Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/sections.h>
21#include <asm/bug.h>
22#include <asm/page.h>
23#include <asm/uv.h>
24
25extern pgd_t swapper_pg_dir[];
26extern pgd_t invalid_pg_dir[];
27extern void paging_init(void);
28extern unsigned long s390_invalid_asce;
29
30enum {
31 PG_DIRECT_MAP_4K = 0,
32 PG_DIRECT_MAP_1M,
33 PG_DIRECT_MAP_2G,
34 PG_DIRECT_MAP_MAX
35};
36
37extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]);
38
39static inline void update_page_count(int level, long count)
40{
41 if (IS_ENABLED(CONFIG_PROC_FS))
42 atomic_long_add(count, &direct_pages_count[level]);
43}
44
45/*
46 * The S390 doesn't have any external MMU info: the kernel page
47 * tables contain all the necessary information.
48 */
49#define update_mmu_cache(vma, address, ptep) do { } while (0)
50#define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
51#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
52
53/*
54 * ZERO_PAGE is a global shared page that is always zero; used
55 * for zero-mapped memory areas etc..
56 */
57
58extern unsigned long empty_zero_page;
59extern unsigned long zero_page_mask;
60
61#define ZERO_PAGE(vaddr) \
62 (virt_to_page((void *)(empty_zero_page + \
63 (((unsigned long)(vaddr)) &zero_page_mask))))
64#define __HAVE_COLOR_ZERO_PAGE
65
66/* TODO: s390 cannot support io_remap_pfn_range... */
67
68#define pte_ERROR(e) \
69 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
70#define pmd_ERROR(e) \
71 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
72#define pud_ERROR(e) \
73 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
74#define p4d_ERROR(e) \
75 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
76#define pgd_ERROR(e) \
77 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
78
79/*
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. 512GB are reserved for vmalloc by default.
82 * At the top of the vmalloc area a 2GB area is reserved where modules
83 * will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a
85 * 2GB frame is branch prediction unit friendly.
86 */
87extern unsigned long __bootdata_preserved(VMALLOC_START);
88extern unsigned long __bootdata_preserved(VMALLOC_END);
89#define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
90extern struct page *__bootdata_preserved(vmemmap);
91extern unsigned long __bootdata_preserved(vmemmap_size);
92
93extern unsigned long __bootdata_preserved(MODULES_VADDR);
94extern unsigned long __bootdata_preserved(MODULES_END);
95#define MODULES_VADDR MODULES_VADDR
96#define MODULES_END MODULES_END
97#define MODULES_LEN (1UL << 31)
98
99static inline int is_module_addr(void *addr)
100{
101 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
102 if (addr < (void *)MODULES_VADDR)
103 return 0;
104 if (addr > (void *)MODULES_END)
105 return 0;
106 return 1;
107}
108
109/*
110 * A 64 bit pagetable entry of S390 has following format:
111 * | PFRA |0IPC| OS |
112 * 0000000000111111111122222222223333333333444444444455555555556666
113 * 0123456789012345678901234567890123456789012345678901234567890123
114 *
115 * I Page-Invalid Bit: Page is not available for address-translation
116 * P Page-Protection Bit: Store access not possible for page
117 * C Change-bit override: HW is not required to set change bit
118 *
119 * A 64 bit segmenttable entry of S390 has following format:
120 * | P-table origin | TT
121 * 0000000000111111111122222222223333333333444444444455555555556666
122 * 0123456789012345678901234567890123456789012345678901234567890123
123 *
124 * I Segment-Invalid Bit: Segment is not available for address-translation
125 * C Common-Segment Bit: Segment is not private (PoP 3-30)
126 * P Page-Protection Bit: Store access not possible for page
127 * TT Type 00
128 *
129 * A 64 bit region table entry of S390 has following format:
130 * | S-table origin | TF TTTL
131 * 0000000000111111111122222222223333333333444444444455555555556666
132 * 0123456789012345678901234567890123456789012345678901234567890123
133 *
134 * I Segment-Invalid Bit: Segment is not available for address-translation
135 * TT Type 01
136 * TF
137 * TL Table length
138 *
139 * The 64 bit regiontable origin of S390 has following format:
140 * | region table origon | DTTL
141 * 0000000000111111111122222222223333333333444444444455555555556666
142 * 0123456789012345678901234567890123456789012345678901234567890123
143 *
144 * X Space-Switch event:
145 * G Segment-Invalid Bit:
146 * P Private-Space Bit:
147 * S Storage-Alteration:
148 * R Real space
149 * TL Table-Length:
150 *
151 * A storage key has the following format:
152 * | ACC |F|R|C|0|
153 * 0 3 4 5 6 7
154 * ACC: access key
155 * F : fetch protection bit
156 * R : referenced bit
157 * C : changed bit
158 */
159
160/* Hardware bits in the page table entry */
161#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
162#define _PAGE_PROTECT 0x200 /* HW read-only bit */
163#define _PAGE_INVALID 0x400 /* HW invalid bit */
164#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
165
166/* Software bits in the page table entry */
167#define _PAGE_PRESENT 0x001 /* SW pte present bit */
168#define _PAGE_YOUNG 0x004 /* SW pte young bit */
169#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
170#define _PAGE_READ 0x010 /* SW pte read bit */
171#define _PAGE_WRITE 0x020 /* SW pte write bit */
172#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
173#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
174
175#ifdef CONFIG_MEM_SOFT_DIRTY
176#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
177#else
178#define _PAGE_SOFT_DIRTY 0x000
179#endif
180
181#define _PAGE_SW_BITS 0xffUL /* All SW bits */
182
183#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
184
185/* Set of bits not changed in pte_modify */
186#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
187 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
188
189/*
190 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
191 * HW bit and all SW bits.
192 */
193#define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS)
194
195/*
196 * handle_pte_fault uses pte_present and pte_none to find out the pte type
197 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
198 * distinguish present from not-present ptes. It is changed only with the page
199 * table lock held.
200 *
201 * The following table gives the different possible bit combinations for
202 * the pte hardware and software bits in the last 12 bits of a pte
203 * (. unassigned bit, x don't care, t swap type):
204 *
205 * 842100000000
206 * 000084210000
207 * 000000008421
208 * .IR.uswrdy.p
209 * empty .10.00000000
210 * swap .11..ttttt.0
211 * prot-none, clean, old .11.xx0000.1
212 * prot-none, clean, young .11.xx0001.1
213 * prot-none, dirty, old .11.xx0010.1
214 * prot-none, dirty, young .11.xx0011.1
215 * read-only, clean, old .11.xx0100.1
216 * read-only, clean, young .01.xx0101.1
217 * read-only, dirty, old .11.xx0110.1
218 * read-only, dirty, young .01.xx0111.1
219 * read-write, clean, old .11.xx1100.1
220 * read-write, clean, young .01.xx1101.1
221 * read-write, dirty, old .10.xx1110.1
222 * read-write, dirty, young .00.xx1111.1
223 * HW-bits: R read-only, I invalid
224 * SW-bits: p present, y young, d dirty, r read, w write, s special,
225 * u unused, l large
226 *
227 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
228 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
229 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
230 */
231
232/* Bits in the segment/region table address-space-control-element */
233#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
234#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
235#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
236#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
237#define _ASCE_REAL_SPACE 0x20 /* real space control */
238#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
239#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
240#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
241#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
242#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
243#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
244
245/* Bits in the region table entry */
246#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
247#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
248#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
249#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
250#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
251#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
252#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
253#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
254#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
255#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
256
257#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
258#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
259#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
260#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
261#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
262#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
263
264#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
265#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
266#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
267#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
268#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
269#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
270
271#ifdef CONFIG_MEM_SOFT_DIRTY
272#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
273#else
274#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
275#endif
276
277#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
278
279/* Bits in the segment table entry */
280#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
281#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
282#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
283#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
284#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
285#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
286#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
287#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
288#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
289
290#define _SEGMENT_ENTRY (0)
291#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
292
293#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
294#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
295#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
296#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
297#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
298
299#ifdef CONFIG_MEM_SOFT_DIRTY
300#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
301#else
302#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
303#endif
304
305#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
306#define _PAGE_ENTRIES 256 /* number of page table entries */
307
308#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
309#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
310
311#define _REGION1_SHIFT 53
312#define _REGION2_SHIFT 42
313#define _REGION3_SHIFT 31
314#define _SEGMENT_SHIFT 20
315
316#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
317#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
318#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
319#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
320#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
321
322#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
323#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
324#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
325#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
326
327#define _REGION1_MASK (~(_REGION1_SIZE - 1))
328#define _REGION2_MASK (~(_REGION2_SIZE - 1))
329#define _REGION3_MASK (~(_REGION3_SIZE - 1))
330#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
331
332#define PMD_SHIFT _SEGMENT_SHIFT
333#define PUD_SHIFT _REGION3_SHIFT
334#define P4D_SHIFT _REGION2_SHIFT
335#define PGDIR_SHIFT _REGION1_SHIFT
336
337#define PMD_SIZE _SEGMENT_SIZE
338#define PUD_SIZE _REGION3_SIZE
339#define P4D_SIZE _REGION2_SIZE
340#define PGDIR_SIZE _REGION1_SIZE
341
342#define PMD_MASK _SEGMENT_MASK
343#define PUD_MASK _REGION3_MASK
344#define P4D_MASK _REGION2_MASK
345#define PGDIR_MASK _REGION1_MASK
346
347#define PTRS_PER_PTE _PAGE_ENTRIES
348#define PTRS_PER_PMD _CRST_ENTRIES
349#define PTRS_PER_PUD _CRST_ENTRIES
350#define PTRS_PER_P4D _CRST_ENTRIES
351#define PTRS_PER_PGD _CRST_ENTRIES
352
353/*
354 * Segment table and region3 table entry encoding
355 * (R = read-only, I = invalid, y = young bit):
356 * dy..R...I...wr
357 * prot-none, clean, old 00..1...1...00
358 * prot-none, clean, young 01..1...1...00
359 * prot-none, dirty, old 10..1...1...00
360 * prot-none, dirty, young 11..1...1...00
361 * read-only, clean, old 00..1...1...01
362 * read-only, clean, young 01..1...0...01
363 * read-only, dirty, old 10..1...1...01
364 * read-only, dirty, young 11..1...0...01
365 * read-write, clean, old 00..1...1...11
366 * read-write, clean, young 01..1...0...11
367 * read-write, dirty, old 10..0...1...11
368 * read-write, dirty, young 11..0...0...11
369 * The segment table origin is used to distinguish empty (origin==0) from
370 * read-write, old segment table entries (origin!=0)
371 * HW-bits: R read-only, I invalid
372 * SW-bits: y young, d dirty, r read, w write
373 */
374
375/* Page status table bits for virtualization */
376#define PGSTE_ACC_BITS 0xf000000000000000UL
377#define PGSTE_FP_BIT 0x0800000000000000UL
378#define PGSTE_PCL_BIT 0x0080000000000000UL
379#define PGSTE_HR_BIT 0x0040000000000000UL
380#define PGSTE_HC_BIT 0x0020000000000000UL
381#define PGSTE_GR_BIT 0x0004000000000000UL
382#define PGSTE_GC_BIT 0x0002000000000000UL
383#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
384#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
385#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
386
387/* Guest Page State used for virtualization */
388#define _PGSTE_GPS_ZERO 0x0000000080000000UL
389#define _PGSTE_GPS_NODAT 0x0000000040000000UL
390#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
391#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
392#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
393#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
394#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
395
396/*
397 * A user page table pointer has the space-switch-event bit, the
398 * private-space-control bit and the storage-alteration-event-control
399 * bit set. A kernel page table pointer doesn't need them.
400 */
401#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
402 _ASCE_ALT_EVENT)
403
404/*
405 * Page protection definitions.
406 */
407#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
408#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
409 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
410#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
411 _PAGE_INVALID | _PAGE_PROTECT)
412#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
414#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 _PAGE_INVALID | _PAGE_PROTECT)
416
417#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
418 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
419#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
420 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
421#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
422 _PAGE_PROTECT | _PAGE_NOEXEC)
423#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
424 _PAGE_YOUNG | _PAGE_DIRTY)
425
426/*
427 * On s390 the page table entry has an invalid bit and a read-only bit.
428 * Read permission implies execute permission and write permission
429 * implies read permission.
430 */
431 /*xwr*/
432
433/*
434 * Segment entry (large page) protection definitions.
435 */
436#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
437 _SEGMENT_ENTRY_PROTECT)
438#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
439 _SEGMENT_ENTRY_READ | \
440 _SEGMENT_ENTRY_NOEXEC)
441#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
442 _SEGMENT_ENTRY_READ)
443#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
444 _SEGMENT_ENTRY_WRITE | \
445 _SEGMENT_ENTRY_NOEXEC)
446#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
447 _SEGMENT_ENTRY_WRITE)
448#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
449 _SEGMENT_ENTRY_LARGE | \
450 _SEGMENT_ENTRY_READ | \
451 _SEGMENT_ENTRY_WRITE | \
452 _SEGMENT_ENTRY_YOUNG | \
453 _SEGMENT_ENTRY_DIRTY | \
454 _SEGMENT_ENTRY_NOEXEC)
455#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
456 _SEGMENT_ENTRY_LARGE | \
457 _SEGMENT_ENTRY_READ | \
458 _SEGMENT_ENTRY_YOUNG | \
459 _SEGMENT_ENTRY_PROTECT | \
460 _SEGMENT_ENTRY_NOEXEC)
461#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
462 _SEGMENT_ENTRY_LARGE | \
463 _SEGMENT_ENTRY_READ | \
464 _SEGMENT_ENTRY_WRITE | \
465 _SEGMENT_ENTRY_YOUNG | \
466 _SEGMENT_ENTRY_DIRTY)
467
468/*
469 * Region3 entry (large page) protection definitions.
470 */
471
472#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
473 _REGION3_ENTRY_LARGE | \
474 _REGION3_ENTRY_READ | \
475 _REGION3_ENTRY_WRITE | \
476 _REGION3_ENTRY_YOUNG | \
477 _REGION3_ENTRY_DIRTY | \
478 _REGION_ENTRY_NOEXEC)
479#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
480 _REGION3_ENTRY_LARGE | \
481 _REGION3_ENTRY_READ | \
482 _REGION3_ENTRY_YOUNG | \
483 _REGION_ENTRY_PROTECT | \
484 _REGION_ENTRY_NOEXEC)
485#define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \
486 _REGION3_ENTRY_LARGE | \
487 _REGION3_ENTRY_READ | \
488 _REGION3_ENTRY_WRITE | \
489 _REGION3_ENTRY_YOUNG | \
490 _REGION3_ENTRY_DIRTY)
491
492static inline bool mm_p4d_folded(struct mm_struct *mm)
493{
494 return mm->context.asce_limit <= _REGION1_SIZE;
495}
496#define mm_p4d_folded(mm) mm_p4d_folded(mm)
497
498static inline bool mm_pud_folded(struct mm_struct *mm)
499{
500 return mm->context.asce_limit <= _REGION2_SIZE;
501}
502#define mm_pud_folded(mm) mm_pud_folded(mm)
503
504static inline bool mm_pmd_folded(struct mm_struct *mm)
505{
506 return mm->context.asce_limit <= _REGION3_SIZE;
507}
508#define mm_pmd_folded(mm) mm_pmd_folded(mm)
509
510static inline int mm_has_pgste(struct mm_struct *mm)
511{
512#ifdef CONFIG_PGSTE
513 if (unlikely(mm->context.has_pgste))
514 return 1;
515#endif
516 return 0;
517}
518
519static inline int mm_is_protected(struct mm_struct *mm)
520{
521#ifdef CONFIG_PGSTE
522 if (unlikely(atomic_read(&mm->context.protected_count)))
523 return 1;
524#endif
525 return 0;
526}
527
528static inline int mm_alloc_pgste(struct mm_struct *mm)
529{
530#ifdef CONFIG_PGSTE
531 if (unlikely(mm->context.alloc_pgste))
532 return 1;
533#endif
534 return 0;
535}
536
537static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
538{
539 return __pte(pte_val(pte) & ~pgprot_val(prot));
540}
541
542static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
543{
544 return __pte(pte_val(pte) | pgprot_val(prot));
545}
546
547static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
548{
549 return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
550}
551
552static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
553{
554 return __pmd(pmd_val(pmd) | pgprot_val(prot));
555}
556
557static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
558{
559 return __pud(pud_val(pud) & ~pgprot_val(prot));
560}
561
562static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
563{
564 return __pud(pud_val(pud) | pgprot_val(prot));
565}
566
567/*
568 * In the case that a guest uses storage keys
569 * faults should no longer be backed by zero pages
570 */
571#define mm_forbids_zeropage mm_has_pgste
572static inline int mm_uses_skeys(struct mm_struct *mm)
573{
574#ifdef CONFIG_PGSTE
575 if (mm->context.uses_skeys)
576 return 1;
577#endif
578 return 0;
579}
580
581static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
582{
583 union register_pair r1 = { .even = old, .odd = new, };
584 unsigned long address = (unsigned long)ptr | 1;
585
586 asm volatile(
587 " csp %[r1],%[address]"
588 : [r1] "+&d" (r1.pair), "+m" (*ptr)
589 : [address] "d" (address)
590 : "cc");
591}
592
593static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
594{
595 union register_pair r1 = { .even = old, .odd = new, };
596 unsigned long address = (unsigned long)ptr | 1;
597
598 asm volatile(
599 " cspg %[r1],%[address]"
600 : [r1] "+&d" (r1.pair), "+m" (*ptr)
601 : [address] "d" (address)
602 : "cc");
603}
604
605#define CRDTE_DTT_PAGE 0x00UL
606#define CRDTE_DTT_SEGMENT 0x10UL
607#define CRDTE_DTT_REGION3 0x14UL
608#define CRDTE_DTT_REGION2 0x18UL
609#define CRDTE_DTT_REGION1 0x1cUL
610
611static inline void crdte(unsigned long old, unsigned long new,
612 unsigned long *table, unsigned long dtt,
613 unsigned long address, unsigned long asce)
614{
615 union register_pair r1 = { .even = old, .odd = new, };
616 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
617
618 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
619 : [r1] "+&d" (r1.pair)
620 : [r2] "d" (r2.pair), [asce] "a" (asce)
621 : "memory", "cc");
622}
623
624/*
625 * pgd/p4d/pud/pmd/pte query functions
626 */
627static inline int pgd_folded(pgd_t pgd)
628{
629 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
630}
631
632static inline int pgd_present(pgd_t pgd)
633{
634 if (pgd_folded(pgd))
635 return 1;
636 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
637}
638
639static inline int pgd_none(pgd_t pgd)
640{
641 if (pgd_folded(pgd))
642 return 0;
643 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
644}
645
646static inline int pgd_bad(pgd_t pgd)
647{
648 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
649 return 0;
650 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
651}
652
653static inline unsigned long pgd_pfn(pgd_t pgd)
654{
655 unsigned long origin_mask;
656
657 origin_mask = _REGION_ENTRY_ORIGIN;
658 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
659}
660
661static inline int p4d_folded(p4d_t p4d)
662{
663 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
664}
665
666static inline int p4d_present(p4d_t p4d)
667{
668 if (p4d_folded(p4d))
669 return 1;
670 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
671}
672
673static inline int p4d_none(p4d_t p4d)
674{
675 if (p4d_folded(p4d))
676 return 0;
677 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
678}
679
680static inline unsigned long p4d_pfn(p4d_t p4d)
681{
682 unsigned long origin_mask;
683
684 origin_mask = _REGION_ENTRY_ORIGIN;
685 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
686}
687
688static inline int pud_folded(pud_t pud)
689{
690 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
691}
692
693static inline int pud_present(pud_t pud)
694{
695 if (pud_folded(pud))
696 return 1;
697 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
698}
699
700static inline int pud_none(pud_t pud)
701{
702 if (pud_folded(pud))
703 return 0;
704 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
705}
706
707#define pud_leaf pud_large
708static inline int pud_large(pud_t pud)
709{
710 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
711 return 0;
712 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
713}
714
715#define pmd_leaf pmd_large
716static inline int pmd_large(pmd_t pmd)
717{
718 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
719}
720
721static inline int pmd_bad(pmd_t pmd)
722{
723 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
724 return 1;
725 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
726}
727
728static inline int pud_bad(pud_t pud)
729{
730 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
731
732 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
733 return 1;
734 if (type < _REGION_ENTRY_TYPE_R3)
735 return 0;
736 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
737}
738
739static inline int p4d_bad(p4d_t p4d)
740{
741 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
742
743 if (type > _REGION_ENTRY_TYPE_R2)
744 return 1;
745 if (type < _REGION_ENTRY_TYPE_R2)
746 return 0;
747 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
748}
749
750static inline int pmd_present(pmd_t pmd)
751{
752 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
753}
754
755static inline int pmd_none(pmd_t pmd)
756{
757 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
758}
759
760#define pmd_write pmd_write
761static inline int pmd_write(pmd_t pmd)
762{
763 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
764}
765
766#define pud_write pud_write
767static inline int pud_write(pud_t pud)
768{
769 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
770}
771
772static inline int pmd_dirty(pmd_t pmd)
773{
774 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
775}
776
777#define pmd_young pmd_young
778static inline int pmd_young(pmd_t pmd)
779{
780 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
781}
782
783static inline int pte_present(pte_t pte)
784{
785 /* Bit pattern: (pte & 0x001) == 0x001 */
786 return (pte_val(pte) & _PAGE_PRESENT) != 0;
787}
788
789static inline int pte_none(pte_t pte)
790{
791 /* Bit pattern: pte == 0x400 */
792 return pte_val(pte) == _PAGE_INVALID;
793}
794
795static inline int pte_swap(pte_t pte)
796{
797 /* Bit pattern: (pte & 0x201) == 0x200 */
798 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
799 == _PAGE_PROTECT;
800}
801
802static inline int pte_special(pte_t pte)
803{
804 return (pte_val(pte) & _PAGE_SPECIAL);
805}
806
807#define __HAVE_ARCH_PTE_SAME
808static inline int pte_same(pte_t a, pte_t b)
809{
810 return pte_val(a) == pte_val(b);
811}
812
813#ifdef CONFIG_NUMA_BALANCING
814static inline int pte_protnone(pte_t pte)
815{
816 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
817}
818
819static inline int pmd_protnone(pmd_t pmd)
820{
821 /* pmd_large(pmd) implies pmd_present(pmd) */
822 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
823}
824#endif
825
826static inline int pte_swp_exclusive(pte_t pte)
827{
828 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
829}
830
831static inline pte_t pte_swp_mkexclusive(pte_t pte)
832{
833 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
834}
835
836static inline pte_t pte_swp_clear_exclusive(pte_t pte)
837{
838 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
839}
840
841static inline int pte_soft_dirty(pte_t pte)
842{
843 return pte_val(pte) & _PAGE_SOFT_DIRTY;
844}
845#define pte_swp_soft_dirty pte_soft_dirty
846
847static inline pte_t pte_mksoft_dirty(pte_t pte)
848{
849 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
850}
851#define pte_swp_mksoft_dirty pte_mksoft_dirty
852
853static inline pte_t pte_clear_soft_dirty(pte_t pte)
854{
855 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
856}
857#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
858
859static inline int pmd_soft_dirty(pmd_t pmd)
860{
861 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
862}
863
864static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
865{
866 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
867}
868
869static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
870{
871 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
872}
873
874/*
875 * query functions pte_write/pte_dirty/pte_young only work if
876 * pte_present() is true. Undefined behaviour if not..
877 */
878static inline int pte_write(pte_t pte)
879{
880 return (pte_val(pte) & _PAGE_WRITE) != 0;
881}
882
883static inline int pte_dirty(pte_t pte)
884{
885 return (pte_val(pte) & _PAGE_DIRTY) != 0;
886}
887
888static inline int pte_young(pte_t pte)
889{
890 return (pte_val(pte) & _PAGE_YOUNG) != 0;
891}
892
893#define __HAVE_ARCH_PTE_UNUSED
894static inline int pte_unused(pte_t pte)
895{
896 return pte_val(pte) & _PAGE_UNUSED;
897}
898
899/*
900 * Extract the pgprot value from the given pte while at the same time making it
901 * usable for kernel address space mappings where fault driven dirty and
902 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
903 * must not be set.
904 */
905static inline pgprot_t pte_pgprot(pte_t pte)
906{
907 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
908
909 if (pte_write(pte))
910 pte_flags |= pgprot_val(PAGE_KERNEL);
911 else
912 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
913 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
914
915 return __pgprot(pte_flags);
916}
917
918/*
919 * pgd/pmd/pte modification functions
920 */
921
922static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
923{
924 WRITE_ONCE(*pgdp, pgd);
925}
926
927static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
928{
929 WRITE_ONCE(*p4dp, p4d);
930}
931
932static inline void set_pud(pud_t *pudp, pud_t pud)
933{
934 WRITE_ONCE(*pudp, pud);
935}
936
937static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
938{
939 WRITE_ONCE(*pmdp, pmd);
940}
941
942static inline void set_pte(pte_t *ptep, pte_t pte)
943{
944 WRITE_ONCE(*ptep, pte);
945}
946
947static inline void pgd_clear(pgd_t *pgd)
948{
949 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
950 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
951}
952
953static inline void p4d_clear(p4d_t *p4d)
954{
955 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
956 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
957}
958
959static inline void pud_clear(pud_t *pud)
960{
961 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
962 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
963}
964
965static inline void pmd_clear(pmd_t *pmdp)
966{
967 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
968}
969
970static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
971{
972 set_pte(ptep, __pte(_PAGE_INVALID));
973}
974
975/*
976 * The following pte modification functions only work if
977 * pte_present() is true. Undefined behaviour if not..
978 */
979static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
980{
981 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
982 pte = set_pte_bit(pte, newprot);
983 /*
984 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
985 * has the invalid bit set, clear it again for readable, young pages
986 */
987 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
988 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
989 /*
990 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
991 * protection bit set, clear it again for writable, dirty pages
992 */
993 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
994 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
995 return pte;
996}
997
998static inline pte_t pte_wrprotect(pte_t pte)
999{
1000 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1001 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1002}
1003
1004static inline pte_t pte_mkwrite_novma(pte_t pte)
1005{
1006 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1007 if (pte_val(pte) & _PAGE_DIRTY)
1008 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1009 return pte;
1010}
1011
1012static inline pte_t pte_mkclean(pte_t pte)
1013{
1014 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1015 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1016}
1017
1018static inline pte_t pte_mkdirty(pte_t pte)
1019{
1020 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1021 if (pte_val(pte) & _PAGE_WRITE)
1022 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1023 return pte;
1024}
1025
1026static inline pte_t pte_mkold(pte_t pte)
1027{
1028 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1029 return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1030}
1031
1032static inline pte_t pte_mkyoung(pte_t pte)
1033{
1034 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1035 if (pte_val(pte) & _PAGE_READ)
1036 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1037 return pte;
1038}
1039
1040static inline pte_t pte_mkspecial(pte_t pte)
1041{
1042 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1043}
1044
1045#ifdef CONFIG_HUGETLB_PAGE
1046static inline pte_t pte_mkhuge(pte_t pte)
1047{
1048 return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1049}
1050#endif
1051
1052#define IPTE_GLOBAL 0
1053#define IPTE_LOCAL 1
1054
1055#define IPTE_NODAT 0x400
1056#define IPTE_GUEST_ASCE 0x800
1057
1058static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1059 unsigned long opt, unsigned long asce,
1060 int local)
1061{
1062 unsigned long pto;
1063
1064 pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1065 asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1066 : "+m" (*ptep)
1067 : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1068 [asce] "a" (asce), [m4] "i" (local));
1069}
1070
1071static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1072 unsigned long opt, unsigned long asce,
1073 int local)
1074{
1075 unsigned long pto = __pa(ptep);
1076
1077 if (__builtin_constant_p(opt) && opt == 0) {
1078 /* Invalidation + TLB flush for the pte */
1079 asm volatile(
1080 " ipte %[r1],%[r2],0,%[m4]"
1081 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1082 [m4] "i" (local));
1083 return;
1084 }
1085
1086 /* Invalidate ptes with options + TLB flush of the ptes */
1087 opt = opt | (asce & _ASCE_ORIGIN);
1088 asm volatile(
1089 " ipte %[r1],%[r2],%[r3],%[m4]"
1090 : [r2] "+a" (address), [r3] "+a" (opt)
1091 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1092}
1093
1094static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1095 pte_t *ptep, int local)
1096{
1097 unsigned long pto = __pa(ptep);
1098
1099 /* Invalidate a range of ptes + TLB flush of the ptes */
1100 do {
1101 asm volatile(
1102 " ipte %[r1],%[r2],%[r3],%[m4]"
1103 : [r2] "+a" (address), [r3] "+a" (nr)
1104 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1105 } while (nr != 255);
1106}
1107
1108/*
1109 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1110 * both clear the TLB for the unmapped pte. The reason is that
1111 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1112 * to modify an active pte. The sequence is
1113 * 1) ptep_get_and_clear
1114 * 2) set_pte_at
1115 * 3) flush_tlb_range
1116 * On s390 the tlb needs to get flushed with the modification of the pte
1117 * if the pte is active. The only way how this can be implemented is to
1118 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1119 * is a nop.
1120 */
1121pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1122pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1123
1124#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1125static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1126 unsigned long addr, pte_t *ptep)
1127{
1128 pte_t pte = *ptep;
1129
1130 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1131 return pte_young(pte);
1132}
1133
1134#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1135static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1136 unsigned long address, pte_t *ptep)
1137{
1138 return ptep_test_and_clear_young(vma, address, ptep);
1139}
1140
1141#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1142static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1143 unsigned long addr, pte_t *ptep)
1144{
1145 pte_t res;
1146
1147 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1148 /* At this point the reference through the mapping is still present */
1149 if (mm_is_protected(mm) && pte_present(res))
1150 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1151 return res;
1152}
1153
1154#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1155pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1156void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1157 pte_t *, pte_t, pte_t);
1158
1159#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1160static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1161 unsigned long addr, pte_t *ptep)
1162{
1163 pte_t res;
1164
1165 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1166 /* At this point the reference through the mapping is still present */
1167 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1168 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1169 return res;
1170}
1171
1172/*
1173 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1174 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1175 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1176 * cannot be accessed while the batched unmap is running. In this case
1177 * full==1 and a simple pte_clear is enough. See tlb.h.
1178 */
1179#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1180static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1181 unsigned long addr,
1182 pte_t *ptep, int full)
1183{
1184 pte_t res;
1185
1186 if (full) {
1187 res = *ptep;
1188 set_pte(ptep, __pte(_PAGE_INVALID));
1189 } else {
1190 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1191 }
1192 /* Nothing to do */
1193 if (!mm_is_protected(mm) || !pte_present(res))
1194 return res;
1195 /*
1196 * At this point the reference through the mapping is still present.
1197 * The notifier should have destroyed all protected vCPUs at this
1198 * point, so the destroy should be successful.
1199 */
1200 if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1201 return res;
1202 /*
1203 * If something went wrong and the page could not be destroyed, or
1204 * if this is not a mm teardown, the slower export is used as
1205 * fallback instead.
1206 */
1207 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1208 return res;
1209}
1210
1211#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1212static inline void ptep_set_wrprotect(struct mm_struct *mm,
1213 unsigned long addr, pte_t *ptep)
1214{
1215 pte_t pte = *ptep;
1216
1217 if (pte_write(pte))
1218 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1219}
1220
1221/*
1222 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1223 * bits in the comparison. Those might change e.g. because of dirty and young
1224 * tracking.
1225 */
1226static inline int pte_allow_rdp(pte_t old, pte_t new)
1227{
1228 /*
1229 * Only allow changes from RO to RW
1230 */
1231 if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1232 return 0;
1233
1234 return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1235}
1236
1237static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1238 unsigned long address,
1239 pte_t *ptep)
1240{
1241 /*
1242 * RDP might not have propagated the PTE protection reset to all CPUs,
1243 * so there could be spurious TLB protection faults.
1244 * NOTE: This will also be called when a racing pagetable update on
1245 * another thread already installed the correct PTE. Both cases cannot
1246 * really be distinguished.
1247 * Therefore, only do the local TLB flush when RDP can be used, and the
1248 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1249 * A local RDP can be used to do the flush.
1250 */
1251 if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT))
1252 __ptep_rdp(address, ptep, 0, 0, 1);
1253}
1254#define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1255
1256void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1257 pte_t new);
1258
1259#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1260static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1261 unsigned long addr, pte_t *ptep,
1262 pte_t entry, int dirty)
1263{
1264 if (pte_same(*ptep, entry))
1265 return 0;
1266 if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1267 ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1268 else
1269 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1270 return 1;
1271}
1272
1273/*
1274 * Additional functions to handle KVM guest page tables
1275 */
1276void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1277 pte_t *ptep, pte_t entry);
1278void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1279void ptep_notify(struct mm_struct *mm, unsigned long addr,
1280 pte_t *ptep, unsigned long bits);
1281int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1282 pte_t *ptep, int prot, unsigned long bit);
1283void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1284 pte_t *ptep , int reset);
1285void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1286int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1287 pte_t *sptep, pte_t *tptep, pte_t pte);
1288void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1289
1290bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1291 pte_t *ptep);
1292int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1293 unsigned char key, bool nq);
1294int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1295 unsigned char key, unsigned char *oldkey,
1296 bool nq, bool mr, bool mc);
1297int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1298int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1299 unsigned char *key);
1300
1301int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1302 unsigned long bits, unsigned long value);
1303int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1304int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1305 unsigned long *oldpte, unsigned long *oldpgste);
1306void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1307void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1308void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1309void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1310
1311#define pgprot_writecombine pgprot_writecombine
1312pgprot_t pgprot_writecombine(pgprot_t prot);
1313
1314#define pgprot_writethrough pgprot_writethrough
1315pgprot_t pgprot_writethrough(pgprot_t prot);
1316
1317/*
1318 * Set multiple PTEs to consecutive pages with a single call. All PTEs
1319 * are within the same folio, PMD and VMA.
1320 */
1321static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1322 pte_t *ptep, pte_t entry, unsigned int nr)
1323{
1324 if (pte_present(entry))
1325 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1326 if (mm_has_pgste(mm)) {
1327 for (;;) {
1328 ptep_set_pte_at(mm, addr, ptep, entry);
1329 if (--nr == 0)
1330 break;
1331 ptep++;
1332 entry = __pte(pte_val(entry) + PAGE_SIZE);
1333 addr += PAGE_SIZE;
1334 }
1335 } else {
1336 for (;;) {
1337 set_pte(ptep, entry);
1338 if (--nr == 0)
1339 break;
1340 ptep++;
1341 entry = __pte(pte_val(entry) + PAGE_SIZE);
1342 }
1343 }
1344}
1345#define set_ptes set_ptes
1346
1347/*
1348 * Conversion functions: convert a page and protection to a page entry,
1349 * and a page entry and page directory to the page they refer to.
1350 */
1351static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1352{
1353 pte_t __pte;
1354
1355 __pte = __pte(physpage | pgprot_val(pgprot));
1356 if (!MACHINE_HAS_NX)
1357 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1358 return pte_mkyoung(__pte);
1359}
1360
1361static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1362{
1363 unsigned long physpage = page_to_phys(page);
1364 pte_t __pte = mk_pte_phys(physpage, pgprot);
1365
1366 if (pte_write(__pte) && PageDirty(page))
1367 __pte = pte_mkdirty(__pte);
1368 return __pte;
1369}
1370
1371#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1372#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1373#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1374#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1375
1376#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1377#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1378
1379static inline unsigned long pmd_deref(pmd_t pmd)
1380{
1381 unsigned long origin_mask;
1382
1383 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1384 if (pmd_large(pmd))
1385 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1386 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1387}
1388
1389static inline unsigned long pmd_pfn(pmd_t pmd)
1390{
1391 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1392}
1393
1394static inline unsigned long pud_deref(pud_t pud)
1395{
1396 unsigned long origin_mask;
1397
1398 origin_mask = _REGION_ENTRY_ORIGIN;
1399 if (pud_large(pud))
1400 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1401 return (unsigned long)__va(pud_val(pud) & origin_mask);
1402}
1403
1404static inline unsigned long pud_pfn(pud_t pud)
1405{
1406 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1407}
1408
1409/*
1410 * The pgd_offset function *always* adds the index for the top-level
1411 * region/segment table. This is done to get a sequence like the
1412 * following to work:
1413 * pgdp = pgd_offset(current->mm, addr);
1414 * pgd = READ_ONCE(*pgdp);
1415 * p4dp = p4d_offset(&pgd, addr);
1416 * ...
1417 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1418 * only add an index if they dereferenced the pointer.
1419 */
1420static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1421{
1422 unsigned long rste;
1423 unsigned int shift;
1424
1425 /* Get the first entry of the top level table */
1426 rste = pgd_val(*pgd);
1427 /* Pick up the shift from the table type of the first entry */
1428 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1429 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1430}
1431
1432#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1433
1434static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1435{
1436 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1437 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1438 return (p4d_t *) pgdp;
1439}
1440#define p4d_offset_lockless p4d_offset_lockless
1441
1442static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1443{
1444 return p4d_offset_lockless(pgdp, *pgdp, address);
1445}
1446
1447static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1448{
1449 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1450 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1451 return (pud_t *) p4dp;
1452}
1453#define pud_offset_lockless pud_offset_lockless
1454
1455static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1456{
1457 return pud_offset_lockless(p4dp, *p4dp, address);
1458}
1459#define pud_offset pud_offset
1460
1461static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1462{
1463 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1464 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1465 return (pmd_t *) pudp;
1466}
1467#define pmd_offset_lockless pmd_offset_lockless
1468
1469static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1470{
1471 return pmd_offset_lockless(pudp, *pudp, address);
1472}
1473#define pmd_offset pmd_offset
1474
1475static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1476{
1477 return (unsigned long) pmd_deref(pmd);
1478}
1479
1480static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1481{
1482 return end <= current->mm->context.asce_limit;
1483}
1484#define gup_fast_permitted gup_fast_permitted
1485
1486#define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1487#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1488#define pte_page(x) pfn_to_page(pte_pfn(x))
1489
1490#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1491#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1492#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1493#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1494
1495static inline pmd_t pmd_wrprotect(pmd_t pmd)
1496{
1497 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1498 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1499}
1500
1501static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1502{
1503 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1504 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1505 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1506 return pmd;
1507}
1508
1509static inline pmd_t pmd_mkclean(pmd_t pmd)
1510{
1511 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1512 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1513}
1514
1515static inline pmd_t pmd_mkdirty(pmd_t pmd)
1516{
1517 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1518 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1519 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1520 return pmd;
1521}
1522
1523static inline pud_t pud_wrprotect(pud_t pud)
1524{
1525 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1526 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1527}
1528
1529static inline pud_t pud_mkwrite(pud_t pud)
1530{
1531 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1532 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1533 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1534 return pud;
1535}
1536
1537static inline pud_t pud_mkclean(pud_t pud)
1538{
1539 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1540 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1541}
1542
1543static inline pud_t pud_mkdirty(pud_t pud)
1544{
1545 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1546 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1547 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1548 return pud;
1549}
1550
1551#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1552static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1553{
1554 /*
1555 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1556 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1557 */
1558 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1559 return pgprot_val(SEGMENT_NONE);
1560 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1561 return pgprot_val(SEGMENT_RO);
1562 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1563 return pgprot_val(SEGMENT_RX);
1564 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1565 return pgprot_val(SEGMENT_RW);
1566 return pgprot_val(SEGMENT_RWX);
1567}
1568
1569static inline pmd_t pmd_mkyoung(pmd_t pmd)
1570{
1571 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1572 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1573 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1574 return pmd;
1575}
1576
1577static inline pmd_t pmd_mkold(pmd_t pmd)
1578{
1579 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1580 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1581}
1582
1583static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1584{
1585 unsigned long mask;
1586
1587 mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1588 mask |= _SEGMENT_ENTRY_DIRTY;
1589 mask |= _SEGMENT_ENTRY_YOUNG;
1590 mask |= _SEGMENT_ENTRY_LARGE;
1591 mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1592 pmd = __pmd(pmd_val(pmd) & mask);
1593 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1594 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1595 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1596 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1597 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1598 return pmd;
1599}
1600
1601static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1602{
1603 return __pmd(physpage + massage_pgprot_pmd(pgprot));
1604}
1605
1606#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1607
1608static inline void __pmdp_csp(pmd_t *pmdp)
1609{
1610 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1611 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1612}
1613
1614#define IDTE_GLOBAL 0
1615#define IDTE_LOCAL 1
1616
1617#define IDTE_PTOA 0x0800
1618#define IDTE_NODAT 0x1000
1619#define IDTE_GUEST_ASCE 0x2000
1620
1621static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1622 unsigned long opt, unsigned long asce,
1623 int local)
1624{
1625 unsigned long sto;
1626
1627 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1628 if (__builtin_constant_p(opt) && opt == 0) {
1629 /* flush without guest asce */
1630 asm volatile(
1631 " idte %[r1],0,%[r2],%[m4]"
1632 : "+m" (*pmdp)
1633 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1634 [m4] "i" (local)
1635 : "cc" );
1636 } else {
1637 /* flush with guest asce */
1638 asm volatile(
1639 " idte %[r1],%[r3],%[r2],%[m4]"
1640 : "+m" (*pmdp)
1641 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1642 [r3] "a" (asce), [m4] "i" (local)
1643 : "cc" );
1644 }
1645}
1646
1647static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1648 unsigned long opt, unsigned long asce,
1649 int local)
1650{
1651 unsigned long r3o;
1652
1653 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1654 r3o |= _ASCE_TYPE_REGION3;
1655 if (__builtin_constant_p(opt) && opt == 0) {
1656 /* flush without guest asce */
1657 asm volatile(
1658 " idte %[r1],0,%[r2],%[m4]"
1659 : "+m" (*pudp)
1660 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1661 [m4] "i" (local)
1662 : "cc");
1663 } else {
1664 /* flush with guest asce */
1665 asm volatile(
1666 " idte %[r1],%[r3],%[r2],%[m4]"
1667 : "+m" (*pudp)
1668 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1669 [r3] "a" (asce), [m4] "i" (local)
1670 : "cc" );
1671 }
1672}
1673
1674pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1675pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1676pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1677
1678#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1679
1680#define __HAVE_ARCH_PGTABLE_DEPOSIT
1681void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1682 pgtable_t pgtable);
1683
1684#define __HAVE_ARCH_PGTABLE_WITHDRAW
1685pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1686
1687#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1688static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1689 unsigned long addr, pmd_t *pmdp,
1690 pmd_t entry, int dirty)
1691{
1692 VM_BUG_ON(addr & ~HPAGE_MASK);
1693
1694 entry = pmd_mkyoung(entry);
1695 if (dirty)
1696 entry = pmd_mkdirty(entry);
1697 if (pmd_val(*pmdp) == pmd_val(entry))
1698 return 0;
1699 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1700 return 1;
1701}
1702
1703#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1704static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1705 unsigned long addr, pmd_t *pmdp)
1706{
1707 pmd_t pmd = *pmdp;
1708
1709 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1710 return pmd_young(pmd);
1711}
1712
1713#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1714static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1715 unsigned long addr, pmd_t *pmdp)
1716{
1717 VM_BUG_ON(addr & ~HPAGE_MASK);
1718 return pmdp_test_and_clear_young(vma, addr, pmdp);
1719}
1720
1721static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1722 pmd_t *pmdp, pmd_t entry)
1723{
1724 if (!MACHINE_HAS_NX)
1725 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1726 set_pmd(pmdp, entry);
1727}
1728
1729static inline pmd_t pmd_mkhuge(pmd_t pmd)
1730{
1731 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1732 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1733 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1734}
1735
1736#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1737static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1738 unsigned long addr, pmd_t *pmdp)
1739{
1740 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1741}
1742
1743#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1744static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1745 unsigned long addr,
1746 pmd_t *pmdp, int full)
1747{
1748 if (full) {
1749 pmd_t pmd = *pmdp;
1750 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1751 return pmd;
1752 }
1753 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1754}
1755
1756#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1757static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1758 unsigned long addr, pmd_t *pmdp)
1759{
1760 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1761}
1762
1763#define __HAVE_ARCH_PMDP_INVALIDATE
1764static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1765 unsigned long addr, pmd_t *pmdp)
1766{
1767 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1768
1769 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1770}
1771
1772#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1773static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1774 unsigned long addr, pmd_t *pmdp)
1775{
1776 pmd_t pmd = *pmdp;
1777
1778 if (pmd_write(pmd))
1779 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1780}
1781
1782static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1783 unsigned long address,
1784 pmd_t *pmdp)
1785{
1786 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1787}
1788#define pmdp_collapse_flush pmdp_collapse_flush
1789
1790#define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1791#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1792
1793static inline int pmd_trans_huge(pmd_t pmd)
1794{
1795 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1796}
1797
1798#define has_transparent_hugepage has_transparent_hugepage
1799static inline int has_transparent_hugepage(void)
1800{
1801 return MACHINE_HAS_EDAT1 ? 1 : 0;
1802}
1803#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1804
1805/*
1806 * 64 bit swap entry format:
1807 * A page-table entry has some bits we have to treat in a special way.
1808 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1809 * as invalid.
1810 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1811 * | offset |E11XX|type |S0|
1812 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1813 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1814 *
1815 * Bits 0-51 store the offset.
1816 * Bit 52 (E) is used to remember PG_anon_exclusive.
1817 * Bits 57-61 store the type.
1818 * Bit 62 (S) is used for softdirty tracking.
1819 * Bits 55 and 56 (X) are unused.
1820 */
1821
1822#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1823#define __SWP_OFFSET_SHIFT 12
1824#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1825#define __SWP_TYPE_SHIFT 2
1826
1827static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1828{
1829 unsigned long pteval;
1830
1831 pteval = _PAGE_INVALID | _PAGE_PROTECT;
1832 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1833 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1834 return __pte(pteval);
1835}
1836
1837static inline unsigned long __swp_type(swp_entry_t entry)
1838{
1839 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1840}
1841
1842static inline unsigned long __swp_offset(swp_entry_t entry)
1843{
1844 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1845}
1846
1847static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1848{
1849 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1850}
1851
1852#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1853#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1854
1855extern int vmem_add_mapping(unsigned long start, unsigned long size);
1856extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1857extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1858extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1859extern void vmem_unmap_4k_page(unsigned long addr);
1860extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1861extern int s390_enable_sie(void);
1862extern int s390_enable_skey(void);
1863extern void s390_reset_cmma(struct mm_struct *mm);
1864
1865/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1866#define HAVE_ARCH_UNMAPPED_AREA
1867#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1868
1869#define pmd_pgtable(pmd) \
1870 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1871
1872#endif /* _S390_PAGE_H */