at v6.6 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12#ifndef _LINUX_SLAB_H 13#define _LINUX_SLAB_H 14 15#include <linux/cache.h> 16#include <linux/gfp.h> 17#include <linux/overflow.h> 18#include <linux/types.h> 19#include <linux/workqueue.h> 20#include <linux/percpu-refcount.h> 21#include <linux/cleanup.h> 22#include <linux/hash.h> 23 24 25/* 26 * Flags to pass to kmem_cache_create(). 27 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 28 */ 29/* DEBUG: Perform (expensive) checks on alloc/free */ 30#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) 31/* DEBUG: Red zone objs in a cache */ 32#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) 33/* DEBUG: Poison objects */ 34#define SLAB_POISON ((slab_flags_t __force)0x00000800U) 35/* Indicate a kmalloc slab */ 36#define SLAB_KMALLOC ((slab_flags_t __force)0x00001000U) 37/* Align objs on cache lines */ 38#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) 39/* Use GFP_DMA memory */ 40#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) 41/* Use GFP_DMA32 memory */ 42#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U) 43/* DEBUG: Store the last owner for bug hunting */ 44#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) 45/* Panic if kmem_cache_create() fails */ 46#define SLAB_PANIC ((slab_flags_t __force)0x00040000U) 47/* 48 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 49 * 50 * This delays freeing the SLAB page by a grace period, it does _NOT_ 51 * delay object freeing. This means that if you do kmem_cache_free() 52 * that memory location is free to be reused at any time. Thus it may 53 * be possible to see another object there in the same RCU grace period. 54 * 55 * This feature only ensures the memory location backing the object 56 * stays valid, the trick to using this is relying on an independent 57 * object validation pass. Something like: 58 * 59 * begin: 60 * rcu_read_lock(); 61 * obj = lockless_lookup(key); 62 * if (obj) { 63 * if (!try_get_ref(obj)) // might fail for free objects 64 * rcu_read_unlock(); 65 * goto begin; 66 * 67 * if (obj->key != key) { // not the object we expected 68 * put_ref(obj); 69 * rcu_read_unlock(); 70 * goto begin; 71 * } 72 * } 73 * rcu_read_unlock(); 74 * 75 * This is useful if we need to approach a kernel structure obliquely, 76 * from its address obtained without the usual locking. We can lock 77 * the structure to stabilize it and check it's still at the given address, 78 * only if we can be sure that the memory has not been meanwhile reused 79 * for some other kind of object (which our subsystem's lock might corrupt). 80 * 81 * rcu_read_lock before reading the address, then rcu_read_unlock after 82 * taking the spinlock within the structure expected at that address. 83 * 84 * Note that it is not possible to acquire a lock within a structure 85 * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference 86 * as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages 87 * are not zeroed before being given to the slab, which means that any 88 * locks must be initialized after each and every kmem_struct_alloc(). 89 * Alternatively, make the ctor passed to kmem_cache_create() initialize 90 * the locks at page-allocation time, as is done in __i915_request_ctor(), 91 * sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers 92 * to safely acquire those ctor-initialized locks under rcu_read_lock() 93 * protection. 94 * 95 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 96 */ 97/* Defer freeing slabs to RCU */ 98#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) 99/* Spread some memory over cpuset */ 100#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) 101/* Trace allocations and frees */ 102#define SLAB_TRACE ((slab_flags_t __force)0x00200000U) 103 104/* Flag to prevent checks on free */ 105#ifdef CONFIG_DEBUG_OBJECTS 106# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) 107#else 108# define SLAB_DEBUG_OBJECTS 0 109#endif 110 111/* Avoid kmemleak tracing */ 112#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) 113 114/* 115 * Prevent merging with compatible kmem caches. This flag should be used 116 * cautiously. Valid use cases: 117 * 118 * - caches created for self-tests (e.g. kunit) 119 * - general caches created and used by a subsystem, only when a 120 * (subsystem-specific) debug option is enabled 121 * - performance critical caches, should be very rare and consulted with slab 122 * maintainers, and not used together with CONFIG_SLUB_TINY 123 */ 124#define SLAB_NO_MERGE ((slab_flags_t __force)0x01000000U) 125 126/* Fault injection mark */ 127#ifdef CONFIG_FAILSLAB 128# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) 129#else 130# define SLAB_FAILSLAB 0 131#endif 132/* Account to memcg */ 133#ifdef CONFIG_MEMCG_KMEM 134# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) 135#else 136# define SLAB_ACCOUNT 0 137#endif 138 139#ifdef CONFIG_KASAN_GENERIC 140#define SLAB_KASAN ((slab_flags_t __force)0x08000000U) 141#else 142#define SLAB_KASAN 0 143#endif 144 145/* 146 * Ignore user specified debugging flags. 147 * Intended for caches created for self-tests so they have only flags 148 * specified in the code and other flags are ignored. 149 */ 150#define SLAB_NO_USER_FLAGS ((slab_flags_t __force)0x10000000U) 151 152#ifdef CONFIG_KFENCE 153#define SLAB_SKIP_KFENCE ((slab_flags_t __force)0x20000000U) 154#else 155#define SLAB_SKIP_KFENCE 0 156#endif 157 158/* The following flags affect the page allocator grouping pages by mobility */ 159/* Objects are reclaimable */ 160#ifndef CONFIG_SLUB_TINY 161#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) 162#else 163#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0) 164#endif 165#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 166 167/* 168 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 169 * 170 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 171 * 172 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 173 * Both make kfree a no-op. 174 */ 175#define ZERO_SIZE_PTR ((void *)16) 176 177#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 178 (unsigned long)ZERO_SIZE_PTR) 179 180#include <linux/kasan.h> 181 182struct list_lru; 183struct mem_cgroup; 184/* 185 * struct kmem_cache related prototypes 186 */ 187bool slab_is_available(void); 188 189struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, 190 unsigned int align, slab_flags_t flags, 191 void (*ctor)(void *)); 192struct kmem_cache *kmem_cache_create_usercopy(const char *name, 193 unsigned int size, unsigned int align, 194 slab_flags_t flags, 195 unsigned int useroffset, unsigned int usersize, 196 void (*ctor)(void *)); 197void kmem_cache_destroy(struct kmem_cache *s); 198int kmem_cache_shrink(struct kmem_cache *s); 199 200/* 201 * Please use this macro to create slab caches. Simply specify the 202 * name of the structure and maybe some flags that are listed above. 203 * 204 * The alignment of the struct determines object alignment. If you 205 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 206 * then the objects will be properly aligned in SMP configurations. 207 */ 208#define KMEM_CACHE(__struct, __flags) \ 209 kmem_cache_create(#__struct, sizeof(struct __struct), \ 210 __alignof__(struct __struct), (__flags), NULL) 211 212/* 213 * To whitelist a single field for copying to/from usercopy, use this 214 * macro instead for KMEM_CACHE() above. 215 */ 216#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 217 kmem_cache_create_usercopy(#__struct, \ 218 sizeof(struct __struct), \ 219 __alignof__(struct __struct), (__flags), \ 220 offsetof(struct __struct, __field), \ 221 sizeof_field(struct __struct, __field), NULL) 222 223/* 224 * Common kmalloc functions provided by all allocators 225 */ 226void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2); 227void kfree(const void *objp); 228void kfree_sensitive(const void *objp); 229size_t __ksize(const void *objp); 230 231DEFINE_FREE(kfree, void *, if (_T) kfree(_T)) 232 233/** 234 * ksize - Report actual allocation size of associated object 235 * 236 * @objp: Pointer returned from a prior kmalloc()-family allocation. 237 * 238 * This should not be used for writing beyond the originally requested 239 * allocation size. Either use krealloc() or round up the allocation size 240 * with kmalloc_size_roundup() prior to allocation. If this is used to 241 * access beyond the originally requested allocation size, UBSAN_BOUNDS 242 * and/or FORTIFY_SOURCE may trip, since they only know about the 243 * originally allocated size via the __alloc_size attribute. 244 */ 245size_t ksize(const void *objp); 246 247#ifdef CONFIG_PRINTK 248bool kmem_valid_obj(void *object); 249void kmem_dump_obj(void *object); 250#endif 251 252/* 253 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 254 * alignment larger than the alignment of a 64-bit integer. 255 * Setting ARCH_DMA_MINALIGN in arch headers allows that. 256 */ 257#ifdef ARCH_HAS_DMA_MINALIGN 258#if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN) 259#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 260#endif 261#endif 262 263#ifndef ARCH_KMALLOC_MINALIGN 264#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 265#elif ARCH_KMALLOC_MINALIGN > 8 266#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN 267#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 268#endif 269 270/* 271 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 272 * Intended for arches that get misalignment faults even for 64 bit integer 273 * aligned buffers. 274 */ 275#ifndef ARCH_SLAB_MINALIGN 276#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 277#endif 278 279/* 280 * Arches can define this function if they want to decide the minimum slab 281 * alignment at runtime. The value returned by the function must be a power 282 * of two and >= ARCH_SLAB_MINALIGN. 283 */ 284#ifndef arch_slab_minalign 285static inline unsigned int arch_slab_minalign(void) 286{ 287 return ARCH_SLAB_MINALIGN; 288} 289#endif 290 291/* 292 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN. 293 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN 294 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment. 295 */ 296#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 297#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 298#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 299 300/* 301 * Kmalloc array related definitions 302 */ 303 304#ifdef CONFIG_SLAB 305/* 306 * SLAB and SLUB directly allocates requests fitting in to an order-1 page 307 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 308 */ 309#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 310#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 311#ifndef KMALLOC_SHIFT_LOW 312#define KMALLOC_SHIFT_LOW 5 313#endif 314#endif 315 316#ifdef CONFIG_SLUB 317#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 318#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 319#ifndef KMALLOC_SHIFT_LOW 320#define KMALLOC_SHIFT_LOW 3 321#endif 322#endif 323 324/* Maximum allocatable size */ 325#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 326/* Maximum size for which we actually use a slab cache */ 327#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 328/* Maximum order allocatable via the slab allocator */ 329#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 330 331/* 332 * Kmalloc subsystem. 333 */ 334#ifndef KMALLOC_MIN_SIZE 335#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 336#endif 337 338/* 339 * This restriction comes from byte sized index implementation. 340 * Page size is normally 2^12 bytes and, in this case, if we want to use 341 * byte sized index which can represent 2^8 entries, the size of the object 342 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 343 * If minimum size of kmalloc is less than 16, we use it as minimum object 344 * size and give up to use byte sized index. 345 */ 346#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 347 (KMALLOC_MIN_SIZE) : 16) 348 349#ifdef CONFIG_RANDOM_KMALLOC_CACHES 350#define RANDOM_KMALLOC_CACHES_NR 15 // # of cache copies 351#else 352#define RANDOM_KMALLOC_CACHES_NR 0 353#endif 354 355/* 356 * Whenever changing this, take care of that kmalloc_type() and 357 * create_kmalloc_caches() still work as intended. 358 * 359 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP 360 * is for accounted but unreclaimable and non-dma objects. All the other 361 * kmem caches can have both accounted and unaccounted objects. 362 */ 363enum kmalloc_cache_type { 364 KMALLOC_NORMAL = 0, 365#ifndef CONFIG_ZONE_DMA 366 KMALLOC_DMA = KMALLOC_NORMAL, 367#endif 368#ifndef CONFIG_MEMCG_KMEM 369 KMALLOC_CGROUP = KMALLOC_NORMAL, 370#endif 371 KMALLOC_RANDOM_START = KMALLOC_NORMAL, 372 KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR, 373#ifdef CONFIG_SLUB_TINY 374 KMALLOC_RECLAIM = KMALLOC_NORMAL, 375#else 376 KMALLOC_RECLAIM, 377#endif 378#ifdef CONFIG_ZONE_DMA 379 KMALLOC_DMA, 380#endif 381#ifdef CONFIG_MEMCG_KMEM 382 KMALLOC_CGROUP, 383#endif 384 NR_KMALLOC_TYPES 385}; 386 387extern struct kmem_cache * 388kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; 389 390/* 391 * Define gfp bits that should not be set for KMALLOC_NORMAL. 392 */ 393#define KMALLOC_NOT_NORMAL_BITS \ 394 (__GFP_RECLAIMABLE | \ 395 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \ 396 (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0)) 397 398extern unsigned long random_kmalloc_seed; 399 400static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller) 401{ 402 /* 403 * The most common case is KMALLOC_NORMAL, so test for it 404 * with a single branch for all the relevant flags. 405 */ 406 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0)) 407#ifdef CONFIG_RANDOM_KMALLOC_CACHES 408 /* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */ 409 return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed, 410 ilog2(RANDOM_KMALLOC_CACHES_NR + 1)); 411#else 412 return KMALLOC_NORMAL; 413#endif 414 415 /* 416 * At least one of the flags has to be set. Their priorities in 417 * decreasing order are: 418 * 1) __GFP_DMA 419 * 2) __GFP_RECLAIMABLE 420 * 3) __GFP_ACCOUNT 421 */ 422 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA)) 423 return KMALLOC_DMA; 424 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE)) 425 return KMALLOC_RECLAIM; 426 else 427 return KMALLOC_CGROUP; 428} 429 430/* 431 * Figure out which kmalloc slab an allocation of a certain size 432 * belongs to. 433 * 0 = zero alloc 434 * 1 = 65 .. 96 bytes 435 * 2 = 129 .. 192 bytes 436 * n = 2^(n-1)+1 .. 2^n 437 * 438 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized; 439 * typical usage is via kmalloc_index() and therefore evaluated at compile-time. 440 * Callers where !size_is_constant should only be test modules, where runtime 441 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab(). 442 */ 443static __always_inline unsigned int __kmalloc_index(size_t size, 444 bool size_is_constant) 445{ 446 if (!size) 447 return 0; 448 449 if (size <= KMALLOC_MIN_SIZE) 450 return KMALLOC_SHIFT_LOW; 451 452 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 453 return 1; 454 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 455 return 2; 456 if (size <= 8) return 3; 457 if (size <= 16) return 4; 458 if (size <= 32) return 5; 459 if (size <= 64) return 6; 460 if (size <= 128) return 7; 461 if (size <= 256) return 8; 462 if (size <= 512) return 9; 463 if (size <= 1024) return 10; 464 if (size <= 2 * 1024) return 11; 465 if (size <= 4 * 1024) return 12; 466 if (size <= 8 * 1024) return 13; 467 if (size <= 16 * 1024) return 14; 468 if (size <= 32 * 1024) return 15; 469 if (size <= 64 * 1024) return 16; 470 if (size <= 128 * 1024) return 17; 471 if (size <= 256 * 1024) return 18; 472 if (size <= 512 * 1024) return 19; 473 if (size <= 1024 * 1024) return 20; 474 if (size <= 2 * 1024 * 1024) return 21; 475 476 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant) 477 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()"); 478 else 479 BUG(); 480 481 /* Will never be reached. Needed because the compiler may complain */ 482 return -1; 483} 484static_assert(PAGE_SHIFT <= 20); 485#define kmalloc_index(s) __kmalloc_index(s, true) 486 487void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1); 488 489/** 490 * kmem_cache_alloc - Allocate an object 491 * @cachep: The cache to allocate from. 492 * @flags: See kmalloc(). 493 * 494 * Allocate an object from this cache. 495 * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags. 496 * 497 * Return: pointer to the new object or %NULL in case of error 498 */ 499void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) __assume_slab_alignment __malloc; 500void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 501 gfp_t gfpflags) __assume_slab_alignment __malloc; 502void kmem_cache_free(struct kmem_cache *s, void *objp); 503 504/* 505 * Bulk allocation and freeing operations. These are accelerated in an 506 * allocator specific way to avoid taking locks repeatedly or building 507 * metadata structures unnecessarily. 508 * 509 * Note that interrupts must be enabled when calling these functions. 510 */ 511void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); 512int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p); 513 514static __always_inline void kfree_bulk(size_t size, void **p) 515{ 516 kmem_cache_free_bulk(NULL, size, p); 517} 518 519void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment 520 __alloc_size(1); 521void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment 522 __malloc; 523 524void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size) 525 __assume_kmalloc_alignment __alloc_size(3); 526 527void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, 528 int node, size_t size) __assume_kmalloc_alignment 529 __alloc_size(4); 530void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment 531 __alloc_size(1); 532 533void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment 534 __alloc_size(1); 535 536/** 537 * kmalloc - allocate kernel memory 538 * @size: how many bytes of memory are required. 539 * @flags: describe the allocation context 540 * 541 * kmalloc is the normal method of allocating memory 542 * for objects smaller than page size in the kernel. 543 * 544 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN 545 * bytes. For @size of power of two bytes, the alignment is also guaranteed 546 * to be at least to the size. 547 * 548 * The @flags argument may be one of the GFP flags defined at 549 * include/linux/gfp_types.h and described at 550 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` 551 * 552 * The recommended usage of the @flags is described at 553 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` 554 * 555 * Below is a brief outline of the most useful GFP flags 556 * 557 * %GFP_KERNEL 558 * Allocate normal kernel ram. May sleep. 559 * 560 * %GFP_NOWAIT 561 * Allocation will not sleep. 562 * 563 * %GFP_ATOMIC 564 * Allocation will not sleep. May use emergency pools. 565 * 566 * Also it is possible to set different flags by OR'ing 567 * in one or more of the following additional @flags: 568 * 569 * %__GFP_ZERO 570 * Zero the allocated memory before returning. Also see kzalloc(). 571 * 572 * %__GFP_HIGH 573 * This allocation has high priority and may use emergency pools. 574 * 575 * %__GFP_NOFAIL 576 * Indicate that this allocation is in no way allowed to fail 577 * (think twice before using). 578 * 579 * %__GFP_NORETRY 580 * If memory is not immediately available, 581 * then give up at once. 582 * 583 * %__GFP_NOWARN 584 * If allocation fails, don't issue any warnings. 585 * 586 * %__GFP_RETRY_MAYFAIL 587 * Try really hard to succeed the allocation but fail 588 * eventually. 589 */ 590static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags) 591{ 592 if (__builtin_constant_p(size) && size) { 593 unsigned int index; 594 595 if (size > KMALLOC_MAX_CACHE_SIZE) 596 return kmalloc_large(size, flags); 597 598 index = kmalloc_index(size); 599 return kmalloc_trace( 600 kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], 601 flags, size); 602 } 603 return __kmalloc(size, flags); 604} 605 606static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node) 607{ 608 if (__builtin_constant_p(size) && size) { 609 unsigned int index; 610 611 if (size > KMALLOC_MAX_CACHE_SIZE) 612 return kmalloc_large_node(size, flags, node); 613 614 index = kmalloc_index(size); 615 return kmalloc_node_trace( 616 kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], 617 flags, node, size); 618 } 619 return __kmalloc_node(size, flags, node); 620} 621 622/** 623 * kmalloc_array - allocate memory for an array. 624 * @n: number of elements. 625 * @size: element size. 626 * @flags: the type of memory to allocate (see kmalloc). 627 */ 628static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags) 629{ 630 size_t bytes; 631 632 if (unlikely(check_mul_overflow(n, size, &bytes))) 633 return NULL; 634 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 635 return kmalloc(bytes, flags); 636 return __kmalloc(bytes, flags); 637} 638 639/** 640 * krealloc_array - reallocate memory for an array. 641 * @p: pointer to the memory chunk to reallocate 642 * @new_n: new number of elements to alloc 643 * @new_size: new size of a single member of the array 644 * @flags: the type of memory to allocate (see kmalloc) 645 */ 646static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p, 647 size_t new_n, 648 size_t new_size, 649 gfp_t flags) 650{ 651 size_t bytes; 652 653 if (unlikely(check_mul_overflow(new_n, new_size, &bytes))) 654 return NULL; 655 656 return krealloc(p, bytes, flags); 657} 658 659/** 660 * kcalloc - allocate memory for an array. The memory is set to zero. 661 * @n: number of elements. 662 * @size: element size. 663 * @flags: the type of memory to allocate (see kmalloc). 664 */ 665static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags) 666{ 667 return kmalloc_array(n, size, flags | __GFP_ZERO); 668} 669 670void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node, 671 unsigned long caller) __alloc_size(1); 672#define kmalloc_node_track_caller(size, flags, node) \ 673 __kmalloc_node_track_caller(size, flags, node, \ 674 _RET_IP_) 675 676/* 677 * kmalloc_track_caller is a special version of kmalloc that records the 678 * calling function of the routine calling it for slab leak tracking instead 679 * of just the calling function (confusing, eh?). 680 * It's useful when the call to kmalloc comes from a widely-used standard 681 * allocator where we care about the real place the memory allocation 682 * request comes from. 683 */ 684#define kmalloc_track_caller(size, flags) \ 685 __kmalloc_node_track_caller(size, flags, \ 686 NUMA_NO_NODE, _RET_IP_) 687 688static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, 689 int node) 690{ 691 size_t bytes; 692 693 if (unlikely(check_mul_overflow(n, size, &bytes))) 694 return NULL; 695 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 696 return kmalloc_node(bytes, flags, node); 697 return __kmalloc_node(bytes, flags, node); 698} 699 700static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) 701{ 702 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); 703} 704 705/* 706 * Shortcuts 707 */ 708static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 709{ 710 return kmem_cache_alloc(k, flags | __GFP_ZERO); 711} 712 713/** 714 * kzalloc - allocate memory. The memory is set to zero. 715 * @size: how many bytes of memory are required. 716 * @flags: the type of memory to allocate (see kmalloc). 717 */ 718static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags) 719{ 720 return kmalloc(size, flags | __GFP_ZERO); 721} 722 723/** 724 * kzalloc_node - allocate zeroed memory from a particular memory node. 725 * @size: how many bytes of memory are required. 726 * @flags: the type of memory to allocate (see kmalloc). 727 * @node: memory node from which to allocate 728 */ 729static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node) 730{ 731 return kmalloc_node(size, flags | __GFP_ZERO, node); 732} 733 734extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1); 735static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags) 736{ 737 return kvmalloc_node(size, flags, NUMA_NO_NODE); 738} 739static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node) 740{ 741 return kvmalloc_node(size, flags | __GFP_ZERO, node); 742} 743static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags) 744{ 745 return kvmalloc(size, flags | __GFP_ZERO); 746} 747 748static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 749{ 750 size_t bytes; 751 752 if (unlikely(check_mul_overflow(n, size, &bytes))) 753 return NULL; 754 755 return kvmalloc(bytes, flags); 756} 757 758static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags) 759{ 760 return kvmalloc_array(n, size, flags | __GFP_ZERO); 761} 762 763extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) 764 __realloc_size(3); 765extern void kvfree(const void *addr); 766extern void kvfree_sensitive(const void *addr, size_t len); 767 768unsigned int kmem_cache_size(struct kmem_cache *s); 769 770/** 771 * kmalloc_size_roundup - Report allocation bucket size for the given size 772 * 773 * @size: Number of bytes to round up from. 774 * 775 * This returns the number of bytes that would be available in a kmalloc() 776 * allocation of @size bytes. For example, a 126 byte request would be 777 * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly 778 * for the general-purpose kmalloc()-based allocations, and is not for the 779 * pre-sized kmem_cache_alloc()-based allocations.) 780 * 781 * Use this to kmalloc() the full bucket size ahead of time instead of using 782 * ksize() to query the size after an allocation. 783 */ 784size_t kmalloc_size_roundup(size_t size); 785 786void __init kmem_cache_init_late(void); 787 788#if defined(CONFIG_SMP) && defined(CONFIG_SLAB) 789int slab_prepare_cpu(unsigned int cpu); 790int slab_dead_cpu(unsigned int cpu); 791#else 792#define slab_prepare_cpu NULL 793#define slab_dead_cpu NULL 794#endif 795 796#endif /* _LINUX_SLAB_H */