amsdu; 943 } mtk_wdma; 944 }; 945}; 946 947#define NET_DEVICE_PATH_STACK_MAX 5 948#define NET_DEVICE_PATH_VLAN_MAX 2 949 950struct net_device_path_stack { 951 int num_paths; 952 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 953}; 954 955struct net_device_path_ctx { 956 const struct net_device *dev; 957 u8 daddr[ETH_ALEN]; 958 959 int num_vlans; 960 struct { 961 u16 id; 962 __be16 proto; 963 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 964}; 965 966enum tc_setup_type { 967 TC_QUERY_CAPS, 968 TC_SETUP_QDISC_MQPRIO, 969 TC_SETUP_CLSU32, 970 TC_SETUP_CLSFLOWER, 971 TC_SETUP_CLSMATCHALL, 972 TC_SETUP_CLSBPF, 973 TC_SETUP_BLOCK, 974 TC_SETUP_QDISC_CBS, 975 TC_SETUP_QDISC_RED, 976 TC_SETUP_QDISC_PRIO, 977 TC_SETUP_QDISC_MQ, 978 TC_SETUP_QDISC_ETF, 979 TC_SETUP_ROOT_QDISC, 980 TC_SETUP_QDISC_GRED, 981 TC_SETUP_QDISC_TAPRIO, 982 TC_SETUP_FT, 983 TC_SETUP_QDISC_ETS, 984 TC_SETUP_QDISC_TBF, 985 TC_SETUP_QDISC_FIFO, 986 TC_SETUP_QDISC_HTB, 987 TC_SETUP_ACT, 988}; 989 990/* These structures hold the attributes of bpf state that are being passed 991 * to the netdevice through the bpf op. 992 */ 993enum bpf_netdev_command { 994 /* Set or clear a bpf program used in the earliest stages of packet 995 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 996 * is responsible for calling bpf_prog_put on any old progs that are 997 * stored. In case of error, the callee need not release the new prog 998 * reference, but on success it takes ownership and must bpf_prog_put 999 * when it is no longer used. 1000 */ 1001 XDP_SETUP_PROG, 1002 XDP_SETUP_PROG_HW, 1003 /* BPF program for offload callbacks, invoked at program load time. */ 1004 BPF_OFFLOAD_MAP_ALLOC, 1005 BPF_OFFLOAD_MAP_FREE, 1006 XDP_SETUP_XSK_POOL, 1007}; 1008 1009struct bpf_prog_offload_ops; 1010struct netlink_ext_ack; 1011struct xdp_umem; 1012struct xdp_dev_bulk_queue; 1013struct bpf_xdp_link; 1014 1015enum bpf_xdp_mode { 1016 XDP_MODE_SKB = 0, 1017 XDP_MODE_DRV = 1, 1018 XDP_MODE_HW = 2, 1019 __MAX_XDP_MODE 1020}; 1021 1022struct bpf_xdp_entity { 1023 struct bpf_prog *prog; 1024 struct bpf_xdp_link *link; 1025}; 1026 1027struct netdev_bpf { 1028 enum bpf_netdev_command command; 1029 union { 1030 /* XDP_SETUP_PROG */ 1031 struct { 1032 u32 flags; 1033 struct bpf_prog *prog; 1034 struct netlink_ext_ack *extack; 1035 }; 1036 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1037 struct { 1038 struct bpf_offloaded_map *offmap; 1039 }; 1040 /* XDP_SETUP_XSK_POOL */ 1041 struct { 1042 struct xsk_buff_pool *pool; 1043 u16 queue_id; 1044 } xsk; 1045 }; 1046}; 1047 1048/* Flags for ndo_xsk_wakeup. */ 1049#define XDP_WAKEUP_RX (1 << 0) 1050#define XDP_WAKEUP_TX (1 << 1) 1051 1052#ifdef CONFIG_XFRM_OFFLOAD 1053struct xfrmdev_ops { 1054 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1055 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1056 void (*xdo_dev_state_free) (struct xfrm_state *x); 1057 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1058 struct xfrm_state *x); 1059 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1060 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1061 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1062 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1063 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1064}; 1065#endif 1066 1067struct dev_ifalias { 1068 struct rcu_head rcuhead; 1069 char ifalias[]; 1070}; 1071 1072struct devlink; 1073struct tlsdev_ops; 1074 1075struct netdev_net_notifier { 1076 struct list_head list; 1077 struct notifier_block *nb; 1078}; 1079 1080/* 1081 * This structure defines the management hooks for network devices. 1082 * The following hooks can be defined; unless noted otherwise, they are 1083 * optional and can be filled with a null pointer. 1084 * 1085 * int (*ndo_init)(struct net_device *dev); 1086 * This function is called once when a network device is registered. 1087 * The network device can use this for any late stage initialization 1088 * or semantic validation. It can fail with an error code which will 1089 * be propagated back to register_netdev. 1090 * 1091 * void (*ndo_uninit)(struct net_device *dev); 1092 * This function is called when device is unregistered or when registration 1093 * fails. It is not called if init fails. 1094 * 1095 * int (*ndo_open)(struct net_device *dev); 1096 * This function is called when a network device transitions to the up 1097 * state. 1098 * 1099 * int (*ndo_stop)(struct net_device *dev); 1100 * This function is called when a network device transitions to the down 1101 * state. 1102 * 1103 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1104 * struct net_device *dev); 1105 * Called when a packet needs to be transmitted. 1106 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1107 * the queue before that can happen; it's for obsolete devices and weird 1108 * corner cases, but the stack really does a non-trivial amount 1109 * of useless work if you return NETDEV_TX_BUSY. 1110 * Required; cannot be NULL. 1111 * 1112 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1113 * struct net_device *dev 1114 * netdev_features_t features); 1115 * Called by core transmit path to determine if device is capable of 1116 * performing offload operations on a given packet. This is to give 1117 * the device an opportunity to implement any restrictions that cannot 1118 * be otherwise expressed by feature flags. The check is called with 1119 * the set of features that the stack has calculated and it returns 1120 * those the driver believes to be appropriate. 1121 * 1122 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1123 * struct net_device *sb_dev); 1124 * Called to decide which queue to use when device supports multiple 1125 * transmit queues. 1126 * 1127 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1128 * This function is called to allow device receiver to make 1129 * changes to configuration when multicast or promiscuous is enabled. 1130 * 1131 * void (*ndo_set_rx_mode)(struct net_device *dev); 1132 * This function is called device changes address list filtering. 1133 * If driver handles unicast address filtering, it should set 1134 * IFF_UNICAST_FLT in its priv_flags. 1135 * 1136 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1137 * This function is called when the Media Access Control address 1138 * needs to be changed. If this interface is not defined, the 1139 * MAC address can not be changed. 1140 * 1141 * int (*ndo_validate_addr)(struct net_device *dev); 1142 * Test if Media Access Control address is valid for the device. 1143 * 1144 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1145 * Old-style ioctl entry point. This is used internally by the 1146 * appletalk and ieee802154 subsystems but is no longer called by 1147 * the device ioctl handler. 1148 * 1149 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1150 * Used by the bonding driver for its device specific ioctls: 1151 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1152 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1153 * 1154 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1155 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1156 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1157 * 1158 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1159 * Used to set network devices bus interface parameters. This interface 1160 * is retained for legacy reasons; new devices should use the bus 1161 * interface (PCI) for low level management. 1162 * 1163 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1164 * Called when a user wants to change the Maximum Transfer Unit 1165 * of a device. 1166 * 1167 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1168 * Callback used when the transmitter has not made any progress 1169 * for dev->watchdog ticks. 1170 * 1171 * void (*ndo_get_stats64)(struct net_device *dev, 1172 * struct rtnl_link_stats64 *storage); 1173 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1174 * Called when a user wants to get the network device usage 1175 * statistics. Drivers must do one of the following: 1176 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1177 * rtnl_link_stats64 structure passed by the caller. 1178 * 2. Define @ndo_get_stats to update a net_device_stats structure 1179 * (which should normally be dev->stats) and return a pointer to 1180 * it. The structure may be changed asynchronously only if each 1181 * field is written atomically. 1182 * 3. Update dev->stats asynchronously and atomically, and define 1183 * neither operation. 1184 * 1185 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1186 * Return true if this device supports offload stats of this attr_id. 1187 * 1188 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1189 * void *attr_data) 1190 * Get statistics for offload operations by attr_id. Write it into the 1191 * attr_data pointer. 1192 * 1193 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1194 * If device supports VLAN filtering this function is called when a 1195 * VLAN id is registered. 1196 * 1197 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1198 * If device supports VLAN filtering this function is called when a 1199 * VLAN id is unregistered. 1200 * 1201 * void (*ndo_poll_controller)(struct net_device *dev); 1202 * 1203 * SR-IOV management functions. 1204 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1205 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1206 * u8 qos, __be16 proto); 1207 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1208 * int max_tx_rate); 1209 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1210 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1211 * int (*ndo_get_vf_config)(struct net_device *dev, 1212 * int vf, struct ifla_vf_info *ivf); 1213 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1214 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1215 * struct nlattr *port[]); 1216 * 1217 * Enable or disable the VF ability to query its RSS Redirection Table and 1218 * Hash Key. This is needed since on some devices VF share this information 1219 * with PF and querying it may introduce a theoretical security risk. 1220 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1221 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1222 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1223 * void *type_data); 1224 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1225 * This is always called from the stack with the rtnl lock held and netif 1226 * tx queues stopped. This allows the netdevice to perform queue 1227 * management safely. 1228 * 1229 * Fiber Channel over Ethernet (FCoE) offload functions. 1230 * int (*ndo_fcoe_enable)(struct net_device *dev); 1231 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1232 * so the underlying device can perform whatever needed configuration or 1233 * initialization to support acceleration of FCoE traffic. 1234 * 1235 * int (*ndo_fcoe_disable)(struct net_device *dev); 1236 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1237 * so the underlying device can perform whatever needed clean-ups to 1238 * stop supporting acceleration of FCoE traffic. 1239 * 1240 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1241 * struct scatterlist *sgl, unsigned int sgc); 1242 * Called when the FCoE Initiator wants to initialize an I/O that 1243 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1244 * perform necessary setup and returns 1 to indicate the device is set up 1245 * successfully to perform DDP on this I/O, otherwise this returns 0. 1246 * 1247 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1248 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1249 * indicated by the FC exchange id 'xid', so the underlying device can 1250 * clean up and reuse resources for later DDP requests. 1251 * 1252 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1253 * struct scatterlist *sgl, unsigned int sgc); 1254 * Called when the FCoE Target wants to initialize an I/O that 1255 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1256 * perform necessary setup and returns 1 to indicate the device is set up 1257 * successfully to perform DDP on this I/O, otherwise this returns 0. 1258 * 1259 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1260 * struct netdev_fcoe_hbainfo *hbainfo); 1261 * Called when the FCoE Protocol stack wants information on the underlying 1262 * device. This information is utilized by the FCoE protocol stack to 1263 * register attributes with Fiber Channel management service as per the 1264 * FC-GS Fabric Device Management Information(FDMI) specification. 1265 * 1266 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1267 * Called when the underlying device wants to override default World Wide 1268 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1269 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1270 * protocol stack to use. 1271 * 1272 * RFS acceleration. 1273 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1274 * u16 rxq_index, u32 flow_id); 1275 * Set hardware filter for RFS. rxq_index is the target queue index; 1276 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1277 * Return the filter ID on success, or a negative error code. 1278 * 1279 * Slave management functions (for bridge, bonding, etc). 1280 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1281 * Called to make another netdev an underling. 1282 * 1283 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1284 * Called to release previously enslaved netdev. 1285 * 1286 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1287 * struct sk_buff *skb, 1288 * bool all_slaves); 1289 * Get the xmit slave of master device. If all_slaves is true, function 1290 * assume all the slaves can transmit. 1291 * 1292 * Feature/offload setting functions. 1293 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1294 * netdev_features_t features); 1295 * Adjusts the requested feature flags according to device-specific 1296 * constraints, and returns the resulting flags. Must not modify 1297 * the device state. 1298 * 1299 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1300 * Called to update device configuration to new features. Passed 1301 * feature set might be less than what was returned by ndo_fix_features()). 1302 * Must return >0 or -errno if it changed dev->features itself. 1303 * 1304 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1305 * struct net_device *dev, 1306 * const unsigned char *addr, u16 vid, u16 flags, 1307 * struct netlink_ext_ack *extack); 1308 * Adds an FDB entry to dev for addr. 1309 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1310 * struct net_device *dev, 1311 * const unsigned char *addr, u16 vid) 1312 * Deletes the FDB entry from dev coresponding to addr. 1313 * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev, 1314 * struct netlink_ext_ack *extack); 1315 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1316 * struct net_device *dev, struct net_device *filter_dev, 1317 * int *idx) 1318 * Used to add FDB entries to dump requests. Implementers should add 1319 * entries to skb and update idx with the number of entries. 1320 * 1321 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1322 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1323 * Adds an MDB entry to dev. 1324 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1325 * struct netlink_ext_ack *extack); 1326 * Deletes the MDB entry from dev. 1327 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1328 * struct netlink_callback *cb); 1329 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1330 * callback is used by core rtnetlink code. 1331 * 1332 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1333 * u16 flags, struct netlink_ext_ack *extack) 1334 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1335 * struct net_device *dev, u32 filter_mask, 1336 * int nlflags) 1337 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1338 * u16 flags); 1339 * 1340 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1341 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1342 * which do not represent real hardware may define this to allow their 1343 * userspace components to manage their virtual carrier state. Devices 1344 * that determine carrier state from physical hardware properties (eg 1345 * network cables) or protocol-dependent mechanisms (eg 1346 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1347 * 1348 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1349 * struct netdev_phys_item_id *ppid); 1350 * Called to get ID of physical port of this device. If driver does 1351 * not implement this, it is assumed that the hw is not able to have 1352 * multiple net devices on single physical port. 1353 * 1354 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1355 * struct netdev_phys_item_id *ppid) 1356 * Called to get the parent ID of the physical port of this device. 1357 * 1358 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1359 * struct net_device *dev) 1360 * Called by upper layer devices to accelerate switching or other 1361 * station functionality into hardware. 'pdev is the lowerdev 1362 * to use for the offload and 'dev' is the net device that will 1363 * back the offload. Returns a pointer to the private structure 1364 * the upper layer will maintain. 1365 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1366 * Called by upper layer device to delete the station created 1367 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1368 * the station and priv is the structure returned by the add 1369 * operation. 1370 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1371 * int queue_index, u32 maxrate); 1372 * Called when a user wants to set a max-rate limitation of specific 1373 * TX queue. 1374 * int (*ndo_get_iflink)(const struct net_device *dev); 1375 * Called to get the iflink value of this device. 1376 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1377 * This function is used to get egress tunnel information for given skb. 1378 * This is useful for retrieving outer tunnel header parameters while 1379 * sampling packet. 1380 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1381 * This function is used to specify the headroom that the skb must 1382 * consider when allocation skb during packet reception. Setting 1383 * appropriate rx headroom value allows avoiding skb head copy on 1384 * forward. Setting a negative value resets the rx headroom to the 1385 * default value. 1386 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1387 * This function is used to set or query state related to XDP on the 1388 * netdevice and manage BPF offload. See definition of 1389 * enum bpf_netdev_command for details. 1390 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1391 * u32 flags); 1392 * This function is used to submit @n XDP packets for transmit on a 1393 * netdevice. Returns number of frames successfully transmitted, frames 1394 * that got dropped are freed/returned via xdp_return_frame(). 1395 * Returns negative number, means general error invoking ndo, meaning 1396 * no frames were xmit'ed and core-caller will free all frames. 1397 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1398 * struct xdp_buff *xdp); 1399 * Get the xmit slave of master device based on the xdp_buff. 1400 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1401 * This function is used to wake up the softirq, ksoftirqd or kthread 1402 * responsible for sending and/or receiving packets on a specific 1403 * queue id bound to an AF_XDP socket. The flags field specifies if 1404 * only RX, only Tx, or both should be woken up using the flags 1405 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1406 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1407 * int cmd); 1408 * Add, change, delete or get information on an IPv4 tunnel. 1409 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1410 * If a device is paired with a peer device, return the peer instance. 1411 * The caller must be under RCU read context. 1412 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1413 * Get the forwarding path to reach the real device from the HW destination address 1414 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1415 * const struct skb_shared_hwtstamps *hwtstamps, 1416 * bool cycles); 1417 * Get hardware timestamp based on normal/adjustable time or free running 1418 * cycle counter. This function is required if physical clock supports a 1419 * free running cycle counter. 1420 * 1421 * int (*ndo_hwtstamp_get)(struct net_device *dev, 1422 * struct kernel_hwtstamp_config *kernel_config); 1423 * Get the currently configured hardware timestamping parameters for the 1424 * NIC device. 1425 * 1426 * int (*ndo_hwtstamp_set)(struct net_device *dev, 1427 * struct kernel_hwtstamp_config *kernel_config, 1428 * struct netlink_ext_ack *extack); 1429 * Change the hardware timestamping parameters for NIC device. 1430 */ 1431struct net_device_ops { 1432 int (*ndo_init)(struct net_device *dev); 1433 void (*ndo_uninit)(struct net_device *dev); 1434 int (*ndo_open)(struct net_device *dev); 1435 int (*ndo_stop)(struct net_device *dev); 1436 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1437 struct net_device *dev); 1438 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1439 struct net_device *dev, 1440 netdev_features_t features); 1441 u16 (*ndo_select_queue)(struct net_device *dev, 1442 struct sk_buff *skb, 1443 struct net_device *sb_dev); 1444 void (*ndo_change_rx_flags)(struct net_device *dev, 1445 int flags); 1446 void (*ndo_set_rx_mode)(struct net_device *dev); 1447 int (*ndo_set_mac_address)(struct net_device *dev, 1448 void *addr); 1449 int (*ndo_validate_addr)(struct net_device *dev); 1450 int (*ndo_do_ioctl)(struct net_device *dev, 1451 struct ifreq *ifr, int cmd); 1452 int (*ndo_eth_ioctl)(struct net_device *dev, 1453 struct ifreq *ifr, int cmd); 1454 int (*ndo_siocbond)(struct net_device *dev, 1455 struct ifreq *ifr, int cmd); 1456 int (*ndo_siocwandev)(struct net_device *dev, 1457 struct if_settings *ifs); 1458 int (*ndo_siocdevprivate)(struct net_device *dev, 1459 struct ifreq *ifr, 1460 void __user *data, int cmd); 1461 int (*ndo_set_config)(struct net_device *dev, 1462 struct ifmap *map); 1463 int (*ndo_change_mtu)(struct net_device *dev, 1464 int new_mtu); 1465 int (*ndo_neigh_setup)(struct net_device *dev, 1466 struct neigh_parms *); 1467 void (*ndo_tx_timeout) (struct net_device *dev, 1468 unsigned int txqueue); 1469 1470 void (*ndo_get_stats64)(struct net_device *dev, 1471 struct rtnl_link_stats64 *storage); 1472 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1473 int (*ndo_get_offload_stats)(int attr_id, 1474 const struct net_device *dev, 1475 void *attr_data); 1476 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1477 1478 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1479 __be16 proto, u16 vid); 1480 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1481 __be16 proto, u16 vid); 1482#ifdef CONFIG_NET_POLL_CONTROLLER 1483 void (*ndo_poll_controller)(struct net_device *dev); 1484 int (*ndo_netpoll_setup)(struct net_device *dev, 1485 struct netpoll_info *info); 1486 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1487#endif 1488 int (*ndo_set_vf_mac)(struct net_device *dev, 1489 int queue, u8 *mac); 1490 int (*ndo_set_vf_vlan)(struct net_device *dev, 1491 int queue, u16 vlan, 1492 u8 qos, __be16 proto); 1493 int (*ndo_set_vf_rate)(struct net_device *dev, 1494 int vf, int min_tx_rate, 1495 int max_tx_rate); 1496 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1497 int vf, bool setting); 1498 int (*ndo_set_vf_trust)(struct net_device *dev, 1499 int vf, bool setting); 1500 int (*ndo_get_vf_config)(struct net_device *dev, 1501 int vf, 1502 struct ifla_vf_info *ivf); 1503 int (*ndo_set_vf_link_state)(struct net_device *dev, 1504 int vf, int link_state); 1505 int (*ndo_get_vf_stats)(struct net_device *dev, 1506 int vf, 1507 struct ifla_vf_stats 1508 *vf_stats); 1509 int (*ndo_set_vf_port)(struct net_device *dev, 1510 int vf, 1511 struct nlattr *port[]); 1512 int (*ndo_get_vf_port)(struct net_device *dev, 1513 int vf, struct sk_buff *skb); 1514 int (*ndo_get_vf_guid)(struct net_device *dev, 1515 int vf, 1516 struct ifla_vf_guid *node_guid, 1517 struct ifla_vf_guid *port_guid); 1518 int (*ndo_set_vf_guid)(struct net_device *dev, 1519 int vf, u64 guid, 1520 int guid_type); 1521 int (*ndo_set_vf_rss_query_en)( 1522 struct net_device *dev, 1523 int vf, bool setting); 1524 int (*ndo_setup_tc)(struct net_device *dev, 1525 enum tc_setup_type type, 1526 void *type_data); 1527#if IS_ENABLED(CONFIG_FCOE) 1528 int (*ndo_fcoe_enable)(struct net_device *dev); 1529 int (*ndo_fcoe_disable)(struct net_device *dev); 1530 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1531 u16 xid, 1532 struct scatterlist *sgl, 1533 unsigned int sgc); 1534 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1535 u16 xid); 1536 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1537 u16 xid, 1538 struct scatterlist *sgl, 1539 unsigned int sgc); 1540 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1541 struct netdev_fcoe_hbainfo *hbainfo); 1542#endif 1543 1544#if IS_ENABLED(CONFIG_LIBFCOE) 1545#define NETDEV_FCOE_WWNN 0 1546#define NETDEV_FCOE_WWPN 1 1547 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1548 u64 *wwn, int type); 1549#endif 1550 1551#ifdef CONFIG_RFS_ACCEL 1552 int (*ndo_rx_flow_steer)(struct net_device *dev, 1553 const struct sk_buff *skb, 1554 u16 rxq_index, 1555 u32 flow_id); 1556#endif 1557 int (*ndo_add_slave)(struct net_device *dev, 1558 struct net_device *slave_dev, 1559 struct netlink_ext_ack *extack); 1560 int (*ndo_del_slave)(struct net_device *dev, 1561 struct net_device *slave_dev); 1562 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1563 struct sk_buff *skb, 1564 bool all_slaves); 1565 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1566 struct sock *sk); 1567 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1568 netdev_features_t features); 1569 int (*ndo_set_features)(struct net_device *dev, 1570 netdev_features_t features); 1571 int (*ndo_neigh_construct)(struct net_device *dev, 1572 struct neighbour *n); 1573 void (*ndo_neigh_destroy)(struct net_device *dev, 1574 struct neighbour *n); 1575 1576 int (*ndo_fdb_add)(struct ndmsg *ndm, 1577 struct nlattr *tb[], 1578 struct net_device *dev, 1579 const unsigned char *addr, 1580 u16 vid, 1581 u16 flags, 1582 struct netlink_ext_ack *extack); 1583 int (*ndo_fdb_del)(struct ndmsg *ndm, 1584 struct nlattr *tb[], 1585 struct net_device *dev, 1586 const unsigned char *addr, 1587 u16 vid, struct netlink_ext_ack *extack); 1588 int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, 1589 struct net_device *dev, 1590 struct netlink_ext_ack *extack); 1591 int (*ndo_fdb_dump)(struct sk_buff *skb, 1592 struct netlink_callback *cb, 1593 struct net_device *dev, 1594 struct net_device *filter_dev, 1595 int *idx); 1596 int (*ndo_fdb_get)(struct sk_buff *skb, 1597 struct nlattr *tb[], 1598 struct net_device *dev, 1599 const unsigned char *addr, 1600 u16 vid, u32 portid, u32 seq, 1601 struct netlink_ext_ack *extack); 1602 int (*ndo_mdb_add)(struct net_device *dev, 1603 struct nlattr *tb[], 1604 u16 nlmsg_flags, 1605 struct netlink_ext_ack *extack); 1606 int (*ndo_mdb_del)(struct net_device *dev, 1607 struct nlattr *tb[], 1608 struct netlink_ext_ack *extack); 1609 int (*ndo_mdb_dump)(struct net_device *dev, 1610 struct sk_buff *skb, 1611 struct netlink_callback *cb); 1612 int (*ndo_mdb_get)(struct net_device *dev, 1613 struct nlattr *tb[], u32 portid, 1614 u32 seq, 1615 struct netlink_ext_ack *extack); 1616 int (*ndo_bridge_setlink)(struct net_device *dev, 1617 struct nlmsghdr *nlh, 1618 u16 flags, 1619 struct netlink_ext_ack *extack); 1620 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1621 u32 pid, u32 seq, 1622 struct net_device *dev, 1623 u32 filter_mask, 1624 int nlflags); 1625 int (*ndo_bridge_dellink)(struct net_device *dev, 1626 struct nlmsghdr *nlh, 1627 u16 flags); 1628 int (*ndo_change_carrier)(struct net_device *dev, 1629 bool new_carrier); 1630 int (*ndo_get_phys_port_id)(struct net_device *dev, 1631 struct netdev_phys_item_id *ppid); 1632 int (*ndo_get_port_parent_id)(struct net_device *dev, 1633 struct netdev_phys_item_id *ppid); 1634 int (*ndo_get_phys_port_name)(struct net_device *dev, 1635 char *name, size_t len); 1636 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1637 struct net_device *dev); 1638 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1639 void *priv); 1640 1641 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1642 int queue_index, 1643 u32 maxrate); 1644 int (*ndo_get_iflink)(const struct net_device *dev); 1645 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1646 struct sk_buff *skb); 1647 void (*ndo_set_rx_headroom)(struct net_device *dev, 1648 int needed_headroom); 1649 int (*ndo_bpf)(struct net_device *dev, 1650 struct netdev_bpf *bpf); 1651 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1652 struct xdp_frame **xdp, 1653 u32 flags); 1654 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1655 struct xdp_buff *xdp); 1656 int (*ndo_xsk_wakeup)(struct net_device *dev, 1657 u32 queue_id, u32 flags); 1658 int (*ndo_tunnel_ctl)(struct net_device *dev, 1659 struct ip_tunnel_parm *p, int cmd); 1660 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1661 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1662 struct net_device_path *path); 1663 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1664 const struct skb_shared_hwtstamps *hwtstamps, 1665 bool cycles); 1666 int (*ndo_hwtstamp_get)(struct net_device *dev, 1667 struct kernel_hwtstamp_config *kernel_config); 1668 int (*ndo_hwtstamp_set)(struct net_device *dev, 1669 struct kernel_hwtstamp_config *kernel_config, 1670 struct netlink_ext_ack *extack); 1671}; 1672 1673/** 1674 * enum netdev_priv_flags - &struct net_device priv_flags 1675 * 1676 * These are the &struct net_device, they are only set internally 1677 * by drivers and used in the kernel. These flags are invisible to 1678 * userspace; this means that the order of these flags can change 1679 * during any kernel release. 1680 * 1681 * You should have a pretty good reason to be extending these flags. 1682 * 1683 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1684 * @IFF_EBRIDGE: Ethernet bridging device 1685 * @IFF_BONDING: bonding master or slave 1686 * @IFF_ISATAP: ISATAP interface (RFC4214) 1687 * @IFF_WAN_HDLC: WAN HDLC device 1688 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1689 * release skb->dst 1690 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1691 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1692 * @IFF_MACVLAN_PORT: device used as macvlan port 1693 * @IFF_BRIDGE_PORT: device used as bridge port 1694 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1695 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1696 * @IFF_UNICAST_FLT: Supports unicast filtering 1697 * @IFF_TEAM_PORT: device used as team port 1698 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1699 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1700 * change when it's running 1701 * @IFF_MACVLAN: Macvlan device 1702 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1703 * underlying stacked devices 1704 * @IFF_L3MDEV_MASTER: device is an L3 master device 1705 * @IFF_NO_QUEUE: device can run without qdisc attached 1706 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1707 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1708 * @IFF_TEAM: device is a team device 1709 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1710 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1711 * entity (i.e. the master device for bridged veth) 1712 * @IFF_MACSEC: device is a MACsec device 1713 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1714 * @IFF_FAILOVER: device is a failover master device 1715 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1716 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1717 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1718 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1719 * skb_headlen(skb) == 0 (data starts from frag0) 1720 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1721 * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to 1722 * ndo_hwtstamp_set() for all timestamp requests regardless of source, 1723 * even if those aren't HWTSTAMP_SOURCE_NETDEV. 1724 */ 1725enum netdev_priv_flags { 1726 IFF_802_1Q_VLAN = 1<<0, 1727 IFF_EBRIDGE = 1<<1, 1728 IFF_BONDING = 1<<2, 1729 IFF_ISATAP = 1<<3, 1730 IFF_WAN_HDLC = 1<<4, 1731 IFF_XMIT_DST_RELEASE = 1<<5, 1732 IFF_DONT_BRIDGE = 1<<6, 1733 IFF_DISABLE_NETPOLL = 1<<7, 1734 IFF_MACVLAN_PORT = 1<<8, 1735 IFF_BRIDGE_PORT = 1<<9, 1736 IFF_OVS_DATAPATH = 1<<10, 1737 IFF_TX_SKB_SHARING = 1<<11, 1738 IFF_UNICAST_FLT = 1<<12, 1739 IFF_TEAM_PORT = 1<<13, 1740 IFF_SUPP_NOFCS = 1<<14, 1741 IFF_LIVE_ADDR_CHANGE = 1<<15, 1742 IFF_MACVLAN = 1<<16, 1743 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1744 IFF_L3MDEV_MASTER = 1<<18, 1745 IFF_NO_QUEUE = 1<<19, 1746 IFF_OPENVSWITCH = 1<<20, 1747 IFF_L3MDEV_SLAVE = 1<<21, 1748 IFF_TEAM = 1<<22, 1749 IFF_RXFH_CONFIGURED = 1<<23, 1750 IFF_PHONY_HEADROOM = 1<<24, 1751 IFF_MACSEC = 1<<25, 1752 IFF_NO_RX_HANDLER = 1<<26, 1753 IFF_FAILOVER = 1<<27, 1754 IFF_FAILOVER_SLAVE = 1<<28, 1755 IFF_L3MDEV_RX_HANDLER = 1<<29, 1756 IFF_NO_ADDRCONF = BIT_ULL(30), 1757 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1758 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1759 IFF_SEE_ALL_HWTSTAMP_REQUESTS = BIT_ULL(33), 1760}; 1761 1762#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1763#define IFF_EBRIDGE IFF_EBRIDGE 1764#define IFF_BONDING IFF_BONDING 1765#define IFF_ISATAP IFF_ISATAP 1766#define IFF_WAN_HDLC IFF_WAN_HDLC 1767#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1768#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1769#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1770#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1771#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1772#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1773#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1774#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1775#define IFF_TEAM_PORT IFF_TEAM_PORT 1776#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1777#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1778#define IFF_MACVLAN IFF_MACVLAN 1779#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1780#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1781#define IFF_NO_QUEUE IFF_NO_QUEUE 1782#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1783#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1784#define IFF_TEAM IFF_TEAM 1785#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1786#define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1787#define IFF_MACSEC IFF_MACSEC 1788#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1789#define IFF_FAILOVER IFF_FAILOVER 1790#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1791#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1792#define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1793 1794/* Specifies the type of the struct net_device::ml_priv pointer */ 1795enum netdev_ml_priv_type { 1796 ML_PRIV_NONE, 1797 ML_PRIV_CAN, 1798}; 1799 1800/** 1801 * struct net_device - The DEVICE structure. 1802 * 1803 * Actually, this whole structure is a big mistake. It mixes I/O 1804 * data with strictly "high-level" data, and it has to know about 1805 * almost every data structure used in the INET module. 1806 * 1807 * @name: This is the first field of the "visible" part of this structure 1808 * (i.e. as seen by users in the "Space.c" file). It is the name 1809 * of the interface. 1810 * 1811 * @name_node: Name hashlist node 1812 * @ifalias: SNMP alias 1813 * @mem_end: Shared memory end 1814 * @mem_start: Shared memory start 1815 * @base_addr: Device I/O address 1816 * @irq: Device IRQ number 1817 * 1818 * @state: Generic network queuing layer state, see netdev_state_t 1819 * @dev_list: The global list of network devices 1820 * @napi_list: List entry used for polling NAPI devices 1821 * @unreg_list: List entry when we are unregistering the 1822 * device; see the function unregister_netdev 1823 * @close_list: List entry used when we are closing the device 1824 * @ptype_all: Device-specific packet handlers for all protocols 1825 * @ptype_specific: Device-specific, protocol-specific packet handlers 1826 * 1827 * @adj_list: Directly linked devices, like slaves for bonding 1828 * @features: Currently active device features 1829 * @hw_features: User-changeable features 1830 * 1831 * @wanted_features: User-requested features 1832 * @vlan_features: Mask of features inheritable by VLAN devices 1833 * 1834 * @hw_enc_features: Mask of features inherited by encapsulating devices 1835 * This field indicates what encapsulation 1836 * offloads the hardware is capable of doing, 1837 * and drivers will need to set them appropriately. 1838 * 1839 * @mpls_features: Mask of features inheritable by MPLS 1840 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1841 * 1842 * @ifindex: interface index 1843 * @group: The group the device belongs to 1844 * 1845 * @stats: Statistics struct, which was left as a legacy, use 1846 * rtnl_link_stats64 instead 1847 * 1848 * @core_stats: core networking counters, 1849 * do not use this in drivers 1850 * @carrier_up_count: Number of times the carrier has been up 1851 * @carrier_down_count: Number of times the carrier has been down 1852 * 1853 * @wireless_handlers: List of functions to handle Wireless Extensions, 1854 * instead of ioctl, 1855 * see <net/iw_handler.h> for details. 1856 * @wireless_data: Instance data managed by the core of wireless extensions 1857 * 1858 * @netdev_ops: Includes several pointers to callbacks, 1859 * if one wants to override the ndo_*() functions 1860 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1861 * @ethtool_ops: Management operations 1862 * @l3mdev_ops: Layer 3 master device operations 1863 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1864 * discovery handling. Necessary for e.g. 6LoWPAN. 1865 * @xfrmdev_ops: Transformation offload operations 1866 * @tlsdev_ops: Transport Layer Security offload operations 1867 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1868 * of Layer 2 headers. 1869 * 1870 * @flags: Interface flags (a la BSD) 1871 * @xdp_features: XDP capability supported by the device 1872 * @priv_flags: Like 'flags' but invisible to userspace, 1873 * see if.h for the definitions 1874 * @gflags: Global flags ( kept as legacy ) 1875 * @padded: How much padding added by alloc_netdev() 1876 * @operstate: RFC2863 operstate 1877 * @link_mode: Mapping policy to operstate 1878 * @if_port: Selectable AUI, TP, ... 1879 * @dma: DMA channel 1880 * @mtu: Interface MTU value 1881 * @min_mtu: Interface Minimum MTU value 1882 * @max_mtu: Interface Maximum MTU value 1883 * @type: Interface hardware type 1884 * @hard_header_len: Maximum hardware header length. 1885 * @min_header_len: Minimum hardware header length 1886 * 1887 * @needed_headroom: Extra headroom the hardware may need, but not in all 1888 * cases can this be guaranteed 1889 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1890 * cases can this be guaranteed. Some cases also use 1891 * LL_MAX_HEADER instead to allocate the skb 1892 * 1893 * interface address info: 1894 * 1895 * @perm_addr: Permanent hw address 1896 * @addr_assign_type: Hw address assignment type 1897 * @addr_len: Hardware address length 1898 * @upper_level: Maximum depth level of upper devices. 1899 * @lower_level: Maximum depth level of lower devices. 1900 * @neigh_priv_len: Used in neigh_alloc() 1901 * @dev_id: Used to differentiate devices that share 1902 * the same link layer address 1903 * @dev_port: Used to differentiate devices that share 1904 * the same function 1905 * @addr_list_lock: XXX: need comments on this one 1906 * @name_assign_type: network interface name assignment type 1907 * @uc_promisc: Counter that indicates promiscuous mode 1908 * has been enabled due to the need to listen to 1909 * additional unicast addresses in a device that 1910 * does not implement ndo_set_rx_mode() 1911 * @uc: unicast mac addresses 1912 * @mc: multicast mac addresses 1913 * @dev_addrs: list of device hw addresses 1914 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1915 * @promiscuity: Number of times the NIC is told to work in 1916 * promiscuous mode; if it becomes 0 the NIC will 1917 * exit promiscuous mode 1918 * @allmulti: Counter, enables or disables allmulticast mode 1919 * 1920 * @vlan_info: VLAN info 1921 * @dsa_ptr: dsa specific data 1922 * @tipc_ptr: TIPC specific data 1923 * @atalk_ptr: AppleTalk link 1924 * @ip_ptr: IPv4 specific data 1925 * @ip6_ptr: IPv6 specific data 1926 * @ax25_ptr: AX.25 specific data 1927 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1928 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1929 * device struct 1930 * @mpls_ptr: mpls_dev struct pointer 1931 * @mctp_ptr: MCTP specific data 1932 * 1933 * @dev_addr: Hw address (before bcast, 1934 * because most packets are unicast) 1935 * 1936 * @_rx: Array of RX queues 1937 * @num_rx_queues: Number of RX queues 1938 * allocated at register_netdev() time 1939 * @real_num_rx_queues: Number of RX queues currently active in device 1940 * @xdp_prog: XDP sockets filter program pointer 1941 * @gro_flush_timeout: timeout for GRO layer in NAPI 1942 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1943 * allow to avoid NIC hard IRQ, on busy queues. 1944 * 1945 * @rx_handler: handler for received packets 1946 * @rx_handler_data: XXX: need comments on this one 1947 * @tcx_ingress: BPF & clsact qdisc specific data for ingress processing 1948 * @ingress_queue: XXX: need comments on this one 1949 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1950 * @broadcast: hw bcast address 1951 * 1952 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1953 * indexed by RX queue number. Assigned by driver. 1954 * This must only be set if the ndo_rx_flow_steer 1955 * operation is defined 1956 * @index_hlist: Device index hash chain 1957 * 1958 * @_tx: Array of TX queues 1959 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1960 * @real_num_tx_queues: Number of TX queues currently active in device 1961 * @qdisc: Root qdisc from userspace point of view 1962 * @tx_queue_len: Max frames per queue allowed 1963 * @tx_global_lock: XXX: need comments on this one 1964 * @xdp_bulkq: XDP device bulk queue 1965 * @xps_maps: all CPUs/RXQs maps for XPS device 1966 * 1967 * @xps_maps: XXX: need comments on this one 1968 * @tcx_egress: BPF & clsact qdisc specific data for egress processing 1969 * @nf_hooks_egress: netfilter hooks executed for egress packets 1970 * @qdisc_hash: qdisc hash table 1971 * @watchdog_timeo: Represents the timeout that is used by 1972 * the watchdog (see dev_watchdog()) 1973 * @watchdog_timer: List of timers 1974 * 1975 * @proto_down_reason: reason a netdev interface is held down 1976 * @pcpu_refcnt: Number of references to this device 1977 * @dev_refcnt: Number of references to this device 1978 * @refcnt_tracker: Tracker directory for tracked references to this device 1979 * @todo_list: Delayed register/unregister 1980 * @link_watch_list: XXX: need comments on this one 1981 * 1982 * @reg_state: Register/unregister state machine 1983 * @dismantle: Device is going to be freed 1984 * @rtnl_link_state: This enum represents the phases of creating 1985 * a new link 1986 * 1987 * @needs_free_netdev: Should unregister perform free_netdev? 1988 * @priv_destructor: Called from unregister 1989 * @npinfo: XXX: need comments on this one 1990 * @nd_net: Network namespace this network device is inside 1991 * 1992 * @ml_priv: Mid-layer private 1993 * @ml_priv_type: Mid-layer private type 1994 * @lstats: Loopback statistics 1995 * @tstats: Tunnel statistics 1996 * @dstats: Dummy statistics 1997 * @vstats: Virtual ethernet statistics 1998 * 1999 * @garp_port: GARP 2000 * @mrp_port: MRP 2001 * 2002 * @dm_private: Drop monitor private 2003 * 2004 * @dev: Class/net/name entry 2005 * @sysfs_groups: Space for optional device, statistics and wireless 2006 * sysfs groups 2007 * 2008 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 2009 * @rtnl_link_ops: Rtnl_link_ops 2010 * 2011 * @gso_max_size: Maximum size of generic segmentation offload 2012 * @tso_max_size: Device (as in HW) limit on the max TSO request size 2013 * @gso_max_segs: Maximum number of segments that can be passed to the 2014 * NIC for GSO 2015 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 2016 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 2017 * for IPv4. 2018 * 2019 * @dcbnl_ops: Data Center Bridging netlink ops 2020 * @num_tc: Number of traffic classes in the net device 2021 * @tc_to_txq: XXX: need comments on this one 2022 * @prio_tc_map: XXX: need comments on this one 2023 * 2024 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2025 * 2026 * @priomap: XXX: need comments on this one 2027 * @phydev: Physical device may attach itself 2028 * for hardware timestamping 2029 * @sfp_bus: attached &struct sfp_bus structure. 2030 * 2031 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2032 * 2033 * @proto_down: protocol port state information can be sent to the 2034 * switch driver and used to set the phys state of the 2035 * switch port. 2036 * 2037 * @wol_enabled: Wake-on-LAN is enabled 2038 * 2039 * @threaded: napi threaded mode is enabled 2040 * 2041 * @net_notifier_list: List of per-net netdev notifier block 2042 * that follow this device when it is moved 2043 * to another network namespace. 2044 * 2045 * @macsec_ops: MACsec offloading ops 2046 * 2047 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2048 * offload capabilities of the device 2049 * @udp_tunnel_nic: UDP tunnel offload state 2050 * @xdp_state: stores info on attached XDP BPF programs 2051 * 2052 * @nested_level: Used as a parameter of spin_lock_nested() of 2053 * dev->addr_list_lock. 2054 * @unlink_list: As netif_addr_lock() can be called recursively, 2055 * keep a list of interfaces to be deleted. 2056 * @gro_max_size: Maximum size of aggregated packet in generic 2057 * receive offload (GRO) 2058 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2059 * receive offload (GRO), for IPv4. 2060 * @xdp_zc_max_segs: Maximum number of segments supported by AF_XDP 2061 * zero copy driver 2062 * 2063 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2064 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2065 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2066 * @dev_registered_tracker: tracker for reference held while 2067 * registered 2068 * @offload_xstats_l3: L3 HW stats for this netdevice. 2069 * 2070 * @devlink_port: Pointer to related devlink port structure. 2071 * Assigned by a driver before netdev registration using 2072 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2073 * during the time netdevice is registered. 2074 * 2075 * @dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem, 2076 * where the clock is recovered. 2077 * 2078 * FIXME: cleanup struct net_device such that network protocol info 2079 * moves out. 2080 */ 2081 2082struct net_device { 2083 char name[IFNAMSIZ]; 2084 struct netdev_name_node *name_node; 2085 struct dev_ifalias __rcu *ifalias; 2086 /* 2087 * I/O specific fields 2088 * FIXME: Merge these and struct ifmap into one 2089 */ 2090 unsigned long mem_end; 2091 unsigned long mem_start; 2092 unsigned long base_addr; 2093 2094 /* 2095 * Some hardware also needs these fields (state,dev_list, 2096 * napi_list,unreg_list,close_list) but they are not 2097 * part of the usual set specified in Space.c. 2098 */ 2099 2100 unsigned long state; 2101 2102 struct list_head dev_list; 2103 struct list_head napi_list; 2104 struct list_head unreg_list; 2105 struct list_head close_list; 2106 struct list_head ptype_all; 2107 struct list_head ptype_specific; 2108 2109 struct { 2110 struct list_head upper; 2111 struct list_head lower; 2112 } adj_list; 2113 2114 /* Read-mostly cache-line for fast-path access */ 2115 unsigned int flags; 2116 xdp_features_t xdp_features; 2117 unsigned long long priv_flags; 2118 const struct net_device_ops *netdev_ops; 2119 const struct xdp_metadata_ops *xdp_metadata_ops; 2120 int ifindex; 2121 unsigned short gflags; 2122 unsigned short hard_header_len; 2123 2124 /* Note : dev->mtu is often read without holding a lock. 2125 * Writers usually hold RTNL. 2126 * It is recommended to use READ_ONCE() to annotate the reads, 2127 * and to use WRITE_ONCE() to annotate the writes. 2128 */ 2129 unsigned int mtu; 2130 unsigned short needed_headroom; 2131 unsigned short needed_tailroom; 2132 2133 netdev_features_t features; 2134 netdev_features_t hw_features; 2135 netdev_features_t wanted_features; 2136 netdev_features_t vlan_features; 2137 netdev_features_t hw_enc_features; 2138 netdev_features_t mpls_features; 2139 netdev_features_t gso_partial_features; 2140 2141 unsigned int min_mtu; 2142 unsigned int max_mtu; 2143 unsigned short type; 2144 unsigned char min_header_len; 2145 unsigned char name_assign_type; 2146 2147 int group; 2148 2149 struct net_device_stats stats; /* not used by modern drivers */ 2150 2151 struct net_device_core_stats __percpu *core_stats; 2152 2153 /* Stats to monitor link on/off, flapping */ 2154 atomic_t carrier_up_count; 2155 atomic_t carrier_down_count; 2156 2157#ifdef CONFIG_WIRELESS_EXT 2158 const struct iw_handler_def *wireless_handlers; 2159 struct iw_public_data *wireless_data; 2160#endif 2161 const struct ethtool_ops *ethtool_ops; 2162#ifdef CONFIG_NET_L3_MASTER_DEV 2163 const struct l3mdev_ops *l3mdev_ops; 2164#endif 2165#if IS_ENABLED(CONFIG_IPV6) 2166 const struct ndisc_ops *ndisc_ops; 2167#endif 2168 2169#ifdef CONFIG_XFRM_OFFLOAD 2170 const struct xfrmdev_ops *xfrmdev_ops; 2171#endif 2172 2173#if IS_ENABLED(CONFIG_TLS_DEVICE) 2174 const struct tlsdev_ops *tlsdev_ops; 2175#endif 2176 2177 const struct header_ops *header_ops; 2178 2179 unsigned char operstate; 2180 unsigned char link_mode; 2181 2182 unsigned char if_port; 2183 unsigned char dma; 2184 2185 /* Interface address info. */ 2186 unsigned char perm_addr[MAX_ADDR_LEN]; 2187 unsigned char addr_assign_type; 2188 unsigned char addr_len; 2189 unsigned char upper_level; 2190 unsigned char lower_level; 2191 2192 unsigned short neigh_priv_len; 2193 unsigned short dev_id; 2194 unsigned short dev_port; 2195 unsigned short padded; 2196 2197 spinlock_t addr_list_lock; 2198 int irq; 2199 2200 struct netdev_hw_addr_list uc; 2201 struct netdev_hw_addr_list mc; 2202 struct netdev_hw_addr_list dev_addrs; 2203 2204#ifdef CONFIG_SYSFS 2205 struct kset *queues_kset; 2206#endif 2207#ifdef CONFIG_LOCKDEP 2208 struct list_head unlink_list; 2209#endif 2210 unsigned int promiscuity; 2211 unsigned int allmulti; 2212 bool uc_promisc; 2213#ifdef CONFIG_LOCKDEP 2214 unsigned char nested_level; 2215#endif 2216 2217 2218 /* Protocol-specific pointers */ 2219 2220 struct in_device __rcu *ip_ptr; 2221 struct inet6_dev __rcu *ip6_ptr; 2222#if IS_ENABLED(CONFIG_VLAN_8021Q) 2223 struct vlan_info __rcu *vlan_info; 2224#endif 2225#if IS_ENABLED(CONFIG_NET_DSA) 2226 struct dsa_port *dsa_ptr; 2227#endif 2228#if IS_ENABLED(CONFIG_TIPC) 2229 struct tipc_bearer __rcu *tipc_ptr; 2230#endif 2231#if IS_ENABLED(CONFIG_ATALK) 2232 void *atalk_ptr; 2233#endif 2234#if IS_ENABLED(CONFIG_AX25) 2235 void *ax25_ptr; 2236#endif 2237#if IS_ENABLED(CONFIG_CFG80211) 2238 struct wireless_dev *ieee80211_ptr; 2239#endif 2240#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2241 struct wpan_dev *ieee802154_ptr; 2242#endif 2243#if IS_ENABLED(CONFIG_MPLS_ROUTING) 2244 struct mpls_dev __rcu *mpls_ptr; 2245#endif 2246#if IS_ENABLED(CONFIG_MCTP) 2247 struct mctp_dev __rcu *mctp_ptr; 2248#endif 2249 2250/* 2251 * Cache lines mostly used on receive path (including eth_type_trans()) 2252 */ 2253 /* Interface address info used in eth_type_trans() */ 2254 const unsigned char *dev_addr; 2255 2256 struct netdev_rx_queue *_rx; 2257 unsigned int num_rx_queues; 2258 unsigned int real_num_rx_queues; 2259 2260 struct bpf_prog __rcu *xdp_prog; 2261 unsigned long gro_flush_timeout; 2262 int napi_defer_hard_irqs; 2263#define GRO_LEGACY_MAX_SIZE 65536u 2264/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2265 * and shinfo->gso_segs is a 16bit field. 2266 */ 2267#define GRO_MAX_SIZE (8 * 65535u) 2268 unsigned int gro_max_size; 2269 unsigned int gro_ipv4_max_size; 2270 unsigned int xdp_zc_max_segs; 2271 rx_handler_func_t __rcu *rx_handler; 2272 void __rcu *rx_handler_data; 2273#ifdef CONFIG_NET_XGRESS 2274 struct bpf_mprog_entry __rcu *tcx_ingress; 2275#endif 2276 struct netdev_queue __rcu *ingress_queue; 2277#ifdef CONFIG_NETFILTER_INGRESS 2278 struct nf_hook_entries __rcu *nf_hooks_ingress; 2279#endif 2280 2281 unsigned char broadcast[MAX_ADDR_LEN]; 2282#ifdef CONFIG_RFS_ACCEL 2283 struct cpu_rmap *rx_cpu_rmap; 2284#endif 2285 struct hlist_node index_hlist; 2286 2287/* 2288 * Cache lines mostly used on transmit path 2289 */ 2290 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2291 unsigned int num_tx_queues; 2292 unsigned int real_num_tx_queues; 2293 struct Qdisc __rcu *qdisc; 2294 unsigned int tx_queue_len; 2295 spinlock_t tx_global_lock; 2296 2297 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2298 2299#ifdef CONFIG_XPS 2300 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2301#endif 2302#ifdef CONFIG_NET_XGRESS 2303 struct bpf_mprog_entry __rcu *tcx_egress; 2304#endif 2305#ifdef CONFIG_NETFILTER_EGRESS 2306 struct nf_hook_entries __rcu *nf_hooks_egress; 2307#endif 2308 2309#ifdef CONFIG_NET_SCHED 2310 DECLARE_HASHTABLE (qdisc_hash, 4); 2311#endif 2312 /* These may be needed for future network-power-down code. */ 2313 struct timer_list watchdog_timer; 2314 int watchdog_timeo; 2315 2316 u32 proto_down_reason; 2317 2318 struct list_head todo_list; 2319 2320#ifdef CONFIG_PCPU_DEV_REFCNT 2321 int __percpu *pcpu_refcnt; 2322#else 2323 refcount_t dev_refcnt; 2324#endif 2325 struct ref_tracker_dir refcnt_tracker; 2326 2327 struct list_head link_watch_list; 2328 2329 enum { NETREG_UNINITIALIZED=0, 2330 NETREG_REGISTERED, /* completed register_netdevice */ 2331 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2332 NETREG_UNREGISTERED, /* completed unregister todo */ 2333 NETREG_RELEASED, /* called free_netdev */ 2334 NETREG_DUMMY, /* dummy device for NAPI poll */ 2335 } reg_state:8; 2336 2337 bool dismantle; 2338 2339 enum { 2340 RTNL_LINK_INITIALIZED, 2341 RTNL_LINK_INITIALIZING, 2342 } rtnl_link_state:16; 2343 2344 bool needs_free_netdev; 2345 void (*priv_destructor)(struct net_device *dev); 2346 2347#ifdef CONFIG_NETPOLL 2348 struct netpoll_info __rcu *npinfo; 2349#endif 2350 2351 possible_net_t nd_net; 2352 2353 /* mid-layer private */ 2354 void *ml_priv; 2355 enum netdev_ml_priv_type ml_priv_type; 2356 2357 union { 2358 struct pcpu_lstats __percpu *lstats; 2359 struct pcpu_sw_netstats __percpu *tstats; 2360 struct pcpu_dstats __percpu *dstats; 2361 }; 2362 2363#if IS_ENABLED(CONFIG_GARP) 2364 struct garp_port __rcu *garp_port; 2365#endif 2366#if IS_ENABLED(CONFIG_MRP) 2367 struct mrp_port __rcu *mrp_port; 2368#endif 2369#if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2370 struct dm_hw_stat_delta __rcu *dm_private; 2371#endif 2372 struct device dev; 2373 const struct attribute_group *sysfs_groups[4]; 2374 const struct attribute_group *sysfs_rx_queue_group; 2375 2376 const struct rtnl_link_ops *rtnl_link_ops; 2377 2378 /* for setting kernel sock attribute on TCP connection setup */ 2379#define GSO_MAX_SEGS 65535u 2380#define GSO_LEGACY_MAX_SIZE 65536u 2381/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2382 * and shinfo->gso_segs is a 16bit field. 2383 */ 2384#define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2385 2386 unsigned int gso_max_size; 2387#define TSO_LEGACY_MAX_SIZE 65536 2388#define TSO_MAX_SIZE UINT_MAX 2389 unsigned int tso_max_size; 2390 u16 gso_max_segs; 2391#define TSO_MAX_SEGS U16_MAX 2392 u16 tso_max_segs; 2393 unsigned int gso_ipv4_max_size; 2394 2395#ifdef CONFIG_DCB 2396 const struct dcbnl_rtnl_ops *dcbnl_ops; 2397#endif 2398 s16 num_tc; 2399 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2400 u8 prio_tc_map[TC_BITMASK + 1]; 2401 2402#if IS_ENABLED(CONFIG_FCOE) 2403 unsigned int fcoe_ddp_xid; 2404#endif 2405#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2406 struct netprio_map __rcu *priomap; 2407#endif 2408 struct phy_device *phydev; 2409 struct sfp_bus *sfp_bus; 2410 struct lock_class_key *qdisc_tx_busylock; 2411 bool proto_down; 2412 unsigned wol_enabled:1; 2413 unsigned threaded:1; 2414 2415 struct list_head net_notifier_list; 2416 2417#if IS_ENABLED(CONFIG_MACSEC) 2418 /* MACsec management functions */ 2419 const struct macsec_ops *macsec_ops; 2420#endif 2421 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2422 struct udp_tunnel_nic *udp_tunnel_nic; 2423 2424 /* protected by rtnl_lock */ 2425 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2426 2427 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2428 netdevice_tracker linkwatch_dev_tracker; 2429 netdevice_tracker watchdog_dev_tracker; 2430 netdevice_tracker dev_registered_tracker; 2431 struct rtnl_hw_stats64 *offload_xstats_l3; 2432 2433 struct devlink_port *devlink_port; 2434 2435#if IS_ENABLED(CONFIG_DPLL) 2436 struct dpll_pin *dpll_pin; 2437#endif 2438}; 2439#define to_net_dev(d) container_of(d, struct net_device, dev) 2440 2441/* 2442 * Driver should use this to assign devlink port instance to a netdevice 2443 * before it registers the netdevice. Therefore devlink_port is static 2444 * during the netdev lifetime after it is registered. 2445 */ 2446#define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2447({ \ 2448 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2449 ((dev)->devlink_port = (port)); \ 2450}) 2451 2452static inline bool netif_elide_gro(const struct net_device *dev) 2453{ 2454 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2455 return true; 2456 return false; 2457} 2458 2459#define NETDEV_ALIGN 32 2460 2461static inline 2462int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2463{ 2464 return dev->prio_tc_map[prio & TC_BITMASK]; 2465} 2466 2467static inline 2468int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2469{ 2470 if (tc >= dev->num_tc) 2471 return -EINVAL; 2472 2473 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2474 return 0; 2475} 2476 2477int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2478void netdev_reset_tc(struct net_device *dev); 2479int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2480int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2481 2482static inline 2483int netdev_get_num_tc(struct net_device *dev) 2484{ 2485 return dev->num_tc; 2486} 2487 2488static inline void net_prefetch(void *p) 2489{ 2490 prefetch(p); 2491#if L1_CACHE_BYTES < 128 2492 prefetch((u8 *)p + L1_CACHE_BYTES); 2493#endif 2494} 2495 2496static inline void net_prefetchw(void *p) 2497{ 2498 prefetchw(p); 2499#if L1_CACHE_BYTES < 128 2500 prefetchw((u8 *)p + L1_CACHE_BYTES); 2501#endif 2502} 2503 2504void netdev_unbind_sb_channel(struct net_device *dev, 2505 struct net_device *sb_dev); 2506int netdev_bind_sb_channel_queue(struct net_device *dev, 2507 struct net_device *sb_dev, 2508 u8 tc, u16 count, u16 offset); 2509int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2510static inline int netdev_get_sb_channel(struct net_device *dev) 2511{ 2512 return max_t(int, -dev->num_tc, 0); 2513} 2514 2515static inline 2516struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2517 unsigned int index) 2518{ 2519 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2520 return &dev->_tx[index]; 2521} 2522 2523static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2524 const struct sk_buff *skb) 2525{ 2526 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2527} 2528 2529static inline void netdev_for_each_tx_queue(struct net_device *dev, 2530 void (*f)(struct net_device *, 2531 struct netdev_queue *, 2532 void *), 2533 void *arg) 2534{ 2535 unsigned int i; 2536 2537 for (i = 0; i < dev->num_tx_queues; i++) 2538 f(dev, &dev->_tx[i], arg); 2539} 2540 2541#define netdev_lockdep_set_classes(dev) \ 2542{ \ 2543 static struct lock_class_key qdisc_tx_busylock_key; \ 2544 static struct lock_class_key qdisc_xmit_lock_key; \ 2545 static struct lock_class_key dev_addr_list_lock_key; \ 2546 unsigned int i; \ 2547 \ 2548 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2549 lockdep_set_class(&(dev)->addr_list_lock, \ 2550 &dev_addr_list_lock_key); \ 2551 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2552 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2553 &qdisc_xmit_lock_key); \ 2554} 2555 2556u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2557 struct net_device *sb_dev); 2558struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2559 struct sk_buff *skb, 2560 struct net_device *sb_dev); 2561 2562/* returns the headroom that the master device needs to take in account 2563 * when forwarding to this dev 2564 */ 2565static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2566{ 2567 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2568} 2569 2570static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2571{ 2572 if (dev->netdev_ops->ndo_set_rx_headroom) 2573 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2574} 2575 2576/* set the device rx headroom to the dev's default */ 2577static inline void netdev_reset_rx_headroom(struct net_device *dev) 2578{ 2579 netdev_set_rx_headroom(dev, -1); 2580} 2581 2582static inline void *netdev_get_ml_priv(struct net_device *dev, 2583 enum netdev_ml_priv_type type) 2584{ 2585 if (dev->ml_priv_type != type) 2586 return NULL; 2587 2588 return dev->ml_priv; 2589} 2590 2591static inline void netdev_set_ml_priv(struct net_device *dev, 2592 void *ml_priv, 2593 enum netdev_ml_priv_type type) 2594{ 2595 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2596 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2597 dev->ml_priv_type, type); 2598 WARN(!dev->ml_priv_type && dev->ml_priv, 2599 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2600 2601 dev->ml_priv = ml_priv; 2602 dev->ml_priv_type = type; 2603} 2604 2605/* 2606 * Net namespace inlines 2607 */ 2608static inline 2609struct net *dev_net(const struct net_device *dev) 2610{ 2611 return read_pnet(&dev->nd_net); 2612} 2613 2614static inline 2615void dev_net_set(struct net_device *dev, struct net *net) 2616{ 2617 write_pnet(&dev->nd_net, net); 2618} 2619 2620/** 2621 * netdev_priv - access network device private data 2622 * @dev: network device 2623 * 2624 * Get network device private data 2625 */ 2626static inline void *netdev_priv(const struct net_device *dev) 2627{ 2628 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2629} 2630 2631/* Set the sysfs physical device reference for the network logical device 2632 * if set prior to registration will cause a symlink during initialization. 2633 */ 2634#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2635 2636/* Set the sysfs device type for the network logical device to allow 2637 * fine-grained identification of different network device types. For 2638 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2639 */ 2640#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2641 2642/* Default NAPI poll() weight 2643 * Device drivers are strongly advised to not use bigger value 2644 */ 2645#define NAPI_POLL_WEIGHT 64 2646 2647void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2648 int (*poll)(struct napi_struct *, int), int weight); 2649 2650/** 2651 * netif_napi_add() - initialize a NAPI context 2652 * @dev: network device 2653 * @napi: NAPI context 2654 * @poll: polling function 2655 * 2656 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2657 * *any* of the other NAPI-related functions. 2658 */ 2659static inline void 2660netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2661 int (*poll)(struct napi_struct *, int)) 2662{ 2663 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2664} 2665 2666static inline void 2667netif_napi_add_tx_weight(struct net_device *dev, 2668 struct napi_struct *napi, 2669 int (*poll)(struct napi_struct *, int), 2670 int weight) 2671{ 2672 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2673 netif_napi_add_weight(dev, napi, poll, weight); 2674} 2675 2676/** 2677 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2678 * @dev: network device 2679 * @napi: NAPI context 2680 * @poll: polling function 2681 * 2682 * This variant of netif_napi_add() should be used from drivers using NAPI 2683 * to exclusively poll a TX queue. 2684 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2685 */ 2686static inline void netif_napi_add_tx(struct net_device *dev, 2687 struct napi_struct *napi, 2688 int (*poll)(struct napi_struct *, int)) 2689{ 2690 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2691} 2692 2693/** 2694 * __netif_napi_del - remove a NAPI context 2695 * @napi: NAPI context 2696 * 2697 * Warning: caller must observe RCU grace period before freeing memory 2698 * containing @napi. Drivers might want to call this helper to combine 2699 * all the needed RCU grace periods into a single one. 2700 */ 2701void __netif_napi_del(struct napi_struct *napi); 2702 2703/** 2704 * netif_napi_del - remove a NAPI context 2705 * @napi: NAPI context 2706 * 2707 * netif_napi_del() removes a NAPI context from the network device NAPI list 2708 */ 2709static inline void netif_napi_del(struct napi_struct *napi) 2710{ 2711 __netif_napi_del(napi); 2712 synchronize_net(); 2713} 2714 2715struct packet_type { 2716 __be16 type; /* This is really htons(ether_type). */ 2717 bool ignore_outgoing; 2718 struct net_device *dev; /* NULL is wildcarded here */ 2719 netdevice_tracker dev_tracker; 2720 int (*func) (struct sk_buff *, 2721 struct net_device *, 2722 struct packet_type *, 2723 struct net_device *); 2724 void (*list_func) (struct list_head *, 2725 struct packet_type *, 2726 struct net_device *); 2727 bool (*id_match)(struct packet_type *ptype, 2728 struct sock *sk); 2729 struct net *af_packet_net; 2730 void *af_packet_priv; 2731 struct list_head list; 2732}; 2733 2734struct offload_callbacks { 2735 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2736 netdev_features_t features); 2737 struct sk_buff *(*gro_receive)(struct list_head *head, 2738 struct sk_buff *skb); 2739 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2740}; 2741 2742struct packet_offload { 2743 __be16 type; /* This is really htons(ether_type). */ 2744 u16 priority; 2745 struct offload_callbacks callbacks; 2746 struct list_head list; 2747}; 2748 2749/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2750struct pcpu_sw_netstats { 2751 u64_stats_t rx_packets; 2752 u64_stats_t rx_bytes; 2753 u64_stats_t tx_packets; 2754 u64_stats_t tx_bytes; 2755 struct u64_stats_sync syncp; 2756} __aligned(4 * sizeof(u64)); 2757 2758struct pcpu_lstats { 2759 u64_stats_t packets; 2760 u64_stats_t bytes; 2761 struct u64_stats_sync syncp; 2762} __aligned(2 * sizeof(u64)); 2763 2764void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2765 2766static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2767{ 2768 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2769 2770 u64_stats_update_begin(&tstats->syncp); 2771 u64_stats_add(&tstats->rx_bytes, len); 2772 u64_stats_inc(&tstats->rx_packets); 2773 u64_stats_update_end(&tstats->syncp); 2774} 2775 2776static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2777 unsigned int packets, 2778 unsigned int len) 2779{ 2780 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2781 2782 u64_stats_update_begin(&tstats->syncp); 2783 u64_stats_add(&tstats->tx_bytes, len); 2784 u64_stats_add(&tstats->tx_packets, packets); 2785 u64_stats_update_end(&tstats->syncp); 2786} 2787 2788static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2789{ 2790 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2791 2792 u64_stats_update_begin(&lstats->syncp); 2793 u64_stats_add(&lstats->bytes, len); 2794 u64_stats_inc(&lstats->packets); 2795 u64_stats_update_end(&lstats->syncp); 2796} 2797 2798#define __netdev_alloc_pcpu_stats(type, gfp) \ 2799({ \ 2800 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2801 if (pcpu_stats) { \ 2802 int __cpu; \ 2803 for_each_possible_cpu(__cpu) { \ 2804 typeof(type) *stat; \ 2805 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2806 u64_stats_init(&stat->syncp); \ 2807 } \ 2808 } \ 2809 pcpu_stats; \ 2810}) 2811 2812#define netdev_alloc_pcpu_stats(type) \ 2813 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2814 2815#define devm_netdev_alloc_pcpu_stats(dev, type) \ 2816({ \ 2817 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2818 if (pcpu_stats) { \ 2819 int __cpu; \ 2820 for_each_possible_cpu(__cpu) { \ 2821 typeof(type) *stat; \ 2822 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2823 u64_stats_init(&stat->syncp); \ 2824 } \ 2825 } \ 2826 pcpu_stats; \ 2827}) 2828 2829enum netdev_lag_tx_type { 2830 NETDEV_LAG_TX_TYPE_UNKNOWN, 2831 NETDEV_LAG_TX_TYPE_RANDOM, 2832 NETDEV_LAG_TX_TYPE_BROADCAST, 2833 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2834 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2835 NETDEV_LAG_TX_TYPE_HASH, 2836}; 2837 2838enum netdev_lag_hash { 2839 NETDEV_LAG_HASH_NONE, 2840 NETDEV_LAG_HASH_L2, 2841 NETDEV_LAG_HASH_L34, 2842 NETDEV_LAG_HASH_L23, 2843 NETDEV_LAG_HASH_E23, 2844 NETDEV_LAG_HASH_E34, 2845 NETDEV_LAG_HASH_VLAN_SRCMAC, 2846 NETDEV_LAG_HASH_UNKNOWN, 2847}; 2848 2849struct netdev_lag_upper_info { 2850 enum netdev_lag_tx_type tx_type; 2851 enum netdev_lag_hash hash_type; 2852}; 2853 2854struct netdev_lag_lower_state_info { 2855 u8 link_up : 1, 2856 tx_enabled : 1; 2857}; 2858 2859#include <linux/notifier.h> 2860 2861/* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2862 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2863 * adding new types. 2864 */ 2865enum netdev_cmd { 2866 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2867 NETDEV_DOWN, 2868 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2869 detected a hardware crash and restarted 2870 - we can use this eg to kick tcp sessions 2871 once done */ 2872 NETDEV_CHANGE, /* Notify device state change */ 2873 NETDEV_REGISTER, 2874 NETDEV_UNREGISTER, 2875 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2876 NETDEV_CHANGEADDR, /* notify after the address change */ 2877 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2878 NETDEV_GOING_DOWN, 2879 NETDEV_CHANGENAME, 2880 NETDEV_FEAT_CHANGE, 2881 NETDEV_BONDING_FAILOVER, 2882 NETDEV_PRE_UP, 2883 NETDEV_PRE_TYPE_CHANGE, 2884 NETDEV_POST_TYPE_CHANGE, 2885 NETDEV_POST_INIT, 2886 NETDEV_PRE_UNINIT, 2887 NETDEV_RELEASE, 2888 NETDEV_NOTIFY_PEERS, 2889 NETDEV_JOIN, 2890 NETDEV_CHANGEUPPER, 2891 NETDEV_RESEND_IGMP, 2892 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2893 NETDEV_CHANGEINFODATA, 2894 NETDEV_BONDING_INFO, 2895 NETDEV_PRECHANGEUPPER, 2896 NETDEV_CHANGELOWERSTATE, 2897 NETDEV_UDP_TUNNEL_PUSH_INFO, 2898 NETDEV_UDP_TUNNEL_DROP_INFO, 2899 NETDEV_CHANGE_TX_QUEUE_LEN, 2900 NETDEV_CVLAN_FILTER_PUSH_INFO, 2901 NETDEV_CVLAN_FILTER_DROP_INFO, 2902 NETDEV_SVLAN_FILTER_PUSH_INFO, 2903 NETDEV_SVLAN_FILTER_DROP_INFO, 2904 NETDEV_OFFLOAD_XSTATS_ENABLE, 2905 NETDEV_OFFLOAD_XSTATS_DISABLE, 2906 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2907 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2908 NETDEV_XDP_FEAT_CHANGE, 2909}; 2910const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2911 2912int register_netdevice_notifier(struct notifier_block *nb); 2913int unregister_netdevice_notifier(struct notifier_block *nb); 2914int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2915int unregister_netdevice_notifier_net(struct net *net, 2916 struct notifier_block *nb); 2917int register_netdevice_notifier_dev_net(struct net_device *dev, 2918 struct notifier_block *nb, 2919 struct netdev_net_notifier *nn); 2920int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2921 struct notifier_block *nb, 2922 struct netdev_net_notifier *nn); 2923 2924struct netdev_notifier_info { 2925 struct net_device *dev; 2926 struct netlink_ext_ack *extack; 2927}; 2928 2929struct netdev_notifier_info_ext { 2930 struct netdev_notifier_info info; /* must be first */ 2931 union { 2932 u32 mtu; 2933 } ext; 2934}; 2935 2936struct netdev_notifier_change_info { 2937 struct netdev_notifier_info info; /* must be first */ 2938 unsigned int flags_changed; 2939}; 2940 2941struct netdev_notifier_changeupper_info { 2942 struct netdev_notifier_info info; /* must be first */ 2943 struct net_device *upper_dev; /* new upper dev */ 2944 bool master; /* is upper dev master */ 2945 bool linking; /* is the notification for link or unlink */ 2946 void *upper_info; /* upper dev info */ 2947}; 2948 2949struct netdev_notifier_changelowerstate_info { 2950 struct netdev_notifier_info info; /* must be first */ 2951 void *lower_state_info; /* is lower dev state */ 2952}; 2953 2954struct netdev_notifier_pre_changeaddr_info { 2955 struct netdev_notifier_info info; /* must be first */ 2956 const unsigned char *dev_addr; 2957}; 2958 2959enum netdev_offload_xstats_type { 2960 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2961}; 2962 2963struct netdev_notifier_offload_xstats_info { 2964 struct netdev_notifier_info info; /* must be first */ 2965 enum netdev_offload_xstats_type type; 2966 2967 union { 2968 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2969 struct netdev_notifier_offload_xstats_rd *report_delta; 2970 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2971 struct netdev_notifier_offload_xstats_ru *report_used; 2972 }; 2973}; 2974 2975int netdev_offload_xstats_enable(struct net_device *dev, 2976 enum netdev_offload_xstats_type type, 2977 struct netlink_ext_ack *extack); 2978int netdev_offload_xstats_disable(struct net_device *dev, 2979 enum netdev_offload_xstats_type type); 2980bool netdev_offload_xstats_enabled(const struct net_device *dev, 2981 enum netdev_offload_xstats_type type); 2982int netdev_offload_xstats_get(struct net_device *dev, 2983 enum netdev_offload_xstats_type type, 2984 struct rtnl_hw_stats64 *stats, bool *used, 2985 struct netlink_ext_ack *extack); 2986void 2987netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2988 const struct rtnl_hw_stats64 *stats); 2989void 2990netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2991void netdev_offload_xstats_push_delta(struct net_device *dev, 2992 enum netdev_offload_xstats_type type, 2993 const struct rtnl_hw_stats64 *stats); 2994 2995static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2996 struct net_device *dev) 2997{ 2998 info->dev = dev; 2999 info->extack = NULL; 3000} 3001 3002static inline struct net_device * 3003netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 3004{ 3005 return info->dev; 3006} 3007 3008static inline struct netlink_ext_ack * 3009netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 3010{ 3011 return info->extack; 3012} 3013 3014int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 3015int call_netdevice_notifiers_info(unsigned long val, 3016 struct netdev_notifier_info *info); 3017 3018extern rwlock_t dev_base_lock; /* Device list lock */ 3019 3020#define for_each_netdev(net, d) \ 3021 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 3022#define for_each_netdev_reverse(net, d) \ 3023 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3024#define for_each_netdev_rcu(net, d) \ 3025 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3026#define for_each_netdev_safe(net, d, n) \ 3027 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3028#define for_each_netdev_continue(net, d) \ 3029 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3030#define for_each_netdev_continue_reverse(net, d) \ 3031 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3032 dev_list) 3033#define for_each_netdev_continue_rcu(net, d) \ 3034 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3035#define for_each_netdev_in_bond_rcu(bond, slave) \ 3036 for_each_netdev_rcu(&init_net, slave) \ 3037 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3038#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3039 3040#define for_each_netdev_dump(net, d, ifindex) \ 3041 xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex)) 3042 3043static inline struct net_device *next_net_device(struct net_device *dev) 3044{ 3045 struct list_head *lh; 3046 struct net *net; 3047 3048 net = dev_net(dev); 3049 lh = dev->dev_list.next; 3050 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3051} 3052 3053static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3054{ 3055 struct list_head *lh; 3056 struct net *net; 3057 3058 net = dev_net(dev); 3059 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3060 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3061} 3062 3063static inline struct net_device *first_net_device(struct net *net) 3064{ 3065 return list_empty(&net->dev_base_head) ? NULL : 3066 net_device_entry(net->dev_base_head.next); 3067} 3068 3069static inline struct net_device *first_net_device_rcu(struct net *net) 3070{ 3071 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3072 3073 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3074} 3075 3076int netdev_boot_setup_check(struct net_device *dev); 3077struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3078 const char *hwaddr); 3079struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3080void dev_add_pack(struct packet_type *pt); 3081void dev_remove_pack(struct packet_type *pt); 3082void __dev_remove_pack(struct packet_type *pt); 3083void dev_add_offload(struct packet_offload *po); 3084void dev_remove_offload(struct packet_offload *po); 3085 3086int dev_get_iflink(const struct net_device *dev); 3087int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3088int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3089 struct net_device_path_stack *stack); 3090struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3091 unsigned short mask); 3092struct net_device *dev_get_by_name(struct net *net, const char *name); 3093struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3094struct net_device *__dev_get_by_name(struct net *net, const char *name); 3095bool netdev_name_in_use(struct net *net, const char *name); 3096int dev_alloc_name(struct net_device *dev, const char *name); 3097int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3098void dev_close(struct net_device *dev); 3099void dev_close_many(struct list_head *head, bool unlink); 3100void dev_disable_lro(struct net_device *dev); 3101int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3102u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3103 struct net_device *sb_dev); 3104u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3105 struct net_device *sb_dev); 3106 3107int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3108int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3109 3110static inline int dev_queue_xmit(struct sk_buff *skb) 3111{ 3112 return __dev_queue_xmit(skb, NULL); 3113} 3114 3115static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3116 struct net_device *sb_dev) 3117{ 3118 return __dev_queue_xmit(skb, sb_dev); 3119} 3120 3121static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3122{ 3123 int ret; 3124 3125 ret = __dev_direct_xmit(skb, queue_id); 3126 if (!dev_xmit_complete(ret)) 3127 kfree_skb(skb); 3128 return ret; 3129} 3130 3131int register_netdevice(struct net_device *dev); 3132void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3133void unregister_netdevice_many(struct list_head *head); 3134static inline void unregister_netdevice(struct net_device *dev) 3135{ 3136 unregister_netdevice_queue(dev, NULL); 3137} 3138 3139int netdev_refcnt_read(const struct net_device *dev); 3140void free_netdev(struct net_device *dev); 3141void netdev_freemem(struct net_device *dev); 3142int init_dummy_netdev(struct net_device *dev); 3143 3144struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3145 struct sk_buff *skb, 3146 bool all_slaves); 3147struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3148 struct sock *sk); 3149struct net_device *dev_get_by_index(struct net *net, int ifindex); 3150struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3151struct net_device *netdev_get_by_index(struct net *net, int ifindex, 3152 netdevice_tracker *tracker, gfp_t gfp); 3153struct net_device *netdev_get_by_name(struct net *net, const char *name, 3154 netdevice_tracker *tracker, gfp_t gfp); 3155struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3156struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3157 3158static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3159 unsigned short type, 3160 const void *daddr, const void *saddr, 3161 unsigned int len) 3162{ 3163 if (!dev->header_ops || !dev->header_ops->create) 3164 return 0; 3165 3166 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3167} 3168 3169static inline int dev_parse_header(const struct sk_buff *skb, 3170 unsigned char *haddr) 3171{ 3172 const struct net_device *dev = skb->dev; 3173 3174 if (!dev->header_ops || !dev->header_ops->parse) 3175 return 0; 3176 return dev->header_ops->parse(skb, haddr); 3177} 3178 3179static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3180{ 3181 const struct net_device *dev = skb->dev; 3182 3183 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3184 return 0; 3185 return dev->header_ops->parse_protocol(skb); 3186} 3187 3188/* ll_header must have at least hard_header_len allocated */ 3189static inline bool dev_validate_header(const struct net_device *dev, 3190 char *ll_header, int len) 3191{ 3192 if (likely(len >= dev->hard_header_len)) 3193 return true; 3194 if (len < dev->min_header_len) 3195 return false; 3196 3197 if (capable(CAP_SYS_RAWIO)) { 3198 memset(ll_header + len, 0, dev->hard_header_len - len); 3199 return true; 3200 } 3201 3202 if (dev->header_ops && dev->header_ops->validate) 3203 return dev->header_ops->validate(ll_header, len); 3204 3205 return false; 3206} 3207 3208static inline bool dev_has_header(const struct net_device *dev) 3209{ 3210 return dev->header_ops && dev->header_ops->create; 3211} 3212 3213/* 3214 * Incoming packets are placed on per-CPU queues 3215 */ 3216struct softnet_data { 3217 struct list_head poll_list; 3218 struct sk_buff_head process_queue; 3219 3220 /* stats */ 3221 unsigned int processed; 3222 unsigned int time_squeeze; 3223#ifdef CONFIG_RPS 3224 struct softnet_data *rps_ipi_list; 3225#endif 3226 3227 bool in_net_rx_action; 3228 bool in_napi_threaded_poll; 3229 3230#ifdef CONFIG_NET_FLOW_LIMIT 3231 struct sd_flow_limit __rcu *flow_limit; 3232#endif 3233 struct Qdisc *output_queue; 3234 struct Qdisc **output_queue_tailp; 3235 struct sk_buff *completion_queue; 3236#ifdef CONFIG_XFRM_OFFLOAD 3237 struct sk_buff_head xfrm_backlog; 3238#endif 3239 /* written and read only by owning cpu: */ 3240 struct { 3241 u16 recursion; 3242 u8 more; 3243#ifdef CONFIG_NET_EGRESS 3244 u8 skip_txqueue; 3245#endif 3246 } xmit; 3247#ifdef CONFIG_RPS 3248 /* input_queue_head should be written by cpu owning this struct, 3249 * and only read by other cpus. Worth using a cache line. 3250 */ 3251 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3252 3253 /* Elements below can be accessed between CPUs for RPS/RFS */ 3254 call_single_data_t csd ____cacheline_aligned_in_smp; 3255 struct softnet_data *rps_ipi_next; 3256 unsigned int cpu; 3257 unsigned int input_queue_tail; 3258#endif 3259 unsigned int received_rps; 3260 unsigned int dropped; 3261 struct sk_buff_head input_pkt_queue; 3262 struct napi_struct backlog; 3263 3264 /* Another possibly contended cache line */ 3265 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3266 int defer_count; 3267 int defer_ipi_scheduled; 3268 struct sk_buff *defer_list; 3269 call_single_data_t defer_csd; 3270}; 3271 3272static inline void input_queue_head_incr(struct softnet_data *sd) 3273{ 3274#ifdef CONFIG_RPS 3275 sd->input_queue_head++; 3276#endif 3277} 3278 3279static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3280 unsigned int *qtail) 3281{ 3282#ifdef CONFIG_RPS 3283 *qtail = ++sd->input_queue_tail; 3284#endif 3285} 3286 3287DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3288 3289static inline int dev_recursion_level(void) 3290{ 3291 return this_cpu_read(softnet_data.xmit.recursion); 3292} 3293 3294#define XMIT_RECURSION_LIMIT 8 3295static inline bool dev_xmit_recursion(void) 3296{ 3297 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3298 XMIT_RECURSION_LIMIT); 3299} 3300 3301static inline void dev_xmit_recursion_inc(void) 3302{ 3303 __this_cpu_inc(softnet_data.xmit.recursion); 3304} 3305 3306static inline void dev_xmit_recursion_dec(void) 3307{ 3308 __this_cpu_dec(softnet_data.xmit.recursion); 3309} 3310 3311void __netif_schedule(struct Qdisc *q); 3312void netif_schedule_queue(struct netdev_queue *txq); 3313 3314static inline void netif_tx_schedule_all(struct net_device *dev) 3315{ 3316 unsigned int i; 3317 3318 for (i = 0; i < dev->num_tx_queues; i++) 3319 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3320} 3321 3322static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3323{ 3324 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3325} 3326 3327/** 3328 * netif_start_queue - allow transmit 3329 * @dev: network device 3330 * 3331 * Allow upper layers to call the device hard_start_xmit routine. 3332 */ 3333static inline void netif_start_queue(struct net_device *dev) 3334{ 3335 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3336} 3337 3338static inline void netif_tx_start_all_queues(struct net_device *dev) 3339{ 3340 unsigned int i; 3341 3342 for (i = 0; i < dev->num_tx_queues; i++) { 3343 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3344 netif_tx_start_queue(txq); 3345 } 3346} 3347 3348void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3349 3350/** 3351 * netif_wake_queue - restart transmit 3352 * @dev: network device 3353 * 3354 * Allow upper layers to call the device hard_start_xmit routine. 3355 * Used for flow control when transmit resources are available. 3356 */ 3357static inline void netif_wake_queue(struct net_device *dev) 3358{ 3359 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3360} 3361 3362static inline void netif_tx_wake_all_queues(struct net_device *dev) 3363{ 3364 unsigned int i; 3365 3366 for (i = 0; i < dev->num_tx_queues; i++) { 3367 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3368 netif_tx_wake_queue(txq); 3369 } 3370} 3371 3372static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3373{ 3374 /* Must be an atomic op see netif_txq_try_stop() */ 3375 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3376} 3377 3378/** 3379 * netif_stop_queue - stop transmitted packets 3380 * @dev: network device 3381 * 3382 * Stop upper layers calling the device hard_start_xmit routine. 3383 * Used for flow control when transmit resources are unavailable. 3384 */ 3385static inline void netif_stop_queue(struct net_device *dev) 3386{ 3387 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3388} 3389 3390void netif_tx_stop_all_queues(struct net_device *dev); 3391 3392static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3393{ 3394 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3395} 3396 3397/** 3398 * netif_queue_stopped - test if transmit queue is flowblocked 3399 * @dev: network device 3400 * 3401 * Test if transmit queue on device is currently unable to send. 3402 */ 3403static inline bool netif_queue_stopped(const struct net_device *dev) 3404{ 3405 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3406} 3407 3408static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3409{ 3410 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3411} 3412 3413static inline bool 3414netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3415{ 3416 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3417} 3418 3419static inline bool 3420netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3421{ 3422 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3423} 3424 3425/** 3426 * netdev_queue_set_dql_min_limit - set dql minimum limit 3427 * @dev_queue: pointer to transmit queue 3428 * @min_limit: dql minimum limit 3429 * 3430 * Forces xmit_more() to return true until the minimum threshold 3431 * defined by @min_limit is reached (or until the tx queue is 3432 * empty). Warning: to be use with care, misuse will impact the 3433 * latency. 3434 */ 3435static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3436 unsigned int min_limit) 3437{ 3438#ifdef CONFIG_BQL 3439 dev_queue->dql.min_limit = min_limit; 3440#endif 3441} 3442 3443/** 3444 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3445 * @dev_queue: pointer to transmit queue 3446 * 3447 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3448 * to give appropriate hint to the CPU. 3449 */ 3450static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3451{ 3452#ifdef CONFIG_BQL 3453 prefetchw(&dev_queue->dql.num_queued); 3454#endif 3455} 3456 3457/** 3458 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3459 * @dev_queue: pointer to transmit queue 3460 * 3461 * BQL enabled drivers might use this helper in their TX completion path, 3462 * to give appropriate hint to the CPU. 3463 */ 3464static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3465{ 3466#ifdef CONFIG_BQL 3467 prefetchw(&dev_queue->dql.limit); 3468#endif 3469} 3470 3471/** 3472 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3473 * @dev_queue: network device queue 3474 * @bytes: number of bytes queued to the device queue 3475 * 3476 * Report the number of bytes queued for sending/completion to the network 3477 * device hardware queue. @bytes should be a good approximation and should 3478 * exactly match netdev_completed_queue() @bytes. 3479 * This is typically called once per packet, from ndo_start_xmit(). 3480 */ 3481static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3482 unsigned int bytes) 3483{ 3484#ifdef CONFIG_BQL 3485 dql_queued(&dev_queue->dql, bytes); 3486 3487 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3488 return; 3489 3490 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3491 3492 /* 3493 * The XOFF flag must be set before checking the dql_avail below, 3494 * because in netdev_tx_completed_queue we update the dql_completed 3495 * before checking the XOFF flag. 3496 */ 3497 smp_mb(); 3498 3499 /* check again in case another CPU has just made room avail */ 3500 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3501 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3502#endif 3503} 3504 3505/* Variant of netdev_tx_sent_queue() for drivers that are aware 3506 * that they should not test BQL status themselves. 3507 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3508 * skb of a batch. 3509 * Returns true if the doorbell must be used to kick the NIC. 3510 */ 3511static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3512 unsigned int bytes, 3513 bool xmit_more) 3514{ 3515 if (xmit_more) { 3516#ifdef CONFIG_BQL 3517 dql_queued(&dev_queue->dql, bytes); 3518#endif 3519 return netif_tx_queue_stopped(dev_queue); 3520 } 3521 netdev_tx_sent_queue(dev_queue, bytes); 3522 return true; 3523} 3524 3525/** 3526 * netdev_sent_queue - report the number of bytes queued to hardware 3527 * @dev: network device 3528 * @bytes: number of bytes queued to the hardware device queue 3529 * 3530 * Report the number of bytes queued for sending/completion to the network 3531 * device hardware queue#0. @bytes should be a good approximation and should 3532 * exactly match netdev_completed_queue() @bytes. 3533 * This is typically called once per packet, from ndo_start_xmit(). 3534 */ 3535static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3536{ 3537 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3538} 3539 3540static inline bool __netdev_sent_queue(struct net_device *dev, 3541 unsigned int bytes, 3542 bool xmit_more) 3543{ 3544 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3545 xmit_more); 3546} 3547 3548/** 3549 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3550 * @dev_queue: network device queue 3551 * @pkts: number of packets (currently ignored) 3552 * @bytes: number of bytes dequeued from the device queue 3553 * 3554 * Must be called at most once per TX completion round (and not per 3555 * individual packet), so that BQL can adjust its limits appropriately. 3556 */ 3557static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3558 unsigned int pkts, unsigned int bytes) 3559{ 3560#ifdef CONFIG_BQL 3561 if (unlikely(!bytes)) 3562 return; 3563 3564 dql_completed(&dev_queue->dql, bytes); 3565 3566 /* 3567 * Without the memory barrier there is a small possiblity that 3568 * netdev_tx_sent_queue will miss the update and cause the queue to 3569 * be stopped forever 3570 */ 3571 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3572 3573 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3574 return; 3575 3576 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3577 netif_schedule_queue(dev_queue); 3578#endif 3579} 3580 3581/** 3582 * netdev_completed_queue - report bytes and packets completed by device 3583 * @dev: network device 3584 * @pkts: actual number of packets sent over the medium 3585 * @bytes: actual number of bytes sent over the medium 3586 * 3587 * Report the number of bytes and packets transmitted by the network device 3588 * hardware queue over the physical medium, @bytes must exactly match the 3589 * @bytes amount passed to netdev_sent_queue() 3590 */ 3591static inline void netdev_completed_queue(struct net_device *dev, 3592 unsigned int pkts, unsigned int bytes) 3593{ 3594 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3595} 3596 3597static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3598{ 3599#ifdef CONFIG_BQL 3600 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3601 dql_reset(&q->dql); 3602#endif 3603} 3604 3605/** 3606 * netdev_reset_queue - reset the packets and bytes count of a network device 3607 * @dev_queue: network device 3608 * 3609 * Reset the bytes and packet count of a network device and clear the 3610 * software flow control OFF bit for this network device 3611 */ 3612static inline void netdev_reset_queue(struct net_device *dev_queue) 3613{ 3614 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3615} 3616 3617/** 3618 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3619 * @dev: network device 3620 * @queue_index: given tx queue index 3621 * 3622 * Returns 0 if given tx queue index >= number of device tx queues, 3623 * otherwise returns the originally passed tx queue index. 3624 */ 3625static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3626{ 3627 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3628 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3629 dev->name, queue_index, 3630 dev->real_num_tx_queues); 3631 return 0; 3632 } 3633 3634 return queue_index; 3635} 3636 3637/** 3638 * netif_running - test if up 3639 * @dev: network device 3640 * 3641 * Test if the device has been brought up. 3642 */ 3643static inline bool netif_running(const struct net_device *dev) 3644{ 3645 return test_bit(__LINK_STATE_START, &dev->state); 3646} 3647 3648/* 3649 * Routines to manage the subqueues on a device. We only need start, 3650 * stop, and a check if it's stopped. All other device management is 3651 * done at the overall netdevice level. 3652 * Also test the device if we're multiqueue. 3653 */ 3654 3655/** 3656 * netif_start_subqueue - allow sending packets on subqueue 3657 * @dev: network device 3658 * @queue_index: sub queue index 3659 * 3660 * Start individual transmit queue of a device with multiple transmit queues. 3661 */ 3662static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3663{ 3664 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3665 3666 netif_tx_start_queue(txq); 3667} 3668 3669/** 3670 * netif_stop_subqueue - stop sending packets on subqueue 3671 * @dev: network device 3672 * @queue_index: sub queue index 3673 * 3674 * Stop individual transmit queue of a device with multiple transmit queues. 3675 */ 3676static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3677{ 3678 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3679 netif_tx_stop_queue(txq); 3680} 3681 3682/** 3683 * __netif_subqueue_stopped - test status of subqueue 3684 * @dev: network device 3685 * @queue_index: sub queue index 3686 * 3687 * Check individual transmit queue of a device with multiple transmit queues. 3688 */ 3689static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3690 u16 queue_index) 3691{ 3692 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3693 3694 return netif_tx_queue_stopped(txq); 3695} 3696 3697/** 3698 * netif_subqueue_stopped - test status of subqueue 3699 * @dev: network device 3700 * @skb: sub queue buffer pointer 3701 * 3702 * Check individual transmit queue of a device with multiple transmit queues. 3703 */ 3704static inline bool netif_subqueue_stopped(const struct net_device *dev, 3705 struct sk_buff *skb) 3706{ 3707 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3708} 3709 3710/** 3711 * netif_wake_subqueue - allow sending packets on subqueue 3712 * @dev: network device 3713 * @queue_index: sub queue index 3714 * 3715 * Resume individual transmit queue of a device with multiple transmit queues. 3716 */ 3717static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3718{ 3719 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3720 3721 netif_tx_wake_queue(txq); 3722} 3723 3724#ifdef CONFIG_XPS 3725int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3726 u16 index); 3727int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3728 u16 index, enum xps_map_type type); 3729 3730/** 3731 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3732 * @j: CPU/Rx queue index 3733 * @mask: bitmask of all cpus/rx queues 3734 * @nr_bits: number of bits in the bitmask 3735 * 3736 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3737 */ 3738static inline bool netif_attr_test_mask(unsigned long j, 3739 const unsigned long *mask, 3740 unsigned int nr_bits) 3741{ 3742 cpu_max_bits_warn(j, nr_bits); 3743 return test_bit(j, mask); 3744} 3745 3746/** 3747 * netif_attr_test_online - Test for online CPU/Rx queue 3748 * @j: CPU/Rx queue index 3749 * @online_mask: bitmask for CPUs/Rx queues that are online 3750 * @nr_bits: number of bits in the bitmask 3751 * 3752 * Returns true if a CPU/Rx queue is online. 3753 */ 3754static inline bool netif_attr_test_online(unsigned long j, 3755 const unsigned long *online_mask, 3756 unsigned int nr_bits) 3757{ 3758 cpu_max_bits_warn(j, nr_bits); 3759 3760 if (online_mask) 3761 return test_bit(j, online_mask); 3762 3763 return (j < nr_bits); 3764} 3765 3766/** 3767 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3768 * @n: CPU/Rx queue index 3769 * @srcp: the cpumask/Rx queue mask pointer 3770 * @nr_bits: number of bits in the bitmask 3771 * 3772 * Returns >= nr_bits if no further CPUs/Rx queues set. 3773 */ 3774static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3775 unsigned int nr_bits) 3776{ 3777 /* -1 is a legal arg here. */ 3778 if (n != -1) 3779 cpu_max_bits_warn(n, nr_bits); 3780 3781 if (srcp) 3782 return find_next_bit(srcp, nr_bits, n + 1); 3783 3784 return n + 1; 3785} 3786 3787/** 3788 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3789 * @n: CPU/Rx queue index 3790 * @src1p: the first CPUs/Rx queues mask pointer 3791 * @src2p: the second CPUs/Rx queues mask pointer 3792 * @nr_bits: number of bits in the bitmask 3793 * 3794 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3795 */ 3796static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3797 const unsigned long *src2p, 3798 unsigned int nr_bits) 3799{ 3800 /* -1 is a legal arg here. */ 3801 if (n != -1) 3802 cpu_max_bits_warn(n, nr_bits); 3803 3804 if (src1p && src2p) 3805 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3806 else if (src1p) 3807 return find_next_bit(src1p, nr_bits, n + 1); 3808 else if (src2p) 3809 return find_next_bit(src2p, nr_bits, n + 1); 3810 3811 return n + 1; 3812} 3813#else 3814static inline int netif_set_xps_queue(struct net_device *dev, 3815 const struct cpumask *mask, 3816 u16 index) 3817{ 3818 return 0; 3819} 3820 3821static inline int __netif_set_xps_queue(struct net_device *dev, 3822 const unsigned long *mask, 3823 u16 index, enum xps_map_type type) 3824{ 3825 return 0; 3826} 3827#endif 3828 3829/** 3830 * netif_is_multiqueue - test if device has multiple transmit queues 3831 * @dev: network device 3832 * 3833 * Check if device has multiple transmit queues 3834 */ 3835static inline bool netif_is_multiqueue(const struct net_device *dev) 3836{ 3837 return dev->num_tx_queues > 1; 3838} 3839 3840int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3841 3842#ifdef CONFIG_SYSFS 3843int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3844#else 3845static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3846 unsigned int rxqs) 3847{ 3848 dev->real_num_rx_queues = rxqs; 3849 return 0; 3850} 3851#endif 3852int netif_set_real_num_queues(struct net_device *dev, 3853 unsigned int txq, unsigned int rxq); 3854 3855int netif_get_num_default_rss_queues(void); 3856 3857void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3858void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3859 3860/* 3861 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3862 * interrupt context or with hardware interrupts being disabled. 3863 * (in_hardirq() || irqs_disabled()) 3864 * 3865 * We provide four helpers that can be used in following contexts : 3866 * 3867 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3868 * replacing kfree_skb(skb) 3869 * 3870 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3871 * Typically used in place of consume_skb(skb) in TX completion path 3872 * 3873 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3874 * replacing kfree_skb(skb) 3875 * 3876 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3877 * and consumed a packet. Used in place of consume_skb(skb) 3878 */ 3879static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3880{ 3881 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3882} 3883 3884static inline void dev_consume_skb_irq(struct sk_buff *skb) 3885{ 3886 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3887} 3888 3889static inline void dev_kfree_skb_any(struct sk_buff *skb) 3890{ 3891 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3892} 3893 3894static inline void dev_consume_skb_any(struct sk_buff *skb) 3895{ 3896 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3897} 3898 3899u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3900 struct bpf_prog *xdp_prog); 3901void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3902int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3903int netif_rx(struct sk_buff *skb); 3904int __netif_rx(struct sk_buff *skb); 3905 3906int netif_receive_skb(struct sk_buff *skb); 3907int netif_receive_skb_core(struct sk_buff *skb); 3908void netif_receive_skb_list_internal(struct list_head *head); 3909void netif_receive_skb_list(struct list_head *head); 3910gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3911void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3912struct sk_buff *napi_get_frags(struct napi_struct *napi); 3913void napi_get_frags_check(struct napi_struct *napi); 3914gro_result_t napi_gro_frags(struct napi_struct *napi); 3915struct packet_offload *gro_find_receive_by_type(__be16 type); 3916struct packet_offload *gro_find_complete_by_type(__be16 type); 3917 3918static inline void napi_free_frags(struct napi_struct *napi) 3919{ 3920 kfree_skb(napi->skb); 3921 napi->skb = NULL; 3922} 3923 3924bool netdev_is_rx_handler_busy(struct net_device *dev); 3925int netdev_rx_handler_register(struct net_device *dev, 3926 rx_handler_func_t *rx_handler, 3927 void *rx_handler_data); 3928void netdev_rx_handler_unregister(struct net_device *dev); 3929 3930bool dev_valid_name(const char *name); 3931static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3932{ 3933 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3934} 3935int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3936int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3937int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3938 void __user *data, bool *need_copyout); 3939int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3940int generic_hwtstamp_get_lower(struct net_device *dev, 3941 struct kernel_hwtstamp_config *kernel_cfg); 3942int generic_hwtstamp_set_lower(struct net_device *dev, 3943 struct kernel_hwtstamp_config *kernel_cfg, 3944 struct netlink_ext_ack *extack); 3945int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3946unsigned int dev_get_flags(const struct net_device *); 3947int __dev_change_flags(struct net_device *dev, unsigned int flags, 3948 struct netlink_ext_ack *extack); 3949int dev_change_flags(struct net_device *dev, unsigned int flags, 3950 struct netlink_ext_ack *extack); 3951int dev_set_alias(struct net_device *, const char *, size_t); 3952int dev_get_alias(const struct net_device *, char *, size_t); 3953int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3954 const char *pat, int new_ifindex); 3955static inline 3956int dev_change_net_namespace(struct net_device *dev, struct net *net, 3957 const char *pat) 3958{ 3959 return __dev_change_net_namespace(dev, net, pat, 0); 3960} 3961int __dev_set_mtu(struct net_device *, int); 3962int dev_set_mtu(struct net_device *, int); 3963int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3964 struct netlink_ext_ack *extack); 3965int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3966 struct netlink_ext_ack *extack); 3967int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3968 struct netlink_ext_ack *extack); 3969int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3970int dev_get_port_parent_id(struct net_device *dev, 3971 struct netdev_phys_item_id *ppid, bool recurse); 3972bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3973void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin); 3974void netdev_dpll_pin_clear(struct net_device *dev); 3975 3976static inline struct dpll_pin *netdev_dpll_pin(const struct net_device *dev) 3977{ 3978#if IS_ENABLED(CONFIG_DPLL) 3979 return dev->dpll_pin; 3980#else 3981 return NULL; 3982#endif 3983} 3984 3985struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3986struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3987 struct netdev_queue *txq, int *ret); 3988 3989int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3990u8 dev_xdp_prog_count(struct net_device *dev); 3991u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3992 3993int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3994int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3995int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3996bool is_skb_forwardable(const struct net_device *dev, 3997 const struct sk_buff *skb); 3998 3999static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 4000 const struct sk_buff *skb, 4001 const bool check_mtu) 4002{ 4003 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 4004 unsigned int len; 4005 4006 if (!(dev->flags & IFF_UP)) 4007 return false; 4008 4009 if (!check_mtu) 4010 return true; 4011 4012 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 4013 if (skb->len <= len) 4014 return true; 4015 4016 /* if TSO is enabled, we don't care about the length as the packet 4017 * could be forwarded without being segmented before 4018 */ 4019 if (skb_is_gso(skb)) 4020 return true; 4021 4022 return false; 4023} 4024 4025void netdev_core_stats_inc(struct net_device *dev, u32 offset); 4026 4027#define DEV_CORE_STATS_INC(FIELD) \ 4028static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4029{ \ 4030 netdev_core_stats_inc(dev, \ 4031 offsetof(struct net_device_core_stats, FIELD)); \ 4032} 4033DEV_CORE_STATS_INC(rx_dropped) 4034DEV_CORE_STATS_INC(tx_dropped) 4035DEV_CORE_STATS_INC(rx_nohandler) 4036DEV_CORE_STATS_INC(rx_otherhost_dropped) 4037#undef DEV_CORE_STATS_INC 4038 4039static __always_inline int ____dev_forward_skb(struct net_device *dev, 4040 struct sk_buff *skb, 4041 const bool check_mtu) 4042{ 4043 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4044 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4045 dev_core_stats_rx_dropped_inc(dev); 4046 kfree_skb(skb); 4047 return NET_RX_DROP; 4048 } 4049 4050 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4051 skb->priority = 0; 4052 return 0; 4053} 4054 4055bool dev_nit_active(struct net_device *dev); 4056void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4057 4058static inline void __dev_put(struct net_device *dev) 4059{ 4060 if (dev) { 4061#ifdef CONFIG_PCPU_DEV_REFCNT 4062 this_cpu_dec(*dev->pcpu_refcnt); 4063#else 4064 refcount_dec(&dev->dev_refcnt); 4065#endif 4066 } 4067} 4068 4069static inline void __dev_hold(struct net_device *dev) 4070{ 4071 if (dev) { 4072#ifdef CONFIG_PCPU_DEV_REFCNT 4073 this_cpu_inc(*dev->pcpu_refcnt); 4074#else 4075 refcount_inc(&dev->dev_refcnt); 4076#endif 4077 } 4078} 4079 4080static inline void __netdev_tracker_alloc(struct net_device *dev, 4081 netdevice_tracker *tracker, 4082 gfp_t gfp) 4083{ 4084#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4085 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4086#endif 4087} 4088 4089/* netdev_tracker_alloc() can upgrade a prior untracked reference 4090 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4091 */ 4092static inline void netdev_tracker_alloc(struct net_device *dev, 4093 netdevice_tracker *tracker, gfp_t gfp) 4094{ 4095#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4096 refcount_dec(&dev->refcnt_tracker.no_tracker); 4097 __netdev_tracker_alloc(dev, tracker, gfp); 4098#endif 4099} 4100 4101static inline void netdev_tracker_free(struct net_device *dev, 4102 netdevice_tracker *tracker) 4103{ 4104#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4105 ref_tracker_free(&dev->refcnt_tracker, tracker); 4106#endif 4107} 4108 4109static inline void netdev_hold(struct net_device *dev, 4110 netdevice_tracker *tracker, gfp_t gfp) 4111{ 4112 if (dev) { 4113 __dev_hold(dev); 4114 __netdev_tracker_alloc(dev, tracker, gfp); 4115 } 4116} 4117 4118static inline void netdev_put(struct net_device *dev, 4119 netdevice_tracker *tracker) 4120{ 4121 if (dev) { 4122 netdev_tracker_free(dev, tracker); 4123 __dev_put(dev); 4124 } 4125} 4126 4127/** 4128 * dev_hold - get reference to device 4129 * @dev: network device 4130 * 4131 * Hold reference to device to keep it from being freed. 4132 * Try using netdev_hold() instead. 4133 */ 4134static inline void dev_hold(struct net_device *dev) 4135{ 4136 netdev_hold(dev, NULL, GFP_ATOMIC); 4137} 4138 4139/** 4140 * dev_put - release reference to device 4141 * @dev: network device 4142 * 4143 * Release reference to device to allow it to be freed. 4144 * Try using netdev_put() instead. 4145 */ 4146static inline void dev_put(struct net_device *dev) 4147{ 4148 netdev_put(dev, NULL); 4149} 4150 4151static inline void netdev_ref_replace(struct net_device *odev, 4152 struct net_device *ndev, 4153 netdevice_tracker *tracker, 4154 gfp_t gfp) 4155{ 4156 if (odev) 4157 netdev_tracker_free(odev, tracker); 4158 4159 __dev_hold(ndev); 4160 __dev_put(odev); 4161 4162 if (ndev) 4163 __netdev_tracker_alloc(ndev, tracker, gfp); 4164} 4165 4166/* Carrier loss detection, dial on demand. The functions netif_carrier_on 4167 * and _off may be called from IRQ context, but it is caller 4168 * who is responsible for serialization of these calls. 4169 * 4170 * The name carrier is inappropriate, these functions should really be 4171 * called netif_lowerlayer_*() because they represent the state of any 4172 * kind of lower layer not just hardware media. 4173 */ 4174void linkwatch_fire_event(struct net_device *dev); 4175 4176/** 4177 * netif_carrier_ok - test if carrier present 4178 * @dev: network device 4179 * 4180 * Check if carrier is present on device 4181 */ 4182static inline bool netif_carrier_ok(const struct net_device *dev) 4183{ 4184 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4185} 4186 4187unsigned long dev_trans_start(struct net_device *dev); 4188 4189void __netdev_watchdog_up(struct net_device *dev); 4190 4191void netif_carrier_on(struct net_device *dev); 4192void netif_carrier_off(struct net_device *dev); 4193void netif_carrier_event(struct net_device *dev); 4194 4195/** 4196 * netif_dormant_on - mark device as dormant. 4197 * @dev: network device 4198 * 4199 * Mark device as dormant (as per RFC2863). 4200 * 4201 * The dormant state indicates that the relevant interface is not 4202 * actually in a condition to pass packets (i.e., it is not 'up') but is 4203 * in a "pending" state, waiting for some external event. For "on- 4204 * demand" interfaces, this new state identifies the situation where the 4205 * interface is waiting for events to place it in the up state. 4206 */ 4207static inline void netif_dormant_on(struct net_device *dev) 4208{ 4209 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4210 linkwatch_fire_event(dev); 4211} 4212 4213/** 4214 * netif_dormant_off - set device as not dormant. 4215 * @dev: network device 4216 * 4217 * Device is not in dormant state. 4218 */ 4219static inline void netif_dormant_off(struct net_device *dev) 4220{ 4221 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4222 linkwatch_fire_event(dev); 4223} 4224 4225/** 4226 * netif_dormant - test if device is dormant 4227 * @dev: network device 4228 * 4229 * Check if device is dormant. 4230 */ 4231static inline bool netif_dormant(const struct net_device *dev) 4232{ 4233 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4234} 4235 4236 4237/** 4238 * netif_testing_on - mark device as under test. 4239 * @dev: network device 4240 * 4241 * Mark device as under test (as per RFC2863). 4242 * 4243 * The testing state indicates that some test(s) must be performed on 4244 * the interface. After completion, of the test, the interface state 4245 * will change to up, dormant, or down, as appropriate. 4246 */ 4247static inline void netif_testing_on(struct net_device *dev) 4248{ 4249 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4250 linkwatch_fire_event(dev); 4251} 4252 4253/** 4254 * netif_testing_off - set device as not under test. 4255 * @dev: network device 4256 * 4257 * Device is not in testing state. 4258 */ 4259static inline void netif_testing_off(struct net_device *dev) 4260{ 4261 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4262 linkwatch_fire_event(dev); 4263} 4264 4265/** 4266 * netif_testing - test if device is under test 4267 * @dev: network device 4268 * 4269 * Check if device is under test 4270 */ 4271static inline bool netif_testing(const struct net_device *dev) 4272{ 4273 return test_bit(__LINK_STATE_TESTING, &dev->state); 4274} 4275 4276 4277/** 4278 * netif_oper_up - test if device is operational 4279 * @dev: network device 4280 * 4281 * Check if carrier is operational 4282 */ 4283static inline bool netif_oper_up(const struct net_device *dev) 4284{ 4285 return (dev->operstate == IF_OPER_UP || 4286 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4287} 4288 4289/** 4290 * netif_device_present - is device available or removed 4291 * @dev: network device 4292 * 4293 * Check if device has not been removed from system. 4294 */ 4295static inline bool netif_device_present(const struct net_device *dev) 4296{ 4297 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4298} 4299 4300void netif_device_detach(struct net_device *dev); 4301 4302void netif_device_attach(struct net_device *dev); 4303 4304/* 4305 * Network interface message level settings 4306 */ 4307 4308enum { 4309 NETIF_MSG_DRV_BIT, 4310 NETIF_MSG_PROBE_BIT, 4311 NETIF_MSG_LINK_BIT, 4312 NETIF_MSG_TIMER_BIT, 4313 NETIF_MSG_IFDOWN_BIT, 4314 NETIF_MSG_IFUP_BIT, 4315 NETIF_MSG_RX_ERR_BIT, 4316 NETIF_MSG_TX_ERR_BIT, 4317 NETIF_MSG_TX_QUEUED_BIT, 4318 NETIF_MSG_INTR_BIT, 4319 NETIF_MSG_TX_DONE_BIT, 4320 NETIF_MSG_RX_STATUS_BIT, 4321 NETIF_MSG_PKTDATA_BIT, 4322 NETIF_MSG_HW_BIT, 4323 NETIF_MSG_WOL_BIT, 4324 4325 /* When you add a new bit above, update netif_msg_class_names array 4326 * in net/ethtool/common.c 4327 */ 4328 NETIF_MSG_CLASS_COUNT, 4329}; 4330/* Both ethtool_ops interface and internal driver implementation use u32 */ 4331static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4332 4333#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4334#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4335 4336#define NETIF_MSG_DRV __NETIF_MSG(DRV) 4337#define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4338#define NETIF_MSG_LINK __NETIF_MSG(LINK) 4339#define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4340#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4341#define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4342#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4343#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4344#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4345#define NETIF_MSG_INTR __NETIF_MSG(INTR) 4346#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4347#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4348#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4349#define NETIF_MSG_HW __NETIF_MSG(HW) 4350#define NETIF_MSG_WOL __NETIF_MSG(WOL) 4351 4352#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4353#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4354#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4355#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4356#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4357#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4358#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4359#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4360#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4361#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4362#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4363#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4364#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4365#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4366#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4367 4368static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4369{ 4370 /* use default */ 4371 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4372 return default_msg_enable_bits; 4373 if (debug_value == 0) /* no output */ 4374 return 0; 4375 /* set low N bits */ 4376 return (1U << debug_value) - 1; 4377} 4378 4379static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4380{ 4381 spin_lock(&txq->_xmit_lock); 4382 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4383 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4384} 4385 4386static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4387{ 4388 __acquire(&txq->_xmit_lock); 4389 return true; 4390} 4391 4392static inline void __netif_tx_release(struct netdev_queue *txq) 4393{ 4394 __release(&txq->_xmit_lock); 4395} 4396 4397static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4398{ 4399 spin_lock_bh(&txq->_xmit_lock); 4400 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4401 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4402} 4403 4404static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4405{ 4406 bool ok = spin_trylock(&txq->_xmit_lock); 4407 4408 if (likely(ok)) { 4409 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4410 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4411 } 4412 return ok; 4413} 4414 4415static inline void __netif_tx_unlock(struct netdev_queue *txq) 4416{ 4417 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4418 WRITE_ONCE(txq->xmit_lock_owner, -1); 4419 spin_unlock(&txq->_xmit_lock); 4420} 4421 4422static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4423{ 4424 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4425 WRITE_ONCE(txq->xmit_lock_owner, -1); 4426 spin_unlock_bh(&txq->_xmit_lock); 4427} 4428 4429/* 4430 * txq->trans_start can be read locklessly from dev_watchdog() 4431 */ 4432static inline void txq_trans_update(struct netdev_queue *txq) 4433{ 4434 if (txq->xmit_lock_owner != -1) 4435 WRITE_ONCE(txq->trans_start, jiffies); 4436} 4437 4438static inline void txq_trans_cond_update(struct netdev_queue *txq) 4439{ 4440 unsigned long now = jiffies; 4441 4442 if (READ_ONCE(txq->trans_start) != now) 4443 WRITE_ONCE(txq->trans_start, now); 4444} 4445 4446/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4447static inline void netif_trans_update(struct net_device *dev) 4448{ 4449 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4450 4451 txq_trans_cond_update(txq); 4452} 4453 4454/** 4455 * netif_tx_lock - grab network device transmit lock 4456 * @dev: network device 4457 * 4458 * Get network device transmit lock 4459 */ 4460void netif_tx_lock(struct net_device *dev); 4461 4462static inline void netif_tx_lock_bh(struct net_device *dev) 4463{ 4464 local_bh_disable(); 4465 netif_tx_lock(dev); 4466} 4467 4468void netif_tx_unlock(struct net_device *dev); 4469 4470static inline void netif_tx_unlock_bh(struct net_device *dev) 4471{ 4472 netif_tx_unlock(dev); 4473 local_bh_enable(); 4474} 4475 4476#define HARD_TX_LOCK(dev, txq, cpu) { \ 4477 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4478 __netif_tx_lock(txq, cpu); \ 4479 } else { \ 4480 __netif_tx_acquire(txq); \ 4481 } \ 4482} 4483 4484#define HARD_TX_TRYLOCK(dev, txq) \ 4485 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4486 __netif_tx_trylock(txq) : \ 4487 __netif_tx_acquire(txq)) 4488 4489#define HARD_TX_UNLOCK(dev, txq) { \ 4490 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4491 __netif_tx_unlock(txq); \ 4492 } else { \ 4493 __netif_tx_release(txq); \ 4494 } \ 4495} 4496 4497static inline void netif_tx_disable(struct net_device *dev) 4498{ 4499 unsigned int i; 4500 int cpu; 4501 4502 local_bh_disable(); 4503 cpu = smp_processor_id(); 4504 spin_lock(&dev->tx_global_lock); 4505 for (i = 0; i < dev->num_tx_queues; i++) { 4506 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4507 4508 __netif_tx_lock(txq, cpu); 4509 netif_tx_stop_queue(txq); 4510 __netif_tx_unlock(txq); 4511 } 4512 spin_unlock(&dev->tx_global_lock); 4513 local_bh_enable(); 4514} 4515 4516static inline void netif_addr_lock(struct net_device *dev) 4517{ 4518 unsigned char nest_level = 0; 4519 4520#ifdef CONFIG_LOCKDEP 4521 nest_level = dev->nested_level; 4522#endif 4523 spin_lock_nested(&dev->addr_list_lock, nest_level); 4524} 4525 4526static inline void netif_addr_lock_bh(struct net_device *dev) 4527{ 4528 unsigned char nest_level = 0; 4529 4530#ifdef CONFIG_LOCKDEP 4531 nest_level = dev->nested_level; 4532#endif 4533 local_bh_disable(); 4534 spin_lock_nested(&dev->addr_list_lock, nest_level); 4535} 4536 4537static inline void netif_addr_unlock(struct net_device *dev) 4538{ 4539 spin_unlock(&dev->addr_list_lock); 4540} 4541 4542static inline void netif_addr_unlock_bh(struct net_device *dev) 4543{ 4544 spin_unlock_bh(&dev->addr_list_lock); 4545} 4546 4547/* 4548 * dev_addrs walker. Should be used only for read access. Call with 4549 * rcu_read_lock held. 4550 */ 4551#define for_each_dev_addr(dev, ha) \ 4552 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4553 4554/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4555 4556void ether_setup(struct net_device *dev); 4557 4558/* Support for loadable net-drivers */ 4559struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4560 unsigned char name_assign_type, 4561 void (*setup)(struct net_device *), 4562 unsigned int txqs, unsigned int rxqs); 4563#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4564 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4565 4566#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4567 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4568 count) 4569 4570int register_netdev(struct net_device *dev); 4571void unregister_netdev(struct net_device *dev); 4572 4573int devm_register_netdev(struct device *dev, struct net_device *ndev); 4574 4575/* General hardware address lists handling functions */ 4576int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4577 struct netdev_hw_addr_list *from_list, int addr_len); 4578void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4579 struct netdev_hw_addr_list *from_list, int addr_len); 4580int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4581 struct net_device *dev, 4582 int (*sync)(struct net_device *, const unsigned char *), 4583 int (*unsync)(struct net_device *, 4584 const unsigned char *)); 4585int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4586 struct net_device *dev, 4587 int (*sync)(struct net_device *, 4588 const unsigned char *, int), 4589 int (*unsync)(struct net_device *, 4590 const unsigned char *, int)); 4591void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4592 struct net_device *dev, 4593 int (*unsync)(struct net_device *, 4594 const unsigned char *, int)); 4595void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4596 struct net_device *dev, 4597 int (*unsync)(struct net_device *, 4598 const unsigned char *)); 4599void __hw_addr_init(struct netdev_hw_addr_list *list); 4600 4601/* Functions used for device addresses handling */ 4602void dev_addr_mod(struct net_device *dev, unsigned int offset, 4603 const void *addr, size_t len); 4604 4605static inline void 4606__dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4607{ 4608 dev_addr_mod(dev, 0, addr, len); 4609} 4610 4611static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4612{ 4613 __dev_addr_set(dev, addr, dev->addr_len); 4614} 4615 4616int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4617 unsigned char addr_type); 4618int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4619 unsigned char addr_type); 4620 4621/* Functions used for unicast addresses handling */ 4622int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4623int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4624int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4625int dev_uc_sync(struct net_device *to, struct net_device *from); 4626int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4627void dev_uc_unsync(struct net_device *to, struct net_device *from); 4628void dev_uc_flush(struct net_device *dev); 4629void dev_uc_init(struct net_device *dev); 4630 4631/** 4632 * __dev_uc_sync - Synchonize device's unicast list 4633 * @dev: device to sync 4634 * @sync: function to call if address should be added 4635 * @unsync: function to call if address should be removed 4636 * 4637 * Add newly added addresses to the interface, and release 4638 * addresses that have been deleted. 4639 */ 4640static inline int __dev_uc_sync(struct net_device *dev, 4641 int (*sync)(struct net_device *, 4642 const unsigned char *), 4643 int (*unsync)(struct net_device *, 4644 const unsigned char *)) 4645{ 4646 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4647} 4648 4649/** 4650 * __dev_uc_unsync - Remove synchronized addresses from device 4651 * @dev: device to sync 4652 * @unsync: function to call if address should be removed 4653 * 4654 * Remove all addresses that were added to the device by dev_uc_sync(). 4655 */ 4656static inline void __dev_uc_unsync(struct net_device *dev, 4657 int (*unsync)(struct net_device *, 4658 const unsigned char *)) 4659{ 4660 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4661} 4662 4663/* Functions used for multicast addresses handling */ 4664int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4665int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4666int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4667int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4668int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4669int dev_mc_sync(struct net_device *to, struct net_device *from); 4670int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4671void dev_mc_unsync(struct net_device *to, struct net_device *from); 4672void dev_mc_flush(struct net_device *dev); 4673void dev_mc_init(struct net_device *dev); 4674 4675/** 4676 * __dev_mc_sync - Synchonize device's multicast list 4677 * @dev: device to sync 4678 * @sync: function to call if address should be added 4679 * @unsync: function to call if address should be removed 4680 * 4681 * Add newly added addresses to the interface, and release 4682 * addresses that have been deleted. 4683 */ 4684static inline int __dev_mc_sync(struct net_device *dev, 4685 int (*sync)(struct net_device *, 4686 const unsigned char *), 4687 int (*unsync)(struct net_device *, 4688 const unsigned char *)) 4689{ 4690 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4691} 4692 4693/** 4694 * __dev_mc_unsync - Remove synchronized addresses from device 4695 * @dev: device to sync 4696 * @unsync: function to call if address should be removed 4697 * 4698 * Remove all addresses that were added to the device by dev_mc_sync(). 4699 */ 4700static inline void __dev_mc_unsync(struct net_device *dev, 4701 int (*unsync)(struct net_device *, 4702 const unsigned char *)) 4703{ 4704 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4705} 4706 4707/* Functions used for secondary unicast and multicast support */ 4708void dev_set_rx_mode(struct net_device *dev); 4709int dev_set_promiscuity(struct net_device *dev, int inc); 4710int dev_set_allmulti(struct net_device *dev, int inc); 4711void netdev_state_change(struct net_device *dev); 4712void __netdev_notify_peers(struct net_device *dev); 4713void netdev_notify_peers(struct net_device *dev); 4714void netdev_features_change(struct net_device *dev); 4715/* Load a device via the kmod */ 4716void dev_load(struct net *net, const char *name); 4717struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4718 struct rtnl_link_stats64 *storage); 4719void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4720 const struct net_device_stats *netdev_stats); 4721void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4722 const struct pcpu_sw_netstats __percpu *netstats); 4723void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4724 4725extern int netdev_max_backlog; 4726extern int dev_rx_weight; 4727extern int dev_tx_weight; 4728extern int gro_normal_batch; 4729 4730enum { 4731 NESTED_SYNC_IMM_BIT, 4732 NESTED_SYNC_TODO_BIT, 4733}; 4734 4735#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4736#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4737 4738#define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4739#define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4740 4741struct netdev_nested_priv { 4742 unsigned char flags; 4743 void *data; 4744}; 4745 4746bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4747struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4748 struct list_head **iter); 4749 4750/* iterate through upper list, must be called under RCU read lock */ 4751#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4752 for (iter = &(dev)->adj_list.upper, \ 4753 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4754 updev; \ 4755 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4756 4757int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4758 int (*fn)(struct net_device *upper_dev, 4759 struct netdev_nested_priv *priv), 4760 struct netdev_nested_priv *priv); 4761 4762bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4763 struct net_device *upper_dev); 4764 4765bool netdev_has_any_upper_dev(struct net_device *dev); 4766 4767void *netdev_lower_get_next_private(struct net_device *dev, 4768 struct list_head **iter); 4769void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4770 struct list_head **iter); 4771 4772#define netdev_for_each_lower_private(dev, priv, iter) \ 4773 for (iter = (dev)->adj_list.lower.next, \ 4774 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4775 priv; \ 4776 priv = netdev_lower_get_next_private(dev, &(iter))) 4777 4778#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4779 for (iter = &(dev)->adj_list.lower, \ 4780 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4781 priv; \ 4782 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4783 4784void *netdev_lower_get_next(struct net_device *dev, 4785 struct list_head **iter); 4786 4787#define netdev_for_each_lower_dev(dev, ldev, iter) \ 4788 for (iter = (dev)->adj_list.lower.next, \ 4789 ldev = netdev_lower_get_next(dev, &(iter)); \ 4790 ldev; \ 4791 ldev = netdev_lower_get_next(dev, &(iter))) 4792 4793struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4794 struct list_head **iter); 4795int netdev_walk_all_lower_dev(struct net_device *dev, 4796 int (*fn)(struct net_device *lower_dev, 4797 struct netdev_nested_priv *priv), 4798 struct netdev_nested_priv *priv); 4799int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4800 int (*fn)(struct net_device *lower_dev, 4801 struct netdev_nested_priv *priv), 4802 struct netdev_nested_priv *priv); 4803 4804void *netdev_adjacent_get_private(struct list_head *adj_list); 4805void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4806struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4807struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4808int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4809 struct netlink_ext_ack *extack); 4810int netdev_master_upper_dev_link(struct net_device *dev, 4811 struct net_device *upper_dev, 4812 void *upper_priv, void *upper_info, 4813 struct netlink_ext_ack *extack); 4814void netdev_upper_dev_unlink(struct net_device *dev, 4815 struct net_device *upper_dev); 4816int netdev_adjacent_change_prepare(struct net_device *old_dev, 4817 struct net_device *new_dev, 4818 struct net_device *dev, 4819 struct netlink_ext_ack *extack); 4820void netdev_adjacent_change_commit(struct net_device *old_dev, 4821 struct net_device *new_dev, 4822 struct net_device *dev); 4823void netdev_adjacent_change_abort(struct net_device *old_dev, 4824 struct net_device *new_dev, 4825 struct net_device *dev); 4826void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4827void *netdev_lower_dev_get_private(struct net_device *dev, 4828 struct net_device *lower_dev); 4829void netdev_lower_state_changed(struct net_device *lower_dev, 4830 void *lower_state_info); 4831 4832/* RSS keys are 40 or 52 bytes long */ 4833#define NETDEV_RSS_KEY_LEN 52 4834extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4835void netdev_rss_key_fill(void *buffer, size_t len); 4836 4837int skb_checksum_help(struct sk_buff *skb); 4838int skb_crc32c_csum_help(struct sk_buff *skb); 4839int skb_csum_hwoffload_help(struct sk_buff *skb, 4840 const netdev_features_t features); 4841 4842struct netdev_bonding_info { 4843 ifslave slave; 4844 ifbond master; 4845}; 4846 4847struct netdev_notifier_bonding_info { 4848 struct netdev_notifier_info info; /* must be first */ 4849 struct netdev_bonding_info bonding_info; 4850}; 4851 4852void netdev_bonding_info_change(struct net_device *dev, 4853 struct netdev_bonding_info *bonding_info); 4854 4855#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4856void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4857#else 4858static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4859 const void *data) 4860{ 4861} 4862#endif 4863 4864__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4865 4866static inline bool can_checksum_protocol(netdev_features_t features, 4867 __be16 protocol) 4868{ 4869 if (protocol == htons(ETH_P_FCOE)) 4870 return !!(features & NETIF_F_FCOE_CRC); 4871 4872 /* Assume this is an IP checksum (not SCTP CRC) */ 4873 4874 if (features & NETIF_F_HW_CSUM) { 4875 /* Can checksum everything */ 4876 return true; 4877 } 4878 4879 switch (protocol) { 4880 case htons(ETH_P_IP): 4881 return !!(features & NETIF_F_IP_CSUM); 4882 case htons(ETH_P_IPV6): 4883 return !!(features & NETIF_F_IPV6_CSUM); 4884 default: 4885 return false; 4886 } 4887} 4888 4889#ifdef CONFIG_BUG 4890void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4891#else 4892static inline void netdev_rx_csum_fault(struct net_device *dev, 4893 struct sk_buff *skb) 4894{ 4895} 4896#endif 4897/* rx skb timestamps */ 4898void net_enable_timestamp(void); 4899void net_disable_timestamp(void); 4900 4901static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4902 const struct skb_shared_hwtstamps *hwtstamps, 4903 bool cycles) 4904{ 4905 const struct net_device_ops *ops = dev->netdev_ops; 4906 4907 if (ops->ndo_get_tstamp) 4908 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4909 4910 return hwtstamps->hwtstamp; 4911} 4912 4913static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4914 struct sk_buff *skb, struct net_device *dev, 4915 bool more) 4916{ 4917 __this_cpu_write(softnet_data.xmit.more, more); 4918 return ops->ndo_start_xmit(skb, dev); 4919} 4920 4921static inline bool netdev_xmit_more(void) 4922{ 4923 return __this_cpu_read(softnet_data.xmit.more); 4924} 4925 4926static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4927 struct netdev_queue *txq, bool more) 4928{ 4929 const struct net_device_ops *ops = dev->netdev_ops; 4930 netdev_tx_t rc; 4931 4932 rc = __netdev_start_xmit(ops, skb, dev, more); 4933 if (rc == NETDEV_TX_OK) 4934 txq_trans_update(txq); 4935 4936 return rc; 4937} 4938 4939int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4940 const void *ns); 4941void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4942 const void *ns); 4943 4944extern const struct kobj_ns_type_operations net_ns_type_operations; 4945 4946const char *netdev_drivername(const struct net_device *dev); 4947 4948static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4949 netdev_features_t f2) 4950{ 4951 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4952 if (f1 & NETIF_F_HW_CSUM) 4953 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4954 else 4955 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4956 } 4957 4958 return f1 & f2; 4959} 4960 4961static inline netdev_features_t netdev_get_wanted_features( 4962 struct net_device *dev) 4963{ 4964 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4965} 4966netdev_features_t netdev_increment_features(netdev_features_t all, 4967 netdev_features_t one, netdev_features_t mask); 4968 4969/* Allow TSO being used on stacked device : 4970 * Performing the GSO segmentation before last device 4971 * is a performance improvement. 4972 */ 4973static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4974 netdev_features_t mask) 4975{ 4976 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4977} 4978 4979int __netdev_update_features(struct net_device *dev); 4980void netdev_update_features(struct net_device *dev); 4981void netdev_change_features(struct net_device *dev); 4982 4983void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4984 struct net_device *dev); 4985 4986netdev_features_t passthru_features_check(struct sk_buff *skb, 4987 struct net_device *dev, 4988 netdev_features_t features); 4989netdev_features_t netif_skb_features(struct sk_buff *skb); 4990void skb_warn_bad_offload(const struct sk_buff *skb); 4991 4992static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4993{ 4994 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4995 4996 /* check flags correspondence */ 4997 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4998 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4999 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 5000 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 5001 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 5002 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 5003 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5004 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5005 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5006 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5007 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5008 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5009 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5010 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5011 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5012 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5013 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5014 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5015 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5016 5017 return (features & feature) == feature; 5018} 5019 5020static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5021{ 5022 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5023 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5024} 5025 5026static inline bool netif_needs_gso(struct sk_buff *skb, 5027 netdev_features_t features) 5028{ 5029 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5030 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5031 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5032} 5033 5034void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5035void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5036void netif_inherit_tso_max(struct net_device *to, 5037 const struct net_device *from); 5038 5039static inline bool netif_is_macsec(const struct net_device *dev) 5040{ 5041 return dev->priv_flags & IFF_MACSEC; 5042} 5043 5044static inline bool netif_is_macvlan(const struct net_device *dev) 5045{ 5046 return dev->priv_flags & IFF_MACVLAN; 5047} 5048 5049static inline bool netif_is_macvlan_port(const struct net_device *dev) 5050{ 5051 return dev->priv_flags & IFF_MACVLAN_PORT; 5052} 5053 5054static inline bool netif_is_bond_master(const struct net_device *dev) 5055{ 5056 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5057} 5058 5059static inline bool netif_is_bond_slave(const struct net_device *dev) 5060{ 5061 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5062} 5063 5064static inline bool netif_supports_nofcs(struct net_device *dev) 5065{ 5066 return dev->priv_flags & IFF_SUPP_NOFCS; 5067} 5068 5069static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5070{ 5071 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5072} 5073 5074static inline bool netif_is_l3_master(const struct net_device *dev) 5075{ 5076 return dev->priv_flags & IFF_L3MDEV_MASTER; 5077} 5078 5079static inline bool netif_is_l3_slave(const struct net_device *dev) 5080{ 5081 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5082} 5083 5084static inline int dev_sdif(const struct net_device *dev) 5085{ 5086#ifdef CONFIG_NET_L3_MASTER_DEV 5087 if (netif_is_l3_slave(dev)) 5088 return dev->ifindex; 5089#endif 5090 return 0; 5091} 5092 5093static inline bool netif_is_bridge_master(const struct net_device *dev) 5094{ 5095 return dev->priv_flags & IFF_EBRIDGE; 5096} 5097 5098static inline bool netif_is_bridge_port(const struct net_device *dev) 5099{ 5100 return dev->priv_flags & IFF_BRIDGE_PORT; 5101} 5102 5103static inline bool netif_is_ovs_master(const struct net_device *dev) 5104{ 5105 return dev->priv_flags & IFF_OPENVSWITCH; 5106} 5107 5108static inline bool netif_is_ovs_port(const struct net_device *dev) 5109{ 5110 return dev->priv_flags & IFF_OVS_DATAPATH; 5111} 5112 5113static inline bool netif_is_any_bridge_master(const struct net_device *dev) 5114{ 5115 return netif_is_bridge_master(dev) || netif_is_ovs_master(dev); 5116} 5117 5118static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5119{ 5120 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5121} 5122 5123static inline bool netif_is_team_master(const struct net_device *dev) 5124{ 5125 return dev->priv_flags & IFF_TEAM; 5126} 5127 5128static inline bool netif_is_team_port(const struct net_device *dev) 5129{ 5130 return dev->priv_flags & IFF_TEAM_PORT; 5131} 5132 5133static inline bool netif_is_lag_master(const struct net_device *dev) 5134{ 5135 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5136} 5137 5138static inline bool netif_is_lag_port(const struct net_device *dev) 5139{ 5140 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5141} 5142 5143static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5144{ 5145 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5146} 5147 5148static inline bool netif_is_failover(const struct net_device *dev) 5149{ 5150 return dev->priv_flags & IFF_FAILOVER; 5151} 5152 5153static inline bool netif_is_failover_slave(const struct net_device *dev) 5154{ 5155 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5156} 5157 5158/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5159static inline void netif_keep_dst(struct net_device *dev) 5160{ 5161 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5162} 5163 5164/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5165static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5166{ 5167 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5168 return netif_is_macsec(dev); 5169} 5170 5171extern struct pernet_operations __net_initdata loopback_net_ops; 5172 5173/* Logging, debugging and troubleshooting/diagnostic helpers. */ 5174 5175/* netdev_printk helpers, similar to dev_printk */ 5176 5177static inline const char *netdev_name(const struct net_device *dev) 5178{ 5179 if (!dev->name[0] || strchr(dev->name, '%')) 5180 return "(unnamed net_device)"; 5181 return dev->name; 5182} 5183 5184static inline const char *netdev_reg_state(const struct net_device *dev) 5185{ 5186 switch (dev->reg_state) { 5187 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5188 case NETREG_REGISTERED: return ""; 5189 case NETREG_UNREGISTERING: return " (unregistering)"; 5190 case NETREG_UNREGISTERED: return " (unregistered)"; 5191 case NETREG_RELEASED: return " (released)"; 5192 case NETREG_DUMMY: return " (dummy)"; 5193 } 5194 5195 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5196 return " (unknown)"; 5197} 5198 5199#define MODULE_ALIAS_NETDEV(device) \ 5200 MODULE_ALIAS("netdev-" device) 5201 5202/* 5203 * netdev_WARN() acts like dev_printk(), but with the key difference 5204 * of using a WARN/WARN_ON to get the message out, including the 5205 * file/line information and a backtrace. 5206 */ 5207#define netdev_WARN(dev, format, args...) \ 5208 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5209 netdev_reg_state(dev), ##args) 5210 5211#define netdev_WARN_ONCE(dev, format, args...) \ 5212 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5213 netdev_reg_state(dev), ##args) 5214 5215/* 5216 * The list of packet types we will receive (as opposed to discard) 5217 * and the routines to invoke. 5218 * 5219 * Why 16. Because with 16 the only overlap we get on a hash of the 5220 * low nibble of the protocol value is RARP/SNAP/X.25. 5221 * 5222 * 0800 IP 5223 * 0001 802.3 5224 * 0002 AX.25 5225 * 0004 802.2 5226 * 8035 RARP 5227 * 0005 SNAP 5228 * 0805 X.25 5229 * 0806 ARP 5230 * 8137 IPX 5231 * 0009 Localtalk 5232 * 86DD IPv6 5233 */ 5234#define PTYPE_HASH_SIZE (16) 5235#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5236 5237extern struct list_head ptype_all __read_mostly; 5238extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5239 5240extern struct net_device *blackhole_netdev; 5241 5242/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5243#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5244#define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5245 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5246#define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) 5247 5248#endif /* _LINUX_NETDEVICE_H */