at v6.6-rc5 1157 lines 36 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7#ifndef __MM_INTERNAL_H 8#define __MM_INTERNAL_H 9 10#include <linux/fs.h> 11#include <linux/mm.h> 12#include <linux/pagemap.h> 13#include <linux/rmap.h> 14#include <linux/tracepoint-defs.h> 15 16struct folio_batch; 17 18/* 19 * The set of flags that only affect watermark checking and reclaim 20 * behaviour. This is used by the MM to obey the caller constraints 21 * about IO, FS and watermark checking while ignoring placement 22 * hints such as HIGHMEM usage. 23 */ 24#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 27 __GFP_NOLOCKDEP) 28 29/* The GFP flags allowed during early boot */ 30#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 31 32/* Control allocation cpuset and node placement constraints */ 33#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 34 35/* Do not use these with a slab allocator */ 36#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 37 38/* 39 * Different from WARN_ON_ONCE(), no warning will be issued 40 * when we specify __GFP_NOWARN. 41 */ 42#define WARN_ON_ONCE_GFP(cond, gfp) ({ \ 43 static bool __section(".data.once") __warned; \ 44 int __ret_warn_once = !!(cond); \ 45 \ 46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ 47 __warned = true; \ 48 WARN_ON(1); \ 49 } \ 50 unlikely(__ret_warn_once); \ 51}) 52 53void page_writeback_init(void); 54 55/* 56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, 57 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit 58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently 59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. 60 */ 61#define COMPOUND_MAPPED 0x800000 62#define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1) 63 64/* 65 * Flags passed to __show_mem() and show_free_areas() to suppress output in 66 * various contexts. 67 */ 68#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 69 70/* 71 * How many individual pages have an elevated _mapcount. Excludes 72 * the folio's entire_mapcount. 73 */ 74static inline int folio_nr_pages_mapped(struct folio *folio) 75{ 76 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; 77} 78 79static inline void *folio_raw_mapping(struct folio *folio) 80{ 81 unsigned long mapping = (unsigned long)folio->mapping; 82 83 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 84} 85 86void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 87 int nr_throttled); 88static inline void acct_reclaim_writeback(struct folio *folio) 89{ 90 pg_data_t *pgdat = folio_pgdat(folio); 91 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 92 93 if (nr_throttled) 94 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 95} 96 97static inline void wake_throttle_isolated(pg_data_t *pgdat) 98{ 99 wait_queue_head_t *wqh; 100 101 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 102 if (waitqueue_active(wqh)) 103 wake_up(wqh); 104} 105 106vm_fault_t do_swap_page(struct vm_fault *vmf); 107void folio_rotate_reclaimable(struct folio *folio); 108bool __folio_end_writeback(struct folio *folio); 109void deactivate_file_folio(struct folio *folio); 110void folio_activate(struct folio *folio); 111 112void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 113 struct vm_area_struct *start_vma, unsigned long floor, 114 unsigned long ceiling, bool mm_wr_locked); 115void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 116 117struct zap_details; 118void unmap_page_range(struct mmu_gather *tlb, 119 struct vm_area_struct *vma, 120 unsigned long addr, unsigned long end, 121 struct zap_details *details); 122 123void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, 124 unsigned int order); 125void force_page_cache_ra(struct readahead_control *, unsigned long nr); 126static inline void force_page_cache_readahead(struct address_space *mapping, 127 struct file *file, pgoff_t index, unsigned long nr_to_read) 128{ 129 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 130 force_page_cache_ra(&ractl, nr_to_read); 131} 132 133unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 134 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 135unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 136 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 137void filemap_free_folio(struct address_space *mapping, struct folio *folio); 138int truncate_inode_folio(struct address_space *mapping, struct folio *folio); 139bool truncate_inode_partial_folio(struct folio *folio, loff_t start, 140 loff_t end); 141long invalidate_inode_page(struct page *page); 142unsigned long mapping_try_invalidate(struct address_space *mapping, 143 pgoff_t start, pgoff_t end, unsigned long *nr_failed); 144 145/** 146 * folio_evictable - Test whether a folio is evictable. 147 * @folio: The folio to test. 148 * 149 * Test whether @folio is evictable -- i.e., should be placed on 150 * active/inactive lists vs unevictable list. 151 * 152 * Reasons folio might not be evictable: 153 * 1. folio's mapping marked unevictable 154 * 2. One of the pages in the folio is part of an mlocked VMA 155 */ 156static inline bool folio_evictable(struct folio *folio) 157{ 158 bool ret; 159 160 /* Prevent address_space of inode and swap cache from being freed */ 161 rcu_read_lock(); 162 ret = !mapping_unevictable(folio_mapping(folio)) && 163 !folio_test_mlocked(folio); 164 rcu_read_unlock(); 165 return ret; 166} 167 168/* 169 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 170 * a count of one. 171 */ 172static inline void set_page_refcounted(struct page *page) 173{ 174 VM_BUG_ON_PAGE(PageTail(page), page); 175 VM_BUG_ON_PAGE(page_ref_count(page), page); 176 set_page_count(page, 1); 177} 178 179/* 180 * Return true if a folio needs ->release_folio() calling upon it. 181 */ 182static inline bool folio_needs_release(struct folio *folio) 183{ 184 struct address_space *mapping = folio_mapping(folio); 185 186 return folio_has_private(folio) || 187 (mapping && mapping_release_always(mapping)); 188} 189 190extern unsigned long highest_memmap_pfn; 191 192/* 193 * Maximum number of reclaim retries without progress before the OOM 194 * killer is consider the only way forward. 195 */ 196#define MAX_RECLAIM_RETRIES 16 197 198/* 199 * in mm/vmscan.c: 200 */ 201bool isolate_lru_page(struct page *page); 202bool folio_isolate_lru(struct folio *folio); 203void putback_lru_page(struct page *page); 204void folio_putback_lru(struct folio *folio); 205extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 206 207/* 208 * in mm/rmap.c: 209 */ 210pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 211 212/* 213 * in mm/page_alloc.c 214 */ 215#define K(x) ((x) << (PAGE_SHIFT-10)) 216 217extern char * const zone_names[MAX_NR_ZONES]; 218 219/* perform sanity checks on struct pages being allocated or freed */ 220DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 221 222extern int min_free_kbytes; 223 224void setup_per_zone_wmarks(void); 225void calculate_min_free_kbytes(void); 226int __meminit init_per_zone_wmark_min(void); 227void page_alloc_sysctl_init(void); 228 229/* 230 * Structure for holding the mostly immutable allocation parameters passed 231 * between functions involved in allocations, including the alloc_pages* 232 * family of functions. 233 * 234 * nodemask, migratetype and highest_zoneidx are initialized only once in 235 * __alloc_pages() and then never change. 236 * 237 * zonelist, preferred_zone and highest_zoneidx are set first in 238 * __alloc_pages() for the fast path, and might be later changed 239 * in __alloc_pages_slowpath(). All other functions pass the whole structure 240 * by a const pointer. 241 */ 242struct alloc_context { 243 struct zonelist *zonelist; 244 nodemask_t *nodemask; 245 struct zoneref *preferred_zoneref; 246 int migratetype; 247 248 /* 249 * highest_zoneidx represents highest usable zone index of 250 * the allocation request. Due to the nature of the zone, 251 * memory on lower zone than the highest_zoneidx will be 252 * protected by lowmem_reserve[highest_zoneidx]. 253 * 254 * highest_zoneidx is also used by reclaim/compaction to limit 255 * the target zone since higher zone than this index cannot be 256 * usable for this allocation request. 257 */ 258 enum zone_type highest_zoneidx; 259 bool spread_dirty_pages; 260}; 261 262/* 263 * This function returns the order of a free page in the buddy system. In 264 * general, page_zone(page)->lock must be held by the caller to prevent the 265 * page from being allocated in parallel and returning garbage as the order. 266 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 267 * page cannot be allocated or merged in parallel. Alternatively, it must 268 * handle invalid values gracefully, and use buddy_order_unsafe() below. 269 */ 270static inline unsigned int buddy_order(struct page *page) 271{ 272 /* PageBuddy() must be checked by the caller */ 273 return page_private(page); 274} 275 276/* 277 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 278 * PageBuddy() should be checked first by the caller to minimize race window, 279 * and invalid values must be handled gracefully. 280 * 281 * READ_ONCE is used so that if the caller assigns the result into a local 282 * variable and e.g. tests it for valid range before using, the compiler cannot 283 * decide to remove the variable and inline the page_private(page) multiple 284 * times, potentially observing different values in the tests and the actual 285 * use of the result. 286 */ 287#define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 288 289/* 290 * This function checks whether a page is free && is the buddy 291 * we can coalesce a page and its buddy if 292 * (a) the buddy is not in a hole (check before calling!) && 293 * (b) the buddy is in the buddy system && 294 * (c) a page and its buddy have the same order && 295 * (d) a page and its buddy are in the same zone. 296 * 297 * For recording whether a page is in the buddy system, we set PageBuddy. 298 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 299 * 300 * For recording page's order, we use page_private(page). 301 */ 302static inline bool page_is_buddy(struct page *page, struct page *buddy, 303 unsigned int order) 304{ 305 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 306 return false; 307 308 if (buddy_order(buddy) != order) 309 return false; 310 311 /* 312 * zone check is done late to avoid uselessly calculating 313 * zone/node ids for pages that could never merge. 314 */ 315 if (page_zone_id(page) != page_zone_id(buddy)) 316 return false; 317 318 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 319 320 return true; 321} 322 323/* 324 * Locate the struct page for both the matching buddy in our 325 * pair (buddy1) and the combined O(n+1) page they form (page). 326 * 327 * 1) Any buddy B1 will have an order O twin B2 which satisfies 328 * the following equation: 329 * B2 = B1 ^ (1 << O) 330 * For example, if the starting buddy (buddy2) is #8 its order 331 * 1 buddy is #10: 332 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 333 * 334 * 2) Any buddy B will have an order O+1 parent P which 335 * satisfies the following equation: 336 * P = B & ~(1 << O) 337 * 338 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 339 */ 340static inline unsigned long 341__find_buddy_pfn(unsigned long page_pfn, unsigned int order) 342{ 343 return page_pfn ^ (1 << order); 344} 345 346/* 347 * Find the buddy of @page and validate it. 348 * @page: The input page 349 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the 350 * function is used in the performance-critical __free_one_page(). 351 * @order: The order of the page 352 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to 353 * page_to_pfn(). 354 * 355 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is 356 * not the same as @page. The validation is necessary before use it. 357 * 358 * Return: the found buddy page or NULL if not found. 359 */ 360static inline struct page *find_buddy_page_pfn(struct page *page, 361 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) 362{ 363 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); 364 struct page *buddy; 365 366 buddy = page + (__buddy_pfn - pfn); 367 if (buddy_pfn) 368 *buddy_pfn = __buddy_pfn; 369 370 if (page_is_buddy(page, buddy, order)) 371 return buddy; 372 return NULL; 373} 374 375extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 376 unsigned long end_pfn, struct zone *zone); 377 378static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 379 unsigned long end_pfn, struct zone *zone) 380{ 381 if (zone->contiguous) 382 return pfn_to_page(start_pfn); 383 384 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 385} 386 387void set_zone_contiguous(struct zone *zone); 388 389static inline void clear_zone_contiguous(struct zone *zone) 390{ 391 zone->contiguous = false; 392} 393 394extern int __isolate_free_page(struct page *page, unsigned int order); 395extern void __putback_isolated_page(struct page *page, unsigned int order, 396 int mt); 397extern void memblock_free_pages(struct page *page, unsigned long pfn, 398 unsigned int order); 399extern void __free_pages_core(struct page *page, unsigned int order); 400 401/* 402 * This will have no effect, other than possibly generating a warning, if the 403 * caller passes in a non-large folio. 404 */ 405static inline void folio_set_order(struct folio *folio, unsigned int order) 406{ 407 if (WARN_ON_ONCE(!order || !folio_test_large(folio))) 408 return; 409 410 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order; 411#ifdef CONFIG_64BIT 412 folio->_folio_nr_pages = 1U << order; 413#endif 414} 415 416void folio_undo_large_rmappable(struct folio *folio); 417 418static inline void prep_compound_head(struct page *page, unsigned int order) 419{ 420 struct folio *folio = (struct folio *)page; 421 422 folio_set_order(folio, order); 423 atomic_set(&folio->_entire_mapcount, -1); 424 atomic_set(&folio->_nr_pages_mapped, 0); 425 atomic_set(&folio->_pincount, 0); 426} 427 428static inline void prep_compound_tail(struct page *head, int tail_idx) 429{ 430 struct page *p = head + tail_idx; 431 432 p->mapping = TAIL_MAPPING; 433 set_compound_head(p, head); 434 set_page_private(p, 0); 435} 436 437extern void prep_compound_page(struct page *page, unsigned int order); 438 439extern void post_alloc_hook(struct page *page, unsigned int order, 440 gfp_t gfp_flags); 441extern int user_min_free_kbytes; 442 443extern void free_unref_page(struct page *page, unsigned int order); 444extern void free_unref_page_list(struct list_head *list); 445 446extern void zone_pcp_reset(struct zone *zone); 447extern void zone_pcp_disable(struct zone *zone); 448extern void zone_pcp_enable(struct zone *zone); 449extern void zone_pcp_init(struct zone *zone); 450 451extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 452 phys_addr_t min_addr, 453 int nid, bool exact_nid); 454 455void memmap_init_range(unsigned long, int, unsigned long, unsigned long, 456 unsigned long, enum meminit_context, struct vmem_altmap *, int); 457 458 459int split_free_page(struct page *free_page, 460 unsigned int order, unsigned long split_pfn_offset); 461 462#if defined CONFIG_COMPACTION || defined CONFIG_CMA 463 464/* 465 * in mm/compaction.c 466 */ 467/* 468 * compact_control is used to track pages being migrated and the free pages 469 * they are being migrated to during memory compaction. The free_pfn starts 470 * at the end of a zone and migrate_pfn begins at the start. Movable pages 471 * are moved to the end of a zone during a compaction run and the run 472 * completes when free_pfn <= migrate_pfn 473 */ 474struct compact_control { 475 struct list_head freepages; /* List of free pages to migrate to */ 476 struct list_head migratepages; /* List of pages being migrated */ 477 unsigned int nr_freepages; /* Number of isolated free pages */ 478 unsigned int nr_migratepages; /* Number of pages to migrate */ 479 unsigned long free_pfn; /* isolate_freepages search base */ 480 /* 481 * Acts as an in/out parameter to page isolation for migration. 482 * isolate_migratepages uses it as a search base. 483 * isolate_migratepages_block will update the value to the next pfn 484 * after the last isolated one. 485 */ 486 unsigned long migrate_pfn; 487 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 488 struct zone *zone; 489 unsigned long total_migrate_scanned; 490 unsigned long total_free_scanned; 491 unsigned short fast_search_fail;/* failures to use free list searches */ 492 short search_order; /* order to start a fast search at */ 493 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 494 int order; /* order a direct compactor needs */ 495 int migratetype; /* migratetype of direct compactor */ 496 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 497 const int highest_zoneidx; /* zone index of a direct compactor */ 498 enum migrate_mode mode; /* Async or sync migration mode */ 499 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 500 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 501 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 502 bool direct_compaction; /* False from kcompactd or /proc/... */ 503 bool proactive_compaction; /* kcompactd proactive compaction */ 504 bool whole_zone; /* Whole zone should/has been scanned */ 505 bool contended; /* Signal lock contention */ 506 bool finish_pageblock; /* Scan the remainder of a pageblock. Used 507 * when there are potentially transient 508 * isolation or migration failures to 509 * ensure forward progress. 510 */ 511 bool alloc_contig; /* alloc_contig_range allocation */ 512}; 513 514/* 515 * Used in direct compaction when a page should be taken from the freelists 516 * immediately when one is created during the free path. 517 */ 518struct capture_control { 519 struct compact_control *cc; 520 struct page *page; 521}; 522 523unsigned long 524isolate_freepages_range(struct compact_control *cc, 525 unsigned long start_pfn, unsigned long end_pfn); 526int 527isolate_migratepages_range(struct compact_control *cc, 528 unsigned long low_pfn, unsigned long end_pfn); 529 530int __alloc_contig_migrate_range(struct compact_control *cc, 531 unsigned long start, unsigned long end); 532 533/* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 534void init_cma_reserved_pageblock(struct page *page); 535 536#endif /* CONFIG_COMPACTION || CONFIG_CMA */ 537 538int find_suitable_fallback(struct free_area *area, unsigned int order, 539 int migratetype, bool only_stealable, bool *can_steal); 540 541static inline bool free_area_empty(struct free_area *area, int migratetype) 542{ 543 return list_empty(&area->free_list[migratetype]); 544} 545 546/* 547 * These three helpers classifies VMAs for virtual memory accounting. 548 */ 549 550/* 551 * Executable code area - executable, not writable, not stack 552 */ 553static inline bool is_exec_mapping(vm_flags_t flags) 554{ 555 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 556} 557 558/* 559 * Stack area (including shadow stacks) 560 * 561 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 562 * do_mmap() forbids all other combinations. 563 */ 564static inline bool is_stack_mapping(vm_flags_t flags) 565{ 566 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); 567} 568 569/* 570 * Data area - private, writable, not stack 571 */ 572static inline bool is_data_mapping(vm_flags_t flags) 573{ 574 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 575} 576 577/* mm/util.c */ 578struct anon_vma *folio_anon_vma(struct folio *folio); 579 580#ifdef CONFIG_MMU 581void unmap_mapping_folio(struct folio *folio); 582extern long populate_vma_page_range(struct vm_area_struct *vma, 583 unsigned long start, unsigned long end, int *locked); 584extern long faultin_vma_page_range(struct vm_area_struct *vma, 585 unsigned long start, unsigned long end, 586 bool write, int *locked); 587extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 588 unsigned long bytes); 589/* 590 * mlock_vma_folio() and munlock_vma_folio(): 591 * should be called with vma's mmap_lock held for read or write, 592 * under page table lock for the pte/pmd being added or removed. 593 * 594 * mlock is usually called at the end of page_add_*_rmap(), munlock at 595 * the end of page_remove_rmap(); but new anon folios are managed by 596 * folio_add_lru_vma() calling mlock_new_folio(). 597 * 598 * @compound is used to include pmd mappings of THPs, but filter out 599 * pte mappings of THPs, which cannot be consistently counted: a pte 600 * mapping of the THP head cannot be distinguished by the page alone. 601 */ 602void mlock_folio(struct folio *folio); 603static inline void mlock_vma_folio(struct folio *folio, 604 struct vm_area_struct *vma, bool compound) 605{ 606 /* 607 * The VM_SPECIAL check here serves two purposes. 608 * 1) VM_IO check prevents migration from double-counting during mlock. 609 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED 610 * is never left set on a VM_SPECIAL vma, there is an interval while 611 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may 612 * still be set while VM_SPECIAL bits are added: so ignore it then. 613 */ 614 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) && 615 (compound || !folio_test_large(folio))) 616 mlock_folio(folio); 617} 618 619void munlock_folio(struct folio *folio); 620static inline void munlock_vma_folio(struct folio *folio, 621 struct vm_area_struct *vma, bool compound) 622{ 623 if (unlikely(vma->vm_flags & VM_LOCKED) && 624 (compound || !folio_test_large(folio))) 625 munlock_folio(folio); 626} 627 628void mlock_new_folio(struct folio *folio); 629bool need_mlock_drain(int cpu); 630void mlock_drain_local(void); 631void mlock_drain_remote(int cpu); 632 633extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 634 635/* 636 * Return the start of user virtual address at the specific offset within 637 * a vma. 638 */ 639static inline unsigned long 640vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages, 641 struct vm_area_struct *vma) 642{ 643 unsigned long address; 644 645 if (pgoff >= vma->vm_pgoff) { 646 address = vma->vm_start + 647 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 648 /* Check for address beyond vma (or wrapped through 0?) */ 649 if (address < vma->vm_start || address >= vma->vm_end) 650 address = -EFAULT; 651 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { 652 /* Test above avoids possibility of wrap to 0 on 32-bit */ 653 address = vma->vm_start; 654 } else { 655 address = -EFAULT; 656 } 657 return address; 658} 659 660/* 661 * Return the start of user virtual address of a page within a vma. 662 * Returns -EFAULT if all of the page is outside the range of vma. 663 * If page is a compound head, the entire compound page is considered. 664 */ 665static inline unsigned long 666vma_address(struct page *page, struct vm_area_struct *vma) 667{ 668 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 669 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma); 670} 671 672/* 673 * Then at what user virtual address will none of the range be found in vma? 674 * Assumes that vma_address() already returned a good starting address. 675 */ 676static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) 677{ 678 struct vm_area_struct *vma = pvmw->vma; 679 pgoff_t pgoff; 680 unsigned long address; 681 682 /* Common case, plus ->pgoff is invalid for KSM */ 683 if (pvmw->nr_pages == 1) 684 return pvmw->address + PAGE_SIZE; 685 686 pgoff = pvmw->pgoff + pvmw->nr_pages; 687 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 688 /* Check for address beyond vma (or wrapped through 0?) */ 689 if (address < vma->vm_start || address > vma->vm_end) 690 address = vma->vm_end; 691 return address; 692} 693 694static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 695 struct file *fpin) 696{ 697 int flags = vmf->flags; 698 699 if (fpin) 700 return fpin; 701 702 /* 703 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 704 * anything, so we only pin the file and drop the mmap_lock if only 705 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 706 */ 707 if (fault_flag_allow_retry_first(flags) && 708 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 709 fpin = get_file(vmf->vma->vm_file); 710 release_fault_lock(vmf); 711 } 712 return fpin; 713} 714#else /* !CONFIG_MMU */ 715static inline void unmap_mapping_folio(struct folio *folio) { } 716static inline void mlock_new_folio(struct folio *folio) { } 717static inline bool need_mlock_drain(int cpu) { return false; } 718static inline void mlock_drain_local(void) { } 719static inline void mlock_drain_remote(int cpu) { } 720static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 721{ 722} 723#endif /* !CONFIG_MMU */ 724 725/* Memory initialisation debug and verification */ 726#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 727DECLARE_STATIC_KEY_TRUE(deferred_pages); 728 729bool __init deferred_grow_zone(struct zone *zone, unsigned int order); 730#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 731 732enum mminit_level { 733 MMINIT_WARNING, 734 MMINIT_VERIFY, 735 MMINIT_TRACE 736}; 737 738#ifdef CONFIG_DEBUG_MEMORY_INIT 739 740extern int mminit_loglevel; 741 742#define mminit_dprintk(level, prefix, fmt, arg...) \ 743do { \ 744 if (level < mminit_loglevel) { \ 745 if (level <= MMINIT_WARNING) \ 746 pr_warn("mminit::" prefix " " fmt, ##arg); \ 747 else \ 748 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 749 } \ 750} while (0) 751 752extern void mminit_verify_pageflags_layout(void); 753extern void mminit_verify_zonelist(void); 754#else 755 756static inline void mminit_dprintk(enum mminit_level level, 757 const char *prefix, const char *fmt, ...) 758{ 759} 760 761static inline void mminit_verify_pageflags_layout(void) 762{ 763} 764 765static inline void mminit_verify_zonelist(void) 766{ 767} 768#endif /* CONFIG_DEBUG_MEMORY_INIT */ 769 770#define NODE_RECLAIM_NOSCAN -2 771#define NODE_RECLAIM_FULL -1 772#define NODE_RECLAIM_SOME 0 773#define NODE_RECLAIM_SUCCESS 1 774 775#ifdef CONFIG_NUMA 776extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 777extern int find_next_best_node(int node, nodemask_t *used_node_mask); 778#else 779static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 780 unsigned int order) 781{ 782 return NODE_RECLAIM_NOSCAN; 783} 784static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 785{ 786 return NUMA_NO_NODE; 787} 788#endif 789 790/* 791 * mm/memory-failure.c 792 */ 793extern int hwpoison_filter(struct page *p); 794 795extern u32 hwpoison_filter_dev_major; 796extern u32 hwpoison_filter_dev_minor; 797extern u64 hwpoison_filter_flags_mask; 798extern u64 hwpoison_filter_flags_value; 799extern u64 hwpoison_filter_memcg; 800extern u32 hwpoison_filter_enable; 801 802extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 803 unsigned long, unsigned long, 804 unsigned long, unsigned long); 805 806extern void set_pageblock_order(void); 807unsigned long reclaim_pages(struct list_head *folio_list); 808unsigned int reclaim_clean_pages_from_list(struct zone *zone, 809 struct list_head *folio_list); 810/* The ALLOC_WMARK bits are used as an index to zone->watermark */ 811#define ALLOC_WMARK_MIN WMARK_MIN 812#define ALLOC_WMARK_LOW WMARK_LOW 813#define ALLOC_WMARK_HIGH WMARK_HIGH 814#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 815 816/* Mask to get the watermark bits */ 817#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 818 819/* 820 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 821 * cannot assume a reduced access to memory reserves is sufficient for 822 * !MMU 823 */ 824#ifdef CONFIG_MMU 825#define ALLOC_OOM 0x08 826#else 827#define ALLOC_OOM ALLOC_NO_WATERMARKS 828#endif 829 830#define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access 831 * to 25% of the min watermark or 832 * 62.5% if __GFP_HIGH is set. 833 */ 834#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50% 835 * of the min watermark. 836 */ 837#define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 838#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 839#ifdef CONFIG_ZONE_DMA32 840#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 841#else 842#define ALLOC_NOFRAGMENT 0x0 843#endif 844#define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */ 845#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 846 847/* Flags that allow allocations below the min watermark. */ 848#define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) 849 850enum ttu_flags; 851struct tlbflush_unmap_batch; 852 853 854/* 855 * only for MM internal work items which do not depend on 856 * any allocations or locks which might depend on allocations 857 */ 858extern struct workqueue_struct *mm_percpu_wq; 859 860#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 861void try_to_unmap_flush(void); 862void try_to_unmap_flush_dirty(void); 863void flush_tlb_batched_pending(struct mm_struct *mm); 864#else 865static inline void try_to_unmap_flush(void) 866{ 867} 868static inline void try_to_unmap_flush_dirty(void) 869{ 870} 871static inline void flush_tlb_batched_pending(struct mm_struct *mm) 872{ 873} 874#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 875 876extern const struct trace_print_flags pageflag_names[]; 877extern const struct trace_print_flags pagetype_names[]; 878extern const struct trace_print_flags vmaflag_names[]; 879extern const struct trace_print_flags gfpflag_names[]; 880 881static inline bool is_migrate_highatomic(enum migratetype migratetype) 882{ 883 return migratetype == MIGRATE_HIGHATOMIC; 884} 885 886static inline bool is_migrate_highatomic_page(struct page *page) 887{ 888 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 889} 890 891void setup_zone_pageset(struct zone *zone); 892 893struct migration_target_control { 894 int nid; /* preferred node id */ 895 nodemask_t *nmask; 896 gfp_t gfp_mask; 897}; 898 899/* 900 * mm/filemap.c 901 */ 902size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 903 struct folio *folio, loff_t fpos, size_t size); 904 905/* 906 * mm/vmalloc.c 907 */ 908#ifdef CONFIG_MMU 909void __init vmalloc_init(void); 910int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 911 pgprot_t prot, struct page **pages, unsigned int page_shift); 912#else 913static inline void vmalloc_init(void) 914{ 915} 916 917static inline 918int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 919 pgprot_t prot, struct page **pages, unsigned int page_shift) 920{ 921 return -EINVAL; 922} 923#endif 924 925int __must_check __vmap_pages_range_noflush(unsigned long addr, 926 unsigned long end, pgprot_t prot, 927 struct page **pages, unsigned int page_shift); 928 929void vunmap_range_noflush(unsigned long start, unsigned long end); 930 931void __vunmap_range_noflush(unsigned long start, unsigned long end); 932 933int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 934 unsigned long addr, int page_nid, int *flags); 935 936void free_zone_device_page(struct page *page); 937int migrate_device_coherent_page(struct page *page); 938 939/* 940 * mm/gup.c 941 */ 942struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags); 943int __must_check try_grab_page(struct page *page, unsigned int flags); 944 945/* 946 * mm/huge_memory.c 947 */ 948struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 949 unsigned long addr, pmd_t *pmd, 950 unsigned int flags); 951 952enum { 953 /* mark page accessed */ 954 FOLL_TOUCH = 1 << 16, 955 /* a retry, previous pass started an IO */ 956 FOLL_TRIED = 1 << 17, 957 /* we are working on non-current tsk/mm */ 958 FOLL_REMOTE = 1 << 18, 959 /* pages must be released via unpin_user_page */ 960 FOLL_PIN = 1 << 19, 961 /* gup_fast: prevent fall-back to slow gup */ 962 FOLL_FAST_ONLY = 1 << 20, 963 /* allow unlocking the mmap lock */ 964 FOLL_UNLOCKABLE = 1 << 21, 965}; 966 967/* 968 * Indicates for which pages that are write-protected in the page table, 969 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 970 * GUP pin will remain consistent with the pages mapped into the page tables 971 * of the MM. 972 * 973 * Temporary unmapping of PageAnonExclusive() pages or clearing of 974 * PageAnonExclusive() has to protect against concurrent GUP: 975 * * Ordinary GUP: Using the PT lock 976 * * GUP-fast and fork(): mm->write_protect_seq 977 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 978 * page_try_share_anon_rmap() 979 * 980 * Must be called with the (sub)page that's actually referenced via the 981 * page table entry, which might not necessarily be the head page for a 982 * PTE-mapped THP. 983 * 984 * If the vma is NULL, we're coming from the GUP-fast path and might have 985 * to fallback to the slow path just to lookup the vma. 986 */ 987static inline bool gup_must_unshare(struct vm_area_struct *vma, 988 unsigned int flags, struct page *page) 989{ 990 /* 991 * FOLL_WRITE is implicitly handled correctly as the page table entry 992 * has to be writable -- and if it references (part of) an anonymous 993 * folio, that part is required to be marked exclusive. 994 */ 995 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 996 return false; 997 /* 998 * Note: PageAnon(page) is stable until the page is actually getting 999 * freed. 1000 */ 1001 if (!PageAnon(page)) { 1002 /* 1003 * We only care about R/O long-term pining: R/O short-term 1004 * pinning does not have the semantics to observe successive 1005 * changes through the process page tables. 1006 */ 1007 if (!(flags & FOLL_LONGTERM)) 1008 return false; 1009 1010 /* We really need the vma ... */ 1011 if (!vma) 1012 return true; 1013 1014 /* 1015 * ... because we only care about writable private ("COW") 1016 * mappings where we have to break COW early. 1017 */ 1018 return is_cow_mapping(vma->vm_flags); 1019 } 1020 1021 /* Paired with a memory barrier in page_try_share_anon_rmap(). */ 1022 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 1023 smp_rmb(); 1024 1025 /* 1026 * During GUP-fast we might not get called on the head page for a 1027 * hugetlb page that is mapped using cont-PTE, because GUP-fast does 1028 * not work with the abstracted hugetlb PTEs that always point at the 1029 * head page. For hugetlb, PageAnonExclusive only applies on the head 1030 * page (as it cannot be partially COW-shared), so lookup the head page. 1031 */ 1032 if (unlikely(!PageHead(page) && PageHuge(page))) 1033 page = compound_head(page); 1034 1035 /* 1036 * Note that PageKsm() pages cannot be exclusive, and consequently, 1037 * cannot get pinned. 1038 */ 1039 return !PageAnonExclusive(page); 1040} 1041 1042extern bool mirrored_kernelcore; 1043extern bool memblock_has_mirror(void); 1044 1045static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) 1046{ 1047 /* 1048 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty 1049 * enablements, because when without soft-dirty being compiled in, 1050 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) 1051 * will be constantly true. 1052 */ 1053 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) 1054 return false; 1055 1056 /* 1057 * Soft-dirty is kind of special: its tracking is enabled when the 1058 * vma flags not set. 1059 */ 1060 return !(vma->vm_flags & VM_SOFTDIRTY); 1061} 1062 1063static inline void vma_iter_config(struct vma_iterator *vmi, 1064 unsigned long index, unsigned long last) 1065{ 1066 MAS_BUG_ON(&vmi->mas, vmi->mas.node != MAS_START && 1067 (vmi->mas.index > index || vmi->mas.last < index)); 1068 __mas_set_range(&vmi->mas, index, last - 1); 1069} 1070 1071/* 1072 * VMA Iterator functions shared between nommu and mmap 1073 */ 1074static inline int vma_iter_prealloc(struct vma_iterator *vmi, 1075 struct vm_area_struct *vma) 1076{ 1077 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL); 1078} 1079 1080static inline void vma_iter_clear(struct vma_iterator *vmi) 1081{ 1082 mas_store_prealloc(&vmi->mas, NULL); 1083} 1084 1085static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1086 unsigned long start, unsigned long end, gfp_t gfp) 1087{ 1088 __mas_set_range(&vmi->mas, start, end - 1); 1089 mas_store_gfp(&vmi->mas, NULL, gfp); 1090 if (unlikely(mas_is_err(&vmi->mas))) 1091 return -ENOMEM; 1092 1093 return 0; 1094} 1095 1096static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 1097{ 1098 return mas_walk(&vmi->mas); 1099} 1100 1101/* Store a VMA with preallocated memory */ 1102static inline void vma_iter_store(struct vma_iterator *vmi, 1103 struct vm_area_struct *vma) 1104{ 1105 1106#if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1107 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START && 1108 vmi->mas.index > vma->vm_start)) { 1109 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", 1110 vmi->mas.index, vma->vm_start, vma->vm_start, 1111 vma->vm_end, vmi->mas.index, vmi->mas.last); 1112 } 1113 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START && 1114 vmi->mas.last < vma->vm_start)) { 1115 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", 1116 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, 1117 vmi->mas.index, vmi->mas.last); 1118 } 1119#endif 1120 1121 if (vmi->mas.node != MAS_START && 1122 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1123 vma_iter_invalidate(vmi); 1124 1125 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 1126 mas_store_prealloc(&vmi->mas, vma); 1127} 1128 1129static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 1130 struct vm_area_struct *vma, gfp_t gfp) 1131{ 1132 if (vmi->mas.node != MAS_START && 1133 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1134 vma_iter_invalidate(vmi); 1135 1136 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 1137 mas_store_gfp(&vmi->mas, vma, gfp); 1138 if (unlikely(mas_is_err(&vmi->mas))) 1139 return -ENOMEM; 1140 1141 return 0; 1142} 1143 1144/* 1145 * VMA lock generalization 1146 */ 1147struct vma_prepare { 1148 struct vm_area_struct *vma; 1149 struct vm_area_struct *adj_next; 1150 struct file *file; 1151 struct address_space *mapping; 1152 struct anon_vma *anon_vma; 1153 struct vm_area_struct *insert; 1154 struct vm_area_struct *remove; 1155 struct vm_area_struct *remove2; 1156}; 1157#endif /* __MM_INTERNAL_H */