Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#ifndef _LINUX_BPF_H
5#define _LINUX_BPF_H 1
6
7#include <uapi/linux/bpf.h>
8#include <uapi/linux/filter.h>
9
10#include <linux/workqueue.h>
11#include <linux/file.h>
12#include <linux/percpu.h>
13#include <linux/err.h>
14#include <linux/rbtree_latch.h>
15#include <linux/numa.h>
16#include <linux/mm_types.h>
17#include <linux/wait.h>
18#include <linux/refcount.h>
19#include <linux/mutex.h>
20#include <linux/module.h>
21#include <linux/kallsyms.h>
22#include <linux/capability.h>
23#include <linux/sched/mm.h>
24#include <linux/slab.h>
25#include <linux/percpu-refcount.h>
26#include <linux/stddef.h>
27#include <linux/bpfptr.h>
28#include <linux/btf.h>
29#include <linux/rcupdate_trace.h>
30#include <linux/static_call.h>
31#include <linux/memcontrol.h>
32
33struct bpf_verifier_env;
34struct bpf_verifier_log;
35struct perf_event;
36struct bpf_prog;
37struct bpf_prog_aux;
38struct bpf_map;
39struct sock;
40struct seq_file;
41struct btf;
42struct btf_type;
43struct exception_table_entry;
44struct seq_operations;
45struct bpf_iter_aux_info;
46struct bpf_local_storage;
47struct bpf_local_storage_map;
48struct kobject;
49struct mem_cgroup;
50struct module;
51struct bpf_func_state;
52struct ftrace_ops;
53struct cgroup;
54
55extern struct idr btf_idr;
56extern spinlock_t btf_idr_lock;
57extern struct kobject *btf_kobj;
58extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
59extern bool bpf_global_ma_set;
60
61typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
62typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
63 struct bpf_iter_aux_info *aux);
64typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
65typedef unsigned int (*bpf_func_t)(const void *,
66 const struct bpf_insn *);
67struct bpf_iter_seq_info {
68 const struct seq_operations *seq_ops;
69 bpf_iter_init_seq_priv_t init_seq_private;
70 bpf_iter_fini_seq_priv_t fini_seq_private;
71 u32 seq_priv_size;
72};
73
74/* map is generic key/value storage optionally accessible by eBPF programs */
75struct bpf_map_ops {
76 /* funcs callable from userspace (via syscall) */
77 int (*map_alloc_check)(union bpf_attr *attr);
78 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
79 void (*map_release)(struct bpf_map *map, struct file *map_file);
80 void (*map_free)(struct bpf_map *map);
81 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
82 void (*map_release_uref)(struct bpf_map *map);
83 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
84 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
85 union bpf_attr __user *uattr);
86 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
87 void *value, u64 flags);
88 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
89 const union bpf_attr *attr,
90 union bpf_attr __user *uattr);
91 int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
92 const union bpf_attr *attr,
93 union bpf_attr __user *uattr);
94 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
95 union bpf_attr __user *uattr);
96
97 /* funcs callable from userspace and from eBPF programs */
98 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
99 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
100 long (*map_delete_elem)(struct bpf_map *map, void *key);
101 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
102 long (*map_pop_elem)(struct bpf_map *map, void *value);
103 long (*map_peek_elem)(struct bpf_map *map, void *value);
104 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
105
106 /* funcs called by prog_array and perf_event_array map */
107 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
108 int fd);
109 void (*map_fd_put_ptr)(void *ptr);
110 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
111 u32 (*map_fd_sys_lookup_elem)(void *ptr);
112 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
113 struct seq_file *m);
114 int (*map_check_btf)(const struct bpf_map *map,
115 const struct btf *btf,
116 const struct btf_type *key_type,
117 const struct btf_type *value_type);
118
119 /* Prog poke tracking helpers. */
120 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
121 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
122 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
123 struct bpf_prog *new);
124
125 /* Direct value access helpers. */
126 int (*map_direct_value_addr)(const struct bpf_map *map,
127 u64 *imm, u32 off);
128 int (*map_direct_value_meta)(const struct bpf_map *map,
129 u64 imm, u32 *off);
130 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
131 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
132 struct poll_table_struct *pts);
133
134 /* Functions called by bpf_local_storage maps */
135 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
136 void *owner, u32 size);
137 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
138 void *owner, u32 size);
139 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
140
141 /* Misc helpers.*/
142 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
143
144 /* map_meta_equal must be implemented for maps that can be
145 * used as an inner map. It is a runtime check to ensure
146 * an inner map can be inserted to an outer map.
147 *
148 * Some properties of the inner map has been used during the
149 * verification time. When inserting an inner map at the runtime,
150 * map_meta_equal has to ensure the inserting map has the same
151 * properties that the verifier has used earlier.
152 */
153 bool (*map_meta_equal)(const struct bpf_map *meta0,
154 const struct bpf_map *meta1);
155
156
157 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
158 struct bpf_func_state *caller,
159 struct bpf_func_state *callee);
160 long (*map_for_each_callback)(struct bpf_map *map,
161 bpf_callback_t callback_fn,
162 void *callback_ctx, u64 flags);
163
164 u64 (*map_mem_usage)(const struct bpf_map *map);
165
166 /* BTF id of struct allocated by map_alloc */
167 int *map_btf_id;
168
169 /* bpf_iter info used to open a seq_file */
170 const struct bpf_iter_seq_info *iter_seq_info;
171};
172
173enum {
174 /* Support at most 10 fields in a BTF type */
175 BTF_FIELDS_MAX = 10,
176};
177
178enum btf_field_type {
179 BPF_SPIN_LOCK = (1 << 0),
180 BPF_TIMER = (1 << 1),
181 BPF_KPTR_UNREF = (1 << 2),
182 BPF_KPTR_REF = (1 << 3),
183 BPF_KPTR_PERCPU = (1 << 4),
184 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
185 BPF_LIST_HEAD = (1 << 5),
186 BPF_LIST_NODE = (1 << 6),
187 BPF_RB_ROOT = (1 << 7),
188 BPF_RB_NODE = (1 << 8),
189 BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD |
190 BPF_RB_NODE | BPF_RB_ROOT,
191 BPF_REFCOUNT = (1 << 9),
192};
193
194typedef void (*btf_dtor_kfunc_t)(void *);
195
196struct btf_field_kptr {
197 struct btf *btf;
198 struct module *module;
199 /* dtor used if btf_is_kernel(btf), otherwise the type is
200 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used
201 */
202 btf_dtor_kfunc_t dtor;
203 u32 btf_id;
204};
205
206struct btf_field_graph_root {
207 struct btf *btf;
208 u32 value_btf_id;
209 u32 node_offset;
210 struct btf_record *value_rec;
211};
212
213struct btf_field {
214 u32 offset;
215 u32 size;
216 enum btf_field_type type;
217 union {
218 struct btf_field_kptr kptr;
219 struct btf_field_graph_root graph_root;
220 };
221};
222
223struct btf_record {
224 u32 cnt;
225 u32 field_mask;
226 int spin_lock_off;
227 int timer_off;
228 int refcount_off;
229 struct btf_field fields[];
230};
231
232/* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
233struct bpf_rb_node_kern {
234 struct rb_node rb_node;
235 void *owner;
236} __attribute__((aligned(8)));
237
238/* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
239struct bpf_list_node_kern {
240 struct list_head list_head;
241 void *owner;
242} __attribute__((aligned(8)));
243
244struct bpf_map {
245 /* The first two cachelines with read-mostly members of which some
246 * are also accessed in fast-path (e.g. ops, max_entries).
247 */
248 const struct bpf_map_ops *ops ____cacheline_aligned;
249 struct bpf_map *inner_map_meta;
250#ifdef CONFIG_SECURITY
251 void *security;
252#endif
253 enum bpf_map_type map_type;
254 u32 key_size;
255 u32 value_size;
256 u32 max_entries;
257 u64 map_extra; /* any per-map-type extra fields */
258 u32 map_flags;
259 u32 id;
260 struct btf_record *record;
261 int numa_node;
262 u32 btf_key_type_id;
263 u32 btf_value_type_id;
264 u32 btf_vmlinux_value_type_id;
265 struct btf *btf;
266#ifdef CONFIG_MEMCG_KMEM
267 struct obj_cgroup *objcg;
268#endif
269 char name[BPF_OBJ_NAME_LEN];
270 /* The 3rd and 4th cacheline with misc members to avoid false sharing
271 * particularly with refcounting.
272 */
273 atomic64_t refcnt ____cacheline_aligned;
274 atomic64_t usercnt;
275 struct work_struct work;
276 struct mutex freeze_mutex;
277 atomic64_t writecnt;
278 /* 'Ownership' of program-containing map is claimed by the first program
279 * that is going to use this map or by the first program which FD is
280 * stored in the map to make sure that all callers and callees have the
281 * same prog type, JITed flag and xdp_has_frags flag.
282 */
283 struct {
284 spinlock_t lock;
285 enum bpf_prog_type type;
286 bool jited;
287 bool xdp_has_frags;
288 } owner;
289 bool bypass_spec_v1;
290 bool frozen; /* write-once; write-protected by freeze_mutex */
291 s64 __percpu *elem_count;
292};
293
294static inline const char *btf_field_type_name(enum btf_field_type type)
295{
296 switch (type) {
297 case BPF_SPIN_LOCK:
298 return "bpf_spin_lock";
299 case BPF_TIMER:
300 return "bpf_timer";
301 case BPF_KPTR_UNREF:
302 case BPF_KPTR_REF:
303 return "kptr";
304 case BPF_KPTR_PERCPU:
305 return "percpu_kptr";
306 case BPF_LIST_HEAD:
307 return "bpf_list_head";
308 case BPF_LIST_NODE:
309 return "bpf_list_node";
310 case BPF_RB_ROOT:
311 return "bpf_rb_root";
312 case BPF_RB_NODE:
313 return "bpf_rb_node";
314 case BPF_REFCOUNT:
315 return "bpf_refcount";
316 default:
317 WARN_ON_ONCE(1);
318 return "unknown";
319 }
320}
321
322static inline u32 btf_field_type_size(enum btf_field_type type)
323{
324 switch (type) {
325 case BPF_SPIN_LOCK:
326 return sizeof(struct bpf_spin_lock);
327 case BPF_TIMER:
328 return sizeof(struct bpf_timer);
329 case BPF_KPTR_UNREF:
330 case BPF_KPTR_REF:
331 case BPF_KPTR_PERCPU:
332 return sizeof(u64);
333 case BPF_LIST_HEAD:
334 return sizeof(struct bpf_list_head);
335 case BPF_LIST_NODE:
336 return sizeof(struct bpf_list_node);
337 case BPF_RB_ROOT:
338 return sizeof(struct bpf_rb_root);
339 case BPF_RB_NODE:
340 return sizeof(struct bpf_rb_node);
341 case BPF_REFCOUNT:
342 return sizeof(struct bpf_refcount);
343 default:
344 WARN_ON_ONCE(1);
345 return 0;
346 }
347}
348
349static inline u32 btf_field_type_align(enum btf_field_type type)
350{
351 switch (type) {
352 case BPF_SPIN_LOCK:
353 return __alignof__(struct bpf_spin_lock);
354 case BPF_TIMER:
355 return __alignof__(struct bpf_timer);
356 case BPF_KPTR_UNREF:
357 case BPF_KPTR_REF:
358 case BPF_KPTR_PERCPU:
359 return __alignof__(u64);
360 case BPF_LIST_HEAD:
361 return __alignof__(struct bpf_list_head);
362 case BPF_LIST_NODE:
363 return __alignof__(struct bpf_list_node);
364 case BPF_RB_ROOT:
365 return __alignof__(struct bpf_rb_root);
366 case BPF_RB_NODE:
367 return __alignof__(struct bpf_rb_node);
368 case BPF_REFCOUNT:
369 return __alignof__(struct bpf_refcount);
370 default:
371 WARN_ON_ONCE(1);
372 return 0;
373 }
374}
375
376static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
377{
378 memset(addr, 0, field->size);
379
380 switch (field->type) {
381 case BPF_REFCOUNT:
382 refcount_set((refcount_t *)addr, 1);
383 break;
384 case BPF_RB_NODE:
385 RB_CLEAR_NODE((struct rb_node *)addr);
386 break;
387 case BPF_LIST_HEAD:
388 case BPF_LIST_NODE:
389 INIT_LIST_HEAD((struct list_head *)addr);
390 break;
391 case BPF_RB_ROOT:
392 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
393 case BPF_SPIN_LOCK:
394 case BPF_TIMER:
395 case BPF_KPTR_UNREF:
396 case BPF_KPTR_REF:
397 case BPF_KPTR_PERCPU:
398 break;
399 default:
400 WARN_ON_ONCE(1);
401 return;
402 }
403}
404
405static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
406{
407 if (IS_ERR_OR_NULL(rec))
408 return false;
409 return rec->field_mask & type;
410}
411
412static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
413{
414 int i;
415
416 if (IS_ERR_OR_NULL(rec))
417 return;
418 for (i = 0; i < rec->cnt; i++)
419 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
420}
421
422/* 'dst' must be a temporary buffer and should not point to memory that is being
423 * used in parallel by a bpf program or bpf syscall, otherwise the access from
424 * the bpf program or bpf syscall may be corrupted by the reinitialization,
425 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
426 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
427 * program or bpf syscall.
428 */
429static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
430{
431 bpf_obj_init(map->record, dst);
432}
433
434/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
435 * forced to use 'long' read/writes to try to atomically copy long counters.
436 * Best-effort only. No barriers here, since it _will_ race with concurrent
437 * updates from BPF programs. Called from bpf syscall and mostly used with
438 * size 8 or 16 bytes, so ask compiler to inline it.
439 */
440static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
441{
442 const long *lsrc = src;
443 long *ldst = dst;
444
445 size /= sizeof(long);
446 while (size--)
447 data_race(*ldst++ = *lsrc++);
448}
449
450/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
451static inline void bpf_obj_memcpy(struct btf_record *rec,
452 void *dst, void *src, u32 size,
453 bool long_memcpy)
454{
455 u32 curr_off = 0;
456 int i;
457
458 if (IS_ERR_OR_NULL(rec)) {
459 if (long_memcpy)
460 bpf_long_memcpy(dst, src, round_up(size, 8));
461 else
462 memcpy(dst, src, size);
463 return;
464 }
465
466 for (i = 0; i < rec->cnt; i++) {
467 u32 next_off = rec->fields[i].offset;
468 u32 sz = next_off - curr_off;
469
470 memcpy(dst + curr_off, src + curr_off, sz);
471 curr_off += rec->fields[i].size + sz;
472 }
473 memcpy(dst + curr_off, src + curr_off, size - curr_off);
474}
475
476static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
477{
478 bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
479}
480
481static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
482{
483 bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
484}
485
486static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
487{
488 u32 curr_off = 0;
489 int i;
490
491 if (IS_ERR_OR_NULL(rec)) {
492 memset(dst, 0, size);
493 return;
494 }
495
496 for (i = 0; i < rec->cnt; i++) {
497 u32 next_off = rec->fields[i].offset;
498 u32 sz = next_off - curr_off;
499
500 memset(dst + curr_off, 0, sz);
501 curr_off += rec->fields[i].size + sz;
502 }
503 memset(dst + curr_off, 0, size - curr_off);
504}
505
506static inline void zero_map_value(struct bpf_map *map, void *dst)
507{
508 bpf_obj_memzero(map->record, dst, map->value_size);
509}
510
511void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
512 bool lock_src);
513void bpf_timer_cancel_and_free(void *timer);
514void bpf_list_head_free(const struct btf_field *field, void *list_head,
515 struct bpf_spin_lock *spin_lock);
516void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
517 struct bpf_spin_lock *spin_lock);
518
519
520int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
521
522struct bpf_offload_dev;
523struct bpf_offloaded_map;
524
525struct bpf_map_dev_ops {
526 int (*map_get_next_key)(struct bpf_offloaded_map *map,
527 void *key, void *next_key);
528 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
529 void *key, void *value);
530 int (*map_update_elem)(struct bpf_offloaded_map *map,
531 void *key, void *value, u64 flags);
532 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
533};
534
535struct bpf_offloaded_map {
536 struct bpf_map map;
537 struct net_device *netdev;
538 const struct bpf_map_dev_ops *dev_ops;
539 void *dev_priv;
540 struct list_head offloads;
541};
542
543static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
544{
545 return container_of(map, struct bpf_offloaded_map, map);
546}
547
548static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
549{
550 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
551}
552
553static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
554{
555 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
556 map->ops->map_seq_show_elem;
557}
558
559int map_check_no_btf(const struct bpf_map *map,
560 const struct btf *btf,
561 const struct btf_type *key_type,
562 const struct btf_type *value_type);
563
564bool bpf_map_meta_equal(const struct bpf_map *meta0,
565 const struct bpf_map *meta1);
566
567extern const struct bpf_map_ops bpf_map_offload_ops;
568
569/* bpf_type_flag contains a set of flags that are applicable to the values of
570 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
571 * or a memory is read-only. We classify types into two categories: base types
572 * and extended types. Extended types are base types combined with a type flag.
573 *
574 * Currently there are no more than 32 base types in arg_type, ret_type and
575 * reg_types.
576 */
577#define BPF_BASE_TYPE_BITS 8
578
579enum bpf_type_flag {
580 /* PTR may be NULL. */
581 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
582
583 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
584 * compatible with both mutable and immutable memory.
585 */
586 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
587
588 /* MEM points to BPF ring buffer reservation. */
589 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
590
591 /* MEM is in user address space. */
592 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
593
594 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
595 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
596 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
597 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
598 * to the specified cpu.
599 */
600 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
601
602 /* Indicates that the argument will be released. */
603 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
604
605 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
606 * unreferenced and referenced kptr loaded from map value using a load
607 * instruction, so that they can only be dereferenced but not escape the
608 * BPF program into the kernel (i.e. cannot be passed as arguments to
609 * kfunc or bpf helpers).
610 */
611 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
612
613 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
614
615 /* DYNPTR points to memory local to the bpf program. */
616 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
617
618 /* DYNPTR points to a kernel-produced ringbuf record. */
619 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
620
621 /* Size is known at compile time. */
622 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
623
624 /* MEM is of an allocated object of type in program BTF. This is used to
625 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
626 */
627 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
628
629 /* PTR was passed from the kernel in a trusted context, and may be
630 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
631 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
632 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
633 * without invoking bpf_kptr_xchg(). What we really need to know is
634 * whether a pointer is safe to pass to a kfunc or BPF helper function.
635 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
636 * helpers, they do not cover all possible instances of unsafe
637 * pointers. For example, a pointer that was obtained from walking a
638 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
639 * fact that it may be NULL, invalid, etc. This is due to backwards
640 * compatibility requirements, as this was the behavior that was first
641 * introduced when kptrs were added. The behavior is now considered
642 * deprecated, and PTR_UNTRUSTED will eventually be removed.
643 *
644 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
645 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
646 * For example, pointers passed to tracepoint arguments are considered
647 * PTR_TRUSTED, as are pointers that are passed to struct_ops
648 * callbacks. As alluded to above, pointers that are obtained from
649 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
650 * struct task_struct *task is PTR_TRUSTED, then accessing
651 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
652 * in a BPF register. Similarly, pointers passed to certain programs
653 * types such as kretprobes are not guaranteed to be valid, as they may
654 * for example contain an object that was recently freed.
655 */
656 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
657
658 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
659 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
660
661 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
662 * Currently only valid for linked-list and rbtree nodes. If the nodes
663 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
664 */
665 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
666
667 /* DYNPTR points to sk_buff */
668 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
669
670 /* DYNPTR points to xdp_buff */
671 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
672
673 __BPF_TYPE_FLAG_MAX,
674 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
675};
676
677#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
678 | DYNPTR_TYPE_XDP)
679
680/* Max number of base types. */
681#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
682
683/* Max number of all types. */
684#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
685
686/* function argument constraints */
687enum bpf_arg_type {
688 ARG_DONTCARE = 0, /* unused argument in helper function */
689
690 /* the following constraints used to prototype
691 * bpf_map_lookup/update/delete_elem() functions
692 */
693 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
694 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
695 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
696
697 /* Used to prototype bpf_memcmp() and other functions that access data
698 * on eBPF program stack
699 */
700 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
701
702 ARG_CONST_SIZE, /* number of bytes accessed from memory */
703 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
704
705 ARG_PTR_TO_CTX, /* pointer to context */
706 ARG_ANYTHING, /* any (initialized) argument is ok */
707 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
708 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
709 ARG_PTR_TO_INT, /* pointer to int */
710 ARG_PTR_TO_LONG, /* pointer to long */
711 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
712 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
713 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
714 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
715 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
716 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
717 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
718 ARG_PTR_TO_STACK, /* pointer to stack */
719 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
720 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
721 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */
722 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
723 __BPF_ARG_TYPE_MAX,
724
725 /* Extended arg_types. */
726 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
727 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
728 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
729 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
730 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
731 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
732 /* pointer to memory does not need to be initialized, helper function must fill
733 * all bytes or clear them in error case.
734 */
735 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM,
736 /* Pointer to valid memory of size known at compile time. */
737 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
738
739 /* This must be the last entry. Its purpose is to ensure the enum is
740 * wide enough to hold the higher bits reserved for bpf_type_flag.
741 */
742 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
743};
744static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
745
746/* type of values returned from helper functions */
747enum bpf_return_type {
748 RET_INTEGER, /* function returns integer */
749 RET_VOID, /* function doesn't return anything */
750 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
751 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
752 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
753 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
754 RET_PTR_TO_MEM, /* returns a pointer to memory */
755 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
756 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
757 __BPF_RET_TYPE_MAX,
758
759 /* Extended ret_types. */
760 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
761 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
762 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
763 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
764 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
765 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
766 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
767 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
768
769 /* This must be the last entry. Its purpose is to ensure the enum is
770 * wide enough to hold the higher bits reserved for bpf_type_flag.
771 */
772 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
773};
774static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
775
776/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
777 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
778 * instructions after verifying
779 */
780struct bpf_func_proto {
781 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
782 bool gpl_only;
783 bool pkt_access;
784 bool might_sleep;
785 enum bpf_return_type ret_type;
786 union {
787 struct {
788 enum bpf_arg_type arg1_type;
789 enum bpf_arg_type arg2_type;
790 enum bpf_arg_type arg3_type;
791 enum bpf_arg_type arg4_type;
792 enum bpf_arg_type arg5_type;
793 };
794 enum bpf_arg_type arg_type[5];
795 };
796 union {
797 struct {
798 u32 *arg1_btf_id;
799 u32 *arg2_btf_id;
800 u32 *arg3_btf_id;
801 u32 *arg4_btf_id;
802 u32 *arg5_btf_id;
803 };
804 u32 *arg_btf_id[5];
805 struct {
806 size_t arg1_size;
807 size_t arg2_size;
808 size_t arg3_size;
809 size_t arg4_size;
810 size_t arg5_size;
811 };
812 size_t arg_size[5];
813 };
814 int *ret_btf_id; /* return value btf_id */
815 bool (*allowed)(const struct bpf_prog *prog);
816};
817
818/* bpf_context is intentionally undefined structure. Pointer to bpf_context is
819 * the first argument to eBPF programs.
820 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
821 */
822struct bpf_context;
823
824enum bpf_access_type {
825 BPF_READ = 1,
826 BPF_WRITE = 2
827};
828
829/* types of values stored in eBPF registers */
830/* Pointer types represent:
831 * pointer
832 * pointer + imm
833 * pointer + (u16) var
834 * pointer + (u16) var + imm
835 * if (range > 0) then [ptr, ptr + range - off) is safe to access
836 * if (id > 0) means that some 'var' was added
837 * if (off > 0) means that 'imm' was added
838 */
839enum bpf_reg_type {
840 NOT_INIT = 0, /* nothing was written into register */
841 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
842 PTR_TO_CTX, /* reg points to bpf_context */
843 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
844 PTR_TO_MAP_VALUE, /* reg points to map element value */
845 PTR_TO_MAP_KEY, /* reg points to a map element key */
846 PTR_TO_STACK, /* reg == frame_pointer + offset */
847 PTR_TO_PACKET_META, /* skb->data - meta_len */
848 PTR_TO_PACKET, /* reg points to skb->data */
849 PTR_TO_PACKET_END, /* skb->data + headlen */
850 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
851 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
852 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
853 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
854 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
855 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
856 /* PTR_TO_BTF_ID points to a kernel struct that does not need
857 * to be null checked by the BPF program. This does not imply the
858 * pointer is _not_ null and in practice this can easily be a null
859 * pointer when reading pointer chains. The assumption is program
860 * context will handle null pointer dereference typically via fault
861 * handling. The verifier must keep this in mind and can make no
862 * assumptions about null or non-null when doing branch analysis.
863 * Further, when passed into helpers the helpers can not, without
864 * additional context, assume the value is non-null.
865 */
866 PTR_TO_BTF_ID,
867 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
868 * been checked for null. Used primarily to inform the verifier
869 * an explicit null check is required for this struct.
870 */
871 PTR_TO_MEM, /* reg points to valid memory region */
872 PTR_TO_BUF, /* reg points to a read/write buffer */
873 PTR_TO_FUNC, /* reg points to a bpf program function */
874 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
875 __BPF_REG_TYPE_MAX,
876
877 /* Extended reg_types. */
878 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
879 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
880 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
881 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
882 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
883
884 /* This must be the last entry. Its purpose is to ensure the enum is
885 * wide enough to hold the higher bits reserved for bpf_type_flag.
886 */
887 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
888};
889static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
890
891/* The information passed from prog-specific *_is_valid_access
892 * back to the verifier.
893 */
894struct bpf_insn_access_aux {
895 enum bpf_reg_type reg_type;
896 union {
897 int ctx_field_size;
898 struct {
899 struct btf *btf;
900 u32 btf_id;
901 };
902 };
903 struct bpf_verifier_log *log; /* for verbose logs */
904};
905
906static inline void
907bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
908{
909 aux->ctx_field_size = size;
910}
911
912static bool bpf_is_ldimm64(const struct bpf_insn *insn)
913{
914 return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
915}
916
917static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
918{
919 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
920}
921
922struct bpf_prog_ops {
923 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
924 union bpf_attr __user *uattr);
925};
926
927struct bpf_reg_state;
928struct bpf_verifier_ops {
929 /* return eBPF function prototype for verification */
930 const struct bpf_func_proto *
931 (*get_func_proto)(enum bpf_func_id func_id,
932 const struct bpf_prog *prog);
933
934 /* return true if 'size' wide access at offset 'off' within bpf_context
935 * with 'type' (read or write) is allowed
936 */
937 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
938 const struct bpf_prog *prog,
939 struct bpf_insn_access_aux *info);
940 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
941 const struct bpf_prog *prog);
942 int (*gen_ld_abs)(const struct bpf_insn *orig,
943 struct bpf_insn *insn_buf);
944 u32 (*convert_ctx_access)(enum bpf_access_type type,
945 const struct bpf_insn *src,
946 struct bpf_insn *dst,
947 struct bpf_prog *prog, u32 *target_size);
948 int (*btf_struct_access)(struct bpf_verifier_log *log,
949 const struct bpf_reg_state *reg,
950 int off, int size);
951};
952
953struct bpf_prog_offload_ops {
954 /* verifier basic callbacks */
955 int (*insn_hook)(struct bpf_verifier_env *env,
956 int insn_idx, int prev_insn_idx);
957 int (*finalize)(struct bpf_verifier_env *env);
958 /* verifier optimization callbacks (called after .finalize) */
959 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
960 struct bpf_insn *insn);
961 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
962 /* program management callbacks */
963 int (*prepare)(struct bpf_prog *prog);
964 int (*translate)(struct bpf_prog *prog);
965 void (*destroy)(struct bpf_prog *prog);
966};
967
968struct bpf_prog_offload {
969 struct bpf_prog *prog;
970 struct net_device *netdev;
971 struct bpf_offload_dev *offdev;
972 void *dev_priv;
973 struct list_head offloads;
974 bool dev_state;
975 bool opt_failed;
976 void *jited_image;
977 u32 jited_len;
978};
979
980enum bpf_cgroup_storage_type {
981 BPF_CGROUP_STORAGE_SHARED,
982 BPF_CGROUP_STORAGE_PERCPU,
983 __BPF_CGROUP_STORAGE_MAX
984};
985
986#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
987
988/* The longest tracepoint has 12 args.
989 * See include/trace/bpf_probe.h
990 */
991#define MAX_BPF_FUNC_ARGS 12
992
993/* The maximum number of arguments passed through registers
994 * a single function may have.
995 */
996#define MAX_BPF_FUNC_REG_ARGS 5
997
998/* The argument is a structure. */
999#define BTF_FMODEL_STRUCT_ARG BIT(0)
1000
1001/* The argument is signed. */
1002#define BTF_FMODEL_SIGNED_ARG BIT(1)
1003
1004struct btf_func_model {
1005 u8 ret_size;
1006 u8 ret_flags;
1007 u8 nr_args;
1008 u8 arg_size[MAX_BPF_FUNC_ARGS];
1009 u8 arg_flags[MAX_BPF_FUNC_ARGS];
1010};
1011
1012/* Restore arguments before returning from trampoline to let original function
1013 * continue executing. This flag is used for fentry progs when there are no
1014 * fexit progs.
1015 */
1016#define BPF_TRAMP_F_RESTORE_REGS BIT(0)
1017/* Call original function after fentry progs, but before fexit progs.
1018 * Makes sense for fentry/fexit, normal calls and indirect calls.
1019 */
1020#define BPF_TRAMP_F_CALL_ORIG BIT(1)
1021/* Skip current frame and return to parent. Makes sense for fentry/fexit
1022 * programs only. Should not be used with normal calls and indirect calls.
1023 */
1024#define BPF_TRAMP_F_SKIP_FRAME BIT(2)
1025/* Store IP address of the caller on the trampoline stack,
1026 * so it's available for trampoline's programs.
1027 */
1028#define BPF_TRAMP_F_IP_ARG BIT(3)
1029/* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1030#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
1031
1032/* Get original function from stack instead of from provided direct address.
1033 * Makes sense for trampolines with fexit or fmod_ret programs.
1034 */
1035#define BPF_TRAMP_F_ORIG_STACK BIT(5)
1036
1037/* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1038 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1039 */
1040#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
1041
1042/* Indicate that current trampoline is in a tail call context. Then, it has to
1043 * cache and restore tail_call_cnt to avoid infinite tail call loop.
1044 */
1045#define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7)
1046
1047/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1048 * bytes on x86.
1049 */
1050enum {
1051#if defined(__s390x__)
1052 BPF_MAX_TRAMP_LINKS = 27,
1053#else
1054 BPF_MAX_TRAMP_LINKS = 38,
1055#endif
1056};
1057
1058struct bpf_tramp_links {
1059 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1060 int nr_links;
1061};
1062
1063struct bpf_tramp_run_ctx;
1064
1065/* Different use cases for BPF trampoline:
1066 * 1. replace nop at the function entry (kprobe equivalent)
1067 * flags = BPF_TRAMP_F_RESTORE_REGS
1068 * fentry = a set of programs to run before returning from trampoline
1069 *
1070 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1071 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1072 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
1073 * fentry = a set of program to run before calling original function
1074 * fexit = a set of program to run after original function
1075 *
1076 * 3. replace direct call instruction anywhere in the function body
1077 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1078 * With flags = 0
1079 * fentry = a set of programs to run before returning from trampoline
1080 * With flags = BPF_TRAMP_F_CALL_ORIG
1081 * orig_call = original callback addr or direct function addr
1082 * fentry = a set of program to run before calling original function
1083 * fexit = a set of program to run after original function
1084 */
1085struct bpf_tramp_image;
1086int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1087 const struct btf_func_model *m, u32 flags,
1088 struct bpf_tramp_links *tlinks,
1089 void *orig_call);
1090u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1091 struct bpf_tramp_run_ctx *run_ctx);
1092void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1093 struct bpf_tramp_run_ctx *run_ctx);
1094void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1095void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1096typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1097 struct bpf_tramp_run_ctx *run_ctx);
1098typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1099 struct bpf_tramp_run_ctx *run_ctx);
1100bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1101bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1102
1103struct bpf_ksym {
1104 unsigned long start;
1105 unsigned long end;
1106 char name[KSYM_NAME_LEN];
1107 struct list_head lnode;
1108 struct latch_tree_node tnode;
1109 bool prog;
1110};
1111
1112enum bpf_tramp_prog_type {
1113 BPF_TRAMP_FENTRY,
1114 BPF_TRAMP_FEXIT,
1115 BPF_TRAMP_MODIFY_RETURN,
1116 BPF_TRAMP_MAX,
1117 BPF_TRAMP_REPLACE, /* more than MAX */
1118};
1119
1120struct bpf_tramp_image {
1121 void *image;
1122 struct bpf_ksym ksym;
1123 struct percpu_ref pcref;
1124 void *ip_after_call;
1125 void *ip_epilogue;
1126 union {
1127 struct rcu_head rcu;
1128 struct work_struct work;
1129 };
1130};
1131
1132struct bpf_trampoline {
1133 /* hlist for trampoline_table */
1134 struct hlist_node hlist;
1135 struct ftrace_ops *fops;
1136 /* serializes access to fields of this trampoline */
1137 struct mutex mutex;
1138 refcount_t refcnt;
1139 u32 flags;
1140 u64 key;
1141 struct {
1142 struct btf_func_model model;
1143 void *addr;
1144 bool ftrace_managed;
1145 } func;
1146 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1147 * program by replacing one of its functions. func.addr is the address
1148 * of the function it replaced.
1149 */
1150 struct bpf_prog *extension_prog;
1151 /* list of BPF programs using this trampoline */
1152 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1153 /* Number of attached programs. A counter per kind. */
1154 int progs_cnt[BPF_TRAMP_MAX];
1155 /* Executable image of trampoline */
1156 struct bpf_tramp_image *cur_image;
1157 struct module *mod;
1158};
1159
1160struct bpf_attach_target_info {
1161 struct btf_func_model fmodel;
1162 long tgt_addr;
1163 struct module *tgt_mod;
1164 const char *tgt_name;
1165 const struct btf_type *tgt_type;
1166};
1167
1168#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1169
1170struct bpf_dispatcher_prog {
1171 struct bpf_prog *prog;
1172 refcount_t users;
1173};
1174
1175struct bpf_dispatcher {
1176 /* dispatcher mutex */
1177 struct mutex mutex;
1178 void *func;
1179 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1180 int num_progs;
1181 void *image;
1182 void *rw_image;
1183 u32 image_off;
1184 struct bpf_ksym ksym;
1185#ifdef CONFIG_HAVE_STATIC_CALL
1186 struct static_call_key *sc_key;
1187 void *sc_tramp;
1188#endif
1189};
1190
1191static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
1192 const void *ctx,
1193 const struct bpf_insn *insnsi,
1194 bpf_func_t bpf_func)
1195{
1196 return bpf_func(ctx, insnsi);
1197}
1198
1199/* the implementation of the opaque uapi struct bpf_dynptr */
1200struct bpf_dynptr_kern {
1201 void *data;
1202 /* Size represents the number of usable bytes of dynptr data.
1203 * If for example the offset is at 4 for a local dynptr whose data is
1204 * of type u64, the number of usable bytes is 4.
1205 *
1206 * The upper 8 bits are reserved. It is as follows:
1207 * Bits 0 - 23 = size
1208 * Bits 24 - 30 = dynptr type
1209 * Bit 31 = whether dynptr is read-only
1210 */
1211 u32 size;
1212 u32 offset;
1213} __aligned(8);
1214
1215enum bpf_dynptr_type {
1216 BPF_DYNPTR_TYPE_INVALID,
1217 /* Points to memory that is local to the bpf program */
1218 BPF_DYNPTR_TYPE_LOCAL,
1219 /* Underlying data is a ringbuf record */
1220 BPF_DYNPTR_TYPE_RINGBUF,
1221 /* Underlying data is a sk_buff */
1222 BPF_DYNPTR_TYPE_SKB,
1223 /* Underlying data is a xdp_buff */
1224 BPF_DYNPTR_TYPE_XDP,
1225};
1226
1227int bpf_dynptr_check_size(u32 size);
1228u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1229
1230#ifdef CONFIG_BPF_JIT
1231int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1232int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1233struct bpf_trampoline *bpf_trampoline_get(u64 key,
1234 struct bpf_attach_target_info *tgt_info);
1235void bpf_trampoline_put(struct bpf_trampoline *tr);
1236int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1237
1238/*
1239 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1240 * indirection with a direct call to the bpf program. If the architecture does
1241 * not have STATIC_CALL, avoid a double-indirection.
1242 */
1243#ifdef CONFIG_HAVE_STATIC_CALL
1244
1245#define __BPF_DISPATCHER_SC_INIT(_name) \
1246 .sc_key = &STATIC_CALL_KEY(_name), \
1247 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1248
1249#define __BPF_DISPATCHER_SC(name) \
1250 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1251
1252#define __BPF_DISPATCHER_CALL(name) \
1253 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1254
1255#define __BPF_DISPATCHER_UPDATE(_d, _new) \
1256 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1257
1258#else
1259#define __BPF_DISPATCHER_SC_INIT(name)
1260#define __BPF_DISPATCHER_SC(name)
1261#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1262#define __BPF_DISPATCHER_UPDATE(_d, _new)
1263#endif
1264
1265#define BPF_DISPATCHER_INIT(_name) { \
1266 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1267 .func = &_name##_func, \
1268 .progs = {}, \
1269 .num_progs = 0, \
1270 .image = NULL, \
1271 .image_off = 0, \
1272 .ksym = { \
1273 .name = #_name, \
1274 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1275 }, \
1276 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1277}
1278
1279#define DEFINE_BPF_DISPATCHER(name) \
1280 __BPF_DISPATCHER_SC(name); \
1281 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \
1282 const void *ctx, \
1283 const struct bpf_insn *insnsi, \
1284 bpf_func_t bpf_func) \
1285 { \
1286 return __BPF_DISPATCHER_CALL(name); \
1287 } \
1288 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1289 struct bpf_dispatcher bpf_dispatcher_##name = \
1290 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1291
1292#define DECLARE_BPF_DISPATCHER(name) \
1293 unsigned int bpf_dispatcher_##name##_func( \
1294 const void *ctx, \
1295 const struct bpf_insn *insnsi, \
1296 bpf_func_t bpf_func); \
1297 extern struct bpf_dispatcher bpf_dispatcher_##name;
1298
1299#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1300#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1301void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1302 struct bpf_prog *to);
1303/* Called only from JIT-enabled code, so there's no need for stubs. */
1304void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1305void bpf_image_ksym_del(struct bpf_ksym *ksym);
1306void bpf_ksym_add(struct bpf_ksym *ksym);
1307void bpf_ksym_del(struct bpf_ksym *ksym);
1308int bpf_jit_charge_modmem(u32 size);
1309void bpf_jit_uncharge_modmem(u32 size);
1310bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1311#else
1312static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1313 struct bpf_trampoline *tr)
1314{
1315 return -ENOTSUPP;
1316}
1317static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1318 struct bpf_trampoline *tr)
1319{
1320 return -ENOTSUPP;
1321}
1322static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1323 struct bpf_attach_target_info *tgt_info)
1324{
1325 return NULL;
1326}
1327static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1328#define DEFINE_BPF_DISPATCHER(name)
1329#define DECLARE_BPF_DISPATCHER(name)
1330#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1331#define BPF_DISPATCHER_PTR(name) NULL
1332static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1333 struct bpf_prog *from,
1334 struct bpf_prog *to) {}
1335static inline bool is_bpf_image_address(unsigned long address)
1336{
1337 return false;
1338}
1339static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1340{
1341 return false;
1342}
1343#endif
1344
1345struct bpf_func_info_aux {
1346 u16 linkage;
1347 bool unreliable;
1348};
1349
1350enum bpf_jit_poke_reason {
1351 BPF_POKE_REASON_TAIL_CALL,
1352};
1353
1354/* Descriptor of pokes pointing /into/ the JITed image. */
1355struct bpf_jit_poke_descriptor {
1356 void *tailcall_target;
1357 void *tailcall_bypass;
1358 void *bypass_addr;
1359 void *aux;
1360 union {
1361 struct {
1362 struct bpf_map *map;
1363 u32 key;
1364 } tail_call;
1365 };
1366 bool tailcall_target_stable;
1367 u8 adj_off;
1368 u16 reason;
1369 u32 insn_idx;
1370};
1371
1372/* reg_type info for ctx arguments */
1373struct bpf_ctx_arg_aux {
1374 u32 offset;
1375 enum bpf_reg_type reg_type;
1376 u32 btf_id;
1377};
1378
1379struct btf_mod_pair {
1380 struct btf *btf;
1381 struct module *module;
1382};
1383
1384struct bpf_kfunc_desc_tab;
1385
1386struct bpf_prog_aux {
1387 atomic64_t refcnt;
1388 u32 used_map_cnt;
1389 u32 used_btf_cnt;
1390 u32 max_ctx_offset;
1391 u32 max_pkt_offset;
1392 u32 max_tp_access;
1393 u32 stack_depth;
1394 u32 id;
1395 u32 func_cnt; /* used by non-func prog as the number of func progs */
1396 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1397 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1398 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1399 u32 ctx_arg_info_size;
1400 u32 max_rdonly_access;
1401 u32 max_rdwr_access;
1402 struct btf *attach_btf;
1403 const struct bpf_ctx_arg_aux *ctx_arg_info;
1404 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1405 struct bpf_prog *dst_prog;
1406 struct bpf_trampoline *dst_trampoline;
1407 enum bpf_prog_type saved_dst_prog_type;
1408 enum bpf_attach_type saved_dst_attach_type;
1409 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1410 bool dev_bound; /* Program is bound to the netdev. */
1411 bool offload_requested; /* Program is bound and offloaded to the netdev. */
1412 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1413 bool func_proto_unreliable;
1414 bool sleepable;
1415 bool tail_call_reachable;
1416 bool xdp_has_frags;
1417 bool exception_cb;
1418 bool exception_boundary;
1419 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1420 const struct btf_type *attach_func_proto;
1421 /* function name for valid attach_btf_id */
1422 const char *attach_func_name;
1423 struct bpf_prog **func;
1424 void *jit_data; /* JIT specific data. arch dependent */
1425 struct bpf_jit_poke_descriptor *poke_tab;
1426 struct bpf_kfunc_desc_tab *kfunc_tab;
1427 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1428 u32 size_poke_tab;
1429 struct bpf_ksym ksym;
1430 const struct bpf_prog_ops *ops;
1431 struct bpf_map **used_maps;
1432 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1433 struct btf_mod_pair *used_btfs;
1434 struct bpf_prog *prog;
1435 struct user_struct *user;
1436 u64 load_time; /* ns since boottime */
1437 u32 verified_insns;
1438 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1439 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1440 char name[BPF_OBJ_NAME_LEN];
1441 unsigned int (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp);
1442#ifdef CONFIG_SECURITY
1443 void *security;
1444#endif
1445 struct bpf_prog_offload *offload;
1446 struct btf *btf;
1447 struct bpf_func_info *func_info;
1448 struct bpf_func_info_aux *func_info_aux;
1449 /* bpf_line_info loaded from userspace. linfo->insn_off
1450 * has the xlated insn offset.
1451 * Both the main and sub prog share the same linfo.
1452 * The subprog can access its first linfo by
1453 * using the linfo_idx.
1454 */
1455 struct bpf_line_info *linfo;
1456 /* jited_linfo is the jited addr of the linfo. It has a
1457 * one to one mapping to linfo:
1458 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1459 * Both the main and sub prog share the same jited_linfo.
1460 * The subprog can access its first jited_linfo by
1461 * using the linfo_idx.
1462 */
1463 void **jited_linfo;
1464 u32 func_info_cnt;
1465 u32 nr_linfo;
1466 /* subprog can use linfo_idx to access its first linfo and
1467 * jited_linfo.
1468 * main prog always has linfo_idx == 0
1469 */
1470 u32 linfo_idx;
1471 struct module *mod;
1472 u32 num_exentries;
1473 struct exception_table_entry *extable;
1474 union {
1475 struct work_struct work;
1476 struct rcu_head rcu;
1477 };
1478};
1479
1480struct bpf_prog {
1481 u16 pages; /* Number of allocated pages */
1482 u16 jited:1, /* Is our filter JIT'ed? */
1483 jit_requested:1,/* archs need to JIT the prog */
1484 gpl_compatible:1, /* Is filter GPL compatible? */
1485 cb_access:1, /* Is control block accessed? */
1486 dst_needed:1, /* Do we need dst entry? */
1487 blinding_requested:1, /* needs constant blinding */
1488 blinded:1, /* Was blinded */
1489 is_func:1, /* program is a bpf function */
1490 kprobe_override:1, /* Do we override a kprobe? */
1491 has_callchain_buf:1, /* callchain buffer allocated? */
1492 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1493 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1494 call_get_func_ip:1, /* Do we call get_func_ip() */
1495 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1496 enum bpf_prog_type type; /* Type of BPF program */
1497 enum bpf_attach_type expected_attach_type; /* For some prog types */
1498 u32 len; /* Number of filter blocks */
1499 u32 jited_len; /* Size of jited insns in bytes */
1500 u8 tag[BPF_TAG_SIZE];
1501 struct bpf_prog_stats __percpu *stats;
1502 int __percpu *active;
1503 unsigned int (*bpf_func)(const void *ctx,
1504 const struct bpf_insn *insn);
1505 struct bpf_prog_aux *aux; /* Auxiliary fields */
1506 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1507 /* Instructions for interpreter */
1508 union {
1509 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1510 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1511 };
1512};
1513
1514struct bpf_array_aux {
1515 /* Programs with direct jumps into programs part of this array. */
1516 struct list_head poke_progs;
1517 struct bpf_map *map;
1518 struct mutex poke_mutex;
1519 struct work_struct work;
1520};
1521
1522struct bpf_link {
1523 atomic64_t refcnt;
1524 u32 id;
1525 enum bpf_link_type type;
1526 const struct bpf_link_ops *ops;
1527 struct bpf_prog *prog;
1528 struct work_struct work;
1529};
1530
1531struct bpf_link_ops {
1532 void (*release)(struct bpf_link *link);
1533 void (*dealloc)(struct bpf_link *link);
1534 int (*detach)(struct bpf_link *link);
1535 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1536 struct bpf_prog *old_prog);
1537 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1538 int (*fill_link_info)(const struct bpf_link *link,
1539 struct bpf_link_info *info);
1540 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1541 struct bpf_map *old_map);
1542};
1543
1544struct bpf_tramp_link {
1545 struct bpf_link link;
1546 struct hlist_node tramp_hlist;
1547 u64 cookie;
1548};
1549
1550struct bpf_shim_tramp_link {
1551 struct bpf_tramp_link link;
1552 struct bpf_trampoline *trampoline;
1553};
1554
1555struct bpf_tracing_link {
1556 struct bpf_tramp_link link;
1557 enum bpf_attach_type attach_type;
1558 struct bpf_trampoline *trampoline;
1559 struct bpf_prog *tgt_prog;
1560};
1561
1562struct bpf_link_primer {
1563 struct bpf_link *link;
1564 struct file *file;
1565 int fd;
1566 u32 id;
1567};
1568
1569struct bpf_struct_ops_value;
1570struct btf_member;
1571
1572#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1573/**
1574 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1575 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1576 * of BPF_PROG_TYPE_STRUCT_OPS progs.
1577 * @verifier_ops: A structure of callbacks that are invoked by the verifier
1578 * when determining whether the struct_ops progs in the
1579 * struct_ops map are valid.
1580 * @init: A callback that is invoked a single time, and before any other
1581 * callback, to initialize the structure. A nonzero return value means
1582 * the subsystem could not be initialized.
1583 * @check_member: When defined, a callback invoked by the verifier to allow
1584 * the subsystem to determine if an entry in the struct_ops map
1585 * is valid. A nonzero return value means that the map is
1586 * invalid and should be rejected by the verifier.
1587 * @init_member: A callback that is invoked for each member of the struct_ops
1588 * map to allow the subsystem to initialize the member. A nonzero
1589 * value means the member could not be initialized. This callback
1590 * is exclusive with the @type, @type_id, @value_type, and
1591 * @value_id fields.
1592 * @reg: A callback that is invoked when the struct_ops map has been
1593 * initialized and is being attached to. Zero means the struct_ops map
1594 * has been successfully registered and is live. A nonzero return value
1595 * means the struct_ops map could not be registered.
1596 * @unreg: A callback that is invoked when the struct_ops map should be
1597 * unregistered.
1598 * @update: A callback that is invoked when the live struct_ops map is being
1599 * updated to contain new values. This callback is only invoked when
1600 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1601 * it is assumed that the struct_ops map cannot be updated.
1602 * @validate: A callback that is invoked after all of the members have been
1603 * initialized. This callback should perform static checks on the
1604 * map, meaning that it should either fail or succeed
1605 * deterministically. A struct_ops map that has been validated may
1606 * not necessarily succeed in being registered if the call to @reg
1607 * fails. For example, a valid struct_ops map may be loaded, but
1608 * then fail to be registered due to there being another active
1609 * struct_ops map on the system in the subsystem already. For this
1610 * reason, if this callback is not defined, the check is skipped as
1611 * the struct_ops map will have final verification performed in
1612 * @reg.
1613 * @type: BTF type.
1614 * @value_type: Value type.
1615 * @name: The name of the struct bpf_struct_ops object.
1616 * @func_models: Func models
1617 * @type_id: BTF type id.
1618 * @value_id: BTF value id.
1619 */
1620struct bpf_struct_ops {
1621 const struct bpf_verifier_ops *verifier_ops;
1622 int (*init)(struct btf *btf);
1623 int (*check_member)(const struct btf_type *t,
1624 const struct btf_member *member,
1625 const struct bpf_prog *prog);
1626 int (*init_member)(const struct btf_type *t,
1627 const struct btf_member *member,
1628 void *kdata, const void *udata);
1629 int (*reg)(void *kdata);
1630 void (*unreg)(void *kdata);
1631 int (*update)(void *kdata, void *old_kdata);
1632 int (*validate)(void *kdata);
1633 const struct btf_type *type;
1634 const struct btf_type *value_type;
1635 const char *name;
1636 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1637 u32 type_id;
1638 u32 value_id;
1639};
1640
1641#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1642#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1643const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1644void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1645bool bpf_struct_ops_get(const void *kdata);
1646void bpf_struct_ops_put(const void *kdata);
1647int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1648 void *value);
1649int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1650 struct bpf_tramp_link *link,
1651 const struct btf_func_model *model,
1652 void *image, void *image_end);
1653static inline bool bpf_try_module_get(const void *data, struct module *owner)
1654{
1655 if (owner == BPF_MODULE_OWNER)
1656 return bpf_struct_ops_get(data);
1657 else
1658 return try_module_get(owner);
1659}
1660static inline void bpf_module_put(const void *data, struct module *owner)
1661{
1662 if (owner == BPF_MODULE_OWNER)
1663 bpf_struct_ops_put(data);
1664 else
1665 module_put(owner);
1666}
1667int bpf_struct_ops_link_create(union bpf_attr *attr);
1668
1669#ifdef CONFIG_NET
1670/* Define it here to avoid the use of forward declaration */
1671struct bpf_dummy_ops_state {
1672 int val;
1673};
1674
1675struct bpf_dummy_ops {
1676 int (*test_1)(struct bpf_dummy_ops_state *cb);
1677 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1678 char a3, unsigned long a4);
1679 int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1680};
1681
1682int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1683 union bpf_attr __user *uattr);
1684#endif
1685#else
1686static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1687{
1688 return NULL;
1689}
1690static inline void bpf_struct_ops_init(struct btf *btf,
1691 struct bpf_verifier_log *log)
1692{
1693}
1694static inline bool bpf_try_module_get(const void *data, struct module *owner)
1695{
1696 return try_module_get(owner);
1697}
1698static inline void bpf_module_put(const void *data, struct module *owner)
1699{
1700 module_put(owner);
1701}
1702static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1703 void *key,
1704 void *value)
1705{
1706 return -EINVAL;
1707}
1708static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1709{
1710 return -EOPNOTSUPP;
1711}
1712
1713#endif
1714
1715#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1716int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1717 int cgroup_atype);
1718void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1719#else
1720static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1721 int cgroup_atype)
1722{
1723 return -EOPNOTSUPP;
1724}
1725static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1726{
1727}
1728#endif
1729
1730struct bpf_array {
1731 struct bpf_map map;
1732 u32 elem_size;
1733 u32 index_mask;
1734 struct bpf_array_aux *aux;
1735 union {
1736 DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1737 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1738 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1739 };
1740};
1741
1742#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
1743#define MAX_TAIL_CALL_CNT 33
1744
1745/* Maximum number of loops for bpf_loop and bpf_iter_num.
1746 * It's enum to expose it (and thus make it discoverable) through BTF.
1747 */
1748enum {
1749 BPF_MAX_LOOPS = 8 * 1024 * 1024,
1750};
1751
1752#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
1753 BPF_F_RDONLY_PROG | \
1754 BPF_F_WRONLY | \
1755 BPF_F_WRONLY_PROG)
1756
1757#define BPF_MAP_CAN_READ BIT(0)
1758#define BPF_MAP_CAN_WRITE BIT(1)
1759
1760/* Maximum number of user-producer ring buffer samples that can be drained in
1761 * a call to bpf_user_ringbuf_drain().
1762 */
1763#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1764
1765static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1766{
1767 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1768
1769 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1770 * not possible.
1771 */
1772 if (access_flags & BPF_F_RDONLY_PROG)
1773 return BPF_MAP_CAN_READ;
1774 else if (access_flags & BPF_F_WRONLY_PROG)
1775 return BPF_MAP_CAN_WRITE;
1776 else
1777 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1778}
1779
1780static inline bool bpf_map_flags_access_ok(u32 access_flags)
1781{
1782 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1783 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1784}
1785
1786struct bpf_event_entry {
1787 struct perf_event *event;
1788 struct file *perf_file;
1789 struct file *map_file;
1790 struct rcu_head rcu;
1791};
1792
1793static inline bool map_type_contains_progs(struct bpf_map *map)
1794{
1795 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1796 map->map_type == BPF_MAP_TYPE_DEVMAP ||
1797 map->map_type == BPF_MAP_TYPE_CPUMAP;
1798}
1799
1800bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1801int bpf_prog_calc_tag(struct bpf_prog *fp);
1802
1803const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1804const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1805
1806typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1807 unsigned long off, unsigned long len);
1808typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1809 const struct bpf_insn *src,
1810 struct bpf_insn *dst,
1811 struct bpf_prog *prog,
1812 u32 *target_size);
1813
1814u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1815 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1816
1817/* an array of programs to be executed under rcu_lock.
1818 *
1819 * Typical usage:
1820 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1821 *
1822 * the structure returned by bpf_prog_array_alloc() should be populated
1823 * with program pointers and the last pointer must be NULL.
1824 * The user has to keep refcnt on the program and make sure the program
1825 * is removed from the array before bpf_prog_put().
1826 * The 'struct bpf_prog_array *' should only be replaced with xchg()
1827 * since other cpus are walking the array of pointers in parallel.
1828 */
1829struct bpf_prog_array_item {
1830 struct bpf_prog *prog;
1831 union {
1832 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1833 u64 bpf_cookie;
1834 };
1835};
1836
1837struct bpf_prog_array {
1838 struct rcu_head rcu;
1839 struct bpf_prog_array_item items[];
1840};
1841
1842struct bpf_empty_prog_array {
1843 struct bpf_prog_array hdr;
1844 struct bpf_prog *null_prog;
1845};
1846
1847/* to avoid allocating empty bpf_prog_array for cgroups that
1848 * don't have bpf program attached use one global 'bpf_empty_prog_array'
1849 * It will not be modified the caller of bpf_prog_array_alloc()
1850 * (since caller requested prog_cnt == 0)
1851 * that pointer should be 'freed' by bpf_prog_array_free()
1852 */
1853extern struct bpf_empty_prog_array bpf_empty_prog_array;
1854
1855struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1856void bpf_prog_array_free(struct bpf_prog_array *progs);
1857/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1858void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1859int bpf_prog_array_length(struct bpf_prog_array *progs);
1860bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1861int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1862 __u32 __user *prog_ids, u32 cnt);
1863
1864void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1865 struct bpf_prog *old_prog);
1866int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1867int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1868 struct bpf_prog *prog);
1869int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1870 u32 *prog_ids, u32 request_cnt,
1871 u32 *prog_cnt);
1872int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1873 struct bpf_prog *exclude_prog,
1874 struct bpf_prog *include_prog,
1875 u64 bpf_cookie,
1876 struct bpf_prog_array **new_array);
1877
1878struct bpf_run_ctx {};
1879
1880struct bpf_cg_run_ctx {
1881 struct bpf_run_ctx run_ctx;
1882 const struct bpf_prog_array_item *prog_item;
1883 int retval;
1884};
1885
1886struct bpf_trace_run_ctx {
1887 struct bpf_run_ctx run_ctx;
1888 u64 bpf_cookie;
1889 bool is_uprobe;
1890};
1891
1892struct bpf_tramp_run_ctx {
1893 struct bpf_run_ctx run_ctx;
1894 u64 bpf_cookie;
1895 struct bpf_run_ctx *saved_run_ctx;
1896};
1897
1898static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1899{
1900 struct bpf_run_ctx *old_ctx = NULL;
1901
1902#ifdef CONFIG_BPF_SYSCALL
1903 old_ctx = current->bpf_ctx;
1904 current->bpf_ctx = new_ctx;
1905#endif
1906 return old_ctx;
1907}
1908
1909static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1910{
1911#ifdef CONFIG_BPF_SYSCALL
1912 current->bpf_ctx = old_ctx;
1913#endif
1914}
1915
1916/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1917#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
1918/* BPF program asks to set CN on the packet. */
1919#define BPF_RET_SET_CN (1 << 0)
1920
1921typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1922
1923static __always_inline u32
1924bpf_prog_run_array(const struct bpf_prog_array *array,
1925 const void *ctx, bpf_prog_run_fn run_prog)
1926{
1927 const struct bpf_prog_array_item *item;
1928 const struct bpf_prog *prog;
1929 struct bpf_run_ctx *old_run_ctx;
1930 struct bpf_trace_run_ctx run_ctx;
1931 u32 ret = 1;
1932
1933 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1934
1935 if (unlikely(!array))
1936 return ret;
1937
1938 run_ctx.is_uprobe = false;
1939
1940 migrate_disable();
1941 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1942 item = &array->items[0];
1943 while ((prog = READ_ONCE(item->prog))) {
1944 run_ctx.bpf_cookie = item->bpf_cookie;
1945 ret &= run_prog(prog, ctx);
1946 item++;
1947 }
1948 bpf_reset_run_ctx(old_run_ctx);
1949 migrate_enable();
1950 return ret;
1951}
1952
1953/* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1954 *
1955 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1956 * overall. As a result, we must use the bpf_prog_array_free_sleepable
1957 * in order to use the tasks_trace rcu grace period.
1958 *
1959 * When a non-sleepable program is inside the array, we take the rcu read
1960 * section and disable preemption for that program alone, so it can access
1961 * rcu-protected dynamically sized maps.
1962 */
1963static __always_inline u32
1964bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
1965 const void *ctx, bpf_prog_run_fn run_prog)
1966{
1967 const struct bpf_prog_array_item *item;
1968 const struct bpf_prog *prog;
1969 const struct bpf_prog_array *array;
1970 struct bpf_run_ctx *old_run_ctx;
1971 struct bpf_trace_run_ctx run_ctx;
1972 u32 ret = 1;
1973
1974 might_fault();
1975
1976 rcu_read_lock_trace();
1977 migrate_disable();
1978
1979 run_ctx.is_uprobe = true;
1980
1981 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
1982 if (unlikely(!array))
1983 goto out;
1984 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1985 item = &array->items[0];
1986 while ((prog = READ_ONCE(item->prog))) {
1987 if (!prog->aux->sleepable)
1988 rcu_read_lock();
1989
1990 run_ctx.bpf_cookie = item->bpf_cookie;
1991 ret &= run_prog(prog, ctx);
1992 item++;
1993
1994 if (!prog->aux->sleepable)
1995 rcu_read_unlock();
1996 }
1997 bpf_reset_run_ctx(old_run_ctx);
1998out:
1999 migrate_enable();
2000 rcu_read_unlock_trace();
2001 return ret;
2002}
2003
2004#ifdef CONFIG_BPF_SYSCALL
2005DECLARE_PER_CPU(int, bpf_prog_active);
2006extern struct mutex bpf_stats_enabled_mutex;
2007
2008/*
2009 * Block execution of BPF programs attached to instrumentation (perf,
2010 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2011 * these events can happen inside a region which holds a map bucket lock
2012 * and can deadlock on it.
2013 */
2014static inline void bpf_disable_instrumentation(void)
2015{
2016 migrate_disable();
2017 this_cpu_inc(bpf_prog_active);
2018}
2019
2020static inline void bpf_enable_instrumentation(void)
2021{
2022 this_cpu_dec(bpf_prog_active);
2023 migrate_enable();
2024}
2025
2026extern const struct file_operations bpf_map_fops;
2027extern const struct file_operations bpf_prog_fops;
2028extern const struct file_operations bpf_iter_fops;
2029
2030#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2031 extern const struct bpf_prog_ops _name ## _prog_ops; \
2032 extern const struct bpf_verifier_ops _name ## _verifier_ops;
2033#define BPF_MAP_TYPE(_id, _ops) \
2034 extern const struct bpf_map_ops _ops;
2035#define BPF_LINK_TYPE(_id, _name)
2036#include <linux/bpf_types.h>
2037#undef BPF_PROG_TYPE
2038#undef BPF_MAP_TYPE
2039#undef BPF_LINK_TYPE
2040
2041extern const struct bpf_prog_ops bpf_offload_prog_ops;
2042extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2043extern const struct bpf_verifier_ops xdp_analyzer_ops;
2044
2045struct bpf_prog *bpf_prog_get(u32 ufd);
2046struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2047 bool attach_drv);
2048void bpf_prog_add(struct bpf_prog *prog, int i);
2049void bpf_prog_sub(struct bpf_prog *prog, int i);
2050void bpf_prog_inc(struct bpf_prog *prog);
2051struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2052void bpf_prog_put(struct bpf_prog *prog);
2053
2054void bpf_prog_free_id(struct bpf_prog *prog);
2055void bpf_map_free_id(struct bpf_map *map);
2056
2057struct btf_field *btf_record_find(const struct btf_record *rec,
2058 u32 offset, u32 field_mask);
2059void btf_record_free(struct btf_record *rec);
2060void bpf_map_free_record(struct bpf_map *map);
2061struct btf_record *btf_record_dup(const struct btf_record *rec);
2062bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2063void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2064void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2065void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2066
2067struct bpf_map *bpf_map_get(u32 ufd);
2068struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2069struct bpf_map *__bpf_map_get(struct fd f);
2070void bpf_map_inc(struct bpf_map *map);
2071void bpf_map_inc_with_uref(struct bpf_map *map);
2072struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2073struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2074void bpf_map_put_with_uref(struct bpf_map *map);
2075void bpf_map_put(struct bpf_map *map);
2076void *bpf_map_area_alloc(u64 size, int numa_node);
2077void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2078void bpf_map_area_free(void *base);
2079bool bpf_map_write_active(const struct bpf_map *map);
2080void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2081int generic_map_lookup_batch(struct bpf_map *map,
2082 const union bpf_attr *attr,
2083 union bpf_attr __user *uattr);
2084int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2085 const union bpf_attr *attr,
2086 union bpf_attr __user *uattr);
2087int generic_map_delete_batch(struct bpf_map *map,
2088 const union bpf_attr *attr,
2089 union bpf_attr __user *uattr);
2090struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2091struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2092
2093#ifdef CONFIG_MEMCG_KMEM
2094void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2095 int node);
2096void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2097void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2098 gfp_t flags);
2099void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2100 size_t align, gfp_t flags);
2101#else
2102static inline void *
2103bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2104 int node)
2105{
2106 return kmalloc_node(size, flags, node);
2107}
2108
2109static inline void *
2110bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2111{
2112 return kzalloc(size, flags);
2113}
2114
2115static inline void *
2116bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2117{
2118 return kvcalloc(n, size, flags);
2119}
2120
2121static inline void __percpu *
2122bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2123 gfp_t flags)
2124{
2125 return __alloc_percpu_gfp(size, align, flags);
2126}
2127#endif
2128
2129static inline int
2130bpf_map_init_elem_count(struct bpf_map *map)
2131{
2132 size_t size = sizeof(*map->elem_count), align = size;
2133 gfp_t flags = GFP_USER | __GFP_NOWARN;
2134
2135 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2136 if (!map->elem_count)
2137 return -ENOMEM;
2138
2139 return 0;
2140}
2141
2142static inline void
2143bpf_map_free_elem_count(struct bpf_map *map)
2144{
2145 free_percpu(map->elem_count);
2146}
2147
2148static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2149{
2150 this_cpu_inc(*map->elem_count);
2151}
2152
2153static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2154{
2155 this_cpu_dec(*map->elem_count);
2156}
2157
2158extern int sysctl_unprivileged_bpf_disabled;
2159
2160static inline bool bpf_allow_ptr_leaks(void)
2161{
2162 return perfmon_capable();
2163}
2164
2165static inline bool bpf_allow_uninit_stack(void)
2166{
2167 return perfmon_capable();
2168}
2169
2170static inline bool bpf_bypass_spec_v1(void)
2171{
2172 return cpu_mitigations_off() || perfmon_capable();
2173}
2174
2175static inline bool bpf_bypass_spec_v4(void)
2176{
2177 return cpu_mitigations_off() || perfmon_capable();
2178}
2179
2180int bpf_map_new_fd(struct bpf_map *map, int flags);
2181int bpf_prog_new_fd(struct bpf_prog *prog);
2182
2183void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2184 const struct bpf_link_ops *ops, struct bpf_prog *prog);
2185int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2186int bpf_link_settle(struct bpf_link_primer *primer);
2187void bpf_link_cleanup(struct bpf_link_primer *primer);
2188void bpf_link_inc(struct bpf_link *link);
2189void bpf_link_put(struct bpf_link *link);
2190int bpf_link_new_fd(struct bpf_link *link);
2191struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2192struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2193
2194int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2195int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2196
2197#define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2198#define DEFINE_BPF_ITER_FUNC(target, args...) \
2199 extern int bpf_iter_ ## target(args); \
2200 int __init bpf_iter_ ## target(args) { return 0; }
2201
2202/*
2203 * The task type of iterators.
2204 *
2205 * For BPF task iterators, they can be parameterized with various
2206 * parameters to visit only some of tasks.
2207 *
2208 * BPF_TASK_ITER_ALL (default)
2209 * Iterate over resources of every task.
2210 *
2211 * BPF_TASK_ITER_TID
2212 * Iterate over resources of a task/tid.
2213 *
2214 * BPF_TASK_ITER_TGID
2215 * Iterate over resources of every task of a process / task group.
2216 */
2217enum bpf_iter_task_type {
2218 BPF_TASK_ITER_ALL = 0,
2219 BPF_TASK_ITER_TID,
2220 BPF_TASK_ITER_TGID,
2221};
2222
2223struct bpf_iter_aux_info {
2224 /* for map_elem iter */
2225 struct bpf_map *map;
2226
2227 /* for cgroup iter */
2228 struct {
2229 struct cgroup *start; /* starting cgroup */
2230 enum bpf_cgroup_iter_order order;
2231 } cgroup;
2232 struct {
2233 enum bpf_iter_task_type type;
2234 u32 pid;
2235 } task;
2236};
2237
2238typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2239 union bpf_iter_link_info *linfo,
2240 struct bpf_iter_aux_info *aux);
2241typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2242typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2243 struct seq_file *seq);
2244typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2245 struct bpf_link_info *info);
2246typedef const struct bpf_func_proto *
2247(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2248 const struct bpf_prog *prog);
2249
2250enum bpf_iter_feature {
2251 BPF_ITER_RESCHED = BIT(0),
2252};
2253
2254#define BPF_ITER_CTX_ARG_MAX 2
2255struct bpf_iter_reg {
2256 const char *target;
2257 bpf_iter_attach_target_t attach_target;
2258 bpf_iter_detach_target_t detach_target;
2259 bpf_iter_show_fdinfo_t show_fdinfo;
2260 bpf_iter_fill_link_info_t fill_link_info;
2261 bpf_iter_get_func_proto_t get_func_proto;
2262 u32 ctx_arg_info_size;
2263 u32 feature;
2264 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2265 const struct bpf_iter_seq_info *seq_info;
2266};
2267
2268struct bpf_iter_meta {
2269 __bpf_md_ptr(struct seq_file *, seq);
2270 u64 session_id;
2271 u64 seq_num;
2272};
2273
2274struct bpf_iter__bpf_map_elem {
2275 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2276 __bpf_md_ptr(struct bpf_map *, map);
2277 __bpf_md_ptr(void *, key);
2278 __bpf_md_ptr(void *, value);
2279};
2280
2281int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2282void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2283bool bpf_iter_prog_supported(struct bpf_prog *prog);
2284const struct bpf_func_proto *
2285bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2286int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2287int bpf_iter_new_fd(struct bpf_link *link);
2288bool bpf_link_is_iter(struct bpf_link *link);
2289struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2290int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2291void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2292 struct seq_file *seq);
2293int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2294 struct bpf_link_info *info);
2295
2296int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2297 struct bpf_func_state *caller,
2298 struct bpf_func_state *callee);
2299
2300int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2301int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2302int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2303 u64 flags);
2304int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2305 u64 flags);
2306
2307int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2308
2309int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2310 void *key, void *value, u64 map_flags);
2311int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2312int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2313 void *key, void *value, u64 map_flags);
2314int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2315
2316int bpf_get_file_flag(int flags);
2317int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2318 size_t actual_size);
2319
2320/* verify correctness of eBPF program */
2321int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2322
2323#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2324void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2325#endif
2326
2327struct btf *bpf_get_btf_vmlinux(void);
2328
2329/* Map specifics */
2330struct xdp_frame;
2331struct sk_buff;
2332struct bpf_dtab_netdev;
2333struct bpf_cpu_map_entry;
2334
2335void __dev_flush(void);
2336int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2337 struct net_device *dev_rx);
2338int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2339 struct net_device *dev_rx);
2340int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2341 struct bpf_map *map, bool exclude_ingress);
2342int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2343 struct bpf_prog *xdp_prog);
2344int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2345 struct bpf_prog *xdp_prog, struct bpf_map *map,
2346 bool exclude_ingress);
2347
2348void __cpu_map_flush(void);
2349int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2350 struct net_device *dev_rx);
2351int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2352 struct sk_buff *skb);
2353
2354/* Return map's numa specified by userspace */
2355static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2356{
2357 return (attr->map_flags & BPF_F_NUMA_NODE) ?
2358 attr->numa_node : NUMA_NO_NODE;
2359}
2360
2361struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2362int array_map_alloc_check(union bpf_attr *attr);
2363
2364int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2365 union bpf_attr __user *uattr);
2366int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2367 union bpf_attr __user *uattr);
2368int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2369 const union bpf_attr *kattr,
2370 union bpf_attr __user *uattr);
2371int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2372 const union bpf_attr *kattr,
2373 union bpf_attr __user *uattr);
2374int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2375 const union bpf_attr *kattr,
2376 union bpf_attr __user *uattr);
2377int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2378 const union bpf_attr *kattr,
2379 union bpf_attr __user *uattr);
2380int bpf_prog_test_run_nf(struct bpf_prog *prog,
2381 const union bpf_attr *kattr,
2382 union bpf_attr __user *uattr);
2383bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2384 const struct bpf_prog *prog,
2385 struct bpf_insn_access_aux *info);
2386
2387static inline bool bpf_tracing_ctx_access(int off, int size,
2388 enum bpf_access_type type)
2389{
2390 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2391 return false;
2392 if (type != BPF_READ)
2393 return false;
2394 if (off % size != 0)
2395 return false;
2396 return true;
2397}
2398
2399static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2400 enum bpf_access_type type,
2401 const struct bpf_prog *prog,
2402 struct bpf_insn_access_aux *info)
2403{
2404 if (!bpf_tracing_ctx_access(off, size, type))
2405 return false;
2406 return btf_ctx_access(off, size, type, prog, info);
2407}
2408
2409int btf_struct_access(struct bpf_verifier_log *log,
2410 const struct bpf_reg_state *reg,
2411 int off, int size, enum bpf_access_type atype,
2412 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2413bool btf_struct_ids_match(struct bpf_verifier_log *log,
2414 const struct btf *btf, u32 id, int off,
2415 const struct btf *need_btf, u32 need_type_id,
2416 bool strict);
2417
2418int btf_distill_func_proto(struct bpf_verifier_log *log,
2419 struct btf *btf,
2420 const struct btf_type *func_proto,
2421 const char *func_name,
2422 struct btf_func_model *m);
2423
2424struct bpf_reg_state;
2425int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2426 struct bpf_reg_state *regs);
2427int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2428 struct bpf_reg_state *regs);
2429int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2430 struct bpf_reg_state *reg, bool is_ex_cb);
2431int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2432 struct btf *btf, const struct btf_type *t);
2433const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2434 int comp_idx, const char *tag_key);
2435
2436struct bpf_prog *bpf_prog_by_id(u32 id);
2437struct bpf_link *bpf_link_by_id(u32 id);
2438
2439const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2440void bpf_task_storage_free(struct task_struct *task);
2441void bpf_cgrp_storage_free(struct cgroup *cgroup);
2442bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2443const struct btf_func_model *
2444bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2445 const struct bpf_insn *insn);
2446int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2447 u16 btf_fd_idx, u8 **func_addr);
2448
2449struct bpf_core_ctx {
2450 struct bpf_verifier_log *log;
2451 const struct btf *btf;
2452};
2453
2454bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2455 const struct bpf_reg_state *reg,
2456 const char *field_name, u32 btf_id, const char *suffix);
2457
2458bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2459 const struct btf *reg_btf, u32 reg_id,
2460 const struct btf *arg_btf, u32 arg_id);
2461
2462int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2463 int relo_idx, void *insn);
2464
2465static inline bool unprivileged_ebpf_enabled(void)
2466{
2467 return !sysctl_unprivileged_bpf_disabled;
2468}
2469
2470/* Not all bpf prog type has the bpf_ctx.
2471 * For the bpf prog type that has initialized the bpf_ctx,
2472 * this function can be used to decide if a kernel function
2473 * is called by a bpf program.
2474 */
2475static inline bool has_current_bpf_ctx(void)
2476{
2477 return !!current->bpf_ctx;
2478}
2479
2480void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2481
2482void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2483 enum bpf_dynptr_type type, u32 offset, u32 size);
2484void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2485void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2486
2487bool dev_check_flush(void);
2488bool cpu_map_check_flush(void);
2489#else /* !CONFIG_BPF_SYSCALL */
2490static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2491{
2492 return ERR_PTR(-EOPNOTSUPP);
2493}
2494
2495static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2496 enum bpf_prog_type type,
2497 bool attach_drv)
2498{
2499 return ERR_PTR(-EOPNOTSUPP);
2500}
2501
2502static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2503{
2504}
2505
2506static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2507{
2508}
2509
2510static inline void bpf_prog_put(struct bpf_prog *prog)
2511{
2512}
2513
2514static inline void bpf_prog_inc(struct bpf_prog *prog)
2515{
2516}
2517
2518static inline struct bpf_prog *__must_check
2519bpf_prog_inc_not_zero(struct bpf_prog *prog)
2520{
2521 return ERR_PTR(-EOPNOTSUPP);
2522}
2523
2524static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2525 const struct bpf_link_ops *ops,
2526 struct bpf_prog *prog)
2527{
2528}
2529
2530static inline int bpf_link_prime(struct bpf_link *link,
2531 struct bpf_link_primer *primer)
2532{
2533 return -EOPNOTSUPP;
2534}
2535
2536static inline int bpf_link_settle(struct bpf_link_primer *primer)
2537{
2538 return -EOPNOTSUPP;
2539}
2540
2541static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2542{
2543}
2544
2545static inline void bpf_link_inc(struct bpf_link *link)
2546{
2547}
2548
2549static inline void bpf_link_put(struct bpf_link *link)
2550{
2551}
2552
2553static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2554{
2555 return -EOPNOTSUPP;
2556}
2557
2558static inline void __dev_flush(void)
2559{
2560}
2561
2562struct xdp_frame;
2563struct bpf_dtab_netdev;
2564struct bpf_cpu_map_entry;
2565
2566static inline
2567int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2568 struct net_device *dev_rx)
2569{
2570 return 0;
2571}
2572
2573static inline
2574int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2575 struct net_device *dev_rx)
2576{
2577 return 0;
2578}
2579
2580static inline
2581int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2582 struct bpf_map *map, bool exclude_ingress)
2583{
2584 return 0;
2585}
2586
2587struct sk_buff;
2588
2589static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2590 struct sk_buff *skb,
2591 struct bpf_prog *xdp_prog)
2592{
2593 return 0;
2594}
2595
2596static inline
2597int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2598 struct bpf_prog *xdp_prog, struct bpf_map *map,
2599 bool exclude_ingress)
2600{
2601 return 0;
2602}
2603
2604static inline void __cpu_map_flush(void)
2605{
2606}
2607
2608static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2609 struct xdp_frame *xdpf,
2610 struct net_device *dev_rx)
2611{
2612 return 0;
2613}
2614
2615static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2616 struct sk_buff *skb)
2617{
2618 return -EOPNOTSUPP;
2619}
2620
2621static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2622 enum bpf_prog_type type)
2623{
2624 return ERR_PTR(-EOPNOTSUPP);
2625}
2626
2627static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2628 const union bpf_attr *kattr,
2629 union bpf_attr __user *uattr)
2630{
2631 return -ENOTSUPP;
2632}
2633
2634static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2635 const union bpf_attr *kattr,
2636 union bpf_attr __user *uattr)
2637{
2638 return -ENOTSUPP;
2639}
2640
2641static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2642 const union bpf_attr *kattr,
2643 union bpf_attr __user *uattr)
2644{
2645 return -ENOTSUPP;
2646}
2647
2648static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2649 const union bpf_attr *kattr,
2650 union bpf_attr __user *uattr)
2651{
2652 return -ENOTSUPP;
2653}
2654
2655static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2656 const union bpf_attr *kattr,
2657 union bpf_attr __user *uattr)
2658{
2659 return -ENOTSUPP;
2660}
2661
2662static inline void bpf_map_put(struct bpf_map *map)
2663{
2664}
2665
2666static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2667{
2668 return ERR_PTR(-ENOTSUPP);
2669}
2670
2671static inline int btf_struct_access(struct bpf_verifier_log *log,
2672 const struct bpf_reg_state *reg,
2673 int off, int size, enum bpf_access_type atype,
2674 u32 *next_btf_id, enum bpf_type_flag *flag,
2675 const char **field_name)
2676{
2677 return -EACCES;
2678}
2679
2680static inline const struct bpf_func_proto *
2681bpf_base_func_proto(enum bpf_func_id func_id)
2682{
2683 return NULL;
2684}
2685
2686static inline void bpf_task_storage_free(struct task_struct *task)
2687{
2688}
2689
2690static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2691{
2692 return false;
2693}
2694
2695static inline const struct btf_func_model *
2696bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2697 const struct bpf_insn *insn)
2698{
2699 return NULL;
2700}
2701
2702static inline int
2703bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2704 u16 btf_fd_idx, u8 **func_addr)
2705{
2706 return -ENOTSUPP;
2707}
2708
2709static inline bool unprivileged_ebpf_enabled(void)
2710{
2711 return false;
2712}
2713
2714static inline bool has_current_bpf_ctx(void)
2715{
2716 return false;
2717}
2718
2719static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2720{
2721}
2722
2723static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2724{
2725}
2726
2727static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2728 enum bpf_dynptr_type type, u32 offset, u32 size)
2729{
2730}
2731
2732static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2733{
2734}
2735
2736static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2737{
2738}
2739#endif /* CONFIG_BPF_SYSCALL */
2740
2741static __always_inline int
2742bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2743{
2744 int ret = -EFAULT;
2745
2746 if (IS_ENABLED(CONFIG_BPF_EVENTS))
2747 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2748 if (unlikely(ret < 0))
2749 memset(dst, 0, size);
2750 return ret;
2751}
2752
2753void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2754 struct btf_mod_pair *used_btfs, u32 len);
2755
2756static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2757 enum bpf_prog_type type)
2758{
2759 return bpf_prog_get_type_dev(ufd, type, false);
2760}
2761
2762void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2763 struct bpf_map **used_maps, u32 len);
2764
2765bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2766
2767int bpf_prog_offload_compile(struct bpf_prog *prog);
2768void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2769int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2770 struct bpf_prog *prog);
2771
2772int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2773
2774int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2775int bpf_map_offload_update_elem(struct bpf_map *map,
2776 void *key, void *value, u64 flags);
2777int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2778int bpf_map_offload_get_next_key(struct bpf_map *map,
2779 void *key, void *next_key);
2780
2781bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2782
2783struct bpf_offload_dev *
2784bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2785void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2786void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2787int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2788 struct net_device *netdev);
2789void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2790 struct net_device *netdev);
2791bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2792
2793void unpriv_ebpf_notify(int new_state);
2794
2795#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2796int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2797 struct bpf_prog_aux *prog_aux);
2798void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2799int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2800int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2801void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2802
2803static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2804{
2805 return aux->dev_bound;
2806}
2807
2808static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2809{
2810 return aux->offload_requested;
2811}
2812
2813bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2814
2815static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2816{
2817 return unlikely(map->ops == &bpf_map_offload_ops);
2818}
2819
2820struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2821void bpf_map_offload_map_free(struct bpf_map *map);
2822u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2823int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2824 const union bpf_attr *kattr,
2825 union bpf_attr __user *uattr);
2826
2827int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2828int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2829int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2830int sock_map_bpf_prog_query(const union bpf_attr *attr,
2831 union bpf_attr __user *uattr);
2832
2833void sock_map_unhash(struct sock *sk);
2834void sock_map_destroy(struct sock *sk);
2835void sock_map_close(struct sock *sk, long timeout);
2836#else
2837static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2838 struct bpf_prog_aux *prog_aux)
2839{
2840 return -EOPNOTSUPP;
2841}
2842
2843static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
2844 u32 func_id)
2845{
2846 return NULL;
2847}
2848
2849static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
2850 union bpf_attr *attr)
2851{
2852 return -EOPNOTSUPP;
2853}
2854
2855static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
2856 struct bpf_prog *old_prog)
2857{
2858 return -EOPNOTSUPP;
2859}
2860
2861static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
2862{
2863}
2864
2865static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2866{
2867 return false;
2868}
2869
2870static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
2871{
2872 return false;
2873}
2874
2875static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
2876{
2877 return false;
2878}
2879
2880static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2881{
2882 return false;
2883}
2884
2885static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2886{
2887 return ERR_PTR(-EOPNOTSUPP);
2888}
2889
2890static inline void bpf_map_offload_map_free(struct bpf_map *map)
2891{
2892}
2893
2894static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
2895{
2896 return 0;
2897}
2898
2899static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2900 const union bpf_attr *kattr,
2901 union bpf_attr __user *uattr)
2902{
2903 return -ENOTSUPP;
2904}
2905
2906#ifdef CONFIG_BPF_SYSCALL
2907static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2908 struct bpf_prog *prog)
2909{
2910 return -EINVAL;
2911}
2912
2913static inline int sock_map_prog_detach(const union bpf_attr *attr,
2914 enum bpf_prog_type ptype)
2915{
2916 return -EOPNOTSUPP;
2917}
2918
2919static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2920 u64 flags)
2921{
2922 return -EOPNOTSUPP;
2923}
2924
2925static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2926 union bpf_attr __user *uattr)
2927{
2928 return -EINVAL;
2929}
2930#endif /* CONFIG_BPF_SYSCALL */
2931#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2932
2933static __always_inline void
2934bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
2935{
2936 const struct bpf_prog_array_item *item;
2937 struct bpf_prog *prog;
2938
2939 if (unlikely(!array))
2940 return;
2941
2942 item = &array->items[0];
2943 while ((prog = READ_ONCE(item->prog))) {
2944 bpf_prog_inc_misses_counter(prog);
2945 item++;
2946 }
2947}
2948
2949#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2950void bpf_sk_reuseport_detach(struct sock *sk);
2951int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2952 void *value);
2953int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2954 void *value, u64 map_flags);
2955#else
2956static inline void bpf_sk_reuseport_detach(struct sock *sk)
2957{
2958}
2959
2960#ifdef CONFIG_BPF_SYSCALL
2961static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2962 void *key, void *value)
2963{
2964 return -EOPNOTSUPP;
2965}
2966
2967static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2968 void *key, void *value,
2969 u64 map_flags)
2970{
2971 return -EOPNOTSUPP;
2972}
2973#endif /* CONFIG_BPF_SYSCALL */
2974#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2975
2976/* verifier prototypes for helper functions called from eBPF programs */
2977extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2978extern const struct bpf_func_proto bpf_map_update_elem_proto;
2979extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2980extern const struct bpf_func_proto bpf_map_push_elem_proto;
2981extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2982extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2983extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2984
2985extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2986extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2987extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2988extern const struct bpf_func_proto bpf_tail_call_proto;
2989extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
2990extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
2991extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
2992extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
2993extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
2994extern const struct bpf_func_proto bpf_get_current_comm_proto;
2995extern const struct bpf_func_proto bpf_get_stackid_proto;
2996extern const struct bpf_func_proto bpf_get_stack_proto;
2997extern const struct bpf_func_proto bpf_get_task_stack_proto;
2998extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
2999extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3000extern const struct bpf_func_proto bpf_sock_map_update_proto;
3001extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3002extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3003extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3004extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3005extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3006extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3007extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3008extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3009extern const struct bpf_func_proto bpf_spin_lock_proto;
3010extern const struct bpf_func_proto bpf_spin_unlock_proto;
3011extern const struct bpf_func_proto bpf_get_local_storage_proto;
3012extern const struct bpf_func_proto bpf_strtol_proto;
3013extern const struct bpf_func_proto bpf_strtoul_proto;
3014extern const struct bpf_func_proto bpf_tcp_sock_proto;
3015extern const struct bpf_func_proto bpf_jiffies64_proto;
3016extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3017extern const struct bpf_func_proto bpf_event_output_data_proto;
3018extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3019extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3020extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3021extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3022extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3023extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3024extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3025extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3026extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3027extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3028extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3029extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3030extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3031extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3032extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3033extern const struct bpf_func_proto bpf_copy_from_user_proto;
3034extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3035extern const struct bpf_func_proto bpf_snprintf_proto;
3036extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3037extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3038extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3039extern const struct bpf_func_proto bpf_sock_from_file_proto;
3040extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3041extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3042extern const struct bpf_func_proto bpf_task_storage_get_proto;
3043extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3044extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3045extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3046extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3047extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3048extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3049extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3050extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3051extern const struct bpf_func_proto bpf_find_vma_proto;
3052extern const struct bpf_func_proto bpf_loop_proto;
3053extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3054extern const struct bpf_func_proto bpf_set_retval_proto;
3055extern const struct bpf_func_proto bpf_get_retval_proto;
3056extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3057extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3058extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3059
3060const struct bpf_func_proto *tracing_prog_func_proto(
3061 enum bpf_func_id func_id, const struct bpf_prog *prog);
3062
3063/* Shared helpers among cBPF and eBPF. */
3064void bpf_user_rnd_init_once(void);
3065u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3066u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3067
3068#if defined(CONFIG_NET)
3069bool bpf_sock_common_is_valid_access(int off, int size,
3070 enum bpf_access_type type,
3071 struct bpf_insn_access_aux *info);
3072bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3073 struct bpf_insn_access_aux *info);
3074u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3075 const struct bpf_insn *si,
3076 struct bpf_insn *insn_buf,
3077 struct bpf_prog *prog,
3078 u32 *target_size);
3079int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3080 struct bpf_dynptr_kern *ptr);
3081#else
3082static inline bool bpf_sock_common_is_valid_access(int off, int size,
3083 enum bpf_access_type type,
3084 struct bpf_insn_access_aux *info)
3085{
3086 return false;
3087}
3088static inline bool bpf_sock_is_valid_access(int off, int size,
3089 enum bpf_access_type type,
3090 struct bpf_insn_access_aux *info)
3091{
3092 return false;
3093}
3094static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3095 const struct bpf_insn *si,
3096 struct bpf_insn *insn_buf,
3097 struct bpf_prog *prog,
3098 u32 *target_size)
3099{
3100 return 0;
3101}
3102static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3103 struct bpf_dynptr_kern *ptr)
3104{
3105 return -EOPNOTSUPP;
3106}
3107#endif
3108
3109#ifdef CONFIG_INET
3110struct sk_reuseport_kern {
3111 struct sk_buff *skb;
3112 struct sock *sk;
3113 struct sock *selected_sk;
3114 struct sock *migrating_sk;
3115 void *data_end;
3116 u32 hash;
3117 u32 reuseport_id;
3118 bool bind_inany;
3119};
3120bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3121 struct bpf_insn_access_aux *info);
3122
3123u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3124 const struct bpf_insn *si,
3125 struct bpf_insn *insn_buf,
3126 struct bpf_prog *prog,
3127 u32 *target_size);
3128
3129bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3130 struct bpf_insn_access_aux *info);
3131
3132u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3133 const struct bpf_insn *si,
3134 struct bpf_insn *insn_buf,
3135 struct bpf_prog *prog,
3136 u32 *target_size);
3137#else
3138static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3139 enum bpf_access_type type,
3140 struct bpf_insn_access_aux *info)
3141{
3142 return false;
3143}
3144
3145static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3146 const struct bpf_insn *si,
3147 struct bpf_insn *insn_buf,
3148 struct bpf_prog *prog,
3149 u32 *target_size)
3150{
3151 return 0;
3152}
3153static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3154 enum bpf_access_type type,
3155 struct bpf_insn_access_aux *info)
3156{
3157 return false;
3158}
3159
3160static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3161 const struct bpf_insn *si,
3162 struct bpf_insn *insn_buf,
3163 struct bpf_prog *prog,
3164 u32 *target_size)
3165{
3166 return 0;
3167}
3168#endif /* CONFIG_INET */
3169
3170enum bpf_text_poke_type {
3171 BPF_MOD_CALL,
3172 BPF_MOD_JUMP,
3173};
3174
3175int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3176 void *addr1, void *addr2);
3177
3178void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3179int bpf_arch_text_invalidate(void *dst, size_t len);
3180
3181struct btf_id_set;
3182bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3183
3184#define MAX_BPRINTF_VARARGS 12
3185#define MAX_BPRINTF_BUF 1024
3186
3187struct bpf_bprintf_data {
3188 u32 *bin_args;
3189 char *buf;
3190 bool get_bin_args;
3191 bool get_buf;
3192};
3193
3194int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3195 u32 num_args, struct bpf_bprintf_data *data);
3196void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3197
3198#ifdef CONFIG_BPF_LSM
3199void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3200void bpf_cgroup_atype_put(int cgroup_atype);
3201#else
3202static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3203static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3204#endif /* CONFIG_BPF_LSM */
3205
3206struct key;
3207
3208#ifdef CONFIG_KEYS
3209struct bpf_key {
3210 struct key *key;
3211 bool has_ref;
3212};
3213#endif /* CONFIG_KEYS */
3214
3215static inline bool type_is_alloc(u32 type)
3216{
3217 return type & MEM_ALLOC;
3218}
3219
3220static inline gfp_t bpf_memcg_flags(gfp_t flags)
3221{
3222 if (memcg_bpf_enabled())
3223 return flags | __GFP_ACCOUNT;
3224 return flags;
3225}
3226
3227static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3228{
3229 return prog->aux->func_idx != 0;
3230}
3231
3232#endif /* _LINUX_BPF_H */