at v6.6 39 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_SEQLOCK_H 3#define __LINUX_SEQLOCK_H 4 5/* 6 * seqcount_t / seqlock_t - a reader-writer consistency mechanism with 7 * lockless readers (read-only retry loops), and no writer starvation. 8 * 9 * See Documentation/locking/seqlock.rst 10 * 11 * Copyrights: 12 * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli 13 * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH 14 */ 15 16#include <linux/compiler.h> 17#include <linux/kcsan-checks.h> 18#include <linux/lockdep.h> 19#include <linux/mutex.h> 20#include <linux/preempt.h> 21#include <linux/spinlock.h> 22 23#include <asm/processor.h> 24 25/* 26 * The seqlock seqcount_t interface does not prescribe a precise sequence of 27 * read begin/retry/end. For readers, typically there is a call to 28 * read_seqcount_begin() and read_seqcount_retry(), however, there are more 29 * esoteric cases which do not follow this pattern. 30 * 31 * As a consequence, we take the following best-effort approach for raw usage 32 * via seqcount_t under KCSAN: upon beginning a seq-reader critical section, 33 * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as 34 * atomics; if there is a matching read_seqcount_retry() call, no following 35 * memory operations are considered atomic. Usage of the seqlock_t interface 36 * is not affected. 37 */ 38#define KCSAN_SEQLOCK_REGION_MAX 1000 39 40/* 41 * Sequence counters (seqcount_t) 42 * 43 * This is the raw counting mechanism, without any writer protection. 44 * 45 * Write side critical sections must be serialized and non-preemptible. 46 * 47 * If readers can be invoked from hardirq or softirq contexts, 48 * interrupts or bottom halves must also be respectively disabled before 49 * entering the write section. 50 * 51 * This mechanism can't be used if the protected data contains pointers, 52 * as the writer can invalidate a pointer that a reader is following. 53 * 54 * If the write serialization mechanism is one of the common kernel 55 * locking primitives, use a sequence counter with associated lock 56 * (seqcount_LOCKNAME_t) instead. 57 * 58 * If it's desired to automatically handle the sequence counter writer 59 * serialization and non-preemptibility requirements, use a sequential 60 * lock (seqlock_t) instead. 61 * 62 * See Documentation/locking/seqlock.rst 63 */ 64typedef struct seqcount { 65 unsigned sequence; 66#ifdef CONFIG_DEBUG_LOCK_ALLOC 67 struct lockdep_map dep_map; 68#endif 69} seqcount_t; 70 71static inline void __seqcount_init(seqcount_t *s, const char *name, 72 struct lock_class_key *key) 73{ 74 /* 75 * Make sure we are not reinitializing a held lock: 76 */ 77 lockdep_init_map(&s->dep_map, name, key, 0); 78 s->sequence = 0; 79} 80 81#ifdef CONFIG_DEBUG_LOCK_ALLOC 82 83# define SEQCOUNT_DEP_MAP_INIT(lockname) \ 84 .dep_map = { .name = #lockname } 85 86/** 87 * seqcount_init() - runtime initializer for seqcount_t 88 * @s: Pointer to the seqcount_t instance 89 */ 90# define seqcount_init(s) \ 91 do { \ 92 static struct lock_class_key __key; \ 93 __seqcount_init((s), #s, &__key); \ 94 } while (0) 95 96static inline void seqcount_lockdep_reader_access(const seqcount_t *s) 97{ 98 seqcount_t *l = (seqcount_t *)s; 99 unsigned long flags; 100 101 local_irq_save(flags); 102 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_); 103 seqcount_release(&l->dep_map, _RET_IP_); 104 local_irq_restore(flags); 105} 106 107#else 108# define SEQCOUNT_DEP_MAP_INIT(lockname) 109# define seqcount_init(s) __seqcount_init(s, NULL, NULL) 110# define seqcount_lockdep_reader_access(x) 111#endif 112 113/** 114 * SEQCNT_ZERO() - static initializer for seqcount_t 115 * @name: Name of the seqcount_t instance 116 */ 117#define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } 118 119/* 120 * Sequence counters with associated locks (seqcount_LOCKNAME_t) 121 * 122 * A sequence counter which associates the lock used for writer 123 * serialization at initialization time. This enables lockdep to validate 124 * that the write side critical section is properly serialized. 125 * 126 * For associated locks which do not implicitly disable preemption, 127 * preemption protection is enforced in the write side function. 128 * 129 * Lockdep is never used in any for the raw write variants. 130 * 131 * See Documentation/locking/seqlock.rst 132 */ 133 134/* 135 * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot 136 * disable preemption. It can lead to higher latencies, and the write side 137 * sections will not be able to acquire locks which become sleeping locks 138 * (e.g. spinlock_t). 139 * 140 * To remain preemptible while avoiding a possible livelock caused by the 141 * reader preempting the writer, use a different technique: let the reader 142 * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the 143 * case, acquire then release the associated LOCKNAME writer serialization 144 * lock. This will allow any possibly-preempted writer to make progress 145 * until the end of its writer serialization lock critical section. 146 * 147 * This lock-unlock technique must be implemented for all of PREEMPT_RT 148 * sleeping locks. See Documentation/locking/locktypes.rst 149 */ 150#if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT) 151#define __SEQ_LOCK(expr) expr 152#else 153#define __SEQ_LOCK(expr) 154#endif 155 156/* 157 * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated 158 * @seqcount: The real sequence counter 159 * @lock: Pointer to the associated lock 160 * 161 * A plain sequence counter with external writer synchronization by 162 * LOCKNAME @lock. The lock is associated to the sequence counter in the 163 * static initializer or init function. This enables lockdep to validate 164 * that the write side critical section is properly serialized. 165 * 166 * LOCKNAME: raw_spinlock, spinlock, rwlock or mutex 167 */ 168 169/* 170 * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t 171 * @s: Pointer to the seqcount_LOCKNAME_t instance 172 * @lock: Pointer to the associated lock 173 */ 174 175#define seqcount_LOCKNAME_init(s, _lock, lockname) \ 176 do { \ 177 seqcount_##lockname##_t *____s = (s); \ 178 seqcount_init(&____s->seqcount); \ 179 __SEQ_LOCK(____s->lock = (_lock)); \ 180 } while (0) 181 182#define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock) 183#define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock) 184#define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock) 185#define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex) 186 187/* 188 * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers 189 * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t 190 * 191 * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t 192 * @locktype: LOCKNAME canonical C data type 193 * @preemptible: preemptibility of above locktype 194 * @lockmember: argument for lockdep_assert_held() 195 * @lockbase: associated lock release function (prefix only) 196 * @lock_acquire: associated lock acquisition function (full call) 197 */ 198#define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \ 199typedef struct seqcount_##lockname { \ 200 seqcount_t seqcount; \ 201 __SEQ_LOCK(locktype *lock); \ 202} seqcount_##lockname##_t; \ 203 \ 204static __always_inline seqcount_t * \ 205__seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \ 206{ \ 207 return &s->seqcount; \ 208} \ 209 \ 210static __always_inline unsigned \ 211__seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \ 212{ \ 213 unsigned seq = READ_ONCE(s->seqcount.sequence); \ 214 \ 215 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 216 return seq; \ 217 \ 218 if (preemptible && unlikely(seq & 1)) { \ 219 __SEQ_LOCK(lock_acquire); \ 220 __SEQ_LOCK(lockbase##_unlock(s->lock)); \ 221 \ 222 /* \ 223 * Re-read the sequence counter since the (possibly \ 224 * preempted) writer made progress. \ 225 */ \ 226 seq = READ_ONCE(s->seqcount.sequence); \ 227 } \ 228 \ 229 return seq; \ 230} \ 231 \ 232static __always_inline bool \ 233__seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \ 234{ \ 235 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 236 return preemptible; \ 237 \ 238 /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \ 239 return false; \ 240} \ 241 \ 242static __always_inline void \ 243__seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \ 244{ \ 245 __SEQ_LOCK(lockdep_assert_held(lockmember)); \ 246} 247 248/* 249 * __seqprop() for seqcount_t 250 */ 251 252static inline seqcount_t *__seqprop_ptr(seqcount_t *s) 253{ 254 return s; 255} 256 257static inline unsigned __seqprop_sequence(const seqcount_t *s) 258{ 259 return READ_ONCE(s->sequence); 260} 261 262static inline bool __seqprop_preemptible(const seqcount_t *s) 263{ 264 return false; 265} 266 267static inline void __seqprop_assert(const seqcount_t *s) 268{ 269 lockdep_assert_preemption_disabled(); 270} 271 272#define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT) 273 274SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, s->lock, raw_spin, raw_spin_lock(s->lock)) 275SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, s->lock, spin, spin_lock(s->lock)) 276SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, s->lock, read, read_lock(s->lock)) 277SEQCOUNT_LOCKNAME(mutex, struct mutex, true, s->lock, mutex, mutex_lock(s->lock)) 278 279/* 280 * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t 281 * @name: Name of the seqcount_LOCKNAME_t instance 282 * @lock: Pointer to the associated LOCKNAME 283 */ 284 285#define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \ 286 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ 287 __SEQ_LOCK(.lock = (assoc_lock)) \ 288} 289 290#define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 291#define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 292#define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 293#define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 294#define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) 295 296#define __seqprop_case(s, lockname, prop) \ 297 seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s)) 298 299#define __seqprop(s, prop) _Generic(*(s), \ 300 seqcount_t: __seqprop_##prop((void *)(s)), \ 301 __seqprop_case((s), raw_spinlock, prop), \ 302 __seqprop_case((s), spinlock, prop), \ 303 __seqprop_case((s), rwlock, prop), \ 304 __seqprop_case((s), mutex, prop)) 305 306#define seqprop_ptr(s) __seqprop(s, ptr) 307#define seqprop_sequence(s) __seqprop(s, sequence) 308#define seqprop_preemptible(s) __seqprop(s, preemptible) 309#define seqprop_assert(s) __seqprop(s, assert) 310 311/** 312 * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier 313 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 314 * 315 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() 316 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 317 * provided before actually loading any of the variables that are to be 318 * protected in this critical section. 319 * 320 * Use carefully, only in critical code, and comment how the barrier is 321 * provided. 322 * 323 * Return: count to be passed to read_seqcount_retry() 324 */ 325#define __read_seqcount_begin(s) \ 326({ \ 327 unsigned __seq; \ 328 \ 329 while ((__seq = seqprop_sequence(s)) & 1) \ 330 cpu_relax(); \ 331 \ 332 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ 333 __seq; \ 334}) 335 336/** 337 * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep 338 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 339 * 340 * Return: count to be passed to read_seqcount_retry() 341 */ 342#define raw_read_seqcount_begin(s) \ 343({ \ 344 unsigned _seq = __read_seqcount_begin(s); \ 345 \ 346 smp_rmb(); \ 347 _seq; \ 348}) 349 350/** 351 * read_seqcount_begin() - begin a seqcount_t read critical section 352 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 353 * 354 * Return: count to be passed to read_seqcount_retry() 355 */ 356#define read_seqcount_begin(s) \ 357({ \ 358 seqcount_lockdep_reader_access(seqprop_ptr(s)); \ 359 raw_read_seqcount_begin(s); \ 360}) 361 362/** 363 * raw_read_seqcount() - read the raw seqcount_t counter value 364 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 365 * 366 * raw_read_seqcount opens a read critical section of the given 367 * seqcount_t, without any lockdep checking, and without checking or 368 * masking the sequence counter LSB. Calling code is responsible for 369 * handling that. 370 * 371 * Return: count to be passed to read_seqcount_retry() 372 */ 373#define raw_read_seqcount(s) \ 374({ \ 375 unsigned __seq = seqprop_sequence(s); \ 376 \ 377 smp_rmb(); \ 378 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ 379 __seq; \ 380}) 381 382/** 383 * raw_seqcount_begin() - begin a seqcount_t read critical section w/o 384 * lockdep and w/o counter stabilization 385 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 386 * 387 * raw_seqcount_begin opens a read critical section of the given 388 * seqcount_t. Unlike read_seqcount_begin(), this function will not wait 389 * for the count to stabilize. If a writer is active when it begins, it 390 * will fail the read_seqcount_retry() at the end of the read critical 391 * section instead of stabilizing at the beginning of it. 392 * 393 * Use this only in special kernel hot paths where the read section is 394 * small and has a high probability of success through other external 395 * means. It will save a single branching instruction. 396 * 397 * Return: count to be passed to read_seqcount_retry() 398 */ 399#define raw_seqcount_begin(s) \ 400({ \ 401 /* \ 402 * If the counter is odd, let read_seqcount_retry() fail \ 403 * by decrementing the counter. \ 404 */ \ 405 raw_read_seqcount(s) & ~1; \ 406}) 407 408/** 409 * __read_seqcount_retry() - end a seqcount_t read section w/o barrier 410 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 411 * @start: count, from read_seqcount_begin() 412 * 413 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() 414 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is 415 * provided before actually loading any of the variables that are to be 416 * protected in this critical section. 417 * 418 * Use carefully, only in critical code, and comment how the barrier is 419 * provided. 420 * 421 * Return: true if a read section retry is required, else false 422 */ 423#define __read_seqcount_retry(s, start) \ 424 do___read_seqcount_retry(seqprop_ptr(s), start) 425 426static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start) 427{ 428 kcsan_atomic_next(0); 429 return unlikely(READ_ONCE(s->sequence) != start); 430} 431 432/** 433 * read_seqcount_retry() - end a seqcount_t read critical section 434 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 435 * @start: count, from read_seqcount_begin() 436 * 437 * read_seqcount_retry closes the read critical section of given 438 * seqcount_t. If the critical section was invalid, it must be ignored 439 * (and typically retried). 440 * 441 * Return: true if a read section retry is required, else false 442 */ 443#define read_seqcount_retry(s, start) \ 444 do_read_seqcount_retry(seqprop_ptr(s), start) 445 446static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start) 447{ 448 smp_rmb(); 449 return do___read_seqcount_retry(s, start); 450} 451 452/** 453 * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep 454 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 455 * 456 * Context: check write_seqcount_begin() 457 */ 458#define raw_write_seqcount_begin(s) \ 459do { \ 460 if (seqprop_preemptible(s)) \ 461 preempt_disable(); \ 462 \ 463 do_raw_write_seqcount_begin(seqprop_ptr(s)); \ 464} while (0) 465 466static inline void do_raw_write_seqcount_begin(seqcount_t *s) 467{ 468 kcsan_nestable_atomic_begin(); 469 s->sequence++; 470 smp_wmb(); 471} 472 473/** 474 * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep 475 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 476 * 477 * Context: check write_seqcount_end() 478 */ 479#define raw_write_seqcount_end(s) \ 480do { \ 481 do_raw_write_seqcount_end(seqprop_ptr(s)); \ 482 \ 483 if (seqprop_preemptible(s)) \ 484 preempt_enable(); \ 485} while (0) 486 487static inline void do_raw_write_seqcount_end(seqcount_t *s) 488{ 489 smp_wmb(); 490 s->sequence++; 491 kcsan_nestable_atomic_end(); 492} 493 494/** 495 * write_seqcount_begin_nested() - start a seqcount_t write section with 496 * custom lockdep nesting level 497 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 498 * @subclass: lockdep nesting level 499 * 500 * See Documentation/locking/lockdep-design.rst 501 * Context: check write_seqcount_begin() 502 */ 503#define write_seqcount_begin_nested(s, subclass) \ 504do { \ 505 seqprop_assert(s); \ 506 \ 507 if (seqprop_preemptible(s)) \ 508 preempt_disable(); \ 509 \ 510 do_write_seqcount_begin_nested(seqprop_ptr(s), subclass); \ 511} while (0) 512 513static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass) 514{ 515 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); 516 do_raw_write_seqcount_begin(s); 517} 518 519/** 520 * write_seqcount_begin() - start a seqcount_t write side critical section 521 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 522 * 523 * Context: sequence counter write side sections must be serialized and 524 * non-preemptible. Preemption will be automatically disabled if and 525 * only if the seqcount write serialization lock is associated, and 526 * preemptible. If readers can be invoked from hardirq or softirq 527 * context, interrupts or bottom halves must be respectively disabled. 528 */ 529#define write_seqcount_begin(s) \ 530do { \ 531 seqprop_assert(s); \ 532 \ 533 if (seqprop_preemptible(s)) \ 534 preempt_disable(); \ 535 \ 536 do_write_seqcount_begin(seqprop_ptr(s)); \ 537} while (0) 538 539static inline void do_write_seqcount_begin(seqcount_t *s) 540{ 541 do_write_seqcount_begin_nested(s, 0); 542} 543 544/** 545 * write_seqcount_end() - end a seqcount_t write side critical section 546 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 547 * 548 * Context: Preemption will be automatically re-enabled if and only if 549 * the seqcount write serialization lock is associated, and preemptible. 550 */ 551#define write_seqcount_end(s) \ 552do { \ 553 do_write_seqcount_end(seqprop_ptr(s)); \ 554 \ 555 if (seqprop_preemptible(s)) \ 556 preempt_enable(); \ 557} while (0) 558 559static inline void do_write_seqcount_end(seqcount_t *s) 560{ 561 seqcount_release(&s->dep_map, _RET_IP_); 562 do_raw_write_seqcount_end(s); 563} 564 565/** 566 * raw_write_seqcount_barrier() - do a seqcount_t write barrier 567 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 568 * 569 * This can be used to provide an ordering guarantee instead of the usual 570 * consistency guarantee. It is one wmb cheaper, because it can collapse 571 * the two back-to-back wmb()s. 572 * 573 * Note that writes surrounding the barrier should be declared atomic (e.g. 574 * via WRITE_ONCE): a) to ensure the writes become visible to other threads 575 * atomically, avoiding compiler optimizations; b) to document which writes are 576 * meant to propagate to the reader critical section. This is necessary because 577 * neither writes before and after the barrier are enclosed in a seq-writer 578 * critical section that would ensure readers are aware of ongoing writes:: 579 * 580 * seqcount_t seq; 581 * bool X = true, Y = false; 582 * 583 * void read(void) 584 * { 585 * bool x, y; 586 * 587 * do { 588 * int s = read_seqcount_begin(&seq); 589 * 590 * x = X; y = Y; 591 * 592 * } while (read_seqcount_retry(&seq, s)); 593 * 594 * BUG_ON(!x && !y); 595 * } 596 * 597 * void write(void) 598 * { 599 * WRITE_ONCE(Y, true); 600 * 601 * raw_write_seqcount_barrier(seq); 602 * 603 * WRITE_ONCE(X, false); 604 * } 605 */ 606#define raw_write_seqcount_barrier(s) \ 607 do_raw_write_seqcount_barrier(seqprop_ptr(s)) 608 609static inline void do_raw_write_seqcount_barrier(seqcount_t *s) 610{ 611 kcsan_nestable_atomic_begin(); 612 s->sequence++; 613 smp_wmb(); 614 s->sequence++; 615 kcsan_nestable_atomic_end(); 616} 617 618/** 619 * write_seqcount_invalidate() - invalidate in-progress seqcount_t read 620 * side operations 621 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants 622 * 623 * After write_seqcount_invalidate, no seqcount_t read side operations 624 * will complete successfully and see data older than this. 625 */ 626#define write_seqcount_invalidate(s) \ 627 do_write_seqcount_invalidate(seqprop_ptr(s)) 628 629static inline void do_write_seqcount_invalidate(seqcount_t *s) 630{ 631 smp_wmb(); 632 kcsan_nestable_atomic_begin(); 633 s->sequence+=2; 634 kcsan_nestable_atomic_end(); 635} 636 637/* 638 * Latch sequence counters (seqcount_latch_t) 639 * 640 * A sequence counter variant where the counter even/odd value is used to 641 * switch between two copies of protected data. This allows the read path, 642 * typically NMIs, to safely interrupt the write side critical section. 643 * 644 * As the write sections are fully preemptible, no special handling for 645 * PREEMPT_RT is needed. 646 */ 647typedef struct { 648 seqcount_t seqcount; 649} seqcount_latch_t; 650 651/** 652 * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t 653 * @seq_name: Name of the seqcount_latch_t instance 654 */ 655#define SEQCNT_LATCH_ZERO(seq_name) { \ 656 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ 657} 658 659/** 660 * seqcount_latch_init() - runtime initializer for seqcount_latch_t 661 * @s: Pointer to the seqcount_latch_t instance 662 */ 663#define seqcount_latch_init(s) seqcount_init(&(s)->seqcount) 664 665/** 666 * raw_read_seqcount_latch() - pick even/odd latch data copy 667 * @s: Pointer to seqcount_latch_t 668 * 669 * See raw_write_seqcount_latch() for details and a full reader/writer 670 * usage example. 671 * 672 * Return: sequence counter raw value. Use the lowest bit as an index for 673 * picking which data copy to read. The full counter must then be checked 674 * with raw_read_seqcount_latch_retry(). 675 */ 676static __always_inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s) 677{ 678 /* 679 * Pairs with the first smp_wmb() in raw_write_seqcount_latch(). 680 * Due to the dependent load, a full smp_rmb() is not needed. 681 */ 682 return READ_ONCE(s->seqcount.sequence); 683} 684 685/** 686 * raw_read_seqcount_latch_retry() - end a seqcount_latch_t read section 687 * @s: Pointer to seqcount_latch_t 688 * @start: count, from raw_read_seqcount_latch() 689 * 690 * Return: true if a read section retry is required, else false 691 */ 692static __always_inline int 693raw_read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) 694{ 695 smp_rmb(); 696 return unlikely(READ_ONCE(s->seqcount.sequence) != start); 697} 698 699/** 700 * raw_write_seqcount_latch() - redirect latch readers to even/odd copy 701 * @s: Pointer to seqcount_latch_t 702 * 703 * The latch technique is a multiversion concurrency control method that allows 704 * queries during non-atomic modifications. If you can guarantee queries never 705 * interrupt the modification -- e.g. the concurrency is strictly between CPUs 706 * -- you most likely do not need this. 707 * 708 * Where the traditional RCU/lockless data structures rely on atomic 709 * modifications to ensure queries observe either the old or the new state the 710 * latch allows the same for non-atomic updates. The trade-off is doubling the 711 * cost of storage; we have to maintain two copies of the entire data 712 * structure. 713 * 714 * Very simply put: we first modify one copy and then the other. This ensures 715 * there is always one copy in a stable state, ready to give us an answer. 716 * 717 * The basic form is a data structure like:: 718 * 719 * struct latch_struct { 720 * seqcount_latch_t seq; 721 * struct data_struct data[2]; 722 * }; 723 * 724 * Where a modification, which is assumed to be externally serialized, does the 725 * following:: 726 * 727 * void latch_modify(struct latch_struct *latch, ...) 728 * { 729 * smp_wmb(); // Ensure that the last data[1] update is visible 730 * latch->seq.sequence++; 731 * smp_wmb(); // Ensure that the seqcount update is visible 732 * 733 * modify(latch->data[0], ...); 734 * 735 * smp_wmb(); // Ensure that the data[0] update is visible 736 * latch->seq.sequence++; 737 * smp_wmb(); // Ensure that the seqcount update is visible 738 * 739 * modify(latch->data[1], ...); 740 * } 741 * 742 * The query will have a form like:: 743 * 744 * struct entry *latch_query(struct latch_struct *latch, ...) 745 * { 746 * struct entry *entry; 747 * unsigned seq, idx; 748 * 749 * do { 750 * seq = raw_read_seqcount_latch(&latch->seq); 751 * 752 * idx = seq & 0x01; 753 * entry = data_query(latch->data[idx], ...); 754 * 755 * // This includes needed smp_rmb() 756 * } while (raw_read_seqcount_latch_retry(&latch->seq, seq)); 757 * 758 * return entry; 759 * } 760 * 761 * So during the modification, queries are first redirected to data[1]. Then we 762 * modify data[0]. When that is complete, we redirect queries back to data[0] 763 * and we can modify data[1]. 764 * 765 * NOTE: 766 * 767 * The non-requirement for atomic modifications does _NOT_ include 768 * the publishing of new entries in the case where data is a dynamic 769 * data structure. 770 * 771 * An iteration might start in data[0] and get suspended long enough 772 * to miss an entire modification sequence, once it resumes it might 773 * observe the new entry. 774 * 775 * NOTE2: 776 * 777 * When data is a dynamic data structure; one should use regular RCU 778 * patterns to manage the lifetimes of the objects within. 779 */ 780static inline void raw_write_seqcount_latch(seqcount_latch_t *s) 781{ 782 smp_wmb(); /* prior stores before incrementing "sequence" */ 783 s->seqcount.sequence++; 784 smp_wmb(); /* increment "sequence" before following stores */ 785} 786 787/* 788 * Sequential locks (seqlock_t) 789 * 790 * Sequence counters with an embedded spinlock for writer serialization 791 * and non-preemptibility. 792 * 793 * For more info, see: 794 * - Comments on top of seqcount_t 795 * - Documentation/locking/seqlock.rst 796 */ 797typedef struct { 798 /* 799 * Make sure that readers don't starve writers on PREEMPT_RT: use 800 * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK(). 801 */ 802 seqcount_spinlock_t seqcount; 803 spinlock_t lock; 804} seqlock_t; 805 806#define __SEQLOCK_UNLOCKED(lockname) \ 807 { \ 808 .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \ 809 .lock = __SPIN_LOCK_UNLOCKED(lockname) \ 810 } 811 812/** 813 * seqlock_init() - dynamic initializer for seqlock_t 814 * @sl: Pointer to the seqlock_t instance 815 */ 816#define seqlock_init(sl) \ 817 do { \ 818 spin_lock_init(&(sl)->lock); \ 819 seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \ 820 } while (0) 821 822/** 823 * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t 824 * @sl: Name of the seqlock_t instance 825 */ 826#define DEFINE_SEQLOCK(sl) \ 827 seqlock_t sl = __SEQLOCK_UNLOCKED(sl) 828 829/** 830 * read_seqbegin() - start a seqlock_t read side critical section 831 * @sl: Pointer to seqlock_t 832 * 833 * Return: count, to be passed to read_seqretry() 834 */ 835static inline unsigned read_seqbegin(const seqlock_t *sl) 836{ 837 unsigned ret = read_seqcount_begin(&sl->seqcount); 838 839 kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */ 840 kcsan_flat_atomic_begin(); 841 return ret; 842} 843 844/** 845 * read_seqretry() - end a seqlock_t read side section 846 * @sl: Pointer to seqlock_t 847 * @start: count, from read_seqbegin() 848 * 849 * read_seqretry closes the read side critical section of given seqlock_t. 850 * If the critical section was invalid, it must be ignored (and typically 851 * retried). 852 * 853 * Return: true if a read section retry is required, else false 854 */ 855static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) 856{ 857 /* 858 * Assume not nested: read_seqretry() may be called multiple times when 859 * completing read critical section. 860 */ 861 kcsan_flat_atomic_end(); 862 863 return read_seqcount_retry(&sl->seqcount, start); 864} 865 866/* 867 * For all seqlock_t write side functions, use the the internal 868 * do_write_seqcount_begin() instead of generic write_seqcount_begin(). 869 * This way, no redundant lockdep_assert_held() checks are added. 870 */ 871 872/** 873 * write_seqlock() - start a seqlock_t write side critical section 874 * @sl: Pointer to seqlock_t 875 * 876 * write_seqlock opens a write side critical section for the given 877 * seqlock_t. It also implicitly acquires the spinlock_t embedded inside 878 * that sequential lock. All seqlock_t write side sections are thus 879 * automatically serialized and non-preemptible. 880 * 881 * Context: if the seqlock_t read section, or other write side critical 882 * sections, can be invoked from hardirq or softirq contexts, use the 883 * _irqsave or _bh variants of this function instead. 884 */ 885static inline void write_seqlock(seqlock_t *sl) 886{ 887 spin_lock(&sl->lock); 888 do_write_seqcount_begin(&sl->seqcount.seqcount); 889} 890 891/** 892 * write_sequnlock() - end a seqlock_t write side critical section 893 * @sl: Pointer to seqlock_t 894 * 895 * write_sequnlock closes the (serialized and non-preemptible) write side 896 * critical section of given seqlock_t. 897 */ 898static inline void write_sequnlock(seqlock_t *sl) 899{ 900 do_write_seqcount_end(&sl->seqcount.seqcount); 901 spin_unlock(&sl->lock); 902} 903 904/** 905 * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section 906 * @sl: Pointer to seqlock_t 907 * 908 * _bh variant of write_seqlock(). Use only if the read side section, or 909 * other write side sections, can be invoked from softirq contexts. 910 */ 911static inline void write_seqlock_bh(seqlock_t *sl) 912{ 913 spin_lock_bh(&sl->lock); 914 do_write_seqcount_begin(&sl->seqcount.seqcount); 915} 916 917/** 918 * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section 919 * @sl: Pointer to seqlock_t 920 * 921 * write_sequnlock_bh closes the serialized, non-preemptible, and 922 * softirqs-disabled, seqlock_t write side critical section opened with 923 * write_seqlock_bh(). 924 */ 925static inline void write_sequnlock_bh(seqlock_t *sl) 926{ 927 do_write_seqcount_end(&sl->seqcount.seqcount); 928 spin_unlock_bh(&sl->lock); 929} 930 931/** 932 * write_seqlock_irq() - start a non-interruptible seqlock_t write section 933 * @sl: Pointer to seqlock_t 934 * 935 * _irq variant of write_seqlock(). Use only if the read side section, or 936 * other write sections, can be invoked from hardirq contexts. 937 */ 938static inline void write_seqlock_irq(seqlock_t *sl) 939{ 940 spin_lock_irq(&sl->lock); 941 do_write_seqcount_begin(&sl->seqcount.seqcount); 942} 943 944/** 945 * write_sequnlock_irq() - end a non-interruptible seqlock_t write section 946 * @sl: Pointer to seqlock_t 947 * 948 * write_sequnlock_irq closes the serialized and non-interruptible 949 * seqlock_t write side section opened with write_seqlock_irq(). 950 */ 951static inline void write_sequnlock_irq(seqlock_t *sl) 952{ 953 do_write_seqcount_end(&sl->seqcount.seqcount); 954 spin_unlock_irq(&sl->lock); 955} 956 957static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) 958{ 959 unsigned long flags; 960 961 spin_lock_irqsave(&sl->lock, flags); 962 do_write_seqcount_begin(&sl->seqcount.seqcount); 963 return flags; 964} 965 966/** 967 * write_seqlock_irqsave() - start a non-interruptible seqlock_t write 968 * section 969 * @lock: Pointer to seqlock_t 970 * @flags: Stack-allocated storage for saving caller's local interrupt 971 * state, to be passed to write_sequnlock_irqrestore(). 972 * 973 * _irqsave variant of write_seqlock(). Use it only if the read side 974 * section, or other write sections, can be invoked from hardirq context. 975 */ 976#define write_seqlock_irqsave(lock, flags) \ 977 do { flags = __write_seqlock_irqsave(lock); } while (0) 978 979/** 980 * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write 981 * section 982 * @sl: Pointer to seqlock_t 983 * @flags: Caller's saved interrupt state, from write_seqlock_irqsave() 984 * 985 * write_sequnlock_irqrestore closes the serialized and non-interruptible 986 * seqlock_t write section previously opened with write_seqlock_irqsave(). 987 */ 988static inline void 989write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) 990{ 991 do_write_seqcount_end(&sl->seqcount.seqcount); 992 spin_unlock_irqrestore(&sl->lock, flags); 993} 994 995/** 996 * read_seqlock_excl() - begin a seqlock_t locking reader section 997 * @sl: Pointer to seqlock_t 998 * 999 * read_seqlock_excl opens a seqlock_t locking reader critical section. A 1000 * locking reader exclusively locks out *both* other writers *and* other 1001 * locking readers, but it does not update the embedded sequence number. 1002 * 1003 * Locking readers act like a normal spin_lock()/spin_unlock(). 1004 * 1005 * Context: if the seqlock_t write section, *or other read sections*, can 1006 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh 1007 * variant of this function instead. 1008 * 1009 * The opened read section must be closed with read_sequnlock_excl(). 1010 */ 1011static inline void read_seqlock_excl(seqlock_t *sl) 1012{ 1013 spin_lock(&sl->lock); 1014} 1015 1016/** 1017 * read_sequnlock_excl() - end a seqlock_t locking reader critical section 1018 * @sl: Pointer to seqlock_t 1019 */ 1020static inline void read_sequnlock_excl(seqlock_t *sl) 1021{ 1022 spin_unlock(&sl->lock); 1023} 1024 1025/** 1026 * read_seqlock_excl_bh() - start a seqlock_t locking reader section with 1027 * softirqs disabled 1028 * @sl: Pointer to seqlock_t 1029 * 1030 * _bh variant of read_seqlock_excl(). Use this variant only if the 1031 * seqlock_t write side section, *or other read sections*, can be invoked 1032 * from softirq contexts. 1033 */ 1034static inline void read_seqlock_excl_bh(seqlock_t *sl) 1035{ 1036 spin_lock_bh(&sl->lock); 1037} 1038 1039/** 1040 * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking 1041 * reader section 1042 * @sl: Pointer to seqlock_t 1043 */ 1044static inline void read_sequnlock_excl_bh(seqlock_t *sl) 1045{ 1046 spin_unlock_bh(&sl->lock); 1047} 1048 1049/** 1050 * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking 1051 * reader section 1052 * @sl: Pointer to seqlock_t 1053 * 1054 * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t 1055 * write side section, *or other read sections*, can be invoked from a 1056 * hardirq context. 1057 */ 1058static inline void read_seqlock_excl_irq(seqlock_t *sl) 1059{ 1060 spin_lock_irq(&sl->lock); 1061} 1062 1063/** 1064 * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t 1065 * locking reader section 1066 * @sl: Pointer to seqlock_t 1067 */ 1068static inline void read_sequnlock_excl_irq(seqlock_t *sl) 1069{ 1070 spin_unlock_irq(&sl->lock); 1071} 1072 1073static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) 1074{ 1075 unsigned long flags; 1076 1077 spin_lock_irqsave(&sl->lock, flags); 1078 return flags; 1079} 1080 1081/** 1082 * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t 1083 * locking reader section 1084 * @lock: Pointer to seqlock_t 1085 * @flags: Stack-allocated storage for saving caller's local interrupt 1086 * state, to be passed to read_sequnlock_excl_irqrestore(). 1087 * 1088 * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t 1089 * write side section, *or other read sections*, can be invoked from a 1090 * hardirq context. 1091 */ 1092#define read_seqlock_excl_irqsave(lock, flags) \ 1093 do { flags = __read_seqlock_excl_irqsave(lock); } while (0) 1094 1095/** 1096 * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t 1097 * locking reader section 1098 * @sl: Pointer to seqlock_t 1099 * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave() 1100 */ 1101static inline void 1102read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) 1103{ 1104 spin_unlock_irqrestore(&sl->lock, flags); 1105} 1106 1107/** 1108 * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader 1109 * @lock: Pointer to seqlock_t 1110 * @seq : Marker and return parameter. If the passed value is even, the 1111 * reader will become a *lockless* seqlock_t reader as in read_seqbegin(). 1112 * If the passed value is odd, the reader will become a *locking* reader 1113 * as in read_seqlock_excl(). In the first call to this function, the 1114 * caller *must* initialize and pass an even value to @seq; this way, a 1115 * lockless read can be optimistically tried first. 1116 * 1117 * read_seqbegin_or_lock is an API designed to optimistically try a normal 1118 * lockless seqlock_t read section first. If an odd counter is found, the 1119 * lockless read trial has failed, and the next read iteration transforms 1120 * itself into a full seqlock_t locking reader. 1121 * 1122 * This is typically used to avoid seqlock_t lockless readers starvation 1123 * (too much retry loops) in the case of a sharp spike in write side 1124 * activity. 1125 * 1126 * Context: if the seqlock_t write section, *or other read sections*, can 1127 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh 1128 * variant of this function instead. 1129 * 1130 * Check Documentation/locking/seqlock.rst for template example code. 1131 * 1132 * Return: the encountered sequence counter value, through the @seq 1133 * parameter, which is overloaded as a return parameter. This returned 1134 * value must be checked with need_seqretry(). If the read section need to 1135 * be retried, this returned value must also be passed as the @seq 1136 * parameter of the next read_seqbegin_or_lock() iteration. 1137 */ 1138static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) 1139{ 1140 if (!(*seq & 1)) /* Even */ 1141 *seq = read_seqbegin(lock); 1142 else /* Odd */ 1143 read_seqlock_excl(lock); 1144} 1145 1146/** 1147 * need_seqretry() - validate seqlock_t "locking or lockless" read section 1148 * @lock: Pointer to seqlock_t 1149 * @seq: sequence count, from read_seqbegin_or_lock() 1150 * 1151 * Return: true if a read section retry is required, false otherwise 1152 */ 1153static inline int need_seqretry(seqlock_t *lock, int seq) 1154{ 1155 return !(seq & 1) && read_seqretry(lock, seq); 1156} 1157 1158/** 1159 * done_seqretry() - end seqlock_t "locking or lockless" reader section 1160 * @lock: Pointer to seqlock_t 1161 * @seq: count, from read_seqbegin_or_lock() 1162 * 1163 * done_seqretry finishes the seqlock_t read side critical section started 1164 * with read_seqbegin_or_lock() and validated by need_seqretry(). 1165 */ 1166static inline void done_seqretry(seqlock_t *lock, int seq) 1167{ 1168 if (seq & 1) 1169 read_sequnlock_excl(lock); 1170} 1171 1172/** 1173 * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or 1174 * a non-interruptible locking reader 1175 * @lock: Pointer to seqlock_t 1176 * @seq: Marker and return parameter. Check read_seqbegin_or_lock(). 1177 * 1178 * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if 1179 * the seqlock_t write section, *or other read sections*, can be invoked 1180 * from hardirq context. 1181 * 1182 * Note: Interrupts will be disabled only for "locking reader" mode. 1183 * 1184 * Return: 1185 * 1186 * 1. The saved local interrupts state in case of a locking reader, to 1187 * be passed to done_seqretry_irqrestore(). 1188 * 1189 * 2. The encountered sequence counter value, returned through @seq 1190 * overloaded as a return parameter. Check read_seqbegin_or_lock(). 1191 */ 1192static inline unsigned long 1193read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) 1194{ 1195 unsigned long flags = 0; 1196 1197 if (!(*seq & 1)) /* Even */ 1198 *seq = read_seqbegin(lock); 1199 else /* Odd */ 1200 read_seqlock_excl_irqsave(lock, flags); 1201 1202 return flags; 1203} 1204 1205/** 1206 * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a 1207 * non-interruptible locking reader section 1208 * @lock: Pointer to seqlock_t 1209 * @seq: Count, from read_seqbegin_or_lock_irqsave() 1210 * @flags: Caller's saved local interrupt state in case of a locking 1211 * reader, also from read_seqbegin_or_lock_irqsave() 1212 * 1213 * This is the _irqrestore variant of done_seqretry(). The read section 1214 * must've been opened with read_seqbegin_or_lock_irqsave(), and validated 1215 * by need_seqretry(). 1216 */ 1217static inline void 1218done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags) 1219{ 1220 if (seq & 1) 1221 read_sequnlock_excl_irqrestore(lock, flags); 1222} 1223#endif /* __LINUX_SEQLOCK_H */