Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7#ifndef __MM_INTERNAL_H
8#define __MM_INTERNAL_H
9
10#include <linux/fs.h>
11#include <linux/mm.h>
12#include <linux/pagemap.h>
13#include <linux/rmap.h>
14#include <linux/tracepoint-defs.h>
15
16struct folio_batch;
17
18/*
19 * The set of flags that only affect watermark checking and reclaim
20 * behaviour. This is used by the MM to obey the caller constraints
21 * about IO, FS and watermark checking while ignoring placement
22 * hints such as HIGHMEM usage.
23 */
24#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27 __GFP_NOLOCKDEP)
28
29/* The GFP flags allowed during early boot */
30#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31
32/* Control allocation cpuset and node placement constraints */
33#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34
35/* Do not use these with a slab allocator */
36#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37
38/*
39 * Different from WARN_ON_ONCE(), no warning will be issued
40 * when we specify __GFP_NOWARN.
41 */
42#define WARN_ON_ONCE_GFP(cond, gfp) ({ \
43 static bool __section(".data.once") __warned; \
44 int __ret_warn_once = !!(cond); \
45 \
46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
47 __warned = true; \
48 WARN_ON(1); \
49 } \
50 unlikely(__ret_warn_once); \
51})
52
53void page_writeback_init(void);
54
55/*
56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
57 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit
58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
60 */
61#define COMPOUND_MAPPED 0x800000
62#define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1)
63
64/*
65 * Flags passed to __show_mem() and show_free_areas() to suppress output in
66 * various contexts.
67 */
68#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
69
70/*
71 * How many individual pages have an elevated _mapcount. Excludes
72 * the folio's entire_mapcount.
73 */
74static inline int folio_nr_pages_mapped(struct folio *folio)
75{
76 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
77}
78
79static inline void *folio_raw_mapping(struct folio *folio)
80{
81 unsigned long mapping = (unsigned long)folio->mapping;
82
83 return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
84}
85
86void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
87 int nr_throttled);
88static inline void acct_reclaim_writeback(struct folio *folio)
89{
90 pg_data_t *pgdat = folio_pgdat(folio);
91 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
92
93 if (nr_throttled)
94 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
95}
96
97static inline void wake_throttle_isolated(pg_data_t *pgdat)
98{
99 wait_queue_head_t *wqh;
100
101 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
102 if (waitqueue_active(wqh))
103 wake_up(wqh);
104}
105
106vm_fault_t do_swap_page(struct vm_fault *vmf);
107void folio_rotate_reclaimable(struct folio *folio);
108bool __folio_end_writeback(struct folio *folio);
109void deactivate_file_folio(struct folio *folio);
110void folio_activate(struct folio *folio);
111
112void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
113 struct vm_area_struct *start_vma, unsigned long floor,
114 unsigned long ceiling, bool mm_wr_locked);
115void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
116
117struct zap_details;
118void unmap_page_range(struct mmu_gather *tlb,
119 struct vm_area_struct *vma,
120 unsigned long addr, unsigned long end,
121 struct zap_details *details);
122
123void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
124 unsigned int order);
125void force_page_cache_ra(struct readahead_control *, unsigned long nr);
126static inline void force_page_cache_readahead(struct address_space *mapping,
127 struct file *file, pgoff_t index, unsigned long nr_to_read)
128{
129 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
130 force_page_cache_ra(&ractl, nr_to_read);
131}
132
133unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
134 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
135unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
136 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
137void filemap_free_folio(struct address_space *mapping, struct folio *folio);
138int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
139bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
140 loff_t end);
141long invalidate_inode_page(struct page *page);
142unsigned long mapping_try_invalidate(struct address_space *mapping,
143 pgoff_t start, pgoff_t end, unsigned long *nr_failed);
144
145/**
146 * folio_evictable - Test whether a folio is evictable.
147 * @folio: The folio to test.
148 *
149 * Test whether @folio is evictable -- i.e., should be placed on
150 * active/inactive lists vs unevictable list.
151 *
152 * Reasons folio might not be evictable:
153 * 1. folio's mapping marked unevictable
154 * 2. One of the pages in the folio is part of an mlocked VMA
155 */
156static inline bool folio_evictable(struct folio *folio)
157{
158 bool ret;
159
160 /* Prevent address_space of inode and swap cache from being freed */
161 rcu_read_lock();
162 ret = !mapping_unevictable(folio_mapping(folio)) &&
163 !folio_test_mlocked(folio);
164 rcu_read_unlock();
165 return ret;
166}
167
168/*
169 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
170 * a count of one.
171 */
172static inline void set_page_refcounted(struct page *page)
173{
174 VM_BUG_ON_PAGE(PageTail(page), page);
175 VM_BUG_ON_PAGE(page_ref_count(page), page);
176 set_page_count(page, 1);
177}
178
179/*
180 * Return true if a folio needs ->release_folio() calling upon it.
181 */
182static inline bool folio_needs_release(struct folio *folio)
183{
184 struct address_space *mapping = folio_mapping(folio);
185
186 return folio_has_private(folio) ||
187 (mapping && mapping_release_always(mapping));
188}
189
190extern unsigned long highest_memmap_pfn;
191
192/*
193 * Maximum number of reclaim retries without progress before the OOM
194 * killer is consider the only way forward.
195 */
196#define MAX_RECLAIM_RETRIES 16
197
198/*
199 * in mm/vmscan.c:
200 */
201bool isolate_lru_page(struct page *page);
202bool folio_isolate_lru(struct folio *folio);
203void putback_lru_page(struct page *page);
204void folio_putback_lru(struct folio *folio);
205extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
206
207/*
208 * in mm/rmap.c:
209 */
210pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
211
212/*
213 * in mm/page_alloc.c
214 */
215#define K(x) ((x) << (PAGE_SHIFT-10))
216
217extern char * const zone_names[MAX_NR_ZONES];
218
219/* perform sanity checks on struct pages being allocated or freed */
220DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
221
222extern int min_free_kbytes;
223
224void setup_per_zone_wmarks(void);
225void calculate_min_free_kbytes(void);
226int __meminit init_per_zone_wmark_min(void);
227void page_alloc_sysctl_init(void);
228
229/*
230 * Structure for holding the mostly immutable allocation parameters passed
231 * between functions involved in allocations, including the alloc_pages*
232 * family of functions.
233 *
234 * nodemask, migratetype and highest_zoneidx are initialized only once in
235 * __alloc_pages() and then never change.
236 *
237 * zonelist, preferred_zone and highest_zoneidx are set first in
238 * __alloc_pages() for the fast path, and might be later changed
239 * in __alloc_pages_slowpath(). All other functions pass the whole structure
240 * by a const pointer.
241 */
242struct alloc_context {
243 struct zonelist *zonelist;
244 nodemask_t *nodemask;
245 struct zoneref *preferred_zoneref;
246 int migratetype;
247
248 /*
249 * highest_zoneidx represents highest usable zone index of
250 * the allocation request. Due to the nature of the zone,
251 * memory on lower zone than the highest_zoneidx will be
252 * protected by lowmem_reserve[highest_zoneidx].
253 *
254 * highest_zoneidx is also used by reclaim/compaction to limit
255 * the target zone since higher zone than this index cannot be
256 * usable for this allocation request.
257 */
258 enum zone_type highest_zoneidx;
259 bool spread_dirty_pages;
260};
261
262/*
263 * This function returns the order of a free page in the buddy system. In
264 * general, page_zone(page)->lock must be held by the caller to prevent the
265 * page from being allocated in parallel and returning garbage as the order.
266 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
267 * page cannot be allocated or merged in parallel. Alternatively, it must
268 * handle invalid values gracefully, and use buddy_order_unsafe() below.
269 */
270static inline unsigned int buddy_order(struct page *page)
271{
272 /* PageBuddy() must be checked by the caller */
273 return page_private(page);
274}
275
276/*
277 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
278 * PageBuddy() should be checked first by the caller to minimize race window,
279 * and invalid values must be handled gracefully.
280 *
281 * READ_ONCE is used so that if the caller assigns the result into a local
282 * variable and e.g. tests it for valid range before using, the compiler cannot
283 * decide to remove the variable and inline the page_private(page) multiple
284 * times, potentially observing different values in the tests and the actual
285 * use of the result.
286 */
287#define buddy_order_unsafe(page) READ_ONCE(page_private(page))
288
289/*
290 * This function checks whether a page is free && is the buddy
291 * we can coalesce a page and its buddy if
292 * (a) the buddy is not in a hole (check before calling!) &&
293 * (b) the buddy is in the buddy system &&
294 * (c) a page and its buddy have the same order &&
295 * (d) a page and its buddy are in the same zone.
296 *
297 * For recording whether a page is in the buddy system, we set PageBuddy.
298 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
299 *
300 * For recording page's order, we use page_private(page).
301 */
302static inline bool page_is_buddy(struct page *page, struct page *buddy,
303 unsigned int order)
304{
305 if (!page_is_guard(buddy) && !PageBuddy(buddy))
306 return false;
307
308 if (buddy_order(buddy) != order)
309 return false;
310
311 /*
312 * zone check is done late to avoid uselessly calculating
313 * zone/node ids for pages that could never merge.
314 */
315 if (page_zone_id(page) != page_zone_id(buddy))
316 return false;
317
318 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
319
320 return true;
321}
322
323/*
324 * Locate the struct page for both the matching buddy in our
325 * pair (buddy1) and the combined O(n+1) page they form (page).
326 *
327 * 1) Any buddy B1 will have an order O twin B2 which satisfies
328 * the following equation:
329 * B2 = B1 ^ (1 << O)
330 * For example, if the starting buddy (buddy2) is #8 its order
331 * 1 buddy is #10:
332 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
333 *
334 * 2) Any buddy B will have an order O+1 parent P which
335 * satisfies the following equation:
336 * P = B & ~(1 << O)
337 *
338 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
339 */
340static inline unsigned long
341__find_buddy_pfn(unsigned long page_pfn, unsigned int order)
342{
343 return page_pfn ^ (1 << order);
344}
345
346/*
347 * Find the buddy of @page and validate it.
348 * @page: The input page
349 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
350 * function is used in the performance-critical __free_one_page().
351 * @order: The order of the page
352 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
353 * page_to_pfn().
354 *
355 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
356 * not the same as @page. The validation is necessary before use it.
357 *
358 * Return: the found buddy page or NULL if not found.
359 */
360static inline struct page *find_buddy_page_pfn(struct page *page,
361 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
362{
363 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
364 struct page *buddy;
365
366 buddy = page + (__buddy_pfn - pfn);
367 if (buddy_pfn)
368 *buddy_pfn = __buddy_pfn;
369
370 if (page_is_buddy(page, buddy, order))
371 return buddy;
372 return NULL;
373}
374
375extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
376 unsigned long end_pfn, struct zone *zone);
377
378static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
379 unsigned long end_pfn, struct zone *zone)
380{
381 if (zone->contiguous)
382 return pfn_to_page(start_pfn);
383
384 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
385}
386
387void set_zone_contiguous(struct zone *zone);
388
389static inline void clear_zone_contiguous(struct zone *zone)
390{
391 zone->contiguous = false;
392}
393
394extern int __isolate_free_page(struct page *page, unsigned int order);
395extern void __putback_isolated_page(struct page *page, unsigned int order,
396 int mt);
397extern void memblock_free_pages(struct page *page, unsigned long pfn,
398 unsigned int order);
399extern void __free_pages_core(struct page *page, unsigned int order);
400
401/*
402 * This will have no effect, other than possibly generating a warning, if the
403 * caller passes in a non-large folio.
404 */
405static inline void folio_set_order(struct folio *folio, unsigned int order)
406{
407 if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
408 return;
409
410 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
411#ifdef CONFIG_64BIT
412 folio->_folio_nr_pages = 1U << order;
413#endif
414}
415
416void folio_undo_large_rmappable(struct folio *folio);
417
418static inline void prep_compound_head(struct page *page, unsigned int order)
419{
420 struct folio *folio = (struct folio *)page;
421
422 folio_set_order(folio, order);
423 atomic_set(&folio->_entire_mapcount, -1);
424 atomic_set(&folio->_nr_pages_mapped, 0);
425 atomic_set(&folio->_pincount, 0);
426}
427
428static inline void prep_compound_tail(struct page *head, int tail_idx)
429{
430 struct page *p = head + tail_idx;
431
432 p->mapping = TAIL_MAPPING;
433 set_compound_head(p, head);
434 set_page_private(p, 0);
435}
436
437extern void prep_compound_page(struct page *page, unsigned int order);
438
439extern void post_alloc_hook(struct page *page, unsigned int order,
440 gfp_t gfp_flags);
441extern int user_min_free_kbytes;
442
443extern void free_unref_page(struct page *page, unsigned int order);
444extern void free_unref_page_list(struct list_head *list);
445
446extern void zone_pcp_reset(struct zone *zone);
447extern void zone_pcp_disable(struct zone *zone);
448extern void zone_pcp_enable(struct zone *zone);
449extern void zone_pcp_init(struct zone *zone);
450
451extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
452 phys_addr_t min_addr,
453 int nid, bool exact_nid);
454
455void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
456 unsigned long, enum meminit_context, struct vmem_altmap *, int);
457
458
459int split_free_page(struct page *free_page,
460 unsigned int order, unsigned long split_pfn_offset);
461
462#if defined CONFIG_COMPACTION || defined CONFIG_CMA
463
464/*
465 * in mm/compaction.c
466 */
467/*
468 * compact_control is used to track pages being migrated and the free pages
469 * they are being migrated to during memory compaction. The free_pfn starts
470 * at the end of a zone and migrate_pfn begins at the start. Movable pages
471 * are moved to the end of a zone during a compaction run and the run
472 * completes when free_pfn <= migrate_pfn
473 */
474struct compact_control {
475 struct list_head freepages; /* List of free pages to migrate to */
476 struct list_head migratepages; /* List of pages being migrated */
477 unsigned int nr_freepages; /* Number of isolated free pages */
478 unsigned int nr_migratepages; /* Number of pages to migrate */
479 unsigned long free_pfn; /* isolate_freepages search base */
480 /*
481 * Acts as an in/out parameter to page isolation for migration.
482 * isolate_migratepages uses it as a search base.
483 * isolate_migratepages_block will update the value to the next pfn
484 * after the last isolated one.
485 */
486 unsigned long migrate_pfn;
487 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
488 struct zone *zone;
489 unsigned long total_migrate_scanned;
490 unsigned long total_free_scanned;
491 unsigned short fast_search_fail;/* failures to use free list searches */
492 short search_order; /* order to start a fast search at */
493 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
494 int order; /* order a direct compactor needs */
495 int migratetype; /* migratetype of direct compactor */
496 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
497 const int highest_zoneidx; /* zone index of a direct compactor */
498 enum migrate_mode mode; /* Async or sync migration mode */
499 bool ignore_skip_hint; /* Scan blocks even if marked skip */
500 bool no_set_skip_hint; /* Don't mark blocks for skipping */
501 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
502 bool direct_compaction; /* False from kcompactd or /proc/... */
503 bool proactive_compaction; /* kcompactd proactive compaction */
504 bool whole_zone; /* Whole zone should/has been scanned */
505 bool contended; /* Signal lock contention */
506 bool finish_pageblock; /* Scan the remainder of a pageblock. Used
507 * when there are potentially transient
508 * isolation or migration failures to
509 * ensure forward progress.
510 */
511 bool alloc_contig; /* alloc_contig_range allocation */
512};
513
514/*
515 * Used in direct compaction when a page should be taken from the freelists
516 * immediately when one is created during the free path.
517 */
518struct capture_control {
519 struct compact_control *cc;
520 struct page *page;
521};
522
523unsigned long
524isolate_freepages_range(struct compact_control *cc,
525 unsigned long start_pfn, unsigned long end_pfn);
526int
527isolate_migratepages_range(struct compact_control *cc,
528 unsigned long low_pfn, unsigned long end_pfn);
529
530int __alloc_contig_migrate_range(struct compact_control *cc,
531 unsigned long start, unsigned long end);
532
533/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
534void init_cma_reserved_pageblock(struct page *page);
535
536#endif /* CONFIG_COMPACTION || CONFIG_CMA */
537
538int find_suitable_fallback(struct free_area *area, unsigned int order,
539 int migratetype, bool only_stealable, bool *can_steal);
540
541static inline bool free_area_empty(struct free_area *area, int migratetype)
542{
543 return list_empty(&area->free_list[migratetype]);
544}
545
546/*
547 * These three helpers classifies VMAs for virtual memory accounting.
548 */
549
550/*
551 * Executable code area - executable, not writable, not stack
552 */
553static inline bool is_exec_mapping(vm_flags_t flags)
554{
555 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
556}
557
558/*
559 * Stack area (including shadow stacks)
560 *
561 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
562 * do_mmap() forbids all other combinations.
563 */
564static inline bool is_stack_mapping(vm_flags_t flags)
565{
566 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
567}
568
569/*
570 * Data area - private, writable, not stack
571 */
572static inline bool is_data_mapping(vm_flags_t flags)
573{
574 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
575}
576
577/* mm/util.c */
578struct anon_vma *folio_anon_vma(struct folio *folio);
579
580#ifdef CONFIG_MMU
581void unmap_mapping_folio(struct folio *folio);
582extern long populate_vma_page_range(struct vm_area_struct *vma,
583 unsigned long start, unsigned long end, int *locked);
584extern long faultin_vma_page_range(struct vm_area_struct *vma,
585 unsigned long start, unsigned long end,
586 bool write, int *locked);
587extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
588 unsigned long bytes);
589/*
590 * mlock_vma_folio() and munlock_vma_folio():
591 * should be called with vma's mmap_lock held for read or write,
592 * under page table lock for the pte/pmd being added or removed.
593 *
594 * mlock is usually called at the end of page_add_*_rmap(), munlock at
595 * the end of page_remove_rmap(); but new anon folios are managed by
596 * folio_add_lru_vma() calling mlock_new_folio().
597 *
598 * @compound is used to include pmd mappings of THPs, but filter out
599 * pte mappings of THPs, which cannot be consistently counted: a pte
600 * mapping of the THP head cannot be distinguished by the page alone.
601 */
602void mlock_folio(struct folio *folio);
603static inline void mlock_vma_folio(struct folio *folio,
604 struct vm_area_struct *vma, bool compound)
605{
606 /*
607 * The VM_SPECIAL check here serves two purposes.
608 * 1) VM_IO check prevents migration from double-counting during mlock.
609 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
610 * is never left set on a VM_SPECIAL vma, there is an interval while
611 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
612 * still be set while VM_SPECIAL bits are added: so ignore it then.
613 */
614 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
615 (compound || !folio_test_large(folio)))
616 mlock_folio(folio);
617}
618
619void munlock_folio(struct folio *folio);
620static inline void munlock_vma_folio(struct folio *folio,
621 struct vm_area_struct *vma, bool compound)
622{
623 if (unlikely(vma->vm_flags & VM_LOCKED) &&
624 (compound || !folio_test_large(folio)))
625 munlock_folio(folio);
626}
627
628void mlock_new_folio(struct folio *folio);
629bool need_mlock_drain(int cpu);
630void mlock_drain_local(void);
631void mlock_drain_remote(int cpu);
632
633extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
634
635/*
636 * Return the start of user virtual address at the specific offset within
637 * a vma.
638 */
639static inline unsigned long
640vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
641 struct vm_area_struct *vma)
642{
643 unsigned long address;
644
645 if (pgoff >= vma->vm_pgoff) {
646 address = vma->vm_start +
647 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
648 /* Check for address beyond vma (or wrapped through 0?) */
649 if (address < vma->vm_start || address >= vma->vm_end)
650 address = -EFAULT;
651 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
652 /* Test above avoids possibility of wrap to 0 on 32-bit */
653 address = vma->vm_start;
654 } else {
655 address = -EFAULT;
656 }
657 return address;
658}
659
660/*
661 * Return the start of user virtual address of a page within a vma.
662 * Returns -EFAULT if all of the page is outside the range of vma.
663 * If page is a compound head, the entire compound page is considered.
664 */
665static inline unsigned long
666vma_address(struct page *page, struct vm_area_struct *vma)
667{
668 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
669 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
670}
671
672/*
673 * Then at what user virtual address will none of the range be found in vma?
674 * Assumes that vma_address() already returned a good starting address.
675 */
676static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
677{
678 struct vm_area_struct *vma = pvmw->vma;
679 pgoff_t pgoff;
680 unsigned long address;
681
682 /* Common case, plus ->pgoff is invalid for KSM */
683 if (pvmw->nr_pages == 1)
684 return pvmw->address + PAGE_SIZE;
685
686 pgoff = pvmw->pgoff + pvmw->nr_pages;
687 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
688 /* Check for address beyond vma (or wrapped through 0?) */
689 if (address < vma->vm_start || address > vma->vm_end)
690 address = vma->vm_end;
691 return address;
692}
693
694static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
695 struct file *fpin)
696{
697 int flags = vmf->flags;
698
699 if (fpin)
700 return fpin;
701
702 /*
703 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
704 * anything, so we only pin the file and drop the mmap_lock if only
705 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
706 */
707 if (fault_flag_allow_retry_first(flags) &&
708 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
709 fpin = get_file(vmf->vma->vm_file);
710 release_fault_lock(vmf);
711 }
712 return fpin;
713}
714#else /* !CONFIG_MMU */
715static inline void unmap_mapping_folio(struct folio *folio) { }
716static inline void mlock_new_folio(struct folio *folio) { }
717static inline bool need_mlock_drain(int cpu) { return false; }
718static inline void mlock_drain_local(void) { }
719static inline void mlock_drain_remote(int cpu) { }
720static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
721{
722}
723#endif /* !CONFIG_MMU */
724
725/* Memory initialisation debug and verification */
726#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
727DECLARE_STATIC_KEY_TRUE(deferred_pages);
728
729bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
730#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
731
732enum mminit_level {
733 MMINIT_WARNING,
734 MMINIT_VERIFY,
735 MMINIT_TRACE
736};
737
738#ifdef CONFIG_DEBUG_MEMORY_INIT
739
740extern int mminit_loglevel;
741
742#define mminit_dprintk(level, prefix, fmt, arg...) \
743do { \
744 if (level < mminit_loglevel) { \
745 if (level <= MMINIT_WARNING) \
746 pr_warn("mminit::" prefix " " fmt, ##arg); \
747 else \
748 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
749 } \
750} while (0)
751
752extern void mminit_verify_pageflags_layout(void);
753extern void mminit_verify_zonelist(void);
754#else
755
756static inline void mminit_dprintk(enum mminit_level level,
757 const char *prefix, const char *fmt, ...)
758{
759}
760
761static inline void mminit_verify_pageflags_layout(void)
762{
763}
764
765static inline void mminit_verify_zonelist(void)
766{
767}
768#endif /* CONFIG_DEBUG_MEMORY_INIT */
769
770#define NODE_RECLAIM_NOSCAN -2
771#define NODE_RECLAIM_FULL -1
772#define NODE_RECLAIM_SOME 0
773#define NODE_RECLAIM_SUCCESS 1
774
775#ifdef CONFIG_NUMA
776extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
777extern int find_next_best_node(int node, nodemask_t *used_node_mask);
778#else
779static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
780 unsigned int order)
781{
782 return NODE_RECLAIM_NOSCAN;
783}
784static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
785{
786 return NUMA_NO_NODE;
787}
788#endif
789
790/*
791 * mm/memory-failure.c
792 */
793extern int hwpoison_filter(struct page *p);
794
795extern u32 hwpoison_filter_dev_major;
796extern u32 hwpoison_filter_dev_minor;
797extern u64 hwpoison_filter_flags_mask;
798extern u64 hwpoison_filter_flags_value;
799extern u64 hwpoison_filter_memcg;
800extern u32 hwpoison_filter_enable;
801
802extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
803 unsigned long, unsigned long,
804 unsigned long, unsigned long);
805
806extern void set_pageblock_order(void);
807unsigned long reclaim_pages(struct list_head *folio_list);
808unsigned int reclaim_clean_pages_from_list(struct zone *zone,
809 struct list_head *folio_list);
810/* The ALLOC_WMARK bits are used as an index to zone->watermark */
811#define ALLOC_WMARK_MIN WMARK_MIN
812#define ALLOC_WMARK_LOW WMARK_LOW
813#define ALLOC_WMARK_HIGH WMARK_HIGH
814#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
815
816/* Mask to get the watermark bits */
817#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
818
819/*
820 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
821 * cannot assume a reduced access to memory reserves is sufficient for
822 * !MMU
823 */
824#ifdef CONFIG_MMU
825#define ALLOC_OOM 0x08
826#else
827#define ALLOC_OOM ALLOC_NO_WATERMARKS
828#endif
829
830#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
831 * to 25% of the min watermark or
832 * 62.5% if __GFP_HIGH is set.
833 */
834#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
835 * of the min watermark.
836 */
837#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
838#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
839#ifdef CONFIG_ZONE_DMA32
840#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
841#else
842#define ALLOC_NOFRAGMENT 0x0
843#endif
844#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
845#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
846
847/* Flags that allow allocations below the min watermark. */
848#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
849
850enum ttu_flags;
851struct tlbflush_unmap_batch;
852
853
854/*
855 * only for MM internal work items which do not depend on
856 * any allocations or locks which might depend on allocations
857 */
858extern struct workqueue_struct *mm_percpu_wq;
859
860#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
861void try_to_unmap_flush(void);
862void try_to_unmap_flush_dirty(void);
863void flush_tlb_batched_pending(struct mm_struct *mm);
864#else
865static inline void try_to_unmap_flush(void)
866{
867}
868static inline void try_to_unmap_flush_dirty(void)
869{
870}
871static inline void flush_tlb_batched_pending(struct mm_struct *mm)
872{
873}
874#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
875
876extern const struct trace_print_flags pageflag_names[];
877extern const struct trace_print_flags pagetype_names[];
878extern const struct trace_print_flags vmaflag_names[];
879extern const struct trace_print_flags gfpflag_names[];
880
881static inline bool is_migrate_highatomic(enum migratetype migratetype)
882{
883 return migratetype == MIGRATE_HIGHATOMIC;
884}
885
886static inline bool is_migrate_highatomic_page(struct page *page)
887{
888 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
889}
890
891void setup_zone_pageset(struct zone *zone);
892
893struct migration_target_control {
894 int nid; /* preferred node id */
895 nodemask_t *nmask;
896 gfp_t gfp_mask;
897};
898
899/*
900 * mm/filemap.c
901 */
902size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
903 struct folio *folio, loff_t fpos, size_t size);
904
905/*
906 * mm/vmalloc.c
907 */
908#ifdef CONFIG_MMU
909void __init vmalloc_init(void);
910int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
911 pgprot_t prot, struct page **pages, unsigned int page_shift);
912#else
913static inline void vmalloc_init(void)
914{
915}
916
917static inline
918int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
919 pgprot_t prot, struct page **pages, unsigned int page_shift)
920{
921 return -EINVAL;
922}
923#endif
924
925int __must_check __vmap_pages_range_noflush(unsigned long addr,
926 unsigned long end, pgprot_t prot,
927 struct page **pages, unsigned int page_shift);
928
929void vunmap_range_noflush(unsigned long start, unsigned long end);
930
931void __vunmap_range_noflush(unsigned long start, unsigned long end);
932
933int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
934 unsigned long addr, int page_nid, int *flags);
935
936void free_zone_device_page(struct page *page);
937int migrate_device_coherent_page(struct page *page);
938
939/*
940 * mm/gup.c
941 */
942struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
943int __must_check try_grab_page(struct page *page, unsigned int flags);
944
945/*
946 * mm/huge_memory.c
947 */
948struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
949 unsigned long addr, pmd_t *pmd,
950 unsigned int flags);
951
952enum {
953 /* mark page accessed */
954 FOLL_TOUCH = 1 << 16,
955 /* a retry, previous pass started an IO */
956 FOLL_TRIED = 1 << 17,
957 /* we are working on non-current tsk/mm */
958 FOLL_REMOTE = 1 << 18,
959 /* pages must be released via unpin_user_page */
960 FOLL_PIN = 1 << 19,
961 /* gup_fast: prevent fall-back to slow gup */
962 FOLL_FAST_ONLY = 1 << 20,
963 /* allow unlocking the mmap lock */
964 FOLL_UNLOCKABLE = 1 << 21,
965};
966
967/*
968 * Indicates for which pages that are write-protected in the page table,
969 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
970 * GUP pin will remain consistent with the pages mapped into the page tables
971 * of the MM.
972 *
973 * Temporary unmapping of PageAnonExclusive() pages or clearing of
974 * PageAnonExclusive() has to protect against concurrent GUP:
975 * * Ordinary GUP: Using the PT lock
976 * * GUP-fast and fork(): mm->write_protect_seq
977 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
978 * page_try_share_anon_rmap()
979 *
980 * Must be called with the (sub)page that's actually referenced via the
981 * page table entry, which might not necessarily be the head page for a
982 * PTE-mapped THP.
983 *
984 * If the vma is NULL, we're coming from the GUP-fast path and might have
985 * to fallback to the slow path just to lookup the vma.
986 */
987static inline bool gup_must_unshare(struct vm_area_struct *vma,
988 unsigned int flags, struct page *page)
989{
990 /*
991 * FOLL_WRITE is implicitly handled correctly as the page table entry
992 * has to be writable -- and if it references (part of) an anonymous
993 * folio, that part is required to be marked exclusive.
994 */
995 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
996 return false;
997 /*
998 * Note: PageAnon(page) is stable until the page is actually getting
999 * freed.
1000 */
1001 if (!PageAnon(page)) {
1002 /*
1003 * We only care about R/O long-term pining: R/O short-term
1004 * pinning does not have the semantics to observe successive
1005 * changes through the process page tables.
1006 */
1007 if (!(flags & FOLL_LONGTERM))
1008 return false;
1009
1010 /* We really need the vma ... */
1011 if (!vma)
1012 return true;
1013
1014 /*
1015 * ... because we only care about writable private ("COW")
1016 * mappings where we have to break COW early.
1017 */
1018 return is_cow_mapping(vma->vm_flags);
1019 }
1020
1021 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
1022 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
1023 smp_rmb();
1024
1025 /*
1026 * During GUP-fast we might not get called on the head page for a
1027 * hugetlb page that is mapped using cont-PTE, because GUP-fast does
1028 * not work with the abstracted hugetlb PTEs that always point at the
1029 * head page. For hugetlb, PageAnonExclusive only applies on the head
1030 * page (as it cannot be partially COW-shared), so lookup the head page.
1031 */
1032 if (unlikely(!PageHead(page) && PageHuge(page)))
1033 page = compound_head(page);
1034
1035 /*
1036 * Note that PageKsm() pages cannot be exclusive, and consequently,
1037 * cannot get pinned.
1038 */
1039 return !PageAnonExclusive(page);
1040}
1041
1042extern bool mirrored_kernelcore;
1043extern bool memblock_has_mirror(void);
1044
1045static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1046{
1047 /*
1048 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1049 * enablements, because when without soft-dirty being compiled in,
1050 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1051 * will be constantly true.
1052 */
1053 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1054 return false;
1055
1056 /*
1057 * Soft-dirty is kind of special: its tracking is enabled when the
1058 * vma flags not set.
1059 */
1060 return !(vma->vm_flags & VM_SOFTDIRTY);
1061}
1062
1063static inline void vma_iter_config(struct vma_iterator *vmi,
1064 unsigned long index, unsigned long last)
1065{
1066 MAS_BUG_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1067 (vmi->mas.index > index || vmi->mas.last < index));
1068 __mas_set_range(&vmi->mas, index, last - 1);
1069}
1070
1071/*
1072 * VMA Iterator functions shared between nommu and mmap
1073 */
1074static inline int vma_iter_prealloc(struct vma_iterator *vmi,
1075 struct vm_area_struct *vma)
1076{
1077 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
1078}
1079
1080static inline void vma_iter_clear(struct vma_iterator *vmi)
1081{
1082 mas_store_prealloc(&vmi->mas, NULL);
1083}
1084
1085static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1086 unsigned long start, unsigned long end, gfp_t gfp)
1087{
1088 __mas_set_range(&vmi->mas, start, end - 1);
1089 mas_store_gfp(&vmi->mas, NULL, gfp);
1090 if (unlikely(mas_is_err(&vmi->mas)))
1091 return -ENOMEM;
1092
1093 return 0;
1094}
1095
1096static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1097{
1098 return mas_walk(&vmi->mas);
1099}
1100
1101/* Store a VMA with preallocated memory */
1102static inline void vma_iter_store(struct vma_iterator *vmi,
1103 struct vm_area_struct *vma)
1104{
1105
1106#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1107 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1108 vmi->mas.index > vma->vm_start)) {
1109 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
1110 vmi->mas.index, vma->vm_start, vma->vm_start,
1111 vma->vm_end, vmi->mas.index, vmi->mas.last);
1112 }
1113 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1114 vmi->mas.last < vma->vm_start)) {
1115 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
1116 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
1117 vmi->mas.index, vmi->mas.last);
1118 }
1119#endif
1120
1121 if (vmi->mas.node != MAS_START &&
1122 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1123 vma_iter_invalidate(vmi);
1124
1125 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1126 mas_store_prealloc(&vmi->mas, vma);
1127}
1128
1129static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1130 struct vm_area_struct *vma, gfp_t gfp)
1131{
1132 if (vmi->mas.node != MAS_START &&
1133 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1134 vma_iter_invalidate(vmi);
1135
1136 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1137 mas_store_gfp(&vmi->mas, vma, gfp);
1138 if (unlikely(mas_is_err(&vmi->mas)))
1139 return -ENOMEM;
1140
1141 return 0;
1142}
1143
1144/*
1145 * VMA lock generalization
1146 */
1147struct vma_prepare {
1148 struct vm_area_struct *vma;
1149 struct vm_area_struct *adj_next;
1150 struct file *file;
1151 struct address_space *mapping;
1152 struct anon_vma *anon_vma;
1153 struct vm_area_struct *insert;
1154 struct vm_area_struct *remove;
1155 struct vm_area_struct *remove2;
1156};
1157#endif /* __MM_INTERNAL_H */