Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#include <linux/compiler.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/irqflags.h>
19
20#include <asm/addrspace.h>
21#include <asm/barrier.h>
22#include <asm/bug.h>
23#include <asm/byteorder.h>
24#include <asm/cpu.h>
25#include <asm/cpu-features.h>
26#include <asm/page.h>
27#include <asm/pgtable-bits.h>
28#include <asm/processor.h>
29#include <asm/string.h>
30#include <mangle-port.h>
31
32/*
33 * Raw operations are never swapped in software. OTOH values that raw
34 * operations are working on may or may not have been swapped by the bus
35 * hardware. An example use would be for flash memory that's used for
36 * execute in place.
37 */
38# define __raw_ioswabb(a, x) (x)
39# define __raw_ioswabw(a, x) (x)
40# define __raw_ioswabl(a, x) (x)
41# define __raw_ioswabq(a, x) (x)
42# define ____raw_ioswabq(a, x) (x)
43
44# define __relaxed_ioswabb ioswabb
45# define __relaxed_ioswabw ioswabw
46# define __relaxed_ioswabl ioswabl
47# define __relaxed_ioswabq ioswabq
48
49/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
50
51/*
52 * On MIPS I/O ports are memory mapped, so we access them using normal
53 * load/store instructions. mips_io_port_base is the virtual address to
54 * which all ports are being mapped. For sake of efficiency some code
55 * assumes that this is an address that can be loaded with a single lui
56 * instruction, so the lower 16 bits must be zero. Should be true on
57 * any sane architecture; generic code does not use this assumption.
58 */
59extern unsigned long mips_io_port_base;
60
61static inline void set_io_port_base(unsigned long base)
62{
63 mips_io_port_base = base;
64}
65
66/*
67 * Provide the necessary definitions for generic iomap. We make use of
68 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
69 * use with I/O ports.
70 */
71
72#define HAVE_ARCH_PIO_SIZE
73#define PIO_OFFSET mips_io_port_base
74#define PIO_MASK IO_SPACE_LIMIT
75#define PIO_RESERVED 0x0UL
76
77/*
78 * Enforce in-order execution of data I/O. In the MIPS architecture
79 * these are equivalent to corresponding platform-specific memory
80 * barriers defined in <asm/barrier.h>. API pinched from PowerPC,
81 * with sync additionally defined.
82 */
83#define iobarrier_rw() mb()
84#define iobarrier_r() rmb()
85#define iobarrier_w() wmb()
86#define iobarrier_sync() iob()
87
88/*
89 * virt_to_phys - map virtual addresses to physical
90 * @address: address to remap
91 *
92 * The returned physical address is the physical (CPU) mapping for
93 * the memory address given. It is only valid to use this function on
94 * addresses directly mapped or allocated via kmalloc.
95 *
96 * This function does not give bus mappings for DMA transfers. In
97 * almost all conceivable cases a device driver should not be using
98 * this function
99 */
100static inline unsigned long __virt_to_phys_nodebug(volatile const void *address)
101{
102 return __pa(address);
103}
104
105#ifdef CONFIG_DEBUG_VIRTUAL
106extern phys_addr_t __virt_to_phys(volatile const void *x);
107#else
108#define __virt_to_phys(x) __virt_to_phys_nodebug(x)
109#endif
110
111#define virt_to_phys virt_to_phys
112static inline phys_addr_t virt_to_phys(const volatile void *x)
113{
114 return __virt_to_phys(x);
115}
116
117/*
118 * phys_to_virt - map physical address to virtual
119 * @address: address to remap
120 *
121 * The returned virtual address is a current CPU mapping for
122 * the memory address given. It is only valid to use this function on
123 * addresses that have a kernel mapping
124 *
125 * This function does not handle bus mappings for DMA transfers. In
126 * almost all conceivable cases a device driver should not be using
127 * this function
128 */
129static inline void * phys_to_virt(unsigned long address)
130{
131 return __va(address);
132}
133
134/*
135 * ISA I/O bus memory addresses are 1:1 with the physical address.
136 */
137static inline unsigned long isa_virt_to_bus(volatile void *address)
138{
139 return virt_to_phys(address);
140}
141
142static inline void *isa_bus_to_virt(unsigned long address)
143{
144 return phys_to_virt(address);
145}
146
147/*
148 * Change "struct page" to physical address.
149 */
150#define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
151
152void __iomem *ioremap_prot(phys_addr_t offset, unsigned long size,
153 unsigned long prot_val);
154void iounmap(const volatile void __iomem *addr);
155
156/*
157 * ioremap - map bus memory into CPU space
158 * @offset: bus address of the memory
159 * @size: size of the resource to map
160 *
161 * ioremap performs a platform specific sequence of operations to
162 * make bus memory CPU accessible via the readb/readw/readl/writeb/
163 * writew/writel functions and the other mmio helpers. The returned
164 * address is not guaranteed to be usable directly as a virtual
165 * address.
166 */
167#define ioremap(offset, size) \
168 ioremap_prot((offset), (size), _CACHE_UNCACHED)
169#define ioremap_uc ioremap
170
171/*
172 * ioremap_cache - map bus memory into CPU space
173 * @offset: bus address of the memory
174 * @size: size of the resource to map
175 *
176 * ioremap_cache performs a platform specific sequence of operations to
177 * make bus memory CPU accessible via the readb/readw/readl/writeb/
178 * writew/writel functions and the other mmio helpers. The returned
179 * address is not guaranteed to be usable directly as a virtual
180 * address.
181 *
182 * This version of ioremap ensures that the memory is marked cachable by
183 * the CPU. Also enables full write-combining. Useful for some
184 * memory-like regions on I/O busses.
185 */
186#define ioremap_cache(offset, size) \
187 ioremap_prot((offset), (size), _page_cachable_default)
188
189/*
190 * ioremap_wc - map bus memory into CPU space
191 * @offset: bus address of the memory
192 * @size: size of the resource to map
193 *
194 * ioremap_wc performs a platform specific sequence of operations to
195 * make bus memory CPU accessible via the readb/readw/readl/writeb/
196 * writew/writel functions and the other mmio helpers. The returned
197 * address is not guaranteed to be usable directly as a virtual
198 * address.
199 *
200 * This version of ioremap ensures that the memory is marked uncachable
201 * but accelerated by means of write-combining feature. It is specifically
202 * useful for PCIe prefetchable windows, which may vastly improve a
203 * communications performance. If it was determined on boot stage, what
204 * CPU CCA doesn't support UCA, the method shall fall-back to the
205 * _CACHE_UNCACHED option (see cpu_probe() method).
206 */
207#define ioremap_wc(offset, size) \
208 ioremap_prot((offset), (size), boot_cpu_data.writecombine)
209
210#include <asm-generic/iomap.h>
211
212#if defined(CONFIG_CPU_CAVIUM_OCTEON)
213#define war_io_reorder_wmb() wmb()
214#else
215#define war_io_reorder_wmb() barrier()
216#endif
217
218#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \
219 \
220static inline void pfx##write##bwlq(type val, \
221 volatile void __iomem *mem) \
222{ \
223 volatile type *__mem; \
224 type __val; \
225 \
226 if (barrier) \
227 iobarrier_rw(); \
228 else \
229 war_io_reorder_wmb(); \
230 \
231 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
232 \
233 __val = pfx##ioswab##bwlq(__mem, val); \
234 \
235 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
236 *__mem = __val; \
237 else if (cpu_has_64bits) { \
238 unsigned long __flags; \
239 type __tmp; \
240 \
241 if (irq) \
242 local_irq_save(__flags); \
243 __asm__ __volatile__( \
244 ".set push" "\t\t# __writeq""\n\t" \
245 ".set arch=r4000" "\n\t" \
246 "dsll32 %L0, %L0, 0" "\n\t" \
247 "dsrl32 %L0, %L0, 0" "\n\t" \
248 "dsll32 %M0, %M0, 0" "\n\t" \
249 "or %L0, %L0, %M0" "\n\t" \
250 "sd %L0, %2" "\n\t" \
251 ".set pop" "\n" \
252 : "=r" (__tmp) \
253 : "0" (__val), "m" (*__mem)); \
254 if (irq) \
255 local_irq_restore(__flags); \
256 } else \
257 BUG(); \
258} \
259 \
260static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
261{ \
262 volatile type *__mem; \
263 type __val; \
264 \
265 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
266 \
267 if (barrier) \
268 iobarrier_rw(); \
269 \
270 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
271 __val = *__mem; \
272 else if (cpu_has_64bits) { \
273 unsigned long __flags; \
274 \
275 if (irq) \
276 local_irq_save(__flags); \
277 __asm__ __volatile__( \
278 ".set push" "\t\t# __readq" "\n\t" \
279 ".set arch=r4000" "\n\t" \
280 "ld %L0, %1" "\n\t" \
281 "dsra32 %M0, %L0, 0" "\n\t" \
282 "sll %L0, %L0, 0" "\n\t" \
283 ".set pop" "\n" \
284 : "=r" (__val) \
285 : "m" (*__mem)); \
286 if (irq) \
287 local_irq_restore(__flags); \
288 } else { \
289 __val = 0; \
290 BUG(); \
291 } \
292 \
293 /* prevent prefetching of coherent DMA data prematurely */ \
294 if (!relax) \
295 rmb(); \
296 return pfx##ioswab##bwlq(__mem, __val); \
297}
298
299#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p) \
300 \
301static inline void pfx##out##bwlq##p(type val, unsigned long port) \
302{ \
303 volatile type *__addr; \
304 type __val; \
305 \
306 if (barrier) \
307 iobarrier_rw(); \
308 else \
309 war_io_reorder_wmb(); \
310 \
311 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
312 \
313 __val = pfx##ioswab##bwlq(__addr, val); \
314 \
315 /* Really, we want this to be atomic */ \
316 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
317 \
318 *__addr = __val; \
319} \
320 \
321static inline type pfx##in##bwlq##p(unsigned long port) \
322{ \
323 volatile type *__addr; \
324 type __val; \
325 \
326 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
327 \
328 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
329 \
330 if (barrier) \
331 iobarrier_rw(); \
332 \
333 __val = *__addr; \
334 \
335 /* prevent prefetching of coherent DMA data prematurely */ \
336 if (!relax) \
337 rmb(); \
338 return pfx##ioswab##bwlq(__addr, __val); \
339}
340
341#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \
342 \
343__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
344
345#define BUILDIO_MEM(bwlq, type) \
346 \
347__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \
348__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \
349__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \
350__BUILD_MEMORY_PFX(, bwlq, type, 0)
351
352BUILDIO_MEM(b, u8)
353BUILDIO_MEM(w, u16)
354BUILDIO_MEM(l, u32)
355#ifdef CONFIG_64BIT
356BUILDIO_MEM(q, u64)
357#else
358__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
359__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
360#endif
361
362#define __BUILD_IOPORT_PFX(bus, bwlq, type) \
363 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,) \
364 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
365
366#define BUILDIO_IOPORT(bwlq, type) \
367 __BUILD_IOPORT_PFX(, bwlq, type) \
368 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
369
370BUILDIO_IOPORT(b, u8)
371BUILDIO_IOPORT(w, u16)
372BUILDIO_IOPORT(l, u32)
373#ifdef CONFIG_64BIT
374BUILDIO_IOPORT(q, u64)
375#endif
376
377#define __BUILDIO(bwlq, type) \
378 \
379__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
380
381__BUILDIO(q, u64)
382
383#define readb_relaxed __relaxed_readb
384#define readw_relaxed __relaxed_readw
385#define readl_relaxed __relaxed_readl
386#ifdef CONFIG_64BIT
387#define readq_relaxed __relaxed_readq
388#endif
389
390#define writeb_relaxed __relaxed_writeb
391#define writew_relaxed __relaxed_writew
392#define writel_relaxed __relaxed_writel
393#ifdef CONFIG_64BIT
394#define writeq_relaxed __relaxed_writeq
395#endif
396
397#define readb_be(addr) \
398 __raw_readb((__force unsigned *)(addr))
399#define readw_be(addr) \
400 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
401#define readl_be(addr) \
402 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
403#define readq_be(addr) \
404 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
405
406#define writeb_be(val, addr) \
407 __raw_writeb((val), (__force unsigned *)(addr))
408#define writew_be(val, addr) \
409 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
410#define writel_be(val, addr) \
411 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
412#define writeq_be(val, addr) \
413 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
414
415/*
416 * Some code tests for these symbols
417 */
418#ifdef CONFIG_64BIT
419#define readq readq
420#define writeq writeq
421#endif
422
423#define __BUILD_MEMORY_STRING(bwlq, type) \
424 \
425static inline void writes##bwlq(volatile void __iomem *mem, \
426 const void *addr, unsigned int count) \
427{ \
428 const volatile type *__addr = addr; \
429 \
430 while (count--) { \
431 __mem_write##bwlq(*__addr, mem); \
432 __addr++; \
433 } \
434} \
435 \
436static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
437 unsigned int count) \
438{ \
439 volatile type *__addr = addr; \
440 \
441 while (count--) { \
442 *__addr = __mem_read##bwlq(mem); \
443 __addr++; \
444 } \
445}
446
447#define __BUILD_IOPORT_STRING(bwlq, type) \
448 \
449static inline void outs##bwlq(unsigned long port, const void *addr, \
450 unsigned int count) \
451{ \
452 const volatile type *__addr = addr; \
453 \
454 while (count--) { \
455 __mem_out##bwlq(*__addr, port); \
456 __addr++; \
457 } \
458} \
459 \
460static inline void ins##bwlq(unsigned long port, void *addr, \
461 unsigned int count) \
462{ \
463 volatile type *__addr = addr; \
464 \
465 while (count--) { \
466 *__addr = __mem_in##bwlq(port); \
467 __addr++; \
468 } \
469}
470
471#define BUILDSTRING(bwlq, type) \
472 \
473__BUILD_MEMORY_STRING(bwlq, type) \
474__BUILD_IOPORT_STRING(bwlq, type)
475
476BUILDSTRING(b, u8)
477BUILDSTRING(w, u16)
478BUILDSTRING(l, u32)
479#ifdef CONFIG_64BIT
480BUILDSTRING(q, u64)
481#endif
482
483static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
484{
485 memset((void __force *) addr, val, count);
486}
487static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
488{
489 memcpy(dst, (void __force *) src, count);
490}
491static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
492{
493 memcpy((void __force *) dst, src, count);
494}
495
496/*
497 * The caches on some architectures aren't dma-coherent and have need to
498 * handle this in software. There are three types of operations that
499 * can be applied to dma buffers.
500 *
501 * - dma_cache_wback_inv(start, size) makes caches and coherent by
502 * writing the content of the caches back to memory, if necessary.
503 * The function also invalidates the affected part of the caches as
504 * necessary before DMA transfers from outside to memory.
505 * - dma_cache_wback(start, size) makes caches and coherent by
506 * writing the content of the caches back to memory, if necessary.
507 * The function also invalidates the affected part of the caches as
508 * necessary before DMA transfers from outside to memory.
509 * - dma_cache_inv(start, size) invalidates the affected parts of the
510 * caches. Dirty lines of the caches may be written back or simply
511 * be discarded. This operation is necessary before dma operations
512 * to the memory.
513 *
514 * This API used to be exported; it now is for arch code internal use only.
515 */
516#ifdef CONFIG_DMA_NONCOHERENT
517
518extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
519extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
520extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
521
522#define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
523#define dma_cache_wback(start, size) _dma_cache_wback(start, size)
524#define dma_cache_inv(start, size) _dma_cache_inv(start, size)
525
526#else /* Sane hardware */
527
528#define dma_cache_wback_inv(start,size) \
529 do { (void) (start); (void) (size); } while (0)
530#define dma_cache_wback(start,size) \
531 do { (void) (start); (void) (size); } while (0)
532#define dma_cache_inv(start,size) \
533 do { (void) (start); (void) (size); } while (0)
534
535#endif /* CONFIG_DMA_NONCOHERENT */
536
537/*
538 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
539 * Avoid interrupt mucking, just adjust the address for 4-byte access.
540 * Assume the addresses are 8-byte aligned.
541 */
542#ifdef __MIPSEB__
543#define __CSR_32_ADJUST 4
544#else
545#define __CSR_32_ADJUST 0
546#endif
547
548#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
549#define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
550
551/*
552 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
553 * access
554 */
555#define xlate_dev_mem_ptr(p) __va(p)
556#define unxlate_dev_mem_ptr(p, v) do { } while (0)
557
558void __ioread64_copy(void *to, const void __iomem *from, size_t count);
559
560#endif /* _ASM_IO_H */