at v6.6 21 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de> 4 */ 5#ifndef __LINUX_BIO_H 6#define __LINUX_BIO_H 7 8#include <linux/mempool.h> 9/* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ 10#include <linux/blk_types.h> 11#include <linux/uio.h> 12 13#define BIO_MAX_VECS 256U 14 15struct queue_limits; 16 17static inline unsigned int bio_max_segs(unsigned int nr_segs) 18{ 19 return min(nr_segs, BIO_MAX_VECS); 20} 21 22#define bio_prio(bio) (bio)->bi_ioprio 23#define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio) 24 25#define bio_iter_iovec(bio, iter) \ 26 bvec_iter_bvec((bio)->bi_io_vec, (iter)) 27 28#define bio_iter_page(bio, iter) \ 29 bvec_iter_page((bio)->bi_io_vec, (iter)) 30#define bio_iter_len(bio, iter) \ 31 bvec_iter_len((bio)->bi_io_vec, (iter)) 32#define bio_iter_offset(bio, iter) \ 33 bvec_iter_offset((bio)->bi_io_vec, (iter)) 34 35#define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) 36#define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) 37#define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) 38 39#define bvec_iter_sectors(iter) ((iter).bi_size >> 9) 40#define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) 41 42#define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) 43#define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) 44 45/* 46 * Return the data direction, READ or WRITE. 47 */ 48#define bio_data_dir(bio) \ 49 (op_is_write(bio_op(bio)) ? WRITE : READ) 50 51/* 52 * Check whether this bio carries any data or not. A NULL bio is allowed. 53 */ 54static inline bool bio_has_data(struct bio *bio) 55{ 56 if (bio && 57 bio->bi_iter.bi_size && 58 bio_op(bio) != REQ_OP_DISCARD && 59 bio_op(bio) != REQ_OP_SECURE_ERASE && 60 bio_op(bio) != REQ_OP_WRITE_ZEROES) 61 return true; 62 63 return false; 64} 65 66static inline bool bio_no_advance_iter(const struct bio *bio) 67{ 68 return bio_op(bio) == REQ_OP_DISCARD || 69 bio_op(bio) == REQ_OP_SECURE_ERASE || 70 bio_op(bio) == REQ_OP_WRITE_ZEROES; 71} 72 73static inline void *bio_data(struct bio *bio) 74{ 75 if (bio_has_data(bio)) 76 return page_address(bio_page(bio)) + bio_offset(bio); 77 78 return NULL; 79} 80 81static inline bool bio_next_segment(const struct bio *bio, 82 struct bvec_iter_all *iter) 83{ 84 if (iter->idx >= bio->bi_vcnt) 85 return false; 86 87 bvec_advance(&bio->bi_io_vec[iter->idx], iter); 88 return true; 89} 90 91/* 92 * drivers should _never_ use the all version - the bio may have been split 93 * before it got to the driver and the driver won't own all of it 94 */ 95#define bio_for_each_segment_all(bvl, bio, iter) \ 96 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) 97 98static inline void bio_advance_iter(const struct bio *bio, 99 struct bvec_iter *iter, unsigned int bytes) 100{ 101 iter->bi_sector += bytes >> 9; 102 103 if (bio_no_advance_iter(bio)) 104 iter->bi_size -= bytes; 105 else 106 bvec_iter_advance(bio->bi_io_vec, iter, bytes); 107 /* TODO: It is reasonable to complete bio with error here. */ 108} 109 110/* @bytes should be less or equal to bvec[i->bi_idx].bv_len */ 111static inline void bio_advance_iter_single(const struct bio *bio, 112 struct bvec_iter *iter, 113 unsigned int bytes) 114{ 115 iter->bi_sector += bytes >> 9; 116 117 if (bio_no_advance_iter(bio)) 118 iter->bi_size -= bytes; 119 else 120 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes); 121} 122 123void __bio_advance(struct bio *, unsigned bytes); 124 125/** 126 * bio_advance - increment/complete a bio by some number of bytes 127 * @bio: bio to advance 128 * @nbytes: number of bytes to complete 129 * 130 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to 131 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will 132 * be updated on the last bvec as well. 133 * 134 * @bio will then represent the remaining, uncompleted portion of the io. 135 */ 136static inline void bio_advance(struct bio *bio, unsigned int nbytes) 137{ 138 if (nbytes == bio->bi_iter.bi_size) { 139 bio->bi_iter.bi_size = 0; 140 return; 141 } 142 __bio_advance(bio, nbytes); 143} 144 145#define __bio_for_each_segment(bvl, bio, iter, start) \ 146 for (iter = (start); \ 147 (iter).bi_size && \ 148 ((bvl = bio_iter_iovec((bio), (iter))), 1); \ 149 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 150 151#define bio_for_each_segment(bvl, bio, iter) \ 152 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) 153 154#define __bio_for_each_bvec(bvl, bio, iter, start) \ 155 for (iter = (start); \ 156 (iter).bi_size && \ 157 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ 158 bio_advance_iter_single((bio), &(iter), (bvl).bv_len)) 159 160/* iterate over multi-page bvec */ 161#define bio_for_each_bvec(bvl, bio, iter) \ 162 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) 163 164/* 165 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the 166 * same reasons as bio_for_each_segment_all(). 167 */ 168#define bio_for_each_bvec_all(bvl, bio, i) \ 169 for (i = 0, bvl = bio_first_bvec_all(bio); \ 170 i < (bio)->bi_vcnt; i++, bvl++) 171 172#define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) 173 174static inline unsigned bio_segments(struct bio *bio) 175{ 176 unsigned segs = 0; 177 struct bio_vec bv; 178 struct bvec_iter iter; 179 180 /* 181 * We special case discard/write same/write zeroes, because they 182 * interpret bi_size differently: 183 */ 184 185 switch (bio_op(bio)) { 186 case REQ_OP_DISCARD: 187 case REQ_OP_SECURE_ERASE: 188 case REQ_OP_WRITE_ZEROES: 189 return 0; 190 default: 191 break; 192 } 193 194 bio_for_each_segment(bv, bio, iter) 195 segs++; 196 197 return segs; 198} 199 200/* 201 * get a reference to a bio, so it won't disappear. the intended use is 202 * something like: 203 * 204 * bio_get(bio); 205 * submit_bio(rw, bio); 206 * if (bio->bi_flags ...) 207 * do_something 208 * bio_put(bio); 209 * 210 * without the bio_get(), it could potentially complete I/O before submit_bio 211 * returns. and then bio would be freed memory when if (bio->bi_flags ...) 212 * runs 213 */ 214static inline void bio_get(struct bio *bio) 215{ 216 bio->bi_flags |= (1 << BIO_REFFED); 217 smp_mb__before_atomic(); 218 atomic_inc(&bio->__bi_cnt); 219} 220 221static inline void bio_cnt_set(struct bio *bio, unsigned int count) 222{ 223 if (count != 1) { 224 bio->bi_flags |= (1 << BIO_REFFED); 225 smp_mb(); 226 } 227 atomic_set(&bio->__bi_cnt, count); 228} 229 230static inline bool bio_flagged(struct bio *bio, unsigned int bit) 231{ 232 return bio->bi_flags & (1U << bit); 233} 234 235static inline void bio_set_flag(struct bio *bio, unsigned int bit) 236{ 237 bio->bi_flags |= (1U << bit); 238} 239 240static inline void bio_clear_flag(struct bio *bio, unsigned int bit) 241{ 242 bio->bi_flags &= ~(1U << bit); 243} 244 245static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) 246{ 247 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 248 return bio->bi_io_vec; 249} 250 251static inline struct page *bio_first_page_all(struct bio *bio) 252{ 253 return bio_first_bvec_all(bio)->bv_page; 254} 255 256static inline struct folio *bio_first_folio_all(struct bio *bio) 257{ 258 return page_folio(bio_first_page_all(bio)); 259} 260 261static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) 262{ 263 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 264 return &bio->bi_io_vec[bio->bi_vcnt - 1]; 265} 266 267/** 268 * struct folio_iter - State for iterating all folios in a bio. 269 * @folio: The current folio we're iterating. NULL after the last folio. 270 * @offset: The byte offset within the current folio. 271 * @length: The number of bytes in this iteration (will not cross folio 272 * boundary). 273 */ 274struct folio_iter { 275 struct folio *folio; 276 size_t offset; 277 size_t length; 278 /* private: for use by the iterator */ 279 struct folio *_next; 280 size_t _seg_count; 281 int _i; 282}; 283 284static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio, 285 int i) 286{ 287 struct bio_vec *bvec = bio_first_bvec_all(bio) + i; 288 289 fi->folio = page_folio(bvec->bv_page); 290 fi->offset = bvec->bv_offset + 291 PAGE_SIZE * (bvec->bv_page - &fi->folio->page); 292 fi->_seg_count = bvec->bv_len; 293 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count); 294 fi->_next = folio_next(fi->folio); 295 fi->_i = i; 296} 297 298static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio) 299{ 300 fi->_seg_count -= fi->length; 301 if (fi->_seg_count) { 302 fi->folio = fi->_next; 303 fi->offset = 0; 304 fi->length = min(folio_size(fi->folio), fi->_seg_count); 305 fi->_next = folio_next(fi->folio); 306 } else if (fi->_i + 1 < bio->bi_vcnt) { 307 bio_first_folio(fi, bio, fi->_i + 1); 308 } else { 309 fi->folio = NULL; 310 } 311} 312 313/** 314 * bio_for_each_folio_all - Iterate over each folio in a bio. 315 * @fi: struct folio_iter which is updated for each folio. 316 * @bio: struct bio to iterate over. 317 */ 318#define bio_for_each_folio_all(fi, bio) \ 319 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio)) 320 321enum bip_flags { 322 BIP_BLOCK_INTEGRITY = 1 << 0, /* block layer owns integrity data */ 323 BIP_MAPPED_INTEGRITY = 1 << 1, /* ref tag has been remapped */ 324 BIP_CTRL_NOCHECK = 1 << 2, /* disable HBA integrity checking */ 325 BIP_DISK_NOCHECK = 1 << 3, /* disable disk integrity checking */ 326 BIP_IP_CHECKSUM = 1 << 4, /* IP checksum */ 327}; 328 329/* 330 * bio integrity payload 331 */ 332struct bio_integrity_payload { 333 struct bio *bip_bio; /* parent bio */ 334 335 struct bvec_iter bip_iter; 336 337 unsigned short bip_vcnt; /* # of integrity bio_vecs */ 338 unsigned short bip_max_vcnt; /* integrity bio_vec slots */ 339 unsigned short bip_flags; /* control flags */ 340 341 struct bvec_iter bio_iter; /* for rewinding parent bio */ 342 343 struct work_struct bip_work; /* I/O completion */ 344 345 struct bio_vec *bip_vec; 346 struct bio_vec bip_inline_vecs[];/* embedded bvec array */ 347}; 348 349#if defined(CONFIG_BLK_DEV_INTEGRITY) 350 351static inline struct bio_integrity_payload *bio_integrity(struct bio *bio) 352{ 353 if (bio->bi_opf & REQ_INTEGRITY) 354 return bio->bi_integrity; 355 356 return NULL; 357} 358 359static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) 360{ 361 struct bio_integrity_payload *bip = bio_integrity(bio); 362 363 if (bip) 364 return bip->bip_flags & flag; 365 366 return false; 367} 368 369static inline sector_t bip_get_seed(struct bio_integrity_payload *bip) 370{ 371 return bip->bip_iter.bi_sector; 372} 373 374static inline void bip_set_seed(struct bio_integrity_payload *bip, 375 sector_t seed) 376{ 377 bip->bip_iter.bi_sector = seed; 378} 379 380#endif /* CONFIG_BLK_DEV_INTEGRITY */ 381 382void bio_trim(struct bio *bio, sector_t offset, sector_t size); 383extern struct bio *bio_split(struct bio *bio, int sectors, 384 gfp_t gfp, struct bio_set *bs); 385struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, 386 unsigned *segs, struct bio_set *bs, unsigned max_bytes); 387 388/** 389 * bio_next_split - get next @sectors from a bio, splitting if necessary 390 * @bio: bio to split 391 * @sectors: number of sectors to split from the front of @bio 392 * @gfp: gfp mask 393 * @bs: bio set to allocate from 394 * 395 * Return: a bio representing the next @sectors of @bio - if the bio is smaller 396 * than @sectors, returns the original bio unchanged. 397 */ 398static inline struct bio *bio_next_split(struct bio *bio, int sectors, 399 gfp_t gfp, struct bio_set *bs) 400{ 401 if (sectors >= bio_sectors(bio)) 402 return bio; 403 404 return bio_split(bio, sectors, gfp, bs); 405} 406 407enum { 408 BIOSET_NEED_BVECS = BIT(0), 409 BIOSET_NEED_RESCUER = BIT(1), 410 BIOSET_PERCPU_CACHE = BIT(2), 411}; 412extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); 413extern void bioset_exit(struct bio_set *); 414extern int biovec_init_pool(mempool_t *pool, int pool_entries); 415 416struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 417 blk_opf_t opf, gfp_t gfp_mask, 418 struct bio_set *bs); 419struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask); 420extern void bio_put(struct bio *); 421 422struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 423 gfp_t gfp, struct bio_set *bs); 424int bio_init_clone(struct block_device *bdev, struct bio *bio, 425 struct bio *bio_src, gfp_t gfp); 426 427extern struct bio_set fs_bio_set; 428 429static inline struct bio *bio_alloc(struct block_device *bdev, 430 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask) 431{ 432 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set); 433} 434 435void submit_bio(struct bio *bio); 436 437extern void bio_endio(struct bio *); 438 439static inline void bio_io_error(struct bio *bio) 440{ 441 bio->bi_status = BLK_STS_IOERR; 442 bio_endio(bio); 443} 444 445static inline void bio_wouldblock_error(struct bio *bio) 446{ 447 bio_set_flag(bio, BIO_QUIET); 448 bio->bi_status = BLK_STS_AGAIN; 449 bio_endio(bio); 450} 451 452/* 453 * Calculate number of bvec segments that should be allocated to fit data 454 * pointed by @iter. If @iter is backed by bvec it's going to be reused 455 * instead of allocating a new one. 456 */ 457static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs) 458{ 459 if (iov_iter_is_bvec(iter)) 460 return 0; 461 return iov_iter_npages(iter, max_segs); 462} 463 464struct request_queue; 465 466extern int submit_bio_wait(struct bio *bio); 467void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 468 unsigned short max_vecs, blk_opf_t opf); 469extern void bio_uninit(struct bio *); 470void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf); 471void bio_chain(struct bio *, struct bio *); 472 473int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len, 474 unsigned off); 475bool __must_check bio_add_folio(struct bio *bio, struct folio *folio, 476 size_t len, size_t off); 477extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, 478 unsigned int, unsigned int); 479int bio_add_zone_append_page(struct bio *bio, struct page *page, 480 unsigned int len, unsigned int offset); 481void __bio_add_page(struct bio *bio, struct page *page, 482 unsigned int len, unsigned int off); 483void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 484 size_t off); 485int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); 486void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter); 487void __bio_release_pages(struct bio *bio, bool mark_dirty); 488extern void bio_set_pages_dirty(struct bio *bio); 489extern void bio_check_pages_dirty(struct bio *bio); 490 491extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 492 struct bio *src, struct bvec_iter *src_iter); 493extern void bio_copy_data(struct bio *dst, struct bio *src); 494extern void bio_free_pages(struct bio *bio); 495void guard_bio_eod(struct bio *bio); 496void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); 497 498static inline void zero_fill_bio(struct bio *bio) 499{ 500 zero_fill_bio_iter(bio, bio->bi_iter); 501} 502 503static inline void bio_release_pages(struct bio *bio, bool mark_dirty) 504{ 505 if (bio_flagged(bio, BIO_PAGE_PINNED)) 506 __bio_release_pages(bio, mark_dirty); 507} 508 509#define bio_dev(bio) \ 510 disk_devt((bio)->bi_bdev->bd_disk) 511 512#ifdef CONFIG_BLK_CGROUP 513void bio_associate_blkg(struct bio *bio); 514void bio_associate_blkg_from_css(struct bio *bio, 515 struct cgroup_subsys_state *css); 516void bio_clone_blkg_association(struct bio *dst, struct bio *src); 517void blkcg_punt_bio_submit(struct bio *bio); 518#else /* CONFIG_BLK_CGROUP */ 519static inline void bio_associate_blkg(struct bio *bio) { } 520static inline void bio_associate_blkg_from_css(struct bio *bio, 521 struct cgroup_subsys_state *css) 522{ } 523static inline void bio_clone_blkg_association(struct bio *dst, 524 struct bio *src) { } 525static inline void blkcg_punt_bio_submit(struct bio *bio) 526{ 527 submit_bio(bio); 528} 529#endif /* CONFIG_BLK_CGROUP */ 530 531static inline void bio_set_dev(struct bio *bio, struct block_device *bdev) 532{ 533 bio_clear_flag(bio, BIO_REMAPPED); 534 if (bio->bi_bdev != bdev) 535 bio_clear_flag(bio, BIO_BPS_THROTTLED); 536 bio->bi_bdev = bdev; 537 bio_associate_blkg(bio); 538} 539 540/* 541 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. 542 * 543 * A bio_list anchors a singly-linked list of bios chained through the bi_next 544 * member of the bio. The bio_list also caches the last list member to allow 545 * fast access to the tail. 546 */ 547struct bio_list { 548 struct bio *head; 549 struct bio *tail; 550}; 551 552static inline int bio_list_empty(const struct bio_list *bl) 553{ 554 return bl->head == NULL; 555} 556 557static inline void bio_list_init(struct bio_list *bl) 558{ 559 bl->head = bl->tail = NULL; 560} 561 562#define BIO_EMPTY_LIST { NULL, NULL } 563 564#define bio_list_for_each(bio, bl) \ 565 for (bio = (bl)->head; bio; bio = bio->bi_next) 566 567static inline unsigned bio_list_size(const struct bio_list *bl) 568{ 569 unsigned sz = 0; 570 struct bio *bio; 571 572 bio_list_for_each(bio, bl) 573 sz++; 574 575 return sz; 576} 577 578static inline void bio_list_add(struct bio_list *bl, struct bio *bio) 579{ 580 bio->bi_next = NULL; 581 582 if (bl->tail) 583 bl->tail->bi_next = bio; 584 else 585 bl->head = bio; 586 587 bl->tail = bio; 588} 589 590static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) 591{ 592 bio->bi_next = bl->head; 593 594 bl->head = bio; 595 596 if (!bl->tail) 597 bl->tail = bio; 598} 599 600static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) 601{ 602 if (!bl2->head) 603 return; 604 605 if (bl->tail) 606 bl->tail->bi_next = bl2->head; 607 else 608 bl->head = bl2->head; 609 610 bl->tail = bl2->tail; 611} 612 613static inline void bio_list_merge_head(struct bio_list *bl, 614 struct bio_list *bl2) 615{ 616 if (!bl2->head) 617 return; 618 619 if (bl->head) 620 bl2->tail->bi_next = bl->head; 621 else 622 bl->tail = bl2->tail; 623 624 bl->head = bl2->head; 625} 626 627static inline struct bio *bio_list_peek(struct bio_list *bl) 628{ 629 return bl->head; 630} 631 632static inline struct bio *bio_list_pop(struct bio_list *bl) 633{ 634 struct bio *bio = bl->head; 635 636 if (bio) { 637 bl->head = bl->head->bi_next; 638 if (!bl->head) 639 bl->tail = NULL; 640 641 bio->bi_next = NULL; 642 } 643 644 return bio; 645} 646 647static inline struct bio *bio_list_get(struct bio_list *bl) 648{ 649 struct bio *bio = bl->head; 650 651 bl->head = bl->tail = NULL; 652 653 return bio; 654} 655 656/* 657 * Increment chain count for the bio. Make sure the CHAIN flag update 658 * is visible before the raised count. 659 */ 660static inline void bio_inc_remaining(struct bio *bio) 661{ 662 bio_set_flag(bio, BIO_CHAIN); 663 smp_mb__before_atomic(); 664 atomic_inc(&bio->__bi_remaining); 665} 666 667/* 668 * bio_set is used to allow other portions of the IO system to 669 * allocate their own private memory pools for bio and iovec structures. 670 * These memory pools in turn all allocate from the bio_slab 671 * and the bvec_slabs[]. 672 */ 673#define BIO_POOL_SIZE 2 674 675struct bio_set { 676 struct kmem_cache *bio_slab; 677 unsigned int front_pad; 678 679 /* 680 * per-cpu bio alloc cache 681 */ 682 struct bio_alloc_cache __percpu *cache; 683 684 mempool_t bio_pool; 685 mempool_t bvec_pool; 686#if defined(CONFIG_BLK_DEV_INTEGRITY) 687 mempool_t bio_integrity_pool; 688 mempool_t bvec_integrity_pool; 689#endif 690 691 unsigned int back_pad; 692 /* 693 * Deadlock avoidance for stacking block drivers: see comments in 694 * bio_alloc_bioset() for details 695 */ 696 spinlock_t rescue_lock; 697 struct bio_list rescue_list; 698 struct work_struct rescue_work; 699 struct workqueue_struct *rescue_workqueue; 700 701 /* 702 * Hot un-plug notifier for the per-cpu cache, if used 703 */ 704 struct hlist_node cpuhp_dead; 705}; 706 707static inline bool bioset_initialized(struct bio_set *bs) 708{ 709 return bs->bio_slab != NULL; 710} 711 712#if defined(CONFIG_BLK_DEV_INTEGRITY) 713 714#define bip_for_each_vec(bvl, bip, iter) \ 715 for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter) 716 717#define bio_for_each_integrity_vec(_bvl, _bio, _iter) \ 718 for_each_bio(_bio) \ 719 bip_for_each_vec(_bvl, _bio->bi_integrity, _iter) 720 721extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int); 722extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int); 723extern bool bio_integrity_prep(struct bio *); 724extern void bio_integrity_advance(struct bio *, unsigned int); 725extern void bio_integrity_trim(struct bio *); 726extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t); 727extern int bioset_integrity_create(struct bio_set *, int); 728extern void bioset_integrity_free(struct bio_set *); 729extern void bio_integrity_init(void); 730 731#else /* CONFIG_BLK_DEV_INTEGRITY */ 732 733static inline void *bio_integrity(struct bio *bio) 734{ 735 return NULL; 736} 737 738static inline int bioset_integrity_create(struct bio_set *bs, int pool_size) 739{ 740 return 0; 741} 742 743static inline void bioset_integrity_free (struct bio_set *bs) 744{ 745 return; 746} 747 748static inline bool bio_integrity_prep(struct bio *bio) 749{ 750 return true; 751} 752 753static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src, 754 gfp_t gfp_mask) 755{ 756 return 0; 757} 758 759static inline void bio_integrity_advance(struct bio *bio, 760 unsigned int bytes_done) 761{ 762 return; 763} 764 765static inline void bio_integrity_trim(struct bio *bio) 766{ 767 return; 768} 769 770static inline void bio_integrity_init(void) 771{ 772 return; 773} 774 775static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) 776{ 777 return false; 778} 779 780static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp, 781 unsigned int nr) 782{ 783 return ERR_PTR(-EINVAL); 784} 785 786static inline int bio_integrity_add_page(struct bio *bio, struct page *page, 787 unsigned int len, unsigned int offset) 788{ 789 return 0; 790} 791 792#endif /* CONFIG_BLK_DEV_INTEGRITY */ 793 794/* 795 * Mark a bio as polled. Note that for async polled IO, the caller must 796 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). 797 * We cannot block waiting for requests on polled IO, as those completions 798 * must be found by the caller. This is different than IRQ driven IO, where 799 * it's safe to wait for IO to complete. 800 */ 801static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) 802{ 803 bio->bi_opf |= REQ_POLLED; 804 if (kiocb->ki_flags & IOCB_NOWAIT) 805 bio->bi_opf |= REQ_NOWAIT; 806} 807 808static inline void bio_clear_polled(struct bio *bio) 809{ 810 bio->bi_opf &= ~REQ_POLLED; 811} 812 813struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 814 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp); 815 816#endif /* __LINUX_BIO_H */