at v6.6 16 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef BLK_INTERNAL_H 3#define BLK_INTERNAL_H 4 5#include <linux/blk-crypto.h> 6#include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 7#include <xen/xen.h> 8#include "blk-crypto-internal.h" 9 10struct elevator_type; 11 12/* Max future timer expiry for timeouts */ 13#define BLK_MAX_TIMEOUT (5 * HZ) 14 15extern struct dentry *blk_debugfs_root; 16 17struct blk_flush_queue { 18 spinlock_t mq_flush_lock; 19 unsigned int flush_pending_idx:1; 20 unsigned int flush_running_idx:1; 21 blk_status_t rq_status; 22 unsigned long flush_pending_since; 23 struct list_head flush_queue[2]; 24 unsigned long flush_data_in_flight; 25 struct request *flush_rq; 26}; 27 28bool is_flush_rq(struct request *req); 29 30struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 31 gfp_t flags); 32void blk_free_flush_queue(struct blk_flush_queue *q); 33 34void blk_freeze_queue(struct request_queue *q); 35void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 36void blk_queue_start_drain(struct request_queue *q); 37int __bio_queue_enter(struct request_queue *q, struct bio *bio); 38void submit_bio_noacct_nocheck(struct bio *bio); 39 40static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) 41{ 42 rcu_read_lock(); 43 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) 44 goto fail; 45 46 /* 47 * The code that increments the pm_only counter must ensure that the 48 * counter is globally visible before the queue is unfrozen. 49 */ 50 if (blk_queue_pm_only(q) && 51 (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) 52 goto fail_put; 53 54 rcu_read_unlock(); 55 return true; 56 57fail_put: 58 blk_queue_exit(q); 59fail: 60 rcu_read_unlock(); 61 return false; 62} 63 64static inline int bio_queue_enter(struct bio *bio) 65{ 66 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 67 68 if (blk_try_enter_queue(q, false)) 69 return 0; 70 return __bio_queue_enter(q, bio); 71} 72 73#define BIO_INLINE_VECS 4 74struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 75 gfp_t gfp_mask); 76void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 77 78bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 79 struct page *page, unsigned len, unsigned offset, 80 bool *same_page); 81 82static inline bool biovec_phys_mergeable(struct request_queue *q, 83 struct bio_vec *vec1, struct bio_vec *vec2) 84{ 85 unsigned long mask = queue_segment_boundary(q); 86 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; 87 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; 88 89 /* 90 * Merging adjacent physical pages may not work correctly under KMSAN 91 * if their metadata pages aren't adjacent. Just disable merging. 92 */ 93 if (IS_ENABLED(CONFIG_KMSAN)) 94 return false; 95 96 if (addr1 + vec1->bv_len != addr2) 97 return false; 98 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 99 return false; 100 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 101 return false; 102 return true; 103} 104 105static inline bool __bvec_gap_to_prev(const struct queue_limits *lim, 106 struct bio_vec *bprv, unsigned int offset) 107{ 108 return (offset & lim->virt_boundary_mask) || 109 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask); 110} 111 112/* 113 * Check if adding a bio_vec after bprv with offset would create a gap in 114 * the SG list. Most drivers don't care about this, but some do. 115 */ 116static inline bool bvec_gap_to_prev(const struct queue_limits *lim, 117 struct bio_vec *bprv, unsigned int offset) 118{ 119 if (!lim->virt_boundary_mask) 120 return false; 121 return __bvec_gap_to_prev(lim, bprv, offset); 122} 123 124static inline bool rq_mergeable(struct request *rq) 125{ 126 if (blk_rq_is_passthrough(rq)) 127 return false; 128 129 if (req_op(rq) == REQ_OP_FLUSH) 130 return false; 131 132 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 133 return false; 134 135 if (req_op(rq) == REQ_OP_ZONE_APPEND) 136 return false; 137 138 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 139 return false; 140 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 141 return false; 142 143 return true; 144} 145 146/* 147 * There are two different ways to handle DISCARD merges: 148 * 1) If max_discard_segments > 1, the driver treats every bio as a range and 149 * send the bios to controller together. The ranges don't need to be 150 * contiguous. 151 * 2) Otherwise, the request will be normal read/write requests. The ranges 152 * need to be contiguous. 153 */ 154static inline bool blk_discard_mergable(struct request *req) 155{ 156 if (req_op(req) == REQ_OP_DISCARD && 157 queue_max_discard_segments(req->q) > 1) 158 return true; 159 return false; 160} 161 162static inline unsigned int blk_rq_get_max_segments(struct request *rq) 163{ 164 if (req_op(rq) == REQ_OP_DISCARD) 165 return queue_max_discard_segments(rq->q); 166 return queue_max_segments(rq->q); 167} 168 169static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 170 enum req_op op) 171{ 172 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 173 return min(q->limits.max_discard_sectors, 174 UINT_MAX >> SECTOR_SHIFT); 175 176 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 177 return q->limits.max_write_zeroes_sectors; 178 179 return q->limits.max_sectors; 180} 181 182#ifdef CONFIG_BLK_DEV_INTEGRITY 183void blk_flush_integrity(void); 184bool __bio_integrity_endio(struct bio *); 185void bio_integrity_free(struct bio *bio); 186static inline bool bio_integrity_endio(struct bio *bio) 187{ 188 if (bio_integrity(bio)) 189 return __bio_integrity_endio(bio); 190 return true; 191} 192 193bool blk_integrity_merge_rq(struct request_queue *, struct request *, 194 struct request *); 195bool blk_integrity_merge_bio(struct request_queue *, struct request *, 196 struct bio *); 197 198static inline bool integrity_req_gap_back_merge(struct request *req, 199 struct bio *next) 200{ 201 struct bio_integrity_payload *bip = bio_integrity(req->bio); 202 struct bio_integrity_payload *bip_next = bio_integrity(next); 203 204 return bvec_gap_to_prev(&req->q->limits, 205 &bip->bip_vec[bip->bip_vcnt - 1], 206 bip_next->bip_vec[0].bv_offset); 207} 208 209static inline bool integrity_req_gap_front_merge(struct request *req, 210 struct bio *bio) 211{ 212 struct bio_integrity_payload *bip = bio_integrity(bio); 213 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 214 215 return bvec_gap_to_prev(&req->q->limits, 216 &bip->bip_vec[bip->bip_vcnt - 1], 217 bip_next->bip_vec[0].bv_offset); 218} 219 220extern const struct attribute_group blk_integrity_attr_group; 221#else /* CONFIG_BLK_DEV_INTEGRITY */ 222static inline bool blk_integrity_merge_rq(struct request_queue *rq, 223 struct request *r1, struct request *r2) 224{ 225 return true; 226} 227static inline bool blk_integrity_merge_bio(struct request_queue *rq, 228 struct request *r, struct bio *b) 229{ 230 return true; 231} 232static inline bool integrity_req_gap_back_merge(struct request *req, 233 struct bio *next) 234{ 235 return false; 236} 237static inline bool integrity_req_gap_front_merge(struct request *req, 238 struct bio *bio) 239{ 240 return false; 241} 242 243static inline void blk_flush_integrity(void) 244{ 245} 246static inline bool bio_integrity_endio(struct bio *bio) 247{ 248 return true; 249} 250static inline void bio_integrity_free(struct bio *bio) 251{ 252} 253#endif /* CONFIG_BLK_DEV_INTEGRITY */ 254 255unsigned long blk_rq_timeout(unsigned long timeout); 256void blk_add_timer(struct request *req); 257 258bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 259 unsigned int nr_segs); 260bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 261 struct bio *bio, unsigned int nr_segs); 262 263/* 264 * Plug flush limits 265 */ 266#define BLK_MAX_REQUEST_COUNT 32 267#define BLK_PLUG_FLUSH_SIZE (128 * 1024) 268 269/* 270 * Internal elevator interface 271 */ 272#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 273 274bool blk_insert_flush(struct request *rq); 275 276int elevator_switch(struct request_queue *q, struct elevator_type *new_e); 277void elevator_disable(struct request_queue *q); 278void elevator_exit(struct request_queue *q); 279int elv_register_queue(struct request_queue *q, bool uevent); 280void elv_unregister_queue(struct request_queue *q); 281 282ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 283 char *buf); 284ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 285 char *buf); 286ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 287 char *buf); 288ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 289 char *buf); 290ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 291 const char *buf, size_t count); 292ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 293ssize_t part_timeout_store(struct device *, struct device_attribute *, 294 const char *, size_t); 295 296static inline bool bio_may_exceed_limits(struct bio *bio, 297 const struct queue_limits *lim) 298{ 299 switch (bio_op(bio)) { 300 case REQ_OP_DISCARD: 301 case REQ_OP_SECURE_ERASE: 302 case REQ_OP_WRITE_ZEROES: 303 return true; /* non-trivial splitting decisions */ 304 default: 305 break; 306 } 307 308 /* 309 * All drivers must accept single-segments bios that are <= PAGE_SIZE. 310 * This is a quick and dirty check that relies on the fact that 311 * bi_io_vec[0] is always valid if a bio has data. The check might 312 * lead to occasional false negatives when bios are cloned, but compared 313 * to the performance impact of cloned bios themselves the loop below 314 * doesn't matter anyway. 315 */ 316 return lim->chunk_sectors || bio->bi_vcnt != 1 || 317 bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; 318} 319 320struct bio *__bio_split_to_limits(struct bio *bio, 321 const struct queue_limits *lim, 322 unsigned int *nr_segs); 323int ll_back_merge_fn(struct request *req, struct bio *bio, 324 unsigned int nr_segs); 325bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 326 struct request *next); 327unsigned int blk_recalc_rq_segments(struct request *rq); 328void blk_rq_set_mixed_merge(struct request *rq); 329bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 330enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 331 332void blk_set_default_limits(struct queue_limits *lim); 333int blk_dev_init(void); 334 335/* 336 * Contribute to IO statistics IFF: 337 * 338 * a) it's attached to a gendisk, and 339 * b) the queue had IO stats enabled when this request was started 340 */ 341static inline bool blk_do_io_stat(struct request *rq) 342{ 343 return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq); 344} 345 346void update_io_ticks(struct block_device *part, unsigned long now, bool end); 347 348static inline void req_set_nomerge(struct request_queue *q, struct request *req) 349{ 350 req->cmd_flags |= REQ_NOMERGE; 351 if (req == q->last_merge) 352 q->last_merge = NULL; 353} 354 355/* 356 * Internal io_context interface 357 */ 358struct io_cq *ioc_find_get_icq(struct request_queue *q); 359struct io_cq *ioc_lookup_icq(struct request_queue *q); 360#ifdef CONFIG_BLK_ICQ 361void ioc_clear_queue(struct request_queue *q); 362#else 363static inline void ioc_clear_queue(struct request_queue *q) 364{ 365} 366#endif /* CONFIG_BLK_ICQ */ 367 368#ifdef CONFIG_BLK_DEV_THROTTLING_LOW 369extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); 370extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, 371 const char *page, size_t count); 372extern void blk_throtl_bio_endio(struct bio *bio); 373extern void blk_throtl_stat_add(struct request *rq, u64 time); 374#else 375static inline void blk_throtl_bio_endio(struct bio *bio) { } 376static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } 377#endif 378 379struct bio *__blk_queue_bounce(struct bio *bio, struct request_queue *q); 380 381static inline bool blk_queue_may_bounce(struct request_queue *q) 382{ 383 return IS_ENABLED(CONFIG_BOUNCE) && 384 q->limits.bounce == BLK_BOUNCE_HIGH && 385 max_low_pfn >= max_pfn; 386} 387 388static inline struct bio *blk_queue_bounce(struct bio *bio, 389 struct request_queue *q) 390{ 391 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(bio))) 392 return __blk_queue_bounce(bio, q); 393 return bio; 394} 395 396#ifdef CONFIG_BLK_DEV_ZONED 397void disk_free_zone_bitmaps(struct gendisk *disk); 398void disk_clear_zone_settings(struct gendisk *disk); 399int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd, 400 unsigned long arg); 401int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode, 402 unsigned int cmd, unsigned long arg); 403#else /* CONFIG_BLK_DEV_ZONED */ 404static inline void disk_free_zone_bitmaps(struct gendisk *disk) {} 405static inline void disk_clear_zone_settings(struct gendisk *disk) {} 406static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 407 unsigned int cmd, unsigned long arg) 408{ 409 return -ENOTTY; 410} 411static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 412 blk_mode_t mode, unsigned int cmd, unsigned long arg) 413{ 414 return -ENOTTY; 415} 416#endif /* CONFIG_BLK_DEV_ZONED */ 417 418struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 419void bdev_add(struct block_device *bdev, dev_t dev); 420 421int blk_alloc_ext_minor(void); 422void blk_free_ext_minor(unsigned int minor); 423#define ADDPART_FLAG_NONE 0 424#define ADDPART_FLAG_RAID 1 425#define ADDPART_FLAG_WHOLEDISK 2 426int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 427 sector_t length); 428int bdev_del_partition(struct gendisk *disk, int partno); 429int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 430 sector_t length); 431void drop_partition(struct block_device *part); 432 433void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors); 434 435struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 436 struct lock_class_key *lkclass); 437 438int bio_add_hw_page(struct request_queue *q, struct bio *bio, 439 struct page *page, unsigned int len, unsigned int offset, 440 unsigned int max_sectors, bool *same_page); 441 442/* 443 * Clean up a page appropriately, where the page may be pinned, may have a 444 * ref taken on it or neither. 445 */ 446static inline void bio_release_page(struct bio *bio, struct page *page) 447{ 448 if (bio_flagged(bio, BIO_PAGE_PINNED)) 449 unpin_user_page(page); 450} 451 452struct request_queue *blk_alloc_queue(int node_id); 453 454int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode); 455 456int disk_alloc_events(struct gendisk *disk); 457void disk_add_events(struct gendisk *disk); 458void disk_del_events(struct gendisk *disk); 459void disk_release_events(struct gendisk *disk); 460void disk_block_events(struct gendisk *disk); 461void disk_unblock_events(struct gendisk *disk); 462void disk_flush_events(struct gendisk *disk, unsigned int mask); 463extern struct device_attribute dev_attr_events; 464extern struct device_attribute dev_attr_events_async; 465extern struct device_attribute dev_attr_events_poll_msecs; 466 467extern struct attribute_group blk_trace_attr_group; 468 469blk_mode_t file_to_blk_mode(struct file *file); 470int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode, 471 loff_t lstart, loff_t lend); 472long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 473long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 474 475extern const struct address_space_operations def_blk_aops; 476 477int disk_register_independent_access_ranges(struct gendisk *disk); 478void disk_unregister_independent_access_ranges(struct gendisk *disk); 479 480#ifdef CONFIG_FAIL_MAKE_REQUEST 481bool should_fail_request(struct block_device *part, unsigned int bytes); 482#else /* CONFIG_FAIL_MAKE_REQUEST */ 483static inline bool should_fail_request(struct block_device *part, 484 unsigned int bytes) 485{ 486 return false; 487} 488#endif /* CONFIG_FAIL_MAKE_REQUEST */ 489 490/* 491 * Optimized request reference counting. Ideally we'd make timeouts be more 492 * clever, as that's the only reason we need references at all... But until 493 * this happens, this is faster than using refcount_t. Also see: 494 * 495 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") 496 */ 497#define req_ref_zero_or_close_to_overflow(req) \ 498 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) 499 500static inline bool req_ref_inc_not_zero(struct request *req) 501{ 502 return atomic_inc_not_zero(&req->ref); 503} 504 505static inline bool req_ref_put_and_test(struct request *req) 506{ 507 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); 508 return atomic_dec_and_test(&req->ref); 509} 510 511static inline void req_ref_set(struct request *req, int value) 512{ 513 atomic_set(&req->ref, value); 514} 515 516static inline int req_ref_read(struct request *req) 517{ 518 return atomic_read(&req->ref); 519} 520 521#endif /* BLK_INTERNAL_H */