at v6.7-rc1 2281 lines 57 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/mm/vmstat.c 4 * 5 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <christoph@lameter.com> 11 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 13#include <linux/fs.h> 14#include <linux/mm.h> 15#include <linux/err.h> 16#include <linux/module.h> 17#include <linux/slab.h> 18#include <linux/cpu.h> 19#include <linux/cpumask.h> 20#include <linux/vmstat.h> 21#include <linux/proc_fs.h> 22#include <linux/seq_file.h> 23#include <linux/debugfs.h> 24#include <linux/sched.h> 25#include <linux/math64.h> 26#include <linux/writeback.h> 27#include <linux/compaction.h> 28#include <linux/mm_inline.h> 29#include <linux/page_owner.h> 30#include <linux/sched/isolation.h> 31 32#include "internal.h" 33 34#ifdef CONFIG_NUMA 35int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 36 37/* zero numa counters within a zone */ 38static void zero_zone_numa_counters(struct zone *zone) 39{ 40 int item, cpu; 41 42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) { 43 atomic_long_set(&zone->vm_numa_event[item], 0); 44 for_each_online_cpu(cpu) { 45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item] 46 = 0; 47 } 48 } 49} 50 51/* zero numa counters of all the populated zones */ 52static void zero_zones_numa_counters(void) 53{ 54 struct zone *zone; 55 56 for_each_populated_zone(zone) 57 zero_zone_numa_counters(zone); 58} 59 60/* zero global numa counters */ 61static void zero_global_numa_counters(void) 62{ 63 int item; 64 65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 66 atomic_long_set(&vm_numa_event[item], 0); 67} 68 69static void invalid_numa_statistics(void) 70{ 71 zero_zones_numa_counters(); 72 zero_global_numa_counters(); 73} 74 75static DEFINE_MUTEX(vm_numa_stat_lock); 76 77int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, 78 void *buffer, size_t *length, loff_t *ppos) 79{ 80 int ret, oldval; 81 82 mutex_lock(&vm_numa_stat_lock); 83 if (write) 84 oldval = sysctl_vm_numa_stat; 85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 86 if (ret || !write) 87 goto out; 88 89 if (oldval == sysctl_vm_numa_stat) 90 goto out; 91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 92 static_branch_enable(&vm_numa_stat_key); 93 pr_info("enable numa statistics\n"); 94 } else { 95 static_branch_disable(&vm_numa_stat_key); 96 invalid_numa_statistics(); 97 pr_info("disable numa statistics, and clear numa counters\n"); 98 } 99 100out: 101 mutex_unlock(&vm_numa_stat_lock); 102 return ret; 103} 104#endif 105 106#ifdef CONFIG_VM_EVENT_COUNTERS 107DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 108EXPORT_PER_CPU_SYMBOL(vm_event_states); 109 110static void sum_vm_events(unsigned long *ret) 111{ 112 int cpu; 113 int i; 114 115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 116 117 for_each_online_cpu(cpu) { 118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 119 120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 121 ret[i] += this->event[i]; 122 } 123} 124 125/* 126 * Accumulate the vm event counters across all CPUs. 127 * The result is unavoidably approximate - it can change 128 * during and after execution of this function. 129*/ 130void all_vm_events(unsigned long *ret) 131{ 132 cpus_read_lock(); 133 sum_vm_events(ret); 134 cpus_read_unlock(); 135} 136EXPORT_SYMBOL_GPL(all_vm_events); 137 138/* 139 * Fold the foreign cpu events into our own. 140 * 141 * This is adding to the events on one processor 142 * but keeps the global counts constant. 143 */ 144void vm_events_fold_cpu(int cpu) 145{ 146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 147 int i; 148 149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 150 count_vm_events(i, fold_state->event[i]); 151 fold_state->event[i] = 0; 152 } 153} 154 155#endif /* CONFIG_VM_EVENT_COUNTERS */ 156 157/* 158 * Manage combined zone based / global counters 159 * 160 * vm_stat contains the global counters 161 */ 162atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 163atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 164atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp; 165EXPORT_SYMBOL(vm_zone_stat); 166EXPORT_SYMBOL(vm_node_stat); 167 168#ifdef CONFIG_NUMA 169static void fold_vm_zone_numa_events(struct zone *zone) 170{ 171 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, }; 172 int cpu; 173 enum numa_stat_item item; 174 175 for_each_online_cpu(cpu) { 176 struct per_cpu_zonestat *pzstats; 177 178 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 179 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 180 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0); 181 } 182 183 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) 184 zone_numa_event_add(zone_numa_events[item], zone, item); 185} 186 187void fold_vm_numa_events(void) 188{ 189 struct zone *zone; 190 191 for_each_populated_zone(zone) 192 fold_vm_zone_numa_events(zone); 193} 194#endif 195 196#ifdef CONFIG_SMP 197 198int calculate_pressure_threshold(struct zone *zone) 199{ 200 int threshold; 201 int watermark_distance; 202 203 /* 204 * As vmstats are not up to date, there is drift between the estimated 205 * and real values. For high thresholds and a high number of CPUs, it 206 * is possible for the min watermark to be breached while the estimated 207 * value looks fine. The pressure threshold is a reduced value such 208 * that even the maximum amount of drift will not accidentally breach 209 * the min watermark 210 */ 211 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 212 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 213 214 /* 215 * Maximum threshold is 125 216 */ 217 threshold = min(125, threshold); 218 219 return threshold; 220} 221 222int calculate_normal_threshold(struct zone *zone) 223{ 224 int threshold; 225 int mem; /* memory in 128 MB units */ 226 227 /* 228 * The threshold scales with the number of processors and the amount 229 * of memory per zone. More memory means that we can defer updates for 230 * longer, more processors could lead to more contention. 231 * fls() is used to have a cheap way of logarithmic scaling. 232 * 233 * Some sample thresholds: 234 * 235 * Threshold Processors (fls) Zonesize fls(mem)+1 236 * ------------------------------------------------------------------ 237 * 8 1 1 0.9-1 GB 4 238 * 16 2 2 0.9-1 GB 4 239 * 20 2 2 1-2 GB 5 240 * 24 2 2 2-4 GB 6 241 * 28 2 2 4-8 GB 7 242 * 32 2 2 8-16 GB 8 243 * 4 2 2 <128M 1 244 * 30 4 3 2-4 GB 5 245 * 48 4 3 8-16 GB 8 246 * 32 8 4 1-2 GB 4 247 * 32 8 4 0.9-1GB 4 248 * 10 16 5 <128M 1 249 * 40 16 5 900M 4 250 * 70 64 7 2-4 GB 5 251 * 84 64 7 4-8 GB 6 252 * 108 512 9 4-8 GB 6 253 * 125 1024 10 8-16 GB 8 254 * 125 1024 10 16-32 GB 9 255 */ 256 257 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 258 259 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 260 261 /* 262 * Maximum threshold is 125 263 */ 264 threshold = min(125, threshold); 265 266 return threshold; 267} 268 269/* 270 * Refresh the thresholds for each zone. 271 */ 272void refresh_zone_stat_thresholds(void) 273{ 274 struct pglist_data *pgdat; 275 struct zone *zone; 276 int cpu; 277 int threshold; 278 279 /* Zero current pgdat thresholds */ 280 for_each_online_pgdat(pgdat) { 281 for_each_online_cpu(cpu) { 282 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 283 } 284 } 285 286 for_each_populated_zone(zone) { 287 struct pglist_data *pgdat = zone->zone_pgdat; 288 unsigned long max_drift, tolerate_drift; 289 290 threshold = calculate_normal_threshold(zone); 291 292 for_each_online_cpu(cpu) { 293 int pgdat_threshold; 294 295 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 296 = threshold; 297 298 /* Base nodestat threshold on the largest populated zone. */ 299 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 300 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 301 = max(threshold, pgdat_threshold); 302 } 303 304 /* 305 * Only set percpu_drift_mark if there is a danger that 306 * NR_FREE_PAGES reports the low watermark is ok when in fact 307 * the min watermark could be breached by an allocation 308 */ 309 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 310 max_drift = num_online_cpus() * threshold; 311 if (max_drift > tolerate_drift) 312 zone->percpu_drift_mark = high_wmark_pages(zone) + 313 max_drift; 314 } 315} 316 317void set_pgdat_percpu_threshold(pg_data_t *pgdat, 318 int (*calculate_pressure)(struct zone *)) 319{ 320 struct zone *zone; 321 int cpu; 322 int threshold; 323 int i; 324 325 for (i = 0; i < pgdat->nr_zones; i++) { 326 zone = &pgdat->node_zones[i]; 327 if (!zone->percpu_drift_mark) 328 continue; 329 330 threshold = (*calculate_pressure)(zone); 331 for_each_online_cpu(cpu) 332 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold 333 = threshold; 334 } 335} 336 337/* 338 * For use when we know that interrupts are disabled, 339 * or when we know that preemption is disabled and that 340 * particular counter cannot be updated from interrupt context. 341 */ 342void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 343 long delta) 344{ 345 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 346 s8 __percpu *p = pcp->vm_stat_diff + item; 347 long x; 348 long t; 349 350 /* 351 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels, 352 * atomicity is provided by IRQs being disabled -- either explicitly 353 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables 354 * CPU migrations and preemption potentially corrupts a counter so 355 * disable preemption. 356 */ 357 preempt_disable_nested(); 358 359 x = delta + __this_cpu_read(*p); 360 361 t = __this_cpu_read(pcp->stat_threshold); 362 363 if (unlikely(abs(x) > t)) { 364 zone_page_state_add(x, zone, item); 365 x = 0; 366 } 367 __this_cpu_write(*p, x); 368 369 preempt_enable_nested(); 370} 371EXPORT_SYMBOL(__mod_zone_page_state); 372 373void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 374 long delta) 375{ 376 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 377 s8 __percpu *p = pcp->vm_node_stat_diff + item; 378 long x; 379 long t; 380 381 if (vmstat_item_in_bytes(item)) { 382 /* 383 * Only cgroups use subpage accounting right now; at 384 * the global level, these items still change in 385 * multiples of whole pages. Store them as pages 386 * internally to keep the per-cpu counters compact. 387 */ 388 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 389 delta >>= PAGE_SHIFT; 390 } 391 392 /* See __mod_node_page_state */ 393 preempt_disable_nested(); 394 395 x = delta + __this_cpu_read(*p); 396 397 t = __this_cpu_read(pcp->stat_threshold); 398 399 if (unlikely(abs(x) > t)) { 400 node_page_state_add(x, pgdat, item); 401 x = 0; 402 } 403 __this_cpu_write(*p, x); 404 405 preempt_enable_nested(); 406} 407EXPORT_SYMBOL(__mod_node_page_state); 408 409/* 410 * Optimized increment and decrement functions. 411 * 412 * These are only for a single page and therefore can take a struct page * 413 * argument instead of struct zone *. This allows the inclusion of the code 414 * generated for page_zone(page) into the optimized functions. 415 * 416 * No overflow check is necessary and therefore the differential can be 417 * incremented or decremented in place which may allow the compilers to 418 * generate better code. 419 * The increment or decrement is known and therefore one boundary check can 420 * be omitted. 421 * 422 * NOTE: These functions are very performance sensitive. Change only 423 * with care. 424 * 425 * Some processors have inc/dec instructions that are atomic vs an interrupt. 426 * However, the code must first determine the differential location in a zone 427 * based on the processor number and then inc/dec the counter. There is no 428 * guarantee without disabling preemption that the processor will not change 429 * in between and therefore the atomicity vs. interrupt cannot be exploited 430 * in a useful way here. 431 */ 432void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 433{ 434 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 435 s8 __percpu *p = pcp->vm_stat_diff + item; 436 s8 v, t; 437 438 /* See __mod_node_page_state */ 439 preempt_disable_nested(); 440 441 v = __this_cpu_inc_return(*p); 442 t = __this_cpu_read(pcp->stat_threshold); 443 if (unlikely(v > t)) { 444 s8 overstep = t >> 1; 445 446 zone_page_state_add(v + overstep, zone, item); 447 __this_cpu_write(*p, -overstep); 448 } 449 450 preempt_enable_nested(); 451} 452 453void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 454{ 455 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 456 s8 __percpu *p = pcp->vm_node_stat_diff + item; 457 s8 v, t; 458 459 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 460 461 /* See __mod_node_page_state */ 462 preempt_disable_nested(); 463 464 v = __this_cpu_inc_return(*p); 465 t = __this_cpu_read(pcp->stat_threshold); 466 if (unlikely(v > t)) { 467 s8 overstep = t >> 1; 468 469 node_page_state_add(v + overstep, pgdat, item); 470 __this_cpu_write(*p, -overstep); 471 } 472 473 preempt_enable_nested(); 474} 475 476void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 477{ 478 __inc_zone_state(page_zone(page), item); 479} 480EXPORT_SYMBOL(__inc_zone_page_state); 481 482void __inc_node_page_state(struct page *page, enum node_stat_item item) 483{ 484 __inc_node_state(page_pgdat(page), item); 485} 486EXPORT_SYMBOL(__inc_node_page_state); 487 488void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 489{ 490 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 491 s8 __percpu *p = pcp->vm_stat_diff + item; 492 s8 v, t; 493 494 /* See __mod_node_page_state */ 495 preempt_disable_nested(); 496 497 v = __this_cpu_dec_return(*p); 498 t = __this_cpu_read(pcp->stat_threshold); 499 if (unlikely(v < - t)) { 500 s8 overstep = t >> 1; 501 502 zone_page_state_add(v - overstep, zone, item); 503 __this_cpu_write(*p, overstep); 504 } 505 506 preempt_enable_nested(); 507} 508 509void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 510{ 511 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 512 s8 __percpu *p = pcp->vm_node_stat_diff + item; 513 s8 v, t; 514 515 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 516 517 /* See __mod_node_page_state */ 518 preempt_disable_nested(); 519 520 v = __this_cpu_dec_return(*p); 521 t = __this_cpu_read(pcp->stat_threshold); 522 if (unlikely(v < - t)) { 523 s8 overstep = t >> 1; 524 525 node_page_state_add(v - overstep, pgdat, item); 526 __this_cpu_write(*p, overstep); 527 } 528 529 preempt_enable_nested(); 530} 531 532void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 533{ 534 __dec_zone_state(page_zone(page), item); 535} 536EXPORT_SYMBOL(__dec_zone_page_state); 537 538void __dec_node_page_state(struct page *page, enum node_stat_item item) 539{ 540 __dec_node_state(page_pgdat(page), item); 541} 542EXPORT_SYMBOL(__dec_node_page_state); 543 544#ifdef CONFIG_HAVE_CMPXCHG_LOCAL 545/* 546 * If we have cmpxchg_local support then we do not need to incur the overhead 547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 548 * 549 * mod_state() modifies the zone counter state through atomic per cpu 550 * operations. 551 * 552 * Overstep mode specifies how overstep should handled: 553 * 0 No overstepping 554 * 1 Overstepping half of threshold 555 * -1 Overstepping minus half of threshold 556*/ 557static inline void mod_zone_state(struct zone *zone, 558 enum zone_stat_item item, long delta, int overstep_mode) 559{ 560 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats; 561 s8 __percpu *p = pcp->vm_stat_diff + item; 562 long n, t, z; 563 s8 o; 564 565 o = this_cpu_read(*p); 566 do { 567 z = 0; /* overflow to zone counters */ 568 569 /* 570 * The fetching of the stat_threshold is racy. We may apply 571 * a counter threshold to the wrong the cpu if we get 572 * rescheduled while executing here. However, the next 573 * counter update will apply the threshold again and 574 * therefore bring the counter under the threshold again. 575 * 576 * Most of the time the thresholds are the same anyways 577 * for all cpus in a zone. 578 */ 579 t = this_cpu_read(pcp->stat_threshold); 580 581 n = delta + (long)o; 582 583 if (abs(n) > t) { 584 int os = overstep_mode * (t >> 1) ; 585 586 /* Overflow must be added to zone counters */ 587 z = n + os; 588 n = -os; 589 } 590 } while (!this_cpu_try_cmpxchg(*p, &o, n)); 591 592 if (z) 593 zone_page_state_add(z, zone, item); 594} 595 596void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 597 long delta) 598{ 599 mod_zone_state(zone, item, delta, 0); 600} 601EXPORT_SYMBOL(mod_zone_page_state); 602 603void inc_zone_page_state(struct page *page, enum zone_stat_item item) 604{ 605 mod_zone_state(page_zone(page), item, 1, 1); 606} 607EXPORT_SYMBOL(inc_zone_page_state); 608 609void dec_zone_page_state(struct page *page, enum zone_stat_item item) 610{ 611 mod_zone_state(page_zone(page), item, -1, -1); 612} 613EXPORT_SYMBOL(dec_zone_page_state); 614 615static inline void mod_node_state(struct pglist_data *pgdat, 616 enum node_stat_item item, int delta, int overstep_mode) 617{ 618 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 619 s8 __percpu *p = pcp->vm_node_stat_diff + item; 620 long n, t, z; 621 s8 o; 622 623 if (vmstat_item_in_bytes(item)) { 624 /* 625 * Only cgroups use subpage accounting right now; at 626 * the global level, these items still change in 627 * multiples of whole pages. Store them as pages 628 * internally to keep the per-cpu counters compact. 629 */ 630 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); 631 delta >>= PAGE_SHIFT; 632 } 633 634 o = this_cpu_read(*p); 635 do { 636 z = 0; /* overflow to node counters */ 637 638 /* 639 * The fetching of the stat_threshold is racy. We may apply 640 * a counter threshold to the wrong the cpu if we get 641 * rescheduled while executing here. However, the next 642 * counter update will apply the threshold again and 643 * therefore bring the counter under the threshold again. 644 * 645 * Most of the time the thresholds are the same anyways 646 * for all cpus in a node. 647 */ 648 t = this_cpu_read(pcp->stat_threshold); 649 650 n = delta + (long)o; 651 652 if (abs(n) > t) { 653 int os = overstep_mode * (t >> 1) ; 654 655 /* Overflow must be added to node counters */ 656 z = n + os; 657 n = -os; 658 } 659 } while (!this_cpu_try_cmpxchg(*p, &o, n)); 660 661 if (z) 662 node_page_state_add(z, pgdat, item); 663} 664 665void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 666 long delta) 667{ 668 mod_node_state(pgdat, item, delta, 0); 669} 670EXPORT_SYMBOL(mod_node_page_state); 671 672void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 673{ 674 mod_node_state(pgdat, item, 1, 1); 675} 676 677void inc_node_page_state(struct page *page, enum node_stat_item item) 678{ 679 mod_node_state(page_pgdat(page), item, 1, 1); 680} 681EXPORT_SYMBOL(inc_node_page_state); 682 683void dec_node_page_state(struct page *page, enum node_stat_item item) 684{ 685 mod_node_state(page_pgdat(page), item, -1, -1); 686} 687EXPORT_SYMBOL(dec_node_page_state); 688#else 689/* 690 * Use interrupt disable to serialize counter updates 691 */ 692void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 693 long delta) 694{ 695 unsigned long flags; 696 697 local_irq_save(flags); 698 __mod_zone_page_state(zone, item, delta); 699 local_irq_restore(flags); 700} 701EXPORT_SYMBOL(mod_zone_page_state); 702 703void inc_zone_page_state(struct page *page, enum zone_stat_item item) 704{ 705 unsigned long flags; 706 struct zone *zone; 707 708 zone = page_zone(page); 709 local_irq_save(flags); 710 __inc_zone_state(zone, item); 711 local_irq_restore(flags); 712} 713EXPORT_SYMBOL(inc_zone_page_state); 714 715void dec_zone_page_state(struct page *page, enum zone_stat_item item) 716{ 717 unsigned long flags; 718 719 local_irq_save(flags); 720 __dec_zone_page_state(page, item); 721 local_irq_restore(flags); 722} 723EXPORT_SYMBOL(dec_zone_page_state); 724 725void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 726{ 727 unsigned long flags; 728 729 local_irq_save(flags); 730 __inc_node_state(pgdat, item); 731 local_irq_restore(flags); 732} 733EXPORT_SYMBOL(inc_node_state); 734 735void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 736 long delta) 737{ 738 unsigned long flags; 739 740 local_irq_save(flags); 741 __mod_node_page_state(pgdat, item, delta); 742 local_irq_restore(flags); 743} 744EXPORT_SYMBOL(mod_node_page_state); 745 746void inc_node_page_state(struct page *page, enum node_stat_item item) 747{ 748 unsigned long flags; 749 struct pglist_data *pgdat; 750 751 pgdat = page_pgdat(page); 752 local_irq_save(flags); 753 __inc_node_state(pgdat, item); 754 local_irq_restore(flags); 755} 756EXPORT_SYMBOL(inc_node_page_state); 757 758void dec_node_page_state(struct page *page, enum node_stat_item item) 759{ 760 unsigned long flags; 761 762 local_irq_save(flags); 763 __dec_node_page_state(page, item); 764 local_irq_restore(flags); 765} 766EXPORT_SYMBOL(dec_node_page_state); 767#endif 768 769/* 770 * Fold a differential into the global counters. 771 * Returns the number of counters updated. 772 */ 773static int fold_diff(int *zone_diff, int *node_diff) 774{ 775 int i; 776 int changes = 0; 777 778 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 779 if (zone_diff[i]) { 780 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 781 changes++; 782 } 783 784 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 785 if (node_diff[i]) { 786 atomic_long_add(node_diff[i], &vm_node_stat[i]); 787 changes++; 788 } 789 return changes; 790} 791 792/* 793 * Update the zone counters for the current cpu. 794 * 795 * Note that refresh_cpu_vm_stats strives to only access 796 * node local memory. The per cpu pagesets on remote zones are placed 797 * in the memory local to the processor using that pageset. So the 798 * loop over all zones will access a series of cachelines local to 799 * the processor. 800 * 801 * The call to zone_page_state_add updates the cachelines with the 802 * statistics in the remote zone struct as well as the global cachelines 803 * with the global counters. These could cause remote node cache line 804 * bouncing and will have to be only done when necessary. 805 * 806 * The function returns the number of global counters updated. 807 */ 808static int refresh_cpu_vm_stats(bool do_pagesets) 809{ 810 struct pglist_data *pgdat; 811 struct zone *zone; 812 int i; 813 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 814 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 815 int changes = 0; 816 817 for_each_populated_zone(zone) { 818 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; 819 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset; 820 821 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 822 int v; 823 824 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0); 825 if (v) { 826 827 atomic_long_add(v, &zone->vm_stat[i]); 828 global_zone_diff[i] += v; 829#ifdef CONFIG_NUMA 830 /* 3 seconds idle till flush */ 831 __this_cpu_write(pcp->expire, 3); 832#endif 833 } 834 } 835 836 if (do_pagesets) { 837 cond_resched(); 838 839 changes += decay_pcp_high(zone, this_cpu_ptr(pcp)); 840#ifdef CONFIG_NUMA 841 /* 842 * Deal with draining the remote pageset of this 843 * processor 844 * 845 * Check if there are pages remaining in this pageset 846 * if not then there is nothing to expire. 847 */ 848 if (!__this_cpu_read(pcp->expire) || 849 !__this_cpu_read(pcp->count)) 850 continue; 851 852 /* 853 * We never drain zones local to this processor. 854 */ 855 if (zone_to_nid(zone) == numa_node_id()) { 856 __this_cpu_write(pcp->expire, 0); 857 continue; 858 } 859 860 if (__this_cpu_dec_return(pcp->expire)) { 861 changes++; 862 continue; 863 } 864 865 if (__this_cpu_read(pcp->count)) { 866 drain_zone_pages(zone, this_cpu_ptr(pcp)); 867 changes++; 868 } 869#endif 870 } 871 } 872 873 for_each_online_pgdat(pgdat) { 874 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 875 876 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 877 int v; 878 879 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 880 if (v) { 881 atomic_long_add(v, &pgdat->vm_stat[i]); 882 global_node_diff[i] += v; 883 } 884 } 885 } 886 887 changes += fold_diff(global_zone_diff, global_node_diff); 888 return changes; 889} 890 891/* 892 * Fold the data for an offline cpu into the global array. 893 * There cannot be any access by the offline cpu and therefore 894 * synchronization is simplified. 895 */ 896void cpu_vm_stats_fold(int cpu) 897{ 898 struct pglist_data *pgdat; 899 struct zone *zone; 900 int i; 901 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 902 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 903 904 for_each_populated_zone(zone) { 905 struct per_cpu_zonestat *pzstats; 906 907 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 908 909 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 910 if (pzstats->vm_stat_diff[i]) { 911 int v; 912 913 v = pzstats->vm_stat_diff[i]; 914 pzstats->vm_stat_diff[i] = 0; 915 atomic_long_add(v, &zone->vm_stat[i]); 916 global_zone_diff[i] += v; 917 } 918 } 919#ifdef CONFIG_NUMA 920 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 921 if (pzstats->vm_numa_event[i]) { 922 unsigned long v; 923 924 v = pzstats->vm_numa_event[i]; 925 pzstats->vm_numa_event[i] = 0; 926 zone_numa_event_add(v, zone, i); 927 } 928 } 929#endif 930 } 931 932 for_each_online_pgdat(pgdat) { 933 struct per_cpu_nodestat *p; 934 935 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 936 937 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 938 if (p->vm_node_stat_diff[i]) { 939 int v; 940 941 v = p->vm_node_stat_diff[i]; 942 p->vm_node_stat_diff[i] = 0; 943 atomic_long_add(v, &pgdat->vm_stat[i]); 944 global_node_diff[i] += v; 945 } 946 } 947 948 fold_diff(global_zone_diff, global_node_diff); 949} 950 951/* 952 * this is only called if !populated_zone(zone), which implies no other users of 953 * pset->vm_stat_diff[] exist. 954 */ 955void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats) 956{ 957 unsigned long v; 958 int i; 959 960 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 961 if (pzstats->vm_stat_diff[i]) { 962 v = pzstats->vm_stat_diff[i]; 963 pzstats->vm_stat_diff[i] = 0; 964 zone_page_state_add(v, zone, i); 965 } 966 } 967 968#ifdef CONFIG_NUMA 969 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) { 970 if (pzstats->vm_numa_event[i]) { 971 v = pzstats->vm_numa_event[i]; 972 pzstats->vm_numa_event[i] = 0; 973 zone_numa_event_add(v, zone, i); 974 } 975 } 976#endif 977} 978#endif 979 980#ifdef CONFIG_NUMA 981/* 982 * Determine the per node value of a stat item. This function 983 * is called frequently in a NUMA machine, so try to be as 984 * frugal as possible. 985 */ 986unsigned long sum_zone_node_page_state(int node, 987 enum zone_stat_item item) 988{ 989 struct zone *zones = NODE_DATA(node)->node_zones; 990 int i; 991 unsigned long count = 0; 992 993 for (i = 0; i < MAX_NR_ZONES; i++) 994 count += zone_page_state(zones + i, item); 995 996 return count; 997} 998 999/* Determine the per node value of a numa stat item. */ 1000unsigned long sum_zone_numa_event_state(int node, 1001 enum numa_stat_item item) 1002{ 1003 struct zone *zones = NODE_DATA(node)->node_zones; 1004 unsigned long count = 0; 1005 int i; 1006 1007 for (i = 0; i < MAX_NR_ZONES; i++) 1008 count += zone_numa_event_state(zones + i, item); 1009 1010 return count; 1011} 1012 1013/* 1014 * Determine the per node value of a stat item. 1015 */ 1016unsigned long node_page_state_pages(struct pglist_data *pgdat, 1017 enum node_stat_item item) 1018{ 1019 long x = atomic_long_read(&pgdat->vm_stat[item]); 1020#ifdef CONFIG_SMP 1021 if (x < 0) 1022 x = 0; 1023#endif 1024 return x; 1025} 1026 1027unsigned long node_page_state(struct pglist_data *pgdat, 1028 enum node_stat_item item) 1029{ 1030 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); 1031 1032 return node_page_state_pages(pgdat, item); 1033} 1034#endif 1035 1036#ifdef CONFIG_COMPACTION 1037 1038struct contig_page_info { 1039 unsigned long free_pages; 1040 unsigned long free_blocks_total; 1041 unsigned long free_blocks_suitable; 1042}; 1043 1044/* 1045 * Calculate the number of free pages in a zone, how many contiguous 1046 * pages are free and how many are large enough to satisfy an allocation of 1047 * the target size. Note that this function makes no attempt to estimate 1048 * how many suitable free blocks there *might* be if MOVABLE pages were 1049 * migrated. Calculating that is possible, but expensive and can be 1050 * figured out from userspace 1051 */ 1052static void fill_contig_page_info(struct zone *zone, 1053 unsigned int suitable_order, 1054 struct contig_page_info *info) 1055{ 1056 unsigned int order; 1057 1058 info->free_pages = 0; 1059 info->free_blocks_total = 0; 1060 info->free_blocks_suitable = 0; 1061 1062 for (order = 0; order <= MAX_ORDER; order++) { 1063 unsigned long blocks; 1064 1065 /* 1066 * Count number of free blocks. 1067 * 1068 * Access to nr_free is lockless as nr_free is used only for 1069 * diagnostic purposes. Use data_race to avoid KCSAN warning. 1070 */ 1071 blocks = data_race(zone->free_area[order].nr_free); 1072 info->free_blocks_total += blocks; 1073 1074 /* Count free base pages */ 1075 info->free_pages += blocks << order; 1076 1077 /* Count the suitable free blocks */ 1078 if (order >= suitable_order) 1079 info->free_blocks_suitable += blocks << 1080 (order - suitable_order); 1081 } 1082} 1083 1084/* 1085 * A fragmentation index only makes sense if an allocation of a requested 1086 * size would fail. If that is true, the fragmentation index indicates 1087 * whether external fragmentation or a lack of memory was the problem. 1088 * The value can be used to determine if page reclaim or compaction 1089 * should be used 1090 */ 1091static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1092{ 1093 unsigned long requested = 1UL << order; 1094 1095 if (WARN_ON_ONCE(order > MAX_ORDER)) 1096 return 0; 1097 1098 if (!info->free_blocks_total) 1099 return 0; 1100 1101 /* Fragmentation index only makes sense when a request would fail */ 1102 if (info->free_blocks_suitable) 1103 return -1000; 1104 1105 /* 1106 * Index is between 0 and 1 so return within 3 decimal places 1107 * 1108 * 0 => allocation would fail due to lack of memory 1109 * 1 => allocation would fail due to fragmentation 1110 */ 1111 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1112} 1113 1114/* 1115 * Calculates external fragmentation within a zone wrt the given order. 1116 * It is defined as the percentage of pages found in blocks of size 1117 * less than 1 << order. It returns values in range [0, 100]. 1118 */ 1119unsigned int extfrag_for_order(struct zone *zone, unsigned int order) 1120{ 1121 struct contig_page_info info; 1122 1123 fill_contig_page_info(zone, order, &info); 1124 if (info.free_pages == 0) 1125 return 0; 1126 1127 return div_u64((info.free_pages - 1128 (info.free_blocks_suitable << order)) * 100, 1129 info.free_pages); 1130} 1131 1132/* Same as __fragmentation index but allocs contig_page_info on stack */ 1133int fragmentation_index(struct zone *zone, unsigned int order) 1134{ 1135 struct contig_page_info info; 1136 1137 fill_contig_page_info(zone, order, &info); 1138 return __fragmentation_index(order, &info); 1139} 1140#endif 1141 1142#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \ 1143 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG) 1144#ifdef CONFIG_ZONE_DMA 1145#define TEXT_FOR_DMA(xx) xx "_dma", 1146#else 1147#define TEXT_FOR_DMA(xx) 1148#endif 1149 1150#ifdef CONFIG_ZONE_DMA32 1151#define TEXT_FOR_DMA32(xx) xx "_dma32", 1152#else 1153#define TEXT_FOR_DMA32(xx) 1154#endif 1155 1156#ifdef CONFIG_HIGHMEM 1157#define TEXT_FOR_HIGHMEM(xx) xx "_high", 1158#else 1159#define TEXT_FOR_HIGHMEM(xx) 1160#endif 1161 1162#ifdef CONFIG_ZONE_DEVICE 1163#define TEXT_FOR_DEVICE(xx) xx "_device", 1164#else 1165#define TEXT_FOR_DEVICE(xx) 1166#endif 1167 1168#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1169 TEXT_FOR_HIGHMEM(xx) xx "_movable", \ 1170 TEXT_FOR_DEVICE(xx) 1171 1172const char * const vmstat_text[] = { 1173 /* enum zone_stat_item counters */ 1174 "nr_free_pages", 1175 "nr_zone_inactive_anon", 1176 "nr_zone_active_anon", 1177 "nr_zone_inactive_file", 1178 "nr_zone_active_file", 1179 "nr_zone_unevictable", 1180 "nr_zone_write_pending", 1181 "nr_mlock", 1182 "nr_bounce", 1183#if IS_ENABLED(CONFIG_ZSMALLOC) 1184 "nr_zspages", 1185#endif 1186 "nr_free_cma", 1187#ifdef CONFIG_UNACCEPTED_MEMORY 1188 "nr_unaccepted", 1189#endif 1190 1191 /* enum numa_stat_item counters */ 1192#ifdef CONFIG_NUMA 1193 "numa_hit", 1194 "numa_miss", 1195 "numa_foreign", 1196 "numa_interleave", 1197 "numa_local", 1198 "numa_other", 1199#endif 1200 1201 /* enum node_stat_item counters */ 1202 "nr_inactive_anon", 1203 "nr_active_anon", 1204 "nr_inactive_file", 1205 "nr_active_file", 1206 "nr_unevictable", 1207 "nr_slab_reclaimable", 1208 "nr_slab_unreclaimable", 1209 "nr_isolated_anon", 1210 "nr_isolated_file", 1211 "workingset_nodes", 1212 "workingset_refault_anon", 1213 "workingset_refault_file", 1214 "workingset_activate_anon", 1215 "workingset_activate_file", 1216 "workingset_restore_anon", 1217 "workingset_restore_file", 1218 "workingset_nodereclaim", 1219 "nr_anon_pages", 1220 "nr_mapped", 1221 "nr_file_pages", 1222 "nr_dirty", 1223 "nr_writeback", 1224 "nr_writeback_temp", 1225 "nr_shmem", 1226 "nr_shmem_hugepages", 1227 "nr_shmem_pmdmapped", 1228 "nr_file_hugepages", 1229 "nr_file_pmdmapped", 1230 "nr_anon_transparent_hugepages", 1231 "nr_vmscan_write", 1232 "nr_vmscan_immediate_reclaim", 1233 "nr_dirtied", 1234 "nr_written", 1235 "nr_throttled_written", 1236 "nr_kernel_misc_reclaimable", 1237 "nr_foll_pin_acquired", 1238 "nr_foll_pin_released", 1239 "nr_kernel_stack", 1240#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 1241 "nr_shadow_call_stack", 1242#endif 1243 "nr_page_table_pages", 1244 "nr_sec_page_table_pages", 1245#ifdef CONFIG_SWAP 1246 "nr_swapcached", 1247#endif 1248#ifdef CONFIG_NUMA_BALANCING 1249 "pgpromote_success", 1250 "pgpromote_candidate", 1251#endif 1252 1253 /* enum writeback_stat_item counters */ 1254 "nr_dirty_threshold", 1255 "nr_dirty_background_threshold", 1256 1257#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) 1258 /* enum vm_event_item counters */ 1259 "pgpgin", 1260 "pgpgout", 1261 "pswpin", 1262 "pswpout", 1263 1264 TEXTS_FOR_ZONES("pgalloc") 1265 TEXTS_FOR_ZONES("allocstall") 1266 TEXTS_FOR_ZONES("pgskip") 1267 1268 "pgfree", 1269 "pgactivate", 1270 "pgdeactivate", 1271 "pglazyfree", 1272 1273 "pgfault", 1274 "pgmajfault", 1275 "pglazyfreed", 1276 1277 "pgrefill", 1278 "pgreuse", 1279 "pgsteal_kswapd", 1280 "pgsteal_direct", 1281 "pgsteal_khugepaged", 1282 "pgdemote_kswapd", 1283 "pgdemote_direct", 1284 "pgdemote_khugepaged", 1285 "pgscan_kswapd", 1286 "pgscan_direct", 1287 "pgscan_khugepaged", 1288 "pgscan_direct_throttle", 1289 "pgscan_anon", 1290 "pgscan_file", 1291 "pgsteal_anon", 1292 "pgsteal_file", 1293 1294#ifdef CONFIG_NUMA 1295 "zone_reclaim_failed", 1296#endif 1297 "pginodesteal", 1298 "slabs_scanned", 1299 "kswapd_inodesteal", 1300 "kswapd_low_wmark_hit_quickly", 1301 "kswapd_high_wmark_hit_quickly", 1302 "pageoutrun", 1303 1304 "pgrotated", 1305 1306 "drop_pagecache", 1307 "drop_slab", 1308 "oom_kill", 1309 1310#ifdef CONFIG_NUMA_BALANCING 1311 "numa_pte_updates", 1312 "numa_huge_pte_updates", 1313 "numa_hint_faults", 1314 "numa_hint_faults_local", 1315 "numa_pages_migrated", 1316#endif 1317#ifdef CONFIG_MIGRATION 1318 "pgmigrate_success", 1319 "pgmigrate_fail", 1320 "thp_migration_success", 1321 "thp_migration_fail", 1322 "thp_migration_split", 1323#endif 1324#ifdef CONFIG_COMPACTION 1325 "compact_migrate_scanned", 1326 "compact_free_scanned", 1327 "compact_isolated", 1328 "compact_stall", 1329 "compact_fail", 1330 "compact_success", 1331 "compact_daemon_wake", 1332 "compact_daemon_migrate_scanned", 1333 "compact_daemon_free_scanned", 1334#endif 1335 1336#ifdef CONFIG_HUGETLB_PAGE 1337 "htlb_buddy_alloc_success", 1338 "htlb_buddy_alloc_fail", 1339#endif 1340#ifdef CONFIG_CMA 1341 "cma_alloc_success", 1342 "cma_alloc_fail", 1343#endif 1344 "unevictable_pgs_culled", 1345 "unevictable_pgs_scanned", 1346 "unevictable_pgs_rescued", 1347 "unevictable_pgs_mlocked", 1348 "unevictable_pgs_munlocked", 1349 "unevictable_pgs_cleared", 1350 "unevictable_pgs_stranded", 1351 1352#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1353 "thp_fault_alloc", 1354 "thp_fault_fallback", 1355 "thp_fault_fallback_charge", 1356 "thp_collapse_alloc", 1357 "thp_collapse_alloc_failed", 1358 "thp_file_alloc", 1359 "thp_file_fallback", 1360 "thp_file_fallback_charge", 1361 "thp_file_mapped", 1362 "thp_split_page", 1363 "thp_split_page_failed", 1364 "thp_deferred_split_page", 1365 "thp_split_pmd", 1366 "thp_scan_exceed_none_pte", 1367 "thp_scan_exceed_swap_pte", 1368 "thp_scan_exceed_share_pte", 1369#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1370 "thp_split_pud", 1371#endif 1372 "thp_zero_page_alloc", 1373 "thp_zero_page_alloc_failed", 1374 "thp_swpout", 1375 "thp_swpout_fallback", 1376#endif 1377#ifdef CONFIG_MEMORY_BALLOON 1378 "balloon_inflate", 1379 "balloon_deflate", 1380#ifdef CONFIG_BALLOON_COMPACTION 1381 "balloon_migrate", 1382#endif 1383#endif /* CONFIG_MEMORY_BALLOON */ 1384#ifdef CONFIG_DEBUG_TLBFLUSH 1385 "nr_tlb_remote_flush", 1386 "nr_tlb_remote_flush_received", 1387 "nr_tlb_local_flush_all", 1388 "nr_tlb_local_flush_one", 1389#endif /* CONFIG_DEBUG_TLBFLUSH */ 1390 1391#ifdef CONFIG_SWAP 1392 "swap_ra", 1393 "swap_ra_hit", 1394#ifdef CONFIG_KSM 1395 "ksm_swpin_copy", 1396#endif 1397#endif 1398#ifdef CONFIG_KSM 1399 "cow_ksm", 1400#endif 1401#ifdef CONFIG_ZSWAP 1402 "zswpin", 1403 "zswpout", 1404#endif 1405#ifdef CONFIG_X86 1406 "direct_map_level2_splits", 1407 "direct_map_level3_splits", 1408#endif 1409#ifdef CONFIG_PER_VMA_LOCK_STATS 1410 "vma_lock_success", 1411 "vma_lock_abort", 1412 "vma_lock_retry", 1413 "vma_lock_miss", 1414#endif 1415#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ 1416}; 1417#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */ 1418 1419#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1420 defined(CONFIG_PROC_FS) 1421static void *frag_start(struct seq_file *m, loff_t *pos) 1422{ 1423 pg_data_t *pgdat; 1424 loff_t node = *pos; 1425 1426 for (pgdat = first_online_pgdat(); 1427 pgdat && node; 1428 pgdat = next_online_pgdat(pgdat)) 1429 --node; 1430 1431 return pgdat; 1432} 1433 1434static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1435{ 1436 pg_data_t *pgdat = (pg_data_t *)arg; 1437 1438 (*pos)++; 1439 return next_online_pgdat(pgdat); 1440} 1441 1442static void frag_stop(struct seq_file *m, void *arg) 1443{ 1444} 1445 1446/* 1447 * Walk zones in a node and print using a callback. 1448 * If @assert_populated is true, only use callback for zones that are populated. 1449 */ 1450static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1451 bool assert_populated, bool nolock, 1452 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1453{ 1454 struct zone *zone; 1455 struct zone *node_zones = pgdat->node_zones; 1456 unsigned long flags; 1457 1458 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1459 if (assert_populated && !populated_zone(zone)) 1460 continue; 1461 1462 if (!nolock) 1463 spin_lock_irqsave(&zone->lock, flags); 1464 print(m, pgdat, zone); 1465 if (!nolock) 1466 spin_unlock_irqrestore(&zone->lock, flags); 1467 } 1468} 1469#endif 1470 1471#ifdef CONFIG_PROC_FS 1472static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1473 struct zone *zone) 1474{ 1475 int order; 1476 1477 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1478 for (order = 0; order <= MAX_ORDER; ++order) 1479 /* 1480 * Access to nr_free is lockless as nr_free is used only for 1481 * printing purposes. Use data_race to avoid KCSAN warning. 1482 */ 1483 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free)); 1484 seq_putc(m, '\n'); 1485} 1486 1487/* 1488 * This walks the free areas for each zone. 1489 */ 1490static int frag_show(struct seq_file *m, void *arg) 1491{ 1492 pg_data_t *pgdat = (pg_data_t *)arg; 1493 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1494 return 0; 1495} 1496 1497static void pagetypeinfo_showfree_print(struct seq_file *m, 1498 pg_data_t *pgdat, struct zone *zone) 1499{ 1500 int order, mtype; 1501 1502 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1503 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1504 pgdat->node_id, 1505 zone->name, 1506 migratetype_names[mtype]); 1507 for (order = 0; order <= MAX_ORDER; ++order) { 1508 unsigned long freecount = 0; 1509 struct free_area *area; 1510 struct list_head *curr; 1511 bool overflow = false; 1512 1513 area = &(zone->free_area[order]); 1514 1515 list_for_each(curr, &area->free_list[mtype]) { 1516 /* 1517 * Cap the free_list iteration because it might 1518 * be really large and we are under a spinlock 1519 * so a long time spent here could trigger a 1520 * hard lockup detector. Anyway this is a 1521 * debugging tool so knowing there is a handful 1522 * of pages of this order should be more than 1523 * sufficient. 1524 */ 1525 if (++freecount >= 100000) { 1526 overflow = true; 1527 break; 1528 } 1529 } 1530 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount); 1531 spin_unlock_irq(&zone->lock); 1532 cond_resched(); 1533 spin_lock_irq(&zone->lock); 1534 } 1535 seq_putc(m, '\n'); 1536 } 1537} 1538 1539/* Print out the free pages at each order for each migatetype */ 1540static void pagetypeinfo_showfree(struct seq_file *m, void *arg) 1541{ 1542 int order; 1543 pg_data_t *pgdat = (pg_data_t *)arg; 1544 1545 /* Print header */ 1546 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1547 for (order = 0; order <= MAX_ORDER; ++order) 1548 seq_printf(m, "%6d ", order); 1549 seq_putc(m, '\n'); 1550 1551 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1552} 1553 1554static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1555 pg_data_t *pgdat, struct zone *zone) 1556{ 1557 int mtype; 1558 unsigned long pfn; 1559 unsigned long start_pfn = zone->zone_start_pfn; 1560 unsigned long end_pfn = zone_end_pfn(zone); 1561 unsigned long count[MIGRATE_TYPES] = { 0, }; 1562 1563 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1564 struct page *page; 1565 1566 page = pfn_to_online_page(pfn); 1567 if (!page) 1568 continue; 1569 1570 if (page_zone(page) != zone) 1571 continue; 1572 1573 mtype = get_pageblock_migratetype(page); 1574 1575 if (mtype < MIGRATE_TYPES) 1576 count[mtype]++; 1577 } 1578 1579 /* Print counts */ 1580 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1581 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1582 seq_printf(m, "%12lu ", count[mtype]); 1583 seq_putc(m, '\n'); 1584} 1585 1586/* Print out the number of pageblocks for each migratetype */ 1587static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1588{ 1589 int mtype; 1590 pg_data_t *pgdat = (pg_data_t *)arg; 1591 1592 seq_printf(m, "\n%-23s", "Number of blocks type "); 1593 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1594 seq_printf(m, "%12s ", migratetype_names[mtype]); 1595 seq_putc(m, '\n'); 1596 walk_zones_in_node(m, pgdat, true, false, 1597 pagetypeinfo_showblockcount_print); 1598} 1599 1600/* 1601 * Print out the number of pageblocks for each migratetype that contain pages 1602 * of other types. This gives an indication of how well fallbacks are being 1603 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1604 * to determine what is going on 1605 */ 1606static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1607{ 1608#ifdef CONFIG_PAGE_OWNER 1609 int mtype; 1610 1611 if (!static_branch_unlikely(&page_owner_inited)) 1612 return; 1613 1614 drain_all_pages(NULL); 1615 1616 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1617 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1618 seq_printf(m, "%12s ", migratetype_names[mtype]); 1619 seq_putc(m, '\n'); 1620 1621 walk_zones_in_node(m, pgdat, true, true, 1622 pagetypeinfo_showmixedcount_print); 1623#endif /* CONFIG_PAGE_OWNER */ 1624} 1625 1626/* 1627 * This prints out statistics in relation to grouping pages by mobility. 1628 * It is expensive to collect so do not constantly read the file. 1629 */ 1630static int pagetypeinfo_show(struct seq_file *m, void *arg) 1631{ 1632 pg_data_t *pgdat = (pg_data_t *)arg; 1633 1634 /* check memoryless node */ 1635 if (!node_state(pgdat->node_id, N_MEMORY)) 1636 return 0; 1637 1638 seq_printf(m, "Page block order: %d\n", pageblock_order); 1639 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1640 seq_putc(m, '\n'); 1641 pagetypeinfo_showfree(m, pgdat); 1642 pagetypeinfo_showblockcount(m, pgdat); 1643 pagetypeinfo_showmixedcount(m, pgdat); 1644 1645 return 0; 1646} 1647 1648static const struct seq_operations fragmentation_op = { 1649 .start = frag_start, 1650 .next = frag_next, 1651 .stop = frag_stop, 1652 .show = frag_show, 1653}; 1654 1655static const struct seq_operations pagetypeinfo_op = { 1656 .start = frag_start, 1657 .next = frag_next, 1658 .stop = frag_stop, 1659 .show = pagetypeinfo_show, 1660}; 1661 1662static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1663{ 1664 int zid; 1665 1666 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1667 struct zone *compare = &pgdat->node_zones[zid]; 1668 1669 if (populated_zone(compare)) 1670 return zone == compare; 1671 } 1672 1673 return false; 1674} 1675 1676static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1677 struct zone *zone) 1678{ 1679 int i; 1680 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1681 if (is_zone_first_populated(pgdat, zone)) { 1682 seq_printf(m, "\n per-node stats"); 1683 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1684 unsigned long pages = node_page_state_pages(pgdat, i); 1685 1686 if (vmstat_item_print_in_thp(i)) 1687 pages /= HPAGE_PMD_NR; 1688 seq_printf(m, "\n %-12s %lu", node_stat_name(i), 1689 pages); 1690 } 1691 } 1692 seq_printf(m, 1693 "\n pages free %lu" 1694 "\n boost %lu" 1695 "\n min %lu" 1696 "\n low %lu" 1697 "\n high %lu" 1698 "\n spanned %lu" 1699 "\n present %lu" 1700 "\n managed %lu" 1701 "\n cma %lu", 1702 zone_page_state(zone, NR_FREE_PAGES), 1703 zone->watermark_boost, 1704 min_wmark_pages(zone), 1705 low_wmark_pages(zone), 1706 high_wmark_pages(zone), 1707 zone->spanned_pages, 1708 zone->present_pages, 1709 zone_managed_pages(zone), 1710 zone_cma_pages(zone)); 1711 1712 seq_printf(m, 1713 "\n protection: (%ld", 1714 zone->lowmem_reserve[0]); 1715 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1716 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1717 seq_putc(m, ')'); 1718 1719 /* If unpopulated, no other information is useful */ 1720 if (!populated_zone(zone)) { 1721 seq_putc(m, '\n'); 1722 return; 1723 } 1724 1725 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1726 seq_printf(m, "\n %-12s %lu", zone_stat_name(i), 1727 zone_page_state(zone, i)); 1728 1729#ifdef CONFIG_NUMA 1730 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1731 seq_printf(m, "\n %-12s %lu", numa_stat_name(i), 1732 zone_numa_event_state(zone, i)); 1733#endif 1734 1735 seq_printf(m, "\n pagesets"); 1736 for_each_online_cpu(i) { 1737 struct per_cpu_pages *pcp; 1738 struct per_cpu_zonestat __maybe_unused *pzstats; 1739 1740 pcp = per_cpu_ptr(zone->per_cpu_pageset, i); 1741 seq_printf(m, 1742 "\n cpu: %i" 1743 "\n count: %i" 1744 "\n high: %i" 1745 "\n batch: %i", 1746 i, 1747 pcp->count, 1748 pcp->high, 1749 pcp->batch); 1750#ifdef CONFIG_SMP 1751 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i); 1752 seq_printf(m, "\n vm stats threshold: %d", 1753 pzstats->stat_threshold); 1754#endif 1755 } 1756 seq_printf(m, 1757 "\n node_unreclaimable: %u" 1758 "\n start_pfn: %lu", 1759 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1760 zone->zone_start_pfn); 1761 seq_putc(m, '\n'); 1762} 1763 1764/* 1765 * Output information about zones in @pgdat. All zones are printed regardless 1766 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1767 * set of all zones and userspace would not be aware of such zones if they are 1768 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1769 */ 1770static int zoneinfo_show(struct seq_file *m, void *arg) 1771{ 1772 pg_data_t *pgdat = (pg_data_t *)arg; 1773 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1774 return 0; 1775} 1776 1777static const struct seq_operations zoneinfo_op = { 1778 .start = frag_start, /* iterate over all zones. The same as in 1779 * fragmentation. */ 1780 .next = frag_next, 1781 .stop = frag_stop, 1782 .show = zoneinfo_show, 1783}; 1784 1785#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \ 1786 NR_VM_NUMA_EVENT_ITEMS + \ 1787 NR_VM_NODE_STAT_ITEMS + \ 1788 NR_VM_WRITEBACK_STAT_ITEMS + \ 1789 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \ 1790 NR_VM_EVENT_ITEMS : 0)) 1791 1792static void *vmstat_start(struct seq_file *m, loff_t *pos) 1793{ 1794 unsigned long *v; 1795 int i; 1796 1797 if (*pos >= NR_VMSTAT_ITEMS) 1798 return NULL; 1799 1800 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS); 1801 fold_vm_numa_events(); 1802 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL); 1803 m->private = v; 1804 if (!v) 1805 return ERR_PTR(-ENOMEM); 1806 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1807 v[i] = global_zone_page_state(i); 1808 v += NR_VM_ZONE_STAT_ITEMS; 1809 1810#ifdef CONFIG_NUMA 1811 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) 1812 v[i] = global_numa_event_state(i); 1813 v += NR_VM_NUMA_EVENT_ITEMS; 1814#endif 1815 1816 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1817 v[i] = global_node_page_state_pages(i); 1818 if (vmstat_item_print_in_thp(i)) 1819 v[i] /= HPAGE_PMD_NR; 1820 } 1821 v += NR_VM_NODE_STAT_ITEMS; 1822 1823 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1824 v + NR_DIRTY_THRESHOLD); 1825 v += NR_VM_WRITEBACK_STAT_ITEMS; 1826 1827#ifdef CONFIG_VM_EVENT_COUNTERS 1828 all_vm_events(v); 1829 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1830 v[PGPGOUT] /= 2; 1831#endif 1832 return (unsigned long *)m->private + *pos; 1833} 1834 1835static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1836{ 1837 (*pos)++; 1838 if (*pos >= NR_VMSTAT_ITEMS) 1839 return NULL; 1840 return (unsigned long *)m->private + *pos; 1841} 1842 1843static int vmstat_show(struct seq_file *m, void *arg) 1844{ 1845 unsigned long *l = arg; 1846 unsigned long off = l - (unsigned long *)m->private; 1847 1848 seq_puts(m, vmstat_text[off]); 1849 seq_put_decimal_ull(m, " ", *l); 1850 seq_putc(m, '\n'); 1851 1852 if (off == NR_VMSTAT_ITEMS - 1) { 1853 /* 1854 * We've come to the end - add any deprecated counters to avoid 1855 * breaking userspace which might depend on them being present. 1856 */ 1857 seq_puts(m, "nr_unstable 0\n"); 1858 } 1859 return 0; 1860} 1861 1862static void vmstat_stop(struct seq_file *m, void *arg) 1863{ 1864 kfree(m->private); 1865 m->private = NULL; 1866} 1867 1868static const struct seq_operations vmstat_op = { 1869 .start = vmstat_start, 1870 .next = vmstat_next, 1871 .stop = vmstat_stop, 1872 .show = vmstat_show, 1873}; 1874#endif /* CONFIG_PROC_FS */ 1875 1876#ifdef CONFIG_SMP 1877static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1878int sysctl_stat_interval __read_mostly = HZ; 1879 1880#ifdef CONFIG_PROC_FS 1881static void refresh_vm_stats(struct work_struct *work) 1882{ 1883 refresh_cpu_vm_stats(true); 1884} 1885 1886int vmstat_refresh(struct ctl_table *table, int write, 1887 void *buffer, size_t *lenp, loff_t *ppos) 1888{ 1889 long val; 1890 int err; 1891 int i; 1892 1893 /* 1894 * The regular update, every sysctl_stat_interval, may come later 1895 * than expected: leaving a significant amount in per_cpu buckets. 1896 * This is particularly misleading when checking a quantity of HUGE 1897 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1898 * which can equally be echo'ed to or cat'ted from (by root), 1899 * can be used to update the stats just before reading them. 1900 * 1901 * Oh, and since global_zone_page_state() etc. are so careful to hide 1902 * transiently negative values, report an error here if any of 1903 * the stats is negative, so we know to go looking for imbalance. 1904 */ 1905 err = schedule_on_each_cpu(refresh_vm_stats); 1906 if (err) 1907 return err; 1908 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1909 /* 1910 * Skip checking stats known to go negative occasionally. 1911 */ 1912 switch (i) { 1913 case NR_ZONE_WRITE_PENDING: 1914 case NR_FREE_CMA_PAGES: 1915 continue; 1916 } 1917 val = atomic_long_read(&vm_zone_stat[i]); 1918 if (val < 0) { 1919 pr_warn("%s: %s %ld\n", 1920 __func__, zone_stat_name(i), val); 1921 } 1922 } 1923 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1924 /* 1925 * Skip checking stats known to go negative occasionally. 1926 */ 1927 switch (i) { 1928 case NR_WRITEBACK: 1929 continue; 1930 } 1931 val = atomic_long_read(&vm_node_stat[i]); 1932 if (val < 0) { 1933 pr_warn("%s: %s %ld\n", 1934 __func__, node_stat_name(i), val); 1935 } 1936 } 1937 if (write) 1938 *ppos += *lenp; 1939 else 1940 *lenp = 0; 1941 return 0; 1942} 1943#endif /* CONFIG_PROC_FS */ 1944 1945static void vmstat_update(struct work_struct *w) 1946{ 1947 if (refresh_cpu_vm_stats(true)) { 1948 /* 1949 * Counters were updated so we expect more updates 1950 * to occur in the future. Keep on running the 1951 * update worker thread. 1952 */ 1953 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 1954 this_cpu_ptr(&vmstat_work), 1955 round_jiffies_relative(sysctl_stat_interval)); 1956 } 1957} 1958 1959/* 1960 * Check if the diffs for a certain cpu indicate that 1961 * an update is needed. 1962 */ 1963static bool need_update(int cpu) 1964{ 1965 pg_data_t *last_pgdat = NULL; 1966 struct zone *zone; 1967 1968 for_each_populated_zone(zone) { 1969 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 1970 struct per_cpu_nodestat *n; 1971 1972 /* 1973 * The fast way of checking if there are any vmstat diffs. 1974 */ 1975 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff))) 1976 return true; 1977 1978 if (last_pgdat == zone->zone_pgdat) 1979 continue; 1980 last_pgdat = zone->zone_pgdat; 1981 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu); 1982 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff))) 1983 return true; 1984 } 1985 return false; 1986} 1987 1988/* 1989 * Switch off vmstat processing and then fold all the remaining differentials 1990 * until the diffs stay at zero. The function is used by NOHZ and can only be 1991 * invoked when tick processing is not active. 1992 */ 1993void quiet_vmstat(void) 1994{ 1995 if (system_state != SYSTEM_RUNNING) 1996 return; 1997 1998 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1999 return; 2000 2001 if (!need_update(smp_processor_id())) 2002 return; 2003 2004 /* 2005 * Just refresh counters and do not care about the pending delayed 2006 * vmstat_update. It doesn't fire that often to matter and canceling 2007 * it would be too expensive from this path. 2008 * vmstat_shepherd will take care about that for us. 2009 */ 2010 refresh_cpu_vm_stats(false); 2011} 2012 2013/* 2014 * Shepherd worker thread that checks the 2015 * differentials of processors that have their worker 2016 * threads for vm statistics updates disabled because of 2017 * inactivity. 2018 */ 2019static void vmstat_shepherd(struct work_struct *w); 2020 2021static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 2022 2023static void vmstat_shepherd(struct work_struct *w) 2024{ 2025 int cpu; 2026 2027 cpus_read_lock(); 2028 /* Check processors whose vmstat worker threads have been disabled */ 2029 for_each_online_cpu(cpu) { 2030 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 2031 2032 /* 2033 * In kernel users of vmstat counters either require the precise value and 2034 * they are using zone_page_state_snapshot interface or they can live with 2035 * an imprecision as the regular flushing can happen at arbitrary time and 2036 * cumulative error can grow (see calculate_normal_threshold). 2037 * 2038 * From that POV the regular flushing can be postponed for CPUs that have 2039 * been isolated from the kernel interference without critical 2040 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd 2041 * for all isolated CPUs to avoid interference with the isolated workload. 2042 */ 2043 if (cpu_is_isolated(cpu)) 2044 continue; 2045 2046 if (!delayed_work_pending(dw) && need_update(cpu)) 2047 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 2048 2049 cond_resched(); 2050 } 2051 cpus_read_unlock(); 2052 2053 schedule_delayed_work(&shepherd, 2054 round_jiffies_relative(sysctl_stat_interval)); 2055} 2056 2057static void __init start_shepherd_timer(void) 2058{ 2059 int cpu; 2060 2061 for_each_possible_cpu(cpu) 2062 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 2063 vmstat_update); 2064 2065 schedule_delayed_work(&shepherd, 2066 round_jiffies_relative(sysctl_stat_interval)); 2067} 2068 2069static void __init init_cpu_node_state(void) 2070{ 2071 int node; 2072 2073 for_each_online_node(node) { 2074 if (!cpumask_empty(cpumask_of_node(node))) 2075 node_set_state(node, N_CPU); 2076 } 2077} 2078 2079static int vmstat_cpu_online(unsigned int cpu) 2080{ 2081 refresh_zone_stat_thresholds(); 2082 2083 if (!node_state(cpu_to_node(cpu), N_CPU)) { 2084 node_set_state(cpu_to_node(cpu), N_CPU); 2085 } 2086 2087 return 0; 2088} 2089 2090static int vmstat_cpu_down_prep(unsigned int cpu) 2091{ 2092 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 2093 return 0; 2094} 2095 2096static int vmstat_cpu_dead(unsigned int cpu) 2097{ 2098 const struct cpumask *node_cpus; 2099 int node; 2100 2101 node = cpu_to_node(cpu); 2102 2103 refresh_zone_stat_thresholds(); 2104 node_cpus = cpumask_of_node(node); 2105 if (!cpumask_empty(node_cpus)) 2106 return 0; 2107 2108 node_clear_state(node, N_CPU); 2109 2110 return 0; 2111} 2112 2113#endif 2114 2115struct workqueue_struct *mm_percpu_wq; 2116 2117void __init init_mm_internals(void) 2118{ 2119 int ret __maybe_unused; 2120 2121 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 2122 2123#ifdef CONFIG_SMP 2124 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 2125 NULL, vmstat_cpu_dead); 2126 if (ret < 0) 2127 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 2128 2129 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 2130 vmstat_cpu_online, 2131 vmstat_cpu_down_prep); 2132 if (ret < 0) 2133 pr_err("vmstat: failed to register 'online' hotplug state\n"); 2134 2135 cpus_read_lock(); 2136 init_cpu_node_state(); 2137 cpus_read_unlock(); 2138 2139 start_shepherd_timer(); 2140#endif 2141#ifdef CONFIG_PROC_FS 2142 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 2143 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op); 2144 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 2145 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 2146#endif 2147} 2148 2149#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 2150 2151/* 2152 * Return an index indicating how much of the available free memory is 2153 * unusable for an allocation of the requested size. 2154 */ 2155static int unusable_free_index(unsigned int order, 2156 struct contig_page_info *info) 2157{ 2158 /* No free memory is interpreted as all free memory is unusable */ 2159 if (info->free_pages == 0) 2160 return 1000; 2161 2162 /* 2163 * Index should be a value between 0 and 1. Return a value to 3 2164 * decimal places. 2165 * 2166 * 0 => no fragmentation 2167 * 1 => high fragmentation 2168 */ 2169 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2170 2171} 2172 2173static void unusable_show_print(struct seq_file *m, 2174 pg_data_t *pgdat, struct zone *zone) 2175{ 2176 unsigned int order; 2177 int index; 2178 struct contig_page_info info; 2179 2180 seq_printf(m, "Node %d, zone %8s ", 2181 pgdat->node_id, 2182 zone->name); 2183 for (order = 0; order <= MAX_ORDER; ++order) { 2184 fill_contig_page_info(zone, order, &info); 2185 index = unusable_free_index(order, &info); 2186 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2187 } 2188 2189 seq_putc(m, '\n'); 2190} 2191 2192/* 2193 * Display unusable free space index 2194 * 2195 * The unusable free space index measures how much of the available free 2196 * memory cannot be used to satisfy an allocation of a given size and is a 2197 * value between 0 and 1. The higher the value, the more of free memory is 2198 * unusable and by implication, the worse the external fragmentation is. This 2199 * can be expressed as a percentage by multiplying by 100. 2200 */ 2201static int unusable_show(struct seq_file *m, void *arg) 2202{ 2203 pg_data_t *pgdat = (pg_data_t *)arg; 2204 2205 /* check memoryless node */ 2206 if (!node_state(pgdat->node_id, N_MEMORY)) 2207 return 0; 2208 2209 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2210 2211 return 0; 2212} 2213 2214static const struct seq_operations unusable_sops = { 2215 .start = frag_start, 2216 .next = frag_next, 2217 .stop = frag_stop, 2218 .show = unusable_show, 2219}; 2220 2221DEFINE_SEQ_ATTRIBUTE(unusable); 2222 2223static void extfrag_show_print(struct seq_file *m, 2224 pg_data_t *pgdat, struct zone *zone) 2225{ 2226 unsigned int order; 2227 int index; 2228 2229 /* Alloc on stack as interrupts are disabled for zone walk */ 2230 struct contig_page_info info; 2231 2232 seq_printf(m, "Node %d, zone %8s ", 2233 pgdat->node_id, 2234 zone->name); 2235 for (order = 0; order <= MAX_ORDER; ++order) { 2236 fill_contig_page_info(zone, order, &info); 2237 index = __fragmentation_index(order, &info); 2238 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000); 2239 } 2240 2241 seq_putc(m, '\n'); 2242} 2243 2244/* 2245 * Display fragmentation index for orders that allocations would fail for 2246 */ 2247static int extfrag_show(struct seq_file *m, void *arg) 2248{ 2249 pg_data_t *pgdat = (pg_data_t *)arg; 2250 2251 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2252 2253 return 0; 2254} 2255 2256static const struct seq_operations extfrag_sops = { 2257 .start = frag_start, 2258 .next = frag_next, 2259 .stop = frag_stop, 2260 .show = extfrag_show, 2261}; 2262 2263DEFINE_SEQ_ATTRIBUTE(extfrag); 2264 2265static int __init extfrag_debug_init(void) 2266{ 2267 struct dentry *extfrag_debug_root; 2268 2269 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2270 2271 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2272 &unusable_fops); 2273 2274 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2275 &extfrag_fops); 2276 2277 return 0; 2278} 2279 2280module_init(extfrag_debug_init); 2281#endif