at v6.6 21 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2#ifndef _LINUX_MEMBLOCK_H 3#define _LINUX_MEMBLOCK_H 4 5/* 6 * Logical memory blocks. 7 * 8 * Copyright (C) 2001 Peter Bergner, IBM Corp. 9 */ 10 11#include <linux/init.h> 12#include <linux/mm.h> 13#include <asm/dma.h> 14 15extern unsigned long max_low_pfn; 16extern unsigned long min_low_pfn; 17 18/* 19 * highest page 20 */ 21extern unsigned long max_pfn; 22/* 23 * highest possible page 24 */ 25extern unsigned long long max_possible_pfn; 26 27/** 28 * enum memblock_flags - definition of memory region attributes 29 * @MEMBLOCK_NONE: no special request 30 * @MEMBLOCK_HOTPLUG: memory region indicated in the firmware-provided memory 31 * map during early boot as hot(un)pluggable system RAM (e.g., memory range 32 * that might get hotunplugged later). With "movable_node" set on the kernel 33 * commandline, try keeping this memory region hotunpluggable. Does not apply 34 * to memblocks added ("hotplugged") after early boot. 35 * @MEMBLOCK_MIRROR: mirrored region 36 * @MEMBLOCK_NOMAP: don't add to kernel direct mapping and treat as 37 * reserved in the memory map; refer to memblock_mark_nomap() description 38 * for further details 39 * @MEMBLOCK_DRIVER_MANAGED: memory region that is always detected and added 40 * via a driver, and never indicated in the firmware-provided memory map as 41 * system RAM. This corresponds to IORESOURCE_SYSRAM_DRIVER_MANAGED in the 42 * kernel resource tree. 43 */ 44enum memblock_flags { 45 MEMBLOCK_NONE = 0x0, /* No special request */ 46 MEMBLOCK_HOTPLUG = 0x1, /* hotpluggable region */ 47 MEMBLOCK_MIRROR = 0x2, /* mirrored region */ 48 MEMBLOCK_NOMAP = 0x4, /* don't add to kernel direct mapping */ 49 MEMBLOCK_DRIVER_MANAGED = 0x8, /* always detected via a driver */ 50}; 51 52/** 53 * struct memblock_region - represents a memory region 54 * @base: base address of the region 55 * @size: size of the region 56 * @flags: memory region attributes 57 * @nid: NUMA node id 58 */ 59struct memblock_region { 60 phys_addr_t base; 61 phys_addr_t size; 62 enum memblock_flags flags; 63#ifdef CONFIG_NUMA 64 int nid; 65#endif 66}; 67 68/** 69 * struct memblock_type - collection of memory regions of certain type 70 * @cnt: number of regions 71 * @max: size of the allocated array 72 * @total_size: size of all regions 73 * @regions: array of regions 74 * @name: the memory type symbolic name 75 */ 76struct memblock_type { 77 unsigned long cnt; 78 unsigned long max; 79 phys_addr_t total_size; 80 struct memblock_region *regions; 81 char *name; 82}; 83 84/** 85 * struct memblock - memblock allocator metadata 86 * @bottom_up: is bottom up direction? 87 * @current_limit: physical address of the current allocation limit 88 * @memory: usable memory regions 89 * @reserved: reserved memory regions 90 */ 91struct memblock { 92 bool bottom_up; /* is bottom up direction? */ 93 phys_addr_t current_limit; 94 struct memblock_type memory; 95 struct memblock_type reserved; 96}; 97 98extern struct memblock memblock; 99 100#ifndef CONFIG_ARCH_KEEP_MEMBLOCK 101#define __init_memblock __meminit 102#define __initdata_memblock __meminitdata 103void memblock_discard(void); 104#else 105#define __init_memblock 106#define __initdata_memblock 107static inline void memblock_discard(void) {} 108#endif 109 110void memblock_allow_resize(void); 111int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid, 112 enum memblock_flags flags); 113int memblock_add(phys_addr_t base, phys_addr_t size); 114int memblock_remove(phys_addr_t base, phys_addr_t size); 115int memblock_phys_free(phys_addr_t base, phys_addr_t size); 116int memblock_reserve(phys_addr_t base, phys_addr_t size); 117#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 118int memblock_physmem_add(phys_addr_t base, phys_addr_t size); 119#endif 120void memblock_trim_memory(phys_addr_t align); 121bool memblock_overlaps_region(struct memblock_type *type, 122 phys_addr_t base, phys_addr_t size); 123int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size); 124int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size); 125int memblock_mark_mirror(phys_addr_t base, phys_addr_t size); 126int memblock_mark_nomap(phys_addr_t base, phys_addr_t size); 127int memblock_clear_nomap(phys_addr_t base, phys_addr_t size); 128 129void memblock_free_all(void); 130void memblock_free(void *ptr, size_t size); 131void reset_all_zones_managed_pages(void); 132 133/* Low level functions */ 134void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 135 struct memblock_type *type_a, 136 struct memblock_type *type_b, phys_addr_t *out_start, 137 phys_addr_t *out_end, int *out_nid); 138 139void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags, 140 struct memblock_type *type_a, 141 struct memblock_type *type_b, phys_addr_t *out_start, 142 phys_addr_t *out_end, int *out_nid); 143 144void memblock_free_late(phys_addr_t base, phys_addr_t size); 145 146#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 147static inline void __next_physmem_range(u64 *idx, struct memblock_type *type, 148 phys_addr_t *out_start, 149 phys_addr_t *out_end) 150{ 151 extern struct memblock_type physmem; 152 153 __next_mem_range(idx, NUMA_NO_NODE, MEMBLOCK_NONE, &physmem, type, 154 out_start, out_end, NULL); 155} 156 157/** 158 * for_each_physmem_range - iterate through physmem areas not included in type. 159 * @i: u64 used as loop variable 160 * @type: ptr to memblock_type which excludes from the iteration, can be %NULL 161 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 162 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 163 */ 164#define for_each_physmem_range(i, type, p_start, p_end) \ 165 for (i = 0, __next_physmem_range(&i, type, p_start, p_end); \ 166 i != (u64)ULLONG_MAX; \ 167 __next_physmem_range(&i, type, p_start, p_end)) 168#endif /* CONFIG_HAVE_MEMBLOCK_PHYS_MAP */ 169 170/** 171 * __for_each_mem_range - iterate through memblock areas from type_a and not 172 * included in type_b. Or just type_a if type_b is NULL. 173 * @i: u64 used as loop variable 174 * @type_a: ptr to memblock_type to iterate 175 * @type_b: ptr to memblock_type which excludes from the iteration 176 * @nid: node selector, %NUMA_NO_NODE for all nodes 177 * @flags: pick from blocks based on memory attributes 178 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 179 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 180 * @p_nid: ptr to int for nid of the range, can be %NULL 181 */ 182#define __for_each_mem_range(i, type_a, type_b, nid, flags, \ 183 p_start, p_end, p_nid) \ 184 for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b, \ 185 p_start, p_end, p_nid); \ 186 i != (u64)ULLONG_MAX; \ 187 __next_mem_range(&i, nid, flags, type_a, type_b, \ 188 p_start, p_end, p_nid)) 189 190/** 191 * __for_each_mem_range_rev - reverse iterate through memblock areas from 192 * type_a and not included in type_b. Or just type_a if type_b is NULL. 193 * @i: u64 used as loop variable 194 * @type_a: ptr to memblock_type to iterate 195 * @type_b: ptr to memblock_type which excludes from the iteration 196 * @nid: node selector, %NUMA_NO_NODE for all nodes 197 * @flags: pick from blocks based on memory attributes 198 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 199 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 200 * @p_nid: ptr to int for nid of the range, can be %NULL 201 */ 202#define __for_each_mem_range_rev(i, type_a, type_b, nid, flags, \ 203 p_start, p_end, p_nid) \ 204 for (i = (u64)ULLONG_MAX, \ 205 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \ 206 p_start, p_end, p_nid); \ 207 i != (u64)ULLONG_MAX; \ 208 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \ 209 p_start, p_end, p_nid)) 210 211/** 212 * for_each_mem_range - iterate through memory areas. 213 * @i: u64 used as loop variable 214 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 215 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 216 */ 217#define for_each_mem_range(i, p_start, p_end) \ 218 __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE, \ 219 MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED, \ 220 p_start, p_end, NULL) 221 222/** 223 * for_each_mem_range_rev - reverse iterate through memblock areas from 224 * type_a and not included in type_b. Or just type_a if type_b is NULL. 225 * @i: u64 used as loop variable 226 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 227 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 228 */ 229#define for_each_mem_range_rev(i, p_start, p_end) \ 230 __for_each_mem_range_rev(i, &memblock.memory, NULL, NUMA_NO_NODE, \ 231 MEMBLOCK_HOTPLUG | MEMBLOCK_DRIVER_MANAGED,\ 232 p_start, p_end, NULL) 233 234/** 235 * for_each_reserved_mem_range - iterate over all reserved memblock areas 236 * @i: u64 used as loop variable 237 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 238 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 239 * 240 * Walks over reserved areas of memblock. Available as soon as memblock 241 * is initialized. 242 */ 243#define for_each_reserved_mem_range(i, p_start, p_end) \ 244 __for_each_mem_range(i, &memblock.reserved, NULL, NUMA_NO_NODE, \ 245 MEMBLOCK_NONE, p_start, p_end, NULL) 246 247static inline bool memblock_is_hotpluggable(struct memblock_region *m) 248{ 249 return m->flags & MEMBLOCK_HOTPLUG; 250} 251 252static inline bool memblock_is_mirror(struct memblock_region *m) 253{ 254 return m->flags & MEMBLOCK_MIRROR; 255} 256 257static inline bool memblock_is_nomap(struct memblock_region *m) 258{ 259 return m->flags & MEMBLOCK_NOMAP; 260} 261 262static inline bool memblock_is_driver_managed(struct memblock_region *m) 263{ 264 return m->flags & MEMBLOCK_DRIVER_MANAGED; 265} 266 267int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn, 268 unsigned long *end_pfn); 269void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn, 270 unsigned long *out_end_pfn, int *out_nid); 271 272/** 273 * for_each_mem_pfn_range - early memory pfn range iterator 274 * @i: an integer used as loop variable 275 * @nid: node selector, %MAX_NUMNODES for all nodes 276 * @p_start: ptr to ulong for start pfn of the range, can be %NULL 277 * @p_end: ptr to ulong for end pfn of the range, can be %NULL 278 * @p_nid: ptr to int for nid of the range, can be %NULL 279 * 280 * Walks over configured memory ranges. 281 */ 282#define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \ 283 for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \ 284 i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid)) 285 286#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 287void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 288 unsigned long *out_spfn, 289 unsigned long *out_epfn); 290/** 291 * for_each_free_mem_pfn_range_in_zone - iterate through zone specific free 292 * memblock areas 293 * @i: u64 used as loop variable 294 * @zone: zone in which all of the memory blocks reside 295 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 296 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 297 * 298 * Walks over free (memory && !reserved) areas of memblock in a specific 299 * zone. Available once memblock and an empty zone is initialized. The main 300 * assumption is that the zone start, end, and pgdat have been associated. 301 * This way we can use the zone to determine NUMA node, and if a given part 302 * of the memblock is valid for the zone. 303 */ 304#define for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end) \ 305 for (i = 0, \ 306 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end); \ 307 i != U64_MAX; \ 308 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end)) 309 310/** 311 * for_each_free_mem_pfn_range_in_zone_from - iterate through zone specific 312 * free memblock areas from a given point 313 * @i: u64 used as loop variable 314 * @zone: zone in which all of the memory blocks reside 315 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 316 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 317 * 318 * Walks over free (memory && !reserved) areas of memblock in a specific 319 * zone, continuing from current position. Available as soon as memblock is 320 * initialized. 321 */ 322#define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \ 323 for (; i != U64_MAX; \ 324 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end)) 325 326int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask); 327 328#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 329 330/** 331 * for_each_free_mem_range - iterate through free memblock areas 332 * @i: u64 used as loop variable 333 * @nid: node selector, %NUMA_NO_NODE for all nodes 334 * @flags: pick from blocks based on memory attributes 335 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 336 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 337 * @p_nid: ptr to int for nid of the range, can be %NULL 338 * 339 * Walks over free (memory && !reserved) areas of memblock. Available as 340 * soon as memblock is initialized. 341 */ 342#define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid) \ 343 __for_each_mem_range(i, &memblock.memory, &memblock.reserved, \ 344 nid, flags, p_start, p_end, p_nid) 345 346/** 347 * for_each_free_mem_range_reverse - rev-iterate through free memblock areas 348 * @i: u64 used as loop variable 349 * @nid: node selector, %NUMA_NO_NODE for all nodes 350 * @flags: pick from blocks based on memory attributes 351 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL 352 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL 353 * @p_nid: ptr to int for nid of the range, can be %NULL 354 * 355 * Walks over free (memory && !reserved) areas of memblock in reverse 356 * order. Available as soon as memblock is initialized. 357 */ 358#define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end, \ 359 p_nid) \ 360 __for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \ 361 nid, flags, p_start, p_end, p_nid) 362 363int memblock_set_node(phys_addr_t base, phys_addr_t size, 364 struct memblock_type *type, int nid); 365 366#ifdef CONFIG_NUMA 367static inline void memblock_set_region_node(struct memblock_region *r, int nid) 368{ 369 r->nid = nid; 370} 371 372static inline int memblock_get_region_node(const struct memblock_region *r) 373{ 374 return r->nid; 375} 376#else 377static inline void memblock_set_region_node(struct memblock_region *r, int nid) 378{ 379} 380 381static inline int memblock_get_region_node(const struct memblock_region *r) 382{ 383 return 0; 384} 385#endif /* CONFIG_NUMA */ 386 387/* Flags for memblock allocation APIs */ 388#define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)0) 389#define MEMBLOCK_ALLOC_ACCESSIBLE 0 390#define MEMBLOCK_ALLOC_NOLEAKTRACE 1 391 392/* We are using top down, so it is safe to use 0 here */ 393#define MEMBLOCK_LOW_LIMIT 0 394 395#ifndef ARCH_LOW_ADDRESS_LIMIT 396#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL 397#endif 398 399phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align, 400 phys_addr_t start, phys_addr_t end); 401phys_addr_t memblock_alloc_range_nid(phys_addr_t size, 402 phys_addr_t align, phys_addr_t start, 403 phys_addr_t end, int nid, bool exact_nid); 404phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid); 405 406static __always_inline phys_addr_t memblock_phys_alloc(phys_addr_t size, 407 phys_addr_t align) 408{ 409 return memblock_phys_alloc_range(size, align, 0, 410 MEMBLOCK_ALLOC_ACCESSIBLE); 411} 412 413void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align, 414 phys_addr_t min_addr, phys_addr_t max_addr, 415 int nid); 416void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align, 417 phys_addr_t min_addr, phys_addr_t max_addr, 418 int nid); 419void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, 420 phys_addr_t min_addr, phys_addr_t max_addr, 421 int nid); 422 423static __always_inline void *memblock_alloc(phys_addr_t size, phys_addr_t align) 424{ 425 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT, 426 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); 427} 428 429static inline void *memblock_alloc_raw(phys_addr_t size, 430 phys_addr_t align) 431{ 432 return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT, 433 MEMBLOCK_ALLOC_ACCESSIBLE, 434 NUMA_NO_NODE); 435} 436 437static inline void *memblock_alloc_from(phys_addr_t size, 438 phys_addr_t align, 439 phys_addr_t min_addr) 440{ 441 return memblock_alloc_try_nid(size, align, min_addr, 442 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); 443} 444 445static inline void *memblock_alloc_low(phys_addr_t size, 446 phys_addr_t align) 447{ 448 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT, 449 ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE); 450} 451 452static inline void *memblock_alloc_node(phys_addr_t size, 453 phys_addr_t align, int nid) 454{ 455 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT, 456 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 457} 458 459/* 460 * Set the allocation direction to bottom-up or top-down. 461 */ 462static inline __init_memblock void memblock_set_bottom_up(bool enable) 463{ 464 memblock.bottom_up = enable; 465} 466 467/* 468 * Check if the allocation direction is bottom-up or not. 469 * if this is true, that said, memblock will allocate memory 470 * in bottom-up direction. 471 */ 472static inline __init_memblock bool memblock_bottom_up(void) 473{ 474 return memblock.bottom_up; 475} 476 477phys_addr_t memblock_phys_mem_size(void); 478phys_addr_t memblock_reserved_size(void); 479phys_addr_t memblock_start_of_DRAM(void); 480phys_addr_t memblock_end_of_DRAM(void); 481void memblock_enforce_memory_limit(phys_addr_t memory_limit); 482void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size); 483void memblock_mem_limit_remove_map(phys_addr_t limit); 484bool memblock_is_memory(phys_addr_t addr); 485bool memblock_is_map_memory(phys_addr_t addr); 486bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size); 487bool memblock_is_reserved(phys_addr_t addr); 488bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size); 489 490void memblock_dump_all(void); 491 492/** 493 * memblock_set_current_limit - Set the current allocation limit to allow 494 * limiting allocations to what is currently 495 * accessible during boot 496 * @limit: New limit value (physical address) 497 */ 498void memblock_set_current_limit(phys_addr_t limit); 499 500 501phys_addr_t memblock_get_current_limit(void); 502 503/* 504 * pfn conversion functions 505 * 506 * While the memory MEMBLOCKs should always be page aligned, the reserved 507 * MEMBLOCKs may not be. This accessor attempt to provide a very clear 508 * idea of what they return for such non aligned MEMBLOCKs. 509 */ 510 511/** 512 * memblock_region_memory_base_pfn - get the lowest pfn of the memory region 513 * @reg: memblock_region structure 514 * 515 * Return: the lowest pfn intersecting with the memory region 516 */ 517static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg) 518{ 519 return PFN_UP(reg->base); 520} 521 522/** 523 * memblock_region_memory_end_pfn - get the end pfn of the memory region 524 * @reg: memblock_region structure 525 * 526 * Return: the end_pfn of the reserved region 527 */ 528static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg) 529{ 530 return PFN_DOWN(reg->base + reg->size); 531} 532 533/** 534 * memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region 535 * @reg: memblock_region structure 536 * 537 * Return: the lowest pfn intersecting with the reserved region 538 */ 539static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg) 540{ 541 return PFN_DOWN(reg->base); 542} 543 544/** 545 * memblock_region_reserved_end_pfn - get the end pfn of the reserved region 546 * @reg: memblock_region structure 547 * 548 * Return: the end_pfn of the reserved region 549 */ 550static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg) 551{ 552 return PFN_UP(reg->base + reg->size); 553} 554 555/** 556 * for_each_mem_region - itereate over memory regions 557 * @region: loop variable 558 */ 559#define for_each_mem_region(region) \ 560 for (region = memblock.memory.regions; \ 561 region < (memblock.memory.regions + memblock.memory.cnt); \ 562 region++) 563 564/** 565 * for_each_reserved_mem_region - itereate over reserved memory regions 566 * @region: loop variable 567 */ 568#define for_each_reserved_mem_region(region) \ 569 for (region = memblock.reserved.regions; \ 570 region < (memblock.reserved.regions + memblock.reserved.cnt); \ 571 region++) 572 573extern void *alloc_large_system_hash(const char *tablename, 574 unsigned long bucketsize, 575 unsigned long numentries, 576 int scale, 577 int flags, 578 unsigned int *_hash_shift, 579 unsigned int *_hash_mask, 580 unsigned long low_limit, 581 unsigned long high_limit); 582 583#define HASH_EARLY 0x00000001 /* Allocating during early boot? */ 584#define HASH_ZERO 0x00000002 /* Zero allocated hash table */ 585 586/* Only NUMA needs hash distribution. 64bit NUMA architectures have 587 * sufficient vmalloc space. 588 */ 589#ifdef CONFIG_NUMA 590#define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT) 591extern int hashdist; /* Distribute hashes across NUMA nodes? */ 592#else 593#define hashdist (0) 594#endif 595 596#ifdef CONFIG_MEMTEST 597void early_memtest(phys_addr_t start, phys_addr_t end); 598void memtest_report_meminfo(struct seq_file *m); 599#else 600static inline void early_memtest(phys_addr_t start, phys_addr_t end) { } 601static inline void memtest_report_meminfo(struct seq_file *m) { } 602#endif 603 604 605#endif /* _LINUX_MEMBLOCK_H */