at v6.6-rc7 46 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5#ifndef _LINUX_BLKDEV_H 6#define _LINUX_BLKDEV_H 7 8#include <linux/types.h> 9#include <linux/blk_types.h> 10#include <linux/device.h> 11#include <linux/list.h> 12#include <linux/llist.h> 13#include <linux/minmax.h> 14#include <linux/timer.h> 15#include <linux/workqueue.h> 16#include <linux/wait.h> 17#include <linux/bio.h> 18#include <linux/gfp.h> 19#include <linux/kdev_t.h> 20#include <linux/rcupdate.h> 21#include <linux/percpu-refcount.h> 22#include <linux/blkzoned.h> 23#include <linux/sched.h> 24#include <linux/sbitmap.h> 25#include <linux/uuid.h> 26#include <linux/xarray.h> 27 28struct module; 29struct request_queue; 30struct elevator_queue; 31struct blk_trace; 32struct request; 33struct sg_io_hdr; 34struct blkcg_gq; 35struct blk_flush_queue; 36struct kiocb; 37struct pr_ops; 38struct rq_qos; 39struct blk_queue_stats; 40struct blk_stat_callback; 41struct blk_crypto_profile; 42 43extern const struct device_type disk_type; 44extern const struct device_type part_type; 45extern struct class block_class; 46 47/* 48 * Maximum number of blkcg policies allowed to be registered concurrently. 49 * Defined here to simplify include dependency. 50 */ 51#define BLKCG_MAX_POLS 6 52 53#define DISK_MAX_PARTS 256 54#define DISK_NAME_LEN 32 55 56#define PARTITION_META_INFO_VOLNAMELTH 64 57/* 58 * Enough for the string representation of any kind of UUID plus NULL. 59 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 60 */ 61#define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 62 63struct partition_meta_info { 64 char uuid[PARTITION_META_INFO_UUIDLTH]; 65 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 66}; 67 68/** 69 * DOC: genhd capability flags 70 * 71 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 72 * removable media. When set, the device remains present even when media is not 73 * inserted. Shall not be set for devices which are removed entirely when the 74 * media is removed. 75 * 76 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 77 * doesn't appear in sysfs, and can't be opened from userspace or using 78 * blkdev_get*. Used for the underlying components of multipath devices. 79 * 80 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 81 * scan for partitions from add_disk, and users can't add partitions manually. 82 * 83 */ 84enum { 85 GENHD_FL_REMOVABLE = 1 << 0, 86 GENHD_FL_HIDDEN = 1 << 1, 87 GENHD_FL_NO_PART = 1 << 2, 88}; 89 90enum { 91 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 92 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 93}; 94 95enum { 96 /* Poll even if events_poll_msecs is unset */ 97 DISK_EVENT_FLAG_POLL = 1 << 0, 98 /* Forward events to udev */ 99 DISK_EVENT_FLAG_UEVENT = 1 << 1, 100 /* Block event polling when open for exclusive write */ 101 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 102}; 103 104struct disk_events; 105struct badblocks; 106 107struct blk_integrity { 108 const struct blk_integrity_profile *profile; 109 unsigned char flags; 110 unsigned char tuple_size; 111 unsigned char interval_exp; 112 unsigned char tag_size; 113}; 114 115typedef unsigned int __bitwise blk_mode_t; 116 117/* open for reading */ 118#define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0)) 119/* open for writing */ 120#define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1)) 121/* open exclusively (vs other exclusive openers */ 122#define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2)) 123/* opened with O_NDELAY */ 124#define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3)) 125/* open for "writes" only for ioctls (specialy hack for floppy.c) */ 126#define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4)) 127 128struct gendisk { 129 /* 130 * major/first_minor/minors should not be set by any new driver, the 131 * block core will take care of allocating them automatically. 132 */ 133 int major; 134 int first_minor; 135 int minors; 136 137 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 138 139 unsigned short events; /* supported events */ 140 unsigned short event_flags; /* flags related to event processing */ 141 142 struct xarray part_tbl; 143 struct block_device *part0; 144 145 const struct block_device_operations *fops; 146 struct request_queue *queue; 147 void *private_data; 148 149 struct bio_set bio_split; 150 151 int flags; 152 unsigned long state; 153#define GD_NEED_PART_SCAN 0 154#define GD_READ_ONLY 1 155#define GD_DEAD 2 156#define GD_NATIVE_CAPACITY 3 157#define GD_ADDED 4 158#define GD_SUPPRESS_PART_SCAN 5 159#define GD_OWNS_QUEUE 6 160 161 struct mutex open_mutex; /* open/close mutex */ 162 unsigned open_partitions; /* number of open partitions */ 163 164 struct backing_dev_info *bdi; 165 struct kobject queue_kobj; /* the queue/ directory */ 166 struct kobject *slave_dir; 167#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 168 struct list_head slave_bdevs; 169#endif 170 struct timer_rand_state *random; 171 atomic_t sync_io; /* RAID */ 172 struct disk_events *ev; 173 174#ifdef CONFIG_BLK_DEV_ZONED 175 /* 176 * Zoned block device information for request dispatch control. 177 * nr_zones is the total number of zones of the device. This is always 178 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 179 * bits which indicates if a zone is conventional (bit set) or 180 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 181 * bits which indicates if a zone is write locked, that is, if a write 182 * request targeting the zone was dispatched. 183 * 184 * Reads of this information must be protected with blk_queue_enter() / 185 * blk_queue_exit(). Modifying this information is only allowed while 186 * no requests are being processed. See also blk_mq_freeze_queue() and 187 * blk_mq_unfreeze_queue(). 188 */ 189 unsigned int nr_zones; 190 unsigned int max_open_zones; 191 unsigned int max_active_zones; 192 unsigned long *conv_zones_bitmap; 193 unsigned long *seq_zones_wlock; 194#endif /* CONFIG_BLK_DEV_ZONED */ 195 196#if IS_ENABLED(CONFIG_CDROM) 197 struct cdrom_device_info *cdi; 198#endif 199 int node_id; 200 struct badblocks *bb; 201 struct lockdep_map lockdep_map; 202 u64 diskseq; 203 blk_mode_t open_mode; 204 205 /* 206 * Independent sector access ranges. This is always NULL for 207 * devices that do not have multiple independent access ranges. 208 */ 209 struct blk_independent_access_ranges *ia_ranges; 210}; 211 212static inline bool disk_live(struct gendisk *disk) 213{ 214 return !inode_unhashed(disk->part0->bd_inode); 215} 216 217/** 218 * disk_openers - returns how many openers are there for a disk 219 * @disk: disk to check 220 * 221 * This returns the number of openers for a disk. Note that this value is only 222 * stable if disk->open_mutex is held. 223 * 224 * Note: Due to a quirk in the block layer open code, each open partition is 225 * only counted once even if there are multiple openers. 226 */ 227static inline unsigned int disk_openers(struct gendisk *disk) 228{ 229 return atomic_read(&disk->part0->bd_openers); 230} 231 232/* 233 * The gendisk is refcounted by the part0 block_device, and the bd_device 234 * therein is also used for device model presentation in sysfs. 235 */ 236#define dev_to_disk(device) \ 237 (dev_to_bdev(device)->bd_disk) 238#define disk_to_dev(disk) \ 239 (&((disk)->part0->bd_device)) 240 241#if IS_REACHABLE(CONFIG_CDROM) 242#define disk_to_cdi(disk) ((disk)->cdi) 243#else 244#define disk_to_cdi(disk) NULL 245#endif 246 247static inline dev_t disk_devt(struct gendisk *disk) 248{ 249 return MKDEV(disk->major, disk->first_minor); 250} 251 252static inline int blk_validate_block_size(unsigned long bsize) 253{ 254 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 255 return -EINVAL; 256 257 return 0; 258} 259 260static inline bool blk_op_is_passthrough(blk_opf_t op) 261{ 262 op &= REQ_OP_MASK; 263 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 264} 265 266/* 267 * Zoned block device models (zoned limit). 268 * 269 * Note: This needs to be ordered from the least to the most severe 270 * restrictions for the inheritance in blk_stack_limits() to work. 271 */ 272enum blk_zoned_model { 273 BLK_ZONED_NONE = 0, /* Regular block device */ 274 BLK_ZONED_HA, /* Host-aware zoned block device */ 275 BLK_ZONED_HM, /* Host-managed zoned block device */ 276}; 277 278/* 279 * BLK_BOUNCE_NONE: never bounce (default) 280 * BLK_BOUNCE_HIGH: bounce all highmem pages 281 */ 282enum blk_bounce { 283 BLK_BOUNCE_NONE, 284 BLK_BOUNCE_HIGH, 285}; 286 287struct queue_limits { 288 enum blk_bounce bounce; 289 unsigned long seg_boundary_mask; 290 unsigned long virt_boundary_mask; 291 292 unsigned int max_hw_sectors; 293 unsigned int max_dev_sectors; 294 unsigned int chunk_sectors; 295 unsigned int max_sectors; 296 unsigned int max_user_sectors; 297 unsigned int max_segment_size; 298 unsigned int physical_block_size; 299 unsigned int logical_block_size; 300 unsigned int alignment_offset; 301 unsigned int io_min; 302 unsigned int io_opt; 303 unsigned int max_discard_sectors; 304 unsigned int max_hw_discard_sectors; 305 unsigned int max_secure_erase_sectors; 306 unsigned int max_write_zeroes_sectors; 307 unsigned int max_zone_append_sectors; 308 unsigned int discard_granularity; 309 unsigned int discard_alignment; 310 unsigned int zone_write_granularity; 311 312 unsigned short max_segments; 313 unsigned short max_integrity_segments; 314 unsigned short max_discard_segments; 315 316 unsigned char misaligned; 317 unsigned char discard_misaligned; 318 unsigned char raid_partial_stripes_expensive; 319 enum blk_zoned_model zoned; 320 321 /* 322 * Drivers that set dma_alignment to less than 511 must be prepared to 323 * handle individual bvec's that are not a multiple of a SECTOR_SIZE 324 * due to possible offsets. 325 */ 326 unsigned int dma_alignment; 327}; 328 329typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 330 void *data); 331 332void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 333 334#ifdef CONFIG_BLK_DEV_ZONED 335#define BLK_ALL_ZONES ((unsigned int)-1) 336int blkdev_report_zones(struct block_device *bdev, sector_t sector, 337 unsigned int nr_zones, report_zones_cb cb, void *data); 338unsigned int bdev_nr_zones(struct block_device *bdev); 339extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 340 sector_t sectors, sector_t nr_sectors, 341 gfp_t gfp_mask); 342int blk_revalidate_disk_zones(struct gendisk *disk, 343 void (*update_driver_data)(struct gendisk *disk)); 344#else /* CONFIG_BLK_DEV_ZONED */ 345static inline unsigned int bdev_nr_zones(struct block_device *bdev) 346{ 347 return 0; 348} 349#endif /* CONFIG_BLK_DEV_ZONED */ 350 351/* 352 * Independent access ranges: struct blk_independent_access_range describes 353 * a range of contiguous sectors that can be accessed using device command 354 * execution resources that are independent from the resources used for 355 * other access ranges. This is typically found with single-LUN multi-actuator 356 * HDDs where each access range is served by a different set of heads. 357 * The set of independent ranges supported by the device is defined using 358 * struct blk_independent_access_ranges. The independent ranges must not overlap 359 * and must include all sectors within the disk capacity (no sector holes 360 * allowed). 361 * For a device with multiple ranges, requests targeting sectors in different 362 * ranges can be executed in parallel. A request can straddle an access range 363 * boundary. 364 */ 365struct blk_independent_access_range { 366 struct kobject kobj; 367 sector_t sector; 368 sector_t nr_sectors; 369}; 370 371struct blk_independent_access_ranges { 372 struct kobject kobj; 373 bool sysfs_registered; 374 unsigned int nr_ia_ranges; 375 struct blk_independent_access_range ia_range[]; 376}; 377 378struct request_queue { 379 struct request *last_merge; 380 struct elevator_queue *elevator; 381 382 struct percpu_ref q_usage_counter; 383 384 struct blk_queue_stats *stats; 385 struct rq_qos *rq_qos; 386 struct mutex rq_qos_mutex; 387 388 const struct blk_mq_ops *mq_ops; 389 390 /* sw queues */ 391 struct blk_mq_ctx __percpu *queue_ctx; 392 393 unsigned int queue_depth; 394 395 /* hw dispatch queues */ 396 struct xarray hctx_table; 397 unsigned int nr_hw_queues; 398 399 /* 400 * The queue owner gets to use this for whatever they like. 401 * ll_rw_blk doesn't touch it. 402 */ 403 void *queuedata; 404 405 /* 406 * various queue flags, see QUEUE_* below 407 */ 408 unsigned long queue_flags; 409 /* 410 * Number of contexts that have called blk_set_pm_only(). If this 411 * counter is above zero then only RQF_PM requests are processed. 412 */ 413 atomic_t pm_only; 414 415 /* 416 * ida allocated id for this queue. Used to index queues from 417 * ioctx. 418 */ 419 int id; 420 421 spinlock_t queue_lock; 422 423 struct gendisk *disk; 424 425 refcount_t refs; 426 427 /* 428 * mq queue kobject 429 */ 430 struct kobject *mq_kobj; 431 432#ifdef CONFIG_BLK_DEV_INTEGRITY 433 struct blk_integrity integrity; 434#endif /* CONFIG_BLK_DEV_INTEGRITY */ 435 436#ifdef CONFIG_PM 437 struct device *dev; 438 enum rpm_status rpm_status; 439#endif 440 441 /* 442 * queue settings 443 */ 444 unsigned long nr_requests; /* Max # of requests */ 445 446 unsigned int dma_pad_mask; 447 448#ifdef CONFIG_BLK_INLINE_ENCRYPTION 449 struct blk_crypto_profile *crypto_profile; 450 struct kobject *crypto_kobject; 451#endif 452 453 unsigned int rq_timeout; 454 455 struct timer_list timeout; 456 struct work_struct timeout_work; 457 458 atomic_t nr_active_requests_shared_tags; 459 460 struct blk_mq_tags *sched_shared_tags; 461 462 struct list_head icq_list; 463#ifdef CONFIG_BLK_CGROUP 464 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 465 struct blkcg_gq *root_blkg; 466 struct list_head blkg_list; 467 struct mutex blkcg_mutex; 468#endif 469 470 struct queue_limits limits; 471 472 unsigned int required_elevator_features; 473 474 int node; 475#ifdef CONFIG_BLK_DEV_IO_TRACE 476 struct blk_trace __rcu *blk_trace; 477#endif 478 /* 479 * for flush operations 480 */ 481 struct blk_flush_queue *fq; 482 struct list_head flush_list; 483 484 struct list_head requeue_list; 485 spinlock_t requeue_lock; 486 struct delayed_work requeue_work; 487 488 struct mutex sysfs_lock; 489 struct mutex sysfs_dir_lock; 490 491 /* 492 * for reusing dead hctx instance in case of updating 493 * nr_hw_queues 494 */ 495 struct list_head unused_hctx_list; 496 spinlock_t unused_hctx_lock; 497 498 int mq_freeze_depth; 499 500#ifdef CONFIG_BLK_DEV_THROTTLING 501 /* Throttle data */ 502 struct throtl_data *td; 503#endif 504 struct rcu_head rcu_head; 505 wait_queue_head_t mq_freeze_wq; 506 /* 507 * Protect concurrent access to q_usage_counter by 508 * percpu_ref_kill() and percpu_ref_reinit(). 509 */ 510 struct mutex mq_freeze_lock; 511 512 int quiesce_depth; 513 514 struct blk_mq_tag_set *tag_set; 515 struct list_head tag_set_list; 516 517 struct dentry *debugfs_dir; 518 struct dentry *sched_debugfs_dir; 519 struct dentry *rqos_debugfs_dir; 520 /* 521 * Serializes all debugfs metadata operations using the above dentries. 522 */ 523 struct mutex debugfs_mutex; 524 525 bool mq_sysfs_init_done; 526}; 527 528/* Keep blk_queue_flag_name[] in sync with the definitions below */ 529#define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 530#define QUEUE_FLAG_DYING 1 /* queue being torn down */ 531#define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 532#define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 533#define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 534#define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 535#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 536#define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 537#define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 538#define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 539#define QUEUE_FLAG_SYNCHRONOUS 11 /* always completes in submit context */ 540#define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 541#define QUEUE_FLAG_HW_WC 18 /* Write back caching supported */ 542#define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 543#define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 544#define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 545#define QUEUE_FLAG_WC 17 /* Write back caching */ 546#define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 547#define QUEUE_FLAG_DAX 19 /* device supports DAX */ 548#define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 549#define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 550#define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 551#define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 552#define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 553#define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 554#define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 555#define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 556#define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */ 557#define QUEUE_FLAG_SKIP_TAGSET_QUIESCE 31 /* quiesce_tagset skip the queue*/ 558 559#define QUEUE_FLAG_MQ_DEFAULT ((1UL << QUEUE_FLAG_IO_STAT) | \ 560 (1UL << QUEUE_FLAG_SAME_COMP) | \ 561 (1UL << QUEUE_FLAG_NOWAIT)) 562 563void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 564void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 565bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 566 567#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 568#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 569#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 570#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 571#define blk_queue_noxmerges(q) \ 572 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 573#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 574#define blk_queue_stable_writes(q) \ 575 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 576#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 577#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 578#define blk_queue_zone_resetall(q) \ 579 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 580#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 581#define blk_queue_pci_p2pdma(q) \ 582 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 583#ifdef CONFIG_BLK_RQ_ALLOC_TIME 584#define blk_queue_rq_alloc_time(q) \ 585 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 586#else 587#define blk_queue_rq_alloc_time(q) false 588#endif 589 590#define blk_noretry_request(rq) \ 591 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 592 REQ_FAILFAST_DRIVER)) 593#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 594#define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 595#define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 596#define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 597#define blk_queue_skip_tagset_quiesce(q) \ 598 test_bit(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, &(q)->queue_flags) 599 600extern void blk_set_pm_only(struct request_queue *q); 601extern void blk_clear_pm_only(struct request_queue *q); 602 603#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 604 605#define dma_map_bvec(dev, bv, dir, attrs) \ 606 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 607 (dir), (attrs)) 608 609static inline bool queue_is_mq(struct request_queue *q) 610{ 611 return q->mq_ops; 612} 613 614#ifdef CONFIG_PM 615static inline enum rpm_status queue_rpm_status(struct request_queue *q) 616{ 617 return q->rpm_status; 618} 619#else 620static inline enum rpm_status queue_rpm_status(struct request_queue *q) 621{ 622 return RPM_ACTIVE; 623} 624#endif 625 626static inline enum blk_zoned_model 627blk_queue_zoned_model(struct request_queue *q) 628{ 629 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 630 return q->limits.zoned; 631 return BLK_ZONED_NONE; 632} 633 634static inline bool blk_queue_is_zoned(struct request_queue *q) 635{ 636 switch (blk_queue_zoned_model(q)) { 637 case BLK_ZONED_HA: 638 case BLK_ZONED_HM: 639 return true; 640 default: 641 return false; 642 } 643} 644 645#ifdef CONFIG_BLK_DEV_ZONED 646static inline unsigned int disk_nr_zones(struct gendisk *disk) 647{ 648 return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0; 649} 650 651static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 652{ 653 if (!blk_queue_is_zoned(disk->queue)) 654 return 0; 655 return sector >> ilog2(disk->queue->limits.chunk_sectors); 656} 657 658static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 659{ 660 if (!blk_queue_is_zoned(disk->queue)) 661 return false; 662 if (!disk->conv_zones_bitmap) 663 return true; 664 return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap); 665} 666 667static inline void disk_set_max_open_zones(struct gendisk *disk, 668 unsigned int max_open_zones) 669{ 670 disk->max_open_zones = max_open_zones; 671} 672 673static inline void disk_set_max_active_zones(struct gendisk *disk, 674 unsigned int max_active_zones) 675{ 676 disk->max_active_zones = max_active_zones; 677} 678 679static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 680{ 681 return bdev->bd_disk->max_open_zones; 682} 683 684static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 685{ 686 return bdev->bd_disk->max_active_zones; 687} 688 689#else /* CONFIG_BLK_DEV_ZONED */ 690static inline unsigned int disk_nr_zones(struct gendisk *disk) 691{ 692 return 0; 693} 694static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 695{ 696 return false; 697} 698static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 699{ 700 return 0; 701} 702static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 703{ 704 return 0; 705} 706 707static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 708{ 709 return 0; 710} 711#endif /* CONFIG_BLK_DEV_ZONED */ 712 713static inline unsigned int blk_queue_depth(struct request_queue *q) 714{ 715 if (q->queue_depth) 716 return q->queue_depth; 717 718 return q->nr_requests; 719} 720 721/* 722 * default timeout for SG_IO if none specified 723 */ 724#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 725#define BLK_MIN_SG_TIMEOUT (7 * HZ) 726 727/* This should not be used directly - use rq_for_each_segment */ 728#define for_each_bio(_bio) \ 729 for (; _bio; _bio = _bio->bi_next) 730 731int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 732 const struct attribute_group **groups); 733static inline int __must_check add_disk(struct gendisk *disk) 734{ 735 return device_add_disk(NULL, disk, NULL); 736} 737void del_gendisk(struct gendisk *gp); 738void invalidate_disk(struct gendisk *disk); 739void set_disk_ro(struct gendisk *disk, bool read_only); 740void disk_uevent(struct gendisk *disk, enum kobject_action action); 741 742static inline int get_disk_ro(struct gendisk *disk) 743{ 744 return disk->part0->bd_read_only || 745 test_bit(GD_READ_ONLY, &disk->state); 746} 747 748static inline int bdev_read_only(struct block_device *bdev) 749{ 750 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); 751} 752 753bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 754void disk_force_media_change(struct gendisk *disk); 755void bdev_mark_dead(struct block_device *bdev, bool surprise); 756 757void add_disk_randomness(struct gendisk *disk) __latent_entropy; 758void rand_initialize_disk(struct gendisk *disk); 759 760static inline sector_t get_start_sect(struct block_device *bdev) 761{ 762 return bdev->bd_start_sect; 763} 764 765static inline sector_t bdev_nr_sectors(struct block_device *bdev) 766{ 767 return bdev->bd_nr_sectors; 768} 769 770static inline loff_t bdev_nr_bytes(struct block_device *bdev) 771{ 772 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 773} 774 775static inline sector_t get_capacity(struct gendisk *disk) 776{ 777 return bdev_nr_sectors(disk->part0); 778} 779 780static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 781{ 782 return bdev_nr_sectors(sb->s_bdev) >> 783 (sb->s_blocksize_bits - SECTOR_SHIFT); 784} 785 786int bdev_disk_changed(struct gendisk *disk, bool invalidate); 787 788void put_disk(struct gendisk *disk); 789struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass); 790 791/** 792 * blk_alloc_disk - allocate a gendisk structure 793 * @node_id: numa node to allocate on 794 * 795 * Allocate and pre-initialize a gendisk structure for use with BIO based 796 * drivers. 797 * 798 * Context: can sleep 799 */ 800#define blk_alloc_disk(node_id) \ 801({ \ 802 static struct lock_class_key __key; \ 803 \ 804 __blk_alloc_disk(node_id, &__key); \ 805}) 806 807int __register_blkdev(unsigned int major, const char *name, 808 void (*probe)(dev_t devt)); 809#define register_blkdev(major, name) \ 810 __register_blkdev(major, name, NULL) 811void unregister_blkdev(unsigned int major, const char *name); 812 813bool disk_check_media_change(struct gendisk *disk); 814void set_capacity(struct gendisk *disk, sector_t size); 815 816#ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 817int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 818void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 819#else 820static inline int bd_link_disk_holder(struct block_device *bdev, 821 struct gendisk *disk) 822{ 823 return 0; 824} 825static inline void bd_unlink_disk_holder(struct block_device *bdev, 826 struct gendisk *disk) 827{ 828} 829#endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 830 831dev_t part_devt(struct gendisk *disk, u8 partno); 832void inc_diskseq(struct gendisk *disk); 833void blk_request_module(dev_t devt); 834 835extern int blk_register_queue(struct gendisk *disk); 836extern void blk_unregister_queue(struct gendisk *disk); 837void submit_bio_noacct(struct bio *bio); 838struct bio *bio_split_to_limits(struct bio *bio); 839 840extern int blk_lld_busy(struct request_queue *q); 841extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 842extern void blk_queue_exit(struct request_queue *q); 843extern void blk_sync_queue(struct request_queue *q); 844 845/* Helper to convert REQ_OP_XXX to its string format XXX */ 846extern const char *blk_op_str(enum req_op op); 847 848int blk_status_to_errno(blk_status_t status); 849blk_status_t errno_to_blk_status(int errno); 850const char *blk_status_to_str(blk_status_t status); 851 852/* only poll the hardware once, don't continue until a completion was found */ 853#define BLK_POLL_ONESHOT (1 << 0) 854int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 855int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 856 unsigned int flags); 857 858static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 859{ 860 return bdev->bd_queue; /* this is never NULL */ 861} 862 863/* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 864const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 865 866static inline unsigned int bio_zone_no(struct bio *bio) 867{ 868 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 869} 870 871static inline unsigned int bio_zone_is_seq(struct bio *bio) 872{ 873 return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 874} 875 876/* 877 * Return how much of the chunk is left to be used for I/O at a given offset. 878 */ 879static inline unsigned int blk_chunk_sectors_left(sector_t offset, 880 unsigned int chunk_sectors) 881{ 882 if (unlikely(!is_power_of_2(chunk_sectors))) 883 return chunk_sectors - sector_div(offset, chunk_sectors); 884 return chunk_sectors - (offset & (chunk_sectors - 1)); 885} 886 887/* 888 * Access functions for manipulating queue properties 889 */ 890void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 891extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 892extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 893extern void blk_queue_max_segments(struct request_queue *, unsigned short); 894extern void blk_queue_max_discard_segments(struct request_queue *, 895 unsigned short); 896void blk_queue_max_secure_erase_sectors(struct request_queue *q, 897 unsigned int max_sectors); 898extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 899extern void blk_queue_max_discard_sectors(struct request_queue *q, 900 unsigned int max_discard_sectors); 901extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 902 unsigned int max_write_same_sectors); 903extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 904extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 905 unsigned int max_zone_append_sectors); 906extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 907void blk_queue_zone_write_granularity(struct request_queue *q, 908 unsigned int size); 909extern void blk_queue_alignment_offset(struct request_queue *q, 910 unsigned int alignment); 911void disk_update_readahead(struct gendisk *disk); 912extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 913extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 914extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 915extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 916extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 917extern void blk_set_stacking_limits(struct queue_limits *lim); 918extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 919 sector_t offset); 920extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 921 sector_t offset); 922extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 923extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 924extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 925extern void blk_queue_dma_alignment(struct request_queue *, int); 926extern void blk_queue_update_dma_alignment(struct request_queue *, int); 927extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 928extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 929 930struct blk_independent_access_ranges * 931disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 932void disk_set_independent_access_ranges(struct gendisk *disk, 933 struct blk_independent_access_ranges *iars); 934 935/* 936 * Elevator features for blk_queue_required_elevator_features: 937 */ 938/* Supports zoned block devices sequential write constraint */ 939#define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0) 940 941extern void blk_queue_required_elevator_features(struct request_queue *q, 942 unsigned int features); 943extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 944 struct device *dev); 945 946bool __must_check blk_get_queue(struct request_queue *); 947extern void blk_put_queue(struct request_queue *); 948 949void blk_mark_disk_dead(struct gendisk *disk); 950 951#ifdef CONFIG_BLOCK 952/* 953 * blk_plug permits building a queue of related requests by holding the I/O 954 * fragments for a short period. This allows merging of sequential requests 955 * into single larger request. As the requests are moved from a per-task list to 956 * the device's request_queue in a batch, this results in improved scalability 957 * as the lock contention for request_queue lock is reduced. 958 * 959 * It is ok not to disable preemption when adding the request to the plug list 960 * or when attempting a merge. For details, please see schedule() where 961 * blk_flush_plug() is called. 962 */ 963struct blk_plug { 964 struct request *mq_list; /* blk-mq requests */ 965 966 /* if ios_left is > 1, we can batch tag/rq allocations */ 967 struct request *cached_rq; 968 unsigned short nr_ios; 969 970 unsigned short rq_count; 971 972 bool multiple_queues; 973 bool has_elevator; 974 975 struct list_head cb_list; /* md requires an unplug callback */ 976}; 977 978struct blk_plug_cb; 979typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 980struct blk_plug_cb { 981 struct list_head list; 982 blk_plug_cb_fn callback; 983 void *data; 984}; 985extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 986 void *data, int size); 987extern void blk_start_plug(struct blk_plug *); 988extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 989extern void blk_finish_plug(struct blk_plug *); 990 991void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 992static inline void blk_flush_plug(struct blk_plug *plug, bool async) 993{ 994 if (plug) 995 __blk_flush_plug(plug, async); 996} 997 998int blkdev_issue_flush(struct block_device *bdev); 999long nr_blockdev_pages(void); 1000#else /* CONFIG_BLOCK */ 1001struct blk_plug { 1002}; 1003 1004static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1005 unsigned short nr_ios) 1006{ 1007} 1008 1009static inline void blk_start_plug(struct blk_plug *plug) 1010{ 1011} 1012 1013static inline void blk_finish_plug(struct blk_plug *plug) 1014{ 1015} 1016 1017static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1018{ 1019} 1020 1021static inline int blkdev_issue_flush(struct block_device *bdev) 1022{ 1023 return 0; 1024} 1025 1026static inline long nr_blockdev_pages(void) 1027{ 1028 return 0; 1029} 1030#endif /* CONFIG_BLOCK */ 1031 1032extern void blk_io_schedule(void); 1033 1034int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1035 sector_t nr_sects, gfp_t gfp_mask); 1036int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1037 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1038int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1039 sector_t nr_sects, gfp_t gfp); 1040 1041#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1042#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1043 1044extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1045 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1046 unsigned flags); 1047extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1048 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1049 1050static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1051 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1052{ 1053 return blkdev_issue_discard(sb->s_bdev, 1054 block << (sb->s_blocksize_bits - 1055 SECTOR_SHIFT), 1056 nr_blocks << (sb->s_blocksize_bits - 1057 SECTOR_SHIFT), 1058 gfp_mask); 1059} 1060static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1061 sector_t nr_blocks, gfp_t gfp_mask) 1062{ 1063 return blkdev_issue_zeroout(sb->s_bdev, 1064 block << (sb->s_blocksize_bits - 1065 SECTOR_SHIFT), 1066 nr_blocks << (sb->s_blocksize_bits - 1067 SECTOR_SHIFT), 1068 gfp_mask, 0); 1069} 1070 1071static inline bool bdev_is_partition(struct block_device *bdev) 1072{ 1073 return bdev->bd_partno; 1074} 1075 1076enum blk_default_limits { 1077 BLK_MAX_SEGMENTS = 128, 1078 BLK_SAFE_MAX_SECTORS = 255, 1079 BLK_MAX_SEGMENT_SIZE = 65536, 1080 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1081}; 1082 1083#define BLK_DEF_MAX_SECTORS 2560u 1084 1085static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1086{ 1087 return q->limits.seg_boundary_mask; 1088} 1089 1090static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1091{ 1092 return q->limits.virt_boundary_mask; 1093} 1094 1095static inline unsigned int queue_max_sectors(const struct request_queue *q) 1096{ 1097 return q->limits.max_sectors; 1098} 1099 1100static inline unsigned int queue_max_bytes(struct request_queue *q) 1101{ 1102 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1103} 1104 1105static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1106{ 1107 return q->limits.max_hw_sectors; 1108} 1109 1110static inline unsigned short queue_max_segments(const struct request_queue *q) 1111{ 1112 return q->limits.max_segments; 1113} 1114 1115static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1116{ 1117 return q->limits.max_discard_segments; 1118} 1119 1120static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1121{ 1122 return q->limits.max_segment_size; 1123} 1124 1125static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1126{ 1127 1128 const struct queue_limits *l = &q->limits; 1129 1130 return min(l->max_zone_append_sectors, l->max_sectors); 1131} 1132 1133static inline unsigned int 1134bdev_max_zone_append_sectors(struct block_device *bdev) 1135{ 1136 return queue_max_zone_append_sectors(bdev_get_queue(bdev)); 1137} 1138 1139static inline unsigned int bdev_max_segments(struct block_device *bdev) 1140{ 1141 return queue_max_segments(bdev_get_queue(bdev)); 1142} 1143 1144static inline unsigned queue_logical_block_size(const struct request_queue *q) 1145{ 1146 int retval = 512; 1147 1148 if (q && q->limits.logical_block_size) 1149 retval = q->limits.logical_block_size; 1150 1151 return retval; 1152} 1153 1154static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1155{ 1156 return queue_logical_block_size(bdev_get_queue(bdev)); 1157} 1158 1159static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1160{ 1161 return q->limits.physical_block_size; 1162} 1163 1164static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1165{ 1166 return queue_physical_block_size(bdev_get_queue(bdev)); 1167} 1168 1169static inline unsigned int queue_io_min(const struct request_queue *q) 1170{ 1171 return q->limits.io_min; 1172} 1173 1174static inline int bdev_io_min(struct block_device *bdev) 1175{ 1176 return queue_io_min(bdev_get_queue(bdev)); 1177} 1178 1179static inline unsigned int queue_io_opt(const struct request_queue *q) 1180{ 1181 return q->limits.io_opt; 1182} 1183 1184static inline int bdev_io_opt(struct block_device *bdev) 1185{ 1186 return queue_io_opt(bdev_get_queue(bdev)); 1187} 1188 1189static inline unsigned int 1190queue_zone_write_granularity(const struct request_queue *q) 1191{ 1192 return q->limits.zone_write_granularity; 1193} 1194 1195static inline unsigned int 1196bdev_zone_write_granularity(struct block_device *bdev) 1197{ 1198 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1199} 1200 1201int bdev_alignment_offset(struct block_device *bdev); 1202unsigned int bdev_discard_alignment(struct block_device *bdev); 1203 1204static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1205{ 1206 return bdev_get_queue(bdev)->limits.max_discard_sectors; 1207} 1208 1209static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1210{ 1211 return bdev_get_queue(bdev)->limits.discard_granularity; 1212} 1213 1214static inline unsigned int 1215bdev_max_secure_erase_sectors(struct block_device *bdev) 1216{ 1217 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors; 1218} 1219 1220static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1221{ 1222 struct request_queue *q = bdev_get_queue(bdev); 1223 1224 if (q) 1225 return q->limits.max_write_zeroes_sectors; 1226 1227 return 0; 1228} 1229 1230static inline bool bdev_nonrot(struct block_device *bdev) 1231{ 1232 return blk_queue_nonrot(bdev_get_queue(bdev)); 1233} 1234 1235static inline bool bdev_synchronous(struct block_device *bdev) 1236{ 1237 return test_bit(QUEUE_FLAG_SYNCHRONOUS, 1238 &bdev_get_queue(bdev)->queue_flags); 1239} 1240 1241static inline bool bdev_stable_writes(struct block_device *bdev) 1242{ 1243 return test_bit(QUEUE_FLAG_STABLE_WRITES, 1244 &bdev_get_queue(bdev)->queue_flags); 1245} 1246 1247static inline bool bdev_write_cache(struct block_device *bdev) 1248{ 1249 return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags); 1250} 1251 1252static inline bool bdev_fua(struct block_device *bdev) 1253{ 1254 return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags); 1255} 1256 1257static inline bool bdev_nowait(struct block_device *bdev) 1258{ 1259 return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags); 1260} 1261 1262static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1263{ 1264 return blk_queue_zoned_model(bdev_get_queue(bdev)); 1265} 1266 1267static inline bool bdev_is_zoned(struct block_device *bdev) 1268{ 1269 return blk_queue_is_zoned(bdev_get_queue(bdev)); 1270} 1271 1272static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec) 1273{ 1274 return disk_zone_no(bdev->bd_disk, sec); 1275} 1276 1277/* Whether write serialization is required for @op on zoned devices. */ 1278static inline bool op_needs_zoned_write_locking(enum req_op op) 1279{ 1280 return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES; 1281} 1282 1283static inline bool bdev_op_is_zoned_write(struct block_device *bdev, 1284 enum req_op op) 1285{ 1286 return bdev_is_zoned(bdev) && op_needs_zoned_write_locking(op); 1287} 1288 1289static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1290{ 1291 struct request_queue *q = bdev_get_queue(bdev); 1292 1293 if (!blk_queue_is_zoned(q)) 1294 return 0; 1295 return q->limits.chunk_sectors; 1296} 1297 1298static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev, 1299 sector_t sector) 1300{ 1301 return sector & (bdev_zone_sectors(bdev) - 1); 1302} 1303 1304static inline bool bdev_is_zone_start(struct block_device *bdev, 1305 sector_t sector) 1306{ 1307 return bdev_offset_from_zone_start(bdev, sector) == 0; 1308} 1309 1310static inline int queue_dma_alignment(const struct request_queue *q) 1311{ 1312 return q ? q->limits.dma_alignment : 511; 1313} 1314 1315static inline unsigned int bdev_dma_alignment(struct block_device *bdev) 1316{ 1317 return queue_dma_alignment(bdev_get_queue(bdev)); 1318} 1319 1320static inline bool bdev_iter_is_aligned(struct block_device *bdev, 1321 struct iov_iter *iter) 1322{ 1323 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev), 1324 bdev_logical_block_size(bdev) - 1); 1325} 1326 1327static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1328 unsigned int len) 1329{ 1330 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1331 return !(addr & alignment) && !(len & alignment); 1332} 1333 1334/* assumes size > 256 */ 1335static inline unsigned int blksize_bits(unsigned int size) 1336{ 1337 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT; 1338} 1339 1340static inline unsigned int block_size(struct block_device *bdev) 1341{ 1342 return 1 << bdev->bd_inode->i_blkbits; 1343} 1344 1345int kblockd_schedule_work(struct work_struct *work); 1346int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1347 1348#define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1349 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1350#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1351 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1352 1353#ifdef CONFIG_BLK_INLINE_ENCRYPTION 1354 1355bool blk_crypto_register(struct blk_crypto_profile *profile, 1356 struct request_queue *q); 1357 1358#else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1359 1360static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1361 struct request_queue *q) 1362{ 1363 return true; 1364} 1365 1366#endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1367 1368enum blk_unique_id { 1369 /* these match the Designator Types specified in SPC */ 1370 BLK_UID_T10 = 1, 1371 BLK_UID_EUI64 = 2, 1372 BLK_UID_NAA = 3, 1373}; 1374 1375struct block_device_operations { 1376 void (*submit_bio)(struct bio *bio); 1377 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1378 unsigned int flags); 1379 int (*open)(struct gendisk *disk, blk_mode_t mode); 1380 void (*release)(struct gendisk *disk); 1381 int (*ioctl)(struct block_device *bdev, blk_mode_t mode, 1382 unsigned cmd, unsigned long arg); 1383 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode, 1384 unsigned cmd, unsigned long arg); 1385 unsigned int (*check_events) (struct gendisk *disk, 1386 unsigned int clearing); 1387 void (*unlock_native_capacity) (struct gendisk *); 1388 int (*getgeo)(struct block_device *, struct hd_geometry *); 1389 int (*set_read_only)(struct block_device *bdev, bool ro); 1390 void (*free_disk)(struct gendisk *disk); 1391 /* this callback is with swap_lock and sometimes page table lock held */ 1392 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1393 int (*report_zones)(struct gendisk *, sector_t sector, 1394 unsigned int nr_zones, report_zones_cb cb, void *data); 1395 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1396 /* returns the length of the identifier or a negative errno: */ 1397 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1398 enum blk_unique_id id_type); 1399 struct module *owner; 1400 const struct pr_ops *pr_ops; 1401 1402 /* 1403 * Special callback for probing GPT entry at a given sector. 1404 * Needed by Android devices, used by GPT scanner and MMC blk 1405 * driver. 1406 */ 1407 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1408}; 1409 1410#ifdef CONFIG_COMPAT 1411extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t, 1412 unsigned int, unsigned long); 1413#else 1414#define blkdev_compat_ptr_ioctl NULL 1415#endif 1416 1417static inline void blk_wake_io_task(struct task_struct *waiter) 1418{ 1419 /* 1420 * If we're polling, the task itself is doing the completions. For 1421 * that case, we don't need to signal a wakeup, it's enough to just 1422 * mark us as RUNNING. 1423 */ 1424 if (waiter == current) 1425 __set_current_state(TASK_RUNNING); 1426 else 1427 wake_up_process(waiter); 1428} 1429 1430unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op, 1431 unsigned long start_time); 1432void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 1433 unsigned int sectors, unsigned long start_time); 1434 1435unsigned long bio_start_io_acct(struct bio *bio); 1436void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1437 struct block_device *orig_bdev); 1438 1439/** 1440 * bio_end_io_acct - end I/O accounting for bio based drivers 1441 * @bio: bio to end account for 1442 * @start_time: start time returned by bio_start_io_acct() 1443 */ 1444static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1445{ 1446 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1447} 1448 1449int bdev_read_only(struct block_device *bdev); 1450int set_blocksize(struct block_device *bdev, int size); 1451 1452int lookup_bdev(const char *pathname, dev_t *dev); 1453 1454void blkdev_show(struct seq_file *seqf, off_t offset); 1455 1456#define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1457#define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1458#ifdef CONFIG_BLOCK 1459#define BLKDEV_MAJOR_MAX 512 1460#else 1461#define BLKDEV_MAJOR_MAX 0 1462#endif 1463 1464struct blk_holder_ops { 1465 void (*mark_dead)(struct block_device *bdev, bool surprise); 1466 1467 /* 1468 * Sync the file system mounted on the block device. 1469 */ 1470 void (*sync)(struct block_device *bdev); 1471}; 1472 1473extern const struct blk_holder_ops fs_holder_ops; 1474 1475/* 1476 * Return the correct open flags for blkdev_get_by_* for super block flags 1477 * as stored in sb->s_flags. 1478 */ 1479#define sb_open_mode(flags) \ 1480 (BLK_OPEN_READ | (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE)) 1481 1482struct block_device *blkdev_get_by_dev(dev_t dev, blk_mode_t mode, void *holder, 1483 const struct blk_holder_ops *hops); 1484struct block_device *blkdev_get_by_path(const char *path, blk_mode_t mode, 1485 void *holder, const struct blk_holder_ops *hops); 1486int bd_prepare_to_claim(struct block_device *bdev, void *holder, 1487 const struct blk_holder_ops *hops); 1488void bd_abort_claiming(struct block_device *bdev, void *holder); 1489void blkdev_put(struct block_device *bdev, void *holder); 1490 1491/* just for blk-cgroup, don't use elsewhere */ 1492struct block_device *blkdev_get_no_open(dev_t dev); 1493void blkdev_put_no_open(struct block_device *bdev); 1494 1495struct block_device *I_BDEV(struct inode *inode); 1496 1497#ifdef CONFIG_BLOCK 1498void invalidate_bdev(struct block_device *bdev); 1499int sync_blockdev(struct block_device *bdev); 1500int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1501int sync_blockdev_nowait(struct block_device *bdev); 1502void sync_bdevs(bool wait); 1503void bdev_statx_dioalign(struct inode *inode, struct kstat *stat); 1504void printk_all_partitions(void); 1505int __init early_lookup_bdev(const char *pathname, dev_t *dev); 1506#else 1507static inline void invalidate_bdev(struct block_device *bdev) 1508{ 1509} 1510static inline int sync_blockdev(struct block_device *bdev) 1511{ 1512 return 0; 1513} 1514static inline int sync_blockdev_nowait(struct block_device *bdev) 1515{ 1516 return 0; 1517} 1518static inline void sync_bdevs(bool wait) 1519{ 1520} 1521static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat) 1522{ 1523} 1524static inline void printk_all_partitions(void) 1525{ 1526} 1527static inline int early_lookup_bdev(const char *pathname, dev_t *dev) 1528{ 1529 return -EINVAL; 1530} 1531#endif /* CONFIG_BLOCK */ 1532 1533int freeze_bdev(struct block_device *bdev); 1534int thaw_bdev(struct block_device *bdev); 1535 1536struct io_comp_batch { 1537 struct request *req_list; 1538 bool need_ts; 1539 void (*complete)(struct io_comp_batch *); 1540}; 1541 1542#define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1543 1544#endif /* _LINUX_BLKDEV_H */