at v6.6 65 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/list_nulls.h> 11#include <linux/wait.h> 12#include <linux/bitops.h> 13#include <linux/cache.h> 14#include <linux/threads.h> 15#include <linux/numa.h> 16#include <linux/init.h> 17#include <linux/seqlock.h> 18#include <linux/nodemask.h> 19#include <linux/pageblock-flags.h> 20#include <linux/page-flags-layout.h> 21#include <linux/atomic.h> 22#include <linux/mm_types.h> 23#include <linux/page-flags.h> 24#include <linux/local_lock.h> 25#include <asm/page.h> 26 27/* Free memory management - zoned buddy allocator. */ 28#ifndef CONFIG_ARCH_FORCE_MAX_ORDER 29#define MAX_ORDER 10 30#else 31#define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 32#endif 33#define MAX_ORDER_NR_PAGES (1 << MAX_ORDER) 34 35#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 36 37/* 38 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 39 * costly to service. That is between allocation orders which should 40 * coalesce naturally under reasonable reclaim pressure and those which 41 * will not. 42 */ 43#define PAGE_ALLOC_COSTLY_ORDER 3 44 45enum migratetype { 46 MIGRATE_UNMOVABLE, 47 MIGRATE_MOVABLE, 48 MIGRATE_RECLAIMABLE, 49 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 50 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 51#ifdef CONFIG_CMA 52 /* 53 * MIGRATE_CMA migration type is designed to mimic the way 54 * ZONE_MOVABLE works. Only movable pages can be allocated 55 * from MIGRATE_CMA pageblocks and page allocator never 56 * implicitly change migration type of MIGRATE_CMA pageblock. 57 * 58 * The way to use it is to change migratetype of a range of 59 * pageblocks to MIGRATE_CMA which can be done by 60 * __free_pageblock_cma() function. 61 */ 62 MIGRATE_CMA, 63#endif 64#ifdef CONFIG_MEMORY_ISOLATION 65 MIGRATE_ISOLATE, /* can't allocate from here */ 66#endif 67 MIGRATE_TYPES 68}; 69 70/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 71extern const char * const migratetype_names[MIGRATE_TYPES]; 72 73#ifdef CONFIG_CMA 74# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 75# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 76#else 77# define is_migrate_cma(migratetype) false 78# define is_migrate_cma_page(_page) false 79#endif 80 81static inline bool is_migrate_movable(int mt) 82{ 83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 84} 85 86/* 87 * Check whether a migratetype can be merged with another migratetype. 88 * 89 * It is only mergeable when it can fall back to other migratetypes for 90 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 91 */ 92static inline bool migratetype_is_mergeable(int mt) 93{ 94 return mt < MIGRATE_PCPTYPES; 95} 96 97#define for_each_migratetype_order(order, type) \ 98 for (order = 0; order <= MAX_ORDER; order++) \ 99 for (type = 0; type < MIGRATE_TYPES; type++) 100 101extern int page_group_by_mobility_disabled; 102 103#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 104 105#define get_pageblock_migratetype(page) \ 106 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 107 108#define folio_migratetype(folio) \ 109 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 110 MIGRATETYPE_MASK) 111struct free_area { 112 struct list_head free_list[MIGRATE_TYPES]; 113 unsigned long nr_free; 114}; 115 116struct pglist_data; 117 118#ifdef CONFIG_NUMA 119enum numa_stat_item { 120 NUMA_HIT, /* allocated in intended node */ 121 NUMA_MISS, /* allocated in non intended node */ 122 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 124 NUMA_LOCAL, /* allocation from local node */ 125 NUMA_OTHER, /* allocation from other node */ 126 NR_VM_NUMA_EVENT_ITEMS 127}; 128#else 129#define NR_VM_NUMA_EVENT_ITEMS 0 130#endif 131 132enum zone_stat_item { 133 /* First 128 byte cacheline (assuming 64 bit words) */ 134 NR_FREE_PAGES, 135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 137 NR_ZONE_ACTIVE_ANON, 138 NR_ZONE_INACTIVE_FILE, 139 NR_ZONE_ACTIVE_FILE, 140 NR_ZONE_UNEVICTABLE, 141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 143 /* Second 128 byte cacheline */ 144 NR_BOUNCE, 145#if IS_ENABLED(CONFIG_ZSMALLOC) 146 NR_ZSPAGES, /* allocated in zsmalloc */ 147#endif 148 NR_FREE_CMA_PAGES, 149#ifdef CONFIG_UNACCEPTED_MEMORY 150 NR_UNACCEPTED, 151#endif 152 NR_VM_ZONE_STAT_ITEMS }; 153 154enum node_stat_item { 155 NR_LRU_BASE, 156 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 157 NR_ACTIVE_ANON, /* " " " " " */ 158 NR_INACTIVE_FILE, /* " " " " " */ 159 NR_ACTIVE_FILE, /* " " " " " */ 160 NR_UNEVICTABLE, /* " " " " " */ 161 NR_SLAB_RECLAIMABLE_B, 162 NR_SLAB_UNRECLAIMABLE_B, 163 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 164 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 165 WORKINGSET_NODES, 166 WORKINGSET_REFAULT_BASE, 167 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 168 WORKINGSET_REFAULT_FILE, 169 WORKINGSET_ACTIVATE_BASE, 170 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 171 WORKINGSET_ACTIVATE_FILE, 172 WORKINGSET_RESTORE_BASE, 173 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 174 WORKINGSET_RESTORE_FILE, 175 WORKINGSET_NODERECLAIM, 176 NR_ANON_MAPPED, /* Mapped anonymous pages */ 177 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 178 only modified from process context */ 179 NR_FILE_PAGES, 180 NR_FILE_DIRTY, 181 NR_WRITEBACK, 182 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 183 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 184 NR_SHMEM_THPS, 185 NR_SHMEM_PMDMAPPED, 186 NR_FILE_THPS, 187 NR_FILE_PMDMAPPED, 188 NR_ANON_THPS, 189 NR_VMSCAN_WRITE, 190 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 191 NR_DIRTIED, /* page dirtyings since bootup */ 192 NR_WRITTEN, /* page writings since bootup */ 193 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 194 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 195 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 196 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 197 NR_KERNEL_STACK_KB, /* measured in KiB */ 198#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 199 NR_KERNEL_SCS_KB, /* measured in KiB */ 200#endif 201 NR_PAGETABLE, /* used for pagetables */ 202 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */ 203#ifdef CONFIG_SWAP 204 NR_SWAPCACHE, 205#endif 206#ifdef CONFIG_NUMA_BALANCING 207 PGPROMOTE_SUCCESS, /* promote successfully */ 208 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 209#endif 210 NR_VM_NODE_STAT_ITEMS 211}; 212 213/* 214 * Returns true if the item should be printed in THPs (/proc/vmstat 215 * currently prints number of anon, file and shmem THPs. But the item 216 * is charged in pages). 217 */ 218static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 219{ 220 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 221 return false; 222 223 return item == NR_ANON_THPS || 224 item == NR_FILE_THPS || 225 item == NR_SHMEM_THPS || 226 item == NR_SHMEM_PMDMAPPED || 227 item == NR_FILE_PMDMAPPED; 228} 229 230/* 231 * Returns true if the value is measured in bytes (most vmstat values are 232 * measured in pages). This defines the API part, the internal representation 233 * might be different. 234 */ 235static __always_inline bool vmstat_item_in_bytes(int idx) 236{ 237 /* 238 * Global and per-node slab counters track slab pages. 239 * It's expected that changes are multiples of PAGE_SIZE. 240 * Internally values are stored in pages. 241 * 242 * Per-memcg and per-lruvec counters track memory, consumed 243 * by individual slab objects. These counters are actually 244 * byte-precise. 245 */ 246 return (idx == NR_SLAB_RECLAIMABLE_B || 247 idx == NR_SLAB_UNRECLAIMABLE_B); 248} 249 250/* 251 * We do arithmetic on the LRU lists in various places in the code, 252 * so it is important to keep the active lists LRU_ACTIVE higher in 253 * the array than the corresponding inactive lists, and to keep 254 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 255 * 256 * This has to be kept in sync with the statistics in zone_stat_item 257 * above and the descriptions in vmstat_text in mm/vmstat.c 258 */ 259#define LRU_BASE 0 260#define LRU_ACTIVE 1 261#define LRU_FILE 2 262 263enum lru_list { 264 LRU_INACTIVE_ANON = LRU_BASE, 265 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 266 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 267 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 268 LRU_UNEVICTABLE, 269 NR_LRU_LISTS 270}; 271 272enum vmscan_throttle_state { 273 VMSCAN_THROTTLE_WRITEBACK, 274 VMSCAN_THROTTLE_ISOLATED, 275 VMSCAN_THROTTLE_NOPROGRESS, 276 VMSCAN_THROTTLE_CONGESTED, 277 NR_VMSCAN_THROTTLE, 278}; 279 280#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 281 282#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 283 284static inline bool is_file_lru(enum lru_list lru) 285{ 286 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 287} 288 289static inline bool is_active_lru(enum lru_list lru) 290{ 291 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 292} 293 294#define WORKINGSET_ANON 0 295#define WORKINGSET_FILE 1 296#define ANON_AND_FILE 2 297 298enum lruvec_flags { 299 /* 300 * An lruvec has many dirty pages backed by a congested BDI: 301 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 302 * It can be cleared by cgroup reclaim or kswapd. 303 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 304 * It can only be cleared by kswapd. 305 * 306 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 307 * reclaim, but not vice versa. This only applies to the root cgroup. 308 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 309 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 310 * by kswapd). 311 */ 312 LRUVEC_CGROUP_CONGESTED, 313 LRUVEC_NODE_CONGESTED, 314}; 315 316#endif /* !__GENERATING_BOUNDS_H */ 317 318/* 319 * Evictable pages are divided into multiple generations. The youngest and the 320 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 321 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 322 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 323 * corresponding generation. The gen counter in folio->flags stores gen+1 while 324 * a page is on one of lrugen->folios[]. Otherwise it stores 0. 325 * 326 * A page is added to the youngest generation on faulting. The aging needs to 327 * check the accessed bit at least twice before handing this page over to the 328 * eviction. The first check takes care of the accessed bit set on the initial 329 * fault; the second check makes sure this page hasn't been used since then. 330 * This process, AKA second chance, requires a minimum of two generations, 331 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 332 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 333 * rest of generations, if they exist, are considered inactive. See 334 * lru_gen_is_active(). 335 * 336 * PG_active is always cleared while a page is on one of lrugen->folios[] so 337 * that the aging needs not to worry about it. And it's set again when a page 338 * considered active is isolated for non-reclaiming purposes, e.g., migration. 339 * See lru_gen_add_folio() and lru_gen_del_folio(). 340 * 341 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 342 * number of categories of the active/inactive LRU when keeping track of 343 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 344 * in folio->flags. 345 */ 346#define MIN_NR_GENS 2U 347#define MAX_NR_GENS 4U 348 349/* 350 * Each generation is divided into multiple tiers. A page accessed N times 351 * through file descriptors is in tier order_base_2(N). A page in the first tier 352 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 353 * tables or read ahead. A page in any other tier (N>1) is marked by 354 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 355 * supported without using additional bits in folio->flags. 356 * 357 * In contrast to moving across generations which requires the LRU lock, moving 358 * across tiers only involves atomic operations on folio->flags and therefore 359 * has a negligible cost in the buffered access path. In the eviction path, 360 * comparisons of refaulted/(evicted+protected) from the first tier and the 361 * rest infer whether pages accessed multiple times through file descriptors 362 * are statistically hot and thus worth protecting. 363 * 364 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 365 * number of categories of the active/inactive LRU when keeping track of 366 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 367 * folio->flags. 368 */ 369#define MAX_NR_TIERS 4U 370 371#ifndef __GENERATING_BOUNDS_H 372 373struct lruvec; 374struct page_vma_mapped_walk; 375 376#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 377#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 378 379#ifdef CONFIG_LRU_GEN 380 381enum { 382 LRU_GEN_ANON, 383 LRU_GEN_FILE, 384}; 385 386enum { 387 LRU_GEN_CORE, 388 LRU_GEN_MM_WALK, 389 LRU_GEN_NONLEAF_YOUNG, 390 NR_LRU_GEN_CAPS 391}; 392 393#define MIN_LRU_BATCH BITS_PER_LONG 394#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 395 396/* whether to keep historical stats from evicted generations */ 397#ifdef CONFIG_LRU_GEN_STATS 398#define NR_HIST_GENS MAX_NR_GENS 399#else 400#define NR_HIST_GENS 1U 401#endif 402 403/* 404 * The youngest generation number is stored in max_seq for both anon and file 405 * types as they are aged on an equal footing. The oldest generation numbers are 406 * stored in min_seq[] separately for anon and file types as clean file pages 407 * can be evicted regardless of swap constraints. 408 * 409 * Normally anon and file min_seq are in sync. But if swapping is constrained, 410 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 411 * min_seq behind. 412 * 413 * The number of pages in each generation is eventually consistent and therefore 414 * can be transiently negative when reset_batch_size() is pending. 415 */ 416struct lru_gen_folio { 417 /* the aging increments the youngest generation number */ 418 unsigned long max_seq; 419 /* the eviction increments the oldest generation numbers */ 420 unsigned long min_seq[ANON_AND_FILE]; 421 /* the birth time of each generation in jiffies */ 422 unsigned long timestamps[MAX_NR_GENS]; 423 /* the multi-gen LRU lists, lazily sorted on eviction */ 424 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 425 /* the multi-gen LRU sizes, eventually consistent */ 426 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 427 /* the exponential moving average of refaulted */ 428 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 429 /* the exponential moving average of evicted+protected */ 430 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 431 /* the first tier doesn't need protection, hence the minus one */ 432 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 433 /* can be modified without holding the LRU lock */ 434 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 435 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 436 /* whether the multi-gen LRU is enabled */ 437 bool enabled; 438#ifdef CONFIG_MEMCG 439 /* the memcg generation this lru_gen_folio belongs to */ 440 u8 gen; 441 /* the list segment this lru_gen_folio belongs to */ 442 u8 seg; 443 /* per-node lru_gen_folio list for global reclaim */ 444 struct hlist_nulls_node list; 445#endif 446}; 447 448enum { 449 MM_LEAF_TOTAL, /* total leaf entries */ 450 MM_LEAF_OLD, /* old leaf entries */ 451 MM_LEAF_YOUNG, /* young leaf entries */ 452 MM_NONLEAF_TOTAL, /* total non-leaf entries */ 453 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 454 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 455 NR_MM_STATS 456}; 457 458/* double-buffering Bloom filters */ 459#define NR_BLOOM_FILTERS 2 460 461struct lru_gen_mm_state { 462 /* set to max_seq after each iteration */ 463 unsigned long seq; 464 /* where the current iteration continues after */ 465 struct list_head *head; 466 /* where the last iteration ended before */ 467 struct list_head *tail; 468 /* Bloom filters flip after each iteration */ 469 unsigned long *filters[NR_BLOOM_FILTERS]; 470 /* the mm stats for debugging */ 471 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 472}; 473 474struct lru_gen_mm_walk { 475 /* the lruvec under reclaim */ 476 struct lruvec *lruvec; 477 /* unstable max_seq from lru_gen_folio */ 478 unsigned long max_seq; 479 /* the next address within an mm to scan */ 480 unsigned long next_addr; 481 /* to batch promoted pages */ 482 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 483 /* to batch the mm stats */ 484 int mm_stats[NR_MM_STATS]; 485 /* total batched items */ 486 int batched; 487 bool can_swap; 488 bool force_scan; 489}; 490 491void lru_gen_init_lruvec(struct lruvec *lruvec); 492void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 493 494#ifdef CONFIG_MEMCG 495 496/* 497 * For each node, memcgs are divided into two generations: the old and the 498 * young. For each generation, memcgs are randomly sharded into multiple bins 499 * to improve scalability. For each bin, the hlist_nulls is virtually divided 500 * into three segments: the head, the tail and the default. 501 * 502 * An onlining memcg is added to the tail of a random bin in the old generation. 503 * The eviction starts at the head of a random bin in the old generation. The 504 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 505 * the old generation, is incremented when all its bins become empty. 506 * 507 * There are four operations: 508 * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its 509 * current generation (old or young) and updates its "seg" to "head"; 510 * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its 511 * current generation (old or young) and updates its "seg" to "tail"; 512 * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old 513 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 514 * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the 515 * young generation, updates its "gen" to "young" and resets its "seg" to 516 * "default". 517 * 518 * The events that trigger the above operations are: 519 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 520 * 2. The first attempt to reclaim an memcg below low, which triggers 521 * MEMCG_LRU_TAIL; 522 * 3. The first attempt to reclaim an memcg below reclaimable size threshold, 523 * which triggers MEMCG_LRU_TAIL; 524 * 4. The second attempt to reclaim an memcg below reclaimable size threshold, 525 * which triggers MEMCG_LRU_YOUNG; 526 * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG; 527 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 528 * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD. 529 * 530 * Note that memcg LRU only applies to global reclaim, and the round-robin 531 * incrementing of their max_seq counters ensures the eventual fairness to all 532 * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 533 */ 534#define MEMCG_NR_GENS 2 535#define MEMCG_NR_BINS 8 536 537struct lru_gen_memcg { 538 /* the per-node memcg generation counter */ 539 unsigned long seq; 540 /* each memcg has one lru_gen_folio per node */ 541 unsigned long nr_memcgs[MEMCG_NR_GENS]; 542 /* per-node lru_gen_folio list for global reclaim */ 543 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 544 /* protects the above */ 545 spinlock_t lock; 546}; 547 548void lru_gen_init_pgdat(struct pglist_data *pgdat); 549 550void lru_gen_init_memcg(struct mem_cgroup *memcg); 551void lru_gen_exit_memcg(struct mem_cgroup *memcg); 552void lru_gen_online_memcg(struct mem_cgroup *memcg); 553void lru_gen_offline_memcg(struct mem_cgroup *memcg); 554void lru_gen_release_memcg(struct mem_cgroup *memcg); 555void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 556 557#else /* !CONFIG_MEMCG */ 558 559#define MEMCG_NR_GENS 1 560 561struct lru_gen_memcg { 562}; 563 564static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 565{ 566} 567 568#endif /* CONFIG_MEMCG */ 569 570#else /* !CONFIG_LRU_GEN */ 571 572static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 573{ 574} 575 576static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 577{ 578} 579 580static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 581{ 582} 583 584#ifdef CONFIG_MEMCG 585 586static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 587{ 588} 589 590static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 591{ 592} 593 594static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 595{ 596} 597 598static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 599{ 600} 601 602static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 603{ 604} 605 606static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 607{ 608} 609 610#endif /* CONFIG_MEMCG */ 611 612#endif /* CONFIG_LRU_GEN */ 613 614struct lruvec { 615 struct list_head lists[NR_LRU_LISTS]; 616 /* per lruvec lru_lock for memcg */ 617 spinlock_t lru_lock; 618 /* 619 * These track the cost of reclaiming one LRU - file or anon - 620 * over the other. As the observed cost of reclaiming one LRU 621 * increases, the reclaim scan balance tips toward the other. 622 */ 623 unsigned long anon_cost; 624 unsigned long file_cost; 625 /* Non-resident age, driven by LRU movement */ 626 atomic_long_t nonresident_age; 627 /* Refaults at the time of last reclaim cycle */ 628 unsigned long refaults[ANON_AND_FILE]; 629 /* Various lruvec state flags (enum lruvec_flags) */ 630 unsigned long flags; 631#ifdef CONFIG_LRU_GEN 632 /* evictable pages divided into generations */ 633 struct lru_gen_folio lrugen; 634 /* to concurrently iterate lru_gen_mm_list */ 635 struct lru_gen_mm_state mm_state; 636#endif 637#ifdef CONFIG_MEMCG 638 struct pglist_data *pgdat; 639#endif 640}; 641 642/* Isolate unmapped pages */ 643#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 644/* Isolate for asynchronous migration */ 645#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 646/* Isolate unevictable pages */ 647#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 648 649/* LRU Isolation modes. */ 650typedef unsigned __bitwise isolate_mode_t; 651 652enum zone_watermarks { 653 WMARK_MIN, 654 WMARK_LOW, 655 WMARK_HIGH, 656 WMARK_PROMO, 657 NR_WMARK 658}; 659 660/* 661 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list 662 * for THP which will usually be GFP_MOVABLE. Even if it is another type, 663 * it should not contribute to serious fragmentation causing THP allocation 664 * failures. 665 */ 666#ifdef CONFIG_TRANSPARENT_HUGEPAGE 667#define NR_PCP_THP 1 668#else 669#define NR_PCP_THP 0 670#endif 671#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 672#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 673 674#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 675#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 676#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 677#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 678 679struct per_cpu_pages { 680 spinlock_t lock; /* Protects lists field */ 681 int count; /* number of pages in the list */ 682 int high; /* high watermark, emptying needed */ 683 int batch; /* chunk size for buddy add/remove */ 684 short free_factor; /* batch scaling factor during free */ 685#ifdef CONFIG_NUMA 686 short expire; /* When 0, remote pagesets are drained */ 687#endif 688 689 /* Lists of pages, one per migrate type stored on the pcp-lists */ 690 struct list_head lists[NR_PCP_LISTS]; 691} ____cacheline_aligned_in_smp; 692 693struct per_cpu_zonestat { 694#ifdef CONFIG_SMP 695 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 696 s8 stat_threshold; 697#endif 698#ifdef CONFIG_NUMA 699 /* 700 * Low priority inaccurate counters that are only folded 701 * on demand. Use a large type to avoid the overhead of 702 * folding during refresh_cpu_vm_stats. 703 */ 704 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 705#endif 706}; 707 708struct per_cpu_nodestat { 709 s8 stat_threshold; 710 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 711}; 712 713#endif /* !__GENERATING_BOUNDS.H */ 714 715enum zone_type { 716 /* 717 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 718 * to DMA to all of the addressable memory (ZONE_NORMAL). 719 * On architectures where this area covers the whole 32 bit address 720 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 721 * DMA addressing constraints. This distinction is important as a 32bit 722 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 723 * platforms may need both zones as they support peripherals with 724 * different DMA addressing limitations. 725 */ 726#ifdef CONFIG_ZONE_DMA 727 ZONE_DMA, 728#endif 729#ifdef CONFIG_ZONE_DMA32 730 ZONE_DMA32, 731#endif 732 /* 733 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 734 * performed on pages in ZONE_NORMAL if the DMA devices support 735 * transfers to all addressable memory. 736 */ 737 ZONE_NORMAL, 738#ifdef CONFIG_HIGHMEM 739 /* 740 * A memory area that is only addressable by the kernel through 741 * mapping portions into its own address space. This is for example 742 * used by i386 to allow the kernel to address the memory beyond 743 * 900MB. The kernel will set up special mappings (page 744 * table entries on i386) for each page that the kernel needs to 745 * access. 746 */ 747 ZONE_HIGHMEM, 748#endif 749 /* 750 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 751 * movable pages with few exceptional cases described below. Main use 752 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 753 * likely to succeed, and to locally limit unmovable allocations - e.g., 754 * to increase the number of THP/huge pages. Notable special cases are: 755 * 756 * 1. Pinned pages: (long-term) pinning of movable pages might 757 * essentially turn such pages unmovable. Therefore, we do not allow 758 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 759 * faulted, they come from the right zone right away. However, it is 760 * still possible that address space already has pages in 761 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 762 * touches that memory before pinning). In such case we migrate them 763 * to a different zone. When migration fails - pinning fails. 764 * 2. memblock allocations: kernelcore/movablecore setups might create 765 * situations where ZONE_MOVABLE contains unmovable allocations 766 * after boot. Memory offlining and allocations fail early. 767 * 3. Memory holes: kernelcore/movablecore setups might create very rare 768 * situations where ZONE_MOVABLE contains memory holes after boot, 769 * for example, if we have sections that are only partially 770 * populated. Memory offlining and allocations fail early. 771 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 772 * memory offlining, such pages cannot be allocated. 773 * 5. Unmovable PG_offline pages: in paravirtualized environments, 774 * hotplugged memory blocks might only partially be managed by the 775 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 776 * parts not manged by the buddy are unmovable PG_offline pages. In 777 * some cases (virtio-mem), such pages can be skipped during 778 * memory offlining, however, cannot be moved/allocated. These 779 * techniques might use alloc_contig_range() to hide previously 780 * exposed pages from the buddy again (e.g., to implement some sort 781 * of memory unplug in virtio-mem). 782 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 783 * situations where ZERO_PAGE(0) which is allocated differently 784 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 785 * cannot be migrated. 786 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 787 * memory to the MOVABLE zone, the vmemmap pages are also placed in 788 * such zone. Such pages cannot be really moved around as they are 789 * self-stored in the range, but they are treated as movable when 790 * the range they describe is about to be offlined. 791 * 792 * In general, no unmovable allocations that degrade memory offlining 793 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 794 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 795 * if has_unmovable_pages() states that there are no unmovable pages, 796 * there can be false negatives). 797 */ 798 ZONE_MOVABLE, 799#ifdef CONFIG_ZONE_DEVICE 800 ZONE_DEVICE, 801#endif 802 __MAX_NR_ZONES 803 804}; 805 806#ifndef __GENERATING_BOUNDS_H 807 808#define ASYNC_AND_SYNC 2 809 810struct zone { 811 /* Read-mostly fields */ 812 813 /* zone watermarks, access with *_wmark_pages(zone) macros */ 814 unsigned long _watermark[NR_WMARK]; 815 unsigned long watermark_boost; 816 817 unsigned long nr_reserved_highatomic; 818 819 /* 820 * We don't know if the memory that we're going to allocate will be 821 * freeable or/and it will be released eventually, so to avoid totally 822 * wasting several GB of ram we must reserve some of the lower zone 823 * memory (otherwise we risk to run OOM on the lower zones despite 824 * there being tons of freeable ram on the higher zones). This array is 825 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 826 * changes. 827 */ 828 long lowmem_reserve[MAX_NR_ZONES]; 829 830#ifdef CONFIG_NUMA 831 int node; 832#endif 833 struct pglist_data *zone_pgdat; 834 struct per_cpu_pages __percpu *per_cpu_pageset; 835 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 836 /* 837 * the high and batch values are copied to individual pagesets for 838 * faster access 839 */ 840 int pageset_high; 841 int pageset_batch; 842 843#ifndef CONFIG_SPARSEMEM 844 /* 845 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 846 * In SPARSEMEM, this map is stored in struct mem_section 847 */ 848 unsigned long *pageblock_flags; 849#endif /* CONFIG_SPARSEMEM */ 850 851 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 852 unsigned long zone_start_pfn; 853 854 /* 855 * spanned_pages is the total pages spanned by the zone, including 856 * holes, which is calculated as: 857 * spanned_pages = zone_end_pfn - zone_start_pfn; 858 * 859 * present_pages is physical pages existing within the zone, which 860 * is calculated as: 861 * present_pages = spanned_pages - absent_pages(pages in holes); 862 * 863 * present_early_pages is present pages existing within the zone 864 * located on memory available since early boot, excluding hotplugged 865 * memory. 866 * 867 * managed_pages is present pages managed by the buddy system, which 868 * is calculated as (reserved_pages includes pages allocated by the 869 * bootmem allocator): 870 * managed_pages = present_pages - reserved_pages; 871 * 872 * cma pages is present pages that are assigned for CMA use 873 * (MIGRATE_CMA). 874 * 875 * So present_pages may be used by memory hotplug or memory power 876 * management logic to figure out unmanaged pages by checking 877 * (present_pages - managed_pages). And managed_pages should be used 878 * by page allocator and vm scanner to calculate all kinds of watermarks 879 * and thresholds. 880 * 881 * Locking rules: 882 * 883 * zone_start_pfn and spanned_pages are protected by span_seqlock. 884 * It is a seqlock because it has to be read outside of zone->lock, 885 * and it is done in the main allocator path. But, it is written 886 * quite infrequently. 887 * 888 * The span_seq lock is declared along with zone->lock because it is 889 * frequently read in proximity to zone->lock. It's good to 890 * give them a chance of being in the same cacheline. 891 * 892 * Write access to present_pages at runtime should be protected by 893 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 894 * present_pages should use get_online_mems() to get a stable value. 895 */ 896 atomic_long_t managed_pages; 897 unsigned long spanned_pages; 898 unsigned long present_pages; 899#if defined(CONFIG_MEMORY_HOTPLUG) 900 unsigned long present_early_pages; 901#endif 902#ifdef CONFIG_CMA 903 unsigned long cma_pages; 904#endif 905 906 const char *name; 907 908#ifdef CONFIG_MEMORY_ISOLATION 909 /* 910 * Number of isolated pageblock. It is used to solve incorrect 911 * freepage counting problem due to racy retrieving migratetype 912 * of pageblock. Protected by zone->lock. 913 */ 914 unsigned long nr_isolate_pageblock; 915#endif 916 917#ifdef CONFIG_MEMORY_HOTPLUG 918 /* see spanned/present_pages for more description */ 919 seqlock_t span_seqlock; 920#endif 921 922 int initialized; 923 924 /* Write-intensive fields used from the page allocator */ 925 CACHELINE_PADDING(_pad1_); 926 927 /* free areas of different sizes */ 928 struct free_area free_area[MAX_ORDER + 1]; 929 930#ifdef CONFIG_UNACCEPTED_MEMORY 931 /* Pages to be accepted. All pages on the list are MAX_ORDER */ 932 struct list_head unaccepted_pages; 933#endif 934 935 /* zone flags, see below */ 936 unsigned long flags; 937 938 /* Primarily protects free_area */ 939 spinlock_t lock; 940 941 /* Write-intensive fields used by compaction and vmstats. */ 942 CACHELINE_PADDING(_pad2_); 943 944 /* 945 * When free pages are below this point, additional steps are taken 946 * when reading the number of free pages to avoid per-cpu counter 947 * drift allowing watermarks to be breached 948 */ 949 unsigned long percpu_drift_mark; 950 951#if defined CONFIG_COMPACTION || defined CONFIG_CMA 952 /* pfn where compaction free scanner should start */ 953 unsigned long compact_cached_free_pfn; 954 /* pfn where compaction migration scanner should start */ 955 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 956 unsigned long compact_init_migrate_pfn; 957 unsigned long compact_init_free_pfn; 958#endif 959 960#ifdef CONFIG_COMPACTION 961 /* 962 * On compaction failure, 1<<compact_defer_shift compactions 963 * are skipped before trying again. The number attempted since 964 * last failure is tracked with compact_considered. 965 * compact_order_failed is the minimum compaction failed order. 966 */ 967 unsigned int compact_considered; 968 unsigned int compact_defer_shift; 969 int compact_order_failed; 970#endif 971 972#if defined CONFIG_COMPACTION || defined CONFIG_CMA 973 /* Set to true when the PG_migrate_skip bits should be cleared */ 974 bool compact_blockskip_flush; 975#endif 976 977 bool contiguous; 978 979 CACHELINE_PADDING(_pad3_); 980 /* Zone statistics */ 981 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 982 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 983} ____cacheline_internodealigned_in_smp; 984 985enum pgdat_flags { 986 PGDAT_DIRTY, /* reclaim scanning has recently found 987 * many dirty file pages at the tail 988 * of the LRU. 989 */ 990 PGDAT_WRITEBACK, /* reclaim scanning has recently found 991 * many pages under writeback 992 */ 993 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 994}; 995 996enum zone_flags { 997 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 998 * Cleared when kswapd is woken. 999 */ 1000 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1001}; 1002 1003static inline unsigned long zone_managed_pages(struct zone *zone) 1004{ 1005 return (unsigned long)atomic_long_read(&zone->managed_pages); 1006} 1007 1008static inline unsigned long zone_cma_pages(struct zone *zone) 1009{ 1010#ifdef CONFIG_CMA 1011 return zone->cma_pages; 1012#else 1013 return 0; 1014#endif 1015} 1016 1017static inline unsigned long zone_end_pfn(const struct zone *zone) 1018{ 1019 return zone->zone_start_pfn + zone->spanned_pages; 1020} 1021 1022static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1023{ 1024 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1025} 1026 1027static inline bool zone_is_initialized(struct zone *zone) 1028{ 1029 return zone->initialized; 1030} 1031 1032static inline bool zone_is_empty(struct zone *zone) 1033{ 1034 return zone->spanned_pages == 0; 1035} 1036 1037#ifndef BUILD_VDSO32_64 1038/* 1039 * The zone field is never updated after free_area_init_core() 1040 * sets it, so none of the operations on it need to be atomic. 1041 */ 1042 1043/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1044#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1045#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1046#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1047#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1048#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1049#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1050#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1051 1052/* 1053 * Define the bit shifts to access each section. For non-existent 1054 * sections we define the shift as 0; that plus a 0 mask ensures 1055 * the compiler will optimise away reference to them. 1056 */ 1057#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1058#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1059#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1060#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1061#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1062 1063/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1064#ifdef NODE_NOT_IN_PAGE_FLAGS 1065#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1066#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1067 SECTIONS_PGOFF : ZONES_PGOFF) 1068#else 1069#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1070#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1071 NODES_PGOFF : ZONES_PGOFF) 1072#endif 1073 1074#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1075 1076#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1077#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1078#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1079#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1080#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1081#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1082 1083static inline enum zone_type page_zonenum(const struct page *page) 1084{ 1085 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1086 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1087} 1088 1089static inline enum zone_type folio_zonenum(const struct folio *folio) 1090{ 1091 return page_zonenum(&folio->page); 1092} 1093 1094#ifdef CONFIG_ZONE_DEVICE 1095static inline bool is_zone_device_page(const struct page *page) 1096{ 1097 return page_zonenum(page) == ZONE_DEVICE; 1098} 1099 1100/* 1101 * Consecutive zone device pages should not be merged into the same sgl 1102 * or bvec segment with other types of pages or if they belong to different 1103 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1104 * without scanning the entire segment. This helper returns true either if 1105 * both pages are not zone device pages or both pages are zone device pages 1106 * with the same pgmap. 1107 */ 1108static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1109 const struct page *b) 1110{ 1111 if (is_zone_device_page(a) != is_zone_device_page(b)) 1112 return false; 1113 if (!is_zone_device_page(a)) 1114 return true; 1115 return a->pgmap == b->pgmap; 1116} 1117 1118extern void memmap_init_zone_device(struct zone *, unsigned long, 1119 unsigned long, struct dev_pagemap *); 1120#else 1121static inline bool is_zone_device_page(const struct page *page) 1122{ 1123 return false; 1124} 1125static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1126 const struct page *b) 1127{ 1128 return true; 1129} 1130#endif 1131 1132static inline bool folio_is_zone_device(const struct folio *folio) 1133{ 1134 return is_zone_device_page(&folio->page); 1135} 1136 1137static inline bool is_zone_movable_page(const struct page *page) 1138{ 1139 return page_zonenum(page) == ZONE_MOVABLE; 1140} 1141 1142static inline bool folio_is_zone_movable(const struct folio *folio) 1143{ 1144 return folio_zonenum(folio) == ZONE_MOVABLE; 1145} 1146#endif 1147 1148/* 1149 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1150 * intersection with the given zone 1151 */ 1152static inline bool zone_intersects(struct zone *zone, 1153 unsigned long start_pfn, unsigned long nr_pages) 1154{ 1155 if (zone_is_empty(zone)) 1156 return false; 1157 if (start_pfn >= zone_end_pfn(zone) || 1158 start_pfn + nr_pages <= zone->zone_start_pfn) 1159 return false; 1160 1161 return true; 1162} 1163 1164/* 1165 * The "priority" of VM scanning is how much of the queues we will scan in one 1166 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1167 * queues ("queue_length >> 12") during an aging round. 1168 */ 1169#define DEF_PRIORITY 12 1170 1171/* Maximum number of zones on a zonelist */ 1172#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1173 1174enum { 1175 ZONELIST_FALLBACK, /* zonelist with fallback */ 1176#ifdef CONFIG_NUMA 1177 /* 1178 * The NUMA zonelists are doubled because we need zonelists that 1179 * restrict the allocations to a single node for __GFP_THISNODE. 1180 */ 1181 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1182#endif 1183 MAX_ZONELISTS 1184}; 1185 1186/* 1187 * This struct contains information about a zone in a zonelist. It is stored 1188 * here to avoid dereferences into large structures and lookups of tables 1189 */ 1190struct zoneref { 1191 struct zone *zone; /* Pointer to actual zone */ 1192 int zone_idx; /* zone_idx(zoneref->zone) */ 1193}; 1194 1195/* 1196 * One allocation request operates on a zonelist. A zonelist 1197 * is a list of zones, the first one is the 'goal' of the 1198 * allocation, the other zones are fallback zones, in decreasing 1199 * priority. 1200 * 1201 * To speed the reading of the zonelist, the zonerefs contain the zone index 1202 * of the entry being read. Helper functions to access information given 1203 * a struct zoneref are 1204 * 1205 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1206 * zonelist_zone_idx() - Return the index of the zone for an entry 1207 * zonelist_node_idx() - Return the index of the node for an entry 1208 */ 1209struct zonelist { 1210 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1211}; 1212 1213/* 1214 * The array of struct pages for flatmem. 1215 * It must be declared for SPARSEMEM as well because there are configurations 1216 * that rely on that. 1217 */ 1218extern struct page *mem_map; 1219 1220#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1221struct deferred_split { 1222 spinlock_t split_queue_lock; 1223 struct list_head split_queue; 1224 unsigned long split_queue_len; 1225}; 1226#endif 1227 1228#ifdef CONFIG_MEMORY_FAILURE 1229/* 1230 * Per NUMA node memory failure handling statistics. 1231 */ 1232struct memory_failure_stats { 1233 /* 1234 * Number of raw pages poisoned. 1235 * Cases not accounted: memory outside kernel control, offline page, 1236 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1237 * error events, and unpoison actions from hwpoison_unpoison. 1238 */ 1239 unsigned long total; 1240 /* 1241 * Recovery results of poisoned raw pages handled by memory_failure, 1242 * in sync with mf_result. 1243 * total = ignored + failed + delayed + recovered. 1244 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1245 */ 1246 unsigned long ignored; 1247 unsigned long failed; 1248 unsigned long delayed; 1249 unsigned long recovered; 1250}; 1251#endif 1252 1253/* 1254 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1255 * it's memory layout. On UMA machines there is a single pglist_data which 1256 * describes the whole memory. 1257 * 1258 * Memory statistics and page replacement data structures are maintained on a 1259 * per-zone basis. 1260 */ 1261typedef struct pglist_data { 1262 /* 1263 * node_zones contains just the zones for THIS node. Not all of the 1264 * zones may be populated, but it is the full list. It is referenced by 1265 * this node's node_zonelists as well as other node's node_zonelists. 1266 */ 1267 struct zone node_zones[MAX_NR_ZONES]; 1268 1269 /* 1270 * node_zonelists contains references to all zones in all nodes. 1271 * Generally the first zones will be references to this node's 1272 * node_zones. 1273 */ 1274 struct zonelist node_zonelists[MAX_ZONELISTS]; 1275 1276 int nr_zones; /* number of populated zones in this node */ 1277#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1278 struct page *node_mem_map; 1279#ifdef CONFIG_PAGE_EXTENSION 1280 struct page_ext *node_page_ext; 1281#endif 1282#endif 1283#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1284 /* 1285 * Must be held any time you expect node_start_pfn, 1286 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1287 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1288 * init. 1289 * 1290 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1291 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1292 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1293 * 1294 * Nests above zone->lock and zone->span_seqlock 1295 */ 1296 spinlock_t node_size_lock; 1297#endif 1298 unsigned long node_start_pfn; 1299 unsigned long node_present_pages; /* total number of physical pages */ 1300 unsigned long node_spanned_pages; /* total size of physical page 1301 range, including holes */ 1302 int node_id; 1303 wait_queue_head_t kswapd_wait; 1304 wait_queue_head_t pfmemalloc_wait; 1305 1306 /* workqueues for throttling reclaim for different reasons. */ 1307 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1308 1309 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1310 unsigned long nr_reclaim_start; /* nr pages written while throttled 1311 * when throttling started. */ 1312#ifdef CONFIG_MEMORY_HOTPLUG 1313 struct mutex kswapd_lock; 1314#endif 1315 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1316 int kswapd_order; 1317 enum zone_type kswapd_highest_zoneidx; 1318 1319 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1320 1321#ifdef CONFIG_COMPACTION 1322 int kcompactd_max_order; 1323 enum zone_type kcompactd_highest_zoneidx; 1324 wait_queue_head_t kcompactd_wait; 1325 struct task_struct *kcompactd; 1326 bool proactive_compact_trigger; 1327#endif 1328 /* 1329 * This is a per-node reserve of pages that are not available 1330 * to userspace allocations. 1331 */ 1332 unsigned long totalreserve_pages; 1333 1334#ifdef CONFIG_NUMA 1335 /* 1336 * node reclaim becomes active if more unmapped pages exist. 1337 */ 1338 unsigned long min_unmapped_pages; 1339 unsigned long min_slab_pages; 1340#endif /* CONFIG_NUMA */ 1341 1342 /* Write-intensive fields used by page reclaim */ 1343 CACHELINE_PADDING(_pad1_); 1344 1345#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1346 /* 1347 * If memory initialisation on large machines is deferred then this 1348 * is the first PFN that needs to be initialised. 1349 */ 1350 unsigned long first_deferred_pfn; 1351#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1352 1353#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1354 struct deferred_split deferred_split_queue; 1355#endif 1356 1357#ifdef CONFIG_NUMA_BALANCING 1358 /* start time in ms of current promote rate limit period */ 1359 unsigned int nbp_rl_start; 1360 /* number of promote candidate pages at start time of current rate limit period */ 1361 unsigned long nbp_rl_nr_cand; 1362 /* promote threshold in ms */ 1363 unsigned int nbp_threshold; 1364 /* start time in ms of current promote threshold adjustment period */ 1365 unsigned int nbp_th_start; 1366 /* 1367 * number of promote candidate pages at start time of current promote 1368 * threshold adjustment period 1369 */ 1370 unsigned long nbp_th_nr_cand; 1371#endif 1372 /* Fields commonly accessed by the page reclaim scanner */ 1373 1374 /* 1375 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1376 * 1377 * Use mem_cgroup_lruvec() to look up lruvecs. 1378 */ 1379 struct lruvec __lruvec; 1380 1381 unsigned long flags; 1382 1383#ifdef CONFIG_LRU_GEN 1384 /* kswap mm walk data */ 1385 struct lru_gen_mm_walk mm_walk; 1386 /* lru_gen_folio list */ 1387 struct lru_gen_memcg memcg_lru; 1388#endif 1389 1390 CACHELINE_PADDING(_pad2_); 1391 1392 /* Per-node vmstats */ 1393 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1394 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1395#ifdef CONFIG_NUMA 1396 struct memory_tier __rcu *memtier; 1397#endif 1398#ifdef CONFIG_MEMORY_FAILURE 1399 struct memory_failure_stats mf_stats; 1400#endif 1401} pg_data_t; 1402 1403#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1404#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1405 1406#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1407#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1408 1409static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1410{ 1411 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1412} 1413 1414#include <linux/memory_hotplug.h> 1415 1416void build_all_zonelists(pg_data_t *pgdat); 1417void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1418 enum zone_type highest_zoneidx); 1419bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1420 int highest_zoneidx, unsigned int alloc_flags, 1421 long free_pages); 1422bool zone_watermark_ok(struct zone *z, unsigned int order, 1423 unsigned long mark, int highest_zoneidx, 1424 unsigned int alloc_flags); 1425bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1426 unsigned long mark, int highest_zoneidx); 1427/* 1428 * Memory initialization context, use to differentiate memory added by 1429 * the platform statically or via memory hotplug interface. 1430 */ 1431enum meminit_context { 1432 MEMINIT_EARLY, 1433 MEMINIT_HOTPLUG, 1434}; 1435 1436extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1437 unsigned long size); 1438 1439extern void lruvec_init(struct lruvec *lruvec); 1440 1441static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1442{ 1443#ifdef CONFIG_MEMCG 1444 return lruvec->pgdat; 1445#else 1446 return container_of(lruvec, struct pglist_data, __lruvec); 1447#endif 1448} 1449 1450#ifdef CONFIG_HAVE_MEMORYLESS_NODES 1451int local_memory_node(int node_id); 1452#else 1453static inline int local_memory_node(int node_id) { return node_id; }; 1454#endif 1455 1456/* 1457 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1458 */ 1459#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1460 1461#ifdef CONFIG_ZONE_DEVICE 1462static inline bool zone_is_zone_device(struct zone *zone) 1463{ 1464 return zone_idx(zone) == ZONE_DEVICE; 1465} 1466#else 1467static inline bool zone_is_zone_device(struct zone *zone) 1468{ 1469 return false; 1470} 1471#endif 1472 1473/* 1474 * Returns true if a zone has pages managed by the buddy allocator. 1475 * All the reclaim decisions have to use this function rather than 1476 * populated_zone(). If the whole zone is reserved then we can easily 1477 * end up with populated_zone() && !managed_zone(). 1478 */ 1479static inline bool managed_zone(struct zone *zone) 1480{ 1481 return zone_managed_pages(zone); 1482} 1483 1484/* Returns true if a zone has memory */ 1485static inline bool populated_zone(struct zone *zone) 1486{ 1487 return zone->present_pages; 1488} 1489 1490#ifdef CONFIG_NUMA 1491static inline int zone_to_nid(struct zone *zone) 1492{ 1493 return zone->node; 1494} 1495 1496static inline void zone_set_nid(struct zone *zone, int nid) 1497{ 1498 zone->node = nid; 1499} 1500#else 1501static inline int zone_to_nid(struct zone *zone) 1502{ 1503 return 0; 1504} 1505 1506static inline void zone_set_nid(struct zone *zone, int nid) {} 1507#endif 1508 1509extern int movable_zone; 1510 1511static inline int is_highmem_idx(enum zone_type idx) 1512{ 1513#ifdef CONFIG_HIGHMEM 1514 return (idx == ZONE_HIGHMEM || 1515 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1516#else 1517 return 0; 1518#endif 1519} 1520 1521/** 1522 * is_highmem - helper function to quickly check if a struct zone is a 1523 * highmem zone or not. This is an attempt to keep references 1524 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1525 * @zone: pointer to struct zone variable 1526 * Return: 1 for a highmem zone, 0 otherwise 1527 */ 1528static inline int is_highmem(struct zone *zone) 1529{ 1530 return is_highmem_idx(zone_idx(zone)); 1531} 1532 1533#ifdef CONFIG_ZONE_DMA 1534bool has_managed_dma(void); 1535#else 1536static inline bool has_managed_dma(void) 1537{ 1538 return false; 1539} 1540#endif 1541 1542 1543#ifndef CONFIG_NUMA 1544 1545extern struct pglist_data contig_page_data; 1546static inline struct pglist_data *NODE_DATA(int nid) 1547{ 1548 return &contig_page_data; 1549} 1550 1551#else /* CONFIG_NUMA */ 1552 1553#include <asm/mmzone.h> 1554 1555#endif /* !CONFIG_NUMA */ 1556 1557extern struct pglist_data *first_online_pgdat(void); 1558extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1559extern struct zone *next_zone(struct zone *zone); 1560 1561/** 1562 * for_each_online_pgdat - helper macro to iterate over all online nodes 1563 * @pgdat: pointer to a pg_data_t variable 1564 */ 1565#define for_each_online_pgdat(pgdat) \ 1566 for (pgdat = first_online_pgdat(); \ 1567 pgdat; \ 1568 pgdat = next_online_pgdat(pgdat)) 1569/** 1570 * for_each_zone - helper macro to iterate over all memory zones 1571 * @zone: pointer to struct zone variable 1572 * 1573 * The user only needs to declare the zone variable, for_each_zone 1574 * fills it in. 1575 */ 1576#define for_each_zone(zone) \ 1577 for (zone = (first_online_pgdat())->node_zones; \ 1578 zone; \ 1579 zone = next_zone(zone)) 1580 1581#define for_each_populated_zone(zone) \ 1582 for (zone = (first_online_pgdat())->node_zones; \ 1583 zone; \ 1584 zone = next_zone(zone)) \ 1585 if (!populated_zone(zone)) \ 1586 ; /* do nothing */ \ 1587 else 1588 1589static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1590{ 1591 return zoneref->zone; 1592} 1593 1594static inline int zonelist_zone_idx(struct zoneref *zoneref) 1595{ 1596 return zoneref->zone_idx; 1597} 1598 1599static inline int zonelist_node_idx(struct zoneref *zoneref) 1600{ 1601 return zone_to_nid(zoneref->zone); 1602} 1603 1604struct zoneref *__next_zones_zonelist(struct zoneref *z, 1605 enum zone_type highest_zoneidx, 1606 nodemask_t *nodes); 1607 1608/** 1609 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1610 * @z: The cursor used as a starting point for the search 1611 * @highest_zoneidx: The zone index of the highest zone to return 1612 * @nodes: An optional nodemask to filter the zonelist with 1613 * 1614 * This function returns the next zone at or below a given zone index that is 1615 * within the allowed nodemask using a cursor as the starting point for the 1616 * search. The zoneref returned is a cursor that represents the current zone 1617 * being examined. It should be advanced by one before calling 1618 * next_zones_zonelist again. 1619 * 1620 * Return: the next zone at or below highest_zoneidx within the allowed 1621 * nodemask using a cursor within a zonelist as a starting point 1622 */ 1623static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1624 enum zone_type highest_zoneidx, 1625 nodemask_t *nodes) 1626{ 1627 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1628 return z; 1629 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1630} 1631 1632/** 1633 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1634 * @zonelist: The zonelist to search for a suitable zone 1635 * @highest_zoneidx: The zone index of the highest zone to return 1636 * @nodes: An optional nodemask to filter the zonelist with 1637 * 1638 * This function returns the first zone at or below a given zone index that is 1639 * within the allowed nodemask. The zoneref returned is a cursor that can be 1640 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1641 * one before calling. 1642 * 1643 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1644 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1645 * update due to cpuset modification. 1646 * 1647 * Return: Zoneref pointer for the first suitable zone found 1648 */ 1649static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1650 enum zone_type highest_zoneidx, 1651 nodemask_t *nodes) 1652{ 1653 return next_zones_zonelist(zonelist->_zonerefs, 1654 highest_zoneidx, nodes); 1655} 1656 1657/** 1658 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1659 * @zone: The current zone in the iterator 1660 * @z: The current pointer within zonelist->_zonerefs being iterated 1661 * @zlist: The zonelist being iterated 1662 * @highidx: The zone index of the highest zone to return 1663 * @nodemask: Nodemask allowed by the allocator 1664 * 1665 * This iterator iterates though all zones at or below a given zone index and 1666 * within a given nodemask 1667 */ 1668#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1669 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1670 zone; \ 1671 z = next_zones_zonelist(++z, highidx, nodemask), \ 1672 zone = zonelist_zone(z)) 1673 1674#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1675 for (zone = z->zone; \ 1676 zone; \ 1677 z = next_zones_zonelist(++z, highidx, nodemask), \ 1678 zone = zonelist_zone(z)) 1679 1680 1681/** 1682 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1683 * @zone: The current zone in the iterator 1684 * @z: The current pointer within zonelist->zones being iterated 1685 * @zlist: The zonelist being iterated 1686 * @highidx: The zone index of the highest zone to return 1687 * 1688 * This iterator iterates though all zones at or below a given zone index. 1689 */ 1690#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1691 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1692 1693/* Whether the 'nodes' are all movable nodes */ 1694static inline bool movable_only_nodes(nodemask_t *nodes) 1695{ 1696 struct zonelist *zonelist; 1697 struct zoneref *z; 1698 int nid; 1699 1700 if (nodes_empty(*nodes)) 1701 return false; 1702 1703 /* 1704 * We can chose arbitrary node from the nodemask to get a 1705 * zonelist as they are interlinked. We just need to find 1706 * at least one zone that can satisfy kernel allocations. 1707 */ 1708 nid = first_node(*nodes); 1709 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1710 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1711 return (!z->zone) ? true : false; 1712} 1713 1714 1715#ifdef CONFIG_SPARSEMEM 1716#include <asm/sparsemem.h> 1717#endif 1718 1719#ifdef CONFIG_FLATMEM 1720#define pfn_to_nid(pfn) (0) 1721#endif 1722 1723#ifdef CONFIG_SPARSEMEM 1724 1725/* 1726 * PA_SECTION_SHIFT physical address to/from section number 1727 * PFN_SECTION_SHIFT pfn to/from section number 1728 */ 1729#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1730#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1731 1732#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1733 1734#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1735#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1736 1737#define SECTION_BLOCKFLAGS_BITS \ 1738 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1739 1740#if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1741#error Allocator MAX_ORDER exceeds SECTION_SIZE 1742#endif 1743 1744static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1745{ 1746 return pfn >> PFN_SECTION_SHIFT; 1747} 1748static inline unsigned long section_nr_to_pfn(unsigned long sec) 1749{ 1750 return sec << PFN_SECTION_SHIFT; 1751} 1752 1753#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1754#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1755 1756#define SUBSECTION_SHIFT 21 1757#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1758 1759#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1760#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1761#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1762 1763#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1764#error Subsection size exceeds section size 1765#else 1766#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1767#endif 1768 1769#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1770#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1771 1772struct mem_section_usage { 1773#ifdef CONFIG_SPARSEMEM_VMEMMAP 1774 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1775#endif 1776 /* See declaration of similar field in struct zone */ 1777 unsigned long pageblock_flags[0]; 1778}; 1779 1780void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1781 1782struct page; 1783struct page_ext; 1784struct mem_section { 1785 /* 1786 * This is, logically, a pointer to an array of struct 1787 * pages. However, it is stored with some other magic. 1788 * (see sparse.c::sparse_init_one_section()) 1789 * 1790 * Additionally during early boot we encode node id of 1791 * the location of the section here to guide allocation. 1792 * (see sparse.c::memory_present()) 1793 * 1794 * Making it a UL at least makes someone do a cast 1795 * before using it wrong. 1796 */ 1797 unsigned long section_mem_map; 1798 1799 struct mem_section_usage *usage; 1800#ifdef CONFIG_PAGE_EXTENSION 1801 /* 1802 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1803 * section. (see page_ext.h about this.) 1804 */ 1805 struct page_ext *page_ext; 1806 unsigned long pad; 1807#endif 1808 /* 1809 * WARNING: mem_section must be a power-of-2 in size for the 1810 * calculation and use of SECTION_ROOT_MASK to make sense. 1811 */ 1812}; 1813 1814#ifdef CONFIG_SPARSEMEM_EXTREME 1815#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1816#else 1817#define SECTIONS_PER_ROOT 1 1818#endif 1819 1820#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1821#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1822#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1823 1824#ifdef CONFIG_SPARSEMEM_EXTREME 1825extern struct mem_section **mem_section; 1826#else 1827extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1828#endif 1829 1830static inline unsigned long *section_to_usemap(struct mem_section *ms) 1831{ 1832 return ms->usage->pageblock_flags; 1833} 1834 1835static inline struct mem_section *__nr_to_section(unsigned long nr) 1836{ 1837 unsigned long root = SECTION_NR_TO_ROOT(nr); 1838 1839 if (unlikely(root >= NR_SECTION_ROOTS)) 1840 return NULL; 1841 1842#ifdef CONFIG_SPARSEMEM_EXTREME 1843 if (!mem_section || !mem_section[root]) 1844 return NULL; 1845#endif 1846 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1847} 1848extern size_t mem_section_usage_size(void); 1849 1850/* 1851 * We use the lower bits of the mem_map pointer to store 1852 * a little bit of information. The pointer is calculated 1853 * as mem_map - section_nr_to_pfn(pnum). The result is 1854 * aligned to the minimum alignment of the two values: 1855 * 1. All mem_map arrays are page-aligned. 1856 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1857 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1858 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1859 * worst combination is powerpc with 256k pages, 1860 * which results in PFN_SECTION_SHIFT equal 6. 1861 * To sum it up, at least 6 bits are available on all architectures. 1862 * However, we can exceed 6 bits on some other architectures except 1863 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1864 * with the worst case of 64K pages on arm64) if we make sure the 1865 * exceeded bit is not applicable to powerpc. 1866 */ 1867enum { 1868 SECTION_MARKED_PRESENT_BIT, 1869 SECTION_HAS_MEM_MAP_BIT, 1870 SECTION_IS_ONLINE_BIT, 1871 SECTION_IS_EARLY_BIT, 1872#ifdef CONFIG_ZONE_DEVICE 1873 SECTION_TAINT_ZONE_DEVICE_BIT, 1874#endif 1875 SECTION_MAP_LAST_BIT, 1876}; 1877 1878#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1879#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1880#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1881#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1882#ifdef CONFIG_ZONE_DEVICE 1883#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1884#endif 1885#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1886#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1887 1888static inline struct page *__section_mem_map_addr(struct mem_section *section) 1889{ 1890 unsigned long map = section->section_mem_map; 1891 map &= SECTION_MAP_MASK; 1892 return (struct page *)map; 1893} 1894 1895static inline int present_section(struct mem_section *section) 1896{ 1897 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1898} 1899 1900static inline int present_section_nr(unsigned long nr) 1901{ 1902 return present_section(__nr_to_section(nr)); 1903} 1904 1905static inline int valid_section(struct mem_section *section) 1906{ 1907 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1908} 1909 1910static inline int early_section(struct mem_section *section) 1911{ 1912 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1913} 1914 1915static inline int valid_section_nr(unsigned long nr) 1916{ 1917 return valid_section(__nr_to_section(nr)); 1918} 1919 1920static inline int online_section(struct mem_section *section) 1921{ 1922 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1923} 1924 1925#ifdef CONFIG_ZONE_DEVICE 1926static inline int online_device_section(struct mem_section *section) 1927{ 1928 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1929 1930 return section && ((section->section_mem_map & flags) == flags); 1931} 1932#else 1933static inline int online_device_section(struct mem_section *section) 1934{ 1935 return 0; 1936} 1937#endif 1938 1939static inline int online_section_nr(unsigned long nr) 1940{ 1941 return online_section(__nr_to_section(nr)); 1942} 1943 1944#ifdef CONFIG_MEMORY_HOTPLUG 1945void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1946void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1947#endif 1948 1949static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1950{ 1951 return __nr_to_section(pfn_to_section_nr(pfn)); 1952} 1953 1954extern unsigned long __highest_present_section_nr; 1955 1956static inline int subsection_map_index(unsigned long pfn) 1957{ 1958 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1959} 1960 1961#ifdef CONFIG_SPARSEMEM_VMEMMAP 1962static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1963{ 1964 int idx = subsection_map_index(pfn); 1965 1966 return test_bit(idx, ms->usage->subsection_map); 1967} 1968#else 1969static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1970{ 1971 return 1; 1972} 1973#endif 1974 1975#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1976/** 1977 * pfn_valid - check if there is a valid memory map entry for a PFN 1978 * @pfn: the page frame number to check 1979 * 1980 * Check if there is a valid memory map entry aka struct page for the @pfn. 1981 * Note, that availability of the memory map entry does not imply that 1982 * there is actual usable memory at that @pfn. The struct page may 1983 * represent a hole or an unusable page frame. 1984 * 1985 * Return: 1 for PFNs that have memory map entries and 0 otherwise 1986 */ 1987static inline int pfn_valid(unsigned long pfn) 1988{ 1989 struct mem_section *ms; 1990 1991 /* 1992 * Ensure the upper PAGE_SHIFT bits are clear in the 1993 * pfn. Else it might lead to false positives when 1994 * some of the upper bits are set, but the lower bits 1995 * match a valid pfn. 1996 */ 1997 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 1998 return 0; 1999 2000 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2001 return 0; 2002 ms = __pfn_to_section(pfn); 2003 if (!valid_section(ms)) 2004 return 0; 2005 /* 2006 * Traditionally early sections always returned pfn_valid() for 2007 * the entire section-sized span. 2008 */ 2009 return early_section(ms) || pfn_section_valid(ms, pfn); 2010} 2011#endif 2012 2013static inline int pfn_in_present_section(unsigned long pfn) 2014{ 2015 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2016 return 0; 2017 return present_section(__pfn_to_section(pfn)); 2018} 2019 2020static inline unsigned long next_present_section_nr(unsigned long section_nr) 2021{ 2022 while (++section_nr <= __highest_present_section_nr) { 2023 if (present_section_nr(section_nr)) 2024 return section_nr; 2025 } 2026 2027 return -1; 2028} 2029 2030/* 2031 * These are _only_ used during initialisation, therefore they 2032 * can use __initdata ... They could have names to indicate 2033 * this restriction. 2034 */ 2035#ifdef CONFIG_NUMA 2036#define pfn_to_nid(pfn) \ 2037({ \ 2038 unsigned long __pfn_to_nid_pfn = (pfn); \ 2039 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2040}) 2041#else 2042#define pfn_to_nid(pfn) (0) 2043#endif 2044 2045void sparse_init(void); 2046#else 2047#define sparse_init() do {} while (0) 2048#define sparse_index_init(_sec, _nid) do {} while (0) 2049#define pfn_in_present_section pfn_valid 2050#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2051#endif /* CONFIG_SPARSEMEM */ 2052 2053#endif /* !__GENERATING_BOUNDS.H */ 2054#endif /* !__ASSEMBLY__ */ 2055#endif /* _LINUX_MMZONE_H */