Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#ifndef _LINUX_BPF_H
5#define _LINUX_BPF_H 1
6
7#include <uapi/linux/bpf.h>
8#include <uapi/linux/filter.h>
9
10#include <linux/workqueue.h>
11#include <linux/file.h>
12#include <linux/percpu.h>
13#include <linux/err.h>
14#include <linux/rbtree_latch.h>
15#include <linux/numa.h>
16#include <linux/mm_types.h>
17#include <linux/wait.h>
18#include <linux/refcount.h>
19#include <linux/mutex.h>
20#include <linux/module.h>
21#include <linux/kallsyms.h>
22#include <linux/capability.h>
23#include <linux/sched/mm.h>
24#include <linux/slab.h>
25#include <linux/percpu-refcount.h>
26#include <linux/stddef.h>
27#include <linux/bpfptr.h>
28#include <linux/btf.h>
29#include <linux/rcupdate_trace.h>
30#include <linux/static_call.h>
31#include <linux/memcontrol.h>
32
33struct bpf_verifier_env;
34struct bpf_verifier_log;
35struct perf_event;
36struct bpf_prog;
37struct bpf_prog_aux;
38struct bpf_map;
39struct sock;
40struct seq_file;
41struct btf;
42struct btf_type;
43struct exception_table_entry;
44struct seq_operations;
45struct bpf_iter_aux_info;
46struct bpf_local_storage;
47struct bpf_local_storage_map;
48struct kobject;
49struct mem_cgroup;
50struct module;
51struct bpf_func_state;
52struct ftrace_ops;
53struct cgroup;
54
55extern struct idr btf_idr;
56extern spinlock_t btf_idr_lock;
57extern struct kobject *btf_kobj;
58extern struct bpf_mem_alloc bpf_global_ma;
59extern bool bpf_global_ma_set;
60
61typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
62typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
63 struct bpf_iter_aux_info *aux);
64typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
65typedef unsigned int (*bpf_func_t)(const void *,
66 const struct bpf_insn *);
67struct bpf_iter_seq_info {
68 const struct seq_operations *seq_ops;
69 bpf_iter_init_seq_priv_t init_seq_private;
70 bpf_iter_fini_seq_priv_t fini_seq_private;
71 u32 seq_priv_size;
72};
73
74/* map is generic key/value storage optionally accessible by eBPF programs */
75struct bpf_map_ops {
76 /* funcs callable from userspace (via syscall) */
77 int (*map_alloc_check)(union bpf_attr *attr);
78 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
79 void (*map_release)(struct bpf_map *map, struct file *map_file);
80 void (*map_free)(struct bpf_map *map);
81 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
82 void (*map_release_uref)(struct bpf_map *map);
83 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
84 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
85 union bpf_attr __user *uattr);
86 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
87 void *value, u64 flags);
88 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
89 const union bpf_attr *attr,
90 union bpf_attr __user *uattr);
91 int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
92 const union bpf_attr *attr,
93 union bpf_attr __user *uattr);
94 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
95 union bpf_attr __user *uattr);
96
97 /* funcs callable from userspace and from eBPF programs */
98 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
99 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
100 long (*map_delete_elem)(struct bpf_map *map, void *key);
101 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
102 long (*map_pop_elem)(struct bpf_map *map, void *value);
103 long (*map_peek_elem)(struct bpf_map *map, void *value);
104 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
105
106 /* funcs called by prog_array and perf_event_array map */
107 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
108 int fd);
109 void (*map_fd_put_ptr)(void *ptr);
110 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
111 u32 (*map_fd_sys_lookup_elem)(void *ptr);
112 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
113 struct seq_file *m);
114 int (*map_check_btf)(const struct bpf_map *map,
115 const struct btf *btf,
116 const struct btf_type *key_type,
117 const struct btf_type *value_type);
118
119 /* Prog poke tracking helpers. */
120 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
121 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
122 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
123 struct bpf_prog *new);
124
125 /* Direct value access helpers. */
126 int (*map_direct_value_addr)(const struct bpf_map *map,
127 u64 *imm, u32 off);
128 int (*map_direct_value_meta)(const struct bpf_map *map,
129 u64 imm, u32 *off);
130 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
131 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
132 struct poll_table_struct *pts);
133
134 /* Functions called by bpf_local_storage maps */
135 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
136 void *owner, u32 size);
137 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
138 void *owner, u32 size);
139 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
140
141 /* Misc helpers.*/
142 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
143
144 /* map_meta_equal must be implemented for maps that can be
145 * used as an inner map. It is a runtime check to ensure
146 * an inner map can be inserted to an outer map.
147 *
148 * Some properties of the inner map has been used during the
149 * verification time. When inserting an inner map at the runtime,
150 * map_meta_equal has to ensure the inserting map has the same
151 * properties that the verifier has used earlier.
152 */
153 bool (*map_meta_equal)(const struct bpf_map *meta0,
154 const struct bpf_map *meta1);
155
156
157 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
158 struct bpf_func_state *caller,
159 struct bpf_func_state *callee);
160 long (*map_for_each_callback)(struct bpf_map *map,
161 bpf_callback_t callback_fn,
162 void *callback_ctx, u64 flags);
163
164 u64 (*map_mem_usage)(const struct bpf_map *map);
165
166 /* BTF id of struct allocated by map_alloc */
167 int *map_btf_id;
168
169 /* bpf_iter info used to open a seq_file */
170 const struct bpf_iter_seq_info *iter_seq_info;
171};
172
173enum {
174 /* Support at most 10 fields in a BTF type */
175 BTF_FIELDS_MAX = 10,
176};
177
178enum btf_field_type {
179 BPF_SPIN_LOCK = (1 << 0),
180 BPF_TIMER = (1 << 1),
181 BPF_KPTR_UNREF = (1 << 2),
182 BPF_KPTR_REF = (1 << 3),
183 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF,
184 BPF_LIST_HEAD = (1 << 4),
185 BPF_LIST_NODE = (1 << 5),
186 BPF_RB_ROOT = (1 << 6),
187 BPF_RB_NODE = (1 << 7),
188 BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD |
189 BPF_RB_NODE | BPF_RB_ROOT,
190 BPF_REFCOUNT = (1 << 8),
191};
192
193typedef void (*btf_dtor_kfunc_t)(void *);
194
195struct btf_field_kptr {
196 struct btf *btf;
197 struct module *module;
198 /* dtor used if btf_is_kernel(btf), otherwise the type is
199 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used
200 */
201 btf_dtor_kfunc_t dtor;
202 u32 btf_id;
203};
204
205struct btf_field_graph_root {
206 struct btf *btf;
207 u32 value_btf_id;
208 u32 node_offset;
209 struct btf_record *value_rec;
210};
211
212struct btf_field {
213 u32 offset;
214 u32 size;
215 enum btf_field_type type;
216 union {
217 struct btf_field_kptr kptr;
218 struct btf_field_graph_root graph_root;
219 };
220};
221
222struct btf_record {
223 u32 cnt;
224 u32 field_mask;
225 int spin_lock_off;
226 int timer_off;
227 int refcount_off;
228 struct btf_field fields[];
229};
230
231/* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
232struct bpf_rb_node_kern {
233 struct rb_node rb_node;
234 void *owner;
235} __attribute__((aligned(8)));
236
237/* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
238struct bpf_list_node_kern {
239 struct list_head list_head;
240 void *owner;
241} __attribute__((aligned(8)));
242
243struct bpf_map {
244 /* The first two cachelines with read-mostly members of which some
245 * are also accessed in fast-path (e.g. ops, max_entries).
246 */
247 const struct bpf_map_ops *ops ____cacheline_aligned;
248 struct bpf_map *inner_map_meta;
249#ifdef CONFIG_SECURITY
250 void *security;
251#endif
252 enum bpf_map_type map_type;
253 u32 key_size;
254 u32 value_size;
255 u32 max_entries;
256 u64 map_extra; /* any per-map-type extra fields */
257 u32 map_flags;
258 u32 id;
259 struct btf_record *record;
260 int numa_node;
261 u32 btf_key_type_id;
262 u32 btf_value_type_id;
263 u32 btf_vmlinux_value_type_id;
264 struct btf *btf;
265#ifdef CONFIG_MEMCG_KMEM
266 struct obj_cgroup *objcg;
267#endif
268 char name[BPF_OBJ_NAME_LEN];
269 /* The 3rd and 4th cacheline with misc members to avoid false sharing
270 * particularly with refcounting.
271 */
272 atomic64_t refcnt ____cacheline_aligned;
273 atomic64_t usercnt;
274 struct work_struct work;
275 struct mutex freeze_mutex;
276 atomic64_t writecnt;
277 /* 'Ownership' of program-containing map is claimed by the first program
278 * that is going to use this map or by the first program which FD is
279 * stored in the map to make sure that all callers and callees have the
280 * same prog type, JITed flag and xdp_has_frags flag.
281 */
282 struct {
283 spinlock_t lock;
284 enum bpf_prog_type type;
285 bool jited;
286 bool xdp_has_frags;
287 } owner;
288 bool bypass_spec_v1;
289 bool frozen; /* write-once; write-protected by freeze_mutex */
290 s64 __percpu *elem_count;
291};
292
293static inline const char *btf_field_type_name(enum btf_field_type type)
294{
295 switch (type) {
296 case BPF_SPIN_LOCK:
297 return "bpf_spin_lock";
298 case BPF_TIMER:
299 return "bpf_timer";
300 case BPF_KPTR_UNREF:
301 case BPF_KPTR_REF:
302 return "kptr";
303 case BPF_LIST_HEAD:
304 return "bpf_list_head";
305 case BPF_LIST_NODE:
306 return "bpf_list_node";
307 case BPF_RB_ROOT:
308 return "bpf_rb_root";
309 case BPF_RB_NODE:
310 return "bpf_rb_node";
311 case BPF_REFCOUNT:
312 return "bpf_refcount";
313 default:
314 WARN_ON_ONCE(1);
315 return "unknown";
316 }
317}
318
319static inline u32 btf_field_type_size(enum btf_field_type type)
320{
321 switch (type) {
322 case BPF_SPIN_LOCK:
323 return sizeof(struct bpf_spin_lock);
324 case BPF_TIMER:
325 return sizeof(struct bpf_timer);
326 case BPF_KPTR_UNREF:
327 case BPF_KPTR_REF:
328 return sizeof(u64);
329 case BPF_LIST_HEAD:
330 return sizeof(struct bpf_list_head);
331 case BPF_LIST_NODE:
332 return sizeof(struct bpf_list_node);
333 case BPF_RB_ROOT:
334 return sizeof(struct bpf_rb_root);
335 case BPF_RB_NODE:
336 return sizeof(struct bpf_rb_node);
337 case BPF_REFCOUNT:
338 return sizeof(struct bpf_refcount);
339 default:
340 WARN_ON_ONCE(1);
341 return 0;
342 }
343}
344
345static inline u32 btf_field_type_align(enum btf_field_type type)
346{
347 switch (type) {
348 case BPF_SPIN_LOCK:
349 return __alignof__(struct bpf_spin_lock);
350 case BPF_TIMER:
351 return __alignof__(struct bpf_timer);
352 case BPF_KPTR_UNREF:
353 case BPF_KPTR_REF:
354 return __alignof__(u64);
355 case BPF_LIST_HEAD:
356 return __alignof__(struct bpf_list_head);
357 case BPF_LIST_NODE:
358 return __alignof__(struct bpf_list_node);
359 case BPF_RB_ROOT:
360 return __alignof__(struct bpf_rb_root);
361 case BPF_RB_NODE:
362 return __alignof__(struct bpf_rb_node);
363 case BPF_REFCOUNT:
364 return __alignof__(struct bpf_refcount);
365 default:
366 WARN_ON_ONCE(1);
367 return 0;
368 }
369}
370
371static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
372{
373 memset(addr, 0, field->size);
374
375 switch (field->type) {
376 case BPF_REFCOUNT:
377 refcount_set((refcount_t *)addr, 1);
378 break;
379 case BPF_RB_NODE:
380 RB_CLEAR_NODE((struct rb_node *)addr);
381 break;
382 case BPF_LIST_HEAD:
383 case BPF_LIST_NODE:
384 INIT_LIST_HEAD((struct list_head *)addr);
385 break;
386 case BPF_RB_ROOT:
387 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
388 case BPF_SPIN_LOCK:
389 case BPF_TIMER:
390 case BPF_KPTR_UNREF:
391 case BPF_KPTR_REF:
392 break;
393 default:
394 WARN_ON_ONCE(1);
395 return;
396 }
397}
398
399static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
400{
401 if (IS_ERR_OR_NULL(rec))
402 return false;
403 return rec->field_mask & type;
404}
405
406static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
407{
408 int i;
409
410 if (IS_ERR_OR_NULL(rec))
411 return;
412 for (i = 0; i < rec->cnt; i++)
413 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
414}
415
416/* 'dst' must be a temporary buffer and should not point to memory that is being
417 * used in parallel by a bpf program or bpf syscall, otherwise the access from
418 * the bpf program or bpf syscall may be corrupted by the reinitialization,
419 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
420 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
421 * program or bpf syscall.
422 */
423static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
424{
425 bpf_obj_init(map->record, dst);
426}
427
428/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
429 * forced to use 'long' read/writes to try to atomically copy long counters.
430 * Best-effort only. No barriers here, since it _will_ race with concurrent
431 * updates from BPF programs. Called from bpf syscall and mostly used with
432 * size 8 or 16 bytes, so ask compiler to inline it.
433 */
434static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
435{
436 const long *lsrc = src;
437 long *ldst = dst;
438
439 size /= sizeof(long);
440 while (size--)
441 data_race(*ldst++ = *lsrc++);
442}
443
444/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
445static inline void bpf_obj_memcpy(struct btf_record *rec,
446 void *dst, void *src, u32 size,
447 bool long_memcpy)
448{
449 u32 curr_off = 0;
450 int i;
451
452 if (IS_ERR_OR_NULL(rec)) {
453 if (long_memcpy)
454 bpf_long_memcpy(dst, src, round_up(size, 8));
455 else
456 memcpy(dst, src, size);
457 return;
458 }
459
460 for (i = 0; i < rec->cnt; i++) {
461 u32 next_off = rec->fields[i].offset;
462 u32 sz = next_off - curr_off;
463
464 memcpy(dst + curr_off, src + curr_off, sz);
465 curr_off += rec->fields[i].size + sz;
466 }
467 memcpy(dst + curr_off, src + curr_off, size - curr_off);
468}
469
470static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
471{
472 bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
473}
474
475static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
476{
477 bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
478}
479
480static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
481{
482 u32 curr_off = 0;
483 int i;
484
485 if (IS_ERR_OR_NULL(rec)) {
486 memset(dst, 0, size);
487 return;
488 }
489
490 for (i = 0; i < rec->cnt; i++) {
491 u32 next_off = rec->fields[i].offset;
492 u32 sz = next_off - curr_off;
493
494 memset(dst + curr_off, 0, sz);
495 curr_off += rec->fields[i].size + sz;
496 }
497 memset(dst + curr_off, 0, size - curr_off);
498}
499
500static inline void zero_map_value(struct bpf_map *map, void *dst)
501{
502 bpf_obj_memzero(map->record, dst, map->value_size);
503}
504
505void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
506 bool lock_src);
507void bpf_timer_cancel_and_free(void *timer);
508void bpf_list_head_free(const struct btf_field *field, void *list_head,
509 struct bpf_spin_lock *spin_lock);
510void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
511 struct bpf_spin_lock *spin_lock);
512
513
514int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
515
516struct bpf_offload_dev;
517struct bpf_offloaded_map;
518
519struct bpf_map_dev_ops {
520 int (*map_get_next_key)(struct bpf_offloaded_map *map,
521 void *key, void *next_key);
522 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
523 void *key, void *value);
524 int (*map_update_elem)(struct bpf_offloaded_map *map,
525 void *key, void *value, u64 flags);
526 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
527};
528
529struct bpf_offloaded_map {
530 struct bpf_map map;
531 struct net_device *netdev;
532 const struct bpf_map_dev_ops *dev_ops;
533 void *dev_priv;
534 struct list_head offloads;
535};
536
537static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
538{
539 return container_of(map, struct bpf_offloaded_map, map);
540}
541
542static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
543{
544 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
545}
546
547static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
548{
549 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
550 map->ops->map_seq_show_elem;
551}
552
553int map_check_no_btf(const struct bpf_map *map,
554 const struct btf *btf,
555 const struct btf_type *key_type,
556 const struct btf_type *value_type);
557
558bool bpf_map_meta_equal(const struct bpf_map *meta0,
559 const struct bpf_map *meta1);
560
561extern const struct bpf_map_ops bpf_map_offload_ops;
562
563/* bpf_type_flag contains a set of flags that are applicable to the values of
564 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
565 * or a memory is read-only. We classify types into two categories: base types
566 * and extended types. Extended types are base types combined with a type flag.
567 *
568 * Currently there are no more than 32 base types in arg_type, ret_type and
569 * reg_types.
570 */
571#define BPF_BASE_TYPE_BITS 8
572
573enum bpf_type_flag {
574 /* PTR may be NULL. */
575 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
576
577 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
578 * compatible with both mutable and immutable memory.
579 */
580 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
581
582 /* MEM points to BPF ring buffer reservation. */
583 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
584
585 /* MEM is in user address space. */
586 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
587
588 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
589 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
590 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
591 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
592 * to the specified cpu.
593 */
594 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
595
596 /* Indicates that the argument will be released. */
597 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
598
599 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
600 * unreferenced and referenced kptr loaded from map value using a load
601 * instruction, so that they can only be dereferenced but not escape the
602 * BPF program into the kernel (i.e. cannot be passed as arguments to
603 * kfunc or bpf helpers).
604 */
605 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
606
607 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
608
609 /* DYNPTR points to memory local to the bpf program. */
610 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
611
612 /* DYNPTR points to a kernel-produced ringbuf record. */
613 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
614
615 /* Size is known at compile time. */
616 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
617
618 /* MEM is of an allocated object of type in program BTF. This is used to
619 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
620 */
621 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
622
623 /* PTR was passed from the kernel in a trusted context, and may be
624 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
625 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
626 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
627 * without invoking bpf_kptr_xchg(). What we really need to know is
628 * whether a pointer is safe to pass to a kfunc or BPF helper function.
629 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
630 * helpers, they do not cover all possible instances of unsafe
631 * pointers. For example, a pointer that was obtained from walking a
632 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
633 * fact that it may be NULL, invalid, etc. This is due to backwards
634 * compatibility requirements, as this was the behavior that was first
635 * introduced when kptrs were added. The behavior is now considered
636 * deprecated, and PTR_UNTRUSTED will eventually be removed.
637 *
638 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
639 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
640 * For example, pointers passed to tracepoint arguments are considered
641 * PTR_TRUSTED, as are pointers that are passed to struct_ops
642 * callbacks. As alluded to above, pointers that are obtained from
643 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
644 * struct task_struct *task is PTR_TRUSTED, then accessing
645 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
646 * in a BPF register. Similarly, pointers passed to certain programs
647 * types such as kretprobes are not guaranteed to be valid, as they may
648 * for example contain an object that was recently freed.
649 */
650 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
651
652 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
653 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
654
655 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
656 * Currently only valid for linked-list and rbtree nodes. If the nodes
657 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
658 */
659 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
660
661 /* DYNPTR points to sk_buff */
662 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
663
664 /* DYNPTR points to xdp_buff */
665 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
666
667 __BPF_TYPE_FLAG_MAX,
668 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
669};
670
671#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
672 | DYNPTR_TYPE_XDP)
673
674/* Max number of base types. */
675#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
676
677/* Max number of all types. */
678#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
679
680/* function argument constraints */
681enum bpf_arg_type {
682 ARG_DONTCARE = 0, /* unused argument in helper function */
683
684 /* the following constraints used to prototype
685 * bpf_map_lookup/update/delete_elem() functions
686 */
687 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
688 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
689 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
690
691 /* Used to prototype bpf_memcmp() and other functions that access data
692 * on eBPF program stack
693 */
694 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
695
696 ARG_CONST_SIZE, /* number of bytes accessed from memory */
697 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
698
699 ARG_PTR_TO_CTX, /* pointer to context */
700 ARG_ANYTHING, /* any (initialized) argument is ok */
701 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
702 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
703 ARG_PTR_TO_INT, /* pointer to int */
704 ARG_PTR_TO_LONG, /* pointer to long */
705 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
706 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
707 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
708 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
709 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
710 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
711 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
712 ARG_PTR_TO_STACK, /* pointer to stack */
713 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
714 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
715 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */
716 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
717 __BPF_ARG_TYPE_MAX,
718
719 /* Extended arg_types. */
720 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
721 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
722 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
723 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
724 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
725 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
726 /* pointer to memory does not need to be initialized, helper function must fill
727 * all bytes or clear them in error case.
728 */
729 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM,
730 /* Pointer to valid memory of size known at compile time. */
731 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
732
733 /* This must be the last entry. Its purpose is to ensure the enum is
734 * wide enough to hold the higher bits reserved for bpf_type_flag.
735 */
736 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
737};
738static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
739
740/* type of values returned from helper functions */
741enum bpf_return_type {
742 RET_INTEGER, /* function returns integer */
743 RET_VOID, /* function doesn't return anything */
744 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
745 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
746 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
747 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
748 RET_PTR_TO_MEM, /* returns a pointer to memory */
749 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
750 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
751 __BPF_RET_TYPE_MAX,
752
753 /* Extended ret_types. */
754 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
755 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
756 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
757 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
758 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
759 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
760 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
761 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
762
763 /* This must be the last entry. Its purpose is to ensure the enum is
764 * wide enough to hold the higher bits reserved for bpf_type_flag.
765 */
766 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
767};
768static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
769
770/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
771 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
772 * instructions after verifying
773 */
774struct bpf_func_proto {
775 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
776 bool gpl_only;
777 bool pkt_access;
778 bool might_sleep;
779 enum bpf_return_type ret_type;
780 union {
781 struct {
782 enum bpf_arg_type arg1_type;
783 enum bpf_arg_type arg2_type;
784 enum bpf_arg_type arg3_type;
785 enum bpf_arg_type arg4_type;
786 enum bpf_arg_type arg5_type;
787 };
788 enum bpf_arg_type arg_type[5];
789 };
790 union {
791 struct {
792 u32 *arg1_btf_id;
793 u32 *arg2_btf_id;
794 u32 *arg3_btf_id;
795 u32 *arg4_btf_id;
796 u32 *arg5_btf_id;
797 };
798 u32 *arg_btf_id[5];
799 struct {
800 size_t arg1_size;
801 size_t arg2_size;
802 size_t arg3_size;
803 size_t arg4_size;
804 size_t arg5_size;
805 };
806 size_t arg_size[5];
807 };
808 int *ret_btf_id; /* return value btf_id */
809 bool (*allowed)(const struct bpf_prog *prog);
810};
811
812/* bpf_context is intentionally undefined structure. Pointer to bpf_context is
813 * the first argument to eBPF programs.
814 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
815 */
816struct bpf_context;
817
818enum bpf_access_type {
819 BPF_READ = 1,
820 BPF_WRITE = 2
821};
822
823/* types of values stored in eBPF registers */
824/* Pointer types represent:
825 * pointer
826 * pointer + imm
827 * pointer + (u16) var
828 * pointer + (u16) var + imm
829 * if (range > 0) then [ptr, ptr + range - off) is safe to access
830 * if (id > 0) means that some 'var' was added
831 * if (off > 0) means that 'imm' was added
832 */
833enum bpf_reg_type {
834 NOT_INIT = 0, /* nothing was written into register */
835 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
836 PTR_TO_CTX, /* reg points to bpf_context */
837 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
838 PTR_TO_MAP_VALUE, /* reg points to map element value */
839 PTR_TO_MAP_KEY, /* reg points to a map element key */
840 PTR_TO_STACK, /* reg == frame_pointer + offset */
841 PTR_TO_PACKET_META, /* skb->data - meta_len */
842 PTR_TO_PACKET, /* reg points to skb->data */
843 PTR_TO_PACKET_END, /* skb->data + headlen */
844 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
845 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
846 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
847 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
848 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
849 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
850 /* PTR_TO_BTF_ID points to a kernel struct that does not need
851 * to be null checked by the BPF program. This does not imply the
852 * pointer is _not_ null and in practice this can easily be a null
853 * pointer when reading pointer chains. The assumption is program
854 * context will handle null pointer dereference typically via fault
855 * handling. The verifier must keep this in mind and can make no
856 * assumptions about null or non-null when doing branch analysis.
857 * Further, when passed into helpers the helpers can not, without
858 * additional context, assume the value is non-null.
859 */
860 PTR_TO_BTF_ID,
861 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
862 * been checked for null. Used primarily to inform the verifier
863 * an explicit null check is required for this struct.
864 */
865 PTR_TO_MEM, /* reg points to valid memory region */
866 PTR_TO_BUF, /* reg points to a read/write buffer */
867 PTR_TO_FUNC, /* reg points to a bpf program function */
868 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
869 __BPF_REG_TYPE_MAX,
870
871 /* Extended reg_types. */
872 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
873 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
874 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
875 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
876 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
877
878 /* This must be the last entry. Its purpose is to ensure the enum is
879 * wide enough to hold the higher bits reserved for bpf_type_flag.
880 */
881 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
882};
883static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
884
885/* The information passed from prog-specific *_is_valid_access
886 * back to the verifier.
887 */
888struct bpf_insn_access_aux {
889 enum bpf_reg_type reg_type;
890 union {
891 int ctx_field_size;
892 struct {
893 struct btf *btf;
894 u32 btf_id;
895 };
896 };
897 struct bpf_verifier_log *log; /* for verbose logs */
898};
899
900static inline void
901bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
902{
903 aux->ctx_field_size = size;
904}
905
906static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
907{
908 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
909 insn->src_reg == BPF_PSEUDO_FUNC;
910}
911
912struct bpf_prog_ops {
913 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
914 union bpf_attr __user *uattr);
915};
916
917struct bpf_reg_state;
918struct bpf_verifier_ops {
919 /* return eBPF function prototype for verification */
920 const struct bpf_func_proto *
921 (*get_func_proto)(enum bpf_func_id func_id,
922 const struct bpf_prog *prog);
923
924 /* return true if 'size' wide access at offset 'off' within bpf_context
925 * with 'type' (read or write) is allowed
926 */
927 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
928 const struct bpf_prog *prog,
929 struct bpf_insn_access_aux *info);
930 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
931 const struct bpf_prog *prog);
932 int (*gen_ld_abs)(const struct bpf_insn *orig,
933 struct bpf_insn *insn_buf);
934 u32 (*convert_ctx_access)(enum bpf_access_type type,
935 const struct bpf_insn *src,
936 struct bpf_insn *dst,
937 struct bpf_prog *prog, u32 *target_size);
938 int (*btf_struct_access)(struct bpf_verifier_log *log,
939 const struct bpf_reg_state *reg,
940 int off, int size);
941};
942
943struct bpf_prog_offload_ops {
944 /* verifier basic callbacks */
945 int (*insn_hook)(struct bpf_verifier_env *env,
946 int insn_idx, int prev_insn_idx);
947 int (*finalize)(struct bpf_verifier_env *env);
948 /* verifier optimization callbacks (called after .finalize) */
949 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
950 struct bpf_insn *insn);
951 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
952 /* program management callbacks */
953 int (*prepare)(struct bpf_prog *prog);
954 int (*translate)(struct bpf_prog *prog);
955 void (*destroy)(struct bpf_prog *prog);
956};
957
958struct bpf_prog_offload {
959 struct bpf_prog *prog;
960 struct net_device *netdev;
961 struct bpf_offload_dev *offdev;
962 void *dev_priv;
963 struct list_head offloads;
964 bool dev_state;
965 bool opt_failed;
966 void *jited_image;
967 u32 jited_len;
968};
969
970enum bpf_cgroup_storage_type {
971 BPF_CGROUP_STORAGE_SHARED,
972 BPF_CGROUP_STORAGE_PERCPU,
973 __BPF_CGROUP_STORAGE_MAX
974};
975
976#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
977
978/* The longest tracepoint has 12 args.
979 * See include/trace/bpf_probe.h
980 */
981#define MAX_BPF_FUNC_ARGS 12
982
983/* The maximum number of arguments passed through registers
984 * a single function may have.
985 */
986#define MAX_BPF_FUNC_REG_ARGS 5
987
988/* The argument is a structure. */
989#define BTF_FMODEL_STRUCT_ARG BIT(0)
990
991/* The argument is signed. */
992#define BTF_FMODEL_SIGNED_ARG BIT(1)
993
994struct btf_func_model {
995 u8 ret_size;
996 u8 ret_flags;
997 u8 nr_args;
998 u8 arg_size[MAX_BPF_FUNC_ARGS];
999 u8 arg_flags[MAX_BPF_FUNC_ARGS];
1000};
1001
1002/* Restore arguments before returning from trampoline to let original function
1003 * continue executing. This flag is used for fentry progs when there are no
1004 * fexit progs.
1005 */
1006#define BPF_TRAMP_F_RESTORE_REGS BIT(0)
1007/* Call original function after fentry progs, but before fexit progs.
1008 * Makes sense for fentry/fexit, normal calls and indirect calls.
1009 */
1010#define BPF_TRAMP_F_CALL_ORIG BIT(1)
1011/* Skip current frame and return to parent. Makes sense for fentry/fexit
1012 * programs only. Should not be used with normal calls and indirect calls.
1013 */
1014#define BPF_TRAMP_F_SKIP_FRAME BIT(2)
1015/* Store IP address of the caller on the trampoline stack,
1016 * so it's available for trampoline's programs.
1017 */
1018#define BPF_TRAMP_F_IP_ARG BIT(3)
1019/* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1020#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
1021
1022/* Get original function from stack instead of from provided direct address.
1023 * Makes sense for trampolines with fexit or fmod_ret programs.
1024 */
1025#define BPF_TRAMP_F_ORIG_STACK BIT(5)
1026
1027/* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1028 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1029 */
1030#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
1031
1032/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1033 * bytes on x86.
1034 */
1035enum {
1036#if defined(__s390x__)
1037 BPF_MAX_TRAMP_LINKS = 27,
1038#else
1039 BPF_MAX_TRAMP_LINKS = 38,
1040#endif
1041};
1042
1043struct bpf_tramp_links {
1044 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1045 int nr_links;
1046};
1047
1048struct bpf_tramp_run_ctx;
1049
1050/* Different use cases for BPF trampoline:
1051 * 1. replace nop at the function entry (kprobe equivalent)
1052 * flags = BPF_TRAMP_F_RESTORE_REGS
1053 * fentry = a set of programs to run before returning from trampoline
1054 *
1055 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1056 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1057 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
1058 * fentry = a set of program to run before calling original function
1059 * fexit = a set of program to run after original function
1060 *
1061 * 3. replace direct call instruction anywhere in the function body
1062 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1063 * With flags = 0
1064 * fentry = a set of programs to run before returning from trampoline
1065 * With flags = BPF_TRAMP_F_CALL_ORIG
1066 * orig_call = original callback addr or direct function addr
1067 * fentry = a set of program to run before calling original function
1068 * fexit = a set of program to run after original function
1069 */
1070struct bpf_tramp_image;
1071int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1072 const struct btf_func_model *m, u32 flags,
1073 struct bpf_tramp_links *tlinks,
1074 void *orig_call);
1075u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1076 struct bpf_tramp_run_ctx *run_ctx);
1077void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1078 struct bpf_tramp_run_ctx *run_ctx);
1079void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1080void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1081typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1082 struct bpf_tramp_run_ctx *run_ctx);
1083typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1084 struct bpf_tramp_run_ctx *run_ctx);
1085bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1086bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1087
1088struct bpf_ksym {
1089 unsigned long start;
1090 unsigned long end;
1091 char name[KSYM_NAME_LEN];
1092 struct list_head lnode;
1093 struct latch_tree_node tnode;
1094 bool prog;
1095};
1096
1097enum bpf_tramp_prog_type {
1098 BPF_TRAMP_FENTRY,
1099 BPF_TRAMP_FEXIT,
1100 BPF_TRAMP_MODIFY_RETURN,
1101 BPF_TRAMP_MAX,
1102 BPF_TRAMP_REPLACE, /* more than MAX */
1103};
1104
1105struct bpf_tramp_image {
1106 void *image;
1107 struct bpf_ksym ksym;
1108 struct percpu_ref pcref;
1109 void *ip_after_call;
1110 void *ip_epilogue;
1111 union {
1112 struct rcu_head rcu;
1113 struct work_struct work;
1114 };
1115};
1116
1117struct bpf_trampoline {
1118 /* hlist for trampoline_table */
1119 struct hlist_node hlist;
1120 struct ftrace_ops *fops;
1121 /* serializes access to fields of this trampoline */
1122 struct mutex mutex;
1123 refcount_t refcnt;
1124 u32 flags;
1125 u64 key;
1126 struct {
1127 struct btf_func_model model;
1128 void *addr;
1129 bool ftrace_managed;
1130 } func;
1131 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1132 * program by replacing one of its functions. func.addr is the address
1133 * of the function it replaced.
1134 */
1135 struct bpf_prog *extension_prog;
1136 /* list of BPF programs using this trampoline */
1137 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1138 /* Number of attached programs. A counter per kind. */
1139 int progs_cnt[BPF_TRAMP_MAX];
1140 /* Executable image of trampoline */
1141 struct bpf_tramp_image *cur_image;
1142 struct module *mod;
1143};
1144
1145struct bpf_attach_target_info {
1146 struct btf_func_model fmodel;
1147 long tgt_addr;
1148 struct module *tgt_mod;
1149 const char *tgt_name;
1150 const struct btf_type *tgt_type;
1151};
1152
1153#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1154
1155struct bpf_dispatcher_prog {
1156 struct bpf_prog *prog;
1157 refcount_t users;
1158};
1159
1160struct bpf_dispatcher {
1161 /* dispatcher mutex */
1162 struct mutex mutex;
1163 void *func;
1164 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1165 int num_progs;
1166 void *image;
1167 void *rw_image;
1168 u32 image_off;
1169 struct bpf_ksym ksym;
1170#ifdef CONFIG_HAVE_STATIC_CALL
1171 struct static_call_key *sc_key;
1172 void *sc_tramp;
1173#endif
1174};
1175
1176static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
1177 const void *ctx,
1178 const struct bpf_insn *insnsi,
1179 bpf_func_t bpf_func)
1180{
1181 return bpf_func(ctx, insnsi);
1182}
1183
1184/* the implementation of the opaque uapi struct bpf_dynptr */
1185struct bpf_dynptr_kern {
1186 void *data;
1187 /* Size represents the number of usable bytes of dynptr data.
1188 * If for example the offset is at 4 for a local dynptr whose data is
1189 * of type u64, the number of usable bytes is 4.
1190 *
1191 * The upper 8 bits are reserved. It is as follows:
1192 * Bits 0 - 23 = size
1193 * Bits 24 - 30 = dynptr type
1194 * Bit 31 = whether dynptr is read-only
1195 */
1196 u32 size;
1197 u32 offset;
1198} __aligned(8);
1199
1200enum bpf_dynptr_type {
1201 BPF_DYNPTR_TYPE_INVALID,
1202 /* Points to memory that is local to the bpf program */
1203 BPF_DYNPTR_TYPE_LOCAL,
1204 /* Underlying data is a ringbuf record */
1205 BPF_DYNPTR_TYPE_RINGBUF,
1206 /* Underlying data is a sk_buff */
1207 BPF_DYNPTR_TYPE_SKB,
1208 /* Underlying data is a xdp_buff */
1209 BPF_DYNPTR_TYPE_XDP,
1210};
1211
1212int bpf_dynptr_check_size(u32 size);
1213u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1214
1215#ifdef CONFIG_BPF_JIT
1216int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1217int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1218struct bpf_trampoline *bpf_trampoline_get(u64 key,
1219 struct bpf_attach_target_info *tgt_info);
1220void bpf_trampoline_put(struct bpf_trampoline *tr);
1221int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1222
1223/*
1224 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1225 * indirection with a direct call to the bpf program. If the architecture does
1226 * not have STATIC_CALL, avoid a double-indirection.
1227 */
1228#ifdef CONFIG_HAVE_STATIC_CALL
1229
1230#define __BPF_DISPATCHER_SC_INIT(_name) \
1231 .sc_key = &STATIC_CALL_KEY(_name), \
1232 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1233
1234#define __BPF_DISPATCHER_SC(name) \
1235 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1236
1237#define __BPF_DISPATCHER_CALL(name) \
1238 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1239
1240#define __BPF_DISPATCHER_UPDATE(_d, _new) \
1241 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1242
1243#else
1244#define __BPF_DISPATCHER_SC_INIT(name)
1245#define __BPF_DISPATCHER_SC(name)
1246#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1247#define __BPF_DISPATCHER_UPDATE(_d, _new)
1248#endif
1249
1250#define BPF_DISPATCHER_INIT(_name) { \
1251 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1252 .func = &_name##_func, \
1253 .progs = {}, \
1254 .num_progs = 0, \
1255 .image = NULL, \
1256 .image_off = 0, \
1257 .ksym = { \
1258 .name = #_name, \
1259 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1260 }, \
1261 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1262}
1263
1264#define DEFINE_BPF_DISPATCHER(name) \
1265 __BPF_DISPATCHER_SC(name); \
1266 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \
1267 const void *ctx, \
1268 const struct bpf_insn *insnsi, \
1269 bpf_func_t bpf_func) \
1270 { \
1271 return __BPF_DISPATCHER_CALL(name); \
1272 } \
1273 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1274 struct bpf_dispatcher bpf_dispatcher_##name = \
1275 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1276
1277#define DECLARE_BPF_DISPATCHER(name) \
1278 unsigned int bpf_dispatcher_##name##_func( \
1279 const void *ctx, \
1280 const struct bpf_insn *insnsi, \
1281 bpf_func_t bpf_func); \
1282 extern struct bpf_dispatcher bpf_dispatcher_##name;
1283
1284#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1285#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1286void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1287 struct bpf_prog *to);
1288/* Called only from JIT-enabled code, so there's no need for stubs. */
1289void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1290void bpf_image_ksym_del(struct bpf_ksym *ksym);
1291void bpf_ksym_add(struct bpf_ksym *ksym);
1292void bpf_ksym_del(struct bpf_ksym *ksym);
1293int bpf_jit_charge_modmem(u32 size);
1294void bpf_jit_uncharge_modmem(u32 size);
1295bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1296#else
1297static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1298 struct bpf_trampoline *tr)
1299{
1300 return -ENOTSUPP;
1301}
1302static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1303 struct bpf_trampoline *tr)
1304{
1305 return -ENOTSUPP;
1306}
1307static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1308 struct bpf_attach_target_info *tgt_info)
1309{
1310 return NULL;
1311}
1312static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1313#define DEFINE_BPF_DISPATCHER(name)
1314#define DECLARE_BPF_DISPATCHER(name)
1315#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1316#define BPF_DISPATCHER_PTR(name) NULL
1317static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1318 struct bpf_prog *from,
1319 struct bpf_prog *to) {}
1320static inline bool is_bpf_image_address(unsigned long address)
1321{
1322 return false;
1323}
1324static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1325{
1326 return false;
1327}
1328#endif
1329
1330struct bpf_func_info_aux {
1331 u16 linkage;
1332 bool unreliable;
1333};
1334
1335enum bpf_jit_poke_reason {
1336 BPF_POKE_REASON_TAIL_CALL,
1337};
1338
1339/* Descriptor of pokes pointing /into/ the JITed image. */
1340struct bpf_jit_poke_descriptor {
1341 void *tailcall_target;
1342 void *tailcall_bypass;
1343 void *bypass_addr;
1344 void *aux;
1345 union {
1346 struct {
1347 struct bpf_map *map;
1348 u32 key;
1349 } tail_call;
1350 };
1351 bool tailcall_target_stable;
1352 u8 adj_off;
1353 u16 reason;
1354 u32 insn_idx;
1355};
1356
1357/* reg_type info for ctx arguments */
1358struct bpf_ctx_arg_aux {
1359 u32 offset;
1360 enum bpf_reg_type reg_type;
1361 u32 btf_id;
1362};
1363
1364struct btf_mod_pair {
1365 struct btf *btf;
1366 struct module *module;
1367};
1368
1369struct bpf_kfunc_desc_tab;
1370
1371struct bpf_prog_aux {
1372 atomic64_t refcnt;
1373 u32 used_map_cnt;
1374 u32 used_btf_cnt;
1375 u32 max_ctx_offset;
1376 u32 max_pkt_offset;
1377 u32 max_tp_access;
1378 u32 stack_depth;
1379 u32 id;
1380 u32 func_cnt; /* used by non-func prog as the number of func progs */
1381 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1382 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1383 u32 ctx_arg_info_size;
1384 u32 max_rdonly_access;
1385 u32 max_rdwr_access;
1386 struct btf *attach_btf;
1387 const struct bpf_ctx_arg_aux *ctx_arg_info;
1388 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1389 struct bpf_prog *dst_prog;
1390 struct bpf_trampoline *dst_trampoline;
1391 enum bpf_prog_type saved_dst_prog_type;
1392 enum bpf_attach_type saved_dst_attach_type;
1393 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1394 bool dev_bound; /* Program is bound to the netdev. */
1395 bool offload_requested; /* Program is bound and offloaded to the netdev. */
1396 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1397 bool func_proto_unreliable;
1398 bool sleepable;
1399 bool tail_call_reachable;
1400 bool xdp_has_frags;
1401 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1402 const struct btf_type *attach_func_proto;
1403 /* function name for valid attach_btf_id */
1404 const char *attach_func_name;
1405 struct bpf_prog **func;
1406 void *jit_data; /* JIT specific data. arch dependent */
1407 struct bpf_jit_poke_descriptor *poke_tab;
1408 struct bpf_kfunc_desc_tab *kfunc_tab;
1409 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1410 u32 size_poke_tab;
1411 struct bpf_ksym ksym;
1412 const struct bpf_prog_ops *ops;
1413 struct bpf_map **used_maps;
1414 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1415 struct btf_mod_pair *used_btfs;
1416 struct bpf_prog *prog;
1417 struct user_struct *user;
1418 u64 load_time; /* ns since boottime */
1419 u32 verified_insns;
1420 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1421 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1422 char name[BPF_OBJ_NAME_LEN];
1423#ifdef CONFIG_SECURITY
1424 void *security;
1425#endif
1426 struct bpf_prog_offload *offload;
1427 struct btf *btf;
1428 struct bpf_func_info *func_info;
1429 struct bpf_func_info_aux *func_info_aux;
1430 /* bpf_line_info loaded from userspace. linfo->insn_off
1431 * has the xlated insn offset.
1432 * Both the main and sub prog share the same linfo.
1433 * The subprog can access its first linfo by
1434 * using the linfo_idx.
1435 */
1436 struct bpf_line_info *linfo;
1437 /* jited_linfo is the jited addr of the linfo. It has a
1438 * one to one mapping to linfo:
1439 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1440 * Both the main and sub prog share the same jited_linfo.
1441 * The subprog can access its first jited_linfo by
1442 * using the linfo_idx.
1443 */
1444 void **jited_linfo;
1445 u32 func_info_cnt;
1446 u32 nr_linfo;
1447 /* subprog can use linfo_idx to access its first linfo and
1448 * jited_linfo.
1449 * main prog always has linfo_idx == 0
1450 */
1451 u32 linfo_idx;
1452 struct module *mod;
1453 u32 num_exentries;
1454 struct exception_table_entry *extable;
1455 union {
1456 struct work_struct work;
1457 struct rcu_head rcu;
1458 };
1459};
1460
1461struct bpf_prog {
1462 u16 pages; /* Number of allocated pages */
1463 u16 jited:1, /* Is our filter JIT'ed? */
1464 jit_requested:1,/* archs need to JIT the prog */
1465 gpl_compatible:1, /* Is filter GPL compatible? */
1466 cb_access:1, /* Is control block accessed? */
1467 dst_needed:1, /* Do we need dst entry? */
1468 blinding_requested:1, /* needs constant blinding */
1469 blinded:1, /* Was blinded */
1470 is_func:1, /* program is a bpf function */
1471 kprobe_override:1, /* Do we override a kprobe? */
1472 has_callchain_buf:1, /* callchain buffer allocated? */
1473 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1474 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1475 call_get_func_ip:1, /* Do we call get_func_ip() */
1476 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1477 enum bpf_prog_type type; /* Type of BPF program */
1478 enum bpf_attach_type expected_attach_type; /* For some prog types */
1479 u32 len; /* Number of filter blocks */
1480 u32 jited_len; /* Size of jited insns in bytes */
1481 u8 tag[BPF_TAG_SIZE];
1482 struct bpf_prog_stats __percpu *stats;
1483 int __percpu *active;
1484 unsigned int (*bpf_func)(const void *ctx,
1485 const struct bpf_insn *insn);
1486 struct bpf_prog_aux *aux; /* Auxiliary fields */
1487 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1488 /* Instructions for interpreter */
1489 union {
1490 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1491 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1492 };
1493};
1494
1495struct bpf_array_aux {
1496 /* Programs with direct jumps into programs part of this array. */
1497 struct list_head poke_progs;
1498 struct bpf_map *map;
1499 struct mutex poke_mutex;
1500 struct work_struct work;
1501};
1502
1503struct bpf_link {
1504 atomic64_t refcnt;
1505 u32 id;
1506 enum bpf_link_type type;
1507 const struct bpf_link_ops *ops;
1508 struct bpf_prog *prog;
1509 struct work_struct work;
1510};
1511
1512struct bpf_link_ops {
1513 void (*release)(struct bpf_link *link);
1514 void (*dealloc)(struct bpf_link *link);
1515 int (*detach)(struct bpf_link *link);
1516 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1517 struct bpf_prog *old_prog);
1518 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1519 int (*fill_link_info)(const struct bpf_link *link,
1520 struct bpf_link_info *info);
1521 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1522 struct bpf_map *old_map);
1523};
1524
1525struct bpf_tramp_link {
1526 struct bpf_link link;
1527 struct hlist_node tramp_hlist;
1528 u64 cookie;
1529};
1530
1531struct bpf_shim_tramp_link {
1532 struct bpf_tramp_link link;
1533 struct bpf_trampoline *trampoline;
1534};
1535
1536struct bpf_tracing_link {
1537 struct bpf_tramp_link link;
1538 enum bpf_attach_type attach_type;
1539 struct bpf_trampoline *trampoline;
1540 struct bpf_prog *tgt_prog;
1541};
1542
1543struct bpf_link_primer {
1544 struct bpf_link *link;
1545 struct file *file;
1546 int fd;
1547 u32 id;
1548};
1549
1550struct bpf_struct_ops_value;
1551struct btf_member;
1552
1553#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1554/**
1555 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1556 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1557 * of BPF_PROG_TYPE_STRUCT_OPS progs.
1558 * @verifier_ops: A structure of callbacks that are invoked by the verifier
1559 * when determining whether the struct_ops progs in the
1560 * struct_ops map are valid.
1561 * @init: A callback that is invoked a single time, and before any other
1562 * callback, to initialize the structure. A nonzero return value means
1563 * the subsystem could not be initialized.
1564 * @check_member: When defined, a callback invoked by the verifier to allow
1565 * the subsystem to determine if an entry in the struct_ops map
1566 * is valid. A nonzero return value means that the map is
1567 * invalid and should be rejected by the verifier.
1568 * @init_member: A callback that is invoked for each member of the struct_ops
1569 * map to allow the subsystem to initialize the member. A nonzero
1570 * value means the member could not be initialized. This callback
1571 * is exclusive with the @type, @type_id, @value_type, and
1572 * @value_id fields.
1573 * @reg: A callback that is invoked when the struct_ops map has been
1574 * initialized and is being attached to. Zero means the struct_ops map
1575 * has been successfully registered and is live. A nonzero return value
1576 * means the struct_ops map could not be registered.
1577 * @unreg: A callback that is invoked when the struct_ops map should be
1578 * unregistered.
1579 * @update: A callback that is invoked when the live struct_ops map is being
1580 * updated to contain new values. This callback is only invoked when
1581 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1582 * it is assumed that the struct_ops map cannot be updated.
1583 * @validate: A callback that is invoked after all of the members have been
1584 * initialized. This callback should perform static checks on the
1585 * map, meaning that it should either fail or succeed
1586 * deterministically. A struct_ops map that has been validated may
1587 * not necessarily succeed in being registered if the call to @reg
1588 * fails. For example, a valid struct_ops map may be loaded, but
1589 * then fail to be registered due to there being another active
1590 * struct_ops map on the system in the subsystem already. For this
1591 * reason, if this callback is not defined, the check is skipped as
1592 * the struct_ops map will have final verification performed in
1593 * @reg.
1594 * @type: BTF type.
1595 * @value_type: Value type.
1596 * @name: The name of the struct bpf_struct_ops object.
1597 * @func_models: Func models
1598 * @type_id: BTF type id.
1599 * @value_id: BTF value id.
1600 */
1601struct bpf_struct_ops {
1602 const struct bpf_verifier_ops *verifier_ops;
1603 int (*init)(struct btf *btf);
1604 int (*check_member)(const struct btf_type *t,
1605 const struct btf_member *member,
1606 const struct bpf_prog *prog);
1607 int (*init_member)(const struct btf_type *t,
1608 const struct btf_member *member,
1609 void *kdata, const void *udata);
1610 int (*reg)(void *kdata);
1611 void (*unreg)(void *kdata);
1612 int (*update)(void *kdata, void *old_kdata);
1613 int (*validate)(void *kdata);
1614 const struct btf_type *type;
1615 const struct btf_type *value_type;
1616 const char *name;
1617 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1618 u32 type_id;
1619 u32 value_id;
1620};
1621
1622#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1623#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1624const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1625void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1626bool bpf_struct_ops_get(const void *kdata);
1627void bpf_struct_ops_put(const void *kdata);
1628int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1629 void *value);
1630int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1631 struct bpf_tramp_link *link,
1632 const struct btf_func_model *model,
1633 void *image, void *image_end);
1634static inline bool bpf_try_module_get(const void *data, struct module *owner)
1635{
1636 if (owner == BPF_MODULE_OWNER)
1637 return bpf_struct_ops_get(data);
1638 else
1639 return try_module_get(owner);
1640}
1641static inline void bpf_module_put(const void *data, struct module *owner)
1642{
1643 if (owner == BPF_MODULE_OWNER)
1644 bpf_struct_ops_put(data);
1645 else
1646 module_put(owner);
1647}
1648int bpf_struct_ops_link_create(union bpf_attr *attr);
1649
1650#ifdef CONFIG_NET
1651/* Define it here to avoid the use of forward declaration */
1652struct bpf_dummy_ops_state {
1653 int val;
1654};
1655
1656struct bpf_dummy_ops {
1657 int (*test_1)(struct bpf_dummy_ops_state *cb);
1658 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1659 char a3, unsigned long a4);
1660 int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1661};
1662
1663int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1664 union bpf_attr __user *uattr);
1665#endif
1666#else
1667static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1668{
1669 return NULL;
1670}
1671static inline void bpf_struct_ops_init(struct btf *btf,
1672 struct bpf_verifier_log *log)
1673{
1674}
1675static inline bool bpf_try_module_get(const void *data, struct module *owner)
1676{
1677 return try_module_get(owner);
1678}
1679static inline void bpf_module_put(const void *data, struct module *owner)
1680{
1681 module_put(owner);
1682}
1683static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1684 void *key,
1685 void *value)
1686{
1687 return -EINVAL;
1688}
1689static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1690{
1691 return -EOPNOTSUPP;
1692}
1693
1694#endif
1695
1696#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1697int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1698 int cgroup_atype);
1699void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1700#else
1701static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1702 int cgroup_atype)
1703{
1704 return -EOPNOTSUPP;
1705}
1706static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1707{
1708}
1709#endif
1710
1711struct bpf_array {
1712 struct bpf_map map;
1713 u32 elem_size;
1714 u32 index_mask;
1715 struct bpf_array_aux *aux;
1716 union {
1717 DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1718 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1719 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1720 };
1721};
1722
1723#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
1724#define MAX_TAIL_CALL_CNT 33
1725
1726/* Maximum number of loops for bpf_loop and bpf_iter_num.
1727 * It's enum to expose it (and thus make it discoverable) through BTF.
1728 */
1729enum {
1730 BPF_MAX_LOOPS = 8 * 1024 * 1024,
1731};
1732
1733#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
1734 BPF_F_RDONLY_PROG | \
1735 BPF_F_WRONLY | \
1736 BPF_F_WRONLY_PROG)
1737
1738#define BPF_MAP_CAN_READ BIT(0)
1739#define BPF_MAP_CAN_WRITE BIT(1)
1740
1741/* Maximum number of user-producer ring buffer samples that can be drained in
1742 * a call to bpf_user_ringbuf_drain().
1743 */
1744#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1745
1746static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1747{
1748 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1749
1750 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1751 * not possible.
1752 */
1753 if (access_flags & BPF_F_RDONLY_PROG)
1754 return BPF_MAP_CAN_READ;
1755 else if (access_flags & BPF_F_WRONLY_PROG)
1756 return BPF_MAP_CAN_WRITE;
1757 else
1758 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1759}
1760
1761static inline bool bpf_map_flags_access_ok(u32 access_flags)
1762{
1763 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1764 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1765}
1766
1767struct bpf_event_entry {
1768 struct perf_event *event;
1769 struct file *perf_file;
1770 struct file *map_file;
1771 struct rcu_head rcu;
1772};
1773
1774static inline bool map_type_contains_progs(struct bpf_map *map)
1775{
1776 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1777 map->map_type == BPF_MAP_TYPE_DEVMAP ||
1778 map->map_type == BPF_MAP_TYPE_CPUMAP;
1779}
1780
1781bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1782int bpf_prog_calc_tag(struct bpf_prog *fp);
1783
1784const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1785const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1786
1787typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1788 unsigned long off, unsigned long len);
1789typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1790 const struct bpf_insn *src,
1791 struct bpf_insn *dst,
1792 struct bpf_prog *prog,
1793 u32 *target_size);
1794
1795u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1796 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1797
1798/* an array of programs to be executed under rcu_lock.
1799 *
1800 * Typical usage:
1801 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1802 *
1803 * the structure returned by bpf_prog_array_alloc() should be populated
1804 * with program pointers and the last pointer must be NULL.
1805 * The user has to keep refcnt on the program and make sure the program
1806 * is removed from the array before bpf_prog_put().
1807 * The 'struct bpf_prog_array *' should only be replaced with xchg()
1808 * since other cpus are walking the array of pointers in parallel.
1809 */
1810struct bpf_prog_array_item {
1811 struct bpf_prog *prog;
1812 union {
1813 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1814 u64 bpf_cookie;
1815 };
1816};
1817
1818struct bpf_prog_array {
1819 struct rcu_head rcu;
1820 struct bpf_prog_array_item items[];
1821};
1822
1823struct bpf_empty_prog_array {
1824 struct bpf_prog_array hdr;
1825 struct bpf_prog *null_prog;
1826};
1827
1828/* to avoid allocating empty bpf_prog_array for cgroups that
1829 * don't have bpf program attached use one global 'bpf_empty_prog_array'
1830 * It will not be modified the caller of bpf_prog_array_alloc()
1831 * (since caller requested prog_cnt == 0)
1832 * that pointer should be 'freed' by bpf_prog_array_free()
1833 */
1834extern struct bpf_empty_prog_array bpf_empty_prog_array;
1835
1836struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1837void bpf_prog_array_free(struct bpf_prog_array *progs);
1838/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1839void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1840int bpf_prog_array_length(struct bpf_prog_array *progs);
1841bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1842int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1843 __u32 __user *prog_ids, u32 cnt);
1844
1845void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1846 struct bpf_prog *old_prog);
1847int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1848int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1849 struct bpf_prog *prog);
1850int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1851 u32 *prog_ids, u32 request_cnt,
1852 u32 *prog_cnt);
1853int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1854 struct bpf_prog *exclude_prog,
1855 struct bpf_prog *include_prog,
1856 u64 bpf_cookie,
1857 struct bpf_prog_array **new_array);
1858
1859struct bpf_run_ctx {};
1860
1861struct bpf_cg_run_ctx {
1862 struct bpf_run_ctx run_ctx;
1863 const struct bpf_prog_array_item *prog_item;
1864 int retval;
1865};
1866
1867struct bpf_trace_run_ctx {
1868 struct bpf_run_ctx run_ctx;
1869 u64 bpf_cookie;
1870 bool is_uprobe;
1871};
1872
1873struct bpf_tramp_run_ctx {
1874 struct bpf_run_ctx run_ctx;
1875 u64 bpf_cookie;
1876 struct bpf_run_ctx *saved_run_ctx;
1877};
1878
1879static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1880{
1881 struct bpf_run_ctx *old_ctx = NULL;
1882
1883#ifdef CONFIG_BPF_SYSCALL
1884 old_ctx = current->bpf_ctx;
1885 current->bpf_ctx = new_ctx;
1886#endif
1887 return old_ctx;
1888}
1889
1890static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1891{
1892#ifdef CONFIG_BPF_SYSCALL
1893 current->bpf_ctx = old_ctx;
1894#endif
1895}
1896
1897/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1898#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
1899/* BPF program asks to set CN on the packet. */
1900#define BPF_RET_SET_CN (1 << 0)
1901
1902typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1903
1904static __always_inline u32
1905bpf_prog_run_array(const struct bpf_prog_array *array,
1906 const void *ctx, bpf_prog_run_fn run_prog)
1907{
1908 const struct bpf_prog_array_item *item;
1909 const struct bpf_prog *prog;
1910 struct bpf_run_ctx *old_run_ctx;
1911 struct bpf_trace_run_ctx run_ctx;
1912 u32 ret = 1;
1913
1914 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1915
1916 if (unlikely(!array))
1917 return ret;
1918
1919 run_ctx.is_uprobe = false;
1920
1921 migrate_disable();
1922 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1923 item = &array->items[0];
1924 while ((prog = READ_ONCE(item->prog))) {
1925 run_ctx.bpf_cookie = item->bpf_cookie;
1926 ret &= run_prog(prog, ctx);
1927 item++;
1928 }
1929 bpf_reset_run_ctx(old_run_ctx);
1930 migrate_enable();
1931 return ret;
1932}
1933
1934/* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1935 *
1936 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1937 * overall. As a result, we must use the bpf_prog_array_free_sleepable
1938 * in order to use the tasks_trace rcu grace period.
1939 *
1940 * When a non-sleepable program is inside the array, we take the rcu read
1941 * section and disable preemption for that program alone, so it can access
1942 * rcu-protected dynamically sized maps.
1943 */
1944static __always_inline u32
1945bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
1946 const void *ctx, bpf_prog_run_fn run_prog)
1947{
1948 const struct bpf_prog_array_item *item;
1949 const struct bpf_prog *prog;
1950 const struct bpf_prog_array *array;
1951 struct bpf_run_ctx *old_run_ctx;
1952 struct bpf_trace_run_ctx run_ctx;
1953 u32 ret = 1;
1954
1955 might_fault();
1956
1957 rcu_read_lock_trace();
1958 migrate_disable();
1959
1960 run_ctx.is_uprobe = true;
1961
1962 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
1963 if (unlikely(!array))
1964 goto out;
1965 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1966 item = &array->items[0];
1967 while ((prog = READ_ONCE(item->prog))) {
1968 if (!prog->aux->sleepable)
1969 rcu_read_lock();
1970
1971 run_ctx.bpf_cookie = item->bpf_cookie;
1972 ret &= run_prog(prog, ctx);
1973 item++;
1974
1975 if (!prog->aux->sleepable)
1976 rcu_read_unlock();
1977 }
1978 bpf_reset_run_ctx(old_run_ctx);
1979out:
1980 migrate_enable();
1981 rcu_read_unlock_trace();
1982 return ret;
1983}
1984
1985#ifdef CONFIG_BPF_SYSCALL
1986DECLARE_PER_CPU(int, bpf_prog_active);
1987extern struct mutex bpf_stats_enabled_mutex;
1988
1989/*
1990 * Block execution of BPF programs attached to instrumentation (perf,
1991 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
1992 * these events can happen inside a region which holds a map bucket lock
1993 * and can deadlock on it.
1994 */
1995static inline void bpf_disable_instrumentation(void)
1996{
1997 migrate_disable();
1998 this_cpu_inc(bpf_prog_active);
1999}
2000
2001static inline void bpf_enable_instrumentation(void)
2002{
2003 this_cpu_dec(bpf_prog_active);
2004 migrate_enable();
2005}
2006
2007extern const struct file_operations bpf_map_fops;
2008extern const struct file_operations bpf_prog_fops;
2009extern const struct file_operations bpf_iter_fops;
2010
2011#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2012 extern const struct bpf_prog_ops _name ## _prog_ops; \
2013 extern const struct bpf_verifier_ops _name ## _verifier_ops;
2014#define BPF_MAP_TYPE(_id, _ops) \
2015 extern const struct bpf_map_ops _ops;
2016#define BPF_LINK_TYPE(_id, _name)
2017#include <linux/bpf_types.h>
2018#undef BPF_PROG_TYPE
2019#undef BPF_MAP_TYPE
2020#undef BPF_LINK_TYPE
2021
2022extern const struct bpf_prog_ops bpf_offload_prog_ops;
2023extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2024extern const struct bpf_verifier_ops xdp_analyzer_ops;
2025
2026struct bpf_prog *bpf_prog_get(u32 ufd);
2027struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2028 bool attach_drv);
2029void bpf_prog_add(struct bpf_prog *prog, int i);
2030void bpf_prog_sub(struct bpf_prog *prog, int i);
2031void bpf_prog_inc(struct bpf_prog *prog);
2032struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2033void bpf_prog_put(struct bpf_prog *prog);
2034
2035void bpf_prog_free_id(struct bpf_prog *prog);
2036void bpf_map_free_id(struct bpf_map *map);
2037
2038struct btf_field *btf_record_find(const struct btf_record *rec,
2039 u32 offset, u32 field_mask);
2040void btf_record_free(struct btf_record *rec);
2041void bpf_map_free_record(struct bpf_map *map);
2042struct btf_record *btf_record_dup(const struct btf_record *rec);
2043bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2044void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2045void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2046
2047struct bpf_map *bpf_map_get(u32 ufd);
2048struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2049struct bpf_map *__bpf_map_get(struct fd f);
2050void bpf_map_inc(struct bpf_map *map);
2051void bpf_map_inc_with_uref(struct bpf_map *map);
2052struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2053struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2054void bpf_map_put_with_uref(struct bpf_map *map);
2055void bpf_map_put(struct bpf_map *map);
2056void *bpf_map_area_alloc(u64 size, int numa_node);
2057void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2058void bpf_map_area_free(void *base);
2059bool bpf_map_write_active(const struct bpf_map *map);
2060void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2061int generic_map_lookup_batch(struct bpf_map *map,
2062 const union bpf_attr *attr,
2063 union bpf_attr __user *uattr);
2064int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2065 const union bpf_attr *attr,
2066 union bpf_attr __user *uattr);
2067int generic_map_delete_batch(struct bpf_map *map,
2068 const union bpf_attr *attr,
2069 union bpf_attr __user *uattr);
2070struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2071struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2072
2073#ifdef CONFIG_MEMCG_KMEM
2074void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2075 int node);
2076void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2077void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2078 gfp_t flags);
2079void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2080 size_t align, gfp_t flags);
2081#else
2082static inline void *
2083bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2084 int node)
2085{
2086 return kmalloc_node(size, flags, node);
2087}
2088
2089static inline void *
2090bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2091{
2092 return kzalloc(size, flags);
2093}
2094
2095static inline void *
2096bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2097{
2098 return kvcalloc(n, size, flags);
2099}
2100
2101static inline void __percpu *
2102bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2103 gfp_t flags)
2104{
2105 return __alloc_percpu_gfp(size, align, flags);
2106}
2107#endif
2108
2109static inline int
2110bpf_map_init_elem_count(struct bpf_map *map)
2111{
2112 size_t size = sizeof(*map->elem_count), align = size;
2113 gfp_t flags = GFP_USER | __GFP_NOWARN;
2114
2115 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2116 if (!map->elem_count)
2117 return -ENOMEM;
2118
2119 return 0;
2120}
2121
2122static inline void
2123bpf_map_free_elem_count(struct bpf_map *map)
2124{
2125 free_percpu(map->elem_count);
2126}
2127
2128static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2129{
2130 this_cpu_inc(*map->elem_count);
2131}
2132
2133static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2134{
2135 this_cpu_dec(*map->elem_count);
2136}
2137
2138extern int sysctl_unprivileged_bpf_disabled;
2139
2140static inline bool bpf_allow_ptr_leaks(void)
2141{
2142 return perfmon_capable();
2143}
2144
2145static inline bool bpf_allow_uninit_stack(void)
2146{
2147 return perfmon_capable();
2148}
2149
2150static inline bool bpf_bypass_spec_v1(void)
2151{
2152 return perfmon_capable();
2153}
2154
2155static inline bool bpf_bypass_spec_v4(void)
2156{
2157 return perfmon_capable();
2158}
2159
2160int bpf_map_new_fd(struct bpf_map *map, int flags);
2161int bpf_prog_new_fd(struct bpf_prog *prog);
2162
2163void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2164 const struct bpf_link_ops *ops, struct bpf_prog *prog);
2165int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2166int bpf_link_settle(struct bpf_link_primer *primer);
2167void bpf_link_cleanup(struct bpf_link_primer *primer);
2168void bpf_link_inc(struct bpf_link *link);
2169void bpf_link_put(struct bpf_link *link);
2170int bpf_link_new_fd(struct bpf_link *link);
2171struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2172struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2173
2174int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2175int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2176
2177#define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2178#define DEFINE_BPF_ITER_FUNC(target, args...) \
2179 extern int bpf_iter_ ## target(args); \
2180 int __init bpf_iter_ ## target(args) { return 0; }
2181
2182/*
2183 * The task type of iterators.
2184 *
2185 * For BPF task iterators, they can be parameterized with various
2186 * parameters to visit only some of tasks.
2187 *
2188 * BPF_TASK_ITER_ALL (default)
2189 * Iterate over resources of every task.
2190 *
2191 * BPF_TASK_ITER_TID
2192 * Iterate over resources of a task/tid.
2193 *
2194 * BPF_TASK_ITER_TGID
2195 * Iterate over resources of every task of a process / task group.
2196 */
2197enum bpf_iter_task_type {
2198 BPF_TASK_ITER_ALL = 0,
2199 BPF_TASK_ITER_TID,
2200 BPF_TASK_ITER_TGID,
2201};
2202
2203struct bpf_iter_aux_info {
2204 /* for map_elem iter */
2205 struct bpf_map *map;
2206
2207 /* for cgroup iter */
2208 struct {
2209 struct cgroup *start; /* starting cgroup */
2210 enum bpf_cgroup_iter_order order;
2211 } cgroup;
2212 struct {
2213 enum bpf_iter_task_type type;
2214 u32 pid;
2215 } task;
2216};
2217
2218typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2219 union bpf_iter_link_info *linfo,
2220 struct bpf_iter_aux_info *aux);
2221typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2222typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2223 struct seq_file *seq);
2224typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2225 struct bpf_link_info *info);
2226typedef const struct bpf_func_proto *
2227(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2228 const struct bpf_prog *prog);
2229
2230enum bpf_iter_feature {
2231 BPF_ITER_RESCHED = BIT(0),
2232};
2233
2234#define BPF_ITER_CTX_ARG_MAX 2
2235struct bpf_iter_reg {
2236 const char *target;
2237 bpf_iter_attach_target_t attach_target;
2238 bpf_iter_detach_target_t detach_target;
2239 bpf_iter_show_fdinfo_t show_fdinfo;
2240 bpf_iter_fill_link_info_t fill_link_info;
2241 bpf_iter_get_func_proto_t get_func_proto;
2242 u32 ctx_arg_info_size;
2243 u32 feature;
2244 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2245 const struct bpf_iter_seq_info *seq_info;
2246};
2247
2248struct bpf_iter_meta {
2249 __bpf_md_ptr(struct seq_file *, seq);
2250 u64 session_id;
2251 u64 seq_num;
2252};
2253
2254struct bpf_iter__bpf_map_elem {
2255 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2256 __bpf_md_ptr(struct bpf_map *, map);
2257 __bpf_md_ptr(void *, key);
2258 __bpf_md_ptr(void *, value);
2259};
2260
2261int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2262void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2263bool bpf_iter_prog_supported(struct bpf_prog *prog);
2264const struct bpf_func_proto *
2265bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2266int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2267int bpf_iter_new_fd(struct bpf_link *link);
2268bool bpf_link_is_iter(struct bpf_link *link);
2269struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2270int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2271void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2272 struct seq_file *seq);
2273int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2274 struct bpf_link_info *info);
2275
2276int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2277 struct bpf_func_state *caller,
2278 struct bpf_func_state *callee);
2279
2280int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2281int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2282int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2283 u64 flags);
2284int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2285 u64 flags);
2286
2287int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2288
2289int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2290 void *key, void *value, u64 map_flags);
2291int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2292int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2293 void *key, void *value, u64 map_flags);
2294int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2295
2296int bpf_get_file_flag(int flags);
2297int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2298 size_t actual_size);
2299
2300/* verify correctness of eBPF program */
2301int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2302
2303#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2304void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2305#endif
2306
2307struct btf *bpf_get_btf_vmlinux(void);
2308
2309/* Map specifics */
2310struct xdp_frame;
2311struct sk_buff;
2312struct bpf_dtab_netdev;
2313struct bpf_cpu_map_entry;
2314
2315void __dev_flush(void);
2316int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2317 struct net_device *dev_rx);
2318int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2319 struct net_device *dev_rx);
2320int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2321 struct bpf_map *map, bool exclude_ingress);
2322int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2323 struct bpf_prog *xdp_prog);
2324int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2325 struct bpf_prog *xdp_prog, struct bpf_map *map,
2326 bool exclude_ingress);
2327
2328void __cpu_map_flush(void);
2329int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2330 struct net_device *dev_rx);
2331int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2332 struct sk_buff *skb);
2333
2334/* Return map's numa specified by userspace */
2335static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2336{
2337 return (attr->map_flags & BPF_F_NUMA_NODE) ?
2338 attr->numa_node : NUMA_NO_NODE;
2339}
2340
2341struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2342int array_map_alloc_check(union bpf_attr *attr);
2343
2344int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2345 union bpf_attr __user *uattr);
2346int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2347 union bpf_attr __user *uattr);
2348int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2349 const union bpf_attr *kattr,
2350 union bpf_attr __user *uattr);
2351int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2352 const union bpf_attr *kattr,
2353 union bpf_attr __user *uattr);
2354int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2355 const union bpf_attr *kattr,
2356 union bpf_attr __user *uattr);
2357int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2358 const union bpf_attr *kattr,
2359 union bpf_attr __user *uattr);
2360int bpf_prog_test_run_nf(struct bpf_prog *prog,
2361 const union bpf_attr *kattr,
2362 union bpf_attr __user *uattr);
2363bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2364 const struct bpf_prog *prog,
2365 struct bpf_insn_access_aux *info);
2366
2367static inline bool bpf_tracing_ctx_access(int off, int size,
2368 enum bpf_access_type type)
2369{
2370 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2371 return false;
2372 if (type != BPF_READ)
2373 return false;
2374 if (off % size != 0)
2375 return false;
2376 return true;
2377}
2378
2379static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2380 enum bpf_access_type type,
2381 const struct bpf_prog *prog,
2382 struct bpf_insn_access_aux *info)
2383{
2384 if (!bpf_tracing_ctx_access(off, size, type))
2385 return false;
2386 return btf_ctx_access(off, size, type, prog, info);
2387}
2388
2389int btf_struct_access(struct bpf_verifier_log *log,
2390 const struct bpf_reg_state *reg,
2391 int off, int size, enum bpf_access_type atype,
2392 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2393bool btf_struct_ids_match(struct bpf_verifier_log *log,
2394 const struct btf *btf, u32 id, int off,
2395 const struct btf *need_btf, u32 need_type_id,
2396 bool strict);
2397
2398int btf_distill_func_proto(struct bpf_verifier_log *log,
2399 struct btf *btf,
2400 const struct btf_type *func_proto,
2401 const char *func_name,
2402 struct btf_func_model *m);
2403
2404struct bpf_reg_state;
2405int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2406 struct bpf_reg_state *regs);
2407int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2408 struct bpf_reg_state *regs);
2409int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2410 struct bpf_reg_state *reg);
2411int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2412 struct btf *btf, const struct btf_type *t);
2413
2414struct bpf_prog *bpf_prog_by_id(u32 id);
2415struct bpf_link *bpf_link_by_id(u32 id);
2416
2417const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2418void bpf_task_storage_free(struct task_struct *task);
2419void bpf_cgrp_storage_free(struct cgroup *cgroup);
2420bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2421const struct btf_func_model *
2422bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2423 const struct bpf_insn *insn);
2424int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2425 u16 btf_fd_idx, u8 **func_addr);
2426
2427struct bpf_core_ctx {
2428 struct bpf_verifier_log *log;
2429 const struct btf *btf;
2430};
2431
2432bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2433 const struct bpf_reg_state *reg,
2434 const char *field_name, u32 btf_id, const char *suffix);
2435
2436bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2437 const struct btf *reg_btf, u32 reg_id,
2438 const struct btf *arg_btf, u32 arg_id);
2439
2440int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2441 int relo_idx, void *insn);
2442
2443static inline bool unprivileged_ebpf_enabled(void)
2444{
2445 return !sysctl_unprivileged_bpf_disabled;
2446}
2447
2448/* Not all bpf prog type has the bpf_ctx.
2449 * For the bpf prog type that has initialized the bpf_ctx,
2450 * this function can be used to decide if a kernel function
2451 * is called by a bpf program.
2452 */
2453static inline bool has_current_bpf_ctx(void)
2454{
2455 return !!current->bpf_ctx;
2456}
2457
2458void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2459
2460void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2461 enum bpf_dynptr_type type, u32 offset, u32 size);
2462void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2463void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2464#else /* !CONFIG_BPF_SYSCALL */
2465static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2466{
2467 return ERR_PTR(-EOPNOTSUPP);
2468}
2469
2470static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2471 enum bpf_prog_type type,
2472 bool attach_drv)
2473{
2474 return ERR_PTR(-EOPNOTSUPP);
2475}
2476
2477static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2478{
2479}
2480
2481static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2482{
2483}
2484
2485static inline void bpf_prog_put(struct bpf_prog *prog)
2486{
2487}
2488
2489static inline void bpf_prog_inc(struct bpf_prog *prog)
2490{
2491}
2492
2493static inline struct bpf_prog *__must_check
2494bpf_prog_inc_not_zero(struct bpf_prog *prog)
2495{
2496 return ERR_PTR(-EOPNOTSUPP);
2497}
2498
2499static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2500 const struct bpf_link_ops *ops,
2501 struct bpf_prog *prog)
2502{
2503}
2504
2505static inline int bpf_link_prime(struct bpf_link *link,
2506 struct bpf_link_primer *primer)
2507{
2508 return -EOPNOTSUPP;
2509}
2510
2511static inline int bpf_link_settle(struct bpf_link_primer *primer)
2512{
2513 return -EOPNOTSUPP;
2514}
2515
2516static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2517{
2518}
2519
2520static inline void bpf_link_inc(struct bpf_link *link)
2521{
2522}
2523
2524static inline void bpf_link_put(struct bpf_link *link)
2525{
2526}
2527
2528static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2529{
2530 return -EOPNOTSUPP;
2531}
2532
2533static inline void __dev_flush(void)
2534{
2535}
2536
2537struct xdp_frame;
2538struct bpf_dtab_netdev;
2539struct bpf_cpu_map_entry;
2540
2541static inline
2542int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2543 struct net_device *dev_rx)
2544{
2545 return 0;
2546}
2547
2548static inline
2549int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2550 struct net_device *dev_rx)
2551{
2552 return 0;
2553}
2554
2555static inline
2556int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2557 struct bpf_map *map, bool exclude_ingress)
2558{
2559 return 0;
2560}
2561
2562struct sk_buff;
2563
2564static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2565 struct sk_buff *skb,
2566 struct bpf_prog *xdp_prog)
2567{
2568 return 0;
2569}
2570
2571static inline
2572int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2573 struct bpf_prog *xdp_prog, struct bpf_map *map,
2574 bool exclude_ingress)
2575{
2576 return 0;
2577}
2578
2579static inline void __cpu_map_flush(void)
2580{
2581}
2582
2583static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2584 struct xdp_frame *xdpf,
2585 struct net_device *dev_rx)
2586{
2587 return 0;
2588}
2589
2590static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2591 struct sk_buff *skb)
2592{
2593 return -EOPNOTSUPP;
2594}
2595
2596static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2597 enum bpf_prog_type type)
2598{
2599 return ERR_PTR(-EOPNOTSUPP);
2600}
2601
2602static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2603 const union bpf_attr *kattr,
2604 union bpf_attr __user *uattr)
2605{
2606 return -ENOTSUPP;
2607}
2608
2609static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2610 const union bpf_attr *kattr,
2611 union bpf_attr __user *uattr)
2612{
2613 return -ENOTSUPP;
2614}
2615
2616static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2617 const union bpf_attr *kattr,
2618 union bpf_attr __user *uattr)
2619{
2620 return -ENOTSUPP;
2621}
2622
2623static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2624 const union bpf_attr *kattr,
2625 union bpf_attr __user *uattr)
2626{
2627 return -ENOTSUPP;
2628}
2629
2630static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2631 const union bpf_attr *kattr,
2632 union bpf_attr __user *uattr)
2633{
2634 return -ENOTSUPP;
2635}
2636
2637static inline void bpf_map_put(struct bpf_map *map)
2638{
2639}
2640
2641static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2642{
2643 return ERR_PTR(-ENOTSUPP);
2644}
2645
2646static inline int btf_struct_access(struct bpf_verifier_log *log,
2647 const struct bpf_reg_state *reg,
2648 int off, int size, enum bpf_access_type atype,
2649 u32 *next_btf_id, enum bpf_type_flag *flag,
2650 const char **field_name)
2651{
2652 return -EACCES;
2653}
2654
2655static inline const struct bpf_func_proto *
2656bpf_base_func_proto(enum bpf_func_id func_id)
2657{
2658 return NULL;
2659}
2660
2661static inline void bpf_task_storage_free(struct task_struct *task)
2662{
2663}
2664
2665static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2666{
2667 return false;
2668}
2669
2670static inline const struct btf_func_model *
2671bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2672 const struct bpf_insn *insn)
2673{
2674 return NULL;
2675}
2676
2677static inline int
2678bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2679 u16 btf_fd_idx, u8 **func_addr)
2680{
2681 return -ENOTSUPP;
2682}
2683
2684static inline bool unprivileged_ebpf_enabled(void)
2685{
2686 return false;
2687}
2688
2689static inline bool has_current_bpf_ctx(void)
2690{
2691 return false;
2692}
2693
2694static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2695{
2696}
2697
2698static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2699{
2700}
2701
2702static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2703 enum bpf_dynptr_type type, u32 offset, u32 size)
2704{
2705}
2706
2707static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2708{
2709}
2710
2711static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2712{
2713}
2714#endif /* CONFIG_BPF_SYSCALL */
2715
2716static __always_inline int
2717bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2718{
2719 int ret = -EFAULT;
2720
2721 if (IS_ENABLED(CONFIG_BPF_EVENTS))
2722 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2723 if (unlikely(ret < 0))
2724 memset(dst, 0, size);
2725 return ret;
2726}
2727
2728void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2729 struct btf_mod_pair *used_btfs, u32 len);
2730
2731static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2732 enum bpf_prog_type type)
2733{
2734 return bpf_prog_get_type_dev(ufd, type, false);
2735}
2736
2737void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2738 struct bpf_map **used_maps, u32 len);
2739
2740bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2741
2742int bpf_prog_offload_compile(struct bpf_prog *prog);
2743void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2744int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2745 struct bpf_prog *prog);
2746
2747int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2748
2749int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2750int bpf_map_offload_update_elem(struct bpf_map *map,
2751 void *key, void *value, u64 flags);
2752int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2753int bpf_map_offload_get_next_key(struct bpf_map *map,
2754 void *key, void *next_key);
2755
2756bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2757
2758struct bpf_offload_dev *
2759bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2760void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2761void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2762int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2763 struct net_device *netdev);
2764void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2765 struct net_device *netdev);
2766bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2767
2768void unpriv_ebpf_notify(int new_state);
2769
2770#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2771int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2772 struct bpf_prog_aux *prog_aux);
2773void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2774int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2775int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2776void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2777
2778static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2779{
2780 return aux->dev_bound;
2781}
2782
2783static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2784{
2785 return aux->offload_requested;
2786}
2787
2788bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2789
2790static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2791{
2792 return unlikely(map->ops == &bpf_map_offload_ops);
2793}
2794
2795struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2796void bpf_map_offload_map_free(struct bpf_map *map);
2797u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2798int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2799 const union bpf_attr *kattr,
2800 union bpf_attr __user *uattr);
2801
2802int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2803int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2804int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2805int sock_map_bpf_prog_query(const union bpf_attr *attr,
2806 union bpf_attr __user *uattr);
2807
2808void sock_map_unhash(struct sock *sk);
2809void sock_map_destroy(struct sock *sk);
2810void sock_map_close(struct sock *sk, long timeout);
2811#else
2812static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2813 struct bpf_prog_aux *prog_aux)
2814{
2815 return -EOPNOTSUPP;
2816}
2817
2818static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
2819 u32 func_id)
2820{
2821 return NULL;
2822}
2823
2824static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
2825 union bpf_attr *attr)
2826{
2827 return -EOPNOTSUPP;
2828}
2829
2830static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
2831 struct bpf_prog *old_prog)
2832{
2833 return -EOPNOTSUPP;
2834}
2835
2836static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
2837{
2838}
2839
2840static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2841{
2842 return false;
2843}
2844
2845static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
2846{
2847 return false;
2848}
2849
2850static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
2851{
2852 return false;
2853}
2854
2855static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2856{
2857 return false;
2858}
2859
2860static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2861{
2862 return ERR_PTR(-EOPNOTSUPP);
2863}
2864
2865static inline void bpf_map_offload_map_free(struct bpf_map *map)
2866{
2867}
2868
2869static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
2870{
2871 return 0;
2872}
2873
2874static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2875 const union bpf_attr *kattr,
2876 union bpf_attr __user *uattr)
2877{
2878 return -ENOTSUPP;
2879}
2880
2881#ifdef CONFIG_BPF_SYSCALL
2882static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2883 struct bpf_prog *prog)
2884{
2885 return -EINVAL;
2886}
2887
2888static inline int sock_map_prog_detach(const union bpf_attr *attr,
2889 enum bpf_prog_type ptype)
2890{
2891 return -EOPNOTSUPP;
2892}
2893
2894static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2895 u64 flags)
2896{
2897 return -EOPNOTSUPP;
2898}
2899
2900static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2901 union bpf_attr __user *uattr)
2902{
2903 return -EINVAL;
2904}
2905#endif /* CONFIG_BPF_SYSCALL */
2906#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2907
2908#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2909void bpf_sk_reuseport_detach(struct sock *sk);
2910int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2911 void *value);
2912int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2913 void *value, u64 map_flags);
2914#else
2915static inline void bpf_sk_reuseport_detach(struct sock *sk)
2916{
2917}
2918
2919#ifdef CONFIG_BPF_SYSCALL
2920static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2921 void *key, void *value)
2922{
2923 return -EOPNOTSUPP;
2924}
2925
2926static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2927 void *key, void *value,
2928 u64 map_flags)
2929{
2930 return -EOPNOTSUPP;
2931}
2932#endif /* CONFIG_BPF_SYSCALL */
2933#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2934
2935/* verifier prototypes for helper functions called from eBPF programs */
2936extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2937extern const struct bpf_func_proto bpf_map_update_elem_proto;
2938extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2939extern const struct bpf_func_proto bpf_map_push_elem_proto;
2940extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2941extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2942extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2943
2944extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2945extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2946extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2947extern const struct bpf_func_proto bpf_tail_call_proto;
2948extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
2949extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
2950extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
2951extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
2952extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
2953extern const struct bpf_func_proto bpf_get_current_comm_proto;
2954extern const struct bpf_func_proto bpf_get_stackid_proto;
2955extern const struct bpf_func_proto bpf_get_stack_proto;
2956extern const struct bpf_func_proto bpf_get_task_stack_proto;
2957extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
2958extern const struct bpf_func_proto bpf_get_stack_proto_pe;
2959extern const struct bpf_func_proto bpf_sock_map_update_proto;
2960extern const struct bpf_func_proto bpf_sock_hash_update_proto;
2961extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
2962extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
2963extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
2964extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
2965extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
2966extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
2967extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
2968extern const struct bpf_func_proto bpf_spin_lock_proto;
2969extern const struct bpf_func_proto bpf_spin_unlock_proto;
2970extern const struct bpf_func_proto bpf_get_local_storage_proto;
2971extern const struct bpf_func_proto bpf_strtol_proto;
2972extern const struct bpf_func_proto bpf_strtoul_proto;
2973extern const struct bpf_func_proto bpf_tcp_sock_proto;
2974extern const struct bpf_func_proto bpf_jiffies64_proto;
2975extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
2976extern const struct bpf_func_proto bpf_event_output_data_proto;
2977extern const struct bpf_func_proto bpf_ringbuf_output_proto;
2978extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
2979extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
2980extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
2981extern const struct bpf_func_proto bpf_ringbuf_query_proto;
2982extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
2983extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
2984extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
2985extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
2986extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
2987extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
2988extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
2989extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
2990extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
2991extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
2992extern const struct bpf_func_proto bpf_copy_from_user_proto;
2993extern const struct bpf_func_proto bpf_snprintf_btf_proto;
2994extern const struct bpf_func_proto bpf_snprintf_proto;
2995extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
2996extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
2997extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
2998extern const struct bpf_func_proto bpf_sock_from_file_proto;
2999extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3000extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3001extern const struct bpf_func_proto bpf_task_storage_get_proto;
3002extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3003extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3004extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3005extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3006extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3007extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3008extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3009extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3010extern const struct bpf_func_proto bpf_find_vma_proto;
3011extern const struct bpf_func_proto bpf_loop_proto;
3012extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3013extern const struct bpf_func_proto bpf_set_retval_proto;
3014extern const struct bpf_func_proto bpf_get_retval_proto;
3015extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3016extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3017extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3018
3019const struct bpf_func_proto *tracing_prog_func_proto(
3020 enum bpf_func_id func_id, const struct bpf_prog *prog);
3021
3022/* Shared helpers among cBPF and eBPF. */
3023void bpf_user_rnd_init_once(void);
3024u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3025u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3026
3027#if defined(CONFIG_NET)
3028bool bpf_sock_common_is_valid_access(int off, int size,
3029 enum bpf_access_type type,
3030 struct bpf_insn_access_aux *info);
3031bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3032 struct bpf_insn_access_aux *info);
3033u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3034 const struct bpf_insn *si,
3035 struct bpf_insn *insn_buf,
3036 struct bpf_prog *prog,
3037 u32 *target_size);
3038int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3039 struct bpf_dynptr_kern *ptr);
3040#else
3041static inline bool bpf_sock_common_is_valid_access(int off, int size,
3042 enum bpf_access_type type,
3043 struct bpf_insn_access_aux *info)
3044{
3045 return false;
3046}
3047static inline bool bpf_sock_is_valid_access(int off, int size,
3048 enum bpf_access_type type,
3049 struct bpf_insn_access_aux *info)
3050{
3051 return false;
3052}
3053static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3054 const struct bpf_insn *si,
3055 struct bpf_insn *insn_buf,
3056 struct bpf_prog *prog,
3057 u32 *target_size)
3058{
3059 return 0;
3060}
3061static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3062 struct bpf_dynptr_kern *ptr)
3063{
3064 return -EOPNOTSUPP;
3065}
3066#endif
3067
3068#ifdef CONFIG_INET
3069struct sk_reuseport_kern {
3070 struct sk_buff *skb;
3071 struct sock *sk;
3072 struct sock *selected_sk;
3073 struct sock *migrating_sk;
3074 void *data_end;
3075 u32 hash;
3076 u32 reuseport_id;
3077 bool bind_inany;
3078};
3079bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3080 struct bpf_insn_access_aux *info);
3081
3082u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3083 const struct bpf_insn *si,
3084 struct bpf_insn *insn_buf,
3085 struct bpf_prog *prog,
3086 u32 *target_size);
3087
3088bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3089 struct bpf_insn_access_aux *info);
3090
3091u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3092 const struct bpf_insn *si,
3093 struct bpf_insn *insn_buf,
3094 struct bpf_prog *prog,
3095 u32 *target_size);
3096#else
3097static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3098 enum bpf_access_type type,
3099 struct bpf_insn_access_aux *info)
3100{
3101 return false;
3102}
3103
3104static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3105 const struct bpf_insn *si,
3106 struct bpf_insn *insn_buf,
3107 struct bpf_prog *prog,
3108 u32 *target_size)
3109{
3110 return 0;
3111}
3112static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3113 enum bpf_access_type type,
3114 struct bpf_insn_access_aux *info)
3115{
3116 return false;
3117}
3118
3119static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3120 const struct bpf_insn *si,
3121 struct bpf_insn *insn_buf,
3122 struct bpf_prog *prog,
3123 u32 *target_size)
3124{
3125 return 0;
3126}
3127#endif /* CONFIG_INET */
3128
3129enum bpf_text_poke_type {
3130 BPF_MOD_CALL,
3131 BPF_MOD_JUMP,
3132};
3133
3134int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3135 void *addr1, void *addr2);
3136
3137void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3138int bpf_arch_text_invalidate(void *dst, size_t len);
3139
3140struct btf_id_set;
3141bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3142
3143#define MAX_BPRINTF_VARARGS 12
3144#define MAX_BPRINTF_BUF 1024
3145
3146struct bpf_bprintf_data {
3147 u32 *bin_args;
3148 char *buf;
3149 bool get_bin_args;
3150 bool get_buf;
3151};
3152
3153int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3154 u32 num_args, struct bpf_bprintf_data *data);
3155void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3156
3157#ifdef CONFIG_BPF_LSM
3158void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3159void bpf_cgroup_atype_put(int cgroup_atype);
3160#else
3161static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3162static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3163#endif /* CONFIG_BPF_LSM */
3164
3165struct key;
3166
3167#ifdef CONFIG_KEYS
3168struct bpf_key {
3169 struct key *key;
3170 bool has_ref;
3171};
3172#endif /* CONFIG_KEYS */
3173
3174static inline bool type_is_alloc(u32 type)
3175{
3176 return type & MEM_ALLOC;
3177}
3178
3179static inline gfp_t bpf_memcg_flags(gfp_t flags)
3180{
3181 if (memcg_bpf_enabled())
3182 return flags | __GFP_ACCOUNT;
3183 return flags;
3184}
3185
3186#endif /* _LINUX_BPF_H */