Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitmap.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <net/tcx.h>
111#include <linux/highmem.h>
112#include <linux/init.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <net/mpls.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <trace/events/net.h>
134#include <trace/events/skb.h>
135#include <trace/events/qdisc.h>
136#include <trace/events/xdp.h>
137#include <linux/inetdevice.h>
138#include <linux/cpu_rmap.h>
139#include <linux/static_key.h>
140#include <linux/hashtable.h>
141#include <linux/vmalloc.h>
142#include <linux/if_macvlan.h>
143#include <linux/errqueue.h>
144#include <linux/hrtimer.h>
145#include <linux/netfilter_netdev.h>
146#include <linux/crash_dump.h>
147#include <linux/sctp.h>
148#include <net/udp_tunnel.h>
149#include <linux/net_namespace.h>
150#include <linux/indirect_call_wrapper.h>
151#include <net/devlink.h>
152#include <linux/pm_runtime.h>
153#include <linux/prandom.h>
154#include <linux/once_lite.h>
155#include <net/netdev_rx_queue.h>
156
157#include "dev.h"
158#include "net-sysfs.h"
159
160static DEFINE_SPINLOCK(ptype_lock);
161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162struct list_head ptype_all __read_mostly; /* Taps */
163
164static int netif_rx_internal(struct sk_buff *skb);
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170/*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189DEFINE_RWLOCK(dev_base_lock);
190EXPORT_SYMBOL(dev_base_lock);
191
192static DEFINE_MUTEX(ifalias_mutex);
193
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
197static unsigned int napi_gen_id = NR_CPUS;
198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200static DECLARE_RWSEM(devnet_rename_sem);
201
202static inline void dev_base_seq_inc(struct net *net)
203{
204 while (++net->dev_base_seq == 0)
205 ;
206}
207
208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209{
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213}
214
215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216{
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218}
219
220static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222{
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227}
228
229static inline void rps_lock_irq_disable(struct softnet_data *sd)
230{
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235}
236
237static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239{
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244}
245
246static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247{
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252}
253
254static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256{
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266}
267
268static struct netdev_name_node *
269netdev_name_node_head_alloc(struct net_device *dev)
270{
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278}
279
280static void netdev_name_node_free(struct netdev_name_node *name_node)
281{
282 kfree(name_node);
283}
284
285static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287{
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290}
291
292static void netdev_name_node_del(struct netdev_name_node *name_node)
293{
294 hlist_del_rcu(&name_node->hlist);
295}
296
297static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299{
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307}
308
309static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311{
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319}
320
321bool netdev_name_in_use(struct net *net, const char *name)
322{
323 return netdev_name_node_lookup(net, name);
324}
325EXPORT_SYMBOL(netdev_name_in_use);
326
327int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343}
344
345static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346{
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
351}
352
353int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354{
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
357
358 name_node = netdev_name_node_lookup(net, name);
359 if (!name_node)
360 return -ENOENT;
361 /* lookup might have found our primary name or a name belonging
362 * to another device.
363 */
364 if (name_node == dev->name_node || name_node->dev != dev)
365 return -EINVAL;
366
367 __netdev_name_node_alt_destroy(name_node);
368
369 return 0;
370}
371
372static void netdev_name_node_alt_flush(struct net_device *dev)
373{
374 struct netdev_name_node *name_node, *tmp;
375
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
378}
379
380/* Device list insertion */
381static void list_netdevice(struct net_device *dev)
382{
383 struct net *net = dev_net(dev);
384
385 ASSERT_RTNL();
386
387 write_lock(&dev_base_lock);
388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 netdev_name_node_add(net, dev->name_node);
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
392 write_unlock(&dev_base_lock);
393 /* We reserved the ifindex, this can't fail */
394 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
395
396 dev_base_seq_inc(net);
397}
398
399/* Device list removal
400 * caller must respect a RCU grace period before freeing/reusing dev
401 */
402static void unlist_netdevice(struct net_device *dev, bool lock)
403{
404 struct net *net = dev_net(dev);
405
406 ASSERT_RTNL();
407
408 xa_erase(&net->dev_by_index, dev->ifindex);
409
410 /* Unlink dev from the device chain */
411 if (lock)
412 write_lock(&dev_base_lock);
413 list_del_rcu(&dev->dev_list);
414 netdev_name_node_del(dev->name_node);
415 hlist_del_rcu(&dev->index_hlist);
416 if (lock)
417 write_unlock(&dev_base_lock);
418
419 dev_base_seq_inc(dev_net(dev));
420}
421
422/*
423 * Our notifier list
424 */
425
426static RAW_NOTIFIER_HEAD(netdev_chain);
427
428/*
429 * Device drivers call our routines to queue packets here. We empty the
430 * queue in the local softnet handler.
431 */
432
433DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
434EXPORT_PER_CPU_SYMBOL(softnet_data);
435
436#ifdef CONFIG_LOCKDEP
437/*
438 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
439 * according to dev->type
440 */
441static const unsigned short netdev_lock_type[] = {
442 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
443 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
444 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
445 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
446 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
447 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
448 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
449 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
450 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
451 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
452 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
453 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
454 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
455 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
456 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
457
458static const char *const netdev_lock_name[] = {
459 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
460 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
461 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
462 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
463 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
464 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
465 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
466 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
467 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
468 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
469 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
470 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
471 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
472 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
473 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
474
475static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
476static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
477
478static inline unsigned short netdev_lock_pos(unsigned short dev_type)
479{
480 int i;
481
482 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
483 if (netdev_lock_type[i] == dev_type)
484 return i;
485 /* the last key is used by default */
486 return ARRAY_SIZE(netdev_lock_type) - 1;
487}
488
489static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
490 unsigned short dev_type)
491{
492 int i;
493
494 i = netdev_lock_pos(dev_type);
495 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
496 netdev_lock_name[i]);
497}
498
499static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
500{
501 int i;
502
503 i = netdev_lock_pos(dev->type);
504 lockdep_set_class_and_name(&dev->addr_list_lock,
505 &netdev_addr_lock_key[i],
506 netdev_lock_name[i]);
507}
508#else
509static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
510 unsigned short dev_type)
511{
512}
513
514static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
515{
516}
517#endif
518
519/*******************************************************************************
520 *
521 * Protocol management and registration routines
522 *
523 *******************************************************************************/
524
525
526/*
527 * Add a protocol ID to the list. Now that the input handler is
528 * smarter we can dispense with all the messy stuff that used to be
529 * here.
530 *
531 * BEWARE!!! Protocol handlers, mangling input packets,
532 * MUST BE last in hash buckets and checking protocol handlers
533 * MUST start from promiscuous ptype_all chain in net_bh.
534 * It is true now, do not change it.
535 * Explanation follows: if protocol handler, mangling packet, will
536 * be the first on list, it is not able to sense, that packet
537 * is cloned and should be copied-on-write, so that it will
538 * change it and subsequent readers will get broken packet.
539 * --ANK (980803)
540 */
541
542static inline struct list_head *ptype_head(const struct packet_type *pt)
543{
544 if (pt->type == htons(ETH_P_ALL))
545 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
546 else
547 return pt->dev ? &pt->dev->ptype_specific :
548 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
549}
550
551/**
552 * dev_add_pack - add packet handler
553 * @pt: packet type declaration
554 *
555 * Add a protocol handler to the networking stack. The passed &packet_type
556 * is linked into kernel lists and may not be freed until it has been
557 * removed from the kernel lists.
558 *
559 * This call does not sleep therefore it can not
560 * guarantee all CPU's that are in middle of receiving packets
561 * will see the new packet type (until the next received packet).
562 */
563
564void dev_add_pack(struct packet_type *pt)
565{
566 struct list_head *head = ptype_head(pt);
567
568 spin_lock(&ptype_lock);
569 list_add_rcu(&pt->list, head);
570 spin_unlock(&ptype_lock);
571}
572EXPORT_SYMBOL(dev_add_pack);
573
574/**
575 * __dev_remove_pack - remove packet handler
576 * @pt: packet type declaration
577 *
578 * Remove a protocol handler that was previously added to the kernel
579 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
580 * from the kernel lists and can be freed or reused once this function
581 * returns.
582 *
583 * The packet type might still be in use by receivers
584 * and must not be freed until after all the CPU's have gone
585 * through a quiescent state.
586 */
587void __dev_remove_pack(struct packet_type *pt)
588{
589 struct list_head *head = ptype_head(pt);
590 struct packet_type *pt1;
591
592 spin_lock(&ptype_lock);
593
594 list_for_each_entry(pt1, head, list) {
595 if (pt == pt1) {
596 list_del_rcu(&pt->list);
597 goto out;
598 }
599 }
600
601 pr_warn("dev_remove_pack: %p not found\n", pt);
602out:
603 spin_unlock(&ptype_lock);
604}
605EXPORT_SYMBOL(__dev_remove_pack);
606
607/**
608 * dev_remove_pack - remove packet handler
609 * @pt: packet type declaration
610 *
611 * Remove a protocol handler that was previously added to the kernel
612 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
613 * from the kernel lists and can be freed or reused once this function
614 * returns.
615 *
616 * This call sleeps to guarantee that no CPU is looking at the packet
617 * type after return.
618 */
619void dev_remove_pack(struct packet_type *pt)
620{
621 __dev_remove_pack(pt);
622
623 synchronize_net();
624}
625EXPORT_SYMBOL(dev_remove_pack);
626
627
628/*******************************************************************************
629 *
630 * Device Interface Subroutines
631 *
632 *******************************************************************************/
633
634/**
635 * dev_get_iflink - get 'iflink' value of a interface
636 * @dev: targeted interface
637 *
638 * Indicates the ifindex the interface is linked to.
639 * Physical interfaces have the same 'ifindex' and 'iflink' values.
640 */
641
642int dev_get_iflink(const struct net_device *dev)
643{
644 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
645 return dev->netdev_ops->ndo_get_iflink(dev);
646
647 return dev->ifindex;
648}
649EXPORT_SYMBOL(dev_get_iflink);
650
651/**
652 * dev_fill_metadata_dst - Retrieve tunnel egress information.
653 * @dev: targeted interface
654 * @skb: The packet.
655 *
656 * For better visibility of tunnel traffic OVS needs to retrieve
657 * egress tunnel information for a packet. Following API allows
658 * user to get this info.
659 */
660int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
661{
662 struct ip_tunnel_info *info;
663
664 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
665 return -EINVAL;
666
667 info = skb_tunnel_info_unclone(skb);
668 if (!info)
669 return -ENOMEM;
670 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
671 return -EINVAL;
672
673 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
674}
675EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
676
677static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
678{
679 int k = stack->num_paths++;
680
681 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
682 return NULL;
683
684 return &stack->path[k];
685}
686
687int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
688 struct net_device_path_stack *stack)
689{
690 const struct net_device *last_dev;
691 struct net_device_path_ctx ctx = {
692 .dev = dev,
693 };
694 struct net_device_path *path;
695 int ret = 0;
696
697 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
698 stack->num_paths = 0;
699 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
700 last_dev = ctx.dev;
701 path = dev_fwd_path(stack);
702 if (!path)
703 return -1;
704
705 memset(path, 0, sizeof(struct net_device_path));
706 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
707 if (ret < 0)
708 return -1;
709
710 if (WARN_ON_ONCE(last_dev == ctx.dev))
711 return -1;
712 }
713
714 if (!ctx.dev)
715 return ret;
716
717 path = dev_fwd_path(stack);
718 if (!path)
719 return -1;
720 path->type = DEV_PATH_ETHERNET;
721 path->dev = ctx.dev;
722
723 return ret;
724}
725EXPORT_SYMBOL_GPL(dev_fill_forward_path);
726
727/**
728 * __dev_get_by_name - find a device by its name
729 * @net: the applicable net namespace
730 * @name: name to find
731 *
732 * Find an interface by name. Must be called under RTNL semaphore
733 * or @dev_base_lock. If the name is found a pointer to the device
734 * is returned. If the name is not found then %NULL is returned. The
735 * reference counters are not incremented so the caller must be
736 * careful with locks.
737 */
738
739struct net_device *__dev_get_by_name(struct net *net, const char *name)
740{
741 struct netdev_name_node *node_name;
742
743 node_name = netdev_name_node_lookup(net, name);
744 return node_name ? node_name->dev : NULL;
745}
746EXPORT_SYMBOL(__dev_get_by_name);
747
748/**
749 * dev_get_by_name_rcu - find a device by its name
750 * @net: the applicable net namespace
751 * @name: name to find
752 *
753 * Find an interface by name.
754 * If the name is found a pointer to the device is returned.
755 * If the name is not found then %NULL is returned.
756 * The reference counters are not incremented so the caller must be
757 * careful with locks. The caller must hold RCU lock.
758 */
759
760struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761{
762 struct netdev_name_node *node_name;
763
764 node_name = netdev_name_node_lookup_rcu(net, name);
765 return node_name ? node_name->dev : NULL;
766}
767EXPORT_SYMBOL(dev_get_by_name_rcu);
768
769/* Deprecated for new users, call netdev_get_by_name() instead */
770struct net_device *dev_get_by_name(struct net *net, const char *name)
771{
772 struct net_device *dev;
773
774 rcu_read_lock();
775 dev = dev_get_by_name_rcu(net, name);
776 dev_hold(dev);
777 rcu_read_unlock();
778 return dev;
779}
780EXPORT_SYMBOL(dev_get_by_name);
781
782/**
783 * netdev_get_by_name() - find a device by its name
784 * @net: the applicable net namespace
785 * @name: name to find
786 * @tracker: tracking object for the acquired reference
787 * @gfp: allocation flags for the tracker
788 *
789 * Find an interface by name. This can be called from any
790 * context and does its own locking. The returned handle has
791 * the usage count incremented and the caller must use netdev_put() to
792 * release it when it is no longer needed. %NULL is returned if no
793 * matching device is found.
794 */
795struct net_device *netdev_get_by_name(struct net *net, const char *name,
796 netdevice_tracker *tracker, gfp_t gfp)
797{
798 struct net_device *dev;
799
800 dev = dev_get_by_name(net, name);
801 if (dev)
802 netdev_tracker_alloc(dev, tracker, gfp);
803 return dev;
804}
805EXPORT_SYMBOL(netdev_get_by_name);
806
807/**
808 * __dev_get_by_index - find a device by its ifindex
809 * @net: the applicable net namespace
810 * @ifindex: index of device
811 *
812 * Search for an interface by index. Returns %NULL if the device
813 * is not found or a pointer to the device. The device has not
814 * had its reference counter increased so the caller must be careful
815 * about locking. The caller must hold either the RTNL semaphore
816 * or @dev_base_lock.
817 */
818
819struct net_device *__dev_get_by_index(struct net *net, int ifindex)
820{
821 struct net_device *dev;
822 struct hlist_head *head = dev_index_hash(net, ifindex);
823
824 hlist_for_each_entry(dev, head, index_hlist)
825 if (dev->ifindex == ifindex)
826 return dev;
827
828 return NULL;
829}
830EXPORT_SYMBOL(__dev_get_by_index);
831
832/**
833 * dev_get_by_index_rcu - find a device by its ifindex
834 * @net: the applicable net namespace
835 * @ifindex: index of device
836 *
837 * Search for an interface by index. Returns %NULL if the device
838 * is not found or a pointer to the device. The device has not
839 * had its reference counter increased so the caller must be careful
840 * about locking. The caller must hold RCU lock.
841 */
842
843struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
844{
845 struct net_device *dev;
846 struct hlist_head *head = dev_index_hash(net, ifindex);
847
848 hlist_for_each_entry_rcu(dev, head, index_hlist)
849 if (dev->ifindex == ifindex)
850 return dev;
851
852 return NULL;
853}
854EXPORT_SYMBOL(dev_get_by_index_rcu);
855
856/* Deprecated for new users, call netdev_get_by_index() instead */
857struct net_device *dev_get_by_index(struct net *net, int ifindex)
858{
859 struct net_device *dev;
860
861 rcu_read_lock();
862 dev = dev_get_by_index_rcu(net, ifindex);
863 dev_hold(dev);
864 rcu_read_unlock();
865 return dev;
866}
867EXPORT_SYMBOL(dev_get_by_index);
868
869/**
870 * netdev_get_by_index() - find a device by its ifindex
871 * @net: the applicable net namespace
872 * @ifindex: index of device
873 * @tracker: tracking object for the acquired reference
874 * @gfp: allocation flags for the tracker
875 *
876 * Search for an interface by index. Returns NULL if the device
877 * is not found or a pointer to the device. The device returned has
878 * had a reference added and the pointer is safe until the user calls
879 * netdev_put() to indicate they have finished with it.
880 */
881struct net_device *netdev_get_by_index(struct net *net, int ifindex,
882 netdevice_tracker *tracker, gfp_t gfp)
883{
884 struct net_device *dev;
885
886 dev = dev_get_by_index(net, ifindex);
887 if (dev)
888 netdev_tracker_alloc(dev, tracker, gfp);
889 return dev;
890}
891EXPORT_SYMBOL(netdev_get_by_index);
892
893/**
894 * dev_get_by_napi_id - find a device by napi_id
895 * @napi_id: ID of the NAPI struct
896 *
897 * Search for an interface by NAPI ID. Returns %NULL if the device
898 * is not found or a pointer to the device. The device has not had
899 * its reference counter increased so the caller must be careful
900 * about locking. The caller must hold RCU lock.
901 */
902
903struct net_device *dev_get_by_napi_id(unsigned int napi_id)
904{
905 struct napi_struct *napi;
906
907 WARN_ON_ONCE(!rcu_read_lock_held());
908
909 if (napi_id < MIN_NAPI_ID)
910 return NULL;
911
912 napi = napi_by_id(napi_id);
913
914 return napi ? napi->dev : NULL;
915}
916EXPORT_SYMBOL(dev_get_by_napi_id);
917
918/**
919 * netdev_get_name - get a netdevice name, knowing its ifindex.
920 * @net: network namespace
921 * @name: a pointer to the buffer where the name will be stored.
922 * @ifindex: the ifindex of the interface to get the name from.
923 */
924int netdev_get_name(struct net *net, char *name, int ifindex)
925{
926 struct net_device *dev;
927 int ret;
928
929 down_read(&devnet_rename_sem);
930 rcu_read_lock();
931
932 dev = dev_get_by_index_rcu(net, ifindex);
933 if (!dev) {
934 ret = -ENODEV;
935 goto out;
936 }
937
938 strcpy(name, dev->name);
939
940 ret = 0;
941out:
942 rcu_read_unlock();
943 up_read(&devnet_rename_sem);
944 return ret;
945}
946
947/**
948 * dev_getbyhwaddr_rcu - find a device by its hardware address
949 * @net: the applicable net namespace
950 * @type: media type of device
951 * @ha: hardware address
952 *
953 * Search for an interface by MAC address. Returns NULL if the device
954 * is not found or a pointer to the device.
955 * The caller must hold RCU or RTNL.
956 * The returned device has not had its ref count increased
957 * and the caller must therefore be careful about locking
958 *
959 */
960
961struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
962 const char *ha)
963{
964 struct net_device *dev;
965
966 for_each_netdev_rcu(net, dev)
967 if (dev->type == type &&
968 !memcmp(dev->dev_addr, ha, dev->addr_len))
969 return dev;
970
971 return NULL;
972}
973EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
974
975struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976{
977 struct net_device *dev, *ret = NULL;
978
979 rcu_read_lock();
980 for_each_netdev_rcu(net, dev)
981 if (dev->type == type) {
982 dev_hold(dev);
983 ret = dev;
984 break;
985 }
986 rcu_read_unlock();
987 return ret;
988}
989EXPORT_SYMBOL(dev_getfirstbyhwtype);
990
991/**
992 * __dev_get_by_flags - find any device with given flags
993 * @net: the applicable net namespace
994 * @if_flags: IFF_* values
995 * @mask: bitmask of bits in if_flags to check
996 *
997 * Search for any interface with the given flags. Returns NULL if a device
998 * is not found or a pointer to the device. Must be called inside
999 * rtnl_lock(), and result refcount is unchanged.
1000 */
1001
1002struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003 unsigned short mask)
1004{
1005 struct net_device *dev, *ret;
1006
1007 ASSERT_RTNL();
1008
1009 ret = NULL;
1010 for_each_netdev(net, dev) {
1011 if (((dev->flags ^ if_flags) & mask) == 0) {
1012 ret = dev;
1013 break;
1014 }
1015 }
1016 return ret;
1017}
1018EXPORT_SYMBOL(__dev_get_by_flags);
1019
1020/**
1021 * dev_valid_name - check if name is okay for network device
1022 * @name: name string
1023 *
1024 * Network device names need to be valid file names to
1025 * allow sysfs to work. We also disallow any kind of
1026 * whitespace.
1027 */
1028bool dev_valid_name(const char *name)
1029{
1030 if (*name == '\0')
1031 return false;
1032 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033 return false;
1034 if (!strcmp(name, ".") || !strcmp(name, ".."))
1035 return false;
1036
1037 while (*name) {
1038 if (*name == '/' || *name == ':' || isspace(*name))
1039 return false;
1040 name++;
1041 }
1042 return true;
1043}
1044EXPORT_SYMBOL(dev_valid_name);
1045
1046/**
1047 * __dev_alloc_name - allocate a name for a device
1048 * @net: network namespace to allocate the device name in
1049 * @name: name format string
1050 * @buf: scratch buffer and result name string
1051 *
1052 * Passed a format string - eg "lt%d" it will try and find a suitable
1053 * id. It scans list of devices to build up a free map, then chooses
1054 * the first empty slot. The caller must hold the dev_base or rtnl lock
1055 * while allocating the name and adding the device in order to avoid
1056 * duplicates.
1057 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058 * Returns the number of the unit assigned or a negative errno code.
1059 */
1060
1061static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062{
1063 int i = 0;
1064 const char *p;
1065 const int max_netdevices = 8*PAGE_SIZE;
1066 unsigned long *inuse;
1067 struct net_device *d;
1068
1069 if (!dev_valid_name(name))
1070 return -EINVAL;
1071
1072 p = strchr(name, '%');
1073 if (p) {
1074 /*
1075 * Verify the string as this thing may have come from
1076 * the user. There must be either one "%d" and no other "%"
1077 * characters.
1078 */
1079 if (p[1] != 'd' || strchr(p + 2, '%'))
1080 return -EINVAL;
1081
1082 /* Use one page as a bit array of possible slots */
1083 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1084 if (!inuse)
1085 return -ENOMEM;
1086
1087 for_each_netdev(net, d) {
1088 struct netdev_name_node *name_node;
1089 list_for_each_entry(name_node, &d->name_node->list, list) {
1090 if (!sscanf(name_node->name, name, &i))
1091 continue;
1092 if (i < 0 || i >= max_netdevices)
1093 continue;
1094
1095 /* avoid cases where sscanf is not exact inverse of printf */
1096 snprintf(buf, IFNAMSIZ, name, i);
1097 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1098 __set_bit(i, inuse);
1099 }
1100 if (!sscanf(d->name, name, &i))
1101 continue;
1102 if (i < 0 || i >= max_netdevices)
1103 continue;
1104
1105 /* avoid cases where sscanf is not exact inverse of printf */
1106 snprintf(buf, IFNAMSIZ, name, i);
1107 if (!strncmp(buf, d->name, IFNAMSIZ))
1108 __set_bit(i, inuse);
1109 }
1110
1111 i = find_first_zero_bit(inuse, max_netdevices);
1112 bitmap_free(inuse);
1113 }
1114
1115 snprintf(buf, IFNAMSIZ, name, i);
1116 if (!netdev_name_in_use(net, buf))
1117 return i;
1118
1119 /* It is possible to run out of possible slots
1120 * when the name is long and there isn't enough space left
1121 * for the digits, or if all bits are used.
1122 */
1123 return -ENFILE;
1124}
1125
1126static int dev_alloc_name_ns(struct net *net,
1127 struct net_device *dev,
1128 const char *name)
1129{
1130 char buf[IFNAMSIZ];
1131 int ret;
1132
1133 BUG_ON(!net);
1134 ret = __dev_alloc_name(net, name, buf);
1135 if (ret >= 0)
1136 strscpy(dev->name, buf, IFNAMSIZ);
1137 return ret;
1138}
1139
1140/**
1141 * dev_alloc_name - allocate a name for a device
1142 * @dev: device
1143 * @name: name format string
1144 *
1145 * Passed a format string - eg "lt%d" it will try and find a suitable
1146 * id. It scans list of devices to build up a free map, then chooses
1147 * the first empty slot. The caller must hold the dev_base or rtnl lock
1148 * while allocating the name and adding the device in order to avoid
1149 * duplicates.
1150 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1151 * Returns the number of the unit assigned or a negative errno code.
1152 */
1153
1154int dev_alloc_name(struct net_device *dev, const char *name)
1155{
1156 return dev_alloc_name_ns(dev_net(dev), dev, name);
1157}
1158EXPORT_SYMBOL(dev_alloc_name);
1159
1160static int dev_get_valid_name(struct net *net, struct net_device *dev,
1161 const char *name)
1162{
1163 BUG_ON(!net);
1164
1165 if (!dev_valid_name(name))
1166 return -EINVAL;
1167
1168 if (strchr(name, '%'))
1169 return dev_alloc_name_ns(net, dev, name);
1170 else if (netdev_name_in_use(net, name))
1171 return -EEXIST;
1172 else if (dev->name != name)
1173 strscpy(dev->name, name, IFNAMSIZ);
1174
1175 return 0;
1176}
1177
1178/**
1179 * dev_change_name - change name of a device
1180 * @dev: device
1181 * @newname: name (or format string) must be at least IFNAMSIZ
1182 *
1183 * Change name of a device, can pass format strings "eth%d".
1184 * for wildcarding.
1185 */
1186int dev_change_name(struct net_device *dev, const char *newname)
1187{
1188 unsigned char old_assign_type;
1189 char oldname[IFNAMSIZ];
1190 int err = 0;
1191 int ret;
1192 struct net *net;
1193
1194 ASSERT_RTNL();
1195 BUG_ON(!dev_net(dev));
1196
1197 net = dev_net(dev);
1198
1199 down_write(&devnet_rename_sem);
1200
1201 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1202 up_write(&devnet_rename_sem);
1203 return 0;
1204 }
1205
1206 memcpy(oldname, dev->name, IFNAMSIZ);
1207
1208 err = dev_get_valid_name(net, dev, newname);
1209 if (err < 0) {
1210 up_write(&devnet_rename_sem);
1211 return err;
1212 }
1213
1214 if (oldname[0] && !strchr(oldname, '%'))
1215 netdev_info(dev, "renamed from %s%s\n", oldname,
1216 dev->flags & IFF_UP ? " (while UP)" : "");
1217
1218 old_assign_type = dev->name_assign_type;
1219 dev->name_assign_type = NET_NAME_RENAMED;
1220
1221rollback:
1222 ret = device_rename(&dev->dev, dev->name);
1223 if (ret) {
1224 memcpy(dev->name, oldname, IFNAMSIZ);
1225 dev->name_assign_type = old_assign_type;
1226 up_write(&devnet_rename_sem);
1227 return ret;
1228 }
1229
1230 up_write(&devnet_rename_sem);
1231
1232 netdev_adjacent_rename_links(dev, oldname);
1233
1234 write_lock(&dev_base_lock);
1235 netdev_name_node_del(dev->name_node);
1236 write_unlock(&dev_base_lock);
1237
1238 synchronize_rcu();
1239
1240 write_lock(&dev_base_lock);
1241 netdev_name_node_add(net, dev->name_node);
1242 write_unlock(&dev_base_lock);
1243
1244 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245 ret = notifier_to_errno(ret);
1246
1247 if (ret) {
1248 /* err >= 0 after dev_alloc_name() or stores the first errno */
1249 if (err >= 0) {
1250 err = ret;
1251 down_write(&devnet_rename_sem);
1252 memcpy(dev->name, oldname, IFNAMSIZ);
1253 memcpy(oldname, newname, IFNAMSIZ);
1254 dev->name_assign_type = old_assign_type;
1255 old_assign_type = NET_NAME_RENAMED;
1256 goto rollback;
1257 } else {
1258 netdev_err(dev, "name change rollback failed: %d\n",
1259 ret);
1260 }
1261 }
1262
1263 return err;
1264}
1265
1266/**
1267 * dev_set_alias - change ifalias of a device
1268 * @dev: device
1269 * @alias: name up to IFALIASZ
1270 * @len: limit of bytes to copy from info
1271 *
1272 * Set ifalias for a device,
1273 */
1274int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275{
1276 struct dev_ifalias *new_alias = NULL;
1277
1278 if (len >= IFALIASZ)
1279 return -EINVAL;
1280
1281 if (len) {
1282 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 if (!new_alias)
1284 return -ENOMEM;
1285
1286 memcpy(new_alias->ifalias, alias, len);
1287 new_alias->ifalias[len] = 0;
1288 }
1289
1290 mutex_lock(&ifalias_mutex);
1291 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1292 mutex_is_locked(&ifalias_mutex));
1293 mutex_unlock(&ifalias_mutex);
1294
1295 if (new_alias)
1296 kfree_rcu(new_alias, rcuhead);
1297
1298 return len;
1299}
1300EXPORT_SYMBOL(dev_set_alias);
1301
1302/**
1303 * dev_get_alias - get ifalias of a device
1304 * @dev: device
1305 * @name: buffer to store name of ifalias
1306 * @len: size of buffer
1307 *
1308 * get ifalias for a device. Caller must make sure dev cannot go
1309 * away, e.g. rcu read lock or own a reference count to device.
1310 */
1311int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312{
1313 const struct dev_ifalias *alias;
1314 int ret = 0;
1315
1316 rcu_read_lock();
1317 alias = rcu_dereference(dev->ifalias);
1318 if (alias)
1319 ret = snprintf(name, len, "%s", alias->ifalias);
1320 rcu_read_unlock();
1321
1322 return ret;
1323}
1324
1325/**
1326 * netdev_features_change - device changes features
1327 * @dev: device to cause notification
1328 *
1329 * Called to indicate a device has changed features.
1330 */
1331void netdev_features_change(struct net_device *dev)
1332{
1333 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334}
1335EXPORT_SYMBOL(netdev_features_change);
1336
1337/**
1338 * netdev_state_change - device changes state
1339 * @dev: device to cause notification
1340 *
1341 * Called to indicate a device has changed state. This function calls
1342 * the notifier chains for netdev_chain and sends a NEWLINK message
1343 * to the routing socket.
1344 */
1345void netdev_state_change(struct net_device *dev)
1346{
1347 if (dev->flags & IFF_UP) {
1348 struct netdev_notifier_change_info change_info = {
1349 .info.dev = dev,
1350 };
1351
1352 call_netdevice_notifiers_info(NETDEV_CHANGE,
1353 &change_info.info);
1354 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1355 }
1356}
1357EXPORT_SYMBOL(netdev_state_change);
1358
1359/**
1360 * __netdev_notify_peers - notify network peers about existence of @dev,
1361 * to be called when rtnl lock is already held.
1362 * @dev: network device
1363 *
1364 * Generate traffic such that interested network peers are aware of
1365 * @dev, such as by generating a gratuitous ARP. This may be used when
1366 * a device wants to inform the rest of the network about some sort of
1367 * reconfiguration such as a failover event or virtual machine
1368 * migration.
1369 */
1370void __netdev_notify_peers(struct net_device *dev)
1371{
1372 ASSERT_RTNL();
1373 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1374 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1375}
1376EXPORT_SYMBOL(__netdev_notify_peers);
1377
1378/**
1379 * netdev_notify_peers - notify network peers about existence of @dev
1380 * @dev: network device
1381 *
1382 * Generate traffic such that interested network peers are aware of
1383 * @dev, such as by generating a gratuitous ARP. This may be used when
1384 * a device wants to inform the rest of the network about some sort of
1385 * reconfiguration such as a failover event or virtual machine
1386 * migration.
1387 */
1388void netdev_notify_peers(struct net_device *dev)
1389{
1390 rtnl_lock();
1391 __netdev_notify_peers(dev);
1392 rtnl_unlock();
1393}
1394EXPORT_SYMBOL(netdev_notify_peers);
1395
1396static int napi_threaded_poll(void *data);
1397
1398static int napi_kthread_create(struct napi_struct *n)
1399{
1400 int err = 0;
1401
1402 /* Create and wake up the kthread once to put it in
1403 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1404 * warning and work with loadavg.
1405 */
1406 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1407 n->dev->name, n->napi_id);
1408 if (IS_ERR(n->thread)) {
1409 err = PTR_ERR(n->thread);
1410 pr_err("kthread_run failed with err %d\n", err);
1411 n->thread = NULL;
1412 }
1413
1414 return err;
1415}
1416
1417static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1418{
1419 const struct net_device_ops *ops = dev->netdev_ops;
1420 int ret;
1421
1422 ASSERT_RTNL();
1423 dev_addr_check(dev);
1424
1425 if (!netif_device_present(dev)) {
1426 /* may be detached because parent is runtime-suspended */
1427 if (dev->dev.parent)
1428 pm_runtime_resume(dev->dev.parent);
1429 if (!netif_device_present(dev))
1430 return -ENODEV;
1431 }
1432
1433 /* Block netpoll from trying to do any rx path servicing.
1434 * If we don't do this there is a chance ndo_poll_controller
1435 * or ndo_poll may be running while we open the device
1436 */
1437 netpoll_poll_disable(dev);
1438
1439 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1440 ret = notifier_to_errno(ret);
1441 if (ret)
1442 return ret;
1443
1444 set_bit(__LINK_STATE_START, &dev->state);
1445
1446 if (ops->ndo_validate_addr)
1447 ret = ops->ndo_validate_addr(dev);
1448
1449 if (!ret && ops->ndo_open)
1450 ret = ops->ndo_open(dev);
1451
1452 netpoll_poll_enable(dev);
1453
1454 if (ret)
1455 clear_bit(__LINK_STATE_START, &dev->state);
1456 else {
1457 dev->flags |= IFF_UP;
1458 dev_set_rx_mode(dev);
1459 dev_activate(dev);
1460 add_device_randomness(dev->dev_addr, dev->addr_len);
1461 }
1462
1463 return ret;
1464}
1465
1466/**
1467 * dev_open - prepare an interface for use.
1468 * @dev: device to open
1469 * @extack: netlink extended ack
1470 *
1471 * Takes a device from down to up state. The device's private open
1472 * function is invoked and then the multicast lists are loaded. Finally
1473 * the device is moved into the up state and a %NETDEV_UP message is
1474 * sent to the netdev notifier chain.
1475 *
1476 * Calling this function on an active interface is a nop. On a failure
1477 * a negative errno code is returned.
1478 */
1479int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1480{
1481 int ret;
1482
1483 if (dev->flags & IFF_UP)
1484 return 0;
1485
1486 ret = __dev_open(dev, extack);
1487 if (ret < 0)
1488 return ret;
1489
1490 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1491 call_netdevice_notifiers(NETDEV_UP, dev);
1492
1493 return ret;
1494}
1495EXPORT_SYMBOL(dev_open);
1496
1497static void __dev_close_many(struct list_head *head)
1498{
1499 struct net_device *dev;
1500
1501 ASSERT_RTNL();
1502 might_sleep();
1503
1504 list_for_each_entry(dev, head, close_list) {
1505 /* Temporarily disable netpoll until the interface is down */
1506 netpoll_poll_disable(dev);
1507
1508 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1509
1510 clear_bit(__LINK_STATE_START, &dev->state);
1511
1512 /* Synchronize to scheduled poll. We cannot touch poll list, it
1513 * can be even on different cpu. So just clear netif_running().
1514 *
1515 * dev->stop() will invoke napi_disable() on all of it's
1516 * napi_struct instances on this device.
1517 */
1518 smp_mb__after_atomic(); /* Commit netif_running(). */
1519 }
1520
1521 dev_deactivate_many(head);
1522
1523 list_for_each_entry(dev, head, close_list) {
1524 const struct net_device_ops *ops = dev->netdev_ops;
1525
1526 /*
1527 * Call the device specific close. This cannot fail.
1528 * Only if device is UP
1529 *
1530 * We allow it to be called even after a DETACH hot-plug
1531 * event.
1532 */
1533 if (ops->ndo_stop)
1534 ops->ndo_stop(dev);
1535
1536 dev->flags &= ~IFF_UP;
1537 netpoll_poll_enable(dev);
1538 }
1539}
1540
1541static void __dev_close(struct net_device *dev)
1542{
1543 LIST_HEAD(single);
1544
1545 list_add(&dev->close_list, &single);
1546 __dev_close_many(&single);
1547 list_del(&single);
1548}
1549
1550void dev_close_many(struct list_head *head, bool unlink)
1551{
1552 struct net_device *dev, *tmp;
1553
1554 /* Remove the devices that don't need to be closed */
1555 list_for_each_entry_safe(dev, tmp, head, close_list)
1556 if (!(dev->flags & IFF_UP))
1557 list_del_init(&dev->close_list);
1558
1559 __dev_close_many(head);
1560
1561 list_for_each_entry_safe(dev, tmp, head, close_list) {
1562 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1563 call_netdevice_notifiers(NETDEV_DOWN, dev);
1564 if (unlink)
1565 list_del_init(&dev->close_list);
1566 }
1567}
1568EXPORT_SYMBOL(dev_close_many);
1569
1570/**
1571 * dev_close - shutdown an interface.
1572 * @dev: device to shutdown
1573 *
1574 * This function moves an active device into down state. A
1575 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1576 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1577 * chain.
1578 */
1579void dev_close(struct net_device *dev)
1580{
1581 if (dev->flags & IFF_UP) {
1582 LIST_HEAD(single);
1583
1584 list_add(&dev->close_list, &single);
1585 dev_close_many(&single, true);
1586 list_del(&single);
1587 }
1588}
1589EXPORT_SYMBOL(dev_close);
1590
1591
1592/**
1593 * dev_disable_lro - disable Large Receive Offload on a device
1594 * @dev: device
1595 *
1596 * Disable Large Receive Offload (LRO) on a net device. Must be
1597 * called under RTNL. This is needed if received packets may be
1598 * forwarded to another interface.
1599 */
1600void dev_disable_lro(struct net_device *dev)
1601{
1602 struct net_device *lower_dev;
1603 struct list_head *iter;
1604
1605 dev->wanted_features &= ~NETIF_F_LRO;
1606 netdev_update_features(dev);
1607
1608 if (unlikely(dev->features & NETIF_F_LRO))
1609 netdev_WARN(dev, "failed to disable LRO!\n");
1610
1611 netdev_for_each_lower_dev(dev, lower_dev, iter)
1612 dev_disable_lro(lower_dev);
1613}
1614EXPORT_SYMBOL(dev_disable_lro);
1615
1616/**
1617 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1618 * @dev: device
1619 *
1620 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1621 * called under RTNL. This is needed if Generic XDP is installed on
1622 * the device.
1623 */
1624static void dev_disable_gro_hw(struct net_device *dev)
1625{
1626 dev->wanted_features &= ~NETIF_F_GRO_HW;
1627 netdev_update_features(dev);
1628
1629 if (unlikely(dev->features & NETIF_F_GRO_HW))
1630 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1631}
1632
1633const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1634{
1635#define N(val) \
1636 case NETDEV_##val: \
1637 return "NETDEV_" __stringify(val);
1638 switch (cmd) {
1639 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1640 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1641 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1642 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1643 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1644 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1645 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1646 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1647 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1648 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1649 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1650 N(XDP_FEAT_CHANGE)
1651 }
1652#undef N
1653 return "UNKNOWN_NETDEV_EVENT";
1654}
1655EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1656
1657static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1658 struct net_device *dev)
1659{
1660 struct netdev_notifier_info info = {
1661 .dev = dev,
1662 };
1663
1664 return nb->notifier_call(nb, val, &info);
1665}
1666
1667static int call_netdevice_register_notifiers(struct notifier_block *nb,
1668 struct net_device *dev)
1669{
1670 int err;
1671
1672 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1673 err = notifier_to_errno(err);
1674 if (err)
1675 return err;
1676
1677 if (!(dev->flags & IFF_UP))
1678 return 0;
1679
1680 call_netdevice_notifier(nb, NETDEV_UP, dev);
1681 return 0;
1682}
1683
1684static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1685 struct net_device *dev)
1686{
1687 if (dev->flags & IFF_UP) {
1688 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1689 dev);
1690 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1691 }
1692 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1693}
1694
1695static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1696 struct net *net)
1697{
1698 struct net_device *dev;
1699 int err;
1700
1701 for_each_netdev(net, dev) {
1702 err = call_netdevice_register_notifiers(nb, dev);
1703 if (err)
1704 goto rollback;
1705 }
1706 return 0;
1707
1708rollback:
1709 for_each_netdev_continue_reverse(net, dev)
1710 call_netdevice_unregister_notifiers(nb, dev);
1711 return err;
1712}
1713
1714static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1715 struct net *net)
1716{
1717 struct net_device *dev;
1718
1719 for_each_netdev(net, dev)
1720 call_netdevice_unregister_notifiers(nb, dev);
1721}
1722
1723static int dev_boot_phase = 1;
1724
1725/**
1726 * register_netdevice_notifier - register a network notifier block
1727 * @nb: notifier
1728 *
1729 * Register a notifier to be called when network device events occur.
1730 * The notifier passed is linked into the kernel structures and must
1731 * not be reused until it has been unregistered. A negative errno code
1732 * is returned on a failure.
1733 *
1734 * When registered all registration and up events are replayed
1735 * to the new notifier to allow device to have a race free
1736 * view of the network device list.
1737 */
1738
1739int register_netdevice_notifier(struct notifier_block *nb)
1740{
1741 struct net *net;
1742 int err;
1743
1744 /* Close race with setup_net() and cleanup_net() */
1745 down_write(&pernet_ops_rwsem);
1746 rtnl_lock();
1747 err = raw_notifier_chain_register(&netdev_chain, nb);
1748 if (err)
1749 goto unlock;
1750 if (dev_boot_phase)
1751 goto unlock;
1752 for_each_net(net) {
1753 err = call_netdevice_register_net_notifiers(nb, net);
1754 if (err)
1755 goto rollback;
1756 }
1757
1758unlock:
1759 rtnl_unlock();
1760 up_write(&pernet_ops_rwsem);
1761 return err;
1762
1763rollback:
1764 for_each_net_continue_reverse(net)
1765 call_netdevice_unregister_net_notifiers(nb, net);
1766
1767 raw_notifier_chain_unregister(&netdev_chain, nb);
1768 goto unlock;
1769}
1770EXPORT_SYMBOL(register_netdevice_notifier);
1771
1772/**
1773 * unregister_netdevice_notifier - unregister a network notifier block
1774 * @nb: notifier
1775 *
1776 * Unregister a notifier previously registered by
1777 * register_netdevice_notifier(). The notifier is unlinked into the
1778 * kernel structures and may then be reused. A negative errno code
1779 * is returned on a failure.
1780 *
1781 * After unregistering unregister and down device events are synthesized
1782 * for all devices on the device list to the removed notifier to remove
1783 * the need for special case cleanup code.
1784 */
1785
1786int unregister_netdevice_notifier(struct notifier_block *nb)
1787{
1788 struct net *net;
1789 int err;
1790
1791 /* Close race with setup_net() and cleanup_net() */
1792 down_write(&pernet_ops_rwsem);
1793 rtnl_lock();
1794 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1795 if (err)
1796 goto unlock;
1797
1798 for_each_net(net)
1799 call_netdevice_unregister_net_notifiers(nb, net);
1800
1801unlock:
1802 rtnl_unlock();
1803 up_write(&pernet_ops_rwsem);
1804 return err;
1805}
1806EXPORT_SYMBOL(unregister_netdevice_notifier);
1807
1808static int __register_netdevice_notifier_net(struct net *net,
1809 struct notifier_block *nb,
1810 bool ignore_call_fail)
1811{
1812 int err;
1813
1814 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1815 if (err)
1816 return err;
1817 if (dev_boot_phase)
1818 return 0;
1819
1820 err = call_netdevice_register_net_notifiers(nb, net);
1821 if (err && !ignore_call_fail)
1822 goto chain_unregister;
1823
1824 return 0;
1825
1826chain_unregister:
1827 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1828 return err;
1829}
1830
1831static int __unregister_netdevice_notifier_net(struct net *net,
1832 struct notifier_block *nb)
1833{
1834 int err;
1835
1836 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1837 if (err)
1838 return err;
1839
1840 call_netdevice_unregister_net_notifiers(nb, net);
1841 return 0;
1842}
1843
1844/**
1845 * register_netdevice_notifier_net - register a per-netns network notifier block
1846 * @net: network namespace
1847 * @nb: notifier
1848 *
1849 * Register a notifier to be called when network device events occur.
1850 * The notifier passed is linked into the kernel structures and must
1851 * not be reused until it has been unregistered. A negative errno code
1852 * is returned on a failure.
1853 *
1854 * When registered all registration and up events are replayed
1855 * to the new notifier to allow device to have a race free
1856 * view of the network device list.
1857 */
1858
1859int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1860{
1861 int err;
1862
1863 rtnl_lock();
1864 err = __register_netdevice_notifier_net(net, nb, false);
1865 rtnl_unlock();
1866 return err;
1867}
1868EXPORT_SYMBOL(register_netdevice_notifier_net);
1869
1870/**
1871 * unregister_netdevice_notifier_net - unregister a per-netns
1872 * network notifier block
1873 * @net: network namespace
1874 * @nb: notifier
1875 *
1876 * Unregister a notifier previously registered by
1877 * register_netdevice_notifier_net(). The notifier is unlinked from the
1878 * kernel structures and may then be reused. A negative errno code
1879 * is returned on a failure.
1880 *
1881 * After unregistering unregister and down device events are synthesized
1882 * for all devices on the device list to the removed notifier to remove
1883 * the need for special case cleanup code.
1884 */
1885
1886int unregister_netdevice_notifier_net(struct net *net,
1887 struct notifier_block *nb)
1888{
1889 int err;
1890
1891 rtnl_lock();
1892 err = __unregister_netdevice_notifier_net(net, nb);
1893 rtnl_unlock();
1894 return err;
1895}
1896EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1897
1898static void __move_netdevice_notifier_net(struct net *src_net,
1899 struct net *dst_net,
1900 struct notifier_block *nb)
1901{
1902 __unregister_netdevice_notifier_net(src_net, nb);
1903 __register_netdevice_notifier_net(dst_net, nb, true);
1904}
1905
1906int register_netdevice_notifier_dev_net(struct net_device *dev,
1907 struct notifier_block *nb,
1908 struct netdev_net_notifier *nn)
1909{
1910 int err;
1911
1912 rtnl_lock();
1913 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1914 if (!err) {
1915 nn->nb = nb;
1916 list_add(&nn->list, &dev->net_notifier_list);
1917 }
1918 rtnl_unlock();
1919 return err;
1920}
1921EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1922
1923int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1924 struct notifier_block *nb,
1925 struct netdev_net_notifier *nn)
1926{
1927 int err;
1928
1929 rtnl_lock();
1930 list_del(&nn->list);
1931 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1932 rtnl_unlock();
1933 return err;
1934}
1935EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1936
1937static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1938 struct net *net)
1939{
1940 struct netdev_net_notifier *nn;
1941
1942 list_for_each_entry(nn, &dev->net_notifier_list, list)
1943 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1944}
1945
1946/**
1947 * call_netdevice_notifiers_info - call all network notifier blocks
1948 * @val: value passed unmodified to notifier function
1949 * @info: notifier information data
1950 *
1951 * Call all network notifier blocks. Parameters and return value
1952 * are as for raw_notifier_call_chain().
1953 */
1954
1955int call_netdevice_notifiers_info(unsigned long val,
1956 struct netdev_notifier_info *info)
1957{
1958 struct net *net = dev_net(info->dev);
1959 int ret;
1960
1961 ASSERT_RTNL();
1962
1963 /* Run per-netns notifier block chain first, then run the global one.
1964 * Hopefully, one day, the global one is going to be removed after
1965 * all notifier block registrators get converted to be per-netns.
1966 */
1967 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1968 if (ret & NOTIFY_STOP_MASK)
1969 return ret;
1970 return raw_notifier_call_chain(&netdev_chain, val, info);
1971}
1972
1973/**
1974 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1975 * for and rollback on error
1976 * @val_up: value passed unmodified to notifier function
1977 * @val_down: value passed unmodified to the notifier function when
1978 * recovering from an error on @val_up
1979 * @info: notifier information data
1980 *
1981 * Call all per-netns network notifier blocks, but not notifier blocks on
1982 * the global notifier chain. Parameters and return value are as for
1983 * raw_notifier_call_chain_robust().
1984 */
1985
1986static int
1987call_netdevice_notifiers_info_robust(unsigned long val_up,
1988 unsigned long val_down,
1989 struct netdev_notifier_info *info)
1990{
1991 struct net *net = dev_net(info->dev);
1992
1993 ASSERT_RTNL();
1994
1995 return raw_notifier_call_chain_robust(&net->netdev_chain,
1996 val_up, val_down, info);
1997}
1998
1999static int call_netdevice_notifiers_extack(unsigned long val,
2000 struct net_device *dev,
2001 struct netlink_ext_ack *extack)
2002{
2003 struct netdev_notifier_info info = {
2004 .dev = dev,
2005 .extack = extack,
2006 };
2007
2008 return call_netdevice_notifiers_info(val, &info);
2009}
2010
2011/**
2012 * call_netdevice_notifiers - call all network notifier blocks
2013 * @val: value passed unmodified to notifier function
2014 * @dev: net_device pointer passed unmodified to notifier function
2015 *
2016 * Call all network notifier blocks. Parameters and return value
2017 * are as for raw_notifier_call_chain().
2018 */
2019
2020int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021{
2022 return call_netdevice_notifiers_extack(val, dev, NULL);
2023}
2024EXPORT_SYMBOL(call_netdevice_notifiers);
2025
2026/**
2027 * call_netdevice_notifiers_mtu - call all network notifier blocks
2028 * @val: value passed unmodified to notifier function
2029 * @dev: net_device pointer passed unmodified to notifier function
2030 * @arg: additional u32 argument passed to the notifier function
2031 *
2032 * Call all network notifier blocks. Parameters and return value
2033 * are as for raw_notifier_call_chain().
2034 */
2035static int call_netdevice_notifiers_mtu(unsigned long val,
2036 struct net_device *dev, u32 arg)
2037{
2038 struct netdev_notifier_info_ext info = {
2039 .info.dev = dev,
2040 .ext.mtu = arg,
2041 };
2042
2043 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044
2045 return call_netdevice_notifiers_info(val, &info.info);
2046}
2047
2048#ifdef CONFIG_NET_INGRESS
2049static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050
2051void net_inc_ingress_queue(void)
2052{
2053 static_branch_inc(&ingress_needed_key);
2054}
2055EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056
2057void net_dec_ingress_queue(void)
2058{
2059 static_branch_dec(&ingress_needed_key);
2060}
2061EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062#endif
2063
2064#ifdef CONFIG_NET_EGRESS
2065static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066
2067void net_inc_egress_queue(void)
2068{
2069 static_branch_inc(&egress_needed_key);
2070}
2071EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072
2073void net_dec_egress_queue(void)
2074{
2075 static_branch_dec(&egress_needed_key);
2076}
2077EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078#endif
2079
2080DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081EXPORT_SYMBOL(netstamp_needed_key);
2082#ifdef CONFIG_JUMP_LABEL
2083static atomic_t netstamp_needed_deferred;
2084static atomic_t netstamp_wanted;
2085static void netstamp_clear(struct work_struct *work)
2086{
2087 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2088 int wanted;
2089
2090 wanted = atomic_add_return(deferred, &netstamp_wanted);
2091 if (wanted > 0)
2092 static_branch_enable(&netstamp_needed_key);
2093 else
2094 static_branch_disable(&netstamp_needed_key);
2095}
2096static DECLARE_WORK(netstamp_work, netstamp_clear);
2097#endif
2098
2099void net_enable_timestamp(void)
2100{
2101#ifdef CONFIG_JUMP_LABEL
2102 int wanted = atomic_read(&netstamp_wanted);
2103
2104 while (wanted > 0) {
2105 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2106 return;
2107 }
2108 atomic_inc(&netstamp_needed_deferred);
2109 schedule_work(&netstamp_work);
2110#else
2111 static_branch_inc(&netstamp_needed_key);
2112#endif
2113}
2114EXPORT_SYMBOL(net_enable_timestamp);
2115
2116void net_disable_timestamp(void)
2117{
2118#ifdef CONFIG_JUMP_LABEL
2119 int wanted = atomic_read(&netstamp_wanted);
2120
2121 while (wanted > 1) {
2122 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2123 return;
2124 }
2125 atomic_dec(&netstamp_needed_deferred);
2126 schedule_work(&netstamp_work);
2127#else
2128 static_branch_dec(&netstamp_needed_key);
2129#endif
2130}
2131EXPORT_SYMBOL(net_disable_timestamp);
2132
2133static inline void net_timestamp_set(struct sk_buff *skb)
2134{
2135 skb->tstamp = 0;
2136 skb->mono_delivery_time = 0;
2137 if (static_branch_unlikely(&netstamp_needed_key))
2138 skb->tstamp = ktime_get_real();
2139}
2140
2141#define net_timestamp_check(COND, SKB) \
2142 if (static_branch_unlikely(&netstamp_needed_key)) { \
2143 if ((COND) && !(SKB)->tstamp) \
2144 (SKB)->tstamp = ktime_get_real(); \
2145 } \
2146
2147bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2148{
2149 return __is_skb_forwardable(dev, skb, true);
2150}
2151EXPORT_SYMBOL_GPL(is_skb_forwardable);
2152
2153static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2154 bool check_mtu)
2155{
2156 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2157
2158 if (likely(!ret)) {
2159 skb->protocol = eth_type_trans(skb, dev);
2160 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2161 }
2162
2163 return ret;
2164}
2165
2166int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2167{
2168 return __dev_forward_skb2(dev, skb, true);
2169}
2170EXPORT_SYMBOL_GPL(__dev_forward_skb);
2171
2172/**
2173 * dev_forward_skb - loopback an skb to another netif
2174 *
2175 * @dev: destination network device
2176 * @skb: buffer to forward
2177 *
2178 * return values:
2179 * NET_RX_SUCCESS (no congestion)
2180 * NET_RX_DROP (packet was dropped, but freed)
2181 *
2182 * dev_forward_skb can be used for injecting an skb from the
2183 * start_xmit function of one device into the receive queue
2184 * of another device.
2185 *
2186 * The receiving device may be in another namespace, so
2187 * we have to clear all information in the skb that could
2188 * impact namespace isolation.
2189 */
2190int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2191{
2192 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2193}
2194EXPORT_SYMBOL_GPL(dev_forward_skb);
2195
2196int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2197{
2198 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2199}
2200
2201static inline int deliver_skb(struct sk_buff *skb,
2202 struct packet_type *pt_prev,
2203 struct net_device *orig_dev)
2204{
2205 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2206 return -ENOMEM;
2207 refcount_inc(&skb->users);
2208 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2209}
2210
2211static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2212 struct packet_type **pt,
2213 struct net_device *orig_dev,
2214 __be16 type,
2215 struct list_head *ptype_list)
2216{
2217 struct packet_type *ptype, *pt_prev = *pt;
2218
2219 list_for_each_entry_rcu(ptype, ptype_list, list) {
2220 if (ptype->type != type)
2221 continue;
2222 if (pt_prev)
2223 deliver_skb(skb, pt_prev, orig_dev);
2224 pt_prev = ptype;
2225 }
2226 *pt = pt_prev;
2227}
2228
2229static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2230{
2231 if (!ptype->af_packet_priv || !skb->sk)
2232 return false;
2233
2234 if (ptype->id_match)
2235 return ptype->id_match(ptype, skb->sk);
2236 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2237 return true;
2238
2239 return false;
2240}
2241
2242/**
2243 * dev_nit_active - return true if any network interface taps are in use
2244 *
2245 * @dev: network device to check for the presence of taps
2246 */
2247bool dev_nit_active(struct net_device *dev)
2248{
2249 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2250}
2251EXPORT_SYMBOL_GPL(dev_nit_active);
2252
2253/*
2254 * Support routine. Sends outgoing frames to any network
2255 * taps currently in use.
2256 */
2257
2258void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2259{
2260 struct packet_type *ptype;
2261 struct sk_buff *skb2 = NULL;
2262 struct packet_type *pt_prev = NULL;
2263 struct list_head *ptype_list = &ptype_all;
2264
2265 rcu_read_lock();
2266again:
2267 list_for_each_entry_rcu(ptype, ptype_list, list) {
2268 if (ptype->ignore_outgoing)
2269 continue;
2270
2271 /* Never send packets back to the socket
2272 * they originated from - MvS (miquels@drinkel.ow.org)
2273 */
2274 if (skb_loop_sk(ptype, skb))
2275 continue;
2276
2277 if (pt_prev) {
2278 deliver_skb(skb2, pt_prev, skb->dev);
2279 pt_prev = ptype;
2280 continue;
2281 }
2282
2283 /* need to clone skb, done only once */
2284 skb2 = skb_clone(skb, GFP_ATOMIC);
2285 if (!skb2)
2286 goto out_unlock;
2287
2288 net_timestamp_set(skb2);
2289
2290 /* skb->nh should be correctly
2291 * set by sender, so that the second statement is
2292 * just protection against buggy protocols.
2293 */
2294 skb_reset_mac_header(skb2);
2295
2296 if (skb_network_header(skb2) < skb2->data ||
2297 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2298 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2299 ntohs(skb2->protocol),
2300 dev->name);
2301 skb_reset_network_header(skb2);
2302 }
2303
2304 skb2->transport_header = skb2->network_header;
2305 skb2->pkt_type = PACKET_OUTGOING;
2306 pt_prev = ptype;
2307 }
2308
2309 if (ptype_list == &ptype_all) {
2310 ptype_list = &dev->ptype_all;
2311 goto again;
2312 }
2313out_unlock:
2314 if (pt_prev) {
2315 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2316 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2317 else
2318 kfree_skb(skb2);
2319 }
2320 rcu_read_unlock();
2321}
2322EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2323
2324/**
2325 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2326 * @dev: Network device
2327 * @txq: number of queues available
2328 *
2329 * If real_num_tx_queues is changed the tc mappings may no longer be
2330 * valid. To resolve this verify the tc mapping remains valid and if
2331 * not NULL the mapping. With no priorities mapping to this
2332 * offset/count pair it will no longer be used. In the worst case TC0
2333 * is invalid nothing can be done so disable priority mappings. If is
2334 * expected that drivers will fix this mapping if they can before
2335 * calling netif_set_real_num_tx_queues.
2336 */
2337static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2338{
2339 int i;
2340 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2341
2342 /* If TC0 is invalidated disable TC mapping */
2343 if (tc->offset + tc->count > txq) {
2344 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2345 dev->num_tc = 0;
2346 return;
2347 }
2348
2349 /* Invalidated prio to tc mappings set to TC0 */
2350 for (i = 1; i < TC_BITMASK + 1; i++) {
2351 int q = netdev_get_prio_tc_map(dev, i);
2352
2353 tc = &dev->tc_to_txq[q];
2354 if (tc->offset + tc->count > txq) {
2355 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2356 i, q);
2357 netdev_set_prio_tc_map(dev, i, 0);
2358 }
2359 }
2360}
2361
2362int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2363{
2364 if (dev->num_tc) {
2365 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366 int i;
2367
2368 /* walk through the TCs and see if it falls into any of them */
2369 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2370 if ((txq - tc->offset) < tc->count)
2371 return i;
2372 }
2373
2374 /* didn't find it, just return -1 to indicate no match */
2375 return -1;
2376 }
2377
2378 return 0;
2379}
2380EXPORT_SYMBOL(netdev_txq_to_tc);
2381
2382#ifdef CONFIG_XPS
2383static struct static_key xps_needed __read_mostly;
2384static struct static_key xps_rxqs_needed __read_mostly;
2385static DEFINE_MUTEX(xps_map_mutex);
2386#define xmap_dereference(P) \
2387 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2388
2389static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2390 struct xps_dev_maps *old_maps, int tci, u16 index)
2391{
2392 struct xps_map *map = NULL;
2393 int pos;
2394
2395 map = xmap_dereference(dev_maps->attr_map[tci]);
2396 if (!map)
2397 return false;
2398
2399 for (pos = map->len; pos--;) {
2400 if (map->queues[pos] != index)
2401 continue;
2402
2403 if (map->len > 1) {
2404 map->queues[pos] = map->queues[--map->len];
2405 break;
2406 }
2407
2408 if (old_maps)
2409 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2410 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2411 kfree_rcu(map, rcu);
2412 return false;
2413 }
2414
2415 return true;
2416}
2417
2418static bool remove_xps_queue_cpu(struct net_device *dev,
2419 struct xps_dev_maps *dev_maps,
2420 int cpu, u16 offset, u16 count)
2421{
2422 int num_tc = dev_maps->num_tc;
2423 bool active = false;
2424 int tci;
2425
2426 for (tci = cpu * num_tc; num_tc--; tci++) {
2427 int i, j;
2428
2429 for (i = count, j = offset; i--; j++) {
2430 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2431 break;
2432 }
2433
2434 active |= i < 0;
2435 }
2436
2437 return active;
2438}
2439
2440static void reset_xps_maps(struct net_device *dev,
2441 struct xps_dev_maps *dev_maps,
2442 enum xps_map_type type)
2443{
2444 static_key_slow_dec_cpuslocked(&xps_needed);
2445 if (type == XPS_RXQS)
2446 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2447
2448 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2449
2450 kfree_rcu(dev_maps, rcu);
2451}
2452
2453static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2454 u16 offset, u16 count)
2455{
2456 struct xps_dev_maps *dev_maps;
2457 bool active = false;
2458 int i, j;
2459
2460 dev_maps = xmap_dereference(dev->xps_maps[type]);
2461 if (!dev_maps)
2462 return;
2463
2464 for (j = 0; j < dev_maps->nr_ids; j++)
2465 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2466 if (!active)
2467 reset_xps_maps(dev, dev_maps, type);
2468
2469 if (type == XPS_CPUS) {
2470 for (i = offset + (count - 1); count--; i--)
2471 netdev_queue_numa_node_write(
2472 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2473 }
2474}
2475
2476static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2477 u16 count)
2478{
2479 if (!static_key_false(&xps_needed))
2480 return;
2481
2482 cpus_read_lock();
2483 mutex_lock(&xps_map_mutex);
2484
2485 if (static_key_false(&xps_rxqs_needed))
2486 clean_xps_maps(dev, XPS_RXQS, offset, count);
2487
2488 clean_xps_maps(dev, XPS_CPUS, offset, count);
2489
2490 mutex_unlock(&xps_map_mutex);
2491 cpus_read_unlock();
2492}
2493
2494static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2495{
2496 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2497}
2498
2499static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2500 u16 index, bool is_rxqs_map)
2501{
2502 struct xps_map *new_map;
2503 int alloc_len = XPS_MIN_MAP_ALLOC;
2504 int i, pos;
2505
2506 for (pos = 0; map && pos < map->len; pos++) {
2507 if (map->queues[pos] != index)
2508 continue;
2509 return map;
2510 }
2511
2512 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2513 if (map) {
2514 if (pos < map->alloc_len)
2515 return map;
2516
2517 alloc_len = map->alloc_len * 2;
2518 }
2519
2520 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2521 * map
2522 */
2523 if (is_rxqs_map)
2524 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2525 else
2526 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2527 cpu_to_node(attr_index));
2528 if (!new_map)
2529 return NULL;
2530
2531 for (i = 0; i < pos; i++)
2532 new_map->queues[i] = map->queues[i];
2533 new_map->alloc_len = alloc_len;
2534 new_map->len = pos;
2535
2536 return new_map;
2537}
2538
2539/* Copy xps maps at a given index */
2540static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2541 struct xps_dev_maps *new_dev_maps, int index,
2542 int tc, bool skip_tc)
2543{
2544 int i, tci = index * dev_maps->num_tc;
2545 struct xps_map *map;
2546
2547 /* copy maps belonging to foreign traffic classes */
2548 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2549 if (i == tc && skip_tc)
2550 continue;
2551
2552 /* fill in the new device map from the old device map */
2553 map = xmap_dereference(dev_maps->attr_map[tci]);
2554 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2555 }
2556}
2557
2558/* Must be called under cpus_read_lock */
2559int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2560 u16 index, enum xps_map_type type)
2561{
2562 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2563 const unsigned long *online_mask = NULL;
2564 bool active = false, copy = false;
2565 int i, j, tci, numa_node_id = -2;
2566 int maps_sz, num_tc = 1, tc = 0;
2567 struct xps_map *map, *new_map;
2568 unsigned int nr_ids;
2569
2570 WARN_ON_ONCE(index >= dev->num_tx_queues);
2571
2572 if (dev->num_tc) {
2573 /* Do not allow XPS on subordinate device directly */
2574 num_tc = dev->num_tc;
2575 if (num_tc < 0)
2576 return -EINVAL;
2577
2578 /* If queue belongs to subordinate dev use its map */
2579 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2580
2581 tc = netdev_txq_to_tc(dev, index);
2582 if (tc < 0)
2583 return -EINVAL;
2584 }
2585
2586 mutex_lock(&xps_map_mutex);
2587
2588 dev_maps = xmap_dereference(dev->xps_maps[type]);
2589 if (type == XPS_RXQS) {
2590 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2591 nr_ids = dev->num_rx_queues;
2592 } else {
2593 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2594 if (num_possible_cpus() > 1)
2595 online_mask = cpumask_bits(cpu_online_mask);
2596 nr_ids = nr_cpu_ids;
2597 }
2598
2599 if (maps_sz < L1_CACHE_BYTES)
2600 maps_sz = L1_CACHE_BYTES;
2601
2602 /* The old dev_maps could be larger or smaller than the one we're
2603 * setting up now, as dev->num_tc or nr_ids could have been updated in
2604 * between. We could try to be smart, but let's be safe instead and only
2605 * copy foreign traffic classes if the two map sizes match.
2606 */
2607 if (dev_maps &&
2608 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2609 copy = true;
2610
2611 /* allocate memory for queue storage */
2612 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2613 j < nr_ids;) {
2614 if (!new_dev_maps) {
2615 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2616 if (!new_dev_maps) {
2617 mutex_unlock(&xps_map_mutex);
2618 return -ENOMEM;
2619 }
2620
2621 new_dev_maps->nr_ids = nr_ids;
2622 new_dev_maps->num_tc = num_tc;
2623 }
2624
2625 tci = j * num_tc + tc;
2626 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2627
2628 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2629 if (!map)
2630 goto error;
2631
2632 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2633 }
2634
2635 if (!new_dev_maps)
2636 goto out_no_new_maps;
2637
2638 if (!dev_maps) {
2639 /* Increment static keys at most once per type */
2640 static_key_slow_inc_cpuslocked(&xps_needed);
2641 if (type == XPS_RXQS)
2642 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2643 }
2644
2645 for (j = 0; j < nr_ids; j++) {
2646 bool skip_tc = false;
2647
2648 tci = j * num_tc + tc;
2649 if (netif_attr_test_mask(j, mask, nr_ids) &&
2650 netif_attr_test_online(j, online_mask, nr_ids)) {
2651 /* add tx-queue to CPU/rx-queue maps */
2652 int pos = 0;
2653
2654 skip_tc = true;
2655
2656 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657 while ((pos < map->len) && (map->queues[pos] != index))
2658 pos++;
2659
2660 if (pos == map->len)
2661 map->queues[map->len++] = index;
2662#ifdef CONFIG_NUMA
2663 if (type == XPS_CPUS) {
2664 if (numa_node_id == -2)
2665 numa_node_id = cpu_to_node(j);
2666 else if (numa_node_id != cpu_to_node(j))
2667 numa_node_id = -1;
2668 }
2669#endif
2670 }
2671
2672 if (copy)
2673 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2674 skip_tc);
2675 }
2676
2677 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2678
2679 /* Cleanup old maps */
2680 if (!dev_maps)
2681 goto out_no_old_maps;
2682
2683 for (j = 0; j < dev_maps->nr_ids; j++) {
2684 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2685 map = xmap_dereference(dev_maps->attr_map[tci]);
2686 if (!map)
2687 continue;
2688
2689 if (copy) {
2690 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2691 if (map == new_map)
2692 continue;
2693 }
2694
2695 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2696 kfree_rcu(map, rcu);
2697 }
2698 }
2699
2700 old_dev_maps = dev_maps;
2701
2702out_no_old_maps:
2703 dev_maps = new_dev_maps;
2704 active = true;
2705
2706out_no_new_maps:
2707 if (type == XPS_CPUS)
2708 /* update Tx queue numa node */
2709 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2710 (numa_node_id >= 0) ?
2711 numa_node_id : NUMA_NO_NODE);
2712
2713 if (!dev_maps)
2714 goto out_no_maps;
2715
2716 /* removes tx-queue from unused CPUs/rx-queues */
2717 for (j = 0; j < dev_maps->nr_ids; j++) {
2718 tci = j * dev_maps->num_tc;
2719
2720 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2721 if (i == tc &&
2722 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2723 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2724 continue;
2725
2726 active |= remove_xps_queue(dev_maps,
2727 copy ? old_dev_maps : NULL,
2728 tci, index);
2729 }
2730 }
2731
2732 if (old_dev_maps)
2733 kfree_rcu(old_dev_maps, rcu);
2734
2735 /* free map if not active */
2736 if (!active)
2737 reset_xps_maps(dev, dev_maps, type);
2738
2739out_no_maps:
2740 mutex_unlock(&xps_map_mutex);
2741
2742 return 0;
2743error:
2744 /* remove any maps that we added */
2745 for (j = 0; j < nr_ids; j++) {
2746 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2747 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2748 map = copy ?
2749 xmap_dereference(dev_maps->attr_map[tci]) :
2750 NULL;
2751 if (new_map && new_map != map)
2752 kfree(new_map);
2753 }
2754 }
2755
2756 mutex_unlock(&xps_map_mutex);
2757
2758 kfree(new_dev_maps);
2759 return -ENOMEM;
2760}
2761EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2762
2763int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2764 u16 index)
2765{
2766 int ret;
2767
2768 cpus_read_lock();
2769 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2770 cpus_read_unlock();
2771
2772 return ret;
2773}
2774EXPORT_SYMBOL(netif_set_xps_queue);
2775
2776#endif
2777static void netdev_unbind_all_sb_channels(struct net_device *dev)
2778{
2779 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2780
2781 /* Unbind any subordinate channels */
2782 while (txq-- != &dev->_tx[0]) {
2783 if (txq->sb_dev)
2784 netdev_unbind_sb_channel(dev, txq->sb_dev);
2785 }
2786}
2787
2788void netdev_reset_tc(struct net_device *dev)
2789{
2790#ifdef CONFIG_XPS
2791 netif_reset_xps_queues_gt(dev, 0);
2792#endif
2793 netdev_unbind_all_sb_channels(dev);
2794
2795 /* Reset TC configuration of device */
2796 dev->num_tc = 0;
2797 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2798 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2799}
2800EXPORT_SYMBOL(netdev_reset_tc);
2801
2802int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2803{
2804 if (tc >= dev->num_tc)
2805 return -EINVAL;
2806
2807#ifdef CONFIG_XPS
2808 netif_reset_xps_queues(dev, offset, count);
2809#endif
2810 dev->tc_to_txq[tc].count = count;
2811 dev->tc_to_txq[tc].offset = offset;
2812 return 0;
2813}
2814EXPORT_SYMBOL(netdev_set_tc_queue);
2815
2816int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2817{
2818 if (num_tc > TC_MAX_QUEUE)
2819 return -EINVAL;
2820
2821#ifdef CONFIG_XPS
2822 netif_reset_xps_queues_gt(dev, 0);
2823#endif
2824 netdev_unbind_all_sb_channels(dev);
2825
2826 dev->num_tc = num_tc;
2827 return 0;
2828}
2829EXPORT_SYMBOL(netdev_set_num_tc);
2830
2831void netdev_unbind_sb_channel(struct net_device *dev,
2832 struct net_device *sb_dev)
2833{
2834 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2835
2836#ifdef CONFIG_XPS
2837 netif_reset_xps_queues_gt(sb_dev, 0);
2838#endif
2839 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2840 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2841
2842 while (txq-- != &dev->_tx[0]) {
2843 if (txq->sb_dev == sb_dev)
2844 txq->sb_dev = NULL;
2845 }
2846}
2847EXPORT_SYMBOL(netdev_unbind_sb_channel);
2848
2849int netdev_bind_sb_channel_queue(struct net_device *dev,
2850 struct net_device *sb_dev,
2851 u8 tc, u16 count, u16 offset)
2852{
2853 /* Make certain the sb_dev and dev are already configured */
2854 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2855 return -EINVAL;
2856
2857 /* We cannot hand out queues we don't have */
2858 if ((offset + count) > dev->real_num_tx_queues)
2859 return -EINVAL;
2860
2861 /* Record the mapping */
2862 sb_dev->tc_to_txq[tc].count = count;
2863 sb_dev->tc_to_txq[tc].offset = offset;
2864
2865 /* Provide a way for Tx queue to find the tc_to_txq map or
2866 * XPS map for itself.
2867 */
2868 while (count--)
2869 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2870
2871 return 0;
2872}
2873EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2874
2875int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2876{
2877 /* Do not use a multiqueue device to represent a subordinate channel */
2878 if (netif_is_multiqueue(dev))
2879 return -ENODEV;
2880
2881 /* We allow channels 1 - 32767 to be used for subordinate channels.
2882 * Channel 0 is meant to be "native" mode and used only to represent
2883 * the main root device. We allow writing 0 to reset the device back
2884 * to normal mode after being used as a subordinate channel.
2885 */
2886 if (channel > S16_MAX)
2887 return -EINVAL;
2888
2889 dev->num_tc = -channel;
2890
2891 return 0;
2892}
2893EXPORT_SYMBOL(netdev_set_sb_channel);
2894
2895/*
2896 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2897 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2898 */
2899int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2900{
2901 bool disabling;
2902 int rc;
2903
2904 disabling = txq < dev->real_num_tx_queues;
2905
2906 if (txq < 1 || txq > dev->num_tx_queues)
2907 return -EINVAL;
2908
2909 if (dev->reg_state == NETREG_REGISTERED ||
2910 dev->reg_state == NETREG_UNREGISTERING) {
2911 ASSERT_RTNL();
2912
2913 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2914 txq);
2915 if (rc)
2916 return rc;
2917
2918 if (dev->num_tc)
2919 netif_setup_tc(dev, txq);
2920
2921 dev_qdisc_change_real_num_tx(dev, txq);
2922
2923 dev->real_num_tx_queues = txq;
2924
2925 if (disabling) {
2926 synchronize_net();
2927 qdisc_reset_all_tx_gt(dev, txq);
2928#ifdef CONFIG_XPS
2929 netif_reset_xps_queues_gt(dev, txq);
2930#endif
2931 }
2932 } else {
2933 dev->real_num_tx_queues = txq;
2934 }
2935
2936 return 0;
2937}
2938EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2939
2940#ifdef CONFIG_SYSFS
2941/**
2942 * netif_set_real_num_rx_queues - set actual number of RX queues used
2943 * @dev: Network device
2944 * @rxq: Actual number of RX queues
2945 *
2946 * This must be called either with the rtnl_lock held or before
2947 * registration of the net device. Returns 0 on success, or a
2948 * negative error code. If called before registration, it always
2949 * succeeds.
2950 */
2951int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2952{
2953 int rc;
2954
2955 if (rxq < 1 || rxq > dev->num_rx_queues)
2956 return -EINVAL;
2957
2958 if (dev->reg_state == NETREG_REGISTERED) {
2959 ASSERT_RTNL();
2960
2961 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2962 rxq);
2963 if (rc)
2964 return rc;
2965 }
2966
2967 dev->real_num_rx_queues = rxq;
2968 return 0;
2969}
2970EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2971#endif
2972
2973/**
2974 * netif_set_real_num_queues - set actual number of RX and TX queues used
2975 * @dev: Network device
2976 * @txq: Actual number of TX queues
2977 * @rxq: Actual number of RX queues
2978 *
2979 * Set the real number of both TX and RX queues.
2980 * Does nothing if the number of queues is already correct.
2981 */
2982int netif_set_real_num_queues(struct net_device *dev,
2983 unsigned int txq, unsigned int rxq)
2984{
2985 unsigned int old_rxq = dev->real_num_rx_queues;
2986 int err;
2987
2988 if (txq < 1 || txq > dev->num_tx_queues ||
2989 rxq < 1 || rxq > dev->num_rx_queues)
2990 return -EINVAL;
2991
2992 /* Start from increases, so the error path only does decreases -
2993 * decreases can't fail.
2994 */
2995 if (rxq > dev->real_num_rx_queues) {
2996 err = netif_set_real_num_rx_queues(dev, rxq);
2997 if (err)
2998 return err;
2999 }
3000 if (txq > dev->real_num_tx_queues) {
3001 err = netif_set_real_num_tx_queues(dev, txq);
3002 if (err)
3003 goto undo_rx;
3004 }
3005 if (rxq < dev->real_num_rx_queues)
3006 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3007 if (txq < dev->real_num_tx_queues)
3008 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3009
3010 return 0;
3011undo_rx:
3012 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3013 return err;
3014}
3015EXPORT_SYMBOL(netif_set_real_num_queues);
3016
3017/**
3018 * netif_set_tso_max_size() - set the max size of TSO frames supported
3019 * @dev: netdev to update
3020 * @size: max skb->len of a TSO frame
3021 *
3022 * Set the limit on the size of TSO super-frames the device can handle.
3023 * Unless explicitly set the stack will assume the value of
3024 * %GSO_LEGACY_MAX_SIZE.
3025 */
3026void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3027{
3028 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3029 if (size < READ_ONCE(dev->gso_max_size))
3030 netif_set_gso_max_size(dev, size);
3031 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3032 netif_set_gso_ipv4_max_size(dev, size);
3033}
3034EXPORT_SYMBOL(netif_set_tso_max_size);
3035
3036/**
3037 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3038 * @dev: netdev to update
3039 * @segs: max number of TCP segments
3040 *
3041 * Set the limit on the number of TCP segments the device can generate from
3042 * a single TSO super-frame.
3043 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3044 */
3045void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3046{
3047 dev->tso_max_segs = segs;
3048 if (segs < READ_ONCE(dev->gso_max_segs))
3049 netif_set_gso_max_segs(dev, segs);
3050}
3051EXPORT_SYMBOL(netif_set_tso_max_segs);
3052
3053/**
3054 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3055 * @to: netdev to update
3056 * @from: netdev from which to copy the limits
3057 */
3058void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3059{
3060 netif_set_tso_max_size(to, from->tso_max_size);
3061 netif_set_tso_max_segs(to, from->tso_max_segs);
3062}
3063EXPORT_SYMBOL(netif_inherit_tso_max);
3064
3065/**
3066 * netif_get_num_default_rss_queues - default number of RSS queues
3067 *
3068 * Default value is the number of physical cores if there are only 1 or 2, or
3069 * divided by 2 if there are more.
3070 */
3071int netif_get_num_default_rss_queues(void)
3072{
3073 cpumask_var_t cpus;
3074 int cpu, count = 0;
3075
3076 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3077 return 1;
3078
3079 cpumask_copy(cpus, cpu_online_mask);
3080 for_each_cpu(cpu, cpus) {
3081 ++count;
3082 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3083 }
3084 free_cpumask_var(cpus);
3085
3086 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3087}
3088EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3089
3090static void __netif_reschedule(struct Qdisc *q)
3091{
3092 struct softnet_data *sd;
3093 unsigned long flags;
3094
3095 local_irq_save(flags);
3096 sd = this_cpu_ptr(&softnet_data);
3097 q->next_sched = NULL;
3098 *sd->output_queue_tailp = q;
3099 sd->output_queue_tailp = &q->next_sched;
3100 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3101 local_irq_restore(flags);
3102}
3103
3104void __netif_schedule(struct Qdisc *q)
3105{
3106 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3107 __netif_reschedule(q);
3108}
3109EXPORT_SYMBOL(__netif_schedule);
3110
3111struct dev_kfree_skb_cb {
3112 enum skb_drop_reason reason;
3113};
3114
3115static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3116{
3117 return (struct dev_kfree_skb_cb *)skb->cb;
3118}
3119
3120void netif_schedule_queue(struct netdev_queue *txq)
3121{
3122 rcu_read_lock();
3123 if (!netif_xmit_stopped(txq)) {
3124 struct Qdisc *q = rcu_dereference(txq->qdisc);
3125
3126 __netif_schedule(q);
3127 }
3128 rcu_read_unlock();
3129}
3130EXPORT_SYMBOL(netif_schedule_queue);
3131
3132void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3133{
3134 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3135 struct Qdisc *q;
3136
3137 rcu_read_lock();
3138 q = rcu_dereference(dev_queue->qdisc);
3139 __netif_schedule(q);
3140 rcu_read_unlock();
3141 }
3142}
3143EXPORT_SYMBOL(netif_tx_wake_queue);
3144
3145void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3146{
3147 unsigned long flags;
3148
3149 if (unlikely(!skb))
3150 return;
3151
3152 if (likely(refcount_read(&skb->users) == 1)) {
3153 smp_rmb();
3154 refcount_set(&skb->users, 0);
3155 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3156 return;
3157 }
3158 get_kfree_skb_cb(skb)->reason = reason;
3159 local_irq_save(flags);
3160 skb->next = __this_cpu_read(softnet_data.completion_queue);
3161 __this_cpu_write(softnet_data.completion_queue, skb);
3162 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3163 local_irq_restore(flags);
3164}
3165EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3166
3167void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3168{
3169 if (in_hardirq() || irqs_disabled())
3170 dev_kfree_skb_irq_reason(skb, reason);
3171 else
3172 kfree_skb_reason(skb, reason);
3173}
3174EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3175
3176
3177/**
3178 * netif_device_detach - mark device as removed
3179 * @dev: network device
3180 *
3181 * Mark device as removed from system and therefore no longer available.
3182 */
3183void netif_device_detach(struct net_device *dev)
3184{
3185 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3186 netif_running(dev)) {
3187 netif_tx_stop_all_queues(dev);
3188 }
3189}
3190EXPORT_SYMBOL(netif_device_detach);
3191
3192/**
3193 * netif_device_attach - mark device as attached
3194 * @dev: network device
3195 *
3196 * Mark device as attached from system and restart if needed.
3197 */
3198void netif_device_attach(struct net_device *dev)
3199{
3200 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3201 netif_running(dev)) {
3202 netif_tx_wake_all_queues(dev);
3203 __netdev_watchdog_up(dev);
3204 }
3205}
3206EXPORT_SYMBOL(netif_device_attach);
3207
3208/*
3209 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3210 * to be used as a distribution range.
3211 */
3212static u16 skb_tx_hash(const struct net_device *dev,
3213 const struct net_device *sb_dev,
3214 struct sk_buff *skb)
3215{
3216 u32 hash;
3217 u16 qoffset = 0;
3218 u16 qcount = dev->real_num_tx_queues;
3219
3220 if (dev->num_tc) {
3221 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3222
3223 qoffset = sb_dev->tc_to_txq[tc].offset;
3224 qcount = sb_dev->tc_to_txq[tc].count;
3225 if (unlikely(!qcount)) {
3226 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3227 sb_dev->name, qoffset, tc);
3228 qoffset = 0;
3229 qcount = dev->real_num_tx_queues;
3230 }
3231 }
3232
3233 if (skb_rx_queue_recorded(skb)) {
3234 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3235 hash = skb_get_rx_queue(skb);
3236 if (hash >= qoffset)
3237 hash -= qoffset;
3238 while (unlikely(hash >= qcount))
3239 hash -= qcount;
3240 return hash + qoffset;
3241 }
3242
3243 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3244}
3245
3246void skb_warn_bad_offload(const struct sk_buff *skb)
3247{
3248 static const netdev_features_t null_features;
3249 struct net_device *dev = skb->dev;
3250 const char *name = "";
3251
3252 if (!net_ratelimit())
3253 return;
3254
3255 if (dev) {
3256 if (dev->dev.parent)
3257 name = dev_driver_string(dev->dev.parent);
3258 else
3259 name = netdev_name(dev);
3260 }
3261 skb_dump(KERN_WARNING, skb, false);
3262 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3263 name, dev ? &dev->features : &null_features,
3264 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3265}
3266
3267/*
3268 * Invalidate hardware checksum when packet is to be mangled, and
3269 * complete checksum manually on outgoing path.
3270 */
3271int skb_checksum_help(struct sk_buff *skb)
3272{
3273 __wsum csum;
3274 int ret = 0, offset;
3275
3276 if (skb->ip_summed == CHECKSUM_COMPLETE)
3277 goto out_set_summed;
3278
3279 if (unlikely(skb_is_gso(skb))) {
3280 skb_warn_bad_offload(skb);
3281 return -EINVAL;
3282 }
3283
3284 /* Before computing a checksum, we should make sure no frag could
3285 * be modified by an external entity : checksum could be wrong.
3286 */
3287 if (skb_has_shared_frag(skb)) {
3288 ret = __skb_linearize(skb);
3289 if (ret)
3290 goto out;
3291 }
3292
3293 offset = skb_checksum_start_offset(skb);
3294 ret = -EINVAL;
3295 if (unlikely(offset >= skb_headlen(skb))) {
3296 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3297 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3298 offset, skb_headlen(skb));
3299 goto out;
3300 }
3301 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3302
3303 offset += skb->csum_offset;
3304 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3305 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3306 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3307 offset + sizeof(__sum16), skb_headlen(skb));
3308 goto out;
3309 }
3310 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3311 if (ret)
3312 goto out;
3313
3314 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3315out_set_summed:
3316 skb->ip_summed = CHECKSUM_NONE;
3317out:
3318 return ret;
3319}
3320EXPORT_SYMBOL(skb_checksum_help);
3321
3322int skb_crc32c_csum_help(struct sk_buff *skb)
3323{
3324 __le32 crc32c_csum;
3325 int ret = 0, offset, start;
3326
3327 if (skb->ip_summed != CHECKSUM_PARTIAL)
3328 goto out;
3329
3330 if (unlikely(skb_is_gso(skb)))
3331 goto out;
3332
3333 /* Before computing a checksum, we should make sure no frag could
3334 * be modified by an external entity : checksum could be wrong.
3335 */
3336 if (unlikely(skb_has_shared_frag(skb))) {
3337 ret = __skb_linearize(skb);
3338 if (ret)
3339 goto out;
3340 }
3341 start = skb_checksum_start_offset(skb);
3342 offset = start + offsetof(struct sctphdr, checksum);
3343 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3344 ret = -EINVAL;
3345 goto out;
3346 }
3347
3348 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3349 if (ret)
3350 goto out;
3351
3352 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3353 skb->len - start, ~(__u32)0,
3354 crc32c_csum_stub));
3355 *(__le32 *)(skb->data + offset) = crc32c_csum;
3356 skb_reset_csum_not_inet(skb);
3357out:
3358 return ret;
3359}
3360
3361__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3362{
3363 __be16 type = skb->protocol;
3364
3365 /* Tunnel gso handlers can set protocol to ethernet. */
3366 if (type == htons(ETH_P_TEB)) {
3367 struct ethhdr *eth;
3368
3369 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3370 return 0;
3371
3372 eth = (struct ethhdr *)skb->data;
3373 type = eth->h_proto;
3374 }
3375
3376 return vlan_get_protocol_and_depth(skb, type, depth);
3377}
3378
3379
3380/* Take action when hardware reception checksum errors are detected. */
3381#ifdef CONFIG_BUG
3382static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3383{
3384 netdev_err(dev, "hw csum failure\n");
3385 skb_dump(KERN_ERR, skb, true);
3386 dump_stack();
3387}
3388
3389void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3390{
3391 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3392}
3393EXPORT_SYMBOL(netdev_rx_csum_fault);
3394#endif
3395
3396/* XXX: check that highmem exists at all on the given machine. */
3397static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3398{
3399#ifdef CONFIG_HIGHMEM
3400 int i;
3401
3402 if (!(dev->features & NETIF_F_HIGHDMA)) {
3403 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3404 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3405
3406 if (PageHighMem(skb_frag_page(frag)))
3407 return 1;
3408 }
3409 }
3410#endif
3411 return 0;
3412}
3413
3414/* If MPLS offload request, verify we are testing hardware MPLS features
3415 * instead of standard features for the netdev.
3416 */
3417#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3418static netdev_features_t net_mpls_features(struct sk_buff *skb,
3419 netdev_features_t features,
3420 __be16 type)
3421{
3422 if (eth_p_mpls(type))
3423 features &= skb->dev->mpls_features;
3424
3425 return features;
3426}
3427#else
3428static netdev_features_t net_mpls_features(struct sk_buff *skb,
3429 netdev_features_t features,
3430 __be16 type)
3431{
3432 return features;
3433}
3434#endif
3435
3436static netdev_features_t harmonize_features(struct sk_buff *skb,
3437 netdev_features_t features)
3438{
3439 __be16 type;
3440
3441 type = skb_network_protocol(skb, NULL);
3442 features = net_mpls_features(skb, features, type);
3443
3444 if (skb->ip_summed != CHECKSUM_NONE &&
3445 !can_checksum_protocol(features, type)) {
3446 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3447 }
3448 if (illegal_highdma(skb->dev, skb))
3449 features &= ~NETIF_F_SG;
3450
3451 return features;
3452}
3453
3454netdev_features_t passthru_features_check(struct sk_buff *skb,
3455 struct net_device *dev,
3456 netdev_features_t features)
3457{
3458 return features;
3459}
3460EXPORT_SYMBOL(passthru_features_check);
3461
3462static netdev_features_t dflt_features_check(struct sk_buff *skb,
3463 struct net_device *dev,
3464 netdev_features_t features)
3465{
3466 return vlan_features_check(skb, features);
3467}
3468
3469static netdev_features_t gso_features_check(const struct sk_buff *skb,
3470 struct net_device *dev,
3471 netdev_features_t features)
3472{
3473 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3474
3475 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3476 return features & ~NETIF_F_GSO_MASK;
3477
3478 if (!skb_shinfo(skb)->gso_type) {
3479 skb_warn_bad_offload(skb);
3480 return features & ~NETIF_F_GSO_MASK;
3481 }
3482
3483 /* Support for GSO partial features requires software
3484 * intervention before we can actually process the packets
3485 * so we need to strip support for any partial features now
3486 * and we can pull them back in after we have partially
3487 * segmented the frame.
3488 */
3489 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3490 features &= ~dev->gso_partial_features;
3491
3492 /* Make sure to clear the IPv4 ID mangling feature if the
3493 * IPv4 header has the potential to be fragmented.
3494 */
3495 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3496 struct iphdr *iph = skb->encapsulation ?
3497 inner_ip_hdr(skb) : ip_hdr(skb);
3498
3499 if (!(iph->frag_off & htons(IP_DF)))
3500 features &= ~NETIF_F_TSO_MANGLEID;
3501 }
3502
3503 return features;
3504}
3505
3506netdev_features_t netif_skb_features(struct sk_buff *skb)
3507{
3508 struct net_device *dev = skb->dev;
3509 netdev_features_t features = dev->features;
3510
3511 if (skb_is_gso(skb))
3512 features = gso_features_check(skb, dev, features);
3513
3514 /* If encapsulation offload request, verify we are testing
3515 * hardware encapsulation features instead of standard
3516 * features for the netdev
3517 */
3518 if (skb->encapsulation)
3519 features &= dev->hw_enc_features;
3520
3521 if (skb_vlan_tagged(skb))
3522 features = netdev_intersect_features(features,
3523 dev->vlan_features |
3524 NETIF_F_HW_VLAN_CTAG_TX |
3525 NETIF_F_HW_VLAN_STAG_TX);
3526
3527 if (dev->netdev_ops->ndo_features_check)
3528 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3529 features);
3530 else
3531 features &= dflt_features_check(skb, dev, features);
3532
3533 return harmonize_features(skb, features);
3534}
3535EXPORT_SYMBOL(netif_skb_features);
3536
3537static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3538 struct netdev_queue *txq, bool more)
3539{
3540 unsigned int len;
3541 int rc;
3542
3543 if (dev_nit_active(dev))
3544 dev_queue_xmit_nit(skb, dev);
3545
3546 len = skb->len;
3547 trace_net_dev_start_xmit(skb, dev);
3548 rc = netdev_start_xmit(skb, dev, txq, more);
3549 trace_net_dev_xmit(skb, rc, dev, len);
3550
3551 return rc;
3552}
3553
3554struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3555 struct netdev_queue *txq, int *ret)
3556{
3557 struct sk_buff *skb = first;
3558 int rc = NETDEV_TX_OK;
3559
3560 while (skb) {
3561 struct sk_buff *next = skb->next;
3562
3563 skb_mark_not_on_list(skb);
3564 rc = xmit_one(skb, dev, txq, next != NULL);
3565 if (unlikely(!dev_xmit_complete(rc))) {
3566 skb->next = next;
3567 goto out;
3568 }
3569
3570 skb = next;
3571 if (netif_tx_queue_stopped(txq) && skb) {
3572 rc = NETDEV_TX_BUSY;
3573 break;
3574 }
3575 }
3576
3577out:
3578 *ret = rc;
3579 return skb;
3580}
3581
3582static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3583 netdev_features_t features)
3584{
3585 if (skb_vlan_tag_present(skb) &&
3586 !vlan_hw_offload_capable(features, skb->vlan_proto))
3587 skb = __vlan_hwaccel_push_inside(skb);
3588 return skb;
3589}
3590
3591int skb_csum_hwoffload_help(struct sk_buff *skb,
3592 const netdev_features_t features)
3593{
3594 if (unlikely(skb_csum_is_sctp(skb)))
3595 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3596 skb_crc32c_csum_help(skb);
3597
3598 if (features & NETIF_F_HW_CSUM)
3599 return 0;
3600
3601 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3602 switch (skb->csum_offset) {
3603 case offsetof(struct tcphdr, check):
3604 case offsetof(struct udphdr, check):
3605 return 0;
3606 }
3607 }
3608
3609 return skb_checksum_help(skb);
3610}
3611EXPORT_SYMBOL(skb_csum_hwoffload_help);
3612
3613static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3614{
3615 netdev_features_t features;
3616
3617 features = netif_skb_features(skb);
3618 skb = validate_xmit_vlan(skb, features);
3619 if (unlikely(!skb))
3620 goto out_null;
3621
3622 skb = sk_validate_xmit_skb(skb, dev);
3623 if (unlikely(!skb))
3624 goto out_null;
3625
3626 if (netif_needs_gso(skb, features)) {
3627 struct sk_buff *segs;
3628
3629 segs = skb_gso_segment(skb, features);
3630 if (IS_ERR(segs)) {
3631 goto out_kfree_skb;
3632 } else if (segs) {
3633 consume_skb(skb);
3634 skb = segs;
3635 }
3636 } else {
3637 if (skb_needs_linearize(skb, features) &&
3638 __skb_linearize(skb))
3639 goto out_kfree_skb;
3640
3641 /* If packet is not checksummed and device does not
3642 * support checksumming for this protocol, complete
3643 * checksumming here.
3644 */
3645 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3646 if (skb->encapsulation)
3647 skb_set_inner_transport_header(skb,
3648 skb_checksum_start_offset(skb));
3649 else
3650 skb_set_transport_header(skb,
3651 skb_checksum_start_offset(skb));
3652 if (skb_csum_hwoffload_help(skb, features))
3653 goto out_kfree_skb;
3654 }
3655 }
3656
3657 skb = validate_xmit_xfrm(skb, features, again);
3658
3659 return skb;
3660
3661out_kfree_skb:
3662 kfree_skb(skb);
3663out_null:
3664 dev_core_stats_tx_dropped_inc(dev);
3665 return NULL;
3666}
3667
3668struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3669{
3670 struct sk_buff *next, *head = NULL, *tail;
3671
3672 for (; skb != NULL; skb = next) {
3673 next = skb->next;
3674 skb_mark_not_on_list(skb);
3675
3676 /* in case skb wont be segmented, point to itself */
3677 skb->prev = skb;
3678
3679 skb = validate_xmit_skb(skb, dev, again);
3680 if (!skb)
3681 continue;
3682
3683 if (!head)
3684 head = skb;
3685 else
3686 tail->next = skb;
3687 /* If skb was segmented, skb->prev points to
3688 * the last segment. If not, it still contains skb.
3689 */
3690 tail = skb->prev;
3691 }
3692 return head;
3693}
3694EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3695
3696static void qdisc_pkt_len_init(struct sk_buff *skb)
3697{
3698 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3699
3700 qdisc_skb_cb(skb)->pkt_len = skb->len;
3701
3702 /* To get more precise estimation of bytes sent on wire,
3703 * we add to pkt_len the headers size of all segments
3704 */
3705 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3706 u16 gso_segs = shinfo->gso_segs;
3707 unsigned int hdr_len;
3708
3709 /* mac layer + network layer */
3710 hdr_len = skb_transport_offset(skb);
3711
3712 /* + transport layer */
3713 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3714 const struct tcphdr *th;
3715 struct tcphdr _tcphdr;
3716
3717 th = skb_header_pointer(skb, hdr_len,
3718 sizeof(_tcphdr), &_tcphdr);
3719 if (likely(th))
3720 hdr_len += __tcp_hdrlen(th);
3721 } else {
3722 struct udphdr _udphdr;
3723
3724 if (skb_header_pointer(skb, hdr_len,
3725 sizeof(_udphdr), &_udphdr))
3726 hdr_len += sizeof(struct udphdr);
3727 }
3728
3729 if (shinfo->gso_type & SKB_GSO_DODGY)
3730 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3731 shinfo->gso_size);
3732
3733 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3734 }
3735}
3736
3737static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3738 struct sk_buff **to_free,
3739 struct netdev_queue *txq)
3740{
3741 int rc;
3742
3743 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3744 if (rc == NET_XMIT_SUCCESS)
3745 trace_qdisc_enqueue(q, txq, skb);
3746 return rc;
3747}
3748
3749static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3750 struct net_device *dev,
3751 struct netdev_queue *txq)
3752{
3753 spinlock_t *root_lock = qdisc_lock(q);
3754 struct sk_buff *to_free = NULL;
3755 bool contended;
3756 int rc;
3757
3758 qdisc_calculate_pkt_len(skb, q);
3759
3760 if (q->flags & TCQ_F_NOLOCK) {
3761 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3762 qdisc_run_begin(q)) {
3763 /* Retest nolock_qdisc_is_empty() within the protection
3764 * of q->seqlock to protect from racing with requeuing.
3765 */
3766 if (unlikely(!nolock_qdisc_is_empty(q))) {
3767 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3768 __qdisc_run(q);
3769 qdisc_run_end(q);
3770
3771 goto no_lock_out;
3772 }
3773
3774 qdisc_bstats_cpu_update(q, skb);
3775 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3776 !nolock_qdisc_is_empty(q))
3777 __qdisc_run(q);
3778
3779 qdisc_run_end(q);
3780 return NET_XMIT_SUCCESS;
3781 }
3782
3783 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3784 qdisc_run(q);
3785
3786no_lock_out:
3787 if (unlikely(to_free))
3788 kfree_skb_list_reason(to_free,
3789 SKB_DROP_REASON_QDISC_DROP);
3790 return rc;
3791 }
3792
3793 /*
3794 * Heuristic to force contended enqueues to serialize on a
3795 * separate lock before trying to get qdisc main lock.
3796 * This permits qdisc->running owner to get the lock more
3797 * often and dequeue packets faster.
3798 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3799 * and then other tasks will only enqueue packets. The packets will be
3800 * sent after the qdisc owner is scheduled again. To prevent this
3801 * scenario the task always serialize on the lock.
3802 */
3803 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3804 if (unlikely(contended))
3805 spin_lock(&q->busylock);
3806
3807 spin_lock(root_lock);
3808 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3809 __qdisc_drop(skb, &to_free);
3810 rc = NET_XMIT_DROP;
3811 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3812 qdisc_run_begin(q)) {
3813 /*
3814 * This is a work-conserving queue; there are no old skbs
3815 * waiting to be sent out; and the qdisc is not running -
3816 * xmit the skb directly.
3817 */
3818
3819 qdisc_bstats_update(q, skb);
3820
3821 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3822 if (unlikely(contended)) {
3823 spin_unlock(&q->busylock);
3824 contended = false;
3825 }
3826 __qdisc_run(q);
3827 }
3828
3829 qdisc_run_end(q);
3830 rc = NET_XMIT_SUCCESS;
3831 } else {
3832 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3833 if (qdisc_run_begin(q)) {
3834 if (unlikely(contended)) {
3835 spin_unlock(&q->busylock);
3836 contended = false;
3837 }
3838 __qdisc_run(q);
3839 qdisc_run_end(q);
3840 }
3841 }
3842 spin_unlock(root_lock);
3843 if (unlikely(to_free))
3844 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3845 if (unlikely(contended))
3846 spin_unlock(&q->busylock);
3847 return rc;
3848}
3849
3850#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3851static void skb_update_prio(struct sk_buff *skb)
3852{
3853 const struct netprio_map *map;
3854 const struct sock *sk;
3855 unsigned int prioidx;
3856
3857 if (skb->priority)
3858 return;
3859 map = rcu_dereference_bh(skb->dev->priomap);
3860 if (!map)
3861 return;
3862 sk = skb_to_full_sk(skb);
3863 if (!sk)
3864 return;
3865
3866 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3867
3868 if (prioidx < map->priomap_len)
3869 skb->priority = map->priomap[prioidx];
3870}
3871#else
3872#define skb_update_prio(skb)
3873#endif
3874
3875/**
3876 * dev_loopback_xmit - loop back @skb
3877 * @net: network namespace this loopback is happening in
3878 * @sk: sk needed to be a netfilter okfn
3879 * @skb: buffer to transmit
3880 */
3881int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3882{
3883 skb_reset_mac_header(skb);
3884 __skb_pull(skb, skb_network_offset(skb));
3885 skb->pkt_type = PACKET_LOOPBACK;
3886 if (skb->ip_summed == CHECKSUM_NONE)
3887 skb->ip_summed = CHECKSUM_UNNECESSARY;
3888 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3889 skb_dst_force(skb);
3890 netif_rx(skb);
3891 return 0;
3892}
3893EXPORT_SYMBOL(dev_loopback_xmit);
3894
3895#ifdef CONFIG_NET_EGRESS
3896static struct netdev_queue *
3897netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3898{
3899 int qm = skb_get_queue_mapping(skb);
3900
3901 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3902}
3903
3904static bool netdev_xmit_txqueue_skipped(void)
3905{
3906 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3907}
3908
3909void netdev_xmit_skip_txqueue(bool skip)
3910{
3911 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3912}
3913EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3914#endif /* CONFIG_NET_EGRESS */
3915
3916#ifdef CONFIG_NET_XGRESS
3917static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3918{
3919 int ret = TC_ACT_UNSPEC;
3920#ifdef CONFIG_NET_CLS_ACT
3921 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3922 struct tcf_result res;
3923
3924 if (!miniq)
3925 return ret;
3926
3927 tc_skb_cb(skb)->mru = 0;
3928 tc_skb_cb(skb)->post_ct = false;
3929
3930 mini_qdisc_bstats_cpu_update(miniq, skb);
3931 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3932 /* Only tcf related quirks below. */
3933 switch (ret) {
3934 case TC_ACT_SHOT:
3935 mini_qdisc_qstats_cpu_drop(miniq);
3936 break;
3937 case TC_ACT_OK:
3938 case TC_ACT_RECLASSIFY:
3939 skb->tc_index = TC_H_MIN(res.classid);
3940 break;
3941 }
3942#endif /* CONFIG_NET_CLS_ACT */
3943 return ret;
3944}
3945
3946static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3947
3948void tcx_inc(void)
3949{
3950 static_branch_inc(&tcx_needed_key);
3951}
3952
3953void tcx_dec(void)
3954{
3955 static_branch_dec(&tcx_needed_key);
3956}
3957
3958static __always_inline enum tcx_action_base
3959tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3960 const bool needs_mac)
3961{
3962 const struct bpf_mprog_fp *fp;
3963 const struct bpf_prog *prog;
3964 int ret = TCX_NEXT;
3965
3966 if (needs_mac)
3967 __skb_push(skb, skb->mac_len);
3968 bpf_mprog_foreach_prog(entry, fp, prog) {
3969 bpf_compute_data_pointers(skb);
3970 ret = bpf_prog_run(prog, skb);
3971 if (ret != TCX_NEXT)
3972 break;
3973 }
3974 if (needs_mac)
3975 __skb_pull(skb, skb->mac_len);
3976 return tcx_action_code(skb, ret);
3977}
3978
3979static __always_inline struct sk_buff *
3980sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3981 struct net_device *orig_dev, bool *another)
3982{
3983 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3984 int sch_ret;
3985
3986 if (!entry)
3987 return skb;
3988 if (*pt_prev) {
3989 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3990 *pt_prev = NULL;
3991 }
3992
3993 qdisc_skb_cb(skb)->pkt_len = skb->len;
3994 tcx_set_ingress(skb, true);
3995
3996 if (static_branch_unlikely(&tcx_needed_key)) {
3997 sch_ret = tcx_run(entry, skb, true);
3998 if (sch_ret != TC_ACT_UNSPEC)
3999 goto ingress_verdict;
4000 }
4001 sch_ret = tc_run(tcx_entry(entry), skb);
4002ingress_verdict:
4003 switch (sch_ret) {
4004 case TC_ACT_REDIRECT:
4005 /* skb_mac_header check was done by BPF, so we can safely
4006 * push the L2 header back before redirecting to another
4007 * netdev.
4008 */
4009 __skb_push(skb, skb->mac_len);
4010 if (skb_do_redirect(skb) == -EAGAIN) {
4011 __skb_pull(skb, skb->mac_len);
4012 *another = true;
4013 break;
4014 }
4015 *ret = NET_RX_SUCCESS;
4016 return NULL;
4017 case TC_ACT_SHOT:
4018 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4019 *ret = NET_RX_DROP;
4020 return NULL;
4021 /* used by tc_run */
4022 case TC_ACT_STOLEN:
4023 case TC_ACT_QUEUED:
4024 case TC_ACT_TRAP:
4025 consume_skb(skb);
4026 fallthrough;
4027 case TC_ACT_CONSUMED:
4028 *ret = NET_RX_SUCCESS;
4029 return NULL;
4030 }
4031
4032 return skb;
4033}
4034
4035static __always_inline struct sk_buff *
4036sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4037{
4038 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4039 int sch_ret;
4040
4041 if (!entry)
4042 return skb;
4043
4044 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4045 * already set by the caller.
4046 */
4047 if (static_branch_unlikely(&tcx_needed_key)) {
4048 sch_ret = tcx_run(entry, skb, false);
4049 if (sch_ret != TC_ACT_UNSPEC)
4050 goto egress_verdict;
4051 }
4052 sch_ret = tc_run(tcx_entry(entry), skb);
4053egress_verdict:
4054 switch (sch_ret) {
4055 case TC_ACT_REDIRECT:
4056 /* No need to push/pop skb's mac_header here on egress! */
4057 skb_do_redirect(skb);
4058 *ret = NET_XMIT_SUCCESS;
4059 return NULL;
4060 case TC_ACT_SHOT:
4061 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4062 *ret = NET_XMIT_DROP;
4063 return NULL;
4064 /* used by tc_run */
4065 case TC_ACT_STOLEN:
4066 case TC_ACT_QUEUED:
4067 case TC_ACT_TRAP:
4068 consume_skb(skb);
4069 fallthrough;
4070 case TC_ACT_CONSUMED:
4071 *ret = NET_XMIT_SUCCESS;
4072 return NULL;
4073 }
4074
4075 return skb;
4076}
4077#else
4078static __always_inline struct sk_buff *
4079sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4080 struct net_device *orig_dev, bool *another)
4081{
4082 return skb;
4083}
4084
4085static __always_inline struct sk_buff *
4086sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4087{
4088 return skb;
4089}
4090#endif /* CONFIG_NET_XGRESS */
4091
4092#ifdef CONFIG_XPS
4093static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4094 struct xps_dev_maps *dev_maps, unsigned int tci)
4095{
4096 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4097 struct xps_map *map;
4098 int queue_index = -1;
4099
4100 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4101 return queue_index;
4102
4103 tci *= dev_maps->num_tc;
4104 tci += tc;
4105
4106 map = rcu_dereference(dev_maps->attr_map[tci]);
4107 if (map) {
4108 if (map->len == 1)
4109 queue_index = map->queues[0];
4110 else
4111 queue_index = map->queues[reciprocal_scale(
4112 skb_get_hash(skb), map->len)];
4113 if (unlikely(queue_index >= dev->real_num_tx_queues))
4114 queue_index = -1;
4115 }
4116 return queue_index;
4117}
4118#endif
4119
4120static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4121 struct sk_buff *skb)
4122{
4123#ifdef CONFIG_XPS
4124 struct xps_dev_maps *dev_maps;
4125 struct sock *sk = skb->sk;
4126 int queue_index = -1;
4127
4128 if (!static_key_false(&xps_needed))
4129 return -1;
4130
4131 rcu_read_lock();
4132 if (!static_key_false(&xps_rxqs_needed))
4133 goto get_cpus_map;
4134
4135 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4136 if (dev_maps) {
4137 int tci = sk_rx_queue_get(sk);
4138
4139 if (tci >= 0)
4140 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4141 tci);
4142 }
4143
4144get_cpus_map:
4145 if (queue_index < 0) {
4146 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4147 if (dev_maps) {
4148 unsigned int tci = skb->sender_cpu - 1;
4149
4150 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4151 tci);
4152 }
4153 }
4154 rcu_read_unlock();
4155
4156 return queue_index;
4157#else
4158 return -1;
4159#endif
4160}
4161
4162u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4163 struct net_device *sb_dev)
4164{
4165 return 0;
4166}
4167EXPORT_SYMBOL(dev_pick_tx_zero);
4168
4169u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4170 struct net_device *sb_dev)
4171{
4172 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4173}
4174EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4175
4176u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4177 struct net_device *sb_dev)
4178{
4179 struct sock *sk = skb->sk;
4180 int queue_index = sk_tx_queue_get(sk);
4181
4182 sb_dev = sb_dev ? : dev;
4183
4184 if (queue_index < 0 || skb->ooo_okay ||
4185 queue_index >= dev->real_num_tx_queues) {
4186 int new_index = get_xps_queue(dev, sb_dev, skb);
4187
4188 if (new_index < 0)
4189 new_index = skb_tx_hash(dev, sb_dev, skb);
4190
4191 if (queue_index != new_index && sk &&
4192 sk_fullsock(sk) &&
4193 rcu_access_pointer(sk->sk_dst_cache))
4194 sk_tx_queue_set(sk, new_index);
4195
4196 queue_index = new_index;
4197 }
4198
4199 return queue_index;
4200}
4201EXPORT_SYMBOL(netdev_pick_tx);
4202
4203struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4204 struct sk_buff *skb,
4205 struct net_device *sb_dev)
4206{
4207 int queue_index = 0;
4208
4209#ifdef CONFIG_XPS
4210 u32 sender_cpu = skb->sender_cpu - 1;
4211
4212 if (sender_cpu >= (u32)NR_CPUS)
4213 skb->sender_cpu = raw_smp_processor_id() + 1;
4214#endif
4215
4216 if (dev->real_num_tx_queues != 1) {
4217 const struct net_device_ops *ops = dev->netdev_ops;
4218
4219 if (ops->ndo_select_queue)
4220 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4221 else
4222 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4223
4224 queue_index = netdev_cap_txqueue(dev, queue_index);
4225 }
4226
4227 skb_set_queue_mapping(skb, queue_index);
4228 return netdev_get_tx_queue(dev, queue_index);
4229}
4230
4231/**
4232 * __dev_queue_xmit() - transmit a buffer
4233 * @skb: buffer to transmit
4234 * @sb_dev: suboordinate device used for L2 forwarding offload
4235 *
4236 * Queue a buffer for transmission to a network device. The caller must
4237 * have set the device and priority and built the buffer before calling
4238 * this function. The function can be called from an interrupt.
4239 *
4240 * When calling this method, interrupts MUST be enabled. This is because
4241 * the BH enable code must have IRQs enabled so that it will not deadlock.
4242 *
4243 * Regardless of the return value, the skb is consumed, so it is currently
4244 * difficult to retry a send to this method. (You can bump the ref count
4245 * before sending to hold a reference for retry if you are careful.)
4246 *
4247 * Return:
4248 * * 0 - buffer successfully transmitted
4249 * * positive qdisc return code - NET_XMIT_DROP etc.
4250 * * negative errno - other errors
4251 */
4252int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4253{
4254 struct net_device *dev = skb->dev;
4255 struct netdev_queue *txq = NULL;
4256 struct Qdisc *q;
4257 int rc = -ENOMEM;
4258 bool again = false;
4259
4260 skb_reset_mac_header(skb);
4261 skb_assert_len(skb);
4262
4263 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4264 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4265
4266 /* Disable soft irqs for various locks below. Also
4267 * stops preemption for RCU.
4268 */
4269 rcu_read_lock_bh();
4270
4271 skb_update_prio(skb);
4272
4273 qdisc_pkt_len_init(skb);
4274 tcx_set_ingress(skb, false);
4275#ifdef CONFIG_NET_EGRESS
4276 if (static_branch_unlikely(&egress_needed_key)) {
4277 if (nf_hook_egress_active()) {
4278 skb = nf_hook_egress(skb, &rc, dev);
4279 if (!skb)
4280 goto out;
4281 }
4282
4283 netdev_xmit_skip_txqueue(false);
4284
4285 nf_skip_egress(skb, true);
4286 skb = sch_handle_egress(skb, &rc, dev);
4287 if (!skb)
4288 goto out;
4289 nf_skip_egress(skb, false);
4290
4291 if (netdev_xmit_txqueue_skipped())
4292 txq = netdev_tx_queue_mapping(dev, skb);
4293 }
4294#endif
4295 /* If device/qdisc don't need skb->dst, release it right now while
4296 * its hot in this cpu cache.
4297 */
4298 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4299 skb_dst_drop(skb);
4300 else
4301 skb_dst_force(skb);
4302
4303 if (!txq)
4304 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4305
4306 q = rcu_dereference_bh(txq->qdisc);
4307
4308 trace_net_dev_queue(skb);
4309 if (q->enqueue) {
4310 rc = __dev_xmit_skb(skb, q, dev, txq);
4311 goto out;
4312 }
4313
4314 /* The device has no queue. Common case for software devices:
4315 * loopback, all the sorts of tunnels...
4316
4317 * Really, it is unlikely that netif_tx_lock protection is necessary
4318 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4319 * counters.)
4320 * However, it is possible, that they rely on protection
4321 * made by us here.
4322
4323 * Check this and shot the lock. It is not prone from deadlocks.
4324 *Either shot noqueue qdisc, it is even simpler 8)
4325 */
4326 if (dev->flags & IFF_UP) {
4327 int cpu = smp_processor_id(); /* ok because BHs are off */
4328
4329 /* Other cpus might concurrently change txq->xmit_lock_owner
4330 * to -1 or to their cpu id, but not to our id.
4331 */
4332 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4333 if (dev_xmit_recursion())
4334 goto recursion_alert;
4335
4336 skb = validate_xmit_skb(skb, dev, &again);
4337 if (!skb)
4338 goto out;
4339
4340 HARD_TX_LOCK(dev, txq, cpu);
4341
4342 if (!netif_xmit_stopped(txq)) {
4343 dev_xmit_recursion_inc();
4344 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4345 dev_xmit_recursion_dec();
4346 if (dev_xmit_complete(rc)) {
4347 HARD_TX_UNLOCK(dev, txq);
4348 goto out;
4349 }
4350 }
4351 HARD_TX_UNLOCK(dev, txq);
4352 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4353 dev->name);
4354 } else {
4355 /* Recursion is detected! It is possible,
4356 * unfortunately
4357 */
4358recursion_alert:
4359 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4360 dev->name);
4361 }
4362 }
4363
4364 rc = -ENETDOWN;
4365 rcu_read_unlock_bh();
4366
4367 dev_core_stats_tx_dropped_inc(dev);
4368 kfree_skb_list(skb);
4369 return rc;
4370out:
4371 rcu_read_unlock_bh();
4372 return rc;
4373}
4374EXPORT_SYMBOL(__dev_queue_xmit);
4375
4376int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4377{
4378 struct net_device *dev = skb->dev;
4379 struct sk_buff *orig_skb = skb;
4380 struct netdev_queue *txq;
4381 int ret = NETDEV_TX_BUSY;
4382 bool again = false;
4383
4384 if (unlikely(!netif_running(dev) ||
4385 !netif_carrier_ok(dev)))
4386 goto drop;
4387
4388 skb = validate_xmit_skb_list(skb, dev, &again);
4389 if (skb != orig_skb)
4390 goto drop;
4391
4392 skb_set_queue_mapping(skb, queue_id);
4393 txq = skb_get_tx_queue(dev, skb);
4394
4395 local_bh_disable();
4396
4397 dev_xmit_recursion_inc();
4398 HARD_TX_LOCK(dev, txq, smp_processor_id());
4399 if (!netif_xmit_frozen_or_drv_stopped(txq))
4400 ret = netdev_start_xmit(skb, dev, txq, false);
4401 HARD_TX_UNLOCK(dev, txq);
4402 dev_xmit_recursion_dec();
4403
4404 local_bh_enable();
4405 return ret;
4406drop:
4407 dev_core_stats_tx_dropped_inc(dev);
4408 kfree_skb_list(skb);
4409 return NET_XMIT_DROP;
4410}
4411EXPORT_SYMBOL(__dev_direct_xmit);
4412
4413/*************************************************************************
4414 * Receiver routines
4415 *************************************************************************/
4416
4417int netdev_max_backlog __read_mostly = 1000;
4418EXPORT_SYMBOL(netdev_max_backlog);
4419
4420int netdev_tstamp_prequeue __read_mostly = 1;
4421unsigned int sysctl_skb_defer_max __read_mostly = 64;
4422int netdev_budget __read_mostly = 300;
4423/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4424unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4425int weight_p __read_mostly = 64; /* old backlog weight */
4426int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4427int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4428int dev_rx_weight __read_mostly = 64;
4429int dev_tx_weight __read_mostly = 64;
4430
4431/* Called with irq disabled */
4432static inline void ____napi_schedule(struct softnet_data *sd,
4433 struct napi_struct *napi)
4434{
4435 struct task_struct *thread;
4436
4437 lockdep_assert_irqs_disabled();
4438
4439 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4440 /* Paired with smp_mb__before_atomic() in
4441 * napi_enable()/dev_set_threaded().
4442 * Use READ_ONCE() to guarantee a complete
4443 * read on napi->thread. Only call
4444 * wake_up_process() when it's not NULL.
4445 */
4446 thread = READ_ONCE(napi->thread);
4447 if (thread) {
4448 /* Avoid doing set_bit() if the thread is in
4449 * INTERRUPTIBLE state, cause napi_thread_wait()
4450 * makes sure to proceed with napi polling
4451 * if the thread is explicitly woken from here.
4452 */
4453 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4454 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4455 wake_up_process(thread);
4456 return;
4457 }
4458 }
4459
4460 list_add_tail(&napi->poll_list, &sd->poll_list);
4461 WRITE_ONCE(napi->list_owner, smp_processor_id());
4462 /* If not called from net_rx_action()
4463 * we have to raise NET_RX_SOFTIRQ.
4464 */
4465 if (!sd->in_net_rx_action)
4466 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4467}
4468
4469#ifdef CONFIG_RPS
4470
4471/* One global table that all flow-based protocols share. */
4472struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4473EXPORT_SYMBOL(rps_sock_flow_table);
4474u32 rps_cpu_mask __read_mostly;
4475EXPORT_SYMBOL(rps_cpu_mask);
4476
4477struct static_key_false rps_needed __read_mostly;
4478EXPORT_SYMBOL(rps_needed);
4479struct static_key_false rfs_needed __read_mostly;
4480EXPORT_SYMBOL(rfs_needed);
4481
4482static struct rps_dev_flow *
4483set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4484 struct rps_dev_flow *rflow, u16 next_cpu)
4485{
4486 if (next_cpu < nr_cpu_ids) {
4487#ifdef CONFIG_RFS_ACCEL
4488 struct netdev_rx_queue *rxqueue;
4489 struct rps_dev_flow_table *flow_table;
4490 struct rps_dev_flow *old_rflow;
4491 u32 flow_id;
4492 u16 rxq_index;
4493 int rc;
4494
4495 /* Should we steer this flow to a different hardware queue? */
4496 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4497 !(dev->features & NETIF_F_NTUPLE))
4498 goto out;
4499 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4500 if (rxq_index == skb_get_rx_queue(skb))
4501 goto out;
4502
4503 rxqueue = dev->_rx + rxq_index;
4504 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4505 if (!flow_table)
4506 goto out;
4507 flow_id = skb_get_hash(skb) & flow_table->mask;
4508 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4509 rxq_index, flow_id);
4510 if (rc < 0)
4511 goto out;
4512 old_rflow = rflow;
4513 rflow = &flow_table->flows[flow_id];
4514 rflow->filter = rc;
4515 if (old_rflow->filter == rflow->filter)
4516 old_rflow->filter = RPS_NO_FILTER;
4517 out:
4518#endif
4519 rflow->last_qtail =
4520 per_cpu(softnet_data, next_cpu).input_queue_head;
4521 }
4522
4523 rflow->cpu = next_cpu;
4524 return rflow;
4525}
4526
4527/*
4528 * get_rps_cpu is called from netif_receive_skb and returns the target
4529 * CPU from the RPS map of the receiving queue for a given skb.
4530 * rcu_read_lock must be held on entry.
4531 */
4532static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4533 struct rps_dev_flow **rflowp)
4534{
4535 const struct rps_sock_flow_table *sock_flow_table;
4536 struct netdev_rx_queue *rxqueue = dev->_rx;
4537 struct rps_dev_flow_table *flow_table;
4538 struct rps_map *map;
4539 int cpu = -1;
4540 u32 tcpu;
4541 u32 hash;
4542
4543 if (skb_rx_queue_recorded(skb)) {
4544 u16 index = skb_get_rx_queue(skb);
4545
4546 if (unlikely(index >= dev->real_num_rx_queues)) {
4547 WARN_ONCE(dev->real_num_rx_queues > 1,
4548 "%s received packet on queue %u, but number "
4549 "of RX queues is %u\n",
4550 dev->name, index, dev->real_num_rx_queues);
4551 goto done;
4552 }
4553 rxqueue += index;
4554 }
4555
4556 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4557
4558 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559 map = rcu_dereference(rxqueue->rps_map);
4560 if (!flow_table && !map)
4561 goto done;
4562
4563 skb_reset_network_header(skb);
4564 hash = skb_get_hash(skb);
4565 if (!hash)
4566 goto done;
4567
4568 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4569 if (flow_table && sock_flow_table) {
4570 struct rps_dev_flow *rflow;
4571 u32 next_cpu;
4572 u32 ident;
4573
4574 /* First check into global flow table if there is a match.
4575 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4576 */
4577 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4578 if ((ident ^ hash) & ~rps_cpu_mask)
4579 goto try_rps;
4580
4581 next_cpu = ident & rps_cpu_mask;
4582
4583 /* OK, now we know there is a match,
4584 * we can look at the local (per receive queue) flow table
4585 */
4586 rflow = &flow_table->flows[hash & flow_table->mask];
4587 tcpu = rflow->cpu;
4588
4589 /*
4590 * If the desired CPU (where last recvmsg was done) is
4591 * different from current CPU (one in the rx-queue flow
4592 * table entry), switch if one of the following holds:
4593 * - Current CPU is unset (>= nr_cpu_ids).
4594 * - Current CPU is offline.
4595 * - The current CPU's queue tail has advanced beyond the
4596 * last packet that was enqueued using this table entry.
4597 * This guarantees that all previous packets for the flow
4598 * have been dequeued, thus preserving in order delivery.
4599 */
4600 if (unlikely(tcpu != next_cpu) &&
4601 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4602 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4603 rflow->last_qtail)) >= 0)) {
4604 tcpu = next_cpu;
4605 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4606 }
4607
4608 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4609 *rflowp = rflow;
4610 cpu = tcpu;
4611 goto done;
4612 }
4613 }
4614
4615try_rps:
4616
4617 if (map) {
4618 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4619 if (cpu_online(tcpu)) {
4620 cpu = tcpu;
4621 goto done;
4622 }
4623 }
4624
4625done:
4626 return cpu;
4627}
4628
4629#ifdef CONFIG_RFS_ACCEL
4630
4631/**
4632 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4633 * @dev: Device on which the filter was set
4634 * @rxq_index: RX queue index
4635 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4636 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4637 *
4638 * Drivers that implement ndo_rx_flow_steer() should periodically call
4639 * this function for each installed filter and remove the filters for
4640 * which it returns %true.
4641 */
4642bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4643 u32 flow_id, u16 filter_id)
4644{
4645 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4646 struct rps_dev_flow_table *flow_table;
4647 struct rps_dev_flow *rflow;
4648 bool expire = true;
4649 unsigned int cpu;
4650
4651 rcu_read_lock();
4652 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4653 if (flow_table && flow_id <= flow_table->mask) {
4654 rflow = &flow_table->flows[flow_id];
4655 cpu = READ_ONCE(rflow->cpu);
4656 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4657 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4658 rflow->last_qtail) <
4659 (int)(10 * flow_table->mask)))
4660 expire = false;
4661 }
4662 rcu_read_unlock();
4663 return expire;
4664}
4665EXPORT_SYMBOL(rps_may_expire_flow);
4666
4667#endif /* CONFIG_RFS_ACCEL */
4668
4669/* Called from hardirq (IPI) context */
4670static void rps_trigger_softirq(void *data)
4671{
4672 struct softnet_data *sd = data;
4673
4674 ____napi_schedule(sd, &sd->backlog);
4675 sd->received_rps++;
4676}
4677
4678#endif /* CONFIG_RPS */
4679
4680/* Called from hardirq (IPI) context */
4681static void trigger_rx_softirq(void *data)
4682{
4683 struct softnet_data *sd = data;
4684
4685 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4686 smp_store_release(&sd->defer_ipi_scheduled, 0);
4687}
4688
4689/*
4690 * After we queued a packet into sd->input_pkt_queue,
4691 * we need to make sure this queue is serviced soon.
4692 *
4693 * - If this is another cpu queue, link it to our rps_ipi_list,
4694 * and make sure we will process rps_ipi_list from net_rx_action().
4695 *
4696 * - If this is our own queue, NAPI schedule our backlog.
4697 * Note that this also raises NET_RX_SOFTIRQ.
4698 */
4699static void napi_schedule_rps(struct softnet_data *sd)
4700{
4701 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4702
4703#ifdef CONFIG_RPS
4704 if (sd != mysd) {
4705 sd->rps_ipi_next = mysd->rps_ipi_list;
4706 mysd->rps_ipi_list = sd;
4707
4708 /* If not called from net_rx_action() or napi_threaded_poll()
4709 * we have to raise NET_RX_SOFTIRQ.
4710 */
4711 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4712 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4713 return;
4714 }
4715#endif /* CONFIG_RPS */
4716 __napi_schedule_irqoff(&mysd->backlog);
4717}
4718
4719#ifdef CONFIG_NET_FLOW_LIMIT
4720int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4721#endif
4722
4723static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4724{
4725#ifdef CONFIG_NET_FLOW_LIMIT
4726 struct sd_flow_limit *fl;
4727 struct softnet_data *sd;
4728 unsigned int old_flow, new_flow;
4729
4730 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4731 return false;
4732
4733 sd = this_cpu_ptr(&softnet_data);
4734
4735 rcu_read_lock();
4736 fl = rcu_dereference(sd->flow_limit);
4737 if (fl) {
4738 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4739 old_flow = fl->history[fl->history_head];
4740 fl->history[fl->history_head] = new_flow;
4741
4742 fl->history_head++;
4743 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4744
4745 if (likely(fl->buckets[old_flow]))
4746 fl->buckets[old_flow]--;
4747
4748 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4749 fl->count++;
4750 rcu_read_unlock();
4751 return true;
4752 }
4753 }
4754 rcu_read_unlock();
4755#endif
4756 return false;
4757}
4758
4759/*
4760 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4761 * queue (may be a remote CPU queue).
4762 */
4763static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4764 unsigned int *qtail)
4765{
4766 enum skb_drop_reason reason;
4767 struct softnet_data *sd;
4768 unsigned long flags;
4769 unsigned int qlen;
4770
4771 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4772 sd = &per_cpu(softnet_data, cpu);
4773
4774 rps_lock_irqsave(sd, &flags);
4775 if (!netif_running(skb->dev))
4776 goto drop;
4777 qlen = skb_queue_len(&sd->input_pkt_queue);
4778 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4779 if (qlen) {
4780enqueue:
4781 __skb_queue_tail(&sd->input_pkt_queue, skb);
4782 input_queue_tail_incr_save(sd, qtail);
4783 rps_unlock_irq_restore(sd, &flags);
4784 return NET_RX_SUCCESS;
4785 }
4786
4787 /* Schedule NAPI for backlog device
4788 * We can use non atomic operation since we own the queue lock
4789 */
4790 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4791 napi_schedule_rps(sd);
4792 goto enqueue;
4793 }
4794 reason = SKB_DROP_REASON_CPU_BACKLOG;
4795
4796drop:
4797 sd->dropped++;
4798 rps_unlock_irq_restore(sd, &flags);
4799
4800 dev_core_stats_rx_dropped_inc(skb->dev);
4801 kfree_skb_reason(skb, reason);
4802 return NET_RX_DROP;
4803}
4804
4805static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4806{
4807 struct net_device *dev = skb->dev;
4808 struct netdev_rx_queue *rxqueue;
4809
4810 rxqueue = dev->_rx;
4811
4812 if (skb_rx_queue_recorded(skb)) {
4813 u16 index = skb_get_rx_queue(skb);
4814
4815 if (unlikely(index >= dev->real_num_rx_queues)) {
4816 WARN_ONCE(dev->real_num_rx_queues > 1,
4817 "%s received packet on queue %u, but number "
4818 "of RX queues is %u\n",
4819 dev->name, index, dev->real_num_rx_queues);
4820
4821 return rxqueue; /* Return first rxqueue */
4822 }
4823 rxqueue += index;
4824 }
4825 return rxqueue;
4826}
4827
4828u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4829 struct bpf_prog *xdp_prog)
4830{
4831 void *orig_data, *orig_data_end, *hard_start;
4832 struct netdev_rx_queue *rxqueue;
4833 bool orig_bcast, orig_host;
4834 u32 mac_len, frame_sz;
4835 __be16 orig_eth_type;
4836 struct ethhdr *eth;
4837 u32 metalen, act;
4838 int off;
4839
4840 /* The XDP program wants to see the packet starting at the MAC
4841 * header.
4842 */
4843 mac_len = skb->data - skb_mac_header(skb);
4844 hard_start = skb->data - skb_headroom(skb);
4845
4846 /* SKB "head" area always have tailroom for skb_shared_info */
4847 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4848 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4849
4850 rxqueue = netif_get_rxqueue(skb);
4851 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4852 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4853 skb_headlen(skb) + mac_len, true);
4854
4855 orig_data_end = xdp->data_end;
4856 orig_data = xdp->data;
4857 eth = (struct ethhdr *)xdp->data;
4858 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4859 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4860 orig_eth_type = eth->h_proto;
4861
4862 act = bpf_prog_run_xdp(xdp_prog, xdp);
4863
4864 /* check if bpf_xdp_adjust_head was used */
4865 off = xdp->data - orig_data;
4866 if (off) {
4867 if (off > 0)
4868 __skb_pull(skb, off);
4869 else if (off < 0)
4870 __skb_push(skb, -off);
4871
4872 skb->mac_header += off;
4873 skb_reset_network_header(skb);
4874 }
4875
4876 /* check if bpf_xdp_adjust_tail was used */
4877 off = xdp->data_end - orig_data_end;
4878 if (off != 0) {
4879 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4880 skb->len += off; /* positive on grow, negative on shrink */
4881 }
4882
4883 /* check if XDP changed eth hdr such SKB needs update */
4884 eth = (struct ethhdr *)xdp->data;
4885 if ((orig_eth_type != eth->h_proto) ||
4886 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4887 skb->dev->dev_addr)) ||
4888 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4889 __skb_push(skb, ETH_HLEN);
4890 skb->pkt_type = PACKET_HOST;
4891 skb->protocol = eth_type_trans(skb, skb->dev);
4892 }
4893
4894 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4895 * before calling us again on redirect path. We do not call do_redirect
4896 * as we leave that up to the caller.
4897 *
4898 * Caller is responsible for managing lifetime of skb (i.e. calling
4899 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4900 */
4901 switch (act) {
4902 case XDP_REDIRECT:
4903 case XDP_TX:
4904 __skb_push(skb, mac_len);
4905 break;
4906 case XDP_PASS:
4907 metalen = xdp->data - xdp->data_meta;
4908 if (metalen)
4909 skb_metadata_set(skb, metalen);
4910 break;
4911 }
4912
4913 return act;
4914}
4915
4916static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4917 struct xdp_buff *xdp,
4918 struct bpf_prog *xdp_prog)
4919{
4920 u32 act = XDP_DROP;
4921
4922 /* Reinjected packets coming from act_mirred or similar should
4923 * not get XDP generic processing.
4924 */
4925 if (skb_is_redirected(skb))
4926 return XDP_PASS;
4927
4928 /* XDP packets must be linear and must have sufficient headroom
4929 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4930 * native XDP provides, thus we need to do it here as well.
4931 */
4932 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4933 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4934 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4935 int troom = skb->tail + skb->data_len - skb->end;
4936
4937 /* In case we have to go down the path and also linearize,
4938 * then lets do the pskb_expand_head() work just once here.
4939 */
4940 if (pskb_expand_head(skb,
4941 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4942 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4943 goto do_drop;
4944 if (skb_linearize(skb))
4945 goto do_drop;
4946 }
4947
4948 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4949 switch (act) {
4950 case XDP_REDIRECT:
4951 case XDP_TX:
4952 case XDP_PASS:
4953 break;
4954 default:
4955 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4956 fallthrough;
4957 case XDP_ABORTED:
4958 trace_xdp_exception(skb->dev, xdp_prog, act);
4959 fallthrough;
4960 case XDP_DROP:
4961 do_drop:
4962 kfree_skb(skb);
4963 break;
4964 }
4965
4966 return act;
4967}
4968
4969/* When doing generic XDP we have to bypass the qdisc layer and the
4970 * network taps in order to match in-driver-XDP behavior. This also means
4971 * that XDP packets are able to starve other packets going through a qdisc,
4972 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4973 * queues, so they do not have this starvation issue.
4974 */
4975void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4976{
4977 struct net_device *dev = skb->dev;
4978 struct netdev_queue *txq;
4979 bool free_skb = true;
4980 int cpu, rc;
4981
4982 txq = netdev_core_pick_tx(dev, skb, NULL);
4983 cpu = smp_processor_id();
4984 HARD_TX_LOCK(dev, txq, cpu);
4985 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4986 rc = netdev_start_xmit(skb, dev, txq, 0);
4987 if (dev_xmit_complete(rc))
4988 free_skb = false;
4989 }
4990 HARD_TX_UNLOCK(dev, txq);
4991 if (free_skb) {
4992 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4993 dev_core_stats_tx_dropped_inc(dev);
4994 kfree_skb(skb);
4995 }
4996}
4997
4998static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4999
5000int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5001{
5002 if (xdp_prog) {
5003 struct xdp_buff xdp;
5004 u32 act;
5005 int err;
5006
5007 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5008 if (act != XDP_PASS) {
5009 switch (act) {
5010 case XDP_REDIRECT:
5011 err = xdp_do_generic_redirect(skb->dev, skb,
5012 &xdp, xdp_prog);
5013 if (err)
5014 goto out_redir;
5015 break;
5016 case XDP_TX:
5017 generic_xdp_tx(skb, xdp_prog);
5018 break;
5019 }
5020 return XDP_DROP;
5021 }
5022 }
5023 return XDP_PASS;
5024out_redir:
5025 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5026 return XDP_DROP;
5027}
5028EXPORT_SYMBOL_GPL(do_xdp_generic);
5029
5030static int netif_rx_internal(struct sk_buff *skb)
5031{
5032 int ret;
5033
5034 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5035
5036 trace_netif_rx(skb);
5037
5038#ifdef CONFIG_RPS
5039 if (static_branch_unlikely(&rps_needed)) {
5040 struct rps_dev_flow voidflow, *rflow = &voidflow;
5041 int cpu;
5042
5043 rcu_read_lock();
5044
5045 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5046 if (cpu < 0)
5047 cpu = smp_processor_id();
5048
5049 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5050
5051 rcu_read_unlock();
5052 } else
5053#endif
5054 {
5055 unsigned int qtail;
5056
5057 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5058 }
5059 return ret;
5060}
5061
5062/**
5063 * __netif_rx - Slightly optimized version of netif_rx
5064 * @skb: buffer to post
5065 *
5066 * This behaves as netif_rx except that it does not disable bottom halves.
5067 * As a result this function may only be invoked from the interrupt context
5068 * (either hard or soft interrupt).
5069 */
5070int __netif_rx(struct sk_buff *skb)
5071{
5072 int ret;
5073
5074 lockdep_assert_once(hardirq_count() | softirq_count());
5075
5076 trace_netif_rx_entry(skb);
5077 ret = netif_rx_internal(skb);
5078 trace_netif_rx_exit(ret);
5079 return ret;
5080}
5081EXPORT_SYMBOL(__netif_rx);
5082
5083/**
5084 * netif_rx - post buffer to the network code
5085 * @skb: buffer to post
5086 *
5087 * This function receives a packet from a device driver and queues it for
5088 * the upper (protocol) levels to process via the backlog NAPI device. It
5089 * always succeeds. The buffer may be dropped during processing for
5090 * congestion control or by the protocol layers.
5091 * The network buffer is passed via the backlog NAPI device. Modern NIC
5092 * driver should use NAPI and GRO.
5093 * This function can used from interrupt and from process context. The
5094 * caller from process context must not disable interrupts before invoking
5095 * this function.
5096 *
5097 * return values:
5098 * NET_RX_SUCCESS (no congestion)
5099 * NET_RX_DROP (packet was dropped)
5100 *
5101 */
5102int netif_rx(struct sk_buff *skb)
5103{
5104 bool need_bh_off = !(hardirq_count() | softirq_count());
5105 int ret;
5106
5107 if (need_bh_off)
5108 local_bh_disable();
5109 trace_netif_rx_entry(skb);
5110 ret = netif_rx_internal(skb);
5111 trace_netif_rx_exit(ret);
5112 if (need_bh_off)
5113 local_bh_enable();
5114 return ret;
5115}
5116EXPORT_SYMBOL(netif_rx);
5117
5118static __latent_entropy void net_tx_action(struct softirq_action *h)
5119{
5120 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5121
5122 if (sd->completion_queue) {
5123 struct sk_buff *clist;
5124
5125 local_irq_disable();
5126 clist = sd->completion_queue;
5127 sd->completion_queue = NULL;
5128 local_irq_enable();
5129
5130 while (clist) {
5131 struct sk_buff *skb = clist;
5132
5133 clist = clist->next;
5134
5135 WARN_ON(refcount_read(&skb->users));
5136 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5137 trace_consume_skb(skb, net_tx_action);
5138 else
5139 trace_kfree_skb(skb, net_tx_action,
5140 get_kfree_skb_cb(skb)->reason);
5141
5142 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5143 __kfree_skb(skb);
5144 else
5145 __napi_kfree_skb(skb,
5146 get_kfree_skb_cb(skb)->reason);
5147 }
5148 }
5149
5150 if (sd->output_queue) {
5151 struct Qdisc *head;
5152
5153 local_irq_disable();
5154 head = sd->output_queue;
5155 sd->output_queue = NULL;
5156 sd->output_queue_tailp = &sd->output_queue;
5157 local_irq_enable();
5158
5159 rcu_read_lock();
5160
5161 while (head) {
5162 struct Qdisc *q = head;
5163 spinlock_t *root_lock = NULL;
5164
5165 head = head->next_sched;
5166
5167 /* We need to make sure head->next_sched is read
5168 * before clearing __QDISC_STATE_SCHED
5169 */
5170 smp_mb__before_atomic();
5171
5172 if (!(q->flags & TCQ_F_NOLOCK)) {
5173 root_lock = qdisc_lock(q);
5174 spin_lock(root_lock);
5175 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5176 &q->state))) {
5177 /* There is a synchronize_net() between
5178 * STATE_DEACTIVATED flag being set and
5179 * qdisc_reset()/some_qdisc_is_busy() in
5180 * dev_deactivate(), so we can safely bail out
5181 * early here to avoid data race between
5182 * qdisc_deactivate() and some_qdisc_is_busy()
5183 * for lockless qdisc.
5184 */
5185 clear_bit(__QDISC_STATE_SCHED, &q->state);
5186 continue;
5187 }
5188
5189 clear_bit(__QDISC_STATE_SCHED, &q->state);
5190 qdisc_run(q);
5191 if (root_lock)
5192 spin_unlock(root_lock);
5193 }
5194
5195 rcu_read_unlock();
5196 }
5197
5198 xfrm_dev_backlog(sd);
5199}
5200
5201#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5202/* This hook is defined here for ATM LANE */
5203int (*br_fdb_test_addr_hook)(struct net_device *dev,
5204 unsigned char *addr) __read_mostly;
5205EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5206#endif
5207
5208/**
5209 * netdev_is_rx_handler_busy - check if receive handler is registered
5210 * @dev: device to check
5211 *
5212 * Check if a receive handler is already registered for a given device.
5213 * Return true if there one.
5214 *
5215 * The caller must hold the rtnl_mutex.
5216 */
5217bool netdev_is_rx_handler_busy(struct net_device *dev)
5218{
5219 ASSERT_RTNL();
5220 return dev && rtnl_dereference(dev->rx_handler);
5221}
5222EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5223
5224/**
5225 * netdev_rx_handler_register - register receive handler
5226 * @dev: device to register a handler for
5227 * @rx_handler: receive handler to register
5228 * @rx_handler_data: data pointer that is used by rx handler
5229 *
5230 * Register a receive handler for a device. This handler will then be
5231 * called from __netif_receive_skb. A negative errno code is returned
5232 * on a failure.
5233 *
5234 * The caller must hold the rtnl_mutex.
5235 *
5236 * For a general description of rx_handler, see enum rx_handler_result.
5237 */
5238int netdev_rx_handler_register(struct net_device *dev,
5239 rx_handler_func_t *rx_handler,
5240 void *rx_handler_data)
5241{
5242 if (netdev_is_rx_handler_busy(dev))
5243 return -EBUSY;
5244
5245 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5246 return -EINVAL;
5247
5248 /* Note: rx_handler_data must be set before rx_handler */
5249 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5250 rcu_assign_pointer(dev->rx_handler, rx_handler);
5251
5252 return 0;
5253}
5254EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5255
5256/**
5257 * netdev_rx_handler_unregister - unregister receive handler
5258 * @dev: device to unregister a handler from
5259 *
5260 * Unregister a receive handler from a device.
5261 *
5262 * The caller must hold the rtnl_mutex.
5263 */
5264void netdev_rx_handler_unregister(struct net_device *dev)
5265{
5266
5267 ASSERT_RTNL();
5268 RCU_INIT_POINTER(dev->rx_handler, NULL);
5269 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5270 * section has a guarantee to see a non NULL rx_handler_data
5271 * as well.
5272 */
5273 synchronize_net();
5274 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5275}
5276EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5277
5278/*
5279 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5280 * the special handling of PFMEMALLOC skbs.
5281 */
5282static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5283{
5284 switch (skb->protocol) {
5285 case htons(ETH_P_ARP):
5286 case htons(ETH_P_IP):
5287 case htons(ETH_P_IPV6):
5288 case htons(ETH_P_8021Q):
5289 case htons(ETH_P_8021AD):
5290 return true;
5291 default:
5292 return false;
5293 }
5294}
5295
5296static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5297 int *ret, struct net_device *orig_dev)
5298{
5299 if (nf_hook_ingress_active(skb)) {
5300 int ingress_retval;
5301
5302 if (*pt_prev) {
5303 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5304 *pt_prev = NULL;
5305 }
5306
5307 rcu_read_lock();
5308 ingress_retval = nf_hook_ingress(skb);
5309 rcu_read_unlock();
5310 return ingress_retval;
5311 }
5312 return 0;
5313}
5314
5315static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5316 struct packet_type **ppt_prev)
5317{
5318 struct packet_type *ptype, *pt_prev;
5319 rx_handler_func_t *rx_handler;
5320 struct sk_buff *skb = *pskb;
5321 struct net_device *orig_dev;
5322 bool deliver_exact = false;
5323 int ret = NET_RX_DROP;
5324 __be16 type;
5325
5326 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5327
5328 trace_netif_receive_skb(skb);
5329
5330 orig_dev = skb->dev;
5331
5332 skb_reset_network_header(skb);
5333 if (!skb_transport_header_was_set(skb))
5334 skb_reset_transport_header(skb);
5335 skb_reset_mac_len(skb);
5336
5337 pt_prev = NULL;
5338
5339another_round:
5340 skb->skb_iif = skb->dev->ifindex;
5341
5342 __this_cpu_inc(softnet_data.processed);
5343
5344 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5345 int ret2;
5346
5347 migrate_disable();
5348 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5349 migrate_enable();
5350
5351 if (ret2 != XDP_PASS) {
5352 ret = NET_RX_DROP;
5353 goto out;
5354 }
5355 }
5356
5357 if (eth_type_vlan(skb->protocol)) {
5358 skb = skb_vlan_untag(skb);
5359 if (unlikely(!skb))
5360 goto out;
5361 }
5362
5363 if (skb_skip_tc_classify(skb))
5364 goto skip_classify;
5365
5366 if (pfmemalloc)
5367 goto skip_taps;
5368
5369 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5370 if (pt_prev)
5371 ret = deliver_skb(skb, pt_prev, orig_dev);
5372 pt_prev = ptype;
5373 }
5374
5375 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5376 if (pt_prev)
5377 ret = deliver_skb(skb, pt_prev, orig_dev);
5378 pt_prev = ptype;
5379 }
5380
5381skip_taps:
5382#ifdef CONFIG_NET_INGRESS
5383 if (static_branch_unlikely(&ingress_needed_key)) {
5384 bool another = false;
5385
5386 nf_skip_egress(skb, true);
5387 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5388 &another);
5389 if (another)
5390 goto another_round;
5391 if (!skb)
5392 goto out;
5393
5394 nf_skip_egress(skb, false);
5395 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5396 goto out;
5397 }
5398#endif
5399 skb_reset_redirect(skb);
5400skip_classify:
5401 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5402 goto drop;
5403
5404 if (skb_vlan_tag_present(skb)) {
5405 if (pt_prev) {
5406 ret = deliver_skb(skb, pt_prev, orig_dev);
5407 pt_prev = NULL;
5408 }
5409 if (vlan_do_receive(&skb))
5410 goto another_round;
5411 else if (unlikely(!skb))
5412 goto out;
5413 }
5414
5415 rx_handler = rcu_dereference(skb->dev->rx_handler);
5416 if (rx_handler) {
5417 if (pt_prev) {
5418 ret = deliver_skb(skb, pt_prev, orig_dev);
5419 pt_prev = NULL;
5420 }
5421 switch (rx_handler(&skb)) {
5422 case RX_HANDLER_CONSUMED:
5423 ret = NET_RX_SUCCESS;
5424 goto out;
5425 case RX_HANDLER_ANOTHER:
5426 goto another_round;
5427 case RX_HANDLER_EXACT:
5428 deliver_exact = true;
5429 break;
5430 case RX_HANDLER_PASS:
5431 break;
5432 default:
5433 BUG();
5434 }
5435 }
5436
5437 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5438check_vlan_id:
5439 if (skb_vlan_tag_get_id(skb)) {
5440 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5441 * find vlan device.
5442 */
5443 skb->pkt_type = PACKET_OTHERHOST;
5444 } else if (eth_type_vlan(skb->protocol)) {
5445 /* Outer header is 802.1P with vlan 0, inner header is
5446 * 802.1Q or 802.1AD and vlan_do_receive() above could
5447 * not find vlan dev for vlan id 0.
5448 */
5449 __vlan_hwaccel_clear_tag(skb);
5450 skb = skb_vlan_untag(skb);
5451 if (unlikely(!skb))
5452 goto out;
5453 if (vlan_do_receive(&skb))
5454 /* After stripping off 802.1P header with vlan 0
5455 * vlan dev is found for inner header.
5456 */
5457 goto another_round;
5458 else if (unlikely(!skb))
5459 goto out;
5460 else
5461 /* We have stripped outer 802.1P vlan 0 header.
5462 * But could not find vlan dev.
5463 * check again for vlan id to set OTHERHOST.
5464 */
5465 goto check_vlan_id;
5466 }
5467 /* Note: we might in the future use prio bits
5468 * and set skb->priority like in vlan_do_receive()
5469 * For the time being, just ignore Priority Code Point
5470 */
5471 __vlan_hwaccel_clear_tag(skb);
5472 }
5473
5474 type = skb->protocol;
5475
5476 /* deliver only exact match when indicated */
5477 if (likely(!deliver_exact)) {
5478 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5479 &ptype_base[ntohs(type) &
5480 PTYPE_HASH_MASK]);
5481 }
5482
5483 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5484 &orig_dev->ptype_specific);
5485
5486 if (unlikely(skb->dev != orig_dev)) {
5487 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5488 &skb->dev->ptype_specific);
5489 }
5490
5491 if (pt_prev) {
5492 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5493 goto drop;
5494 *ppt_prev = pt_prev;
5495 } else {
5496drop:
5497 if (!deliver_exact)
5498 dev_core_stats_rx_dropped_inc(skb->dev);
5499 else
5500 dev_core_stats_rx_nohandler_inc(skb->dev);
5501 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5502 /* Jamal, now you will not able to escape explaining
5503 * me how you were going to use this. :-)
5504 */
5505 ret = NET_RX_DROP;
5506 }
5507
5508out:
5509 /* The invariant here is that if *ppt_prev is not NULL
5510 * then skb should also be non-NULL.
5511 *
5512 * Apparently *ppt_prev assignment above holds this invariant due to
5513 * skb dereferencing near it.
5514 */
5515 *pskb = skb;
5516 return ret;
5517}
5518
5519static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5520{
5521 struct net_device *orig_dev = skb->dev;
5522 struct packet_type *pt_prev = NULL;
5523 int ret;
5524
5525 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5526 if (pt_prev)
5527 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5528 skb->dev, pt_prev, orig_dev);
5529 return ret;
5530}
5531
5532/**
5533 * netif_receive_skb_core - special purpose version of netif_receive_skb
5534 * @skb: buffer to process
5535 *
5536 * More direct receive version of netif_receive_skb(). It should
5537 * only be used by callers that have a need to skip RPS and Generic XDP.
5538 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5539 *
5540 * This function may only be called from softirq context and interrupts
5541 * should be enabled.
5542 *
5543 * Return values (usually ignored):
5544 * NET_RX_SUCCESS: no congestion
5545 * NET_RX_DROP: packet was dropped
5546 */
5547int netif_receive_skb_core(struct sk_buff *skb)
5548{
5549 int ret;
5550
5551 rcu_read_lock();
5552 ret = __netif_receive_skb_one_core(skb, false);
5553 rcu_read_unlock();
5554
5555 return ret;
5556}
5557EXPORT_SYMBOL(netif_receive_skb_core);
5558
5559static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5560 struct packet_type *pt_prev,
5561 struct net_device *orig_dev)
5562{
5563 struct sk_buff *skb, *next;
5564
5565 if (!pt_prev)
5566 return;
5567 if (list_empty(head))
5568 return;
5569 if (pt_prev->list_func != NULL)
5570 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5571 ip_list_rcv, head, pt_prev, orig_dev);
5572 else
5573 list_for_each_entry_safe(skb, next, head, list) {
5574 skb_list_del_init(skb);
5575 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5576 }
5577}
5578
5579static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5580{
5581 /* Fast-path assumptions:
5582 * - There is no RX handler.
5583 * - Only one packet_type matches.
5584 * If either of these fails, we will end up doing some per-packet
5585 * processing in-line, then handling the 'last ptype' for the whole
5586 * sublist. This can't cause out-of-order delivery to any single ptype,
5587 * because the 'last ptype' must be constant across the sublist, and all
5588 * other ptypes are handled per-packet.
5589 */
5590 /* Current (common) ptype of sublist */
5591 struct packet_type *pt_curr = NULL;
5592 /* Current (common) orig_dev of sublist */
5593 struct net_device *od_curr = NULL;
5594 struct list_head sublist;
5595 struct sk_buff *skb, *next;
5596
5597 INIT_LIST_HEAD(&sublist);
5598 list_for_each_entry_safe(skb, next, head, list) {
5599 struct net_device *orig_dev = skb->dev;
5600 struct packet_type *pt_prev = NULL;
5601
5602 skb_list_del_init(skb);
5603 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5604 if (!pt_prev)
5605 continue;
5606 if (pt_curr != pt_prev || od_curr != orig_dev) {
5607 /* dispatch old sublist */
5608 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5609 /* start new sublist */
5610 INIT_LIST_HEAD(&sublist);
5611 pt_curr = pt_prev;
5612 od_curr = orig_dev;
5613 }
5614 list_add_tail(&skb->list, &sublist);
5615 }
5616
5617 /* dispatch final sublist */
5618 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5619}
5620
5621static int __netif_receive_skb(struct sk_buff *skb)
5622{
5623 int ret;
5624
5625 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5626 unsigned int noreclaim_flag;
5627
5628 /*
5629 * PFMEMALLOC skbs are special, they should
5630 * - be delivered to SOCK_MEMALLOC sockets only
5631 * - stay away from userspace
5632 * - have bounded memory usage
5633 *
5634 * Use PF_MEMALLOC as this saves us from propagating the allocation
5635 * context down to all allocation sites.
5636 */
5637 noreclaim_flag = memalloc_noreclaim_save();
5638 ret = __netif_receive_skb_one_core(skb, true);
5639 memalloc_noreclaim_restore(noreclaim_flag);
5640 } else
5641 ret = __netif_receive_skb_one_core(skb, false);
5642
5643 return ret;
5644}
5645
5646static void __netif_receive_skb_list(struct list_head *head)
5647{
5648 unsigned long noreclaim_flag = 0;
5649 struct sk_buff *skb, *next;
5650 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5651
5652 list_for_each_entry_safe(skb, next, head, list) {
5653 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5654 struct list_head sublist;
5655
5656 /* Handle the previous sublist */
5657 list_cut_before(&sublist, head, &skb->list);
5658 if (!list_empty(&sublist))
5659 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5660 pfmemalloc = !pfmemalloc;
5661 /* See comments in __netif_receive_skb */
5662 if (pfmemalloc)
5663 noreclaim_flag = memalloc_noreclaim_save();
5664 else
5665 memalloc_noreclaim_restore(noreclaim_flag);
5666 }
5667 }
5668 /* Handle the remaining sublist */
5669 if (!list_empty(head))
5670 __netif_receive_skb_list_core(head, pfmemalloc);
5671 /* Restore pflags */
5672 if (pfmemalloc)
5673 memalloc_noreclaim_restore(noreclaim_flag);
5674}
5675
5676static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5677{
5678 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5679 struct bpf_prog *new = xdp->prog;
5680 int ret = 0;
5681
5682 switch (xdp->command) {
5683 case XDP_SETUP_PROG:
5684 rcu_assign_pointer(dev->xdp_prog, new);
5685 if (old)
5686 bpf_prog_put(old);
5687
5688 if (old && !new) {
5689 static_branch_dec(&generic_xdp_needed_key);
5690 } else if (new && !old) {
5691 static_branch_inc(&generic_xdp_needed_key);
5692 dev_disable_lro(dev);
5693 dev_disable_gro_hw(dev);
5694 }
5695 break;
5696
5697 default:
5698 ret = -EINVAL;
5699 break;
5700 }
5701
5702 return ret;
5703}
5704
5705static int netif_receive_skb_internal(struct sk_buff *skb)
5706{
5707 int ret;
5708
5709 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5710
5711 if (skb_defer_rx_timestamp(skb))
5712 return NET_RX_SUCCESS;
5713
5714 rcu_read_lock();
5715#ifdef CONFIG_RPS
5716 if (static_branch_unlikely(&rps_needed)) {
5717 struct rps_dev_flow voidflow, *rflow = &voidflow;
5718 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5719
5720 if (cpu >= 0) {
5721 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5722 rcu_read_unlock();
5723 return ret;
5724 }
5725 }
5726#endif
5727 ret = __netif_receive_skb(skb);
5728 rcu_read_unlock();
5729 return ret;
5730}
5731
5732void netif_receive_skb_list_internal(struct list_head *head)
5733{
5734 struct sk_buff *skb, *next;
5735 struct list_head sublist;
5736
5737 INIT_LIST_HEAD(&sublist);
5738 list_for_each_entry_safe(skb, next, head, list) {
5739 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5740 skb_list_del_init(skb);
5741 if (!skb_defer_rx_timestamp(skb))
5742 list_add_tail(&skb->list, &sublist);
5743 }
5744 list_splice_init(&sublist, head);
5745
5746 rcu_read_lock();
5747#ifdef CONFIG_RPS
5748 if (static_branch_unlikely(&rps_needed)) {
5749 list_for_each_entry_safe(skb, next, head, list) {
5750 struct rps_dev_flow voidflow, *rflow = &voidflow;
5751 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5752
5753 if (cpu >= 0) {
5754 /* Will be handled, remove from list */
5755 skb_list_del_init(skb);
5756 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5757 }
5758 }
5759 }
5760#endif
5761 __netif_receive_skb_list(head);
5762 rcu_read_unlock();
5763}
5764
5765/**
5766 * netif_receive_skb - process receive buffer from network
5767 * @skb: buffer to process
5768 *
5769 * netif_receive_skb() is the main receive data processing function.
5770 * It always succeeds. The buffer may be dropped during processing
5771 * for congestion control or by the protocol layers.
5772 *
5773 * This function may only be called from softirq context and interrupts
5774 * should be enabled.
5775 *
5776 * Return values (usually ignored):
5777 * NET_RX_SUCCESS: no congestion
5778 * NET_RX_DROP: packet was dropped
5779 */
5780int netif_receive_skb(struct sk_buff *skb)
5781{
5782 int ret;
5783
5784 trace_netif_receive_skb_entry(skb);
5785
5786 ret = netif_receive_skb_internal(skb);
5787 trace_netif_receive_skb_exit(ret);
5788
5789 return ret;
5790}
5791EXPORT_SYMBOL(netif_receive_skb);
5792
5793/**
5794 * netif_receive_skb_list - process many receive buffers from network
5795 * @head: list of skbs to process.
5796 *
5797 * Since return value of netif_receive_skb() is normally ignored, and
5798 * wouldn't be meaningful for a list, this function returns void.
5799 *
5800 * This function may only be called from softirq context and interrupts
5801 * should be enabled.
5802 */
5803void netif_receive_skb_list(struct list_head *head)
5804{
5805 struct sk_buff *skb;
5806
5807 if (list_empty(head))
5808 return;
5809 if (trace_netif_receive_skb_list_entry_enabled()) {
5810 list_for_each_entry(skb, head, list)
5811 trace_netif_receive_skb_list_entry(skb);
5812 }
5813 netif_receive_skb_list_internal(head);
5814 trace_netif_receive_skb_list_exit(0);
5815}
5816EXPORT_SYMBOL(netif_receive_skb_list);
5817
5818static DEFINE_PER_CPU(struct work_struct, flush_works);
5819
5820/* Network device is going away, flush any packets still pending */
5821static void flush_backlog(struct work_struct *work)
5822{
5823 struct sk_buff *skb, *tmp;
5824 struct softnet_data *sd;
5825
5826 local_bh_disable();
5827 sd = this_cpu_ptr(&softnet_data);
5828
5829 rps_lock_irq_disable(sd);
5830 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5831 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5832 __skb_unlink(skb, &sd->input_pkt_queue);
5833 dev_kfree_skb_irq(skb);
5834 input_queue_head_incr(sd);
5835 }
5836 }
5837 rps_unlock_irq_enable(sd);
5838
5839 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5840 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5841 __skb_unlink(skb, &sd->process_queue);
5842 kfree_skb(skb);
5843 input_queue_head_incr(sd);
5844 }
5845 }
5846 local_bh_enable();
5847}
5848
5849static bool flush_required(int cpu)
5850{
5851#if IS_ENABLED(CONFIG_RPS)
5852 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5853 bool do_flush;
5854
5855 rps_lock_irq_disable(sd);
5856
5857 /* as insertion into process_queue happens with the rps lock held,
5858 * process_queue access may race only with dequeue
5859 */
5860 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5861 !skb_queue_empty_lockless(&sd->process_queue);
5862 rps_unlock_irq_enable(sd);
5863
5864 return do_flush;
5865#endif
5866 /* without RPS we can't safely check input_pkt_queue: during a
5867 * concurrent remote skb_queue_splice() we can detect as empty both
5868 * input_pkt_queue and process_queue even if the latter could end-up
5869 * containing a lot of packets.
5870 */
5871 return true;
5872}
5873
5874static void flush_all_backlogs(void)
5875{
5876 static cpumask_t flush_cpus;
5877 unsigned int cpu;
5878
5879 /* since we are under rtnl lock protection we can use static data
5880 * for the cpumask and avoid allocating on stack the possibly
5881 * large mask
5882 */
5883 ASSERT_RTNL();
5884
5885 cpus_read_lock();
5886
5887 cpumask_clear(&flush_cpus);
5888 for_each_online_cpu(cpu) {
5889 if (flush_required(cpu)) {
5890 queue_work_on(cpu, system_highpri_wq,
5891 per_cpu_ptr(&flush_works, cpu));
5892 cpumask_set_cpu(cpu, &flush_cpus);
5893 }
5894 }
5895
5896 /* we can have in flight packet[s] on the cpus we are not flushing,
5897 * synchronize_net() in unregister_netdevice_many() will take care of
5898 * them
5899 */
5900 for_each_cpu(cpu, &flush_cpus)
5901 flush_work(per_cpu_ptr(&flush_works, cpu));
5902
5903 cpus_read_unlock();
5904}
5905
5906static void net_rps_send_ipi(struct softnet_data *remsd)
5907{
5908#ifdef CONFIG_RPS
5909 while (remsd) {
5910 struct softnet_data *next = remsd->rps_ipi_next;
5911
5912 if (cpu_online(remsd->cpu))
5913 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5914 remsd = next;
5915 }
5916#endif
5917}
5918
5919/*
5920 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5921 * Note: called with local irq disabled, but exits with local irq enabled.
5922 */
5923static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5924{
5925#ifdef CONFIG_RPS
5926 struct softnet_data *remsd = sd->rps_ipi_list;
5927
5928 if (remsd) {
5929 sd->rps_ipi_list = NULL;
5930
5931 local_irq_enable();
5932
5933 /* Send pending IPI's to kick RPS processing on remote cpus. */
5934 net_rps_send_ipi(remsd);
5935 } else
5936#endif
5937 local_irq_enable();
5938}
5939
5940static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5941{
5942#ifdef CONFIG_RPS
5943 return sd->rps_ipi_list != NULL;
5944#else
5945 return false;
5946#endif
5947}
5948
5949static int process_backlog(struct napi_struct *napi, int quota)
5950{
5951 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5952 bool again = true;
5953 int work = 0;
5954
5955 /* Check if we have pending ipi, its better to send them now,
5956 * not waiting net_rx_action() end.
5957 */
5958 if (sd_has_rps_ipi_waiting(sd)) {
5959 local_irq_disable();
5960 net_rps_action_and_irq_enable(sd);
5961 }
5962
5963 napi->weight = READ_ONCE(dev_rx_weight);
5964 while (again) {
5965 struct sk_buff *skb;
5966
5967 while ((skb = __skb_dequeue(&sd->process_queue))) {
5968 rcu_read_lock();
5969 __netif_receive_skb(skb);
5970 rcu_read_unlock();
5971 input_queue_head_incr(sd);
5972 if (++work >= quota)
5973 return work;
5974
5975 }
5976
5977 rps_lock_irq_disable(sd);
5978 if (skb_queue_empty(&sd->input_pkt_queue)) {
5979 /*
5980 * Inline a custom version of __napi_complete().
5981 * only current cpu owns and manipulates this napi,
5982 * and NAPI_STATE_SCHED is the only possible flag set
5983 * on backlog.
5984 * We can use a plain write instead of clear_bit(),
5985 * and we dont need an smp_mb() memory barrier.
5986 */
5987 napi->state = 0;
5988 again = false;
5989 } else {
5990 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5991 &sd->process_queue);
5992 }
5993 rps_unlock_irq_enable(sd);
5994 }
5995
5996 return work;
5997}
5998
5999/**
6000 * __napi_schedule - schedule for receive
6001 * @n: entry to schedule
6002 *
6003 * The entry's receive function will be scheduled to run.
6004 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6005 */
6006void __napi_schedule(struct napi_struct *n)
6007{
6008 unsigned long flags;
6009
6010 local_irq_save(flags);
6011 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6012 local_irq_restore(flags);
6013}
6014EXPORT_SYMBOL(__napi_schedule);
6015
6016/**
6017 * napi_schedule_prep - check if napi can be scheduled
6018 * @n: napi context
6019 *
6020 * Test if NAPI routine is already running, and if not mark
6021 * it as running. This is used as a condition variable to
6022 * insure only one NAPI poll instance runs. We also make
6023 * sure there is no pending NAPI disable.
6024 */
6025bool napi_schedule_prep(struct napi_struct *n)
6026{
6027 unsigned long new, val = READ_ONCE(n->state);
6028
6029 do {
6030 if (unlikely(val & NAPIF_STATE_DISABLE))
6031 return false;
6032 new = val | NAPIF_STATE_SCHED;
6033
6034 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6035 * This was suggested by Alexander Duyck, as compiler
6036 * emits better code than :
6037 * if (val & NAPIF_STATE_SCHED)
6038 * new |= NAPIF_STATE_MISSED;
6039 */
6040 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6041 NAPIF_STATE_MISSED;
6042 } while (!try_cmpxchg(&n->state, &val, new));
6043
6044 return !(val & NAPIF_STATE_SCHED);
6045}
6046EXPORT_SYMBOL(napi_schedule_prep);
6047
6048/**
6049 * __napi_schedule_irqoff - schedule for receive
6050 * @n: entry to schedule
6051 *
6052 * Variant of __napi_schedule() assuming hard irqs are masked.
6053 *
6054 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6055 * because the interrupt disabled assumption might not be true
6056 * due to force-threaded interrupts and spinlock substitution.
6057 */
6058void __napi_schedule_irqoff(struct napi_struct *n)
6059{
6060 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6061 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6062 else
6063 __napi_schedule(n);
6064}
6065EXPORT_SYMBOL(__napi_schedule_irqoff);
6066
6067bool napi_complete_done(struct napi_struct *n, int work_done)
6068{
6069 unsigned long flags, val, new, timeout = 0;
6070 bool ret = true;
6071
6072 /*
6073 * 1) Don't let napi dequeue from the cpu poll list
6074 * just in case its running on a different cpu.
6075 * 2) If we are busy polling, do nothing here, we have
6076 * the guarantee we will be called later.
6077 */
6078 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6079 NAPIF_STATE_IN_BUSY_POLL)))
6080 return false;
6081
6082 if (work_done) {
6083 if (n->gro_bitmask)
6084 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6085 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6086 }
6087 if (n->defer_hard_irqs_count > 0) {
6088 n->defer_hard_irqs_count--;
6089 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6090 if (timeout)
6091 ret = false;
6092 }
6093 if (n->gro_bitmask) {
6094 /* When the NAPI instance uses a timeout and keeps postponing
6095 * it, we need to bound somehow the time packets are kept in
6096 * the GRO layer
6097 */
6098 napi_gro_flush(n, !!timeout);
6099 }
6100
6101 gro_normal_list(n);
6102
6103 if (unlikely(!list_empty(&n->poll_list))) {
6104 /* If n->poll_list is not empty, we need to mask irqs */
6105 local_irq_save(flags);
6106 list_del_init(&n->poll_list);
6107 local_irq_restore(flags);
6108 }
6109 WRITE_ONCE(n->list_owner, -1);
6110
6111 val = READ_ONCE(n->state);
6112 do {
6113 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6114
6115 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6116 NAPIF_STATE_SCHED_THREADED |
6117 NAPIF_STATE_PREFER_BUSY_POLL);
6118
6119 /* If STATE_MISSED was set, leave STATE_SCHED set,
6120 * because we will call napi->poll() one more time.
6121 * This C code was suggested by Alexander Duyck to help gcc.
6122 */
6123 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6124 NAPIF_STATE_SCHED;
6125 } while (!try_cmpxchg(&n->state, &val, new));
6126
6127 if (unlikely(val & NAPIF_STATE_MISSED)) {
6128 __napi_schedule(n);
6129 return false;
6130 }
6131
6132 if (timeout)
6133 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6134 HRTIMER_MODE_REL_PINNED);
6135 return ret;
6136}
6137EXPORT_SYMBOL(napi_complete_done);
6138
6139/* must be called under rcu_read_lock(), as we dont take a reference */
6140static struct napi_struct *napi_by_id(unsigned int napi_id)
6141{
6142 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6143 struct napi_struct *napi;
6144
6145 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6146 if (napi->napi_id == napi_id)
6147 return napi;
6148
6149 return NULL;
6150}
6151
6152#if defined(CONFIG_NET_RX_BUSY_POLL)
6153
6154static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6155{
6156 if (!skip_schedule) {
6157 gro_normal_list(napi);
6158 __napi_schedule(napi);
6159 return;
6160 }
6161
6162 if (napi->gro_bitmask) {
6163 /* flush too old packets
6164 * If HZ < 1000, flush all packets.
6165 */
6166 napi_gro_flush(napi, HZ >= 1000);
6167 }
6168
6169 gro_normal_list(napi);
6170 clear_bit(NAPI_STATE_SCHED, &napi->state);
6171}
6172
6173static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6174 u16 budget)
6175{
6176 bool skip_schedule = false;
6177 unsigned long timeout;
6178 int rc;
6179
6180 /* Busy polling means there is a high chance device driver hard irq
6181 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6182 * set in napi_schedule_prep().
6183 * Since we are about to call napi->poll() once more, we can safely
6184 * clear NAPI_STATE_MISSED.
6185 *
6186 * Note: x86 could use a single "lock and ..." instruction
6187 * to perform these two clear_bit()
6188 */
6189 clear_bit(NAPI_STATE_MISSED, &napi->state);
6190 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6191
6192 local_bh_disable();
6193
6194 if (prefer_busy_poll) {
6195 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6196 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6197 if (napi->defer_hard_irqs_count && timeout) {
6198 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6199 skip_schedule = true;
6200 }
6201 }
6202
6203 /* All we really want here is to re-enable device interrupts.
6204 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6205 */
6206 rc = napi->poll(napi, budget);
6207 /* We can't gro_normal_list() here, because napi->poll() might have
6208 * rearmed the napi (napi_complete_done()) in which case it could
6209 * already be running on another CPU.
6210 */
6211 trace_napi_poll(napi, rc, budget);
6212 netpoll_poll_unlock(have_poll_lock);
6213 if (rc == budget)
6214 __busy_poll_stop(napi, skip_schedule);
6215 local_bh_enable();
6216}
6217
6218void napi_busy_loop(unsigned int napi_id,
6219 bool (*loop_end)(void *, unsigned long),
6220 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6221{
6222 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6223 int (*napi_poll)(struct napi_struct *napi, int budget);
6224 void *have_poll_lock = NULL;
6225 struct napi_struct *napi;
6226
6227restart:
6228 napi_poll = NULL;
6229
6230 rcu_read_lock();
6231
6232 napi = napi_by_id(napi_id);
6233 if (!napi)
6234 goto out;
6235
6236 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6237 preempt_disable();
6238 for (;;) {
6239 int work = 0;
6240
6241 local_bh_disable();
6242 if (!napi_poll) {
6243 unsigned long val = READ_ONCE(napi->state);
6244
6245 /* If multiple threads are competing for this napi,
6246 * we avoid dirtying napi->state as much as we can.
6247 */
6248 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6249 NAPIF_STATE_IN_BUSY_POLL)) {
6250 if (prefer_busy_poll)
6251 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6252 goto count;
6253 }
6254 if (cmpxchg(&napi->state, val,
6255 val | NAPIF_STATE_IN_BUSY_POLL |
6256 NAPIF_STATE_SCHED) != val) {
6257 if (prefer_busy_poll)
6258 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6259 goto count;
6260 }
6261 have_poll_lock = netpoll_poll_lock(napi);
6262 napi_poll = napi->poll;
6263 }
6264 work = napi_poll(napi, budget);
6265 trace_napi_poll(napi, work, budget);
6266 gro_normal_list(napi);
6267count:
6268 if (work > 0)
6269 __NET_ADD_STATS(dev_net(napi->dev),
6270 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6271 local_bh_enable();
6272
6273 if (!loop_end || loop_end(loop_end_arg, start_time))
6274 break;
6275
6276 if (unlikely(need_resched())) {
6277 if (napi_poll)
6278 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6279 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6280 preempt_enable();
6281 rcu_read_unlock();
6282 cond_resched();
6283 if (loop_end(loop_end_arg, start_time))
6284 return;
6285 goto restart;
6286 }
6287 cpu_relax();
6288 }
6289 if (napi_poll)
6290 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6291 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6292 preempt_enable();
6293out:
6294 rcu_read_unlock();
6295}
6296EXPORT_SYMBOL(napi_busy_loop);
6297
6298#endif /* CONFIG_NET_RX_BUSY_POLL */
6299
6300static void napi_hash_add(struct napi_struct *napi)
6301{
6302 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6303 return;
6304
6305 spin_lock(&napi_hash_lock);
6306
6307 /* 0..NR_CPUS range is reserved for sender_cpu use */
6308 do {
6309 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6310 napi_gen_id = MIN_NAPI_ID;
6311 } while (napi_by_id(napi_gen_id));
6312 napi->napi_id = napi_gen_id;
6313
6314 hlist_add_head_rcu(&napi->napi_hash_node,
6315 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6316
6317 spin_unlock(&napi_hash_lock);
6318}
6319
6320/* Warning : caller is responsible to make sure rcu grace period
6321 * is respected before freeing memory containing @napi
6322 */
6323static void napi_hash_del(struct napi_struct *napi)
6324{
6325 spin_lock(&napi_hash_lock);
6326
6327 hlist_del_init_rcu(&napi->napi_hash_node);
6328
6329 spin_unlock(&napi_hash_lock);
6330}
6331
6332static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6333{
6334 struct napi_struct *napi;
6335
6336 napi = container_of(timer, struct napi_struct, timer);
6337
6338 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6339 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6340 */
6341 if (!napi_disable_pending(napi) &&
6342 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6343 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6344 __napi_schedule_irqoff(napi);
6345 }
6346
6347 return HRTIMER_NORESTART;
6348}
6349
6350static void init_gro_hash(struct napi_struct *napi)
6351{
6352 int i;
6353
6354 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6355 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6356 napi->gro_hash[i].count = 0;
6357 }
6358 napi->gro_bitmask = 0;
6359}
6360
6361int dev_set_threaded(struct net_device *dev, bool threaded)
6362{
6363 struct napi_struct *napi;
6364 int err = 0;
6365
6366 if (dev->threaded == threaded)
6367 return 0;
6368
6369 if (threaded) {
6370 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6371 if (!napi->thread) {
6372 err = napi_kthread_create(napi);
6373 if (err) {
6374 threaded = false;
6375 break;
6376 }
6377 }
6378 }
6379 }
6380
6381 dev->threaded = threaded;
6382
6383 /* Make sure kthread is created before THREADED bit
6384 * is set.
6385 */
6386 smp_mb__before_atomic();
6387
6388 /* Setting/unsetting threaded mode on a napi might not immediately
6389 * take effect, if the current napi instance is actively being
6390 * polled. In this case, the switch between threaded mode and
6391 * softirq mode will happen in the next round of napi_schedule().
6392 * This should not cause hiccups/stalls to the live traffic.
6393 */
6394 list_for_each_entry(napi, &dev->napi_list, dev_list)
6395 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6396
6397 return err;
6398}
6399EXPORT_SYMBOL(dev_set_threaded);
6400
6401void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6402 int (*poll)(struct napi_struct *, int), int weight)
6403{
6404 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6405 return;
6406
6407 INIT_LIST_HEAD(&napi->poll_list);
6408 INIT_HLIST_NODE(&napi->napi_hash_node);
6409 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6410 napi->timer.function = napi_watchdog;
6411 init_gro_hash(napi);
6412 napi->skb = NULL;
6413 INIT_LIST_HEAD(&napi->rx_list);
6414 napi->rx_count = 0;
6415 napi->poll = poll;
6416 if (weight > NAPI_POLL_WEIGHT)
6417 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6418 weight);
6419 napi->weight = weight;
6420 napi->dev = dev;
6421#ifdef CONFIG_NETPOLL
6422 napi->poll_owner = -1;
6423#endif
6424 napi->list_owner = -1;
6425 set_bit(NAPI_STATE_SCHED, &napi->state);
6426 set_bit(NAPI_STATE_NPSVC, &napi->state);
6427 list_add_rcu(&napi->dev_list, &dev->napi_list);
6428 napi_hash_add(napi);
6429 napi_get_frags_check(napi);
6430 /* Create kthread for this napi if dev->threaded is set.
6431 * Clear dev->threaded if kthread creation failed so that
6432 * threaded mode will not be enabled in napi_enable().
6433 */
6434 if (dev->threaded && napi_kthread_create(napi))
6435 dev->threaded = 0;
6436}
6437EXPORT_SYMBOL(netif_napi_add_weight);
6438
6439void napi_disable(struct napi_struct *n)
6440{
6441 unsigned long val, new;
6442
6443 might_sleep();
6444 set_bit(NAPI_STATE_DISABLE, &n->state);
6445
6446 val = READ_ONCE(n->state);
6447 do {
6448 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6449 usleep_range(20, 200);
6450 val = READ_ONCE(n->state);
6451 }
6452
6453 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6454 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6455 } while (!try_cmpxchg(&n->state, &val, new));
6456
6457 hrtimer_cancel(&n->timer);
6458
6459 clear_bit(NAPI_STATE_DISABLE, &n->state);
6460}
6461EXPORT_SYMBOL(napi_disable);
6462
6463/**
6464 * napi_enable - enable NAPI scheduling
6465 * @n: NAPI context
6466 *
6467 * Resume NAPI from being scheduled on this context.
6468 * Must be paired with napi_disable.
6469 */
6470void napi_enable(struct napi_struct *n)
6471{
6472 unsigned long new, val = READ_ONCE(n->state);
6473
6474 do {
6475 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6476
6477 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6478 if (n->dev->threaded && n->thread)
6479 new |= NAPIF_STATE_THREADED;
6480 } while (!try_cmpxchg(&n->state, &val, new));
6481}
6482EXPORT_SYMBOL(napi_enable);
6483
6484static void flush_gro_hash(struct napi_struct *napi)
6485{
6486 int i;
6487
6488 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6489 struct sk_buff *skb, *n;
6490
6491 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6492 kfree_skb(skb);
6493 napi->gro_hash[i].count = 0;
6494 }
6495}
6496
6497/* Must be called in process context */
6498void __netif_napi_del(struct napi_struct *napi)
6499{
6500 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6501 return;
6502
6503 napi_hash_del(napi);
6504 list_del_rcu(&napi->dev_list);
6505 napi_free_frags(napi);
6506
6507 flush_gro_hash(napi);
6508 napi->gro_bitmask = 0;
6509
6510 if (napi->thread) {
6511 kthread_stop(napi->thread);
6512 napi->thread = NULL;
6513 }
6514}
6515EXPORT_SYMBOL(__netif_napi_del);
6516
6517static int __napi_poll(struct napi_struct *n, bool *repoll)
6518{
6519 int work, weight;
6520
6521 weight = n->weight;
6522
6523 /* This NAPI_STATE_SCHED test is for avoiding a race
6524 * with netpoll's poll_napi(). Only the entity which
6525 * obtains the lock and sees NAPI_STATE_SCHED set will
6526 * actually make the ->poll() call. Therefore we avoid
6527 * accidentally calling ->poll() when NAPI is not scheduled.
6528 */
6529 work = 0;
6530 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6531 work = n->poll(n, weight);
6532 trace_napi_poll(n, work, weight);
6533 }
6534
6535 if (unlikely(work > weight))
6536 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6537 n->poll, work, weight);
6538
6539 if (likely(work < weight))
6540 return work;
6541
6542 /* Drivers must not modify the NAPI state if they
6543 * consume the entire weight. In such cases this code
6544 * still "owns" the NAPI instance and therefore can
6545 * move the instance around on the list at-will.
6546 */
6547 if (unlikely(napi_disable_pending(n))) {
6548 napi_complete(n);
6549 return work;
6550 }
6551
6552 /* The NAPI context has more processing work, but busy-polling
6553 * is preferred. Exit early.
6554 */
6555 if (napi_prefer_busy_poll(n)) {
6556 if (napi_complete_done(n, work)) {
6557 /* If timeout is not set, we need to make sure
6558 * that the NAPI is re-scheduled.
6559 */
6560 napi_schedule(n);
6561 }
6562 return work;
6563 }
6564
6565 if (n->gro_bitmask) {
6566 /* flush too old packets
6567 * If HZ < 1000, flush all packets.
6568 */
6569 napi_gro_flush(n, HZ >= 1000);
6570 }
6571
6572 gro_normal_list(n);
6573
6574 /* Some drivers may have called napi_schedule
6575 * prior to exhausting their budget.
6576 */
6577 if (unlikely(!list_empty(&n->poll_list))) {
6578 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6579 n->dev ? n->dev->name : "backlog");
6580 return work;
6581 }
6582
6583 *repoll = true;
6584
6585 return work;
6586}
6587
6588static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6589{
6590 bool do_repoll = false;
6591 void *have;
6592 int work;
6593
6594 list_del_init(&n->poll_list);
6595
6596 have = netpoll_poll_lock(n);
6597
6598 work = __napi_poll(n, &do_repoll);
6599
6600 if (do_repoll)
6601 list_add_tail(&n->poll_list, repoll);
6602
6603 netpoll_poll_unlock(have);
6604
6605 return work;
6606}
6607
6608static int napi_thread_wait(struct napi_struct *napi)
6609{
6610 bool woken = false;
6611
6612 set_current_state(TASK_INTERRUPTIBLE);
6613
6614 while (!kthread_should_stop()) {
6615 /* Testing SCHED_THREADED bit here to make sure the current
6616 * kthread owns this napi and could poll on this napi.
6617 * Testing SCHED bit is not enough because SCHED bit might be
6618 * set by some other busy poll thread or by napi_disable().
6619 */
6620 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6621 WARN_ON(!list_empty(&napi->poll_list));
6622 __set_current_state(TASK_RUNNING);
6623 return 0;
6624 }
6625
6626 schedule();
6627 /* woken being true indicates this thread owns this napi. */
6628 woken = true;
6629 set_current_state(TASK_INTERRUPTIBLE);
6630 }
6631 __set_current_state(TASK_RUNNING);
6632
6633 return -1;
6634}
6635
6636static void skb_defer_free_flush(struct softnet_data *sd)
6637{
6638 struct sk_buff *skb, *next;
6639
6640 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6641 if (!READ_ONCE(sd->defer_list))
6642 return;
6643
6644 spin_lock(&sd->defer_lock);
6645 skb = sd->defer_list;
6646 sd->defer_list = NULL;
6647 sd->defer_count = 0;
6648 spin_unlock(&sd->defer_lock);
6649
6650 while (skb != NULL) {
6651 next = skb->next;
6652 napi_consume_skb(skb, 1);
6653 skb = next;
6654 }
6655}
6656
6657static int napi_threaded_poll(void *data)
6658{
6659 struct napi_struct *napi = data;
6660 struct softnet_data *sd;
6661 void *have;
6662
6663 while (!napi_thread_wait(napi)) {
6664 for (;;) {
6665 bool repoll = false;
6666
6667 local_bh_disable();
6668 sd = this_cpu_ptr(&softnet_data);
6669 sd->in_napi_threaded_poll = true;
6670
6671 have = netpoll_poll_lock(napi);
6672 __napi_poll(napi, &repoll);
6673 netpoll_poll_unlock(have);
6674
6675 sd->in_napi_threaded_poll = false;
6676 barrier();
6677
6678 if (sd_has_rps_ipi_waiting(sd)) {
6679 local_irq_disable();
6680 net_rps_action_and_irq_enable(sd);
6681 }
6682 skb_defer_free_flush(sd);
6683 local_bh_enable();
6684
6685 if (!repoll)
6686 break;
6687
6688 cond_resched();
6689 }
6690 }
6691 return 0;
6692}
6693
6694static __latent_entropy void net_rx_action(struct softirq_action *h)
6695{
6696 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6697 unsigned long time_limit = jiffies +
6698 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6699 int budget = READ_ONCE(netdev_budget);
6700 LIST_HEAD(list);
6701 LIST_HEAD(repoll);
6702
6703start:
6704 sd->in_net_rx_action = true;
6705 local_irq_disable();
6706 list_splice_init(&sd->poll_list, &list);
6707 local_irq_enable();
6708
6709 for (;;) {
6710 struct napi_struct *n;
6711
6712 skb_defer_free_flush(sd);
6713
6714 if (list_empty(&list)) {
6715 if (list_empty(&repoll)) {
6716 sd->in_net_rx_action = false;
6717 barrier();
6718 /* We need to check if ____napi_schedule()
6719 * had refilled poll_list while
6720 * sd->in_net_rx_action was true.
6721 */
6722 if (!list_empty(&sd->poll_list))
6723 goto start;
6724 if (!sd_has_rps_ipi_waiting(sd))
6725 goto end;
6726 }
6727 break;
6728 }
6729
6730 n = list_first_entry(&list, struct napi_struct, poll_list);
6731 budget -= napi_poll(n, &repoll);
6732
6733 /* If softirq window is exhausted then punt.
6734 * Allow this to run for 2 jiffies since which will allow
6735 * an average latency of 1.5/HZ.
6736 */
6737 if (unlikely(budget <= 0 ||
6738 time_after_eq(jiffies, time_limit))) {
6739 sd->time_squeeze++;
6740 break;
6741 }
6742 }
6743
6744 local_irq_disable();
6745
6746 list_splice_tail_init(&sd->poll_list, &list);
6747 list_splice_tail(&repoll, &list);
6748 list_splice(&list, &sd->poll_list);
6749 if (!list_empty(&sd->poll_list))
6750 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6751 else
6752 sd->in_net_rx_action = false;
6753
6754 net_rps_action_and_irq_enable(sd);
6755end:;
6756}
6757
6758struct netdev_adjacent {
6759 struct net_device *dev;
6760 netdevice_tracker dev_tracker;
6761
6762 /* upper master flag, there can only be one master device per list */
6763 bool master;
6764
6765 /* lookup ignore flag */
6766 bool ignore;
6767
6768 /* counter for the number of times this device was added to us */
6769 u16 ref_nr;
6770
6771 /* private field for the users */
6772 void *private;
6773
6774 struct list_head list;
6775 struct rcu_head rcu;
6776};
6777
6778static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6779 struct list_head *adj_list)
6780{
6781 struct netdev_adjacent *adj;
6782
6783 list_for_each_entry(adj, adj_list, list) {
6784 if (adj->dev == adj_dev)
6785 return adj;
6786 }
6787 return NULL;
6788}
6789
6790static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6791 struct netdev_nested_priv *priv)
6792{
6793 struct net_device *dev = (struct net_device *)priv->data;
6794
6795 return upper_dev == dev;
6796}
6797
6798/**
6799 * netdev_has_upper_dev - Check if device is linked to an upper device
6800 * @dev: device
6801 * @upper_dev: upper device to check
6802 *
6803 * Find out if a device is linked to specified upper device and return true
6804 * in case it is. Note that this checks only immediate upper device,
6805 * not through a complete stack of devices. The caller must hold the RTNL lock.
6806 */
6807bool netdev_has_upper_dev(struct net_device *dev,
6808 struct net_device *upper_dev)
6809{
6810 struct netdev_nested_priv priv = {
6811 .data = (void *)upper_dev,
6812 };
6813
6814 ASSERT_RTNL();
6815
6816 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6817 &priv);
6818}
6819EXPORT_SYMBOL(netdev_has_upper_dev);
6820
6821/**
6822 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6823 * @dev: device
6824 * @upper_dev: upper device to check
6825 *
6826 * Find out if a device is linked to specified upper device and return true
6827 * in case it is. Note that this checks the entire upper device chain.
6828 * The caller must hold rcu lock.
6829 */
6830
6831bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6832 struct net_device *upper_dev)
6833{
6834 struct netdev_nested_priv priv = {
6835 .data = (void *)upper_dev,
6836 };
6837
6838 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6839 &priv);
6840}
6841EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6842
6843/**
6844 * netdev_has_any_upper_dev - Check if device is linked to some device
6845 * @dev: device
6846 *
6847 * Find out if a device is linked to an upper device and return true in case
6848 * it is. The caller must hold the RTNL lock.
6849 */
6850bool netdev_has_any_upper_dev(struct net_device *dev)
6851{
6852 ASSERT_RTNL();
6853
6854 return !list_empty(&dev->adj_list.upper);
6855}
6856EXPORT_SYMBOL(netdev_has_any_upper_dev);
6857
6858/**
6859 * netdev_master_upper_dev_get - Get master upper device
6860 * @dev: device
6861 *
6862 * Find a master upper device and return pointer to it or NULL in case
6863 * it's not there. The caller must hold the RTNL lock.
6864 */
6865struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6866{
6867 struct netdev_adjacent *upper;
6868
6869 ASSERT_RTNL();
6870
6871 if (list_empty(&dev->adj_list.upper))
6872 return NULL;
6873
6874 upper = list_first_entry(&dev->adj_list.upper,
6875 struct netdev_adjacent, list);
6876 if (likely(upper->master))
6877 return upper->dev;
6878 return NULL;
6879}
6880EXPORT_SYMBOL(netdev_master_upper_dev_get);
6881
6882static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6883{
6884 struct netdev_adjacent *upper;
6885
6886 ASSERT_RTNL();
6887
6888 if (list_empty(&dev->adj_list.upper))
6889 return NULL;
6890
6891 upper = list_first_entry(&dev->adj_list.upper,
6892 struct netdev_adjacent, list);
6893 if (likely(upper->master) && !upper->ignore)
6894 return upper->dev;
6895 return NULL;
6896}
6897
6898/**
6899 * netdev_has_any_lower_dev - Check if device is linked to some device
6900 * @dev: device
6901 *
6902 * Find out if a device is linked to a lower device and return true in case
6903 * it is. The caller must hold the RTNL lock.
6904 */
6905static bool netdev_has_any_lower_dev(struct net_device *dev)
6906{
6907 ASSERT_RTNL();
6908
6909 return !list_empty(&dev->adj_list.lower);
6910}
6911
6912void *netdev_adjacent_get_private(struct list_head *adj_list)
6913{
6914 struct netdev_adjacent *adj;
6915
6916 adj = list_entry(adj_list, struct netdev_adjacent, list);
6917
6918 return adj->private;
6919}
6920EXPORT_SYMBOL(netdev_adjacent_get_private);
6921
6922/**
6923 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6924 * @dev: device
6925 * @iter: list_head ** of the current position
6926 *
6927 * Gets the next device from the dev's upper list, starting from iter
6928 * position. The caller must hold RCU read lock.
6929 */
6930struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6931 struct list_head **iter)
6932{
6933 struct netdev_adjacent *upper;
6934
6935 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6936
6937 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6938
6939 if (&upper->list == &dev->adj_list.upper)
6940 return NULL;
6941
6942 *iter = &upper->list;
6943
6944 return upper->dev;
6945}
6946EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6947
6948static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6949 struct list_head **iter,
6950 bool *ignore)
6951{
6952 struct netdev_adjacent *upper;
6953
6954 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6955
6956 if (&upper->list == &dev->adj_list.upper)
6957 return NULL;
6958
6959 *iter = &upper->list;
6960 *ignore = upper->ignore;
6961
6962 return upper->dev;
6963}
6964
6965static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6966 struct list_head **iter)
6967{
6968 struct netdev_adjacent *upper;
6969
6970 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6971
6972 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6973
6974 if (&upper->list == &dev->adj_list.upper)
6975 return NULL;
6976
6977 *iter = &upper->list;
6978
6979 return upper->dev;
6980}
6981
6982static int __netdev_walk_all_upper_dev(struct net_device *dev,
6983 int (*fn)(struct net_device *dev,
6984 struct netdev_nested_priv *priv),
6985 struct netdev_nested_priv *priv)
6986{
6987 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6988 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6989 int ret, cur = 0;
6990 bool ignore;
6991
6992 now = dev;
6993 iter = &dev->adj_list.upper;
6994
6995 while (1) {
6996 if (now != dev) {
6997 ret = fn(now, priv);
6998 if (ret)
6999 return ret;
7000 }
7001
7002 next = NULL;
7003 while (1) {
7004 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7005 if (!udev)
7006 break;
7007 if (ignore)
7008 continue;
7009
7010 next = udev;
7011 niter = &udev->adj_list.upper;
7012 dev_stack[cur] = now;
7013 iter_stack[cur++] = iter;
7014 break;
7015 }
7016
7017 if (!next) {
7018 if (!cur)
7019 return 0;
7020 next = dev_stack[--cur];
7021 niter = iter_stack[cur];
7022 }
7023
7024 now = next;
7025 iter = niter;
7026 }
7027
7028 return 0;
7029}
7030
7031int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7032 int (*fn)(struct net_device *dev,
7033 struct netdev_nested_priv *priv),
7034 struct netdev_nested_priv *priv)
7035{
7036 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7037 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7038 int ret, cur = 0;
7039
7040 now = dev;
7041 iter = &dev->adj_list.upper;
7042
7043 while (1) {
7044 if (now != dev) {
7045 ret = fn(now, priv);
7046 if (ret)
7047 return ret;
7048 }
7049
7050 next = NULL;
7051 while (1) {
7052 udev = netdev_next_upper_dev_rcu(now, &iter);
7053 if (!udev)
7054 break;
7055
7056 next = udev;
7057 niter = &udev->adj_list.upper;
7058 dev_stack[cur] = now;
7059 iter_stack[cur++] = iter;
7060 break;
7061 }
7062
7063 if (!next) {
7064 if (!cur)
7065 return 0;
7066 next = dev_stack[--cur];
7067 niter = iter_stack[cur];
7068 }
7069
7070 now = next;
7071 iter = niter;
7072 }
7073
7074 return 0;
7075}
7076EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7077
7078static bool __netdev_has_upper_dev(struct net_device *dev,
7079 struct net_device *upper_dev)
7080{
7081 struct netdev_nested_priv priv = {
7082 .flags = 0,
7083 .data = (void *)upper_dev,
7084 };
7085
7086 ASSERT_RTNL();
7087
7088 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7089 &priv);
7090}
7091
7092/**
7093 * netdev_lower_get_next_private - Get the next ->private from the
7094 * lower neighbour list
7095 * @dev: device
7096 * @iter: list_head ** of the current position
7097 *
7098 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7099 * list, starting from iter position. The caller must hold either hold the
7100 * RTNL lock or its own locking that guarantees that the neighbour lower
7101 * list will remain unchanged.
7102 */
7103void *netdev_lower_get_next_private(struct net_device *dev,
7104 struct list_head **iter)
7105{
7106 struct netdev_adjacent *lower;
7107
7108 lower = list_entry(*iter, struct netdev_adjacent, list);
7109
7110 if (&lower->list == &dev->adj_list.lower)
7111 return NULL;
7112
7113 *iter = lower->list.next;
7114
7115 return lower->private;
7116}
7117EXPORT_SYMBOL(netdev_lower_get_next_private);
7118
7119/**
7120 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7121 * lower neighbour list, RCU
7122 * variant
7123 * @dev: device
7124 * @iter: list_head ** of the current position
7125 *
7126 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7127 * list, starting from iter position. The caller must hold RCU read lock.
7128 */
7129void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7130 struct list_head **iter)
7131{
7132 struct netdev_adjacent *lower;
7133
7134 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7135
7136 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7137
7138 if (&lower->list == &dev->adj_list.lower)
7139 return NULL;
7140
7141 *iter = &lower->list;
7142
7143 return lower->private;
7144}
7145EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7146
7147/**
7148 * netdev_lower_get_next - Get the next device from the lower neighbour
7149 * list
7150 * @dev: device
7151 * @iter: list_head ** of the current position
7152 *
7153 * Gets the next netdev_adjacent from the dev's lower neighbour
7154 * list, starting from iter position. The caller must hold RTNL lock or
7155 * its own locking that guarantees that the neighbour lower
7156 * list will remain unchanged.
7157 */
7158void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7159{
7160 struct netdev_adjacent *lower;
7161
7162 lower = list_entry(*iter, struct netdev_adjacent, list);
7163
7164 if (&lower->list == &dev->adj_list.lower)
7165 return NULL;
7166
7167 *iter = lower->list.next;
7168
7169 return lower->dev;
7170}
7171EXPORT_SYMBOL(netdev_lower_get_next);
7172
7173static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7174 struct list_head **iter)
7175{
7176 struct netdev_adjacent *lower;
7177
7178 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7179
7180 if (&lower->list == &dev->adj_list.lower)
7181 return NULL;
7182
7183 *iter = &lower->list;
7184
7185 return lower->dev;
7186}
7187
7188static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7189 struct list_head **iter,
7190 bool *ignore)
7191{
7192 struct netdev_adjacent *lower;
7193
7194 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7195
7196 if (&lower->list == &dev->adj_list.lower)
7197 return NULL;
7198
7199 *iter = &lower->list;
7200 *ignore = lower->ignore;
7201
7202 return lower->dev;
7203}
7204
7205int netdev_walk_all_lower_dev(struct net_device *dev,
7206 int (*fn)(struct net_device *dev,
7207 struct netdev_nested_priv *priv),
7208 struct netdev_nested_priv *priv)
7209{
7210 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7211 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7212 int ret, cur = 0;
7213
7214 now = dev;
7215 iter = &dev->adj_list.lower;
7216
7217 while (1) {
7218 if (now != dev) {
7219 ret = fn(now, priv);
7220 if (ret)
7221 return ret;
7222 }
7223
7224 next = NULL;
7225 while (1) {
7226 ldev = netdev_next_lower_dev(now, &iter);
7227 if (!ldev)
7228 break;
7229
7230 next = ldev;
7231 niter = &ldev->adj_list.lower;
7232 dev_stack[cur] = now;
7233 iter_stack[cur++] = iter;
7234 break;
7235 }
7236
7237 if (!next) {
7238 if (!cur)
7239 return 0;
7240 next = dev_stack[--cur];
7241 niter = iter_stack[cur];
7242 }
7243
7244 now = next;
7245 iter = niter;
7246 }
7247
7248 return 0;
7249}
7250EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7251
7252static int __netdev_walk_all_lower_dev(struct net_device *dev,
7253 int (*fn)(struct net_device *dev,
7254 struct netdev_nested_priv *priv),
7255 struct netdev_nested_priv *priv)
7256{
7257 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7258 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7259 int ret, cur = 0;
7260 bool ignore;
7261
7262 now = dev;
7263 iter = &dev->adj_list.lower;
7264
7265 while (1) {
7266 if (now != dev) {
7267 ret = fn(now, priv);
7268 if (ret)
7269 return ret;
7270 }
7271
7272 next = NULL;
7273 while (1) {
7274 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7275 if (!ldev)
7276 break;
7277 if (ignore)
7278 continue;
7279
7280 next = ldev;
7281 niter = &ldev->adj_list.lower;
7282 dev_stack[cur] = now;
7283 iter_stack[cur++] = iter;
7284 break;
7285 }
7286
7287 if (!next) {
7288 if (!cur)
7289 return 0;
7290 next = dev_stack[--cur];
7291 niter = iter_stack[cur];
7292 }
7293
7294 now = next;
7295 iter = niter;
7296 }
7297
7298 return 0;
7299}
7300
7301struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7302 struct list_head **iter)
7303{
7304 struct netdev_adjacent *lower;
7305
7306 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7307 if (&lower->list == &dev->adj_list.lower)
7308 return NULL;
7309
7310 *iter = &lower->list;
7311
7312 return lower->dev;
7313}
7314EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7315
7316static u8 __netdev_upper_depth(struct net_device *dev)
7317{
7318 struct net_device *udev;
7319 struct list_head *iter;
7320 u8 max_depth = 0;
7321 bool ignore;
7322
7323 for (iter = &dev->adj_list.upper,
7324 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7325 udev;
7326 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7327 if (ignore)
7328 continue;
7329 if (max_depth < udev->upper_level)
7330 max_depth = udev->upper_level;
7331 }
7332
7333 return max_depth;
7334}
7335
7336static u8 __netdev_lower_depth(struct net_device *dev)
7337{
7338 struct net_device *ldev;
7339 struct list_head *iter;
7340 u8 max_depth = 0;
7341 bool ignore;
7342
7343 for (iter = &dev->adj_list.lower,
7344 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7345 ldev;
7346 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7347 if (ignore)
7348 continue;
7349 if (max_depth < ldev->lower_level)
7350 max_depth = ldev->lower_level;
7351 }
7352
7353 return max_depth;
7354}
7355
7356static int __netdev_update_upper_level(struct net_device *dev,
7357 struct netdev_nested_priv *__unused)
7358{
7359 dev->upper_level = __netdev_upper_depth(dev) + 1;
7360 return 0;
7361}
7362
7363#ifdef CONFIG_LOCKDEP
7364static LIST_HEAD(net_unlink_list);
7365
7366static void net_unlink_todo(struct net_device *dev)
7367{
7368 if (list_empty(&dev->unlink_list))
7369 list_add_tail(&dev->unlink_list, &net_unlink_list);
7370}
7371#endif
7372
7373static int __netdev_update_lower_level(struct net_device *dev,
7374 struct netdev_nested_priv *priv)
7375{
7376 dev->lower_level = __netdev_lower_depth(dev) + 1;
7377
7378#ifdef CONFIG_LOCKDEP
7379 if (!priv)
7380 return 0;
7381
7382 if (priv->flags & NESTED_SYNC_IMM)
7383 dev->nested_level = dev->lower_level - 1;
7384 if (priv->flags & NESTED_SYNC_TODO)
7385 net_unlink_todo(dev);
7386#endif
7387 return 0;
7388}
7389
7390int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7391 int (*fn)(struct net_device *dev,
7392 struct netdev_nested_priv *priv),
7393 struct netdev_nested_priv *priv)
7394{
7395 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7396 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7397 int ret, cur = 0;
7398
7399 now = dev;
7400 iter = &dev->adj_list.lower;
7401
7402 while (1) {
7403 if (now != dev) {
7404 ret = fn(now, priv);
7405 if (ret)
7406 return ret;
7407 }
7408
7409 next = NULL;
7410 while (1) {
7411 ldev = netdev_next_lower_dev_rcu(now, &iter);
7412 if (!ldev)
7413 break;
7414
7415 next = ldev;
7416 niter = &ldev->adj_list.lower;
7417 dev_stack[cur] = now;
7418 iter_stack[cur++] = iter;
7419 break;
7420 }
7421
7422 if (!next) {
7423 if (!cur)
7424 return 0;
7425 next = dev_stack[--cur];
7426 niter = iter_stack[cur];
7427 }
7428
7429 now = next;
7430 iter = niter;
7431 }
7432
7433 return 0;
7434}
7435EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7436
7437/**
7438 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7439 * lower neighbour list, RCU
7440 * variant
7441 * @dev: device
7442 *
7443 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7444 * list. The caller must hold RCU read lock.
7445 */
7446void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7447{
7448 struct netdev_adjacent *lower;
7449
7450 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7451 struct netdev_adjacent, list);
7452 if (lower)
7453 return lower->private;
7454 return NULL;
7455}
7456EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7457
7458/**
7459 * netdev_master_upper_dev_get_rcu - Get master upper device
7460 * @dev: device
7461 *
7462 * Find a master upper device and return pointer to it or NULL in case
7463 * it's not there. The caller must hold the RCU read lock.
7464 */
7465struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7466{
7467 struct netdev_adjacent *upper;
7468
7469 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7470 struct netdev_adjacent, list);
7471 if (upper && likely(upper->master))
7472 return upper->dev;
7473 return NULL;
7474}
7475EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7476
7477static int netdev_adjacent_sysfs_add(struct net_device *dev,
7478 struct net_device *adj_dev,
7479 struct list_head *dev_list)
7480{
7481 char linkname[IFNAMSIZ+7];
7482
7483 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7484 "upper_%s" : "lower_%s", adj_dev->name);
7485 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7486 linkname);
7487}
7488static void netdev_adjacent_sysfs_del(struct net_device *dev,
7489 char *name,
7490 struct list_head *dev_list)
7491{
7492 char linkname[IFNAMSIZ+7];
7493
7494 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7495 "upper_%s" : "lower_%s", name);
7496 sysfs_remove_link(&(dev->dev.kobj), linkname);
7497}
7498
7499static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7500 struct net_device *adj_dev,
7501 struct list_head *dev_list)
7502{
7503 return (dev_list == &dev->adj_list.upper ||
7504 dev_list == &dev->adj_list.lower) &&
7505 net_eq(dev_net(dev), dev_net(adj_dev));
7506}
7507
7508static int __netdev_adjacent_dev_insert(struct net_device *dev,
7509 struct net_device *adj_dev,
7510 struct list_head *dev_list,
7511 void *private, bool master)
7512{
7513 struct netdev_adjacent *adj;
7514 int ret;
7515
7516 adj = __netdev_find_adj(adj_dev, dev_list);
7517
7518 if (adj) {
7519 adj->ref_nr += 1;
7520 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7521 dev->name, adj_dev->name, adj->ref_nr);
7522
7523 return 0;
7524 }
7525
7526 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7527 if (!adj)
7528 return -ENOMEM;
7529
7530 adj->dev = adj_dev;
7531 adj->master = master;
7532 adj->ref_nr = 1;
7533 adj->private = private;
7534 adj->ignore = false;
7535 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7536
7537 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7538 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7539
7540 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7541 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7542 if (ret)
7543 goto free_adj;
7544 }
7545
7546 /* Ensure that master link is always the first item in list. */
7547 if (master) {
7548 ret = sysfs_create_link(&(dev->dev.kobj),
7549 &(adj_dev->dev.kobj), "master");
7550 if (ret)
7551 goto remove_symlinks;
7552
7553 list_add_rcu(&adj->list, dev_list);
7554 } else {
7555 list_add_tail_rcu(&adj->list, dev_list);
7556 }
7557
7558 return 0;
7559
7560remove_symlinks:
7561 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7562 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7563free_adj:
7564 netdev_put(adj_dev, &adj->dev_tracker);
7565 kfree(adj);
7566
7567 return ret;
7568}
7569
7570static void __netdev_adjacent_dev_remove(struct net_device *dev,
7571 struct net_device *adj_dev,
7572 u16 ref_nr,
7573 struct list_head *dev_list)
7574{
7575 struct netdev_adjacent *adj;
7576
7577 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7578 dev->name, adj_dev->name, ref_nr);
7579
7580 adj = __netdev_find_adj(adj_dev, dev_list);
7581
7582 if (!adj) {
7583 pr_err("Adjacency does not exist for device %s from %s\n",
7584 dev->name, adj_dev->name);
7585 WARN_ON(1);
7586 return;
7587 }
7588
7589 if (adj->ref_nr > ref_nr) {
7590 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7591 dev->name, adj_dev->name, ref_nr,
7592 adj->ref_nr - ref_nr);
7593 adj->ref_nr -= ref_nr;
7594 return;
7595 }
7596
7597 if (adj->master)
7598 sysfs_remove_link(&(dev->dev.kobj), "master");
7599
7600 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7601 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7602
7603 list_del_rcu(&adj->list);
7604 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7605 adj_dev->name, dev->name, adj_dev->name);
7606 netdev_put(adj_dev, &adj->dev_tracker);
7607 kfree_rcu(adj, rcu);
7608}
7609
7610static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7611 struct net_device *upper_dev,
7612 struct list_head *up_list,
7613 struct list_head *down_list,
7614 void *private, bool master)
7615{
7616 int ret;
7617
7618 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7619 private, master);
7620 if (ret)
7621 return ret;
7622
7623 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7624 private, false);
7625 if (ret) {
7626 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7627 return ret;
7628 }
7629
7630 return 0;
7631}
7632
7633static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7634 struct net_device *upper_dev,
7635 u16 ref_nr,
7636 struct list_head *up_list,
7637 struct list_head *down_list)
7638{
7639 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7640 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7641}
7642
7643static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7644 struct net_device *upper_dev,
7645 void *private, bool master)
7646{
7647 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7648 &dev->adj_list.upper,
7649 &upper_dev->adj_list.lower,
7650 private, master);
7651}
7652
7653static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7654 struct net_device *upper_dev)
7655{
7656 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7657 &dev->adj_list.upper,
7658 &upper_dev->adj_list.lower);
7659}
7660
7661static int __netdev_upper_dev_link(struct net_device *dev,
7662 struct net_device *upper_dev, bool master,
7663 void *upper_priv, void *upper_info,
7664 struct netdev_nested_priv *priv,
7665 struct netlink_ext_ack *extack)
7666{
7667 struct netdev_notifier_changeupper_info changeupper_info = {
7668 .info = {
7669 .dev = dev,
7670 .extack = extack,
7671 },
7672 .upper_dev = upper_dev,
7673 .master = master,
7674 .linking = true,
7675 .upper_info = upper_info,
7676 };
7677 struct net_device *master_dev;
7678 int ret = 0;
7679
7680 ASSERT_RTNL();
7681
7682 if (dev == upper_dev)
7683 return -EBUSY;
7684
7685 /* To prevent loops, check if dev is not upper device to upper_dev. */
7686 if (__netdev_has_upper_dev(upper_dev, dev))
7687 return -EBUSY;
7688
7689 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7690 return -EMLINK;
7691
7692 if (!master) {
7693 if (__netdev_has_upper_dev(dev, upper_dev))
7694 return -EEXIST;
7695 } else {
7696 master_dev = __netdev_master_upper_dev_get(dev);
7697 if (master_dev)
7698 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7699 }
7700
7701 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7702 &changeupper_info.info);
7703 ret = notifier_to_errno(ret);
7704 if (ret)
7705 return ret;
7706
7707 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7708 master);
7709 if (ret)
7710 return ret;
7711
7712 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7713 &changeupper_info.info);
7714 ret = notifier_to_errno(ret);
7715 if (ret)
7716 goto rollback;
7717
7718 __netdev_update_upper_level(dev, NULL);
7719 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7720
7721 __netdev_update_lower_level(upper_dev, priv);
7722 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7723 priv);
7724
7725 return 0;
7726
7727rollback:
7728 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7729
7730 return ret;
7731}
7732
7733/**
7734 * netdev_upper_dev_link - Add a link to the upper device
7735 * @dev: device
7736 * @upper_dev: new upper device
7737 * @extack: netlink extended ack
7738 *
7739 * Adds a link to device which is upper to this one. The caller must hold
7740 * the RTNL lock. On a failure a negative errno code is returned.
7741 * On success the reference counts are adjusted and the function
7742 * returns zero.
7743 */
7744int netdev_upper_dev_link(struct net_device *dev,
7745 struct net_device *upper_dev,
7746 struct netlink_ext_ack *extack)
7747{
7748 struct netdev_nested_priv priv = {
7749 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7750 .data = NULL,
7751 };
7752
7753 return __netdev_upper_dev_link(dev, upper_dev, false,
7754 NULL, NULL, &priv, extack);
7755}
7756EXPORT_SYMBOL(netdev_upper_dev_link);
7757
7758/**
7759 * netdev_master_upper_dev_link - Add a master link to the upper device
7760 * @dev: device
7761 * @upper_dev: new upper device
7762 * @upper_priv: upper device private
7763 * @upper_info: upper info to be passed down via notifier
7764 * @extack: netlink extended ack
7765 *
7766 * Adds a link to device which is upper to this one. In this case, only
7767 * one master upper device can be linked, although other non-master devices
7768 * might be linked as well. The caller must hold the RTNL lock.
7769 * On a failure a negative errno code is returned. On success the reference
7770 * counts are adjusted and the function returns zero.
7771 */
7772int netdev_master_upper_dev_link(struct net_device *dev,
7773 struct net_device *upper_dev,
7774 void *upper_priv, void *upper_info,
7775 struct netlink_ext_ack *extack)
7776{
7777 struct netdev_nested_priv priv = {
7778 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7779 .data = NULL,
7780 };
7781
7782 return __netdev_upper_dev_link(dev, upper_dev, true,
7783 upper_priv, upper_info, &priv, extack);
7784}
7785EXPORT_SYMBOL(netdev_master_upper_dev_link);
7786
7787static void __netdev_upper_dev_unlink(struct net_device *dev,
7788 struct net_device *upper_dev,
7789 struct netdev_nested_priv *priv)
7790{
7791 struct netdev_notifier_changeupper_info changeupper_info = {
7792 .info = {
7793 .dev = dev,
7794 },
7795 .upper_dev = upper_dev,
7796 .linking = false,
7797 };
7798
7799 ASSERT_RTNL();
7800
7801 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7802
7803 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7804 &changeupper_info.info);
7805
7806 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7807
7808 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7809 &changeupper_info.info);
7810
7811 __netdev_update_upper_level(dev, NULL);
7812 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7813
7814 __netdev_update_lower_level(upper_dev, priv);
7815 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7816 priv);
7817}
7818
7819/**
7820 * netdev_upper_dev_unlink - Removes a link to upper device
7821 * @dev: device
7822 * @upper_dev: new upper device
7823 *
7824 * Removes a link to device which is upper to this one. The caller must hold
7825 * the RTNL lock.
7826 */
7827void netdev_upper_dev_unlink(struct net_device *dev,
7828 struct net_device *upper_dev)
7829{
7830 struct netdev_nested_priv priv = {
7831 .flags = NESTED_SYNC_TODO,
7832 .data = NULL,
7833 };
7834
7835 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7836}
7837EXPORT_SYMBOL(netdev_upper_dev_unlink);
7838
7839static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7840 struct net_device *lower_dev,
7841 bool val)
7842{
7843 struct netdev_adjacent *adj;
7844
7845 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7846 if (adj)
7847 adj->ignore = val;
7848
7849 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7850 if (adj)
7851 adj->ignore = val;
7852}
7853
7854static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7855 struct net_device *lower_dev)
7856{
7857 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7858}
7859
7860static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7861 struct net_device *lower_dev)
7862{
7863 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7864}
7865
7866int netdev_adjacent_change_prepare(struct net_device *old_dev,
7867 struct net_device *new_dev,
7868 struct net_device *dev,
7869 struct netlink_ext_ack *extack)
7870{
7871 struct netdev_nested_priv priv = {
7872 .flags = 0,
7873 .data = NULL,
7874 };
7875 int err;
7876
7877 if (!new_dev)
7878 return 0;
7879
7880 if (old_dev && new_dev != old_dev)
7881 netdev_adjacent_dev_disable(dev, old_dev);
7882 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7883 extack);
7884 if (err) {
7885 if (old_dev && new_dev != old_dev)
7886 netdev_adjacent_dev_enable(dev, old_dev);
7887 return err;
7888 }
7889
7890 return 0;
7891}
7892EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7893
7894void netdev_adjacent_change_commit(struct net_device *old_dev,
7895 struct net_device *new_dev,
7896 struct net_device *dev)
7897{
7898 struct netdev_nested_priv priv = {
7899 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7900 .data = NULL,
7901 };
7902
7903 if (!new_dev || !old_dev)
7904 return;
7905
7906 if (new_dev == old_dev)
7907 return;
7908
7909 netdev_adjacent_dev_enable(dev, old_dev);
7910 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7911}
7912EXPORT_SYMBOL(netdev_adjacent_change_commit);
7913
7914void netdev_adjacent_change_abort(struct net_device *old_dev,
7915 struct net_device *new_dev,
7916 struct net_device *dev)
7917{
7918 struct netdev_nested_priv priv = {
7919 .flags = 0,
7920 .data = NULL,
7921 };
7922
7923 if (!new_dev)
7924 return;
7925
7926 if (old_dev && new_dev != old_dev)
7927 netdev_adjacent_dev_enable(dev, old_dev);
7928
7929 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7930}
7931EXPORT_SYMBOL(netdev_adjacent_change_abort);
7932
7933/**
7934 * netdev_bonding_info_change - Dispatch event about slave change
7935 * @dev: device
7936 * @bonding_info: info to dispatch
7937 *
7938 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7939 * The caller must hold the RTNL lock.
7940 */
7941void netdev_bonding_info_change(struct net_device *dev,
7942 struct netdev_bonding_info *bonding_info)
7943{
7944 struct netdev_notifier_bonding_info info = {
7945 .info.dev = dev,
7946 };
7947
7948 memcpy(&info.bonding_info, bonding_info,
7949 sizeof(struct netdev_bonding_info));
7950 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7951 &info.info);
7952}
7953EXPORT_SYMBOL(netdev_bonding_info_change);
7954
7955static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7956 struct netlink_ext_ack *extack)
7957{
7958 struct netdev_notifier_offload_xstats_info info = {
7959 .info.dev = dev,
7960 .info.extack = extack,
7961 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7962 };
7963 int err;
7964 int rc;
7965
7966 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7967 GFP_KERNEL);
7968 if (!dev->offload_xstats_l3)
7969 return -ENOMEM;
7970
7971 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7972 NETDEV_OFFLOAD_XSTATS_DISABLE,
7973 &info.info);
7974 err = notifier_to_errno(rc);
7975 if (err)
7976 goto free_stats;
7977
7978 return 0;
7979
7980free_stats:
7981 kfree(dev->offload_xstats_l3);
7982 dev->offload_xstats_l3 = NULL;
7983 return err;
7984}
7985
7986int netdev_offload_xstats_enable(struct net_device *dev,
7987 enum netdev_offload_xstats_type type,
7988 struct netlink_ext_ack *extack)
7989{
7990 ASSERT_RTNL();
7991
7992 if (netdev_offload_xstats_enabled(dev, type))
7993 return -EALREADY;
7994
7995 switch (type) {
7996 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7997 return netdev_offload_xstats_enable_l3(dev, extack);
7998 }
7999
8000 WARN_ON(1);
8001 return -EINVAL;
8002}
8003EXPORT_SYMBOL(netdev_offload_xstats_enable);
8004
8005static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8006{
8007 struct netdev_notifier_offload_xstats_info info = {
8008 .info.dev = dev,
8009 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8010 };
8011
8012 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8013 &info.info);
8014 kfree(dev->offload_xstats_l3);
8015 dev->offload_xstats_l3 = NULL;
8016}
8017
8018int netdev_offload_xstats_disable(struct net_device *dev,
8019 enum netdev_offload_xstats_type type)
8020{
8021 ASSERT_RTNL();
8022
8023 if (!netdev_offload_xstats_enabled(dev, type))
8024 return -EALREADY;
8025
8026 switch (type) {
8027 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8028 netdev_offload_xstats_disable_l3(dev);
8029 return 0;
8030 }
8031
8032 WARN_ON(1);
8033 return -EINVAL;
8034}
8035EXPORT_SYMBOL(netdev_offload_xstats_disable);
8036
8037static void netdev_offload_xstats_disable_all(struct net_device *dev)
8038{
8039 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8040}
8041
8042static struct rtnl_hw_stats64 *
8043netdev_offload_xstats_get_ptr(const struct net_device *dev,
8044 enum netdev_offload_xstats_type type)
8045{
8046 switch (type) {
8047 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8048 return dev->offload_xstats_l3;
8049 }
8050
8051 WARN_ON(1);
8052 return NULL;
8053}
8054
8055bool netdev_offload_xstats_enabled(const struct net_device *dev,
8056 enum netdev_offload_xstats_type type)
8057{
8058 ASSERT_RTNL();
8059
8060 return netdev_offload_xstats_get_ptr(dev, type);
8061}
8062EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8063
8064struct netdev_notifier_offload_xstats_ru {
8065 bool used;
8066};
8067
8068struct netdev_notifier_offload_xstats_rd {
8069 struct rtnl_hw_stats64 stats;
8070 bool used;
8071};
8072
8073static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8074 const struct rtnl_hw_stats64 *src)
8075{
8076 dest->rx_packets += src->rx_packets;
8077 dest->tx_packets += src->tx_packets;
8078 dest->rx_bytes += src->rx_bytes;
8079 dest->tx_bytes += src->tx_bytes;
8080 dest->rx_errors += src->rx_errors;
8081 dest->tx_errors += src->tx_errors;
8082 dest->rx_dropped += src->rx_dropped;
8083 dest->tx_dropped += src->tx_dropped;
8084 dest->multicast += src->multicast;
8085}
8086
8087static int netdev_offload_xstats_get_used(struct net_device *dev,
8088 enum netdev_offload_xstats_type type,
8089 bool *p_used,
8090 struct netlink_ext_ack *extack)
8091{
8092 struct netdev_notifier_offload_xstats_ru report_used = {};
8093 struct netdev_notifier_offload_xstats_info info = {
8094 .info.dev = dev,
8095 .info.extack = extack,
8096 .type = type,
8097 .report_used = &report_used,
8098 };
8099 int rc;
8100
8101 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8102 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8103 &info.info);
8104 *p_used = report_used.used;
8105 return notifier_to_errno(rc);
8106}
8107
8108static int netdev_offload_xstats_get_stats(struct net_device *dev,
8109 enum netdev_offload_xstats_type type,
8110 struct rtnl_hw_stats64 *p_stats,
8111 bool *p_used,
8112 struct netlink_ext_ack *extack)
8113{
8114 struct netdev_notifier_offload_xstats_rd report_delta = {};
8115 struct netdev_notifier_offload_xstats_info info = {
8116 .info.dev = dev,
8117 .info.extack = extack,
8118 .type = type,
8119 .report_delta = &report_delta,
8120 };
8121 struct rtnl_hw_stats64 *stats;
8122 int rc;
8123
8124 stats = netdev_offload_xstats_get_ptr(dev, type);
8125 if (WARN_ON(!stats))
8126 return -EINVAL;
8127
8128 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8129 &info.info);
8130
8131 /* Cache whatever we got, even if there was an error, otherwise the
8132 * successful stats retrievals would get lost.
8133 */
8134 netdev_hw_stats64_add(stats, &report_delta.stats);
8135
8136 if (p_stats)
8137 *p_stats = *stats;
8138 *p_used = report_delta.used;
8139
8140 return notifier_to_errno(rc);
8141}
8142
8143int netdev_offload_xstats_get(struct net_device *dev,
8144 enum netdev_offload_xstats_type type,
8145 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8146 struct netlink_ext_ack *extack)
8147{
8148 ASSERT_RTNL();
8149
8150 if (p_stats)
8151 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8152 p_used, extack);
8153 else
8154 return netdev_offload_xstats_get_used(dev, type, p_used,
8155 extack);
8156}
8157EXPORT_SYMBOL(netdev_offload_xstats_get);
8158
8159void
8160netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8161 const struct rtnl_hw_stats64 *stats)
8162{
8163 report_delta->used = true;
8164 netdev_hw_stats64_add(&report_delta->stats, stats);
8165}
8166EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8167
8168void
8169netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8170{
8171 report_used->used = true;
8172}
8173EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8174
8175void netdev_offload_xstats_push_delta(struct net_device *dev,
8176 enum netdev_offload_xstats_type type,
8177 const struct rtnl_hw_stats64 *p_stats)
8178{
8179 struct rtnl_hw_stats64 *stats;
8180
8181 ASSERT_RTNL();
8182
8183 stats = netdev_offload_xstats_get_ptr(dev, type);
8184 if (WARN_ON(!stats))
8185 return;
8186
8187 netdev_hw_stats64_add(stats, p_stats);
8188}
8189EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8190
8191/**
8192 * netdev_get_xmit_slave - Get the xmit slave of master device
8193 * @dev: device
8194 * @skb: The packet
8195 * @all_slaves: assume all the slaves are active
8196 *
8197 * The reference counters are not incremented so the caller must be
8198 * careful with locks. The caller must hold RCU lock.
8199 * %NULL is returned if no slave is found.
8200 */
8201
8202struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8203 struct sk_buff *skb,
8204 bool all_slaves)
8205{
8206 const struct net_device_ops *ops = dev->netdev_ops;
8207
8208 if (!ops->ndo_get_xmit_slave)
8209 return NULL;
8210 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8211}
8212EXPORT_SYMBOL(netdev_get_xmit_slave);
8213
8214static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8215 struct sock *sk)
8216{
8217 const struct net_device_ops *ops = dev->netdev_ops;
8218
8219 if (!ops->ndo_sk_get_lower_dev)
8220 return NULL;
8221 return ops->ndo_sk_get_lower_dev(dev, sk);
8222}
8223
8224/**
8225 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8226 * @dev: device
8227 * @sk: the socket
8228 *
8229 * %NULL is returned if no lower device is found.
8230 */
8231
8232struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8233 struct sock *sk)
8234{
8235 struct net_device *lower;
8236
8237 lower = netdev_sk_get_lower_dev(dev, sk);
8238 while (lower) {
8239 dev = lower;
8240 lower = netdev_sk_get_lower_dev(dev, sk);
8241 }
8242
8243 return dev;
8244}
8245EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8246
8247static void netdev_adjacent_add_links(struct net_device *dev)
8248{
8249 struct netdev_adjacent *iter;
8250
8251 struct net *net = dev_net(dev);
8252
8253 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8254 if (!net_eq(net, dev_net(iter->dev)))
8255 continue;
8256 netdev_adjacent_sysfs_add(iter->dev, dev,
8257 &iter->dev->adj_list.lower);
8258 netdev_adjacent_sysfs_add(dev, iter->dev,
8259 &dev->adj_list.upper);
8260 }
8261
8262 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8263 if (!net_eq(net, dev_net(iter->dev)))
8264 continue;
8265 netdev_adjacent_sysfs_add(iter->dev, dev,
8266 &iter->dev->adj_list.upper);
8267 netdev_adjacent_sysfs_add(dev, iter->dev,
8268 &dev->adj_list.lower);
8269 }
8270}
8271
8272static void netdev_adjacent_del_links(struct net_device *dev)
8273{
8274 struct netdev_adjacent *iter;
8275
8276 struct net *net = dev_net(dev);
8277
8278 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8279 if (!net_eq(net, dev_net(iter->dev)))
8280 continue;
8281 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8282 &iter->dev->adj_list.lower);
8283 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8284 &dev->adj_list.upper);
8285 }
8286
8287 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8288 if (!net_eq(net, dev_net(iter->dev)))
8289 continue;
8290 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8291 &iter->dev->adj_list.upper);
8292 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8293 &dev->adj_list.lower);
8294 }
8295}
8296
8297void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8298{
8299 struct netdev_adjacent *iter;
8300
8301 struct net *net = dev_net(dev);
8302
8303 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8304 if (!net_eq(net, dev_net(iter->dev)))
8305 continue;
8306 netdev_adjacent_sysfs_del(iter->dev, oldname,
8307 &iter->dev->adj_list.lower);
8308 netdev_adjacent_sysfs_add(iter->dev, dev,
8309 &iter->dev->adj_list.lower);
8310 }
8311
8312 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8313 if (!net_eq(net, dev_net(iter->dev)))
8314 continue;
8315 netdev_adjacent_sysfs_del(iter->dev, oldname,
8316 &iter->dev->adj_list.upper);
8317 netdev_adjacent_sysfs_add(iter->dev, dev,
8318 &iter->dev->adj_list.upper);
8319 }
8320}
8321
8322void *netdev_lower_dev_get_private(struct net_device *dev,
8323 struct net_device *lower_dev)
8324{
8325 struct netdev_adjacent *lower;
8326
8327 if (!lower_dev)
8328 return NULL;
8329 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8330 if (!lower)
8331 return NULL;
8332
8333 return lower->private;
8334}
8335EXPORT_SYMBOL(netdev_lower_dev_get_private);
8336
8337
8338/**
8339 * netdev_lower_state_changed - Dispatch event about lower device state change
8340 * @lower_dev: device
8341 * @lower_state_info: state to dispatch
8342 *
8343 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8344 * The caller must hold the RTNL lock.
8345 */
8346void netdev_lower_state_changed(struct net_device *lower_dev,
8347 void *lower_state_info)
8348{
8349 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8350 .info.dev = lower_dev,
8351 };
8352
8353 ASSERT_RTNL();
8354 changelowerstate_info.lower_state_info = lower_state_info;
8355 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8356 &changelowerstate_info.info);
8357}
8358EXPORT_SYMBOL(netdev_lower_state_changed);
8359
8360static void dev_change_rx_flags(struct net_device *dev, int flags)
8361{
8362 const struct net_device_ops *ops = dev->netdev_ops;
8363
8364 if (ops->ndo_change_rx_flags)
8365 ops->ndo_change_rx_flags(dev, flags);
8366}
8367
8368static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8369{
8370 unsigned int old_flags = dev->flags;
8371 kuid_t uid;
8372 kgid_t gid;
8373
8374 ASSERT_RTNL();
8375
8376 dev->flags |= IFF_PROMISC;
8377 dev->promiscuity += inc;
8378 if (dev->promiscuity == 0) {
8379 /*
8380 * Avoid overflow.
8381 * If inc causes overflow, untouch promisc and return error.
8382 */
8383 if (inc < 0)
8384 dev->flags &= ~IFF_PROMISC;
8385 else {
8386 dev->promiscuity -= inc;
8387 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8388 return -EOVERFLOW;
8389 }
8390 }
8391 if (dev->flags != old_flags) {
8392 netdev_info(dev, "%s promiscuous mode\n",
8393 dev->flags & IFF_PROMISC ? "entered" : "left");
8394 if (audit_enabled) {
8395 current_uid_gid(&uid, &gid);
8396 audit_log(audit_context(), GFP_ATOMIC,
8397 AUDIT_ANOM_PROMISCUOUS,
8398 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8399 dev->name, (dev->flags & IFF_PROMISC),
8400 (old_flags & IFF_PROMISC),
8401 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8402 from_kuid(&init_user_ns, uid),
8403 from_kgid(&init_user_ns, gid),
8404 audit_get_sessionid(current));
8405 }
8406
8407 dev_change_rx_flags(dev, IFF_PROMISC);
8408 }
8409 if (notify)
8410 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8411 return 0;
8412}
8413
8414/**
8415 * dev_set_promiscuity - update promiscuity count on a device
8416 * @dev: device
8417 * @inc: modifier
8418 *
8419 * Add or remove promiscuity from a device. While the count in the device
8420 * remains above zero the interface remains promiscuous. Once it hits zero
8421 * the device reverts back to normal filtering operation. A negative inc
8422 * value is used to drop promiscuity on the device.
8423 * Return 0 if successful or a negative errno code on error.
8424 */
8425int dev_set_promiscuity(struct net_device *dev, int inc)
8426{
8427 unsigned int old_flags = dev->flags;
8428 int err;
8429
8430 err = __dev_set_promiscuity(dev, inc, true);
8431 if (err < 0)
8432 return err;
8433 if (dev->flags != old_flags)
8434 dev_set_rx_mode(dev);
8435 return err;
8436}
8437EXPORT_SYMBOL(dev_set_promiscuity);
8438
8439static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8440{
8441 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8442
8443 ASSERT_RTNL();
8444
8445 dev->flags |= IFF_ALLMULTI;
8446 dev->allmulti += inc;
8447 if (dev->allmulti == 0) {
8448 /*
8449 * Avoid overflow.
8450 * If inc causes overflow, untouch allmulti and return error.
8451 */
8452 if (inc < 0)
8453 dev->flags &= ~IFF_ALLMULTI;
8454 else {
8455 dev->allmulti -= inc;
8456 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8457 return -EOVERFLOW;
8458 }
8459 }
8460 if (dev->flags ^ old_flags) {
8461 netdev_info(dev, "%s allmulticast mode\n",
8462 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8463 dev_change_rx_flags(dev, IFF_ALLMULTI);
8464 dev_set_rx_mode(dev);
8465 if (notify)
8466 __dev_notify_flags(dev, old_flags,
8467 dev->gflags ^ old_gflags, 0, NULL);
8468 }
8469 return 0;
8470}
8471
8472/**
8473 * dev_set_allmulti - update allmulti count on a device
8474 * @dev: device
8475 * @inc: modifier
8476 *
8477 * Add or remove reception of all multicast frames to a device. While the
8478 * count in the device remains above zero the interface remains listening
8479 * to all interfaces. Once it hits zero the device reverts back to normal
8480 * filtering operation. A negative @inc value is used to drop the counter
8481 * when releasing a resource needing all multicasts.
8482 * Return 0 if successful or a negative errno code on error.
8483 */
8484
8485int dev_set_allmulti(struct net_device *dev, int inc)
8486{
8487 return __dev_set_allmulti(dev, inc, true);
8488}
8489EXPORT_SYMBOL(dev_set_allmulti);
8490
8491/*
8492 * Upload unicast and multicast address lists to device and
8493 * configure RX filtering. When the device doesn't support unicast
8494 * filtering it is put in promiscuous mode while unicast addresses
8495 * are present.
8496 */
8497void __dev_set_rx_mode(struct net_device *dev)
8498{
8499 const struct net_device_ops *ops = dev->netdev_ops;
8500
8501 /* dev_open will call this function so the list will stay sane. */
8502 if (!(dev->flags&IFF_UP))
8503 return;
8504
8505 if (!netif_device_present(dev))
8506 return;
8507
8508 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8509 /* Unicast addresses changes may only happen under the rtnl,
8510 * therefore calling __dev_set_promiscuity here is safe.
8511 */
8512 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8513 __dev_set_promiscuity(dev, 1, false);
8514 dev->uc_promisc = true;
8515 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8516 __dev_set_promiscuity(dev, -1, false);
8517 dev->uc_promisc = false;
8518 }
8519 }
8520
8521 if (ops->ndo_set_rx_mode)
8522 ops->ndo_set_rx_mode(dev);
8523}
8524
8525void dev_set_rx_mode(struct net_device *dev)
8526{
8527 netif_addr_lock_bh(dev);
8528 __dev_set_rx_mode(dev);
8529 netif_addr_unlock_bh(dev);
8530}
8531
8532/**
8533 * dev_get_flags - get flags reported to userspace
8534 * @dev: device
8535 *
8536 * Get the combination of flag bits exported through APIs to userspace.
8537 */
8538unsigned int dev_get_flags(const struct net_device *dev)
8539{
8540 unsigned int flags;
8541
8542 flags = (dev->flags & ~(IFF_PROMISC |
8543 IFF_ALLMULTI |
8544 IFF_RUNNING |
8545 IFF_LOWER_UP |
8546 IFF_DORMANT)) |
8547 (dev->gflags & (IFF_PROMISC |
8548 IFF_ALLMULTI));
8549
8550 if (netif_running(dev)) {
8551 if (netif_oper_up(dev))
8552 flags |= IFF_RUNNING;
8553 if (netif_carrier_ok(dev))
8554 flags |= IFF_LOWER_UP;
8555 if (netif_dormant(dev))
8556 flags |= IFF_DORMANT;
8557 }
8558
8559 return flags;
8560}
8561EXPORT_SYMBOL(dev_get_flags);
8562
8563int __dev_change_flags(struct net_device *dev, unsigned int flags,
8564 struct netlink_ext_ack *extack)
8565{
8566 unsigned int old_flags = dev->flags;
8567 int ret;
8568
8569 ASSERT_RTNL();
8570
8571 /*
8572 * Set the flags on our device.
8573 */
8574
8575 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8576 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8577 IFF_AUTOMEDIA)) |
8578 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8579 IFF_ALLMULTI));
8580
8581 /*
8582 * Load in the correct multicast list now the flags have changed.
8583 */
8584
8585 if ((old_flags ^ flags) & IFF_MULTICAST)
8586 dev_change_rx_flags(dev, IFF_MULTICAST);
8587
8588 dev_set_rx_mode(dev);
8589
8590 /*
8591 * Have we downed the interface. We handle IFF_UP ourselves
8592 * according to user attempts to set it, rather than blindly
8593 * setting it.
8594 */
8595
8596 ret = 0;
8597 if ((old_flags ^ flags) & IFF_UP) {
8598 if (old_flags & IFF_UP)
8599 __dev_close(dev);
8600 else
8601 ret = __dev_open(dev, extack);
8602 }
8603
8604 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8605 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8606 unsigned int old_flags = dev->flags;
8607
8608 dev->gflags ^= IFF_PROMISC;
8609
8610 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8611 if (dev->flags != old_flags)
8612 dev_set_rx_mode(dev);
8613 }
8614
8615 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8616 * is important. Some (broken) drivers set IFF_PROMISC, when
8617 * IFF_ALLMULTI is requested not asking us and not reporting.
8618 */
8619 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8620 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8621
8622 dev->gflags ^= IFF_ALLMULTI;
8623 __dev_set_allmulti(dev, inc, false);
8624 }
8625
8626 return ret;
8627}
8628
8629void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8630 unsigned int gchanges, u32 portid,
8631 const struct nlmsghdr *nlh)
8632{
8633 unsigned int changes = dev->flags ^ old_flags;
8634
8635 if (gchanges)
8636 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8637
8638 if (changes & IFF_UP) {
8639 if (dev->flags & IFF_UP)
8640 call_netdevice_notifiers(NETDEV_UP, dev);
8641 else
8642 call_netdevice_notifiers(NETDEV_DOWN, dev);
8643 }
8644
8645 if (dev->flags & IFF_UP &&
8646 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8647 struct netdev_notifier_change_info change_info = {
8648 .info = {
8649 .dev = dev,
8650 },
8651 .flags_changed = changes,
8652 };
8653
8654 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8655 }
8656}
8657
8658/**
8659 * dev_change_flags - change device settings
8660 * @dev: device
8661 * @flags: device state flags
8662 * @extack: netlink extended ack
8663 *
8664 * Change settings on device based state flags. The flags are
8665 * in the userspace exported format.
8666 */
8667int dev_change_flags(struct net_device *dev, unsigned int flags,
8668 struct netlink_ext_ack *extack)
8669{
8670 int ret;
8671 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8672
8673 ret = __dev_change_flags(dev, flags, extack);
8674 if (ret < 0)
8675 return ret;
8676
8677 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8678 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8679 return ret;
8680}
8681EXPORT_SYMBOL(dev_change_flags);
8682
8683int __dev_set_mtu(struct net_device *dev, int new_mtu)
8684{
8685 const struct net_device_ops *ops = dev->netdev_ops;
8686
8687 if (ops->ndo_change_mtu)
8688 return ops->ndo_change_mtu(dev, new_mtu);
8689
8690 /* Pairs with all the lockless reads of dev->mtu in the stack */
8691 WRITE_ONCE(dev->mtu, new_mtu);
8692 return 0;
8693}
8694EXPORT_SYMBOL(__dev_set_mtu);
8695
8696int dev_validate_mtu(struct net_device *dev, int new_mtu,
8697 struct netlink_ext_ack *extack)
8698{
8699 /* MTU must be positive, and in range */
8700 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8701 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8702 return -EINVAL;
8703 }
8704
8705 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8706 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8707 return -EINVAL;
8708 }
8709 return 0;
8710}
8711
8712/**
8713 * dev_set_mtu_ext - Change maximum transfer unit
8714 * @dev: device
8715 * @new_mtu: new transfer unit
8716 * @extack: netlink extended ack
8717 *
8718 * Change the maximum transfer size of the network device.
8719 */
8720int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8721 struct netlink_ext_ack *extack)
8722{
8723 int err, orig_mtu;
8724
8725 if (new_mtu == dev->mtu)
8726 return 0;
8727
8728 err = dev_validate_mtu(dev, new_mtu, extack);
8729 if (err)
8730 return err;
8731
8732 if (!netif_device_present(dev))
8733 return -ENODEV;
8734
8735 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8736 err = notifier_to_errno(err);
8737 if (err)
8738 return err;
8739
8740 orig_mtu = dev->mtu;
8741 err = __dev_set_mtu(dev, new_mtu);
8742
8743 if (!err) {
8744 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8745 orig_mtu);
8746 err = notifier_to_errno(err);
8747 if (err) {
8748 /* setting mtu back and notifying everyone again,
8749 * so that they have a chance to revert changes.
8750 */
8751 __dev_set_mtu(dev, orig_mtu);
8752 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8753 new_mtu);
8754 }
8755 }
8756 return err;
8757}
8758
8759int dev_set_mtu(struct net_device *dev, int new_mtu)
8760{
8761 struct netlink_ext_ack extack;
8762 int err;
8763
8764 memset(&extack, 0, sizeof(extack));
8765 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8766 if (err && extack._msg)
8767 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8768 return err;
8769}
8770EXPORT_SYMBOL(dev_set_mtu);
8771
8772/**
8773 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8774 * @dev: device
8775 * @new_len: new tx queue length
8776 */
8777int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8778{
8779 unsigned int orig_len = dev->tx_queue_len;
8780 int res;
8781
8782 if (new_len != (unsigned int)new_len)
8783 return -ERANGE;
8784
8785 if (new_len != orig_len) {
8786 dev->tx_queue_len = new_len;
8787 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8788 res = notifier_to_errno(res);
8789 if (res)
8790 goto err_rollback;
8791 res = dev_qdisc_change_tx_queue_len(dev);
8792 if (res)
8793 goto err_rollback;
8794 }
8795
8796 return 0;
8797
8798err_rollback:
8799 netdev_err(dev, "refused to change device tx_queue_len\n");
8800 dev->tx_queue_len = orig_len;
8801 return res;
8802}
8803
8804/**
8805 * dev_set_group - Change group this device belongs to
8806 * @dev: device
8807 * @new_group: group this device should belong to
8808 */
8809void dev_set_group(struct net_device *dev, int new_group)
8810{
8811 dev->group = new_group;
8812}
8813
8814/**
8815 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8816 * @dev: device
8817 * @addr: new address
8818 * @extack: netlink extended ack
8819 */
8820int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8821 struct netlink_ext_ack *extack)
8822{
8823 struct netdev_notifier_pre_changeaddr_info info = {
8824 .info.dev = dev,
8825 .info.extack = extack,
8826 .dev_addr = addr,
8827 };
8828 int rc;
8829
8830 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8831 return notifier_to_errno(rc);
8832}
8833EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8834
8835/**
8836 * dev_set_mac_address - Change Media Access Control Address
8837 * @dev: device
8838 * @sa: new address
8839 * @extack: netlink extended ack
8840 *
8841 * Change the hardware (MAC) address of the device
8842 */
8843int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8844 struct netlink_ext_ack *extack)
8845{
8846 const struct net_device_ops *ops = dev->netdev_ops;
8847 int err;
8848
8849 if (!ops->ndo_set_mac_address)
8850 return -EOPNOTSUPP;
8851 if (sa->sa_family != dev->type)
8852 return -EINVAL;
8853 if (!netif_device_present(dev))
8854 return -ENODEV;
8855 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8856 if (err)
8857 return err;
8858 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8859 err = ops->ndo_set_mac_address(dev, sa);
8860 if (err)
8861 return err;
8862 }
8863 dev->addr_assign_type = NET_ADDR_SET;
8864 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8865 add_device_randomness(dev->dev_addr, dev->addr_len);
8866 return 0;
8867}
8868EXPORT_SYMBOL(dev_set_mac_address);
8869
8870static DECLARE_RWSEM(dev_addr_sem);
8871
8872int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8873 struct netlink_ext_ack *extack)
8874{
8875 int ret;
8876
8877 down_write(&dev_addr_sem);
8878 ret = dev_set_mac_address(dev, sa, extack);
8879 up_write(&dev_addr_sem);
8880 return ret;
8881}
8882EXPORT_SYMBOL(dev_set_mac_address_user);
8883
8884int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8885{
8886 size_t size = sizeof(sa->sa_data_min);
8887 struct net_device *dev;
8888 int ret = 0;
8889
8890 down_read(&dev_addr_sem);
8891 rcu_read_lock();
8892
8893 dev = dev_get_by_name_rcu(net, dev_name);
8894 if (!dev) {
8895 ret = -ENODEV;
8896 goto unlock;
8897 }
8898 if (!dev->addr_len)
8899 memset(sa->sa_data, 0, size);
8900 else
8901 memcpy(sa->sa_data, dev->dev_addr,
8902 min_t(size_t, size, dev->addr_len));
8903 sa->sa_family = dev->type;
8904
8905unlock:
8906 rcu_read_unlock();
8907 up_read(&dev_addr_sem);
8908 return ret;
8909}
8910EXPORT_SYMBOL(dev_get_mac_address);
8911
8912/**
8913 * dev_change_carrier - Change device carrier
8914 * @dev: device
8915 * @new_carrier: new value
8916 *
8917 * Change device carrier
8918 */
8919int dev_change_carrier(struct net_device *dev, bool new_carrier)
8920{
8921 const struct net_device_ops *ops = dev->netdev_ops;
8922
8923 if (!ops->ndo_change_carrier)
8924 return -EOPNOTSUPP;
8925 if (!netif_device_present(dev))
8926 return -ENODEV;
8927 return ops->ndo_change_carrier(dev, new_carrier);
8928}
8929
8930/**
8931 * dev_get_phys_port_id - Get device physical port ID
8932 * @dev: device
8933 * @ppid: port ID
8934 *
8935 * Get device physical port ID
8936 */
8937int dev_get_phys_port_id(struct net_device *dev,
8938 struct netdev_phys_item_id *ppid)
8939{
8940 const struct net_device_ops *ops = dev->netdev_ops;
8941
8942 if (!ops->ndo_get_phys_port_id)
8943 return -EOPNOTSUPP;
8944 return ops->ndo_get_phys_port_id(dev, ppid);
8945}
8946
8947/**
8948 * dev_get_phys_port_name - Get device physical port name
8949 * @dev: device
8950 * @name: port name
8951 * @len: limit of bytes to copy to name
8952 *
8953 * Get device physical port name
8954 */
8955int dev_get_phys_port_name(struct net_device *dev,
8956 char *name, size_t len)
8957{
8958 const struct net_device_ops *ops = dev->netdev_ops;
8959 int err;
8960
8961 if (ops->ndo_get_phys_port_name) {
8962 err = ops->ndo_get_phys_port_name(dev, name, len);
8963 if (err != -EOPNOTSUPP)
8964 return err;
8965 }
8966 return devlink_compat_phys_port_name_get(dev, name, len);
8967}
8968
8969/**
8970 * dev_get_port_parent_id - Get the device's port parent identifier
8971 * @dev: network device
8972 * @ppid: pointer to a storage for the port's parent identifier
8973 * @recurse: allow/disallow recursion to lower devices
8974 *
8975 * Get the devices's port parent identifier
8976 */
8977int dev_get_port_parent_id(struct net_device *dev,
8978 struct netdev_phys_item_id *ppid,
8979 bool recurse)
8980{
8981 const struct net_device_ops *ops = dev->netdev_ops;
8982 struct netdev_phys_item_id first = { };
8983 struct net_device *lower_dev;
8984 struct list_head *iter;
8985 int err;
8986
8987 if (ops->ndo_get_port_parent_id) {
8988 err = ops->ndo_get_port_parent_id(dev, ppid);
8989 if (err != -EOPNOTSUPP)
8990 return err;
8991 }
8992
8993 err = devlink_compat_switch_id_get(dev, ppid);
8994 if (!recurse || err != -EOPNOTSUPP)
8995 return err;
8996
8997 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8998 err = dev_get_port_parent_id(lower_dev, ppid, true);
8999 if (err)
9000 break;
9001 if (!first.id_len)
9002 first = *ppid;
9003 else if (memcmp(&first, ppid, sizeof(*ppid)))
9004 return -EOPNOTSUPP;
9005 }
9006
9007 return err;
9008}
9009EXPORT_SYMBOL(dev_get_port_parent_id);
9010
9011/**
9012 * netdev_port_same_parent_id - Indicate if two network devices have
9013 * the same port parent identifier
9014 * @a: first network device
9015 * @b: second network device
9016 */
9017bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9018{
9019 struct netdev_phys_item_id a_id = { };
9020 struct netdev_phys_item_id b_id = { };
9021
9022 if (dev_get_port_parent_id(a, &a_id, true) ||
9023 dev_get_port_parent_id(b, &b_id, true))
9024 return false;
9025
9026 return netdev_phys_item_id_same(&a_id, &b_id);
9027}
9028EXPORT_SYMBOL(netdev_port_same_parent_id);
9029
9030/**
9031 * dev_change_proto_down - set carrier according to proto_down.
9032 *
9033 * @dev: device
9034 * @proto_down: new value
9035 */
9036int dev_change_proto_down(struct net_device *dev, bool proto_down)
9037{
9038 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9039 return -EOPNOTSUPP;
9040 if (!netif_device_present(dev))
9041 return -ENODEV;
9042 if (proto_down)
9043 netif_carrier_off(dev);
9044 else
9045 netif_carrier_on(dev);
9046 dev->proto_down = proto_down;
9047 return 0;
9048}
9049
9050/**
9051 * dev_change_proto_down_reason - proto down reason
9052 *
9053 * @dev: device
9054 * @mask: proto down mask
9055 * @value: proto down value
9056 */
9057void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9058 u32 value)
9059{
9060 int b;
9061
9062 if (!mask) {
9063 dev->proto_down_reason = value;
9064 } else {
9065 for_each_set_bit(b, &mask, 32) {
9066 if (value & (1 << b))
9067 dev->proto_down_reason |= BIT(b);
9068 else
9069 dev->proto_down_reason &= ~BIT(b);
9070 }
9071 }
9072}
9073
9074struct bpf_xdp_link {
9075 struct bpf_link link;
9076 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9077 int flags;
9078};
9079
9080static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9081{
9082 if (flags & XDP_FLAGS_HW_MODE)
9083 return XDP_MODE_HW;
9084 if (flags & XDP_FLAGS_DRV_MODE)
9085 return XDP_MODE_DRV;
9086 if (flags & XDP_FLAGS_SKB_MODE)
9087 return XDP_MODE_SKB;
9088 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9089}
9090
9091static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9092{
9093 switch (mode) {
9094 case XDP_MODE_SKB:
9095 return generic_xdp_install;
9096 case XDP_MODE_DRV:
9097 case XDP_MODE_HW:
9098 return dev->netdev_ops->ndo_bpf;
9099 default:
9100 return NULL;
9101 }
9102}
9103
9104static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9105 enum bpf_xdp_mode mode)
9106{
9107 return dev->xdp_state[mode].link;
9108}
9109
9110static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9111 enum bpf_xdp_mode mode)
9112{
9113 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9114
9115 if (link)
9116 return link->link.prog;
9117 return dev->xdp_state[mode].prog;
9118}
9119
9120u8 dev_xdp_prog_count(struct net_device *dev)
9121{
9122 u8 count = 0;
9123 int i;
9124
9125 for (i = 0; i < __MAX_XDP_MODE; i++)
9126 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9127 count++;
9128 return count;
9129}
9130EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9131
9132u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9133{
9134 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9135
9136 return prog ? prog->aux->id : 0;
9137}
9138
9139static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9140 struct bpf_xdp_link *link)
9141{
9142 dev->xdp_state[mode].link = link;
9143 dev->xdp_state[mode].prog = NULL;
9144}
9145
9146static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9147 struct bpf_prog *prog)
9148{
9149 dev->xdp_state[mode].link = NULL;
9150 dev->xdp_state[mode].prog = prog;
9151}
9152
9153static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9154 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9155 u32 flags, struct bpf_prog *prog)
9156{
9157 struct netdev_bpf xdp;
9158 int err;
9159
9160 memset(&xdp, 0, sizeof(xdp));
9161 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9162 xdp.extack = extack;
9163 xdp.flags = flags;
9164 xdp.prog = prog;
9165
9166 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9167 * "moved" into driver), so they don't increment it on their own, but
9168 * they do decrement refcnt when program is detached or replaced.
9169 * Given net_device also owns link/prog, we need to bump refcnt here
9170 * to prevent drivers from underflowing it.
9171 */
9172 if (prog)
9173 bpf_prog_inc(prog);
9174 err = bpf_op(dev, &xdp);
9175 if (err) {
9176 if (prog)
9177 bpf_prog_put(prog);
9178 return err;
9179 }
9180
9181 if (mode != XDP_MODE_HW)
9182 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9183
9184 return 0;
9185}
9186
9187static void dev_xdp_uninstall(struct net_device *dev)
9188{
9189 struct bpf_xdp_link *link;
9190 struct bpf_prog *prog;
9191 enum bpf_xdp_mode mode;
9192 bpf_op_t bpf_op;
9193
9194 ASSERT_RTNL();
9195
9196 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9197 prog = dev_xdp_prog(dev, mode);
9198 if (!prog)
9199 continue;
9200
9201 bpf_op = dev_xdp_bpf_op(dev, mode);
9202 if (!bpf_op)
9203 continue;
9204
9205 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9206
9207 /* auto-detach link from net device */
9208 link = dev_xdp_link(dev, mode);
9209 if (link)
9210 link->dev = NULL;
9211 else
9212 bpf_prog_put(prog);
9213
9214 dev_xdp_set_link(dev, mode, NULL);
9215 }
9216}
9217
9218static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9219 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9220 struct bpf_prog *old_prog, u32 flags)
9221{
9222 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9223 struct bpf_prog *cur_prog;
9224 struct net_device *upper;
9225 struct list_head *iter;
9226 enum bpf_xdp_mode mode;
9227 bpf_op_t bpf_op;
9228 int err;
9229
9230 ASSERT_RTNL();
9231
9232 /* either link or prog attachment, never both */
9233 if (link && (new_prog || old_prog))
9234 return -EINVAL;
9235 /* link supports only XDP mode flags */
9236 if (link && (flags & ~XDP_FLAGS_MODES)) {
9237 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9238 return -EINVAL;
9239 }
9240 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9241 if (num_modes > 1) {
9242 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9243 return -EINVAL;
9244 }
9245 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9246 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9247 NL_SET_ERR_MSG(extack,
9248 "More than one program loaded, unset mode is ambiguous");
9249 return -EINVAL;
9250 }
9251 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9252 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9253 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9254 return -EINVAL;
9255 }
9256
9257 mode = dev_xdp_mode(dev, flags);
9258 /* can't replace attached link */
9259 if (dev_xdp_link(dev, mode)) {
9260 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9261 return -EBUSY;
9262 }
9263
9264 /* don't allow if an upper device already has a program */
9265 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9266 if (dev_xdp_prog_count(upper) > 0) {
9267 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9268 return -EEXIST;
9269 }
9270 }
9271
9272 cur_prog = dev_xdp_prog(dev, mode);
9273 /* can't replace attached prog with link */
9274 if (link && cur_prog) {
9275 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9276 return -EBUSY;
9277 }
9278 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9279 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9280 return -EEXIST;
9281 }
9282
9283 /* put effective new program into new_prog */
9284 if (link)
9285 new_prog = link->link.prog;
9286
9287 if (new_prog) {
9288 bool offload = mode == XDP_MODE_HW;
9289 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9290 ? XDP_MODE_DRV : XDP_MODE_SKB;
9291
9292 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9293 NL_SET_ERR_MSG(extack, "XDP program already attached");
9294 return -EBUSY;
9295 }
9296 if (!offload && dev_xdp_prog(dev, other_mode)) {
9297 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9298 return -EEXIST;
9299 }
9300 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9301 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9302 return -EINVAL;
9303 }
9304 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9305 NL_SET_ERR_MSG(extack, "Program bound to different device");
9306 return -EINVAL;
9307 }
9308 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9309 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9310 return -EINVAL;
9311 }
9312 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9313 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9314 return -EINVAL;
9315 }
9316 }
9317
9318 /* don't call drivers if the effective program didn't change */
9319 if (new_prog != cur_prog) {
9320 bpf_op = dev_xdp_bpf_op(dev, mode);
9321 if (!bpf_op) {
9322 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9323 return -EOPNOTSUPP;
9324 }
9325
9326 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9327 if (err)
9328 return err;
9329 }
9330
9331 if (link)
9332 dev_xdp_set_link(dev, mode, link);
9333 else
9334 dev_xdp_set_prog(dev, mode, new_prog);
9335 if (cur_prog)
9336 bpf_prog_put(cur_prog);
9337
9338 return 0;
9339}
9340
9341static int dev_xdp_attach_link(struct net_device *dev,
9342 struct netlink_ext_ack *extack,
9343 struct bpf_xdp_link *link)
9344{
9345 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9346}
9347
9348static int dev_xdp_detach_link(struct net_device *dev,
9349 struct netlink_ext_ack *extack,
9350 struct bpf_xdp_link *link)
9351{
9352 enum bpf_xdp_mode mode;
9353 bpf_op_t bpf_op;
9354
9355 ASSERT_RTNL();
9356
9357 mode = dev_xdp_mode(dev, link->flags);
9358 if (dev_xdp_link(dev, mode) != link)
9359 return -EINVAL;
9360
9361 bpf_op = dev_xdp_bpf_op(dev, mode);
9362 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9363 dev_xdp_set_link(dev, mode, NULL);
9364 return 0;
9365}
9366
9367static void bpf_xdp_link_release(struct bpf_link *link)
9368{
9369 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9370
9371 rtnl_lock();
9372
9373 /* if racing with net_device's tear down, xdp_link->dev might be
9374 * already NULL, in which case link was already auto-detached
9375 */
9376 if (xdp_link->dev) {
9377 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9378 xdp_link->dev = NULL;
9379 }
9380
9381 rtnl_unlock();
9382}
9383
9384static int bpf_xdp_link_detach(struct bpf_link *link)
9385{
9386 bpf_xdp_link_release(link);
9387 return 0;
9388}
9389
9390static void bpf_xdp_link_dealloc(struct bpf_link *link)
9391{
9392 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9393
9394 kfree(xdp_link);
9395}
9396
9397static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9398 struct seq_file *seq)
9399{
9400 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9401 u32 ifindex = 0;
9402
9403 rtnl_lock();
9404 if (xdp_link->dev)
9405 ifindex = xdp_link->dev->ifindex;
9406 rtnl_unlock();
9407
9408 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9409}
9410
9411static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9412 struct bpf_link_info *info)
9413{
9414 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9415 u32 ifindex = 0;
9416
9417 rtnl_lock();
9418 if (xdp_link->dev)
9419 ifindex = xdp_link->dev->ifindex;
9420 rtnl_unlock();
9421
9422 info->xdp.ifindex = ifindex;
9423 return 0;
9424}
9425
9426static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9427 struct bpf_prog *old_prog)
9428{
9429 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9430 enum bpf_xdp_mode mode;
9431 bpf_op_t bpf_op;
9432 int err = 0;
9433
9434 rtnl_lock();
9435
9436 /* link might have been auto-released already, so fail */
9437 if (!xdp_link->dev) {
9438 err = -ENOLINK;
9439 goto out_unlock;
9440 }
9441
9442 if (old_prog && link->prog != old_prog) {
9443 err = -EPERM;
9444 goto out_unlock;
9445 }
9446 old_prog = link->prog;
9447 if (old_prog->type != new_prog->type ||
9448 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9449 err = -EINVAL;
9450 goto out_unlock;
9451 }
9452
9453 if (old_prog == new_prog) {
9454 /* no-op, don't disturb drivers */
9455 bpf_prog_put(new_prog);
9456 goto out_unlock;
9457 }
9458
9459 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9460 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9461 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9462 xdp_link->flags, new_prog);
9463 if (err)
9464 goto out_unlock;
9465
9466 old_prog = xchg(&link->prog, new_prog);
9467 bpf_prog_put(old_prog);
9468
9469out_unlock:
9470 rtnl_unlock();
9471 return err;
9472}
9473
9474static const struct bpf_link_ops bpf_xdp_link_lops = {
9475 .release = bpf_xdp_link_release,
9476 .dealloc = bpf_xdp_link_dealloc,
9477 .detach = bpf_xdp_link_detach,
9478 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9479 .fill_link_info = bpf_xdp_link_fill_link_info,
9480 .update_prog = bpf_xdp_link_update,
9481};
9482
9483int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9484{
9485 struct net *net = current->nsproxy->net_ns;
9486 struct bpf_link_primer link_primer;
9487 struct netlink_ext_ack extack = {};
9488 struct bpf_xdp_link *link;
9489 struct net_device *dev;
9490 int err, fd;
9491
9492 rtnl_lock();
9493 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9494 if (!dev) {
9495 rtnl_unlock();
9496 return -EINVAL;
9497 }
9498
9499 link = kzalloc(sizeof(*link), GFP_USER);
9500 if (!link) {
9501 err = -ENOMEM;
9502 goto unlock;
9503 }
9504
9505 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9506 link->dev = dev;
9507 link->flags = attr->link_create.flags;
9508
9509 err = bpf_link_prime(&link->link, &link_primer);
9510 if (err) {
9511 kfree(link);
9512 goto unlock;
9513 }
9514
9515 err = dev_xdp_attach_link(dev, &extack, link);
9516 rtnl_unlock();
9517
9518 if (err) {
9519 link->dev = NULL;
9520 bpf_link_cleanup(&link_primer);
9521 trace_bpf_xdp_link_attach_failed(extack._msg);
9522 goto out_put_dev;
9523 }
9524
9525 fd = bpf_link_settle(&link_primer);
9526 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9527 dev_put(dev);
9528 return fd;
9529
9530unlock:
9531 rtnl_unlock();
9532
9533out_put_dev:
9534 dev_put(dev);
9535 return err;
9536}
9537
9538/**
9539 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9540 * @dev: device
9541 * @extack: netlink extended ack
9542 * @fd: new program fd or negative value to clear
9543 * @expected_fd: old program fd that userspace expects to replace or clear
9544 * @flags: xdp-related flags
9545 *
9546 * Set or clear a bpf program for a device
9547 */
9548int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9549 int fd, int expected_fd, u32 flags)
9550{
9551 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9552 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9553 int err;
9554
9555 ASSERT_RTNL();
9556
9557 if (fd >= 0) {
9558 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9559 mode != XDP_MODE_SKB);
9560 if (IS_ERR(new_prog))
9561 return PTR_ERR(new_prog);
9562 }
9563
9564 if (expected_fd >= 0) {
9565 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9566 mode != XDP_MODE_SKB);
9567 if (IS_ERR(old_prog)) {
9568 err = PTR_ERR(old_prog);
9569 old_prog = NULL;
9570 goto err_out;
9571 }
9572 }
9573
9574 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9575
9576err_out:
9577 if (err && new_prog)
9578 bpf_prog_put(new_prog);
9579 if (old_prog)
9580 bpf_prog_put(old_prog);
9581 return err;
9582}
9583
9584/**
9585 * dev_index_reserve() - allocate an ifindex in a namespace
9586 * @net: the applicable net namespace
9587 * @ifindex: requested ifindex, pass %0 to get one allocated
9588 *
9589 * Allocate a ifindex for a new device. Caller must either use the ifindex
9590 * to store the device (via list_netdevice()) or call dev_index_release()
9591 * to give the index up.
9592 *
9593 * Return: a suitable unique value for a new device interface number or -errno.
9594 */
9595static int dev_index_reserve(struct net *net, u32 ifindex)
9596{
9597 int err;
9598
9599 if (ifindex > INT_MAX) {
9600 DEBUG_NET_WARN_ON_ONCE(1);
9601 return -EINVAL;
9602 }
9603
9604 if (!ifindex)
9605 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9606 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9607 else
9608 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9609 if (err < 0)
9610 return err;
9611
9612 return ifindex;
9613}
9614
9615static void dev_index_release(struct net *net, int ifindex)
9616{
9617 /* Expect only unused indexes, unlist_netdevice() removes the used */
9618 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9619}
9620
9621/* Delayed registration/unregisteration */
9622LIST_HEAD(net_todo_list);
9623DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9624
9625static void net_set_todo(struct net_device *dev)
9626{
9627 list_add_tail(&dev->todo_list, &net_todo_list);
9628 atomic_inc(&dev_net(dev)->dev_unreg_count);
9629}
9630
9631static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9632 struct net_device *upper, netdev_features_t features)
9633{
9634 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9635 netdev_features_t feature;
9636 int feature_bit;
9637
9638 for_each_netdev_feature(upper_disables, feature_bit) {
9639 feature = __NETIF_F_BIT(feature_bit);
9640 if (!(upper->wanted_features & feature)
9641 && (features & feature)) {
9642 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9643 &feature, upper->name);
9644 features &= ~feature;
9645 }
9646 }
9647
9648 return features;
9649}
9650
9651static void netdev_sync_lower_features(struct net_device *upper,
9652 struct net_device *lower, netdev_features_t features)
9653{
9654 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9655 netdev_features_t feature;
9656 int feature_bit;
9657
9658 for_each_netdev_feature(upper_disables, feature_bit) {
9659 feature = __NETIF_F_BIT(feature_bit);
9660 if (!(features & feature) && (lower->features & feature)) {
9661 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9662 &feature, lower->name);
9663 lower->wanted_features &= ~feature;
9664 __netdev_update_features(lower);
9665
9666 if (unlikely(lower->features & feature))
9667 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9668 &feature, lower->name);
9669 else
9670 netdev_features_change(lower);
9671 }
9672 }
9673}
9674
9675static netdev_features_t netdev_fix_features(struct net_device *dev,
9676 netdev_features_t features)
9677{
9678 /* Fix illegal checksum combinations */
9679 if ((features & NETIF_F_HW_CSUM) &&
9680 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9681 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9682 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9683 }
9684
9685 /* TSO requires that SG is present as well. */
9686 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9687 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9688 features &= ~NETIF_F_ALL_TSO;
9689 }
9690
9691 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9692 !(features & NETIF_F_IP_CSUM)) {
9693 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9694 features &= ~NETIF_F_TSO;
9695 features &= ~NETIF_F_TSO_ECN;
9696 }
9697
9698 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9699 !(features & NETIF_F_IPV6_CSUM)) {
9700 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9701 features &= ~NETIF_F_TSO6;
9702 }
9703
9704 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9705 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9706 features &= ~NETIF_F_TSO_MANGLEID;
9707
9708 /* TSO ECN requires that TSO is present as well. */
9709 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9710 features &= ~NETIF_F_TSO_ECN;
9711
9712 /* Software GSO depends on SG. */
9713 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9714 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9715 features &= ~NETIF_F_GSO;
9716 }
9717
9718 /* GSO partial features require GSO partial be set */
9719 if ((features & dev->gso_partial_features) &&
9720 !(features & NETIF_F_GSO_PARTIAL)) {
9721 netdev_dbg(dev,
9722 "Dropping partially supported GSO features since no GSO partial.\n");
9723 features &= ~dev->gso_partial_features;
9724 }
9725
9726 if (!(features & NETIF_F_RXCSUM)) {
9727 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9728 * successfully merged by hardware must also have the
9729 * checksum verified by hardware. If the user does not
9730 * want to enable RXCSUM, logically, we should disable GRO_HW.
9731 */
9732 if (features & NETIF_F_GRO_HW) {
9733 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9734 features &= ~NETIF_F_GRO_HW;
9735 }
9736 }
9737
9738 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9739 if (features & NETIF_F_RXFCS) {
9740 if (features & NETIF_F_LRO) {
9741 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9742 features &= ~NETIF_F_LRO;
9743 }
9744
9745 if (features & NETIF_F_GRO_HW) {
9746 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9747 features &= ~NETIF_F_GRO_HW;
9748 }
9749 }
9750
9751 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9752 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9753 features &= ~NETIF_F_LRO;
9754 }
9755
9756 if (features & NETIF_F_HW_TLS_TX) {
9757 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9758 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9759 bool hw_csum = features & NETIF_F_HW_CSUM;
9760
9761 if (!ip_csum && !hw_csum) {
9762 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9763 features &= ~NETIF_F_HW_TLS_TX;
9764 }
9765 }
9766
9767 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9768 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9769 features &= ~NETIF_F_HW_TLS_RX;
9770 }
9771
9772 return features;
9773}
9774
9775int __netdev_update_features(struct net_device *dev)
9776{
9777 struct net_device *upper, *lower;
9778 netdev_features_t features;
9779 struct list_head *iter;
9780 int err = -1;
9781
9782 ASSERT_RTNL();
9783
9784 features = netdev_get_wanted_features(dev);
9785
9786 if (dev->netdev_ops->ndo_fix_features)
9787 features = dev->netdev_ops->ndo_fix_features(dev, features);
9788
9789 /* driver might be less strict about feature dependencies */
9790 features = netdev_fix_features(dev, features);
9791
9792 /* some features can't be enabled if they're off on an upper device */
9793 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9794 features = netdev_sync_upper_features(dev, upper, features);
9795
9796 if (dev->features == features)
9797 goto sync_lower;
9798
9799 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9800 &dev->features, &features);
9801
9802 if (dev->netdev_ops->ndo_set_features)
9803 err = dev->netdev_ops->ndo_set_features(dev, features);
9804 else
9805 err = 0;
9806
9807 if (unlikely(err < 0)) {
9808 netdev_err(dev,
9809 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9810 err, &features, &dev->features);
9811 /* return non-0 since some features might have changed and
9812 * it's better to fire a spurious notification than miss it
9813 */
9814 return -1;
9815 }
9816
9817sync_lower:
9818 /* some features must be disabled on lower devices when disabled
9819 * on an upper device (think: bonding master or bridge)
9820 */
9821 netdev_for_each_lower_dev(dev, lower, iter)
9822 netdev_sync_lower_features(dev, lower, features);
9823
9824 if (!err) {
9825 netdev_features_t diff = features ^ dev->features;
9826
9827 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9828 /* udp_tunnel_{get,drop}_rx_info both need
9829 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9830 * device, or they won't do anything.
9831 * Thus we need to update dev->features
9832 * *before* calling udp_tunnel_get_rx_info,
9833 * but *after* calling udp_tunnel_drop_rx_info.
9834 */
9835 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9836 dev->features = features;
9837 udp_tunnel_get_rx_info(dev);
9838 } else {
9839 udp_tunnel_drop_rx_info(dev);
9840 }
9841 }
9842
9843 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9844 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9845 dev->features = features;
9846 err |= vlan_get_rx_ctag_filter_info(dev);
9847 } else {
9848 vlan_drop_rx_ctag_filter_info(dev);
9849 }
9850 }
9851
9852 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9853 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9854 dev->features = features;
9855 err |= vlan_get_rx_stag_filter_info(dev);
9856 } else {
9857 vlan_drop_rx_stag_filter_info(dev);
9858 }
9859 }
9860
9861 dev->features = features;
9862 }
9863
9864 return err < 0 ? 0 : 1;
9865}
9866
9867/**
9868 * netdev_update_features - recalculate device features
9869 * @dev: the device to check
9870 *
9871 * Recalculate dev->features set and send notifications if it
9872 * has changed. Should be called after driver or hardware dependent
9873 * conditions might have changed that influence the features.
9874 */
9875void netdev_update_features(struct net_device *dev)
9876{
9877 if (__netdev_update_features(dev))
9878 netdev_features_change(dev);
9879}
9880EXPORT_SYMBOL(netdev_update_features);
9881
9882/**
9883 * netdev_change_features - recalculate device features
9884 * @dev: the device to check
9885 *
9886 * Recalculate dev->features set and send notifications even
9887 * if they have not changed. Should be called instead of
9888 * netdev_update_features() if also dev->vlan_features might
9889 * have changed to allow the changes to be propagated to stacked
9890 * VLAN devices.
9891 */
9892void netdev_change_features(struct net_device *dev)
9893{
9894 __netdev_update_features(dev);
9895 netdev_features_change(dev);
9896}
9897EXPORT_SYMBOL(netdev_change_features);
9898
9899/**
9900 * netif_stacked_transfer_operstate - transfer operstate
9901 * @rootdev: the root or lower level device to transfer state from
9902 * @dev: the device to transfer operstate to
9903 *
9904 * Transfer operational state from root to device. This is normally
9905 * called when a stacking relationship exists between the root
9906 * device and the device(a leaf device).
9907 */
9908void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9909 struct net_device *dev)
9910{
9911 if (rootdev->operstate == IF_OPER_DORMANT)
9912 netif_dormant_on(dev);
9913 else
9914 netif_dormant_off(dev);
9915
9916 if (rootdev->operstate == IF_OPER_TESTING)
9917 netif_testing_on(dev);
9918 else
9919 netif_testing_off(dev);
9920
9921 if (netif_carrier_ok(rootdev))
9922 netif_carrier_on(dev);
9923 else
9924 netif_carrier_off(dev);
9925}
9926EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9927
9928static int netif_alloc_rx_queues(struct net_device *dev)
9929{
9930 unsigned int i, count = dev->num_rx_queues;
9931 struct netdev_rx_queue *rx;
9932 size_t sz = count * sizeof(*rx);
9933 int err = 0;
9934
9935 BUG_ON(count < 1);
9936
9937 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9938 if (!rx)
9939 return -ENOMEM;
9940
9941 dev->_rx = rx;
9942
9943 for (i = 0; i < count; i++) {
9944 rx[i].dev = dev;
9945
9946 /* XDP RX-queue setup */
9947 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9948 if (err < 0)
9949 goto err_rxq_info;
9950 }
9951 return 0;
9952
9953err_rxq_info:
9954 /* Rollback successful reg's and free other resources */
9955 while (i--)
9956 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9957 kvfree(dev->_rx);
9958 dev->_rx = NULL;
9959 return err;
9960}
9961
9962static void netif_free_rx_queues(struct net_device *dev)
9963{
9964 unsigned int i, count = dev->num_rx_queues;
9965
9966 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9967 if (!dev->_rx)
9968 return;
9969
9970 for (i = 0; i < count; i++)
9971 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9972
9973 kvfree(dev->_rx);
9974}
9975
9976static void netdev_init_one_queue(struct net_device *dev,
9977 struct netdev_queue *queue, void *_unused)
9978{
9979 /* Initialize queue lock */
9980 spin_lock_init(&queue->_xmit_lock);
9981 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9982 queue->xmit_lock_owner = -1;
9983 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9984 queue->dev = dev;
9985#ifdef CONFIG_BQL
9986 dql_init(&queue->dql, HZ);
9987#endif
9988}
9989
9990static void netif_free_tx_queues(struct net_device *dev)
9991{
9992 kvfree(dev->_tx);
9993}
9994
9995static int netif_alloc_netdev_queues(struct net_device *dev)
9996{
9997 unsigned int count = dev->num_tx_queues;
9998 struct netdev_queue *tx;
9999 size_t sz = count * sizeof(*tx);
10000
10001 if (count < 1 || count > 0xffff)
10002 return -EINVAL;
10003
10004 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10005 if (!tx)
10006 return -ENOMEM;
10007
10008 dev->_tx = tx;
10009
10010 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10011 spin_lock_init(&dev->tx_global_lock);
10012
10013 return 0;
10014}
10015
10016void netif_tx_stop_all_queues(struct net_device *dev)
10017{
10018 unsigned int i;
10019
10020 for (i = 0; i < dev->num_tx_queues; i++) {
10021 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10022
10023 netif_tx_stop_queue(txq);
10024 }
10025}
10026EXPORT_SYMBOL(netif_tx_stop_all_queues);
10027
10028/**
10029 * register_netdevice() - register a network device
10030 * @dev: device to register
10031 *
10032 * Take a prepared network device structure and make it externally accessible.
10033 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10034 * Callers must hold the rtnl lock - you may want register_netdev()
10035 * instead of this.
10036 */
10037int register_netdevice(struct net_device *dev)
10038{
10039 int ret;
10040 struct net *net = dev_net(dev);
10041
10042 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10043 NETDEV_FEATURE_COUNT);
10044 BUG_ON(dev_boot_phase);
10045 ASSERT_RTNL();
10046
10047 might_sleep();
10048
10049 /* When net_device's are persistent, this will be fatal. */
10050 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10051 BUG_ON(!net);
10052
10053 ret = ethtool_check_ops(dev->ethtool_ops);
10054 if (ret)
10055 return ret;
10056
10057 spin_lock_init(&dev->addr_list_lock);
10058 netdev_set_addr_lockdep_class(dev);
10059
10060 ret = dev_get_valid_name(net, dev, dev->name);
10061 if (ret < 0)
10062 goto out;
10063
10064 ret = -ENOMEM;
10065 dev->name_node = netdev_name_node_head_alloc(dev);
10066 if (!dev->name_node)
10067 goto out;
10068
10069 /* Init, if this function is available */
10070 if (dev->netdev_ops->ndo_init) {
10071 ret = dev->netdev_ops->ndo_init(dev);
10072 if (ret) {
10073 if (ret > 0)
10074 ret = -EIO;
10075 goto err_free_name;
10076 }
10077 }
10078
10079 if (((dev->hw_features | dev->features) &
10080 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10081 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10082 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10083 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10084 ret = -EINVAL;
10085 goto err_uninit;
10086 }
10087
10088 ret = dev_index_reserve(net, dev->ifindex);
10089 if (ret < 0)
10090 goto err_uninit;
10091 dev->ifindex = ret;
10092
10093 /* Transfer changeable features to wanted_features and enable
10094 * software offloads (GSO and GRO).
10095 */
10096 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10097 dev->features |= NETIF_F_SOFT_FEATURES;
10098
10099 if (dev->udp_tunnel_nic_info) {
10100 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10101 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10102 }
10103
10104 dev->wanted_features = dev->features & dev->hw_features;
10105
10106 if (!(dev->flags & IFF_LOOPBACK))
10107 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10108
10109 /* If IPv4 TCP segmentation offload is supported we should also
10110 * allow the device to enable segmenting the frame with the option
10111 * of ignoring a static IP ID value. This doesn't enable the
10112 * feature itself but allows the user to enable it later.
10113 */
10114 if (dev->hw_features & NETIF_F_TSO)
10115 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10116 if (dev->vlan_features & NETIF_F_TSO)
10117 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10118 if (dev->mpls_features & NETIF_F_TSO)
10119 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10120 if (dev->hw_enc_features & NETIF_F_TSO)
10121 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10122
10123 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10124 */
10125 dev->vlan_features |= NETIF_F_HIGHDMA;
10126
10127 /* Make NETIF_F_SG inheritable to tunnel devices.
10128 */
10129 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10130
10131 /* Make NETIF_F_SG inheritable to MPLS.
10132 */
10133 dev->mpls_features |= NETIF_F_SG;
10134
10135 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10136 ret = notifier_to_errno(ret);
10137 if (ret)
10138 goto err_ifindex_release;
10139
10140 ret = netdev_register_kobject(dev);
10141 write_lock(&dev_base_lock);
10142 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10143 write_unlock(&dev_base_lock);
10144 if (ret)
10145 goto err_uninit_notify;
10146
10147 __netdev_update_features(dev);
10148
10149 /*
10150 * Default initial state at registry is that the
10151 * device is present.
10152 */
10153
10154 set_bit(__LINK_STATE_PRESENT, &dev->state);
10155
10156 linkwatch_init_dev(dev);
10157
10158 dev_init_scheduler(dev);
10159
10160 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10161 list_netdevice(dev);
10162
10163 add_device_randomness(dev->dev_addr, dev->addr_len);
10164
10165 /* If the device has permanent device address, driver should
10166 * set dev_addr and also addr_assign_type should be set to
10167 * NET_ADDR_PERM (default value).
10168 */
10169 if (dev->addr_assign_type == NET_ADDR_PERM)
10170 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10171
10172 /* Notify protocols, that a new device appeared. */
10173 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10174 ret = notifier_to_errno(ret);
10175 if (ret) {
10176 /* Expect explicit free_netdev() on failure */
10177 dev->needs_free_netdev = false;
10178 unregister_netdevice_queue(dev, NULL);
10179 goto out;
10180 }
10181 /*
10182 * Prevent userspace races by waiting until the network
10183 * device is fully setup before sending notifications.
10184 */
10185 if (!dev->rtnl_link_ops ||
10186 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10187 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10188
10189out:
10190 return ret;
10191
10192err_uninit_notify:
10193 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10194err_ifindex_release:
10195 dev_index_release(net, dev->ifindex);
10196err_uninit:
10197 if (dev->netdev_ops->ndo_uninit)
10198 dev->netdev_ops->ndo_uninit(dev);
10199 if (dev->priv_destructor)
10200 dev->priv_destructor(dev);
10201err_free_name:
10202 netdev_name_node_free(dev->name_node);
10203 goto out;
10204}
10205EXPORT_SYMBOL(register_netdevice);
10206
10207/**
10208 * init_dummy_netdev - init a dummy network device for NAPI
10209 * @dev: device to init
10210 *
10211 * This takes a network device structure and initialize the minimum
10212 * amount of fields so it can be used to schedule NAPI polls without
10213 * registering a full blown interface. This is to be used by drivers
10214 * that need to tie several hardware interfaces to a single NAPI
10215 * poll scheduler due to HW limitations.
10216 */
10217int init_dummy_netdev(struct net_device *dev)
10218{
10219 /* Clear everything. Note we don't initialize spinlocks
10220 * are they aren't supposed to be taken by any of the
10221 * NAPI code and this dummy netdev is supposed to be
10222 * only ever used for NAPI polls
10223 */
10224 memset(dev, 0, sizeof(struct net_device));
10225
10226 /* make sure we BUG if trying to hit standard
10227 * register/unregister code path
10228 */
10229 dev->reg_state = NETREG_DUMMY;
10230
10231 /* NAPI wants this */
10232 INIT_LIST_HEAD(&dev->napi_list);
10233
10234 /* a dummy interface is started by default */
10235 set_bit(__LINK_STATE_PRESENT, &dev->state);
10236 set_bit(__LINK_STATE_START, &dev->state);
10237
10238 /* napi_busy_loop stats accounting wants this */
10239 dev_net_set(dev, &init_net);
10240
10241 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10242 * because users of this 'device' dont need to change
10243 * its refcount.
10244 */
10245
10246 return 0;
10247}
10248EXPORT_SYMBOL_GPL(init_dummy_netdev);
10249
10250
10251/**
10252 * register_netdev - register a network device
10253 * @dev: device to register
10254 *
10255 * Take a completed network device structure and add it to the kernel
10256 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10257 * chain. 0 is returned on success. A negative errno code is returned
10258 * on a failure to set up the device, or if the name is a duplicate.
10259 *
10260 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10261 * and expands the device name if you passed a format string to
10262 * alloc_netdev.
10263 */
10264int register_netdev(struct net_device *dev)
10265{
10266 int err;
10267
10268 if (rtnl_lock_killable())
10269 return -EINTR;
10270 err = register_netdevice(dev);
10271 rtnl_unlock();
10272 return err;
10273}
10274EXPORT_SYMBOL(register_netdev);
10275
10276int netdev_refcnt_read(const struct net_device *dev)
10277{
10278#ifdef CONFIG_PCPU_DEV_REFCNT
10279 int i, refcnt = 0;
10280
10281 for_each_possible_cpu(i)
10282 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10283 return refcnt;
10284#else
10285 return refcount_read(&dev->dev_refcnt);
10286#endif
10287}
10288EXPORT_SYMBOL(netdev_refcnt_read);
10289
10290int netdev_unregister_timeout_secs __read_mostly = 10;
10291
10292#define WAIT_REFS_MIN_MSECS 1
10293#define WAIT_REFS_MAX_MSECS 250
10294/**
10295 * netdev_wait_allrefs_any - wait until all references are gone.
10296 * @list: list of net_devices to wait on
10297 *
10298 * This is called when unregistering network devices.
10299 *
10300 * Any protocol or device that holds a reference should register
10301 * for netdevice notification, and cleanup and put back the
10302 * reference if they receive an UNREGISTER event.
10303 * We can get stuck here if buggy protocols don't correctly
10304 * call dev_put.
10305 */
10306static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10307{
10308 unsigned long rebroadcast_time, warning_time;
10309 struct net_device *dev;
10310 int wait = 0;
10311
10312 rebroadcast_time = warning_time = jiffies;
10313
10314 list_for_each_entry(dev, list, todo_list)
10315 if (netdev_refcnt_read(dev) == 1)
10316 return dev;
10317
10318 while (true) {
10319 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10320 rtnl_lock();
10321
10322 /* Rebroadcast unregister notification */
10323 list_for_each_entry(dev, list, todo_list)
10324 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10325
10326 __rtnl_unlock();
10327 rcu_barrier();
10328 rtnl_lock();
10329
10330 list_for_each_entry(dev, list, todo_list)
10331 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10332 &dev->state)) {
10333 /* We must not have linkwatch events
10334 * pending on unregister. If this
10335 * happens, we simply run the queue
10336 * unscheduled, resulting in a noop
10337 * for this device.
10338 */
10339 linkwatch_run_queue();
10340 break;
10341 }
10342
10343 __rtnl_unlock();
10344
10345 rebroadcast_time = jiffies;
10346 }
10347
10348 if (!wait) {
10349 rcu_barrier();
10350 wait = WAIT_REFS_MIN_MSECS;
10351 } else {
10352 msleep(wait);
10353 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10354 }
10355
10356 list_for_each_entry(dev, list, todo_list)
10357 if (netdev_refcnt_read(dev) == 1)
10358 return dev;
10359
10360 if (time_after(jiffies, warning_time +
10361 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10362 list_for_each_entry(dev, list, todo_list) {
10363 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10364 dev->name, netdev_refcnt_read(dev));
10365 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10366 }
10367
10368 warning_time = jiffies;
10369 }
10370 }
10371}
10372
10373/* The sequence is:
10374 *
10375 * rtnl_lock();
10376 * ...
10377 * register_netdevice(x1);
10378 * register_netdevice(x2);
10379 * ...
10380 * unregister_netdevice(y1);
10381 * unregister_netdevice(y2);
10382 * ...
10383 * rtnl_unlock();
10384 * free_netdev(y1);
10385 * free_netdev(y2);
10386 *
10387 * We are invoked by rtnl_unlock().
10388 * This allows us to deal with problems:
10389 * 1) We can delete sysfs objects which invoke hotplug
10390 * without deadlocking with linkwatch via keventd.
10391 * 2) Since we run with the RTNL semaphore not held, we can sleep
10392 * safely in order to wait for the netdev refcnt to drop to zero.
10393 *
10394 * We must not return until all unregister events added during
10395 * the interval the lock was held have been completed.
10396 */
10397void netdev_run_todo(void)
10398{
10399 struct net_device *dev, *tmp;
10400 struct list_head list;
10401#ifdef CONFIG_LOCKDEP
10402 struct list_head unlink_list;
10403
10404 list_replace_init(&net_unlink_list, &unlink_list);
10405
10406 while (!list_empty(&unlink_list)) {
10407 struct net_device *dev = list_first_entry(&unlink_list,
10408 struct net_device,
10409 unlink_list);
10410 list_del_init(&dev->unlink_list);
10411 dev->nested_level = dev->lower_level - 1;
10412 }
10413#endif
10414
10415 /* Snapshot list, allow later requests */
10416 list_replace_init(&net_todo_list, &list);
10417
10418 __rtnl_unlock();
10419
10420 /* Wait for rcu callbacks to finish before next phase */
10421 if (!list_empty(&list))
10422 rcu_barrier();
10423
10424 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10425 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10426 netdev_WARN(dev, "run_todo but not unregistering\n");
10427 list_del(&dev->todo_list);
10428 continue;
10429 }
10430
10431 write_lock(&dev_base_lock);
10432 dev->reg_state = NETREG_UNREGISTERED;
10433 write_unlock(&dev_base_lock);
10434 linkwatch_forget_dev(dev);
10435 }
10436
10437 while (!list_empty(&list)) {
10438 dev = netdev_wait_allrefs_any(&list);
10439 list_del(&dev->todo_list);
10440
10441 /* paranoia */
10442 BUG_ON(netdev_refcnt_read(dev) != 1);
10443 BUG_ON(!list_empty(&dev->ptype_all));
10444 BUG_ON(!list_empty(&dev->ptype_specific));
10445 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10446 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10447
10448 if (dev->priv_destructor)
10449 dev->priv_destructor(dev);
10450 if (dev->needs_free_netdev)
10451 free_netdev(dev);
10452
10453 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10454 wake_up(&netdev_unregistering_wq);
10455
10456 /* Free network device */
10457 kobject_put(&dev->dev.kobj);
10458 }
10459}
10460
10461/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10462 * all the same fields in the same order as net_device_stats, with only
10463 * the type differing, but rtnl_link_stats64 may have additional fields
10464 * at the end for newer counters.
10465 */
10466void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10467 const struct net_device_stats *netdev_stats)
10468{
10469 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10470 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10471 u64 *dst = (u64 *)stats64;
10472
10473 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10474 for (i = 0; i < n; i++)
10475 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10476 /* zero out counters that only exist in rtnl_link_stats64 */
10477 memset((char *)stats64 + n * sizeof(u64), 0,
10478 sizeof(*stats64) - n * sizeof(u64));
10479}
10480EXPORT_SYMBOL(netdev_stats_to_stats64);
10481
10482struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10483{
10484 struct net_device_core_stats __percpu *p;
10485
10486 p = alloc_percpu_gfp(struct net_device_core_stats,
10487 GFP_ATOMIC | __GFP_NOWARN);
10488
10489 if (p && cmpxchg(&dev->core_stats, NULL, p))
10490 free_percpu(p);
10491
10492 /* This READ_ONCE() pairs with the cmpxchg() above */
10493 return READ_ONCE(dev->core_stats);
10494}
10495EXPORT_SYMBOL(netdev_core_stats_alloc);
10496
10497/**
10498 * dev_get_stats - get network device statistics
10499 * @dev: device to get statistics from
10500 * @storage: place to store stats
10501 *
10502 * Get network statistics from device. Return @storage.
10503 * The device driver may provide its own method by setting
10504 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10505 * otherwise the internal statistics structure is used.
10506 */
10507struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10508 struct rtnl_link_stats64 *storage)
10509{
10510 const struct net_device_ops *ops = dev->netdev_ops;
10511 const struct net_device_core_stats __percpu *p;
10512
10513 if (ops->ndo_get_stats64) {
10514 memset(storage, 0, sizeof(*storage));
10515 ops->ndo_get_stats64(dev, storage);
10516 } else if (ops->ndo_get_stats) {
10517 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10518 } else {
10519 netdev_stats_to_stats64(storage, &dev->stats);
10520 }
10521
10522 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10523 p = READ_ONCE(dev->core_stats);
10524 if (p) {
10525 const struct net_device_core_stats *core_stats;
10526 int i;
10527
10528 for_each_possible_cpu(i) {
10529 core_stats = per_cpu_ptr(p, i);
10530 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10531 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10532 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10533 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10534 }
10535 }
10536 return storage;
10537}
10538EXPORT_SYMBOL(dev_get_stats);
10539
10540/**
10541 * dev_fetch_sw_netstats - get per-cpu network device statistics
10542 * @s: place to store stats
10543 * @netstats: per-cpu network stats to read from
10544 *
10545 * Read per-cpu network statistics and populate the related fields in @s.
10546 */
10547void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10548 const struct pcpu_sw_netstats __percpu *netstats)
10549{
10550 int cpu;
10551
10552 for_each_possible_cpu(cpu) {
10553 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10554 const struct pcpu_sw_netstats *stats;
10555 unsigned int start;
10556
10557 stats = per_cpu_ptr(netstats, cpu);
10558 do {
10559 start = u64_stats_fetch_begin(&stats->syncp);
10560 rx_packets = u64_stats_read(&stats->rx_packets);
10561 rx_bytes = u64_stats_read(&stats->rx_bytes);
10562 tx_packets = u64_stats_read(&stats->tx_packets);
10563 tx_bytes = u64_stats_read(&stats->tx_bytes);
10564 } while (u64_stats_fetch_retry(&stats->syncp, start));
10565
10566 s->rx_packets += rx_packets;
10567 s->rx_bytes += rx_bytes;
10568 s->tx_packets += tx_packets;
10569 s->tx_bytes += tx_bytes;
10570 }
10571}
10572EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10573
10574/**
10575 * dev_get_tstats64 - ndo_get_stats64 implementation
10576 * @dev: device to get statistics from
10577 * @s: place to store stats
10578 *
10579 * Populate @s from dev->stats and dev->tstats. Can be used as
10580 * ndo_get_stats64() callback.
10581 */
10582void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10583{
10584 netdev_stats_to_stats64(s, &dev->stats);
10585 dev_fetch_sw_netstats(s, dev->tstats);
10586}
10587EXPORT_SYMBOL_GPL(dev_get_tstats64);
10588
10589struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10590{
10591 struct netdev_queue *queue = dev_ingress_queue(dev);
10592
10593#ifdef CONFIG_NET_CLS_ACT
10594 if (queue)
10595 return queue;
10596 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10597 if (!queue)
10598 return NULL;
10599 netdev_init_one_queue(dev, queue, NULL);
10600 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10601 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10602 rcu_assign_pointer(dev->ingress_queue, queue);
10603#endif
10604 return queue;
10605}
10606
10607static const struct ethtool_ops default_ethtool_ops;
10608
10609void netdev_set_default_ethtool_ops(struct net_device *dev,
10610 const struct ethtool_ops *ops)
10611{
10612 if (dev->ethtool_ops == &default_ethtool_ops)
10613 dev->ethtool_ops = ops;
10614}
10615EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10616
10617/**
10618 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10619 * @dev: netdev to enable the IRQ coalescing on
10620 *
10621 * Sets a conservative default for SW IRQ coalescing. Users can use
10622 * sysfs attributes to override the default values.
10623 */
10624void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10625{
10626 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10627
10628 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10629 dev->gro_flush_timeout = 20000;
10630 dev->napi_defer_hard_irqs = 1;
10631 }
10632}
10633EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10634
10635void netdev_freemem(struct net_device *dev)
10636{
10637 char *addr = (char *)dev - dev->padded;
10638
10639 kvfree(addr);
10640}
10641
10642/**
10643 * alloc_netdev_mqs - allocate network device
10644 * @sizeof_priv: size of private data to allocate space for
10645 * @name: device name format string
10646 * @name_assign_type: origin of device name
10647 * @setup: callback to initialize device
10648 * @txqs: the number of TX subqueues to allocate
10649 * @rxqs: the number of RX subqueues to allocate
10650 *
10651 * Allocates a struct net_device with private data area for driver use
10652 * and performs basic initialization. Also allocates subqueue structs
10653 * for each queue on the device.
10654 */
10655struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10656 unsigned char name_assign_type,
10657 void (*setup)(struct net_device *),
10658 unsigned int txqs, unsigned int rxqs)
10659{
10660 struct net_device *dev;
10661 unsigned int alloc_size;
10662 struct net_device *p;
10663
10664 BUG_ON(strlen(name) >= sizeof(dev->name));
10665
10666 if (txqs < 1) {
10667 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10668 return NULL;
10669 }
10670
10671 if (rxqs < 1) {
10672 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10673 return NULL;
10674 }
10675
10676 alloc_size = sizeof(struct net_device);
10677 if (sizeof_priv) {
10678 /* ensure 32-byte alignment of private area */
10679 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10680 alloc_size += sizeof_priv;
10681 }
10682 /* ensure 32-byte alignment of whole construct */
10683 alloc_size += NETDEV_ALIGN - 1;
10684
10685 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10686 if (!p)
10687 return NULL;
10688
10689 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10690 dev->padded = (char *)dev - (char *)p;
10691
10692 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10693#ifdef CONFIG_PCPU_DEV_REFCNT
10694 dev->pcpu_refcnt = alloc_percpu(int);
10695 if (!dev->pcpu_refcnt)
10696 goto free_dev;
10697 __dev_hold(dev);
10698#else
10699 refcount_set(&dev->dev_refcnt, 1);
10700#endif
10701
10702 if (dev_addr_init(dev))
10703 goto free_pcpu;
10704
10705 dev_mc_init(dev);
10706 dev_uc_init(dev);
10707
10708 dev_net_set(dev, &init_net);
10709
10710 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10711 dev->xdp_zc_max_segs = 1;
10712 dev->gso_max_segs = GSO_MAX_SEGS;
10713 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10714 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10715 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10716 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10717 dev->tso_max_segs = TSO_MAX_SEGS;
10718 dev->upper_level = 1;
10719 dev->lower_level = 1;
10720#ifdef CONFIG_LOCKDEP
10721 dev->nested_level = 0;
10722 INIT_LIST_HEAD(&dev->unlink_list);
10723#endif
10724
10725 INIT_LIST_HEAD(&dev->napi_list);
10726 INIT_LIST_HEAD(&dev->unreg_list);
10727 INIT_LIST_HEAD(&dev->close_list);
10728 INIT_LIST_HEAD(&dev->link_watch_list);
10729 INIT_LIST_HEAD(&dev->adj_list.upper);
10730 INIT_LIST_HEAD(&dev->adj_list.lower);
10731 INIT_LIST_HEAD(&dev->ptype_all);
10732 INIT_LIST_HEAD(&dev->ptype_specific);
10733 INIT_LIST_HEAD(&dev->net_notifier_list);
10734#ifdef CONFIG_NET_SCHED
10735 hash_init(dev->qdisc_hash);
10736#endif
10737 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10738 setup(dev);
10739
10740 if (!dev->tx_queue_len) {
10741 dev->priv_flags |= IFF_NO_QUEUE;
10742 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10743 }
10744
10745 dev->num_tx_queues = txqs;
10746 dev->real_num_tx_queues = txqs;
10747 if (netif_alloc_netdev_queues(dev))
10748 goto free_all;
10749
10750 dev->num_rx_queues = rxqs;
10751 dev->real_num_rx_queues = rxqs;
10752 if (netif_alloc_rx_queues(dev))
10753 goto free_all;
10754
10755 strcpy(dev->name, name);
10756 dev->name_assign_type = name_assign_type;
10757 dev->group = INIT_NETDEV_GROUP;
10758 if (!dev->ethtool_ops)
10759 dev->ethtool_ops = &default_ethtool_ops;
10760
10761 nf_hook_netdev_init(dev);
10762
10763 return dev;
10764
10765free_all:
10766 free_netdev(dev);
10767 return NULL;
10768
10769free_pcpu:
10770#ifdef CONFIG_PCPU_DEV_REFCNT
10771 free_percpu(dev->pcpu_refcnt);
10772free_dev:
10773#endif
10774 netdev_freemem(dev);
10775 return NULL;
10776}
10777EXPORT_SYMBOL(alloc_netdev_mqs);
10778
10779/**
10780 * free_netdev - free network device
10781 * @dev: device
10782 *
10783 * This function does the last stage of destroying an allocated device
10784 * interface. The reference to the device object is released. If this
10785 * is the last reference then it will be freed.Must be called in process
10786 * context.
10787 */
10788void free_netdev(struct net_device *dev)
10789{
10790 struct napi_struct *p, *n;
10791
10792 might_sleep();
10793
10794 /* When called immediately after register_netdevice() failed the unwind
10795 * handling may still be dismantling the device. Handle that case by
10796 * deferring the free.
10797 */
10798 if (dev->reg_state == NETREG_UNREGISTERING) {
10799 ASSERT_RTNL();
10800 dev->needs_free_netdev = true;
10801 return;
10802 }
10803
10804 netif_free_tx_queues(dev);
10805 netif_free_rx_queues(dev);
10806
10807 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10808
10809 /* Flush device addresses */
10810 dev_addr_flush(dev);
10811
10812 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10813 netif_napi_del(p);
10814
10815 ref_tracker_dir_exit(&dev->refcnt_tracker);
10816#ifdef CONFIG_PCPU_DEV_REFCNT
10817 free_percpu(dev->pcpu_refcnt);
10818 dev->pcpu_refcnt = NULL;
10819#endif
10820 free_percpu(dev->core_stats);
10821 dev->core_stats = NULL;
10822 free_percpu(dev->xdp_bulkq);
10823 dev->xdp_bulkq = NULL;
10824
10825 /* Compatibility with error handling in drivers */
10826 if (dev->reg_state == NETREG_UNINITIALIZED) {
10827 netdev_freemem(dev);
10828 return;
10829 }
10830
10831 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10832 dev->reg_state = NETREG_RELEASED;
10833
10834 /* will free via device release */
10835 put_device(&dev->dev);
10836}
10837EXPORT_SYMBOL(free_netdev);
10838
10839/**
10840 * synchronize_net - Synchronize with packet receive processing
10841 *
10842 * Wait for packets currently being received to be done.
10843 * Does not block later packets from starting.
10844 */
10845void synchronize_net(void)
10846{
10847 might_sleep();
10848 if (rtnl_is_locked())
10849 synchronize_rcu_expedited();
10850 else
10851 synchronize_rcu();
10852}
10853EXPORT_SYMBOL(synchronize_net);
10854
10855/**
10856 * unregister_netdevice_queue - remove device from the kernel
10857 * @dev: device
10858 * @head: list
10859 *
10860 * This function shuts down a device interface and removes it
10861 * from the kernel tables.
10862 * If head not NULL, device is queued to be unregistered later.
10863 *
10864 * Callers must hold the rtnl semaphore. You may want
10865 * unregister_netdev() instead of this.
10866 */
10867
10868void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10869{
10870 ASSERT_RTNL();
10871
10872 if (head) {
10873 list_move_tail(&dev->unreg_list, head);
10874 } else {
10875 LIST_HEAD(single);
10876
10877 list_add(&dev->unreg_list, &single);
10878 unregister_netdevice_many(&single);
10879 }
10880}
10881EXPORT_SYMBOL(unregister_netdevice_queue);
10882
10883void unregister_netdevice_many_notify(struct list_head *head,
10884 u32 portid, const struct nlmsghdr *nlh)
10885{
10886 struct net_device *dev, *tmp;
10887 LIST_HEAD(close_head);
10888
10889 BUG_ON(dev_boot_phase);
10890 ASSERT_RTNL();
10891
10892 if (list_empty(head))
10893 return;
10894
10895 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10896 /* Some devices call without registering
10897 * for initialization unwind. Remove those
10898 * devices and proceed with the remaining.
10899 */
10900 if (dev->reg_state == NETREG_UNINITIALIZED) {
10901 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10902 dev->name, dev);
10903
10904 WARN_ON(1);
10905 list_del(&dev->unreg_list);
10906 continue;
10907 }
10908 dev->dismantle = true;
10909 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10910 }
10911
10912 /* If device is running, close it first. */
10913 list_for_each_entry(dev, head, unreg_list)
10914 list_add_tail(&dev->close_list, &close_head);
10915 dev_close_many(&close_head, true);
10916
10917 list_for_each_entry(dev, head, unreg_list) {
10918 /* And unlink it from device chain. */
10919 write_lock(&dev_base_lock);
10920 unlist_netdevice(dev, false);
10921 dev->reg_state = NETREG_UNREGISTERING;
10922 write_unlock(&dev_base_lock);
10923 }
10924 flush_all_backlogs();
10925
10926 synchronize_net();
10927
10928 list_for_each_entry(dev, head, unreg_list) {
10929 struct sk_buff *skb = NULL;
10930
10931 /* Shutdown queueing discipline. */
10932 dev_shutdown(dev);
10933 dev_tcx_uninstall(dev);
10934 dev_xdp_uninstall(dev);
10935 bpf_dev_bound_netdev_unregister(dev);
10936
10937 netdev_offload_xstats_disable_all(dev);
10938
10939 /* Notify protocols, that we are about to destroy
10940 * this device. They should clean all the things.
10941 */
10942 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10943
10944 if (!dev->rtnl_link_ops ||
10945 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10946 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10947 GFP_KERNEL, NULL, 0,
10948 portid, nlh);
10949
10950 /*
10951 * Flush the unicast and multicast chains
10952 */
10953 dev_uc_flush(dev);
10954 dev_mc_flush(dev);
10955
10956 netdev_name_node_alt_flush(dev);
10957 netdev_name_node_free(dev->name_node);
10958
10959 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10960
10961 if (dev->netdev_ops->ndo_uninit)
10962 dev->netdev_ops->ndo_uninit(dev);
10963
10964 if (skb)
10965 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10966
10967 /* Notifier chain MUST detach us all upper devices. */
10968 WARN_ON(netdev_has_any_upper_dev(dev));
10969 WARN_ON(netdev_has_any_lower_dev(dev));
10970
10971 /* Remove entries from kobject tree */
10972 netdev_unregister_kobject(dev);
10973#ifdef CONFIG_XPS
10974 /* Remove XPS queueing entries */
10975 netif_reset_xps_queues_gt(dev, 0);
10976#endif
10977 }
10978
10979 synchronize_net();
10980
10981 list_for_each_entry(dev, head, unreg_list) {
10982 netdev_put(dev, &dev->dev_registered_tracker);
10983 net_set_todo(dev);
10984 }
10985
10986 list_del(head);
10987}
10988
10989/**
10990 * unregister_netdevice_many - unregister many devices
10991 * @head: list of devices
10992 *
10993 * Note: As most callers use a stack allocated list_head,
10994 * we force a list_del() to make sure stack wont be corrupted later.
10995 */
10996void unregister_netdevice_many(struct list_head *head)
10997{
10998 unregister_netdevice_many_notify(head, 0, NULL);
10999}
11000EXPORT_SYMBOL(unregister_netdevice_many);
11001
11002/**
11003 * unregister_netdev - remove device from the kernel
11004 * @dev: device
11005 *
11006 * This function shuts down a device interface and removes it
11007 * from the kernel tables.
11008 *
11009 * This is just a wrapper for unregister_netdevice that takes
11010 * the rtnl semaphore. In general you want to use this and not
11011 * unregister_netdevice.
11012 */
11013void unregister_netdev(struct net_device *dev)
11014{
11015 rtnl_lock();
11016 unregister_netdevice(dev);
11017 rtnl_unlock();
11018}
11019EXPORT_SYMBOL(unregister_netdev);
11020
11021/**
11022 * __dev_change_net_namespace - move device to different nethost namespace
11023 * @dev: device
11024 * @net: network namespace
11025 * @pat: If not NULL name pattern to try if the current device name
11026 * is already taken in the destination network namespace.
11027 * @new_ifindex: If not zero, specifies device index in the target
11028 * namespace.
11029 *
11030 * This function shuts down a device interface and moves it
11031 * to a new network namespace. On success 0 is returned, on
11032 * a failure a netagive errno code is returned.
11033 *
11034 * Callers must hold the rtnl semaphore.
11035 */
11036
11037int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11038 const char *pat, int new_ifindex)
11039{
11040 struct net *net_old = dev_net(dev);
11041 int err, new_nsid;
11042
11043 ASSERT_RTNL();
11044
11045 /* Don't allow namespace local devices to be moved. */
11046 err = -EINVAL;
11047 if (dev->features & NETIF_F_NETNS_LOCAL)
11048 goto out;
11049
11050 /* Ensure the device has been registrered */
11051 if (dev->reg_state != NETREG_REGISTERED)
11052 goto out;
11053
11054 /* Get out if there is nothing todo */
11055 err = 0;
11056 if (net_eq(net_old, net))
11057 goto out;
11058
11059 /* Pick the destination device name, and ensure
11060 * we can use it in the destination network namespace.
11061 */
11062 err = -EEXIST;
11063 if (netdev_name_in_use(net, dev->name)) {
11064 /* We get here if we can't use the current device name */
11065 if (!pat)
11066 goto out;
11067 err = dev_get_valid_name(net, dev, pat);
11068 if (err < 0)
11069 goto out;
11070 }
11071
11072 /* Check that new_ifindex isn't used yet. */
11073 if (new_ifindex) {
11074 err = dev_index_reserve(net, new_ifindex);
11075 if (err < 0)
11076 goto out;
11077 } else {
11078 /* If there is an ifindex conflict assign a new one */
11079 err = dev_index_reserve(net, dev->ifindex);
11080 if (err == -EBUSY)
11081 err = dev_index_reserve(net, 0);
11082 if (err < 0)
11083 goto out;
11084 new_ifindex = err;
11085 }
11086
11087 /*
11088 * And now a mini version of register_netdevice unregister_netdevice.
11089 */
11090
11091 /* If device is running close it first. */
11092 dev_close(dev);
11093
11094 /* And unlink it from device chain */
11095 unlist_netdevice(dev, true);
11096
11097 synchronize_net();
11098
11099 /* Shutdown queueing discipline. */
11100 dev_shutdown(dev);
11101
11102 /* Notify protocols, that we are about to destroy
11103 * this device. They should clean all the things.
11104 *
11105 * Note that dev->reg_state stays at NETREG_REGISTERED.
11106 * This is wanted because this way 8021q and macvlan know
11107 * the device is just moving and can keep their slaves up.
11108 */
11109 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11110 rcu_barrier();
11111
11112 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11113
11114 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11115 new_ifindex);
11116
11117 /*
11118 * Flush the unicast and multicast chains
11119 */
11120 dev_uc_flush(dev);
11121 dev_mc_flush(dev);
11122
11123 /* Send a netdev-removed uevent to the old namespace */
11124 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11125 netdev_adjacent_del_links(dev);
11126
11127 /* Move per-net netdevice notifiers that are following the netdevice */
11128 move_netdevice_notifiers_dev_net(dev, net);
11129
11130 /* Actually switch the network namespace */
11131 dev_net_set(dev, net);
11132 dev->ifindex = new_ifindex;
11133
11134 /* Send a netdev-add uevent to the new namespace */
11135 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11136 netdev_adjacent_add_links(dev);
11137
11138 /* Fixup kobjects */
11139 err = device_rename(&dev->dev, dev->name);
11140 WARN_ON(err);
11141
11142 /* Adapt owner in case owning user namespace of target network
11143 * namespace is different from the original one.
11144 */
11145 err = netdev_change_owner(dev, net_old, net);
11146 WARN_ON(err);
11147
11148 /* Add the device back in the hashes */
11149 list_netdevice(dev);
11150
11151 /* Notify protocols, that a new device appeared. */
11152 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11153
11154 /*
11155 * Prevent userspace races by waiting until the network
11156 * device is fully setup before sending notifications.
11157 */
11158 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11159
11160 synchronize_net();
11161 err = 0;
11162out:
11163 return err;
11164}
11165EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11166
11167static int dev_cpu_dead(unsigned int oldcpu)
11168{
11169 struct sk_buff **list_skb;
11170 struct sk_buff *skb;
11171 unsigned int cpu;
11172 struct softnet_data *sd, *oldsd, *remsd = NULL;
11173
11174 local_irq_disable();
11175 cpu = smp_processor_id();
11176 sd = &per_cpu(softnet_data, cpu);
11177 oldsd = &per_cpu(softnet_data, oldcpu);
11178
11179 /* Find end of our completion_queue. */
11180 list_skb = &sd->completion_queue;
11181 while (*list_skb)
11182 list_skb = &(*list_skb)->next;
11183 /* Append completion queue from offline CPU. */
11184 *list_skb = oldsd->completion_queue;
11185 oldsd->completion_queue = NULL;
11186
11187 /* Append output queue from offline CPU. */
11188 if (oldsd->output_queue) {
11189 *sd->output_queue_tailp = oldsd->output_queue;
11190 sd->output_queue_tailp = oldsd->output_queue_tailp;
11191 oldsd->output_queue = NULL;
11192 oldsd->output_queue_tailp = &oldsd->output_queue;
11193 }
11194 /* Append NAPI poll list from offline CPU, with one exception :
11195 * process_backlog() must be called by cpu owning percpu backlog.
11196 * We properly handle process_queue & input_pkt_queue later.
11197 */
11198 while (!list_empty(&oldsd->poll_list)) {
11199 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11200 struct napi_struct,
11201 poll_list);
11202
11203 list_del_init(&napi->poll_list);
11204 if (napi->poll == process_backlog)
11205 napi->state = 0;
11206 else
11207 ____napi_schedule(sd, napi);
11208 }
11209
11210 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11211 local_irq_enable();
11212
11213#ifdef CONFIG_RPS
11214 remsd = oldsd->rps_ipi_list;
11215 oldsd->rps_ipi_list = NULL;
11216#endif
11217 /* send out pending IPI's on offline CPU */
11218 net_rps_send_ipi(remsd);
11219
11220 /* Process offline CPU's input_pkt_queue */
11221 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11222 netif_rx(skb);
11223 input_queue_head_incr(oldsd);
11224 }
11225 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11226 netif_rx(skb);
11227 input_queue_head_incr(oldsd);
11228 }
11229
11230 return 0;
11231}
11232
11233/**
11234 * netdev_increment_features - increment feature set by one
11235 * @all: current feature set
11236 * @one: new feature set
11237 * @mask: mask feature set
11238 *
11239 * Computes a new feature set after adding a device with feature set
11240 * @one to the master device with current feature set @all. Will not
11241 * enable anything that is off in @mask. Returns the new feature set.
11242 */
11243netdev_features_t netdev_increment_features(netdev_features_t all,
11244 netdev_features_t one, netdev_features_t mask)
11245{
11246 if (mask & NETIF_F_HW_CSUM)
11247 mask |= NETIF_F_CSUM_MASK;
11248 mask |= NETIF_F_VLAN_CHALLENGED;
11249
11250 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11251 all &= one | ~NETIF_F_ALL_FOR_ALL;
11252
11253 /* If one device supports hw checksumming, set for all. */
11254 if (all & NETIF_F_HW_CSUM)
11255 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11256
11257 return all;
11258}
11259EXPORT_SYMBOL(netdev_increment_features);
11260
11261static struct hlist_head * __net_init netdev_create_hash(void)
11262{
11263 int i;
11264 struct hlist_head *hash;
11265
11266 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11267 if (hash != NULL)
11268 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11269 INIT_HLIST_HEAD(&hash[i]);
11270
11271 return hash;
11272}
11273
11274/* Initialize per network namespace state */
11275static int __net_init netdev_init(struct net *net)
11276{
11277 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11278 8 * sizeof_field(struct napi_struct, gro_bitmask));
11279
11280 INIT_LIST_HEAD(&net->dev_base_head);
11281
11282 net->dev_name_head = netdev_create_hash();
11283 if (net->dev_name_head == NULL)
11284 goto err_name;
11285
11286 net->dev_index_head = netdev_create_hash();
11287 if (net->dev_index_head == NULL)
11288 goto err_idx;
11289
11290 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11291
11292 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11293
11294 return 0;
11295
11296err_idx:
11297 kfree(net->dev_name_head);
11298err_name:
11299 return -ENOMEM;
11300}
11301
11302/**
11303 * netdev_drivername - network driver for the device
11304 * @dev: network device
11305 *
11306 * Determine network driver for device.
11307 */
11308const char *netdev_drivername(const struct net_device *dev)
11309{
11310 const struct device_driver *driver;
11311 const struct device *parent;
11312 const char *empty = "";
11313
11314 parent = dev->dev.parent;
11315 if (!parent)
11316 return empty;
11317
11318 driver = parent->driver;
11319 if (driver && driver->name)
11320 return driver->name;
11321 return empty;
11322}
11323
11324static void __netdev_printk(const char *level, const struct net_device *dev,
11325 struct va_format *vaf)
11326{
11327 if (dev && dev->dev.parent) {
11328 dev_printk_emit(level[1] - '0',
11329 dev->dev.parent,
11330 "%s %s %s%s: %pV",
11331 dev_driver_string(dev->dev.parent),
11332 dev_name(dev->dev.parent),
11333 netdev_name(dev), netdev_reg_state(dev),
11334 vaf);
11335 } else if (dev) {
11336 printk("%s%s%s: %pV",
11337 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11338 } else {
11339 printk("%s(NULL net_device): %pV", level, vaf);
11340 }
11341}
11342
11343void netdev_printk(const char *level, const struct net_device *dev,
11344 const char *format, ...)
11345{
11346 struct va_format vaf;
11347 va_list args;
11348
11349 va_start(args, format);
11350
11351 vaf.fmt = format;
11352 vaf.va = &args;
11353
11354 __netdev_printk(level, dev, &vaf);
11355
11356 va_end(args);
11357}
11358EXPORT_SYMBOL(netdev_printk);
11359
11360#define define_netdev_printk_level(func, level) \
11361void func(const struct net_device *dev, const char *fmt, ...) \
11362{ \
11363 struct va_format vaf; \
11364 va_list args; \
11365 \
11366 va_start(args, fmt); \
11367 \
11368 vaf.fmt = fmt; \
11369 vaf.va = &args; \
11370 \
11371 __netdev_printk(level, dev, &vaf); \
11372 \
11373 va_end(args); \
11374} \
11375EXPORT_SYMBOL(func);
11376
11377define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11378define_netdev_printk_level(netdev_alert, KERN_ALERT);
11379define_netdev_printk_level(netdev_crit, KERN_CRIT);
11380define_netdev_printk_level(netdev_err, KERN_ERR);
11381define_netdev_printk_level(netdev_warn, KERN_WARNING);
11382define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11383define_netdev_printk_level(netdev_info, KERN_INFO);
11384
11385static void __net_exit netdev_exit(struct net *net)
11386{
11387 kfree(net->dev_name_head);
11388 kfree(net->dev_index_head);
11389 xa_destroy(&net->dev_by_index);
11390 if (net != &init_net)
11391 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11392}
11393
11394static struct pernet_operations __net_initdata netdev_net_ops = {
11395 .init = netdev_init,
11396 .exit = netdev_exit,
11397};
11398
11399static void __net_exit default_device_exit_net(struct net *net)
11400{
11401 struct net_device *dev, *aux;
11402 /*
11403 * Push all migratable network devices back to the
11404 * initial network namespace
11405 */
11406 ASSERT_RTNL();
11407 for_each_netdev_safe(net, dev, aux) {
11408 int err;
11409 char fb_name[IFNAMSIZ];
11410
11411 /* Ignore unmoveable devices (i.e. loopback) */
11412 if (dev->features & NETIF_F_NETNS_LOCAL)
11413 continue;
11414
11415 /* Leave virtual devices for the generic cleanup */
11416 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11417 continue;
11418
11419 /* Push remaining network devices to init_net */
11420 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11421 if (netdev_name_in_use(&init_net, fb_name))
11422 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11423 err = dev_change_net_namespace(dev, &init_net, fb_name);
11424 if (err) {
11425 pr_emerg("%s: failed to move %s to init_net: %d\n",
11426 __func__, dev->name, err);
11427 BUG();
11428 }
11429 }
11430}
11431
11432static void __net_exit default_device_exit_batch(struct list_head *net_list)
11433{
11434 /* At exit all network devices most be removed from a network
11435 * namespace. Do this in the reverse order of registration.
11436 * Do this across as many network namespaces as possible to
11437 * improve batching efficiency.
11438 */
11439 struct net_device *dev;
11440 struct net *net;
11441 LIST_HEAD(dev_kill_list);
11442
11443 rtnl_lock();
11444 list_for_each_entry(net, net_list, exit_list) {
11445 default_device_exit_net(net);
11446 cond_resched();
11447 }
11448
11449 list_for_each_entry(net, net_list, exit_list) {
11450 for_each_netdev_reverse(net, dev) {
11451 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11452 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11453 else
11454 unregister_netdevice_queue(dev, &dev_kill_list);
11455 }
11456 }
11457 unregister_netdevice_many(&dev_kill_list);
11458 rtnl_unlock();
11459}
11460
11461static struct pernet_operations __net_initdata default_device_ops = {
11462 .exit_batch = default_device_exit_batch,
11463};
11464
11465/*
11466 * Initialize the DEV module. At boot time this walks the device list and
11467 * unhooks any devices that fail to initialise (normally hardware not
11468 * present) and leaves us with a valid list of present and active devices.
11469 *
11470 */
11471
11472/*
11473 * This is called single threaded during boot, so no need
11474 * to take the rtnl semaphore.
11475 */
11476static int __init net_dev_init(void)
11477{
11478 int i, rc = -ENOMEM;
11479
11480 BUG_ON(!dev_boot_phase);
11481
11482 if (dev_proc_init())
11483 goto out;
11484
11485 if (netdev_kobject_init())
11486 goto out;
11487
11488 INIT_LIST_HEAD(&ptype_all);
11489 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11490 INIT_LIST_HEAD(&ptype_base[i]);
11491
11492 if (register_pernet_subsys(&netdev_net_ops))
11493 goto out;
11494
11495 /*
11496 * Initialise the packet receive queues.
11497 */
11498
11499 for_each_possible_cpu(i) {
11500 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11501 struct softnet_data *sd = &per_cpu(softnet_data, i);
11502
11503 INIT_WORK(flush, flush_backlog);
11504
11505 skb_queue_head_init(&sd->input_pkt_queue);
11506 skb_queue_head_init(&sd->process_queue);
11507#ifdef CONFIG_XFRM_OFFLOAD
11508 skb_queue_head_init(&sd->xfrm_backlog);
11509#endif
11510 INIT_LIST_HEAD(&sd->poll_list);
11511 sd->output_queue_tailp = &sd->output_queue;
11512#ifdef CONFIG_RPS
11513 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11514 sd->cpu = i;
11515#endif
11516 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11517 spin_lock_init(&sd->defer_lock);
11518
11519 init_gro_hash(&sd->backlog);
11520 sd->backlog.poll = process_backlog;
11521 sd->backlog.weight = weight_p;
11522 }
11523
11524 dev_boot_phase = 0;
11525
11526 /* The loopback device is special if any other network devices
11527 * is present in a network namespace the loopback device must
11528 * be present. Since we now dynamically allocate and free the
11529 * loopback device ensure this invariant is maintained by
11530 * keeping the loopback device as the first device on the
11531 * list of network devices. Ensuring the loopback devices
11532 * is the first device that appears and the last network device
11533 * that disappears.
11534 */
11535 if (register_pernet_device(&loopback_net_ops))
11536 goto out;
11537
11538 if (register_pernet_device(&default_device_ops))
11539 goto out;
11540
11541 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11542 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11543
11544 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11545 NULL, dev_cpu_dead);
11546 WARN_ON(rc < 0);
11547 rc = 0;
11548out:
11549 return rc;
11550}
11551
11552subsys_initcall(net_dev_init);