at v6.6 146 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8 */ 9 10#ifndef _LINUX_SKBUFF_H 11#define _LINUX_SKBUFF_H 12 13#include <linux/kernel.h> 14#include <linux/compiler.h> 15#include <linux/time.h> 16#include <linux/bug.h> 17#include <linux/bvec.h> 18#include <linux/cache.h> 19#include <linux/rbtree.h> 20#include <linux/socket.h> 21#include <linux/refcount.h> 22 23#include <linux/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <net/checksum.h> 27#include <linux/rcupdate.h> 28#include <linux/dma-mapping.h> 29#include <linux/netdev_features.h> 30#include <net/flow_dissector.h> 31#include <linux/in6.h> 32#include <linux/if_packet.h> 33#include <linux/llist.h> 34#include <net/flow.h> 35#if IS_ENABLED(CONFIG_NF_CONNTRACK) 36#include <linux/netfilter/nf_conntrack_common.h> 37#endif 38#include <net/net_debug.h> 39#include <net/dropreason-core.h> 40 41/** 42 * DOC: skb checksums 43 * 44 * The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * IP checksum related features 48 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 49 * 50 * Drivers advertise checksum offload capabilities in the features of a device. 51 * From the stack's point of view these are capabilities offered by the driver. 52 * A driver typically only advertises features that it is capable of offloading 53 * to its device. 54 * 55 * .. flat-table:: Checksum related device features 56 * :widths: 1 10 57 * 58 * * - %NETIF_F_HW_CSUM 59 * - The driver (or its device) is able to compute one 60 * IP (one's complement) checksum for any combination 61 * of protocols or protocol layering. The checksum is 62 * computed and set in a packet per the CHECKSUM_PARTIAL 63 * interface (see below). 64 * 65 * * - %NETIF_F_IP_CSUM 66 * - Driver (device) is only able to checksum plain 67 * TCP or UDP packets over IPv4. These are specifically 68 * unencapsulated packets of the form IPv4|TCP or 69 * IPv4|UDP where the Protocol field in the IPv4 header 70 * is TCP or UDP. The IPv4 header may contain IP options. 71 * This feature cannot be set in features for a device 72 * with NETIF_F_HW_CSUM also set. This feature is being 73 * DEPRECATED (see below). 74 * 75 * * - %NETIF_F_IPV6_CSUM 76 * - Driver (device) is only able to checksum plain 77 * TCP or UDP packets over IPv6. These are specifically 78 * unencapsulated packets of the form IPv6|TCP or 79 * IPv6|UDP where the Next Header field in the IPv6 80 * header is either TCP or UDP. IPv6 extension headers 81 * are not supported with this feature. This feature 82 * cannot be set in features for a device with 83 * NETIF_F_HW_CSUM also set. This feature is being 84 * DEPRECATED (see below). 85 * 86 * * - %NETIF_F_RXCSUM 87 * - Driver (device) performs receive checksum offload. 88 * This flag is only used to disable the RX checksum 89 * feature for a device. The stack will accept receive 90 * checksum indication in packets received on a device 91 * regardless of whether NETIF_F_RXCSUM is set. 92 * 93 * Checksumming of received packets by device 94 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 95 * 96 * Indication of checksum verification is set in &sk_buff.ip_summed. 97 * Possible values are: 98 * 99 * - %CHECKSUM_NONE 100 * 101 * Device did not checksum this packet e.g. due to lack of capabilities. 102 * The packet contains full (though not verified) checksum in packet but 103 * not in skb->csum. Thus, skb->csum is undefined in this case. 104 * 105 * - %CHECKSUM_UNNECESSARY 106 * 107 * The hardware you're dealing with doesn't calculate the full checksum 108 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 109 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 110 * if their checksums are okay. &sk_buff.csum is still undefined in this case 111 * though. A driver or device must never modify the checksum field in the 112 * packet even if checksum is verified. 113 * 114 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 115 * 116 * - TCP: IPv6 and IPv4. 117 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 118 * zero UDP checksum for either IPv4 or IPv6, the networking stack 119 * may perform further validation in this case. 120 * - GRE: only if the checksum is present in the header. 121 * - SCTP: indicates the CRC in SCTP header has been validated. 122 * - FCOE: indicates the CRC in FC frame has been validated. 123 * 124 * &sk_buff.csum_level indicates the number of consecutive checksums found in 125 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 126 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 127 * and a device is able to verify the checksums for UDP (possibly zero), 128 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 129 * two. If the device were only able to verify the UDP checksum and not 130 * GRE, either because it doesn't support GRE checksum or because GRE 131 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 132 * not considered in this case). 133 * 134 * - %CHECKSUM_COMPLETE 135 * 136 * This is the most generic way. The device supplied checksum of the _whole_ 137 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 138 * hardware doesn't need to parse L3/L4 headers to implement this. 139 * 140 * Notes: 141 * 142 * - Even if device supports only some protocols, but is able to produce 143 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 144 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 145 * 146 * - %CHECKSUM_PARTIAL 147 * 148 * A checksum is set up to be offloaded to a device as described in the 149 * output description for CHECKSUM_PARTIAL. This may occur on a packet 150 * received directly from another Linux OS, e.g., a virtualized Linux kernel 151 * on the same host, or it may be set in the input path in GRO or remote 152 * checksum offload. For the purposes of checksum verification, the checksum 153 * referred to by skb->csum_start + skb->csum_offset and any preceding 154 * checksums in the packet are considered verified. Any checksums in the 155 * packet that are after the checksum being offloaded are not considered to 156 * be verified. 157 * 158 * Checksumming on transmit for non-GSO 159 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 160 * 161 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 162 * Values are: 163 * 164 * - %CHECKSUM_PARTIAL 165 * 166 * The driver is required to checksum the packet as seen by hard_start_xmit() 167 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 168 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 169 * A driver may verify that the 170 * csum_start and csum_offset values are valid values given the length and 171 * offset of the packet, but it should not attempt to validate that the 172 * checksum refers to a legitimate transport layer checksum -- it is the 173 * purview of the stack to validate that csum_start and csum_offset are set 174 * correctly. 175 * 176 * When the stack requests checksum offload for a packet, the driver MUST 177 * ensure that the checksum is set correctly. A driver can either offload the 178 * checksum calculation to the device, or call skb_checksum_help (in the case 179 * that the device does not support offload for a particular checksum). 180 * 181 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 182 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 183 * checksum offload capability. 184 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 185 * on network device checksumming capabilities: if a packet does not match 186 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 187 * &sk_buff.csum_not_inet, see :ref:`crc`) 188 * is called to resolve the checksum. 189 * 190 * - %CHECKSUM_NONE 191 * 192 * The skb was already checksummed by the protocol, or a checksum is not 193 * required. 194 * 195 * - %CHECKSUM_UNNECESSARY 196 * 197 * This has the same meaning as CHECKSUM_NONE for checksum offload on 198 * output. 199 * 200 * - %CHECKSUM_COMPLETE 201 * 202 * Not used in checksum output. If a driver observes a packet with this value 203 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 204 * 205 * .. _crc: 206 * 207 * Non-IP checksum (CRC) offloads 208 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 209 * 210 * .. flat-table:: 211 * :widths: 1 10 212 * 213 * * - %NETIF_F_SCTP_CRC 214 * - This feature indicates that a device is capable of 215 * offloading the SCTP CRC in a packet. To perform this offload the stack 216 * will set csum_start and csum_offset accordingly, set ip_summed to 217 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 218 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 219 * A driver that supports both IP checksum offload and SCTP CRC32c offload 220 * must verify which offload is configured for a packet by testing the 221 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 222 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 223 * 224 * * - %NETIF_F_FCOE_CRC 225 * - This feature indicates that a device is capable of offloading the FCOE 226 * CRC in a packet. To perform this offload the stack will set ip_summed 227 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 228 * accordingly. Note that there is no indication in the skbuff that the 229 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 230 * both IP checksum offload and FCOE CRC offload must verify which offload 231 * is configured for a packet, presumably by inspecting packet headers. 232 * 233 * Checksumming on output with GSO 234 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 235 * 236 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 237 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 238 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 239 * part of the GSO operation is implied. If a checksum is being offloaded 240 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 241 * csum_offset are set to refer to the outermost checksum being offloaded 242 * (two offloaded checksums are possible with UDP encapsulation). 243 */ 244 245/* Don't change this without changing skb_csum_unnecessary! */ 246#define CHECKSUM_NONE 0 247#define CHECKSUM_UNNECESSARY 1 248#define CHECKSUM_COMPLETE 2 249#define CHECKSUM_PARTIAL 3 250 251/* Maximum value in skb->csum_level */ 252#define SKB_MAX_CSUM_LEVEL 3 253 254#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 255#define SKB_WITH_OVERHEAD(X) \ 256 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 257 258/* For X bytes available in skb->head, what is the minimal 259 * allocation needed, knowing struct skb_shared_info needs 260 * to be aligned. 261 */ 262#define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 263 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 264 265#define SKB_MAX_ORDER(X, ORDER) \ 266 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 267#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 268#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 269 270/* return minimum truesize of one skb containing X bytes of data */ 271#define SKB_TRUESIZE(X) ((X) + \ 272 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 273 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 274 275struct ahash_request; 276struct net_device; 277struct scatterlist; 278struct pipe_inode_info; 279struct iov_iter; 280struct napi_struct; 281struct bpf_prog; 282union bpf_attr; 283struct skb_ext; 284struct ts_config; 285 286#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 287struct nf_bridge_info { 288 enum { 289 BRNF_PROTO_UNCHANGED, 290 BRNF_PROTO_8021Q, 291 BRNF_PROTO_PPPOE 292 } orig_proto:8; 293 u8 pkt_otherhost:1; 294 u8 in_prerouting:1; 295 u8 bridged_dnat:1; 296 u8 sabotage_in_done:1; 297 __u16 frag_max_size; 298 struct net_device *physindev; 299 300 /* always valid & non-NULL from FORWARD on, for physdev match */ 301 struct net_device *physoutdev; 302 union { 303 /* prerouting: detect dnat in orig/reply direction */ 304 __be32 ipv4_daddr; 305 struct in6_addr ipv6_daddr; 306 307 /* after prerouting + nat detected: store original source 308 * mac since neigh resolution overwrites it, only used while 309 * skb is out in neigh layer. 310 */ 311 char neigh_header[8]; 312 }; 313}; 314#endif 315 316#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 317/* Chain in tc_skb_ext will be used to share the tc chain with 318 * ovs recirc_id. It will be set to the current chain by tc 319 * and read by ovs to recirc_id. 320 */ 321struct tc_skb_ext { 322 union { 323 u64 act_miss_cookie; 324 __u32 chain; 325 }; 326 __u16 mru; 327 __u16 zone; 328 u8 post_ct:1; 329 u8 post_ct_snat:1; 330 u8 post_ct_dnat:1; 331 u8 act_miss:1; /* Set if act_miss_cookie is used */ 332 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ 333}; 334#endif 335 336struct sk_buff_head { 337 /* These two members must be first to match sk_buff. */ 338 struct_group_tagged(sk_buff_list, list, 339 struct sk_buff *next; 340 struct sk_buff *prev; 341 ); 342 343 __u32 qlen; 344 spinlock_t lock; 345}; 346 347struct sk_buff; 348 349#ifndef CONFIG_MAX_SKB_FRAGS 350# define CONFIG_MAX_SKB_FRAGS 17 351#endif 352 353#define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS 354 355extern int sysctl_max_skb_frags; 356 357/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 358 * segment using its current segmentation instead. 359 */ 360#define GSO_BY_FRAGS 0xFFFF 361 362typedef struct bio_vec skb_frag_t; 363 364/** 365 * skb_frag_size() - Returns the size of a skb fragment 366 * @frag: skb fragment 367 */ 368static inline unsigned int skb_frag_size(const skb_frag_t *frag) 369{ 370 return frag->bv_len; 371} 372 373/** 374 * skb_frag_size_set() - Sets the size of a skb fragment 375 * @frag: skb fragment 376 * @size: size of fragment 377 */ 378static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 379{ 380 frag->bv_len = size; 381} 382 383/** 384 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 385 * @frag: skb fragment 386 * @delta: value to add 387 */ 388static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 389{ 390 frag->bv_len += delta; 391} 392 393/** 394 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 395 * @frag: skb fragment 396 * @delta: value to subtract 397 */ 398static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 399{ 400 frag->bv_len -= delta; 401} 402 403/** 404 * skb_frag_must_loop - Test if %p is a high memory page 405 * @p: fragment's page 406 */ 407static inline bool skb_frag_must_loop(struct page *p) 408{ 409#if defined(CONFIG_HIGHMEM) 410 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 411 return true; 412#endif 413 return false; 414} 415 416/** 417 * skb_frag_foreach_page - loop over pages in a fragment 418 * 419 * @f: skb frag to operate on 420 * @f_off: offset from start of f->bv_page 421 * @f_len: length from f_off to loop over 422 * @p: (temp var) current page 423 * @p_off: (temp var) offset from start of current page, 424 * non-zero only on first page. 425 * @p_len: (temp var) length in current page, 426 * < PAGE_SIZE only on first and last page. 427 * @copied: (temp var) length so far, excluding current p_len. 428 * 429 * A fragment can hold a compound page, in which case per-page 430 * operations, notably kmap_atomic, must be called for each 431 * regular page. 432 */ 433#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 434 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 435 p_off = (f_off) & (PAGE_SIZE - 1), \ 436 p_len = skb_frag_must_loop(p) ? \ 437 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 438 copied = 0; \ 439 copied < f_len; \ 440 copied += p_len, p++, p_off = 0, \ 441 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 442 443/** 444 * struct skb_shared_hwtstamps - hardware time stamps 445 * @hwtstamp: hardware time stamp transformed into duration 446 * since arbitrary point in time 447 * @netdev_data: address/cookie of network device driver used as 448 * reference to actual hardware time stamp 449 * 450 * Software time stamps generated by ktime_get_real() are stored in 451 * skb->tstamp. 452 * 453 * hwtstamps can only be compared against other hwtstamps from 454 * the same device. 455 * 456 * This structure is attached to packets as part of the 457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 458 */ 459struct skb_shared_hwtstamps { 460 union { 461 ktime_t hwtstamp; 462 void *netdev_data; 463 }; 464}; 465 466/* Definitions for tx_flags in struct skb_shared_info */ 467enum { 468 /* generate hardware time stamp */ 469 SKBTX_HW_TSTAMP = 1 << 0, 470 471 /* generate software time stamp when queueing packet to NIC */ 472 SKBTX_SW_TSTAMP = 1 << 1, 473 474 /* device driver is going to provide hardware time stamp */ 475 SKBTX_IN_PROGRESS = 1 << 2, 476 477 /* generate hardware time stamp based on cycles if supported */ 478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 479 480 /* generate wifi status information (where possible) */ 481 SKBTX_WIFI_STATUS = 1 << 4, 482 483 /* determine hardware time stamp based on time or cycles */ 484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 485 486 /* generate software time stamp when entering packet scheduling */ 487 SKBTX_SCHED_TSTAMP = 1 << 6, 488}; 489 490#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 491 SKBTX_SCHED_TSTAMP) 492#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 493 SKBTX_HW_TSTAMP_USE_CYCLES | \ 494 SKBTX_ANY_SW_TSTAMP) 495 496/* Definitions for flags in struct skb_shared_info */ 497enum { 498 /* use zcopy routines */ 499 SKBFL_ZEROCOPY_ENABLE = BIT(0), 500 501 /* This indicates at least one fragment might be overwritten 502 * (as in vmsplice(), sendfile() ...) 503 * If we need to compute a TX checksum, we'll need to copy 504 * all frags to avoid possible bad checksum 505 */ 506 SKBFL_SHARED_FRAG = BIT(1), 507 508 /* segment contains only zerocopy data and should not be 509 * charged to the kernel memory. 510 */ 511 SKBFL_PURE_ZEROCOPY = BIT(2), 512 513 SKBFL_DONT_ORPHAN = BIT(3), 514 515 /* page references are managed by the ubuf_info, so it's safe to 516 * use frags only up until ubuf_info is released 517 */ 518 SKBFL_MANAGED_FRAG_REFS = BIT(4), 519}; 520 521#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 522#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 524 525/* 526 * The callback notifies userspace to release buffers when skb DMA is done in 527 * lower device, the skb last reference should be 0 when calling this. 528 * The zerocopy_success argument is true if zero copy transmit occurred, 529 * false on data copy or out of memory error caused by data copy attempt. 530 * The ctx field is used to track device context. 531 * The desc field is used to track userspace buffer index. 532 */ 533struct ubuf_info { 534 void (*callback)(struct sk_buff *, struct ubuf_info *, 535 bool zerocopy_success); 536 refcount_t refcnt; 537 u8 flags; 538}; 539 540struct ubuf_info_msgzc { 541 struct ubuf_info ubuf; 542 543 union { 544 struct { 545 unsigned long desc; 546 void *ctx; 547 }; 548 struct { 549 u32 id; 550 u16 len; 551 u16 zerocopy:1; 552 u32 bytelen; 553 }; 554 }; 555 556 struct mmpin { 557 struct user_struct *user; 558 unsigned int num_pg; 559 } mmp; 560}; 561 562#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 563#define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 564 ubuf) 565 566int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 567void mm_unaccount_pinned_pages(struct mmpin *mmp); 568 569/* This data is invariant across clones and lives at 570 * the end of the header data, ie. at skb->end. 571 */ 572struct skb_shared_info { 573 __u8 flags; 574 __u8 meta_len; 575 __u8 nr_frags; 576 __u8 tx_flags; 577 unsigned short gso_size; 578 /* Warning: this field is not always filled in (UFO)! */ 579 unsigned short gso_segs; 580 struct sk_buff *frag_list; 581 struct skb_shared_hwtstamps hwtstamps; 582 unsigned int gso_type; 583 u32 tskey; 584 585 /* 586 * Warning : all fields before dataref are cleared in __alloc_skb() 587 */ 588 atomic_t dataref; 589 unsigned int xdp_frags_size; 590 591 /* Intermediate layers must ensure that destructor_arg 592 * remains valid until skb destructor */ 593 void * destructor_arg; 594 595 /* must be last field, see pskb_expand_head() */ 596 skb_frag_t frags[MAX_SKB_FRAGS]; 597}; 598 599/** 600 * DOC: dataref and headerless skbs 601 * 602 * Transport layers send out clones of payload skbs they hold for 603 * retransmissions. To allow lower layers of the stack to prepend their headers 604 * we split &skb_shared_info.dataref into two halves. 605 * The lower 16 bits count the overall number of references. 606 * The higher 16 bits indicate how many of the references are payload-only. 607 * skb_header_cloned() checks if skb is allowed to add / write the headers. 608 * 609 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 610 * (via __skb_header_release()). Any clone created from marked skb will get 611 * &sk_buff.hdr_len populated with the available headroom. 612 * If there's the only clone in existence it's able to modify the headroom 613 * at will. The sequence of calls inside the transport layer is:: 614 * 615 * <alloc skb> 616 * skb_reserve() 617 * __skb_header_release() 618 * skb_clone() 619 * // send the clone down the stack 620 * 621 * This is not a very generic construct and it depends on the transport layers 622 * doing the right thing. In practice there's usually only one payload-only skb. 623 * Having multiple payload-only skbs with different lengths of hdr_len is not 624 * possible. The payload-only skbs should never leave their owner. 625 */ 626#define SKB_DATAREF_SHIFT 16 627#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 628 629 630enum { 631 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 632 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 633 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 634}; 635 636enum { 637 SKB_GSO_TCPV4 = 1 << 0, 638 639 /* This indicates the skb is from an untrusted source. */ 640 SKB_GSO_DODGY = 1 << 1, 641 642 /* This indicates the tcp segment has CWR set. */ 643 SKB_GSO_TCP_ECN = 1 << 2, 644 645 SKB_GSO_TCP_FIXEDID = 1 << 3, 646 647 SKB_GSO_TCPV6 = 1 << 4, 648 649 SKB_GSO_FCOE = 1 << 5, 650 651 SKB_GSO_GRE = 1 << 6, 652 653 SKB_GSO_GRE_CSUM = 1 << 7, 654 655 SKB_GSO_IPXIP4 = 1 << 8, 656 657 SKB_GSO_IPXIP6 = 1 << 9, 658 659 SKB_GSO_UDP_TUNNEL = 1 << 10, 660 661 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 662 663 SKB_GSO_PARTIAL = 1 << 12, 664 665 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 666 667 SKB_GSO_SCTP = 1 << 14, 668 669 SKB_GSO_ESP = 1 << 15, 670 671 SKB_GSO_UDP = 1 << 16, 672 673 SKB_GSO_UDP_L4 = 1 << 17, 674 675 SKB_GSO_FRAGLIST = 1 << 18, 676}; 677 678#if BITS_PER_LONG > 32 679#define NET_SKBUFF_DATA_USES_OFFSET 1 680#endif 681 682#ifdef NET_SKBUFF_DATA_USES_OFFSET 683typedef unsigned int sk_buff_data_t; 684#else 685typedef unsigned char *sk_buff_data_t; 686#endif 687 688/** 689 * DOC: Basic sk_buff geometry 690 * 691 * struct sk_buff itself is a metadata structure and does not hold any packet 692 * data. All the data is held in associated buffers. 693 * 694 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 695 * into two parts: 696 * 697 * - data buffer, containing headers and sometimes payload; 698 * this is the part of the skb operated on by the common helpers 699 * such as skb_put() or skb_pull(); 700 * - shared info (struct skb_shared_info) which holds an array of pointers 701 * to read-only data in the (page, offset, length) format. 702 * 703 * Optionally &skb_shared_info.frag_list may point to another skb. 704 * 705 * Basic diagram may look like this:: 706 * 707 * --------------- 708 * | sk_buff | 709 * --------------- 710 * ,--------------------------- + head 711 * / ,----------------- + data 712 * / / ,----------- + tail 713 * | | | , + end 714 * | | | | 715 * v v v v 716 * ----------------------------------------------- 717 * | headroom | data | tailroom | skb_shared_info | 718 * ----------------------------------------------- 719 * + [page frag] 720 * + [page frag] 721 * + [page frag] 722 * + [page frag] --------- 723 * + frag_list --> | sk_buff | 724 * --------- 725 * 726 */ 727 728/** 729 * struct sk_buff - socket buffer 730 * @next: Next buffer in list 731 * @prev: Previous buffer in list 732 * @tstamp: Time we arrived/left 733 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 734 * for retransmit timer 735 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 736 * @list: queue head 737 * @ll_node: anchor in an llist (eg socket defer_list) 738 * @sk: Socket we are owned by 739 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 740 * fragmentation management 741 * @dev: Device we arrived on/are leaving by 742 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 743 * @cb: Control buffer. Free for use by every layer. Put private vars here 744 * @_skb_refdst: destination entry (with norefcount bit) 745 * @sp: the security path, used for xfrm 746 * @len: Length of actual data 747 * @data_len: Data length 748 * @mac_len: Length of link layer header 749 * @hdr_len: writable header length of cloned skb 750 * @csum: Checksum (must include start/offset pair) 751 * @csum_start: Offset from skb->head where checksumming should start 752 * @csum_offset: Offset from csum_start where checksum should be stored 753 * @priority: Packet queueing priority 754 * @ignore_df: allow local fragmentation 755 * @cloned: Head may be cloned (check refcnt to be sure) 756 * @ip_summed: Driver fed us an IP checksum 757 * @nohdr: Payload reference only, must not modify header 758 * @pkt_type: Packet class 759 * @fclone: skbuff clone status 760 * @ipvs_property: skbuff is owned by ipvs 761 * @inner_protocol_type: whether the inner protocol is 762 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 763 * @remcsum_offload: remote checksum offload is enabled 764 * @offload_fwd_mark: Packet was L2-forwarded in hardware 765 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 766 * @tc_skip_classify: do not classify packet. set by IFB device 767 * @tc_at_ingress: used within tc_classify to distinguish in/egress 768 * @redirected: packet was redirected by packet classifier 769 * @from_ingress: packet was redirected from the ingress path 770 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 771 * @peeked: this packet has been seen already, so stats have been 772 * done for it, don't do them again 773 * @nf_trace: netfilter packet trace flag 774 * @protocol: Packet protocol from driver 775 * @destructor: Destruct function 776 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 777 * @_sk_redir: socket redirection information for skmsg 778 * @_nfct: Associated connection, if any (with nfctinfo bits) 779 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 780 * @skb_iif: ifindex of device we arrived on 781 * @tc_index: Traffic control index 782 * @hash: the packet hash 783 * @queue_mapping: Queue mapping for multiqueue devices 784 * @head_frag: skb was allocated from page fragments, 785 * not allocated by kmalloc() or vmalloc(). 786 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 787 * @pp_recycle: mark the packet for recycling instead of freeing (implies 788 * page_pool support on driver) 789 * @active_extensions: active extensions (skb_ext_id types) 790 * @ndisc_nodetype: router type (from link layer) 791 * @ooo_okay: allow the mapping of a socket to a queue to be changed 792 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 793 * ports. 794 * @sw_hash: indicates hash was computed in software stack 795 * @wifi_acked_valid: wifi_acked was set 796 * @wifi_acked: whether frame was acked on wifi or not 797 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 798 * @encapsulation: indicates the inner headers in the skbuff are valid 799 * @encap_hdr_csum: software checksum is needed 800 * @csum_valid: checksum is already valid 801 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 802 * @csum_complete_sw: checksum was completed by software 803 * @csum_level: indicates the number of consecutive checksums found in 804 * the packet minus one that have been verified as 805 * CHECKSUM_UNNECESSARY (max 3) 806 * @dst_pending_confirm: need to confirm neighbour 807 * @decrypted: Decrypted SKB 808 * @slow_gro: state present at GRO time, slower prepare step required 809 * @mono_delivery_time: When set, skb->tstamp has the 810 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 811 * skb->tstamp has the (rcv) timestamp at ingress and 812 * delivery_time at egress. 813 * @napi_id: id of the NAPI struct this skb came from 814 * @sender_cpu: (aka @napi_id) source CPU in XPS 815 * @alloc_cpu: CPU which did the skb allocation. 816 * @secmark: security marking 817 * @mark: Generic packet mark 818 * @reserved_tailroom: (aka @mark) number of bytes of free space available 819 * at the tail of an sk_buff 820 * @vlan_all: vlan fields (proto & tci) 821 * @vlan_proto: vlan encapsulation protocol 822 * @vlan_tci: vlan tag control information 823 * @inner_protocol: Protocol (encapsulation) 824 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 825 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 826 * @inner_transport_header: Inner transport layer header (encapsulation) 827 * @inner_network_header: Network layer header (encapsulation) 828 * @inner_mac_header: Link layer header (encapsulation) 829 * @transport_header: Transport layer header 830 * @network_header: Network layer header 831 * @mac_header: Link layer header 832 * @kcov_handle: KCOV remote handle for remote coverage collection 833 * @tail: Tail pointer 834 * @end: End pointer 835 * @head: Head of buffer 836 * @data: Data head pointer 837 * @truesize: Buffer size 838 * @users: User count - see {datagram,tcp}.c 839 * @extensions: allocated extensions, valid if active_extensions is nonzero 840 */ 841 842struct sk_buff { 843 union { 844 struct { 845 /* These two members must be first to match sk_buff_head. */ 846 struct sk_buff *next; 847 struct sk_buff *prev; 848 849 union { 850 struct net_device *dev; 851 /* Some protocols might use this space to store information, 852 * while device pointer would be NULL. 853 * UDP receive path is one user. 854 */ 855 unsigned long dev_scratch; 856 }; 857 }; 858 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 859 struct list_head list; 860 struct llist_node ll_node; 861 }; 862 863 union { 864 struct sock *sk; 865 int ip_defrag_offset; 866 }; 867 868 union { 869 ktime_t tstamp; 870 u64 skb_mstamp_ns; /* earliest departure time */ 871 }; 872 /* 873 * This is the control buffer. It is free to use for every 874 * layer. Please put your private variables there. If you 875 * want to keep them across layers you have to do a skb_clone() 876 * first. This is owned by whoever has the skb queued ATM. 877 */ 878 char cb[48] __aligned(8); 879 880 union { 881 struct { 882 unsigned long _skb_refdst; 883 void (*destructor)(struct sk_buff *skb); 884 }; 885 struct list_head tcp_tsorted_anchor; 886#ifdef CONFIG_NET_SOCK_MSG 887 unsigned long _sk_redir; 888#endif 889 }; 890 891#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 892 unsigned long _nfct; 893#endif 894 unsigned int len, 895 data_len; 896 __u16 mac_len, 897 hdr_len; 898 899 /* Following fields are _not_ copied in __copy_skb_header() 900 * Note that queue_mapping is here mostly to fill a hole. 901 */ 902 __u16 queue_mapping; 903 904/* if you move cloned around you also must adapt those constants */ 905#ifdef __BIG_ENDIAN_BITFIELD 906#define CLONED_MASK (1 << 7) 907#else 908#define CLONED_MASK 1 909#endif 910#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 911 912 /* private: */ 913 __u8 __cloned_offset[0]; 914 /* public: */ 915 __u8 cloned:1, 916 nohdr:1, 917 fclone:2, 918 peeked:1, 919 head_frag:1, 920 pfmemalloc:1, 921 pp_recycle:1; /* page_pool recycle indicator */ 922#ifdef CONFIG_SKB_EXTENSIONS 923 __u8 active_extensions; 924#endif 925 926 /* Fields enclosed in headers group are copied 927 * using a single memcpy() in __copy_skb_header() 928 */ 929 struct_group(headers, 930 931 /* private: */ 932 __u8 __pkt_type_offset[0]; 933 /* public: */ 934 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 935 __u8 ignore_df:1; 936 __u8 dst_pending_confirm:1; 937 __u8 ip_summed:2; 938 __u8 ooo_okay:1; 939 940 /* private: */ 941 __u8 __mono_tc_offset[0]; 942 /* public: */ 943 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 944#ifdef CONFIG_NET_XGRESS 945 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 946 __u8 tc_skip_classify:1; 947#endif 948 __u8 remcsum_offload:1; 949 __u8 csum_complete_sw:1; 950 __u8 csum_level:2; 951 __u8 inner_protocol_type:1; 952 953 __u8 l4_hash:1; 954 __u8 sw_hash:1; 955#ifdef CONFIG_WIRELESS 956 __u8 wifi_acked_valid:1; 957 __u8 wifi_acked:1; 958#endif 959 __u8 no_fcs:1; 960 /* Indicates the inner headers are valid in the skbuff. */ 961 __u8 encapsulation:1; 962 __u8 encap_hdr_csum:1; 963 __u8 csum_valid:1; 964#ifdef CONFIG_IPV6_NDISC_NODETYPE 965 __u8 ndisc_nodetype:2; 966#endif 967 968#if IS_ENABLED(CONFIG_IP_VS) 969 __u8 ipvs_property:1; 970#endif 971#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 972 __u8 nf_trace:1; 973#endif 974#ifdef CONFIG_NET_SWITCHDEV 975 __u8 offload_fwd_mark:1; 976 __u8 offload_l3_fwd_mark:1; 977#endif 978 __u8 redirected:1; 979#ifdef CONFIG_NET_REDIRECT 980 __u8 from_ingress:1; 981#endif 982#ifdef CONFIG_NETFILTER_SKIP_EGRESS 983 __u8 nf_skip_egress:1; 984#endif 985#ifdef CONFIG_TLS_DEVICE 986 __u8 decrypted:1; 987#endif 988 __u8 slow_gro:1; 989#if IS_ENABLED(CONFIG_IP_SCTP) 990 __u8 csum_not_inet:1; 991#endif 992 993#if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) 994 __u16 tc_index; /* traffic control index */ 995#endif 996 997 u16 alloc_cpu; 998 999 union { 1000 __wsum csum; 1001 struct { 1002 __u16 csum_start; 1003 __u16 csum_offset; 1004 }; 1005 }; 1006 __u32 priority; 1007 int skb_iif; 1008 __u32 hash; 1009 union { 1010 u32 vlan_all; 1011 struct { 1012 __be16 vlan_proto; 1013 __u16 vlan_tci; 1014 }; 1015 }; 1016#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1017 union { 1018 unsigned int napi_id; 1019 unsigned int sender_cpu; 1020 }; 1021#endif 1022#ifdef CONFIG_NETWORK_SECMARK 1023 __u32 secmark; 1024#endif 1025 1026 union { 1027 __u32 mark; 1028 __u32 reserved_tailroom; 1029 }; 1030 1031 union { 1032 __be16 inner_protocol; 1033 __u8 inner_ipproto; 1034 }; 1035 1036 __u16 inner_transport_header; 1037 __u16 inner_network_header; 1038 __u16 inner_mac_header; 1039 1040 __be16 protocol; 1041 __u16 transport_header; 1042 __u16 network_header; 1043 __u16 mac_header; 1044 1045#ifdef CONFIG_KCOV 1046 u64 kcov_handle; 1047#endif 1048 1049 ); /* end headers group */ 1050 1051 /* These elements must be at the end, see alloc_skb() for details. */ 1052 sk_buff_data_t tail; 1053 sk_buff_data_t end; 1054 unsigned char *head, 1055 *data; 1056 unsigned int truesize; 1057 refcount_t users; 1058 1059#ifdef CONFIG_SKB_EXTENSIONS 1060 /* only useable after checking ->active_extensions != 0 */ 1061 struct skb_ext *extensions; 1062#endif 1063}; 1064 1065/* if you move pkt_type around you also must adapt those constants */ 1066#ifdef __BIG_ENDIAN_BITFIELD 1067#define PKT_TYPE_MAX (7 << 5) 1068#else 1069#define PKT_TYPE_MAX 7 1070#endif 1071#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1072 1073/* if you move tc_at_ingress or mono_delivery_time 1074 * around, you also must adapt these constants. 1075 */ 1076#ifdef __BIG_ENDIAN_BITFIELD 1077#define SKB_MONO_DELIVERY_TIME_MASK (1 << 7) 1078#define TC_AT_INGRESS_MASK (1 << 6) 1079#else 1080#define SKB_MONO_DELIVERY_TIME_MASK (1 << 0) 1081#define TC_AT_INGRESS_MASK (1 << 1) 1082#endif 1083#define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) 1084 1085#ifdef __KERNEL__ 1086/* 1087 * Handling routines are only of interest to the kernel 1088 */ 1089 1090#define SKB_ALLOC_FCLONE 0x01 1091#define SKB_ALLOC_RX 0x02 1092#define SKB_ALLOC_NAPI 0x04 1093 1094/** 1095 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1096 * @skb: buffer 1097 */ 1098static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1099{ 1100 return unlikely(skb->pfmemalloc); 1101} 1102 1103/* 1104 * skb might have a dst pointer attached, refcounted or not. 1105 * _skb_refdst low order bit is set if refcount was _not_ taken 1106 */ 1107#define SKB_DST_NOREF 1UL 1108#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1109 1110/** 1111 * skb_dst - returns skb dst_entry 1112 * @skb: buffer 1113 * 1114 * Returns skb dst_entry, regardless of reference taken or not. 1115 */ 1116static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1117{ 1118 /* If refdst was not refcounted, check we still are in a 1119 * rcu_read_lock section 1120 */ 1121 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1122 !rcu_read_lock_held() && 1123 !rcu_read_lock_bh_held()); 1124 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1125} 1126 1127/** 1128 * skb_dst_set - sets skb dst 1129 * @skb: buffer 1130 * @dst: dst entry 1131 * 1132 * Sets skb dst, assuming a reference was taken on dst and should 1133 * be released by skb_dst_drop() 1134 */ 1135static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1136{ 1137 skb->slow_gro |= !!dst; 1138 skb->_skb_refdst = (unsigned long)dst; 1139} 1140 1141/** 1142 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1143 * @skb: buffer 1144 * @dst: dst entry 1145 * 1146 * Sets skb dst, assuming a reference was not taken on dst. 1147 * If dst entry is cached, we do not take reference and dst_release 1148 * will be avoided by refdst_drop. If dst entry is not cached, we take 1149 * reference, so that last dst_release can destroy the dst immediately. 1150 */ 1151static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1152{ 1153 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1154 skb->slow_gro |= !!dst; 1155 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1156} 1157 1158/** 1159 * skb_dst_is_noref - Test if skb dst isn't refcounted 1160 * @skb: buffer 1161 */ 1162static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1163{ 1164 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1165} 1166 1167/** 1168 * skb_rtable - Returns the skb &rtable 1169 * @skb: buffer 1170 */ 1171static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1172{ 1173 return (struct rtable *)skb_dst(skb); 1174} 1175 1176/* For mangling skb->pkt_type from user space side from applications 1177 * such as nft, tc, etc, we only allow a conservative subset of 1178 * possible pkt_types to be set. 1179*/ 1180static inline bool skb_pkt_type_ok(u32 ptype) 1181{ 1182 return ptype <= PACKET_OTHERHOST; 1183} 1184 1185/** 1186 * skb_napi_id - Returns the skb's NAPI id 1187 * @skb: buffer 1188 */ 1189static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1190{ 1191#ifdef CONFIG_NET_RX_BUSY_POLL 1192 return skb->napi_id; 1193#else 1194 return 0; 1195#endif 1196} 1197 1198static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) 1199{ 1200#ifdef CONFIG_WIRELESS 1201 return skb->wifi_acked_valid; 1202#else 1203 return 0; 1204#endif 1205} 1206 1207/** 1208 * skb_unref - decrement the skb's reference count 1209 * @skb: buffer 1210 * 1211 * Returns true if we can free the skb. 1212 */ 1213static inline bool skb_unref(struct sk_buff *skb) 1214{ 1215 if (unlikely(!skb)) 1216 return false; 1217 if (likely(refcount_read(&skb->users) == 1)) 1218 smp_rmb(); 1219 else if (likely(!refcount_dec_and_test(&skb->users))) 1220 return false; 1221 1222 return true; 1223} 1224 1225void __fix_address 1226kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1227 1228/** 1229 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1230 * @skb: buffer to free 1231 */ 1232static inline void kfree_skb(struct sk_buff *skb) 1233{ 1234 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1235} 1236 1237void skb_release_head_state(struct sk_buff *skb); 1238void kfree_skb_list_reason(struct sk_buff *segs, 1239 enum skb_drop_reason reason); 1240void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1241void skb_tx_error(struct sk_buff *skb); 1242 1243static inline void kfree_skb_list(struct sk_buff *segs) 1244{ 1245 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1246} 1247 1248#ifdef CONFIG_TRACEPOINTS 1249void consume_skb(struct sk_buff *skb); 1250#else 1251static inline void consume_skb(struct sk_buff *skb) 1252{ 1253 return kfree_skb(skb); 1254} 1255#endif 1256 1257void __consume_stateless_skb(struct sk_buff *skb); 1258void __kfree_skb(struct sk_buff *skb); 1259extern struct kmem_cache *skbuff_cache; 1260 1261void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1262bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1263 bool *fragstolen, int *delta_truesize); 1264 1265struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1266 int node); 1267struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1268struct sk_buff *build_skb(void *data, unsigned int frag_size); 1269struct sk_buff *build_skb_around(struct sk_buff *skb, 1270 void *data, unsigned int frag_size); 1271void skb_attempt_defer_free(struct sk_buff *skb); 1272 1273struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1274struct sk_buff *slab_build_skb(void *data); 1275 1276/** 1277 * alloc_skb - allocate a network buffer 1278 * @size: size to allocate 1279 * @priority: allocation mask 1280 * 1281 * This function is a convenient wrapper around __alloc_skb(). 1282 */ 1283static inline struct sk_buff *alloc_skb(unsigned int size, 1284 gfp_t priority) 1285{ 1286 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1287} 1288 1289struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1290 unsigned long data_len, 1291 int max_page_order, 1292 int *errcode, 1293 gfp_t gfp_mask); 1294struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1295 1296/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1297struct sk_buff_fclones { 1298 struct sk_buff skb1; 1299 1300 struct sk_buff skb2; 1301 1302 refcount_t fclone_ref; 1303}; 1304 1305/** 1306 * skb_fclone_busy - check if fclone is busy 1307 * @sk: socket 1308 * @skb: buffer 1309 * 1310 * Returns true if skb is a fast clone, and its clone is not freed. 1311 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1312 * so we also check that didn't happen. 1313 */ 1314static inline bool skb_fclone_busy(const struct sock *sk, 1315 const struct sk_buff *skb) 1316{ 1317 const struct sk_buff_fclones *fclones; 1318 1319 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1320 1321 return skb->fclone == SKB_FCLONE_ORIG && 1322 refcount_read(&fclones->fclone_ref) > 1 && 1323 READ_ONCE(fclones->skb2.sk) == sk; 1324} 1325 1326/** 1327 * alloc_skb_fclone - allocate a network buffer from fclone cache 1328 * @size: size to allocate 1329 * @priority: allocation mask 1330 * 1331 * This function is a convenient wrapper around __alloc_skb(). 1332 */ 1333static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1334 gfp_t priority) 1335{ 1336 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1337} 1338 1339struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1340void skb_headers_offset_update(struct sk_buff *skb, int off); 1341int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1342struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1343void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1344struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1345struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1346 gfp_t gfp_mask, bool fclone); 1347static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1348 gfp_t gfp_mask) 1349{ 1350 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1351} 1352 1353int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1354struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1355 unsigned int headroom); 1356struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1357struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1358 int newtailroom, gfp_t priority); 1359int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1360 int offset, int len); 1361int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1362 int offset, int len); 1363int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1364int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1365 1366/** 1367 * skb_pad - zero pad the tail of an skb 1368 * @skb: buffer to pad 1369 * @pad: space to pad 1370 * 1371 * Ensure that a buffer is followed by a padding area that is zero 1372 * filled. Used by network drivers which may DMA or transfer data 1373 * beyond the buffer end onto the wire. 1374 * 1375 * May return error in out of memory cases. The skb is freed on error. 1376 */ 1377static inline int skb_pad(struct sk_buff *skb, int pad) 1378{ 1379 return __skb_pad(skb, pad, true); 1380} 1381#define dev_kfree_skb(a) consume_skb(a) 1382 1383int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1384 int offset, size_t size, size_t max_frags); 1385 1386struct skb_seq_state { 1387 __u32 lower_offset; 1388 __u32 upper_offset; 1389 __u32 frag_idx; 1390 __u32 stepped_offset; 1391 struct sk_buff *root_skb; 1392 struct sk_buff *cur_skb; 1393 __u8 *frag_data; 1394 __u32 frag_off; 1395}; 1396 1397void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1398 unsigned int to, struct skb_seq_state *st); 1399unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1400 struct skb_seq_state *st); 1401void skb_abort_seq_read(struct skb_seq_state *st); 1402 1403unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1404 unsigned int to, struct ts_config *config); 1405 1406/* 1407 * Packet hash types specify the type of hash in skb_set_hash. 1408 * 1409 * Hash types refer to the protocol layer addresses which are used to 1410 * construct a packet's hash. The hashes are used to differentiate or identify 1411 * flows of the protocol layer for the hash type. Hash types are either 1412 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1413 * 1414 * Properties of hashes: 1415 * 1416 * 1) Two packets in different flows have different hash values 1417 * 2) Two packets in the same flow should have the same hash value 1418 * 1419 * A hash at a higher layer is considered to be more specific. A driver should 1420 * set the most specific hash possible. 1421 * 1422 * A driver cannot indicate a more specific hash than the layer at which a hash 1423 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1424 * 1425 * A driver may indicate a hash level which is less specific than the 1426 * actual layer the hash was computed on. For instance, a hash computed 1427 * at L4 may be considered an L3 hash. This should only be done if the 1428 * driver can't unambiguously determine that the HW computed the hash at 1429 * the higher layer. Note that the "should" in the second property above 1430 * permits this. 1431 */ 1432enum pkt_hash_types { 1433 PKT_HASH_TYPE_NONE, /* Undefined type */ 1434 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1435 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1436 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1437}; 1438 1439static inline void skb_clear_hash(struct sk_buff *skb) 1440{ 1441 skb->hash = 0; 1442 skb->sw_hash = 0; 1443 skb->l4_hash = 0; 1444} 1445 1446static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1447{ 1448 if (!skb->l4_hash) 1449 skb_clear_hash(skb); 1450} 1451 1452static inline void 1453__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1454{ 1455 skb->l4_hash = is_l4; 1456 skb->sw_hash = is_sw; 1457 skb->hash = hash; 1458} 1459 1460static inline void 1461skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1462{ 1463 /* Used by drivers to set hash from HW */ 1464 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1465} 1466 1467static inline void 1468__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1469{ 1470 __skb_set_hash(skb, hash, true, is_l4); 1471} 1472 1473void __skb_get_hash(struct sk_buff *skb); 1474u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1475u32 skb_get_poff(const struct sk_buff *skb); 1476u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1477 const struct flow_keys_basic *keys, int hlen); 1478__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1479 const void *data, int hlen_proto); 1480 1481static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1482 int thoff, u8 ip_proto) 1483{ 1484 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1485} 1486 1487void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1488 const struct flow_dissector_key *key, 1489 unsigned int key_count); 1490 1491struct bpf_flow_dissector; 1492u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1493 __be16 proto, int nhoff, int hlen, unsigned int flags); 1494 1495bool __skb_flow_dissect(const struct net *net, 1496 const struct sk_buff *skb, 1497 struct flow_dissector *flow_dissector, 1498 void *target_container, const void *data, 1499 __be16 proto, int nhoff, int hlen, unsigned int flags); 1500 1501static inline bool skb_flow_dissect(const struct sk_buff *skb, 1502 struct flow_dissector *flow_dissector, 1503 void *target_container, unsigned int flags) 1504{ 1505 return __skb_flow_dissect(NULL, skb, flow_dissector, 1506 target_container, NULL, 0, 0, 0, flags); 1507} 1508 1509static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1510 struct flow_keys *flow, 1511 unsigned int flags) 1512{ 1513 memset(flow, 0, sizeof(*flow)); 1514 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1515 flow, NULL, 0, 0, 0, flags); 1516} 1517 1518static inline bool 1519skb_flow_dissect_flow_keys_basic(const struct net *net, 1520 const struct sk_buff *skb, 1521 struct flow_keys_basic *flow, 1522 const void *data, __be16 proto, 1523 int nhoff, int hlen, unsigned int flags) 1524{ 1525 memset(flow, 0, sizeof(*flow)); 1526 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1527 data, proto, nhoff, hlen, flags); 1528} 1529 1530void skb_flow_dissect_meta(const struct sk_buff *skb, 1531 struct flow_dissector *flow_dissector, 1532 void *target_container); 1533 1534/* Gets a skb connection tracking info, ctinfo map should be a 1535 * map of mapsize to translate enum ip_conntrack_info states 1536 * to user states. 1537 */ 1538void 1539skb_flow_dissect_ct(const struct sk_buff *skb, 1540 struct flow_dissector *flow_dissector, 1541 void *target_container, 1542 u16 *ctinfo_map, size_t mapsize, 1543 bool post_ct, u16 zone); 1544void 1545skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1546 struct flow_dissector *flow_dissector, 1547 void *target_container); 1548 1549void skb_flow_dissect_hash(const struct sk_buff *skb, 1550 struct flow_dissector *flow_dissector, 1551 void *target_container); 1552 1553static inline __u32 skb_get_hash(struct sk_buff *skb) 1554{ 1555 if (!skb->l4_hash && !skb->sw_hash) 1556 __skb_get_hash(skb); 1557 1558 return skb->hash; 1559} 1560 1561static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1562{ 1563 if (!skb->l4_hash && !skb->sw_hash) { 1564 struct flow_keys keys; 1565 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1566 1567 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1568 } 1569 1570 return skb->hash; 1571} 1572 1573__u32 skb_get_hash_perturb(const struct sk_buff *skb, 1574 const siphash_key_t *perturb); 1575 1576static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1577{ 1578 return skb->hash; 1579} 1580 1581static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1582{ 1583 to->hash = from->hash; 1584 to->sw_hash = from->sw_hash; 1585 to->l4_hash = from->l4_hash; 1586}; 1587 1588static inline int skb_cmp_decrypted(const struct sk_buff *skb1, 1589 const struct sk_buff *skb2) 1590{ 1591#ifdef CONFIG_TLS_DEVICE 1592 return skb2->decrypted - skb1->decrypted; 1593#else 1594 return 0; 1595#endif 1596} 1597 1598static inline void skb_copy_decrypted(struct sk_buff *to, 1599 const struct sk_buff *from) 1600{ 1601#ifdef CONFIG_TLS_DEVICE 1602 to->decrypted = from->decrypted; 1603#endif 1604} 1605 1606#ifdef NET_SKBUFF_DATA_USES_OFFSET 1607static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1608{ 1609 return skb->head + skb->end; 1610} 1611 1612static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1613{ 1614 return skb->end; 1615} 1616 1617static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1618{ 1619 skb->end = offset; 1620} 1621#else 1622static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1623{ 1624 return skb->end; 1625} 1626 1627static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1628{ 1629 return skb->end - skb->head; 1630} 1631 1632static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1633{ 1634 skb->end = skb->head + offset; 1635} 1636#endif 1637 1638struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1639 struct ubuf_info *uarg); 1640 1641void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1642 1643void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1644 bool success); 1645 1646int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1647 struct sk_buff *skb, struct iov_iter *from, 1648 size_t length); 1649 1650static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1651 struct msghdr *msg, int len) 1652{ 1653 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1654} 1655 1656int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1657 struct msghdr *msg, int len, 1658 struct ubuf_info *uarg); 1659 1660/* Internal */ 1661#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1662 1663static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1664{ 1665 return &skb_shinfo(skb)->hwtstamps; 1666} 1667 1668static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1669{ 1670 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1671 1672 return is_zcopy ? skb_uarg(skb) : NULL; 1673} 1674 1675static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1676{ 1677 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1678} 1679 1680static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1681{ 1682 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1683} 1684 1685static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1686 const struct sk_buff *skb2) 1687{ 1688 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1689} 1690 1691static inline void net_zcopy_get(struct ubuf_info *uarg) 1692{ 1693 refcount_inc(&uarg->refcnt); 1694} 1695 1696static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1697{ 1698 skb_shinfo(skb)->destructor_arg = uarg; 1699 skb_shinfo(skb)->flags |= uarg->flags; 1700} 1701 1702static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1703 bool *have_ref) 1704{ 1705 if (skb && uarg && !skb_zcopy(skb)) { 1706 if (unlikely(have_ref && *have_ref)) 1707 *have_ref = false; 1708 else 1709 net_zcopy_get(uarg); 1710 skb_zcopy_init(skb, uarg); 1711 } 1712} 1713 1714static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1715{ 1716 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1717 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1718} 1719 1720static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1721{ 1722 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1723} 1724 1725static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1726{ 1727 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1728} 1729 1730static inline void net_zcopy_put(struct ubuf_info *uarg) 1731{ 1732 if (uarg) 1733 uarg->callback(NULL, uarg, true); 1734} 1735 1736static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1737{ 1738 if (uarg) { 1739 if (uarg->callback == msg_zerocopy_callback) 1740 msg_zerocopy_put_abort(uarg, have_uref); 1741 else if (have_uref) 1742 net_zcopy_put(uarg); 1743 } 1744} 1745 1746/* Release a reference on a zerocopy structure */ 1747static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1748{ 1749 struct ubuf_info *uarg = skb_zcopy(skb); 1750 1751 if (uarg) { 1752 if (!skb_zcopy_is_nouarg(skb)) 1753 uarg->callback(skb, uarg, zerocopy_success); 1754 1755 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1756 } 1757} 1758 1759void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1760 1761static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1762{ 1763 if (unlikely(skb_zcopy_managed(skb))) 1764 __skb_zcopy_downgrade_managed(skb); 1765} 1766 1767static inline void skb_mark_not_on_list(struct sk_buff *skb) 1768{ 1769 skb->next = NULL; 1770} 1771 1772static inline void skb_poison_list(struct sk_buff *skb) 1773{ 1774#ifdef CONFIG_DEBUG_NET 1775 skb->next = SKB_LIST_POISON_NEXT; 1776#endif 1777} 1778 1779/* Iterate through singly-linked GSO fragments of an skb. */ 1780#define skb_list_walk_safe(first, skb, next_skb) \ 1781 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1782 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1783 1784static inline void skb_list_del_init(struct sk_buff *skb) 1785{ 1786 __list_del_entry(&skb->list); 1787 skb_mark_not_on_list(skb); 1788} 1789 1790/** 1791 * skb_queue_empty - check if a queue is empty 1792 * @list: queue head 1793 * 1794 * Returns true if the queue is empty, false otherwise. 1795 */ 1796static inline int skb_queue_empty(const struct sk_buff_head *list) 1797{ 1798 return list->next == (const struct sk_buff *) list; 1799} 1800 1801/** 1802 * skb_queue_empty_lockless - check if a queue is empty 1803 * @list: queue head 1804 * 1805 * Returns true if the queue is empty, false otherwise. 1806 * This variant can be used in lockless contexts. 1807 */ 1808static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1809{ 1810 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1811} 1812 1813 1814/** 1815 * skb_queue_is_last - check if skb is the last entry in the queue 1816 * @list: queue head 1817 * @skb: buffer 1818 * 1819 * Returns true if @skb is the last buffer on the list. 1820 */ 1821static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1822 const struct sk_buff *skb) 1823{ 1824 return skb->next == (const struct sk_buff *) list; 1825} 1826 1827/** 1828 * skb_queue_is_first - check if skb is the first entry in the queue 1829 * @list: queue head 1830 * @skb: buffer 1831 * 1832 * Returns true if @skb is the first buffer on the list. 1833 */ 1834static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1835 const struct sk_buff *skb) 1836{ 1837 return skb->prev == (const struct sk_buff *) list; 1838} 1839 1840/** 1841 * skb_queue_next - return the next packet in the queue 1842 * @list: queue head 1843 * @skb: current buffer 1844 * 1845 * Return the next packet in @list after @skb. It is only valid to 1846 * call this if skb_queue_is_last() evaluates to false. 1847 */ 1848static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1849 const struct sk_buff *skb) 1850{ 1851 /* This BUG_ON may seem severe, but if we just return then we 1852 * are going to dereference garbage. 1853 */ 1854 BUG_ON(skb_queue_is_last(list, skb)); 1855 return skb->next; 1856} 1857 1858/** 1859 * skb_queue_prev - return the prev packet in the queue 1860 * @list: queue head 1861 * @skb: current buffer 1862 * 1863 * Return the prev packet in @list before @skb. It is only valid to 1864 * call this if skb_queue_is_first() evaluates to false. 1865 */ 1866static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1867 const struct sk_buff *skb) 1868{ 1869 /* This BUG_ON may seem severe, but if we just return then we 1870 * are going to dereference garbage. 1871 */ 1872 BUG_ON(skb_queue_is_first(list, skb)); 1873 return skb->prev; 1874} 1875 1876/** 1877 * skb_get - reference buffer 1878 * @skb: buffer to reference 1879 * 1880 * Makes another reference to a socket buffer and returns a pointer 1881 * to the buffer. 1882 */ 1883static inline struct sk_buff *skb_get(struct sk_buff *skb) 1884{ 1885 refcount_inc(&skb->users); 1886 return skb; 1887} 1888 1889/* 1890 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1891 */ 1892 1893/** 1894 * skb_cloned - is the buffer a clone 1895 * @skb: buffer to check 1896 * 1897 * Returns true if the buffer was generated with skb_clone() and is 1898 * one of multiple shared copies of the buffer. Cloned buffers are 1899 * shared data so must not be written to under normal circumstances. 1900 */ 1901static inline int skb_cloned(const struct sk_buff *skb) 1902{ 1903 return skb->cloned && 1904 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1905} 1906 1907static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1908{ 1909 might_sleep_if(gfpflags_allow_blocking(pri)); 1910 1911 if (skb_cloned(skb)) 1912 return pskb_expand_head(skb, 0, 0, pri); 1913 1914 return 0; 1915} 1916 1917/* This variant of skb_unclone() makes sure skb->truesize 1918 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1919 * 1920 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1921 * when various debugging features are in place. 1922 */ 1923int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1924static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1925{ 1926 might_sleep_if(gfpflags_allow_blocking(pri)); 1927 1928 if (skb_cloned(skb)) 1929 return __skb_unclone_keeptruesize(skb, pri); 1930 return 0; 1931} 1932 1933/** 1934 * skb_header_cloned - is the header a clone 1935 * @skb: buffer to check 1936 * 1937 * Returns true if modifying the header part of the buffer requires 1938 * the data to be copied. 1939 */ 1940static inline int skb_header_cloned(const struct sk_buff *skb) 1941{ 1942 int dataref; 1943 1944 if (!skb->cloned) 1945 return 0; 1946 1947 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1948 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1949 return dataref != 1; 1950} 1951 1952static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1953{ 1954 might_sleep_if(gfpflags_allow_blocking(pri)); 1955 1956 if (skb_header_cloned(skb)) 1957 return pskb_expand_head(skb, 0, 0, pri); 1958 1959 return 0; 1960} 1961 1962/** 1963 * __skb_header_release() - allow clones to use the headroom 1964 * @skb: buffer to operate on 1965 * 1966 * See "DOC: dataref and headerless skbs". 1967 */ 1968static inline void __skb_header_release(struct sk_buff *skb) 1969{ 1970 skb->nohdr = 1; 1971 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1972} 1973 1974 1975/** 1976 * skb_shared - is the buffer shared 1977 * @skb: buffer to check 1978 * 1979 * Returns true if more than one person has a reference to this 1980 * buffer. 1981 */ 1982static inline int skb_shared(const struct sk_buff *skb) 1983{ 1984 return refcount_read(&skb->users) != 1; 1985} 1986 1987/** 1988 * skb_share_check - check if buffer is shared and if so clone it 1989 * @skb: buffer to check 1990 * @pri: priority for memory allocation 1991 * 1992 * If the buffer is shared the buffer is cloned and the old copy 1993 * drops a reference. A new clone with a single reference is returned. 1994 * If the buffer is not shared the original buffer is returned. When 1995 * being called from interrupt status or with spinlocks held pri must 1996 * be GFP_ATOMIC. 1997 * 1998 * NULL is returned on a memory allocation failure. 1999 */ 2000static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 2001{ 2002 might_sleep_if(gfpflags_allow_blocking(pri)); 2003 if (skb_shared(skb)) { 2004 struct sk_buff *nskb = skb_clone(skb, pri); 2005 2006 if (likely(nskb)) 2007 consume_skb(skb); 2008 else 2009 kfree_skb(skb); 2010 skb = nskb; 2011 } 2012 return skb; 2013} 2014 2015/* 2016 * Copy shared buffers into a new sk_buff. We effectively do COW on 2017 * packets to handle cases where we have a local reader and forward 2018 * and a couple of other messy ones. The normal one is tcpdumping 2019 * a packet that's being forwarded. 2020 */ 2021 2022/** 2023 * skb_unshare - make a copy of a shared buffer 2024 * @skb: buffer to check 2025 * @pri: priority for memory allocation 2026 * 2027 * If the socket buffer is a clone then this function creates a new 2028 * copy of the data, drops a reference count on the old copy and returns 2029 * the new copy with the reference count at 1. If the buffer is not a clone 2030 * the original buffer is returned. When called with a spinlock held or 2031 * from interrupt state @pri must be %GFP_ATOMIC 2032 * 2033 * %NULL is returned on a memory allocation failure. 2034 */ 2035static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2036 gfp_t pri) 2037{ 2038 might_sleep_if(gfpflags_allow_blocking(pri)); 2039 if (skb_cloned(skb)) { 2040 struct sk_buff *nskb = skb_copy(skb, pri); 2041 2042 /* Free our shared copy */ 2043 if (likely(nskb)) 2044 consume_skb(skb); 2045 else 2046 kfree_skb(skb); 2047 skb = nskb; 2048 } 2049 return skb; 2050} 2051 2052/** 2053 * skb_peek - peek at the head of an &sk_buff_head 2054 * @list_: list to peek at 2055 * 2056 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2057 * be careful with this one. A peek leaves the buffer on the 2058 * list and someone else may run off with it. You must hold 2059 * the appropriate locks or have a private queue to do this. 2060 * 2061 * Returns %NULL for an empty list or a pointer to the head element. 2062 * The reference count is not incremented and the reference is therefore 2063 * volatile. Use with caution. 2064 */ 2065static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2066{ 2067 struct sk_buff *skb = list_->next; 2068 2069 if (skb == (struct sk_buff *)list_) 2070 skb = NULL; 2071 return skb; 2072} 2073 2074/** 2075 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2076 * @list_: list to peek at 2077 * 2078 * Like skb_peek(), but the caller knows that the list is not empty. 2079 */ 2080static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2081{ 2082 return list_->next; 2083} 2084 2085/** 2086 * skb_peek_next - peek skb following the given one from a queue 2087 * @skb: skb to start from 2088 * @list_: list to peek at 2089 * 2090 * Returns %NULL when the end of the list is met or a pointer to the 2091 * next element. The reference count is not incremented and the 2092 * reference is therefore volatile. Use with caution. 2093 */ 2094static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2095 const struct sk_buff_head *list_) 2096{ 2097 struct sk_buff *next = skb->next; 2098 2099 if (next == (struct sk_buff *)list_) 2100 next = NULL; 2101 return next; 2102} 2103 2104/** 2105 * skb_peek_tail - peek at the tail of an &sk_buff_head 2106 * @list_: list to peek at 2107 * 2108 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2109 * be careful with this one. A peek leaves the buffer on the 2110 * list and someone else may run off with it. You must hold 2111 * the appropriate locks or have a private queue to do this. 2112 * 2113 * Returns %NULL for an empty list or a pointer to the tail element. 2114 * The reference count is not incremented and the reference is therefore 2115 * volatile. Use with caution. 2116 */ 2117static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2118{ 2119 struct sk_buff *skb = READ_ONCE(list_->prev); 2120 2121 if (skb == (struct sk_buff *)list_) 2122 skb = NULL; 2123 return skb; 2124 2125} 2126 2127/** 2128 * skb_queue_len - get queue length 2129 * @list_: list to measure 2130 * 2131 * Return the length of an &sk_buff queue. 2132 */ 2133static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2134{ 2135 return list_->qlen; 2136} 2137 2138/** 2139 * skb_queue_len_lockless - get queue length 2140 * @list_: list to measure 2141 * 2142 * Return the length of an &sk_buff queue. 2143 * This variant can be used in lockless contexts. 2144 */ 2145static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2146{ 2147 return READ_ONCE(list_->qlen); 2148} 2149 2150/** 2151 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2152 * @list: queue to initialize 2153 * 2154 * This initializes only the list and queue length aspects of 2155 * an sk_buff_head object. This allows to initialize the list 2156 * aspects of an sk_buff_head without reinitializing things like 2157 * the spinlock. It can also be used for on-stack sk_buff_head 2158 * objects where the spinlock is known to not be used. 2159 */ 2160static inline void __skb_queue_head_init(struct sk_buff_head *list) 2161{ 2162 list->prev = list->next = (struct sk_buff *)list; 2163 list->qlen = 0; 2164} 2165 2166/* 2167 * This function creates a split out lock class for each invocation; 2168 * this is needed for now since a whole lot of users of the skb-queue 2169 * infrastructure in drivers have different locking usage (in hardirq) 2170 * than the networking core (in softirq only). In the long run either the 2171 * network layer or drivers should need annotation to consolidate the 2172 * main types of usage into 3 classes. 2173 */ 2174static inline void skb_queue_head_init(struct sk_buff_head *list) 2175{ 2176 spin_lock_init(&list->lock); 2177 __skb_queue_head_init(list); 2178} 2179 2180static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2181 struct lock_class_key *class) 2182{ 2183 skb_queue_head_init(list); 2184 lockdep_set_class(&list->lock, class); 2185} 2186 2187/* 2188 * Insert an sk_buff on a list. 2189 * 2190 * The "__skb_xxxx()" functions are the non-atomic ones that 2191 * can only be called with interrupts disabled. 2192 */ 2193static inline void __skb_insert(struct sk_buff *newsk, 2194 struct sk_buff *prev, struct sk_buff *next, 2195 struct sk_buff_head *list) 2196{ 2197 /* See skb_queue_empty_lockless() and skb_peek_tail() 2198 * for the opposite READ_ONCE() 2199 */ 2200 WRITE_ONCE(newsk->next, next); 2201 WRITE_ONCE(newsk->prev, prev); 2202 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2203 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2204 WRITE_ONCE(list->qlen, list->qlen + 1); 2205} 2206 2207static inline void __skb_queue_splice(const struct sk_buff_head *list, 2208 struct sk_buff *prev, 2209 struct sk_buff *next) 2210{ 2211 struct sk_buff *first = list->next; 2212 struct sk_buff *last = list->prev; 2213 2214 WRITE_ONCE(first->prev, prev); 2215 WRITE_ONCE(prev->next, first); 2216 2217 WRITE_ONCE(last->next, next); 2218 WRITE_ONCE(next->prev, last); 2219} 2220 2221/** 2222 * skb_queue_splice - join two skb lists, this is designed for stacks 2223 * @list: the new list to add 2224 * @head: the place to add it in the first list 2225 */ 2226static inline void skb_queue_splice(const struct sk_buff_head *list, 2227 struct sk_buff_head *head) 2228{ 2229 if (!skb_queue_empty(list)) { 2230 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2231 head->qlen += list->qlen; 2232 } 2233} 2234 2235/** 2236 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2237 * @list: the new list to add 2238 * @head: the place to add it in the first list 2239 * 2240 * The list at @list is reinitialised 2241 */ 2242static inline void skb_queue_splice_init(struct sk_buff_head *list, 2243 struct sk_buff_head *head) 2244{ 2245 if (!skb_queue_empty(list)) { 2246 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2247 head->qlen += list->qlen; 2248 __skb_queue_head_init(list); 2249 } 2250} 2251 2252/** 2253 * skb_queue_splice_tail - join two skb lists, each list being a queue 2254 * @list: the new list to add 2255 * @head: the place to add it in the first list 2256 */ 2257static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2258 struct sk_buff_head *head) 2259{ 2260 if (!skb_queue_empty(list)) { 2261 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2262 head->qlen += list->qlen; 2263 } 2264} 2265 2266/** 2267 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2268 * @list: the new list to add 2269 * @head: the place to add it in the first list 2270 * 2271 * Each of the lists is a queue. 2272 * The list at @list is reinitialised 2273 */ 2274static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2275 struct sk_buff_head *head) 2276{ 2277 if (!skb_queue_empty(list)) { 2278 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2279 head->qlen += list->qlen; 2280 __skb_queue_head_init(list); 2281 } 2282} 2283 2284/** 2285 * __skb_queue_after - queue a buffer at the list head 2286 * @list: list to use 2287 * @prev: place after this buffer 2288 * @newsk: buffer to queue 2289 * 2290 * Queue a buffer int the middle of a list. This function takes no locks 2291 * and you must therefore hold required locks before calling it. 2292 * 2293 * A buffer cannot be placed on two lists at the same time. 2294 */ 2295static inline void __skb_queue_after(struct sk_buff_head *list, 2296 struct sk_buff *prev, 2297 struct sk_buff *newsk) 2298{ 2299 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2300} 2301 2302void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2303 struct sk_buff_head *list); 2304 2305static inline void __skb_queue_before(struct sk_buff_head *list, 2306 struct sk_buff *next, 2307 struct sk_buff *newsk) 2308{ 2309 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2310} 2311 2312/** 2313 * __skb_queue_head - queue a buffer at the list head 2314 * @list: list to use 2315 * @newsk: buffer to queue 2316 * 2317 * Queue a buffer at the start of a list. This function takes no locks 2318 * and you must therefore hold required locks before calling it. 2319 * 2320 * A buffer cannot be placed on two lists at the same time. 2321 */ 2322static inline void __skb_queue_head(struct sk_buff_head *list, 2323 struct sk_buff *newsk) 2324{ 2325 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2326} 2327void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2328 2329/** 2330 * __skb_queue_tail - queue a buffer at the list tail 2331 * @list: list to use 2332 * @newsk: buffer to queue 2333 * 2334 * Queue a buffer at the end of a list. This function takes no locks 2335 * and you must therefore hold required locks before calling it. 2336 * 2337 * A buffer cannot be placed on two lists at the same time. 2338 */ 2339static inline void __skb_queue_tail(struct sk_buff_head *list, 2340 struct sk_buff *newsk) 2341{ 2342 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2343} 2344void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2345 2346/* 2347 * remove sk_buff from list. _Must_ be called atomically, and with 2348 * the list known.. 2349 */ 2350void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2351static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2352{ 2353 struct sk_buff *next, *prev; 2354 2355 WRITE_ONCE(list->qlen, list->qlen - 1); 2356 next = skb->next; 2357 prev = skb->prev; 2358 skb->next = skb->prev = NULL; 2359 WRITE_ONCE(next->prev, prev); 2360 WRITE_ONCE(prev->next, next); 2361} 2362 2363/** 2364 * __skb_dequeue - remove from the head of the queue 2365 * @list: list to dequeue from 2366 * 2367 * Remove the head of the list. This function does not take any locks 2368 * so must be used with appropriate locks held only. The head item is 2369 * returned or %NULL if the list is empty. 2370 */ 2371static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2372{ 2373 struct sk_buff *skb = skb_peek(list); 2374 if (skb) 2375 __skb_unlink(skb, list); 2376 return skb; 2377} 2378struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2379 2380/** 2381 * __skb_dequeue_tail - remove from the tail of the queue 2382 * @list: list to dequeue from 2383 * 2384 * Remove the tail of the list. This function does not take any locks 2385 * so must be used with appropriate locks held only. The tail item is 2386 * returned or %NULL if the list is empty. 2387 */ 2388static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2389{ 2390 struct sk_buff *skb = skb_peek_tail(list); 2391 if (skb) 2392 __skb_unlink(skb, list); 2393 return skb; 2394} 2395struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2396 2397 2398static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2399{ 2400 return skb->data_len; 2401} 2402 2403static inline unsigned int skb_headlen(const struct sk_buff *skb) 2404{ 2405 return skb->len - skb->data_len; 2406} 2407 2408static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2409{ 2410 unsigned int i, len = 0; 2411 2412 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2413 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2414 return len; 2415} 2416 2417static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2418{ 2419 return skb_headlen(skb) + __skb_pagelen(skb); 2420} 2421 2422static inline void skb_frag_fill_page_desc(skb_frag_t *frag, 2423 struct page *page, 2424 int off, int size) 2425{ 2426 frag->bv_page = page; 2427 frag->bv_offset = off; 2428 skb_frag_size_set(frag, size); 2429} 2430 2431static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2432 int i, struct page *page, 2433 int off, int size) 2434{ 2435 skb_frag_t *frag = &shinfo->frags[i]; 2436 2437 skb_frag_fill_page_desc(frag, page, off, size); 2438} 2439 2440/** 2441 * skb_len_add - adds a number to len fields of skb 2442 * @skb: buffer to add len to 2443 * @delta: number of bytes to add 2444 */ 2445static inline void skb_len_add(struct sk_buff *skb, int delta) 2446{ 2447 skb->len += delta; 2448 skb->data_len += delta; 2449 skb->truesize += delta; 2450} 2451 2452/** 2453 * __skb_fill_page_desc - initialise a paged fragment in an skb 2454 * @skb: buffer containing fragment to be initialised 2455 * @i: paged fragment index to initialise 2456 * @page: the page to use for this fragment 2457 * @off: the offset to the data with @page 2458 * @size: the length of the data 2459 * 2460 * Initialises the @i'th fragment of @skb to point to &size bytes at 2461 * offset @off within @page. 2462 * 2463 * Does not take any additional reference on the fragment. 2464 */ 2465static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2466 struct page *page, int off, int size) 2467{ 2468 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size); 2469 2470 /* Propagate page pfmemalloc to the skb if we can. The problem is 2471 * that not all callers have unique ownership of the page but rely 2472 * on page_is_pfmemalloc doing the right thing(tm). 2473 */ 2474 page = compound_head(page); 2475 if (page_is_pfmemalloc(page)) 2476 skb->pfmemalloc = true; 2477} 2478 2479/** 2480 * skb_fill_page_desc - initialise a paged fragment in an skb 2481 * @skb: buffer containing fragment to be initialised 2482 * @i: paged fragment index to initialise 2483 * @page: the page to use for this fragment 2484 * @off: the offset to the data with @page 2485 * @size: the length of the data 2486 * 2487 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2488 * @skb to point to @size bytes at offset @off within @page. In 2489 * addition updates @skb such that @i is the last fragment. 2490 * 2491 * Does not take any additional reference on the fragment. 2492 */ 2493static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2494 struct page *page, int off, int size) 2495{ 2496 __skb_fill_page_desc(skb, i, page, off, size); 2497 skb_shinfo(skb)->nr_frags = i + 1; 2498} 2499 2500/** 2501 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2502 * @skb: buffer containing fragment to be initialised 2503 * @i: paged fragment index to initialise 2504 * @page: the page to use for this fragment 2505 * @off: the offset to the data with @page 2506 * @size: the length of the data 2507 * 2508 * Variant of skb_fill_page_desc() which does not deal with 2509 * pfmemalloc, if page is not owned by us. 2510 */ 2511static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2512 struct page *page, int off, 2513 int size) 2514{ 2515 struct skb_shared_info *shinfo = skb_shinfo(skb); 2516 2517 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2518 shinfo->nr_frags = i + 1; 2519} 2520 2521void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2522 int size, unsigned int truesize); 2523 2524void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2525 unsigned int truesize); 2526 2527#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2528 2529#ifdef NET_SKBUFF_DATA_USES_OFFSET 2530static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2531{ 2532 return skb->head + skb->tail; 2533} 2534 2535static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2536{ 2537 skb->tail = skb->data - skb->head; 2538} 2539 2540static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2541{ 2542 skb_reset_tail_pointer(skb); 2543 skb->tail += offset; 2544} 2545 2546#else /* NET_SKBUFF_DATA_USES_OFFSET */ 2547static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2548{ 2549 return skb->tail; 2550} 2551 2552static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2553{ 2554 skb->tail = skb->data; 2555} 2556 2557static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2558{ 2559 skb->tail = skb->data + offset; 2560} 2561 2562#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2563 2564static inline void skb_assert_len(struct sk_buff *skb) 2565{ 2566#ifdef CONFIG_DEBUG_NET 2567 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2568 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2569#endif /* CONFIG_DEBUG_NET */ 2570} 2571 2572/* 2573 * Add data to an sk_buff 2574 */ 2575void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2576void *skb_put(struct sk_buff *skb, unsigned int len); 2577static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2578{ 2579 void *tmp = skb_tail_pointer(skb); 2580 SKB_LINEAR_ASSERT(skb); 2581 skb->tail += len; 2582 skb->len += len; 2583 return tmp; 2584} 2585 2586static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2587{ 2588 void *tmp = __skb_put(skb, len); 2589 2590 memset(tmp, 0, len); 2591 return tmp; 2592} 2593 2594static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2595 unsigned int len) 2596{ 2597 void *tmp = __skb_put(skb, len); 2598 2599 memcpy(tmp, data, len); 2600 return tmp; 2601} 2602 2603static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2604{ 2605 *(u8 *)__skb_put(skb, 1) = val; 2606} 2607 2608static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2609{ 2610 void *tmp = skb_put(skb, len); 2611 2612 memset(tmp, 0, len); 2613 2614 return tmp; 2615} 2616 2617static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2618 unsigned int len) 2619{ 2620 void *tmp = skb_put(skb, len); 2621 2622 memcpy(tmp, data, len); 2623 2624 return tmp; 2625} 2626 2627static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2628{ 2629 *(u8 *)skb_put(skb, 1) = val; 2630} 2631 2632void *skb_push(struct sk_buff *skb, unsigned int len); 2633static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2634{ 2635 skb->data -= len; 2636 skb->len += len; 2637 return skb->data; 2638} 2639 2640void *skb_pull(struct sk_buff *skb, unsigned int len); 2641static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2642{ 2643 skb->len -= len; 2644 if (unlikely(skb->len < skb->data_len)) { 2645#if defined(CONFIG_DEBUG_NET) 2646 skb->len += len; 2647 pr_err("__skb_pull(len=%u)\n", len); 2648 skb_dump(KERN_ERR, skb, false); 2649#endif 2650 BUG(); 2651 } 2652 return skb->data += len; 2653} 2654 2655static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2656{ 2657 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2658} 2659 2660void *skb_pull_data(struct sk_buff *skb, size_t len); 2661 2662void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2663 2664static inline enum skb_drop_reason 2665pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2666{ 2667 if (likely(len <= skb_headlen(skb))) 2668 return SKB_NOT_DROPPED_YET; 2669 2670 if (unlikely(len > skb->len)) 2671 return SKB_DROP_REASON_PKT_TOO_SMALL; 2672 2673 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2674 return SKB_DROP_REASON_NOMEM; 2675 2676 return SKB_NOT_DROPPED_YET; 2677} 2678 2679static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2680{ 2681 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2682} 2683 2684static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2685{ 2686 if (!pskb_may_pull(skb, len)) 2687 return NULL; 2688 2689 skb->len -= len; 2690 return skb->data += len; 2691} 2692 2693void skb_condense(struct sk_buff *skb); 2694 2695/** 2696 * skb_headroom - bytes at buffer head 2697 * @skb: buffer to check 2698 * 2699 * Return the number of bytes of free space at the head of an &sk_buff. 2700 */ 2701static inline unsigned int skb_headroom(const struct sk_buff *skb) 2702{ 2703 return skb->data - skb->head; 2704} 2705 2706/** 2707 * skb_tailroom - bytes at buffer end 2708 * @skb: buffer to check 2709 * 2710 * Return the number of bytes of free space at the tail of an sk_buff 2711 */ 2712static inline int skb_tailroom(const struct sk_buff *skb) 2713{ 2714 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2715} 2716 2717/** 2718 * skb_availroom - bytes at buffer end 2719 * @skb: buffer to check 2720 * 2721 * Return the number of bytes of free space at the tail of an sk_buff 2722 * allocated by sk_stream_alloc() 2723 */ 2724static inline int skb_availroom(const struct sk_buff *skb) 2725{ 2726 if (skb_is_nonlinear(skb)) 2727 return 0; 2728 2729 return skb->end - skb->tail - skb->reserved_tailroom; 2730} 2731 2732/** 2733 * skb_reserve - adjust headroom 2734 * @skb: buffer to alter 2735 * @len: bytes to move 2736 * 2737 * Increase the headroom of an empty &sk_buff by reducing the tail 2738 * room. This is only allowed for an empty buffer. 2739 */ 2740static inline void skb_reserve(struct sk_buff *skb, int len) 2741{ 2742 skb->data += len; 2743 skb->tail += len; 2744} 2745 2746/** 2747 * skb_tailroom_reserve - adjust reserved_tailroom 2748 * @skb: buffer to alter 2749 * @mtu: maximum amount of headlen permitted 2750 * @needed_tailroom: minimum amount of reserved_tailroom 2751 * 2752 * Set reserved_tailroom so that headlen can be as large as possible but 2753 * not larger than mtu and tailroom cannot be smaller than 2754 * needed_tailroom. 2755 * The required headroom should already have been reserved before using 2756 * this function. 2757 */ 2758static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2759 unsigned int needed_tailroom) 2760{ 2761 SKB_LINEAR_ASSERT(skb); 2762 if (mtu < skb_tailroom(skb) - needed_tailroom) 2763 /* use at most mtu */ 2764 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2765 else 2766 /* use up to all available space */ 2767 skb->reserved_tailroom = needed_tailroom; 2768} 2769 2770#define ENCAP_TYPE_ETHER 0 2771#define ENCAP_TYPE_IPPROTO 1 2772 2773static inline void skb_set_inner_protocol(struct sk_buff *skb, 2774 __be16 protocol) 2775{ 2776 skb->inner_protocol = protocol; 2777 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2778} 2779 2780static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2781 __u8 ipproto) 2782{ 2783 skb->inner_ipproto = ipproto; 2784 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2785} 2786 2787static inline void skb_reset_inner_headers(struct sk_buff *skb) 2788{ 2789 skb->inner_mac_header = skb->mac_header; 2790 skb->inner_network_header = skb->network_header; 2791 skb->inner_transport_header = skb->transport_header; 2792} 2793 2794static inline void skb_reset_mac_len(struct sk_buff *skb) 2795{ 2796 skb->mac_len = skb->network_header - skb->mac_header; 2797} 2798 2799static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2800 *skb) 2801{ 2802 return skb->head + skb->inner_transport_header; 2803} 2804 2805static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2806{ 2807 return skb_inner_transport_header(skb) - skb->data; 2808} 2809 2810static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2811{ 2812 skb->inner_transport_header = skb->data - skb->head; 2813} 2814 2815static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2816 const int offset) 2817{ 2818 skb_reset_inner_transport_header(skb); 2819 skb->inner_transport_header += offset; 2820} 2821 2822static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2823{ 2824 return skb->head + skb->inner_network_header; 2825} 2826 2827static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2828{ 2829 skb->inner_network_header = skb->data - skb->head; 2830} 2831 2832static inline void skb_set_inner_network_header(struct sk_buff *skb, 2833 const int offset) 2834{ 2835 skb_reset_inner_network_header(skb); 2836 skb->inner_network_header += offset; 2837} 2838 2839static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2840{ 2841 return skb->head + skb->inner_mac_header; 2842} 2843 2844static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2845{ 2846 skb->inner_mac_header = skb->data - skb->head; 2847} 2848 2849static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2850 const int offset) 2851{ 2852 skb_reset_inner_mac_header(skb); 2853 skb->inner_mac_header += offset; 2854} 2855static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2856{ 2857 return skb->transport_header != (typeof(skb->transport_header))~0U; 2858} 2859 2860static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2861{ 2862 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2863 return skb->head + skb->transport_header; 2864} 2865 2866static inline void skb_reset_transport_header(struct sk_buff *skb) 2867{ 2868 skb->transport_header = skb->data - skb->head; 2869} 2870 2871static inline void skb_set_transport_header(struct sk_buff *skb, 2872 const int offset) 2873{ 2874 skb_reset_transport_header(skb); 2875 skb->transport_header += offset; 2876} 2877 2878static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2879{ 2880 return skb->head + skb->network_header; 2881} 2882 2883static inline void skb_reset_network_header(struct sk_buff *skb) 2884{ 2885 skb->network_header = skb->data - skb->head; 2886} 2887 2888static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2889{ 2890 skb_reset_network_header(skb); 2891 skb->network_header += offset; 2892} 2893 2894static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2895{ 2896 return skb->mac_header != (typeof(skb->mac_header))~0U; 2897} 2898 2899static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2900{ 2901 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2902 return skb->head + skb->mac_header; 2903} 2904 2905static inline int skb_mac_offset(const struct sk_buff *skb) 2906{ 2907 return skb_mac_header(skb) - skb->data; 2908} 2909 2910static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2911{ 2912 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2913 return skb->network_header - skb->mac_header; 2914} 2915 2916static inline void skb_unset_mac_header(struct sk_buff *skb) 2917{ 2918 skb->mac_header = (typeof(skb->mac_header))~0U; 2919} 2920 2921static inline void skb_reset_mac_header(struct sk_buff *skb) 2922{ 2923 skb->mac_header = skb->data - skb->head; 2924} 2925 2926static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2927{ 2928 skb_reset_mac_header(skb); 2929 skb->mac_header += offset; 2930} 2931 2932static inline void skb_pop_mac_header(struct sk_buff *skb) 2933{ 2934 skb->mac_header = skb->network_header; 2935} 2936 2937static inline void skb_probe_transport_header(struct sk_buff *skb) 2938{ 2939 struct flow_keys_basic keys; 2940 2941 if (skb_transport_header_was_set(skb)) 2942 return; 2943 2944 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2945 NULL, 0, 0, 0, 0)) 2946 skb_set_transport_header(skb, keys.control.thoff); 2947} 2948 2949static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2950{ 2951 if (skb_mac_header_was_set(skb)) { 2952 const unsigned char *old_mac = skb_mac_header(skb); 2953 2954 skb_set_mac_header(skb, -skb->mac_len); 2955 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2956 } 2957} 2958 2959static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2960{ 2961 return skb->csum_start - skb_headroom(skb); 2962} 2963 2964static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2965{ 2966 return skb->head + skb->csum_start; 2967} 2968 2969static inline int skb_transport_offset(const struct sk_buff *skb) 2970{ 2971 return skb_transport_header(skb) - skb->data; 2972} 2973 2974static inline u32 skb_network_header_len(const struct sk_buff *skb) 2975{ 2976 return skb->transport_header - skb->network_header; 2977} 2978 2979static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2980{ 2981 return skb->inner_transport_header - skb->inner_network_header; 2982} 2983 2984static inline int skb_network_offset(const struct sk_buff *skb) 2985{ 2986 return skb_network_header(skb) - skb->data; 2987} 2988 2989static inline int skb_inner_network_offset(const struct sk_buff *skb) 2990{ 2991 return skb_inner_network_header(skb) - skb->data; 2992} 2993 2994static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2995{ 2996 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2997} 2998 2999/* 3000 * CPUs often take a performance hit when accessing unaligned memory 3001 * locations. The actual performance hit varies, it can be small if the 3002 * hardware handles it or large if we have to take an exception and fix it 3003 * in software. 3004 * 3005 * Since an ethernet header is 14 bytes network drivers often end up with 3006 * the IP header at an unaligned offset. The IP header can be aligned by 3007 * shifting the start of the packet by 2 bytes. Drivers should do this 3008 * with: 3009 * 3010 * skb_reserve(skb, NET_IP_ALIGN); 3011 * 3012 * The downside to this alignment of the IP header is that the DMA is now 3013 * unaligned. On some architectures the cost of an unaligned DMA is high 3014 * and this cost outweighs the gains made by aligning the IP header. 3015 * 3016 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 3017 * to be overridden. 3018 */ 3019#ifndef NET_IP_ALIGN 3020#define NET_IP_ALIGN 2 3021#endif 3022 3023/* 3024 * The networking layer reserves some headroom in skb data (via 3025 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3026 * the header has to grow. In the default case, if the header has to grow 3027 * 32 bytes or less we avoid the reallocation. 3028 * 3029 * Unfortunately this headroom changes the DMA alignment of the resulting 3030 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3031 * on some architectures. An architecture can override this value, 3032 * perhaps setting it to a cacheline in size (since that will maintain 3033 * cacheline alignment of the DMA). It must be a power of 2. 3034 * 3035 * Various parts of the networking layer expect at least 32 bytes of 3036 * headroom, you should not reduce this. 3037 * 3038 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3039 * to reduce average number of cache lines per packet. 3040 * get_rps_cpu() for example only access one 64 bytes aligned block : 3041 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3042 */ 3043#ifndef NET_SKB_PAD 3044#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3045#endif 3046 3047int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3048 3049static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3050{ 3051 if (WARN_ON(skb_is_nonlinear(skb))) 3052 return; 3053 skb->len = len; 3054 skb_set_tail_pointer(skb, len); 3055} 3056 3057static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3058{ 3059 __skb_set_length(skb, len); 3060} 3061 3062void skb_trim(struct sk_buff *skb, unsigned int len); 3063 3064static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3065{ 3066 if (skb->data_len) 3067 return ___pskb_trim(skb, len); 3068 __skb_trim(skb, len); 3069 return 0; 3070} 3071 3072static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3073{ 3074 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3075} 3076 3077/** 3078 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3079 * @skb: buffer to alter 3080 * @len: new length 3081 * 3082 * This is identical to pskb_trim except that the caller knows that 3083 * the skb is not cloned so we should never get an error due to out- 3084 * of-memory. 3085 */ 3086static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3087{ 3088 int err = pskb_trim(skb, len); 3089 BUG_ON(err); 3090} 3091 3092static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3093{ 3094 unsigned int diff = len - skb->len; 3095 3096 if (skb_tailroom(skb) < diff) { 3097 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3098 GFP_ATOMIC); 3099 if (ret) 3100 return ret; 3101 } 3102 __skb_set_length(skb, len); 3103 return 0; 3104} 3105 3106/** 3107 * skb_orphan - orphan a buffer 3108 * @skb: buffer to orphan 3109 * 3110 * If a buffer currently has an owner then we call the owner's 3111 * destructor function and make the @skb unowned. The buffer continues 3112 * to exist but is no longer charged to its former owner. 3113 */ 3114static inline void skb_orphan(struct sk_buff *skb) 3115{ 3116 if (skb->destructor) { 3117 skb->destructor(skb); 3118 skb->destructor = NULL; 3119 skb->sk = NULL; 3120 } else { 3121 BUG_ON(skb->sk); 3122 } 3123} 3124 3125/** 3126 * skb_orphan_frags - orphan the frags contained in a buffer 3127 * @skb: buffer to orphan frags from 3128 * @gfp_mask: allocation mask for replacement pages 3129 * 3130 * For each frag in the SKB which needs a destructor (i.e. has an 3131 * owner) create a copy of that frag and release the original 3132 * page by calling the destructor. 3133 */ 3134static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3135{ 3136 if (likely(!skb_zcopy(skb))) 3137 return 0; 3138 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3139 return 0; 3140 return skb_copy_ubufs(skb, gfp_mask); 3141} 3142 3143/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3144static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3145{ 3146 if (likely(!skb_zcopy(skb))) 3147 return 0; 3148 return skb_copy_ubufs(skb, gfp_mask); 3149} 3150 3151/** 3152 * __skb_queue_purge_reason - empty a list 3153 * @list: list to empty 3154 * @reason: drop reason 3155 * 3156 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3157 * the list and one reference dropped. This function does not take the 3158 * list lock and the caller must hold the relevant locks to use it. 3159 */ 3160static inline void __skb_queue_purge_reason(struct sk_buff_head *list, 3161 enum skb_drop_reason reason) 3162{ 3163 struct sk_buff *skb; 3164 3165 while ((skb = __skb_dequeue(list)) != NULL) 3166 kfree_skb_reason(skb, reason); 3167} 3168 3169static inline void __skb_queue_purge(struct sk_buff_head *list) 3170{ 3171 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3172} 3173 3174void skb_queue_purge_reason(struct sk_buff_head *list, 3175 enum skb_drop_reason reason); 3176 3177static inline void skb_queue_purge(struct sk_buff_head *list) 3178{ 3179 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); 3180} 3181 3182unsigned int skb_rbtree_purge(struct rb_root *root); 3183void skb_errqueue_purge(struct sk_buff_head *list); 3184 3185void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3186 3187/** 3188 * netdev_alloc_frag - allocate a page fragment 3189 * @fragsz: fragment size 3190 * 3191 * Allocates a frag from a page for receive buffer. 3192 * Uses GFP_ATOMIC allocations. 3193 */ 3194static inline void *netdev_alloc_frag(unsigned int fragsz) 3195{ 3196 return __netdev_alloc_frag_align(fragsz, ~0u); 3197} 3198 3199static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3200 unsigned int align) 3201{ 3202 WARN_ON_ONCE(!is_power_of_2(align)); 3203 return __netdev_alloc_frag_align(fragsz, -align); 3204} 3205 3206struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3207 gfp_t gfp_mask); 3208 3209/** 3210 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3211 * @dev: network device to receive on 3212 * @length: length to allocate 3213 * 3214 * Allocate a new &sk_buff and assign it a usage count of one. The 3215 * buffer has unspecified headroom built in. Users should allocate 3216 * the headroom they think they need without accounting for the 3217 * built in space. The built in space is used for optimisations. 3218 * 3219 * %NULL is returned if there is no free memory. Although this function 3220 * allocates memory it can be called from an interrupt. 3221 */ 3222static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3223 unsigned int length) 3224{ 3225 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3226} 3227 3228/* legacy helper around __netdev_alloc_skb() */ 3229static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3230 gfp_t gfp_mask) 3231{ 3232 return __netdev_alloc_skb(NULL, length, gfp_mask); 3233} 3234 3235/* legacy helper around netdev_alloc_skb() */ 3236static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3237{ 3238 return netdev_alloc_skb(NULL, length); 3239} 3240 3241 3242static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3243 unsigned int length, gfp_t gfp) 3244{ 3245 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3246 3247 if (NET_IP_ALIGN && skb) 3248 skb_reserve(skb, NET_IP_ALIGN); 3249 return skb; 3250} 3251 3252static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3253 unsigned int length) 3254{ 3255 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3256} 3257 3258static inline void skb_free_frag(void *addr) 3259{ 3260 page_frag_free(addr); 3261} 3262 3263void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3264 3265static inline void *napi_alloc_frag(unsigned int fragsz) 3266{ 3267 return __napi_alloc_frag_align(fragsz, ~0u); 3268} 3269 3270static inline void *napi_alloc_frag_align(unsigned int fragsz, 3271 unsigned int align) 3272{ 3273 WARN_ON_ONCE(!is_power_of_2(align)); 3274 return __napi_alloc_frag_align(fragsz, -align); 3275} 3276 3277struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3278 unsigned int length, gfp_t gfp_mask); 3279static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3280 unsigned int length) 3281{ 3282 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3283} 3284void napi_consume_skb(struct sk_buff *skb, int budget); 3285 3286void napi_skb_free_stolen_head(struct sk_buff *skb); 3287void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); 3288 3289/** 3290 * __dev_alloc_pages - allocate page for network Rx 3291 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3292 * @order: size of the allocation 3293 * 3294 * Allocate a new page. 3295 * 3296 * %NULL is returned if there is no free memory. 3297*/ 3298static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3299 unsigned int order) 3300{ 3301 /* This piece of code contains several assumptions. 3302 * 1. This is for device Rx, therefor a cold page is preferred. 3303 * 2. The expectation is the user wants a compound page. 3304 * 3. If requesting a order 0 page it will not be compound 3305 * due to the check to see if order has a value in prep_new_page 3306 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3307 * code in gfp_to_alloc_flags that should be enforcing this. 3308 */ 3309 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3310 3311 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3312} 3313 3314static inline struct page *dev_alloc_pages(unsigned int order) 3315{ 3316 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3317} 3318 3319/** 3320 * __dev_alloc_page - allocate a page for network Rx 3321 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3322 * 3323 * Allocate a new page. 3324 * 3325 * %NULL is returned if there is no free memory. 3326 */ 3327static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3328{ 3329 return __dev_alloc_pages(gfp_mask, 0); 3330} 3331 3332static inline struct page *dev_alloc_page(void) 3333{ 3334 return dev_alloc_pages(0); 3335} 3336 3337/** 3338 * dev_page_is_reusable - check whether a page can be reused for network Rx 3339 * @page: the page to test 3340 * 3341 * A page shouldn't be considered for reusing/recycling if it was allocated 3342 * under memory pressure or at a distant memory node. 3343 * 3344 * Returns false if this page should be returned to page allocator, true 3345 * otherwise. 3346 */ 3347static inline bool dev_page_is_reusable(const struct page *page) 3348{ 3349 return likely(page_to_nid(page) == numa_mem_id() && 3350 !page_is_pfmemalloc(page)); 3351} 3352 3353/** 3354 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3355 * @page: The page that was allocated from skb_alloc_page 3356 * @skb: The skb that may need pfmemalloc set 3357 */ 3358static inline void skb_propagate_pfmemalloc(const struct page *page, 3359 struct sk_buff *skb) 3360{ 3361 if (page_is_pfmemalloc(page)) 3362 skb->pfmemalloc = true; 3363} 3364 3365/** 3366 * skb_frag_off() - Returns the offset of a skb fragment 3367 * @frag: the paged fragment 3368 */ 3369static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3370{ 3371 return frag->bv_offset; 3372} 3373 3374/** 3375 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3376 * @frag: skb fragment 3377 * @delta: value to add 3378 */ 3379static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3380{ 3381 frag->bv_offset += delta; 3382} 3383 3384/** 3385 * skb_frag_off_set() - Sets the offset of a skb fragment 3386 * @frag: skb fragment 3387 * @offset: offset of fragment 3388 */ 3389static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3390{ 3391 frag->bv_offset = offset; 3392} 3393 3394/** 3395 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3396 * @fragto: skb fragment where offset is set 3397 * @fragfrom: skb fragment offset is copied from 3398 */ 3399static inline void skb_frag_off_copy(skb_frag_t *fragto, 3400 const skb_frag_t *fragfrom) 3401{ 3402 fragto->bv_offset = fragfrom->bv_offset; 3403} 3404 3405/** 3406 * skb_frag_page - retrieve the page referred to by a paged fragment 3407 * @frag: the paged fragment 3408 * 3409 * Returns the &struct page associated with @frag. 3410 */ 3411static inline struct page *skb_frag_page(const skb_frag_t *frag) 3412{ 3413 return frag->bv_page; 3414} 3415 3416/** 3417 * __skb_frag_ref - take an addition reference on a paged fragment. 3418 * @frag: the paged fragment 3419 * 3420 * Takes an additional reference on the paged fragment @frag. 3421 */ 3422static inline void __skb_frag_ref(skb_frag_t *frag) 3423{ 3424 get_page(skb_frag_page(frag)); 3425} 3426 3427/** 3428 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3429 * @skb: the buffer 3430 * @f: the fragment offset. 3431 * 3432 * Takes an additional reference on the @f'th paged fragment of @skb. 3433 */ 3434static inline void skb_frag_ref(struct sk_buff *skb, int f) 3435{ 3436 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3437} 3438 3439bool napi_pp_put_page(struct page *page, bool napi_safe); 3440 3441static inline void 3442napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe) 3443{ 3444 struct page *page = skb_frag_page(frag); 3445 3446#ifdef CONFIG_PAGE_POOL 3447 if (recycle && napi_pp_put_page(page, napi_safe)) 3448 return; 3449#endif 3450 put_page(page); 3451} 3452 3453/** 3454 * __skb_frag_unref - release a reference on a paged fragment. 3455 * @frag: the paged fragment 3456 * @recycle: recycle the page if allocated via page_pool 3457 * 3458 * Releases a reference on the paged fragment @frag 3459 * or recycles the page via the page_pool API. 3460 */ 3461static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3462{ 3463 napi_frag_unref(frag, recycle, false); 3464} 3465 3466/** 3467 * skb_frag_unref - release a reference on a paged fragment of an skb. 3468 * @skb: the buffer 3469 * @f: the fragment offset 3470 * 3471 * Releases a reference on the @f'th paged fragment of @skb. 3472 */ 3473static inline void skb_frag_unref(struct sk_buff *skb, int f) 3474{ 3475 struct skb_shared_info *shinfo = skb_shinfo(skb); 3476 3477 if (!skb_zcopy_managed(skb)) 3478 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); 3479} 3480 3481/** 3482 * skb_frag_address - gets the address of the data contained in a paged fragment 3483 * @frag: the paged fragment buffer 3484 * 3485 * Returns the address of the data within @frag. The page must already 3486 * be mapped. 3487 */ 3488static inline void *skb_frag_address(const skb_frag_t *frag) 3489{ 3490 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3491} 3492 3493/** 3494 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3495 * @frag: the paged fragment buffer 3496 * 3497 * Returns the address of the data within @frag. Checks that the page 3498 * is mapped and returns %NULL otherwise. 3499 */ 3500static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3501{ 3502 void *ptr = page_address(skb_frag_page(frag)); 3503 if (unlikely(!ptr)) 3504 return NULL; 3505 3506 return ptr + skb_frag_off(frag); 3507} 3508 3509/** 3510 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3511 * @fragto: skb fragment where page is set 3512 * @fragfrom: skb fragment page is copied from 3513 */ 3514static inline void skb_frag_page_copy(skb_frag_t *fragto, 3515 const skb_frag_t *fragfrom) 3516{ 3517 fragto->bv_page = fragfrom->bv_page; 3518} 3519 3520bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3521 3522/** 3523 * skb_frag_dma_map - maps a paged fragment via the DMA API 3524 * @dev: the device to map the fragment to 3525 * @frag: the paged fragment to map 3526 * @offset: the offset within the fragment (starting at the 3527 * fragment's own offset) 3528 * @size: the number of bytes to map 3529 * @dir: the direction of the mapping (``PCI_DMA_*``) 3530 * 3531 * Maps the page associated with @frag to @device. 3532 */ 3533static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3534 const skb_frag_t *frag, 3535 size_t offset, size_t size, 3536 enum dma_data_direction dir) 3537{ 3538 return dma_map_page(dev, skb_frag_page(frag), 3539 skb_frag_off(frag) + offset, size, dir); 3540} 3541 3542static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3543 gfp_t gfp_mask) 3544{ 3545 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3546} 3547 3548 3549static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3550 gfp_t gfp_mask) 3551{ 3552 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3553} 3554 3555 3556/** 3557 * skb_clone_writable - is the header of a clone writable 3558 * @skb: buffer to check 3559 * @len: length up to which to write 3560 * 3561 * Returns true if modifying the header part of the cloned buffer 3562 * does not requires the data to be copied. 3563 */ 3564static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3565{ 3566 return !skb_header_cloned(skb) && 3567 skb_headroom(skb) + len <= skb->hdr_len; 3568} 3569 3570static inline int skb_try_make_writable(struct sk_buff *skb, 3571 unsigned int write_len) 3572{ 3573 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3574 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3575} 3576 3577static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3578 int cloned) 3579{ 3580 int delta = 0; 3581 3582 if (headroom > skb_headroom(skb)) 3583 delta = headroom - skb_headroom(skb); 3584 3585 if (delta || cloned) 3586 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3587 GFP_ATOMIC); 3588 return 0; 3589} 3590 3591/** 3592 * skb_cow - copy header of skb when it is required 3593 * @skb: buffer to cow 3594 * @headroom: needed headroom 3595 * 3596 * If the skb passed lacks sufficient headroom or its data part 3597 * is shared, data is reallocated. If reallocation fails, an error 3598 * is returned and original skb is not changed. 3599 * 3600 * The result is skb with writable area skb->head...skb->tail 3601 * and at least @headroom of space at head. 3602 */ 3603static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3604{ 3605 return __skb_cow(skb, headroom, skb_cloned(skb)); 3606} 3607 3608/** 3609 * skb_cow_head - skb_cow but only making the head writable 3610 * @skb: buffer to cow 3611 * @headroom: needed headroom 3612 * 3613 * This function is identical to skb_cow except that we replace the 3614 * skb_cloned check by skb_header_cloned. It should be used when 3615 * you only need to push on some header and do not need to modify 3616 * the data. 3617 */ 3618static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3619{ 3620 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3621} 3622 3623/** 3624 * skb_padto - pad an skbuff up to a minimal size 3625 * @skb: buffer to pad 3626 * @len: minimal length 3627 * 3628 * Pads up a buffer to ensure the trailing bytes exist and are 3629 * blanked. If the buffer already contains sufficient data it 3630 * is untouched. Otherwise it is extended. Returns zero on 3631 * success. The skb is freed on error. 3632 */ 3633static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3634{ 3635 unsigned int size = skb->len; 3636 if (likely(size >= len)) 3637 return 0; 3638 return skb_pad(skb, len - size); 3639} 3640 3641/** 3642 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3643 * @skb: buffer to pad 3644 * @len: minimal length 3645 * @free_on_error: free buffer on error 3646 * 3647 * Pads up a buffer to ensure the trailing bytes exist and are 3648 * blanked. If the buffer already contains sufficient data it 3649 * is untouched. Otherwise it is extended. Returns zero on 3650 * success. The skb is freed on error if @free_on_error is true. 3651 */ 3652static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3653 unsigned int len, 3654 bool free_on_error) 3655{ 3656 unsigned int size = skb->len; 3657 3658 if (unlikely(size < len)) { 3659 len -= size; 3660 if (__skb_pad(skb, len, free_on_error)) 3661 return -ENOMEM; 3662 __skb_put(skb, len); 3663 } 3664 return 0; 3665} 3666 3667/** 3668 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3669 * @skb: buffer to pad 3670 * @len: minimal length 3671 * 3672 * Pads up a buffer to ensure the trailing bytes exist and are 3673 * blanked. If the buffer already contains sufficient data it 3674 * is untouched. Otherwise it is extended. Returns zero on 3675 * success. The skb is freed on error. 3676 */ 3677static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3678{ 3679 return __skb_put_padto(skb, len, true); 3680} 3681 3682static inline int skb_add_data(struct sk_buff *skb, 3683 struct iov_iter *from, int copy) 3684{ 3685 const int off = skb->len; 3686 3687 if (skb->ip_summed == CHECKSUM_NONE) { 3688 __wsum csum = 0; 3689 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3690 &csum, from)) { 3691 skb->csum = csum_block_add(skb->csum, csum, off); 3692 return 0; 3693 } 3694 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3695 return 0; 3696 3697 __skb_trim(skb, off); 3698 return -EFAULT; 3699} 3700 3701static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3702 const struct page *page, int off) 3703{ 3704 if (skb_zcopy(skb)) 3705 return false; 3706 if (i) { 3707 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3708 3709 return page == skb_frag_page(frag) && 3710 off == skb_frag_off(frag) + skb_frag_size(frag); 3711 } 3712 return false; 3713} 3714 3715static inline int __skb_linearize(struct sk_buff *skb) 3716{ 3717 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3718} 3719 3720/** 3721 * skb_linearize - convert paged skb to linear one 3722 * @skb: buffer to linarize 3723 * 3724 * If there is no free memory -ENOMEM is returned, otherwise zero 3725 * is returned and the old skb data released. 3726 */ 3727static inline int skb_linearize(struct sk_buff *skb) 3728{ 3729 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3730} 3731 3732/** 3733 * skb_has_shared_frag - can any frag be overwritten 3734 * @skb: buffer to test 3735 * 3736 * Return true if the skb has at least one frag that might be modified 3737 * by an external entity (as in vmsplice()/sendfile()) 3738 */ 3739static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3740{ 3741 return skb_is_nonlinear(skb) && 3742 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3743} 3744 3745/** 3746 * skb_linearize_cow - make sure skb is linear and writable 3747 * @skb: buffer to process 3748 * 3749 * If there is no free memory -ENOMEM is returned, otherwise zero 3750 * is returned and the old skb data released. 3751 */ 3752static inline int skb_linearize_cow(struct sk_buff *skb) 3753{ 3754 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3755 __skb_linearize(skb) : 0; 3756} 3757 3758static __always_inline void 3759__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3760 unsigned int off) 3761{ 3762 if (skb->ip_summed == CHECKSUM_COMPLETE) 3763 skb->csum = csum_block_sub(skb->csum, 3764 csum_partial(start, len, 0), off); 3765 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3766 skb_checksum_start_offset(skb) < 0) 3767 skb->ip_summed = CHECKSUM_NONE; 3768} 3769 3770/** 3771 * skb_postpull_rcsum - update checksum for received skb after pull 3772 * @skb: buffer to update 3773 * @start: start of data before pull 3774 * @len: length of data pulled 3775 * 3776 * After doing a pull on a received packet, you need to call this to 3777 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3778 * CHECKSUM_NONE so that it can be recomputed from scratch. 3779 */ 3780static inline void skb_postpull_rcsum(struct sk_buff *skb, 3781 const void *start, unsigned int len) 3782{ 3783 if (skb->ip_summed == CHECKSUM_COMPLETE) 3784 skb->csum = wsum_negate(csum_partial(start, len, 3785 wsum_negate(skb->csum))); 3786 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3787 skb_checksum_start_offset(skb) < 0) 3788 skb->ip_summed = CHECKSUM_NONE; 3789} 3790 3791static __always_inline void 3792__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3793 unsigned int off) 3794{ 3795 if (skb->ip_summed == CHECKSUM_COMPLETE) 3796 skb->csum = csum_block_add(skb->csum, 3797 csum_partial(start, len, 0), off); 3798} 3799 3800/** 3801 * skb_postpush_rcsum - update checksum for received skb after push 3802 * @skb: buffer to update 3803 * @start: start of data after push 3804 * @len: length of data pushed 3805 * 3806 * After doing a push on a received packet, you need to call this to 3807 * update the CHECKSUM_COMPLETE checksum. 3808 */ 3809static inline void skb_postpush_rcsum(struct sk_buff *skb, 3810 const void *start, unsigned int len) 3811{ 3812 __skb_postpush_rcsum(skb, start, len, 0); 3813} 3814 3815void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3816 3817/** 3818 * skb_push_rcsum - push skb and update receive checksum 3819 * @skb: buffer to update 3820 * @len: length of data pulled 3821 * 3822 * This function performs an skb_push on the packet and updates 3823 * the CHECKSUM_COMPLETE checksum. It should be used on 3824 * receive path processing instead of skb_push unless you know 3825 * that the checksum difference is zero (e.g., a valid IP header) 3826 * or you are setting ip_summed to CHECKSUM_NONE. 3827 */ 3828static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3829{ 3830 skb_push(skb, len); 3831 skb_postpush_rcsum(skb, skb->data, len); 3832 return skb->data; 3833} 3834 3835int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3836/** 3837 * pskb_trim_rcsum - trim received skb and update checksum 3838 * @skb: buffer to trim 3839 * @len: new length 3840 * 3841 * This is exactly the same as pskb_trim except that it ensures the 3842 * checksum of received packets are still valid after the operation. 3843 * It can change skb pointers. 3844 */ 3845 3846static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3847{ 3848 if (likely(len >= skb->len)) 3849 return 0; 3850 return pskb_trim_rcsum_slow(skb, len); 3851} 3852 3853static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3854{ 3855 if (skb->ip_summed == CHECKSUM_COMPLETE) 3856 skb->ip_summed = CHECKSUM_NONE; 3857 __skb_trim(skb, len); 3858 return 0; 3859} 3860 3861static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3862{ 3863 if (skb->ip_summed == CHECKSUM_COMPLETE) 3864 skb->ip_summed = CHECKSUM_NONE; 3865 return __skb_grow(skb, len); 3866} 3867 3868#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3869#define skb_rb_first(root) rb_to_skb(rb_first(root)) 3870#define skb_rb_last(root) rb_to_skb(rb_last(root)) 3871#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3872#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3873 3874#define skb_queue_walk(queue, skb) \ 3875 for (skb = (queue)->next; \ 3876 skb != (struct sk_buff *)(queue); \ 3877 skb = skb->next) 3878 3879#define skb_queue_walk_safe(queue, skb, tmp) \ 3880 for (skb = (queue)->next, tmp = skb->next; \ 3881 skb != (struct sk_buff *)(queue); \ 3882 skb = tmp, tmp = skb->next) 3883 3884#define skb_queue_walk_from(queue, skb) \ 3885 for (; skb != (struct sk_buff *)(queue); \ 3886 skb = skb->next) 3887 3888#define skb_rbtree_walk(skb, root) \ 3889 for (skb = skb_rb_first(root); skb != NULL; \ 3890 skb = skb_rb_next(skb)) 3891 3892#define skb_rbtree_walk_from(skb) \ 3893 for (; skb != NULL; \ 3894 skb = skb_rb_next(skb)) 3895 3896#define skb_rbtree_walk_from_safe(skb, tmp) \ 3897 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3898 skb = tmp) 3899 3900#define skb_queue_walk_from_safe(queue, skb, tmp) \ 3901 for (tmp = skb->next; \ 3902 skb != (struct sk_buff *)(queue); \ 3903 skb = tmp, tmp = skb->next) 3904 3905#define skb_queue_reverse_walk(queue, skb) \ 3906 for (skb = (queue)->prev; \ 3907 skb != (struct sk_buff *)(queue); \ 3908 skb = skb->prev) 3909 3910#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3911 for (skb = (queue)->prev, tmp = skb->prev; \ 3912 skb != (struct sk_buff *)(queue); \ 3913 skb = tmp, tmp = skb->prev) 3914 3915#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3916 for (tmp = skb->prev; \ 3917 skb != (struct sk_buff *)(queue); \ 3918 skb = tmp, tmp = skb->prev) 3919 3920static inline bool skb_has_frag_list(const struct sk_buff *skb) 3921{ 3922 return skb_shinfo(skb)->frag_list != NULL; 3923} 3924 3925static inline void skb_frag_list_init(struct sk_buff *skb) 3926{ 3927 skb_shinfo(skb)->frag_list = NULL; 3928} 3929 3930#define skb_walk_frags(skb, iter) \ 3931 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3932 3933 3934int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3935 int *err, long *timeo_p, 3936 const struct sk_buff *skb); 3937struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3938 struct sk_buff_head *queue, 3939 unsigned int flags, 3940 int *off, int *err, 3941 struct sk_buff **last); 3942struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3943 struct sk_buff_head *queue, 3944 unsigned int flags, int *off, int *err, 3945 struct sk_buff **last); 3946struct sk_buff *__skb_recv_datagram(struct sock *sk, 3947 struct sk_buff_head *sk_queue, 3948 unsigned int flags, int *off, int *err); 3949struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3950__poll_t datagram_poll(struct file *file, struct socket *sock, 3951 struct poll_table_struct *wait); 3952int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3953 struct iov_iter *to, int size); 3954static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3955 struct msghdr *msg, int size) 3956{ 3957 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3958} 3959int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3960 struct msghdr *msg); 3961int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3962 struct iov_iter *to, int len, 3963 struct ahash_request *hash); 3964int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3965 struct iov_iter *from, int len); 3966int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3967void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3968void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3969static inline void skb_free_datagram_locked(struct sock *sk, 3970 struct sk_buff *skb) 3971{ 3972 __skb_free_datagram_locked(sk, skb, 0); 3973} 3974int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3975int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3976int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3977__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3978 int len); 3979int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3980 struct pipe_inode_info *pipe, unsigned int len, 3981 unsigned int flags); 3982int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3983 int len); 3984int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3985void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3986unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3987int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3988 int len, int hlen); 3989void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3990int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3991void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3992struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3993struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3994 unsigned int offset); 3995struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3996int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 3997int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3998int skb_vlan_pop(struct sk_buff *skb); 3999int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 4000int skb_eth_pop(struct sk_buff *skb); 4001int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 4002 const unsigned char *src); 4003int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 4004 int mac_len, bool ethernet); 4005int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 4006 bool ethernet); 4007int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 4008int skb_mpls_dec_ttl(struct sk_buff *skb); 4009struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 4010 gfp_t gfp); 4011 4012static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 4013{ 4014 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 4015} 4016 4017static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 4018{ 4019 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 4020} 4021 4022struct skb_checksum_ops { 4023 __wsum (*update)(const void *mem, int len, __wsum wsum); 4024 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4025}; 4026 4027extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4028 4029__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4030 __wsum csum, const struct skb_checksum_ops *ops); 4031__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4032 __wsum csum); 4033 4034static inline void * __must_check 4035__skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4036 const void *data, int hlen, void *buffer) 4037{ 4038 if (likely(hlen - offset >= len)) 4039 return (void *)data + offset; 4040 4041 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4042 return NULL; 4043 4044 return buffer; 4045} 4046 4047static inline void * __must_check 4048skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4049{ 4050 return __skb_header_pointer(skb, offset, len, skb->data, 4051 skb_headlen(skb), buffer); 4052} 4053 4054static inline void * __must_check 4055skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) 4056{ 4057 if (likely(skb_headlen(skb) - offset >= len)) 4058 return skb->data + offset; 4059 return NULL; 4060} 4061 4062/** 4063 * skb_needs_linearize - check if we need to linearize a given skb 4064 * depending on the given device features. 4065 * @skb: socket buffer to check 4066 * @features: net device features 4067 * 4068 * Returns true if either: 4069 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4070 * 2. skb is fragmented and the device does not support SG. 4071 */ 4072static inline bool skb_needs_linearize(struct sk_buff *skb, 4073 netdev_features_t features) 4074{ 4075 return skb_is_nonlinear(skb) && 4076 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4077 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4078} 4079 4080static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4081 void *to, 4082 const unsigned int len) 4083{ 4084 memcpy(to, skb->data, len); 4085} 4086 4087static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4088 const int offset, void *to, 4089 const unsigned int len) 4090{ 4091 memcpy(to, skb->data + offset, len); 4092} 4093 4094static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4095 const void *from, 4096 const unsigned int len) 4097{ 4098 memcpy(skb->data, from, len); 4099} 4100 4101static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4102 const int offset, 4103 const void *from, 4104 const unsigned int len) 4105{ 4106 memcpy(skb->data + offset, from, len); 4107} 4108 4109void skb_init(void); 4110 4111static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4112{ 4113 return skb->tstamp; 4114} 4115 4116/** 4117 * skb_get_timestamp - get timestamp from a skb 4118 * @skb: skb to get stamp from 4119 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4120 * 4121 * Timestamps are stored in the skb as offsets to a base timestamp. 4122 * This function converts the offset back to a struct timeval and stores 4123 * it in stamp. 4124 */ 4125static inline void skb_get_timestamp(const struct sk_buff *skb, 4126 struct __kernel_old_timeval *stamp) 4127{ 4128 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4129} 4130 4131static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4132 struct __kernel_sock_timeval *stamp) 4133{ 4134 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4135 4136 stamp->tv_sec = ts.tv_sec; 4137 stamp->tv_usec = ts.tv_nsec / 1000; 4138} 4139 4140static inline void skb_get_timestampns(const struct sk_buff *skb, 4141 struct __kernel_old_timespec *stamp) 4142{ 4143 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4144 4145 stamp->tv_sec = ts.tv_sec; 4146 stamp->tv_nsec = ts.tv_nsec; 4147} 4148 4149static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4150 struct __kernel_timespec *stamp) 4151{ 4152 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4153 4154 stamp->tv_sec = ts.tv_sec; 4155 stamp->tv_nsec = ts.tv_nsec; 4156} 4157 4158static inline void __net_timestamp(struct sk_buff *skb) 4159{ 4160 skb->tstamp = ktime_get_real(); 4161 skb->mono_delivery_time = 0; 4162} 4163 4164static inline ktime_t net_timedelta(ktime_t t) 4165{ 4166 return ktime_sub(ktime_get_real(), t); 4167} 4168 4169static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4170 bool mono) 4171{ 4172 skb->tstamp = kt; 4173 skb->mono_delivery_time = kt && mono; 4174} 4175 4176DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4177 4178/* It is used in the ingress path to clear the delivery_time. 4179 * If needed, set the skb->tstamp to the (rcv) timestamp. 4180 */ 4181static inline void skb_clear_delivery_time(struct sk_buff *skb) 4182{ 4183 if (skb->mono_delivery_time) { 4184 skb->mono_delivery_time = 0; 4185 if (static_branch_unlikely(&netstamp_needed_key)) 4186 skb->tstamp = ktime_get_real(); 4187 else 4188 skb->tstamp = 0; 4189 } 4190} 4191 4192static inline void skb_clear_tstamp(struct sk_buff *skb) 4193{ 4194 if (skb->mono_delivery_time) 4195 return; 4196 4197 skb->tstamp = 0; 4198} 4199 4200static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4201{ 4202 if (skb->mono_delivery_time) 4203 return 0; 4204 4205 return skb->tstamp; 4206} 4207 4208static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4209{ 4210 if (!skb->mono_delivery_time && skb->tstamp) 4211 return skb->tstamp; 4212 4213 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4214 return ktime_get_real(); 4215 4216 return 0; 4217} 4218 4219static inline u8 skb_metadata_len(const struct sk_buff *skb) 4220{ 4221 return skb_shinfo(skb)->meta_len; 4222} 4223 4224static inline void *skb_metadata_end(const struct sk_buff *skb) 4225{ 4226 return skb_mac_header(skb); 4227} 4228 4229static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4230 const struct sk_buff *skb_b, 4231 u8 meta_len) 4232{ 4233 const void *a = skb_metadata_end(skb_a); 4234 const void *b = skb_metadata_end(skb_b); 4235 /* Using more efficient varaiant than plain call to memcmp(). */ 4236#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4237 u64 diffs = 0; 4238 4239 switch (meta_len) { 4240#define __it(x, op) (x -= sizeof(u##op)) 4241#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4242 case 32: diffs |= __it_diff(a, b, 64); 4243 fallthrough; 4244 case 24: diffs |= __it_diff(a, b, 64); 4245 fallthrough; 4246 case 16: diffs |= __it_diff(a, b, 64); 4247 fallthrough; 4248 case 8: diffs |= __it_diff(a, b, 64); 4249 break; 4250 case 28: diffs |= __it_diff(a, b, 64); 4251 fallthrough; 4252 case 20: diffs |= __it_diff(a, b, 64); 4253 fallthrough; 4254 case 12: diffs |= __it_diff(a, b, 64); 4255 fallthrough; 4256 case 4: diffs |= __it_diff(a, b, 32); 4257 break; 4258 } 4259 return diffs; 4260#else 4261 return memcmp(a - meta_len, b - meta_len, meta_len); 4262#endif 4263} 4264 4265static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4266 const struct sk_buff *skb_b) 4267{ 4268 u8 len_a = skb_metadata_len(skb_a); 4269 u8 len_b = skb_metadata_len(skb_b); 4270 4271 if (!(len_a | len_b)) 4272 return false; 4273 4274 return len_a != len_b ? 4275 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4276} 4277 4278static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4279{ 4280 skb_shinfo(skb)->meta_len = meta_len; 4281} 4282 4283static inline void skb_metadata_clear(struct sk_buff *skb) 4284{ 4285 skb_metadata_set(skb, 0); 4286} 4287 4288struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4289 4290#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4291 4292void skb_clone_tx_timestamp(struct sk_buff *skb); 4293bool skb_defer_rx_timestamp(struct sk_buff *skb); 4294 4295#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4296 4297static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4298{ 4299} 4300 4301static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4302{ 4303 return false; 4304} 4305 4306#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4307 4308/** 4309 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4310 * 4311 * PHY drivers may accept clones of transmitted packets for 4312 * timestamping via their phy_driver.txtstamp method. These drivers 4313 * must call this function to return the skb back to the stack with a 4314 * timestamp. 4315 * 4316 * @skb: clone of the original outgoing packet 4317 * @hwtstamps: hardware time stamps 4318 * 4319 */ 4320void skb_complete_tx_timestamp(struct sk_buff *skb, 4321 struct skb_shared_hwtstamps *hwtstamps); 4322 4323void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4324 struct skb_shared_hwtstamps *hwtstamps, 4325 struct sock *sk, int tstype); 4326 4327/** 4328 * skb_tstamp_tx - queue clone of skb with send time stamps 4329 * @orig_skb: the original outgoing packet 4330 * @hwtstamps: hardware time stamps, may be NULL if not available 4331 * 4332 * If the skb has a socket associated, then this function clones the 4333 * skb (thus sharing the actual data and optional structures), stores 4334 * the optional hardware time stamping information (if non NULL) or 4335 * generates a software time stamp (otherwise), then queues the clone 4336 * to the error queue of the socket. Errors are silently ignored. 4337 */ 4338void skb_tstamp_tx(struct sk_buff *orig_skb, 4339 struct skb_shared_hwtstamps *hwtstamps); 4340 4341/** 4342 * skb_tx_timestamp() - Driver hook for transmit timestamping 4343 * 4344 * Ethernet MAC Drivers should call this function in their hard_xmit() 4345 * function immediately before giving the sk_buff to the MAC hardware. 4346 * 4347 * Specifically, one should make absolutely sure that this function is 4348 * called before TX completion of this packet can trigger. Otherwise 4349 * the packet could potentially already be freed. 4350 * 4351 * @skb: A socket buffer. 4352 */ 4353static inline void skb_tx_timestamp(struct sk_buff *skb) 4354{ 4355 skb_clone_tx_timestamp(skb); 4356 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4357 skb_tstamp_tx(skb, NULL); 4358} 4359 4360/** 4361 * skb_complete_wifi_ack - deliver skb with wifi status 4362 * 4363 * @skb: the original outgoing packet 4364 * @acked: ack status 4365 * 4366 */ 4367void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4368 4369__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4370__sum16 __skb_checksum_complete(struct sk_buff *skb); 4371 4372static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4373{ 4374 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4375 skb->csum_valid || 4376 (skb->ip_summed == CHECKSUM_PARTIAL && 4377 skb_checksum_start_offset(skb) >= 0)); 4378} 4379 4380/** 4381 * skb_checksum_complete - Calculate checksum of an entire packet 4382 * @skb: packet to process 4383 * 4384 * This function calculates the checksum over the entire packet plus 4385 * the value of skb->csum. The latter can be used to supply the 4386 * checksum of a pseudo header as used by TCP/UDP. It returns the 4387 * checksum. 4388 * 4389 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4390 * this function can be used to verify that checksum on received 4391 * packets. In that case the function should return zero if the 4392 * checksum is correct. In particular, this function will return zero 4393 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4394 * hardware has already verified the correctness of the checksum. 4395 */ 4396static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4397{ 4398 return skb_csum_unnecessary(skb) ? 4399 0 : __skb_checksum_complete(skb); 4400} 4401 4402static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4403{ 4404 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4405 if (skb->csum_level == 0) 4406 skb->ip_summed = CHECKSUM_NONE; 4407 else 4408 skb->csum_level--; 4409 } 4410} 4411 4412static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4413{ 4414 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4415 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4416 skb->csum_level++; 4417 } else if (skb->ip_summed == CHECKSUM_NONE) { 4418 skb->ip_summed = CHECKSUM_UNNECESSARY; 4419 skb->csum_level = 0; 4420 } 4421} 4422 4423static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4424{ 4425 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4426 skb->ip_summed = CHECKSUM_NONE; 4427 skb->csum_level = 0; 4428 } 4429} 4430 4431/* Check if we need to perform checksum complete validation. 4432 * 4433 * Returns true if checksum complete is needed, false otherwise 4434 * (either checksum is unnecessary or zero checksum is allowed). 4435 */ 4436static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4437 bool zero_okay, 4438 __sum16 check) 4439{ 4440 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4441 skb->csum_valid = 1; 4442 __skb_decr_checksum_unnecessary(skb); 4443 return false; 4444 } 4445 4446 return true; 4447} 4448 4449/* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4450 * in checksum_init. 4451 */ 4452#define CHECKSUM_BREAK 76 4453 4454/* Unset checksum-complete 4455 * 4456 * Unset checksum complete can be done when packet is being modified 4457 * (uncompressed for instance) and checksum-complete value is 4458 * invalidated. 4459 */ 4460static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4461{ 4462 if (skb->ip_summed == CHECKSUM_COMPLETE) 4463 skb->ip_summed = CHECKSUM_NONE; 4464} 4465 4466/* Validate (init) checksum based on checksum complete. 4467 * 4468 * Return values: 4469 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4470 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4471 * checksum is stored in skb->csum for use in __skb_checksum_complete 4472 * non-zero: value of invalid checksum 4473 * 4474 */ 4475static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4476 bool complete, 4477 __wsum psum) 4478{ 4479 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4480 if (!csum_fold(csum_add(psum, skb->csum))) { 4481 skb->csum_valid = 1; 4482 return 0; 4483 } 4484 } 4485 4486 skb->csum = psum; 4487 4488 if (complete || skb->len <= CHECKSUM_BREAK) { 4489 __sum16 csum; 4490 4491 csum = __skb_checksum_complete(skb); 4492 skb->csum_valid = !csum; 4493 return csum; 4494 } 4495 4496 return 0; 4497} 4498 4499static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4500{ 4501 return 0; 4502} 4503 4504/* Perform checksum validate (init). Note that this is a macro since we only 4505 * want to calculate the pseudo header which is an input function if necessary. 4506 * First we try to validate without any computation (checksum unnecessary) and 4507 * then calculate based on checksum complete calling the function to compute 4508 * pseudo header. 4509 * 4510 * Return values: 4511 * 0: checksum is validated or try to in skb_checksum_complete 4512 * non-zero: value of invalid checksum 4513 */ 4514#define __skb_checksum_validate(skb, proto, complete, \ 4515 zero_okay, check, compute_pseudo) \ 4516({ \ 4517 __sum16 __ret = 0; \ 4518 skb->csum_valid = 0; \ 4519 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4520 __ret = __skb_checksum_validate_complete(skb, \ 4521 complete, compute_pseudo(skb, proto)); \ 4522 __ret; \ 4523}) 4524 4525#define skb_checksum_init(skb, proto, compute_pseudo) \ 4526 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4527 4528#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4529 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4530 4531#define skb_checksum_validate(skb, proto, compute_pseudo) \ 4532 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4533 4534#define skb_checksum_validate_zero_check(skb, proto, check, \ 4535 compute_pseudo) \ 4536 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4537 4538#define skb_checksum_simple_validate(skb) \ 4539 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4540 4541static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4542{ 4543 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4544} 4545 4546static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4547{ 4548 skb->csum = ~pseudo; 4549 skb->ip_summed = CHECKSUM_COMPLETE; 4550} 4551 4552#define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4553do { \ 4554 if (__skb_checksum_convert_check(skb)) \ 4555 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4556} while (0) 4557 4558static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4559 u16 start, u16 offset) 4560{ 4561 skb->ip_summed = CHECKSUM_PARTIAL; 4562 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4563 skb->csum_offset = offset - start; 4564} 4565 4566/* Update skbuf and packet to reflect the remote checksum offload operation. 4567 * When called, ptr indicates the starting point for skb->csum when 4568 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4569 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4570 */ 4571static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4572 int start, int offset, bool nopartial) 4573{ 4574 __wsum delta; 4575 4576 if (!nopartial) { 4577 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4578 return; 4579 } 4580 4581 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4582 __skb_checksum_complete(skb); 4583 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4584 } 4585 4586 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4587 4588 /* Adjust skb->csum since we changed the packet */ 4589 skb->csum = csum_add(skb->csum, delta); 4590} 4591 4592static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4593{ 4594#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4595 return (void *)(skb->_nfct & NFCT_PTRMASK); 4596#else 4597 return NULL; 4598#endif 4599} 4600 4601static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4602{ 4603#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4604 return skb->_nfct; 4605#else 4606 return 0UL; 4607#endif 4608} 4609 4610static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4611{ 4612#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4613 skb->slow_gro |= !!nfct; 4614 skb->_nfct = nfct; 4615#endif 4616} 4617 4618#ifdef CONFIG_SKB_EXTENSIONS 4619enum skb_ext_id { 4620#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4621 SKB_EXT_BRIDGE_NF, 4622#endif 4623#ifdef CONFIG_XFRM 4624 SKB_EXT_SEC_PATH, 4625#endif 4626#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4627 TC_SKB_EXT, 4628#endif 4629#if IS_ENABLED(CONFIG_MPTCP) 4630 SKB_EXT_MPTCP, 4631#endif 4632#if IS_ENABLED(CONFIG_MCTP_FLOWS) 4633 SKB_EXT_MCTP, 4634#endif 4635 SKB_EXT_NUM, /* must be last */ 4636}; 4637 4638/** 4639 * struct skb_ext - sk_buff extensions 4640 * @refcnt: 1 on allocation, deallocated on 0 4641 * @offset: offset to add to @data to obtain extension address 4642 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4643 * @data: start of extension data, variable sized 4644 * 4645 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4646 * to use 'u8' types while allowing up to 2kb worth of extension data. 4647 */ 4648struct skb_ext { 4649 refcount_t refcnt; 4650 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4651 u8 chunks; /* same */ 4652 char data[] __aligned(8); 4653}; 4654 4655struct skb_ext *__skb_ext_alloc(gfp_t flags); 4656void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4657 struct skb_ext *ext); 4658void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4659void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4660void __skb_ext_put(struct skb_ext *ext); 4661 4662static inline void skb_ext_put(struct sk_buff *skb) 4663{ 4664 if (skb->active_extensions) 4665 __skb_ext_put(skb->extensions); 4666} 4667 4668static inline void __skb_ext_copy(struct sk_buff *dst, 4669 const struct sk_buff *src) 4670{ 4671 dst->active_extensions = src->active_extensions; 4672 4673 if (src->active_extensions) { 4674 struct skb_ext *ext = src->extensions; 4675 4676 refcount_inc(&ext->refcnt); 4677 dst->extensions = ext; 4678 } 4679} 4680 4681static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4682{ 4683 skb_ext_put(dst); 4684 __skb_ext_copy(dst, src); 4685} 4686 4687static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4688{ 4689 return !!ext->offset[i]; 4690} 4691 4692static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4693{ 4694 return skb->active_extensions & (1 << id); 4695} 4696 4697static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4698{ 4699 if (skb_ext_exist(skb, id)) 4700 __skb_ext_del(skb, id); 4701} 4702 4703static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4704{ 4705 if (skb_ext_exist(skb, id)) { 4706 struct skb_ext *ext = skb->extensions; 4707 4708 return (void *)ext + (ext->offset[id] << 3); 4709 } 4710 4711 return NULL; 4712} 4713 4714static inline void skb_ext_reset(struct sk_buff *skb) 4715{ 4716 if (unlikely(skb->active_extensions)) { 4717 __skb_ext_put(skb->extensions); 4718 skb->active_extensions = 0; 4719 } 4720} 4721 4722static inline bool skb_has_extensions(struct sk_buff *skb) 4723{ 4724 return unlikely(skb->active_extensions); 4725} 4726#else 4727static inline void skb_ext_put(struct sk_buff *skb) {} 4728static inline void skb_ext_reset(struct sk_buff *skb) {} 4729static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4730static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4731static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4732static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4733#endif /* CONFIG_SKB_EXTENSIONS */ 4734 4735static inline void nf_reset_ct(struct sk_buff *skb) 4736{ 4737#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4738 nf_conntrack_put(skb_nfct(skb)); 4739 skb->_nfct = 0; 4740#endif 4741} 4742 4743static inline void nf_reset_trace(struct sk_buff *skb) 4744{ 4745#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4746 skb->nf_trace = 0; 4747#endif 4748} 4749 4750static inline void ipvs_reset(struct sk_buff *skb) 4751{ 4752#if IS_ENABLED(CONFIG_IP_VS) 4753 skb->ipvs_property = 0; 4754#endif 4755} 4756 4757/* Note: This doesn't put any conntrack info in dst. */ 4758static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4759 bool copy) 4760{ 4761#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4762 dst->_nfct = src->_nfct; 4763 nf_conntrack_get(skb_nfct(src)); 4764#endif 4765#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4766 if (copy) 4767 dst->nf_trace = src->nf_trace; 4768#endif 4769} 4770 4771static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4772{ 4773#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4774 nf_conntrack_put(skb_nfct(dst)); 4775#endif 4776 dst->slow_gro = src->slow_gro; 4777 __nf_copy(dst, src, true); 4778} 4779 4780#ifdef CONFIG_NETWORK_SECMARK 4781static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4782{ 4783 to->secmark = from->secmark; 4784} 4785 4786static inline void skb_init_secmark(struct sk_buff *skb) 4787{ 4788 skb->secmark = 0; 4789} 4790#else 4791static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4792{ } 4793 4794static inline void skb_init_secmark(struct sk_buff *skb) 4795{ } 4796#endif 4797 4798static inline int secpath_exists(const struct sk_buff *skb) 4799{ 4800#ifdef CONFIG_XFRM 4801 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4802#else 4803 return 0; 4804#endif 4805} 4806 4807static inline bool skb_irq_freeable(const struct sk_buff *skb) 4808{ 4809 return !skb->destructor && 4810 !secpath_exists(skb) && 4811 !skb_nfct(skb) && 4812 !skb->_skb_refdst && 4813 !skb_has_frag_list(skb); 4814} 4815 4816static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4817{ 4818 skb->queue_mapping = queue_mapping; 4819} 4820 4821static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4822{ 4823 return skb->queue_mapping; 4824} 4825 4826static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4827{ 4828 to->queue_mapping = from->queue_mapping; 4829} 4830 4831static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4832{ 4833 skb->queue_mapping = rx_queue + 1; 4834} 4835 4836static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4837{ 4838 return skb->queue_mapping - 1; 4839} 4840 4841static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4842{ 4843 return skb->queue_mapping != 0; 4844} 4845 4846static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4847{ 4848 skb->dst_pending_confirm = val; 4849} 4850 4851static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4852{ 4853 return skb->dst_pending_confirm != 0; 4854} 4855 4856static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4857{ 4858#ifdef CONFIG_XFRM 4859 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4860#else 4861 return NULL; 4862#endif 4863} 4864 4865static inline bool skb_is_gso(const struct sk_buff *skb) 4866{ 4867 return skb_shinfo(skb)->gso_size; 4868} 4869 4870/* Note: Should be called only if skb_is_gso(skb) is true */ 4871static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4872{ 4873 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4874} 4875 4876/* Note: Should be called only if skb_is_gso(skb) is true */ 4877static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4878{ 4879 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4880} 4881 4882/* Note: Should be called only if skb_is_gso(skb) is true */ 4883static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4884{ 4885 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4886} 4887 4888static inline void skb_gso_reset(struct sk_buff *skb) 4889{ 4890 skb_shinfo(skb)->gso_size = 0; 4891 skb_shinfo(skb)->gso_segs = 0; 4892 skb_shinfo(skb)->gso_type = 0; 4893} 4894 4895static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4896 u16 increment) 4897{ 4898 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4899 return; 4900 shinfo->gso_size += increment; 4901} 4902 4903static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4904 u16 decrement) 4905{ 4906 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4907 return; 4908 shinfo->gso_size -= decrement; 4909} 4910 4911void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4912 4913static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4914{ 4915 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4916 * wanted then gso_type will be set. */ 4917 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4918 4919 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4920 unlikely(shinfo->gso_type == 0)) { 4921 __skb_warn_lro_forwarding(skb); 4922 return true; 4923 } 4924 return false; 4925} 4926 4927static inline void skb_forward_csum(struct sk_buff *skb) 4928{ 4929 /* Unfortunately we don't support this one. Any brave souls? */ 4930 if (skb->ip_summed == CHECKSUM_COMPLETE) 4931 skb->ip_summed = CHECKSUM_NONE; 4932} 4933 4934/** 4935 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4936 * @skb: skb to check 4937 * 4938 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4939 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4940 * use this helper, to document places where we make this assertion. 4941 */ 4942static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4943{ 4944 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4945} 4946 4947bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4948 4949int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4950struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4951 unsigned int transport_len, 4952 __sum16(*skb_chkf)(struct sk_buff *skb)); 4953 4954/** 4955 * skb_head_is_locked - Determine if the skb->head is locked down 4956 * @skb: skb to check 4957 * 4958 * The head on skbs build around a head frag can be removed if they are 4959 * not cloned. This function returns true if the skb head is locked down 4960 * due to either being allocated via kmalloc, or by being a clone with 4961 * multiple references to the head. 4962 */ 4963static inline bool skb_head_is_locked(const struct sk_buff *skb) 4964{ 4965 return !skb->head_frag || skb_cloned(skb); 4966} 4967 4968/* Local Checksum Offload. 4969 * Compute outer checksum based on the assumption that the 4970 * inner checksum will be offloaded later. 4971 * See Documentation/networking/checksum-offloads.rst for 4972 * explanation of how this works. 4973 * Fill in outer checksum adjustment (e.g. with sum of outer 4974 * pseudo-header) before calling. 4975 * Also ensure that inner checksum is in linear data area. 4976 */ 4977static inline __wsum lco_csum(struct sk_buff *skb) 4978{ 4979 unsigned char *csum_start = skb_checksum_start(skb); 4980 unsigned char *l4_hdr = skb_transport_header(skb); 4981 __wsum partial; 4982 4983 /* Start with complement of inner checksum adjustment */ 4984 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4985 skb->csum_offset)); 4986 4987 /* Add in checksum of our headers (incl. outer checksum 4988 * adjustment filled in by caller) and return result. 4989 */ 4990 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4991} 4992 4993static inline bool skb_is_redirected(const struct sk_buff *skb) 4994{ 4995 return skb->redirected; 4996} 4997 4998static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 4999{ 5000 skb->redirected = 1; 5001#ifdef CONFIG_NET_REDIRECT 5002 skb->from_ingress = from_ingress; 5003 if (skb->from_ingress) 5004 skb_clear_tstamp(skb); 5005#endif 5006} 5007 5008static inline void skb_reset_redirect(struct sk_buff *skb) 5009{ 5010 skb->redirected = 0; 5011} 5012 5013static inline void skb_set_redirected_noclear(struct sk_buff *skb, 5014 bool from_ingress) 5015{ 5016 skb->redirected = 1; 5017#ifdef CONFIG_NET_REDIRECT 5018 skb->from_ingress = from_ingress; 5019#endif 5020} 5021 5022static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5023{ 5024#if IS_ENABLED(CONFIG_IP_SCTP) 5025 return skb->csum_not_inet; 5026#else 5027 return 0; 5028#endif 5029} 5030 5031static inline void skb_reset_csum_not_inet(struct sk_buff *skb) 5032{ 5033 skb->ip_summed = CHECKSUM_NONE; 5034#if IS_ENABLED(CONFIG_IP_SCTP) 5035 skb->csum_not_inet = 0; 5036#endif 5037} 5038 5039static inline void skb_set_kcov_handle(struct sk_buff *skb, 5040 const u64 kcov_handle) 5041{ 5042#ifdef CONFIG_KCOV 5043 skb->kcov_handle = kcov_handle; 5044#endif 5045} 5046 5047static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5048{ 5049#ifdef CONFIG_KCOV 5050 return skb->kcov_handle; 5051#else 5052 return 0; 5053#endif 5054} 5055 5056static inline void skb_mark_for_recycle(struct sk_buff *skb) 5057{ 5058#ifdef CONFIG_PAGE_POOL 5059 skb->pp_recycle = 1; 5060#endif 5061} 5062 5063ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 5064 ssize_t maxsize, gfp_t gfp); 5065 5066#endif /* __KERNEL__ */ 5067#endif /* _LINUX_SKBUFF_H */