Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/memremap.h>
57#include <linux/mm_inline.h>
58#include <linux/swap_cgroup.h>
59#include <linux/cpu.h>
60#include <linux/oom.h>
61#include <linux/lockdep.h>
62#include <linux/file.h>
63#include <linux/resume_user_mode.h>
64#include <linux/psi.h>
65#include <linux/seq_buf.h>
66#include <linux/sched/isolation.h>
67#include "internal.h"
68#include <net/sock.h>
69#include <net/ip.h>
70#include "slab.h"
71#include "swap.h"
72
73#include <linux/uaccess.h>
74
75#include <trace/events/vmscan.h>
76
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
79
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82/* Active memory cgroup to use from an interrupt context */
83DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86/* Socket memory accounting disabled? */
87static bool cgroup_memory_nosocket __ro_after_init;
88
89/* Kernel memory accounting disabled? */
90static bool cgroup_memory_nokmem __ro_after_init;
91
92/* BPF memory accounting disabled? */
93static bool cgroup_memory_nobpf __ro_after_init;
94
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103}
104
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
107
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117};
118
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
130
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
134struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169};
170
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174/* Stuffs for move charges at task migration. */
175/*
176 * Types of charges to be moved.
177 */
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
198
199/*
200 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206/* for encoding cft->private value on file */
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _KMEM,
211 _TCP,
212};
213
214#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
216#define MEMFILE_ATTR(val) ((val) & 0xffff)
217
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
233static inline bool task_is_dying(void)
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
247struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248{
249 return container_of(vmpr, struct mem_cgroup, vmpressure);
250}
251
252#ifdef CONFIG_MEMCG_KMEM
253static DEFINE_SPINLOCK(objcg_lock);
254
255bool mem_cgroup_kmem_disabled(void)
256{
257 return cgroup_memory_nokmem;
258}
259
260static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 unsigned int nr_pages);
262
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 unsigned int nr_bytes;
267 unsigned int nr_pages;
268 unsigned long flags;
269
270 /*
271 * At this point all allocated objects are freed, and
272 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 *
275 * The following sequence can lead to it:
276 * 1) CPU0: objcg == stock->cached_objcg
277 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 * PAGE_SIZE bytes are charged
279 * 3) CPU1: a process from another memcg is allocating something,
280 * the stock if flushed,
281 * objcg->nr_charged_bytes = PAGE_SIZE - 92
282 * 5) CPU0: we do release this object,
283 * 92 bytes are added to stock->nr_bytes
284 * 6) CPU0: stock is flushed,
285 * 92 bytes are added to objcg->nr_charged_bytes
286 *
287 * In the result, nr_charged_bytes == PAGE_SIZE.
288 * This page will be uncharged in obj_cgroup_release().
289 */
290 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 nr_pages = nr_bytes >> PAGE_SHIFT;
293
294 if (nr_pages)
295 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297 spin_lock_irqsave(&objcg_lock, flags);
298 list_del(&objcg->list);
299 spin_unlock_irqrestore(&objcg_lock, flags);
300
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
303}
304
305static struct obj_cgroup *obj_cgroup_alloc(void)
306{
307 struct obj_cgroup *objcg;
308 int ret;
309
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 if (!objcg)
312 return NULL;
313
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 GFP_KERNEL);
316 if (ret) {
317 kfree(objcg);
318 return NULL;
319 }
320 INIT_LIST_HEAD(&objcg->list);
321 return objcg;
322}
323
324static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
326{
327 struct obj_cgroup *objcg, *iter;
328
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331 spin_lock_irq(&objcg_lock);
332
333 /* 1) Ready to reparent active objcg. */
334 list_add(&objcg->list, &memcg->objcg_list);
335 /* 2) Reparent active objcg and already reparented objcgs to parent. */
336 list_for_each_entry(iter, &memcg->objcg_list, list)
337 WRITE_ONCE(iter->memcg, parent);
338 /* 3) Move already reparented objcgs to the parent's list */
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341 spin_unlock_irq(&objcg_lock);
342
343 percpu_ref_kill(&objcg->refcnt);
344}
345
346/*
347 * A lot of the calls to the cache allocation functions are expected to be
348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
352DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353EXPORT_SYMBOL(memcg_kmem_online_key);
354
355DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356EXPORT_SYMBOL(memcg_bpf_enabled_key);
357#endif
358
359/**
360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361 * @folio: folio of interest
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @folio is returned. The returned css remains associated with @folio
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
369 */
370struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371{
372 struct mem_cgroup *memcg = folio_memcg(folio);
373
374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375 memcg = root_mem_cgroup;
376
377 return &memcg->css;
378}
379
380/**
381 * page_cgroup_ino - return inode number of the memcg a page is charged to
382 * @page: the page
383 *
384 * Look up the closest online ancestor of the memory cgroup @page is charged to
385 * and return its inode number or 0 if @page is not charged to any cgroup. It
386 * is safe to call this function without holding a reference to @page.
387 *
388 * Note, this function is inherently racy, because there is nothing to prevent
389 * the cgroup inode from getting torn down and potentially reallocated a moment
390 * after page_cgroup_ino() returns, so it only should be used by callers that
391 * do not care (such as procfs interfaces).
392 */
393ino_t page_cgroup_ino(struct page *page)
394{
395 struct mem_cgroup *memcg;
396 unsigned long ino = 0;
397
398 rcu_read_lock();
399 /* page_folio() is racy here, but the entire function is racy anyway */
400 memcg = folio_memcg_check(page_folio(page));
401
402 while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 memcg = parent_mem_cgroup(memcg);
404 if (memcg)
405 ino = cgroup_ino(memcg->css.cgroup);
406 rcu_read_unlock();
407 return ino;
408}
409
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 struct mem_cgroup_tree_per_node *mctz,
412 unsigned long new_usage_in_excess)
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_node *mz_node;
417 bool rightmost = true;
418
419 if (mz->on_tree)
420 return;
421
422 mz->usage_in_excess = new_usage_in_excess;
423 if (!mz->usage_in_excess)
424 return;
425 while (*p) {
426 parent = *p;
427 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428 tree_node);
429 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430 p = &(*p)->rb_left;
431 rightmost = false;
432 } else {
433 p = &(*p)->rb_right;
434 }
435 }
436
437 if (rightmost)
438 mctz->rb_rightmost = &mz->tree_node;
439
440 rb_link_node(&mz->tree_node, parent, p);
441 rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 mz->on_tree = true;
443}
444
445static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 struct mem_cgroup_tree_per_node *mctz)
447{
448 if (!mz->on_tree)
449 return;
450
451 if (&mz->tree_node == mctz->rb_rightmost)
452 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454 rb_erase(&mz->tree_node, &mctz->rb_root);
455 mz->on_tree = false;
456}
457
458static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 struct mem_cgroup_tree_per_node *mctz)
460{
461 unsigned long flags;
462
463 spin_lock_irqsave(&mctz->lock, flags);
464 __mem_cgroup_remove_exceeded(mz, mctz);
465 spin_unlock_irqrestore(&mctz->lock, flags);
466}
467
468static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469{
470 unsigned long nr_pages = page_counter_read(&memcg->memory);
471 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472 unsigned long excess = 0;
473
474 if (nr_pages > soft_limit)
475 excess = nr_pages - soft_limit;
476
477 return excess;
478}
479
480static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481{
482 unsigned long excess;
483 struct mem_cgroup_per_node *mz;
484 struct mem_cgroup_tree_per_node *mctz;
485
486 if (lru_gen_enabled()) {
487 if (soft_limit_excess(memcg))
488 lru_gen_soft_reclaim(memcg, nid);
489 return;
490 }
491
492 mctz = soft_limit_tree.rb_tree_per_node[nid];
493 if (!mctz)
494 return;
495 /*
496 * Necessary to update all ancestors when hierarchy is used.
497 * because their event counter is not touched.
498 */
499 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500 mz = memcg->nodeinfo[nid];
501 excess = soft_limit_excess(memcg);
502 /*
503 * We have to update the tree if mz is on RB-tree or
504 * mem is over its softlimit.
505 */
506 if (excess || mz->on_tree) {
507 unsigned long flags;
508
509 spin_lock_irqsave(&mctz->lock, flags);
510 /* if on-tree, remove it */
511 if (mz->on_tree)
512 __mem_cgroup_remove_exceeded(mz, mctz);
513 /*
514 * Insert again. mz->usage_in_excess will be updated.
515 * If excess is 0, no tree ops.
516 */
517 __mem_cgroup_insert_exceeded(mz, mctz, excess);
518 spin_unlock_irqrestore(&mctz->lock, flags);
519 }
520 }
521}
522
523static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524{
525 struct mem_cgroup_tree_per_node *mctz;
526 struct mem_cgroup_per_node *mz;
527 int nid;
528
529 for_each_node(nid) {
530 mz = memcg->nodeinfo[nid];
531 mctz = soft_limit_tree.rb_tree_per_node[nid];
532 if (mctz)
533 mem_cgroup_remove_exceeded(mz, mctz);
534 }
535}
536
537static struct mem_cgroup_per_node *
538__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539{
540 struct mem_cgroup_per_node *mz;
541
542retry:
543 mz = NULL;
544 if (!mctz->rb_rightmost)
545 goto done; /* Nothing to reclaim from */
546
547 mz = rb_entry(mctz->rb_rightmost,
548 struct mem_cgroup_per_node, tree_node);
549 /*
550 * Remove the node now but someone else can add it back,
551 * we will to add it back at the end of reclaim to its correct
552 * position in the tree.
553 */
554 __mem_cgroup_remove_exceeded(mz, mctz);
555 if (!soft_limit_excess(mz->memcg) ||
556 !css_tryget(&mz->memcg->css))
557 goto retry;
558done:
559 return mz;
560}
561
562static struct mem_cgroup_per_node *
563mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564{
565 struct mem_cgroup_per_node *mz;
566
567 spin_lock_irq(&mctz->lock);
568 mz = __mem_cgroup_largest_soft_limit_node(mctz);
569 spin_unlock_irq(&mctz->lock);
570 return mz;
571}
572
573/*
574 * memcg and lruvec stats flushing
575 *
576 * Many codepaths leading to stats update or read are performance sensitive and
577 * adding stats flushing in such codepaths is not desirable. So, to optimize the
578 * flushing the kernel does:
579 *
580 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581 * rstat update tree grow unbounded.
582 *
583 * 2) Flush the stats synchronously on reader side only when there are more than
584 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586 * only for 2 seconds due to (1).
587 */
588static void flush_memcg_stats_dwork(struct work_struct *w);
589static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590static DEFINE_PER_CPU(unsigned int, stats_updates);
591static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593static u64 flush_next_time;
594
595#define FLUSH_TIME (2UL*HZ)
596
597/*
598 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599 * not rely on this as part of an acquired spinlock_t lock. These functions are
600 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601 * is sufficient.
602 */
603static void memcg_stats_lock(void)
604{
605 preempt_disable_nested();
606 VM_WARN_ON_IRQS_ENABLED();
607}
608
609static void __memcg_stats_lock(void)
610{
611 preempt_disable_nested();
612}
613
614static void memcg_stats_unlock(void)
615{
616 preempt_enable_nested();
617}
618
619static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620{
621 unsigned int x;
622
623 if (!val)
624 return;
625
626 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628 x = __this_cpu_add_return(stats_updates, abs(val));
629 if (x > MEMCG_CHARGE_BATCH) {
630 /*
631 * If stats_flush_threshold exceeds the threshold
632 * (>num_online_cpus()), cgroup stats update will be triggered
633 * in __mem_cgroup_flush_stats(). Increasing this var further
634 * is redundant and simply adds overhead in atomic update.
635 */
636 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638 __this_cpu_write(stats_updates, 0);
639 }
640}
641
642static void do_flush_stats(void)
643{
644 /*
645 * We always flush the entire tree, so concurrent flushers can just
646 * skip. This avoids a thundering herd problem on the rstat global lock
647 * from memcg flushers (e.g. reclaim, refault, etc).
648 */
649 if (atomic_read(&stats_flush_ongoing) ||
650 atomic_xchg(&stats_flush_ongoing, 1))
651 return;
652
653 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656
657 atomic_set(&stats_flush_threshold, 0);
658 atomic_set(&stats_flush_ongoing, 0);
659}
660
661void mem_cgroup_flush_stats(void)
662{
663 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664 do_flush_stats();
665}
666
667void mem_cgroup_flush_stats_ratelimited(void)
668{
669 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670 mem_cgroup_flush_stats();
671}
672
673static void flush_memcg_stats_dwork(struct work_struct *w)
674{
675 /*
676 * Always flush here so that flushing in latency-sensitive paths is
677 * as cheap as possible.
678 */
679 do_flush_stats();
680 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681}
682
683/* Subset of vm_event_item to report for memcg event stats */
684static const unsigned int memcg_vm_event_stat[] = {
685 PGPGIN,
686 PGPGOUT,
687 PGSCAN_KSWAPD,
688 PGSCAN_DIRECT,
689 PGSCAN_KHUGEPAGED,
690 PGSTEAL_KSWAPD,
691 PGSTEAL_DIRECT,
692 PGSTEAL_KHUGEPAGED,
693 PGFAULT,
694 PGMAJFAULT,
695 PGREFILL,
696 PGACTIVATE,
697 PGDEACTIVATE,
698 PGLAZYFREE,
699 PGLAZYFREED,
700#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701 ZSWPIN,
702 ZSWPOUT,
703#endif
704#ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 THP_FAULT_ALLOC,
706 THP_COLLAPSE_ALLOC,
707#endif
708};
709
710#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
713static void init_memcg_events(void)
714{
715 int i;
716
717 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719}
720
721static inline int memcg_events_index(enum vm_event_item idx)
722{
723 return mem_cgroup_events_index[idx] - 1;
724}
725
726struct memcg_vmstats_percpu {
727 /* Local (CPU and cgroup) page state & events */
728 long state[MEMCG_NR_STAT];
729 unsigned long events[NR_MEMCG_EVENTS];
730
731 /* Delta calculation for lockless upward propagation */
732 long state_prev[MEMCG_NR_STAT];
733 unsigned long events_prev[NR_MEMCG_EVENTS];
734
735 /* Cgroup1: threshold notifications & softlimit tree updates */
736 unsigned long nr_page_events;
737 unsigned long targets[MEM_CGROUP_NTARGETS];
738};
739
740struct memcg_vmstats {
741 /* Aggregated (CPU and subtree) page state & events */
742 long state[MEMCG_NR_STAT];
743 unsigned long events[NR_MEMCG_EVENTS];
744
745 /* Non-hierarchical (CPU aggregated) page state & events */
746 long state_local[MEMCG_NR_STAT];
747 unsigned long events_local[NR_MEMCG_EVENTS];
748
749 /* Pending child counts during tree propagation */
750 long state_pending[MEMCG_NR_STAT];
751 unsigned long events_pending[NR_MEMCG_EVENTS];
752};
753
754unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
755{
756 long x = READ_ONCE(memcg->vmstats->state[idx]);
757#ifdef CONFIG_SMP
758 if (x < 0)
759 x = 0;
760#endif
761 return x;
762}
763
764/**
765 * __mod_memcg_state - update cgroup memory statistics
766 * @memcg: the memory cgroup
767 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
768 * @val: delta to add to the counter, can be negative
769 */
770void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
771{
772 if (mem_cgroup_disabled())
773 return;
774
775 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
776 memcg_rstat_updated(memcg, val);
777}
778
779/* idx can be of type enum memcg_stat_item or node_stat_item. */
780static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
781{
782 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
783
784#ifdef CONFIG_SMP
785 if (x < 0)
786 x = 0;
787#endif
788 return x;
789}
790
791void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
792 int val)
793{
794 struct mem_cgroup_per_node *pn;
795 struct mem_cgroup *memcg;
796
797 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
798 memcg = pn->memcg;
799
800 /*
801 * The caller from rmap relay on disabled preemption becase they never
802 * update their counter from in-interrupt context. For these two
803 * counters we check that the update is never performed from an
804 * interrupt context while other caller need to have disabled interrupt.
805 */
806 __memcg_stats_lock();
807 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
808 switch (idx) {
809 case NR_ANON_MAPPED:
810 case NR_FILE_MAPPED:
811 case NR_ANON_THPS:
812 case NR_SHMEM_PMDMAPPED:
813 case NR_FILE_PMDMAPPED:
814 WARN_ON_ONCE(!in_task());
815 break;
816 default:
817 VM_WARN_ON_IRQS_ENABLED();
818 }
819 }
820
821 /* Update memcg */
822 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
823
824 /* Update lruvec */
825 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
826
827 memcg_rstat_updated(memcg, val);
828 memcg_stats_unlock();
829}
830
831/**
832 * __mod_lruvec_state - update lruvec memory statistics
833 * @lruvec: the lruvec
834 * @idx: the stat item
835 * @val: delta to add to the counter, can be negative
836 *
837 * The lruvec is the intersection of the NUMA node and a cgroup. This
838 * function updates the all three counters that are affected by a
839 * change of state at this level: per-node, per-cgroup, per-lruvec.
840 */
841void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
842 int val)
843{
844 /* Update node */
845 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
846
847 /* Update memcg and lruvec */
848 if (!mem_cgroup_disabled())
849 __mod_memcg_lruvec_state(lruvec, idx, val);
850}
851
852void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
853 int val)
854{
855 struct page *head = compound_head(page); /* rmap on tail pages */
856 struct mem_cgroup *memcg;
857 pg_data_t *pgdat = page_pgdat(page);
858 struct lruvec *lruvec;
859
860 rcu_read_lock();
861 memcg = page_memcg(head);
862 /* Untracked pages have no memcg, no lruvec. Update only the node */
863 if (!memcg) {
864 rcu_read_unlock();
865 __mod_node_page_state(pgdat, idx, val);
866 return;
867 }
868
869 lruvec = mem_cgroup_lruvec(memcg, pgdat);
870 __mod_lruvec_state(lruvec, idx, val);
871 rcu_read_unlock();
872}
873EXPORT_SYMBOL(__mod_lruvec_page_state);
874
875void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
876{
877 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
878 struct mem_cgroup *memcg;
879 struct lruvec *lruvec;
880
881 rcu_read_lock();
882 memcg = mem_cgroup_from_slab_obj(p);
883
884 /*
885 * Untracked pages have no memcg, no lruvec. Update only the
886 * node. If we reparent the slab objects to the root memcg,
887 * when we free the slab object, we need to update the per-memcg
888 * vmstats to keep it correct for the root memcg.
889 */
890 if (!memcg) {
891 __mod_node_page_state(pgdat, idx, val);
892 } else {
893 lruvec = mem_cgroup_lruvec(memcg, pgdat);
894 __mod_lruvec_state(lruvec, idx, val);
895 }
896 rcu_read_unlock();
897}
898
899/**
900 * __count_memcg_events - account VM events in a cgroup
901 * @memcg: the memory cgroup
902 * @idx: the event item
903 * @count: the number of events that occurred
904 */
905void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
906 unsigned long count)
907{
908 int index = memcg_events_index(idx);
909
910 if (mem_cgroup_disabled() || index < 0)
911 return;
912
913 memcg_stats_lock();
914 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
915 memcg_rstat_updated(memcg, count);
916 memcg_stats_unlock();
917}
918
919static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
920{
921 int index = memcg_events_index(event);
922
923 if (index < 0)
924 return 0;
925 return READ_ONCE(memcg->vmstats->events[index]);
926}
927
928static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929{
930 int index = memcg_events_index(event);
931
932 if (index < 0)
933 return 0;
934
935 return READ_ONCE(memcg->vmstats->events_local[index]);
936}
937
938static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939 int nr_pages)
940{
941 /* pagein of a big page is an event. So, ignore page size */
942 if (nr_pages > 0)
943 __count_memcg_events(memcg, PGPGIN, 1);
944 else {
945 __count_memcg_events(memcg, PGPGOUT, 1);
946 nr_pages = -nr_pages; /* for event */
947 }
948
949 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
950}
951
952static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
954{
955 unsigned long val, next;
956
957 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
958 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
959 /* from time_after() in jiffies.h */
960 if ((long)(next - val) < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
968 default:
969 break;
970 }
971 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
972 return true;
973 }
974 return false;
975}
976
977/*
978 * Check events in order.
979 *
980 */
981static void memcg_check_events(struct mem_cgroup *memcg, int nid)
982{
983 if (IS_ENABLED(CONFIG_PREEMPT_RT))
984 return;
985
986 /* threshold event is triggered in finer grain than soft limit */
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
989 bool do_softlimit;
990
991 do_softlimit = mem_cgroup_event_ratelimit(memcg,
992 MEM_CGROUP_TARGET_SOFTLIMIT);
993 mem_cgroup_threshold(memcg);
994 if (unlikely(do_softlimit))
995 mem_cgroup_update_tree(memcg, nid);
996 }
997}
998
999struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1000{
1001 /*
1002 * mm_update_next_owner() may clear mm->owner to NULL
1003 * if it races with swapoff, page migration, etc.
1004 * So this can be called with p == NULL.
1005 */
1006 if (unlikely(!p))
1007 return NULL;
1008
1009 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1010}
1011EXPORT_SYMBOL(mem_cgroup_from_task);
1012
1013static __always_inline struct mem_cgroup *active_memcg(void)
1014{
1015 if (!in_task())
1016 return this_cpu_read(int_active_memcg);
1017 else
1018 return current->active_memcg;
1019}
1020
1021/**
1022 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1023 * @mm: mm from which memcg should be extracted. It can be NULL.
1024 *
1025 * Obtain a reference on mm->memcg and returns it if successful. If mm
1026 * is NULL, then the memcg is chosen as follows:
1027 * 1) The active memcg, if set.
1028 * 2) current->mm->memcg, if available
1029 * 3) root memcg
1030 * If mem_cgroup is disabled, NULL is returned.
1031 */
1032struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1033{
1034 struct mem_cgroup *memcg;
1035
1036 if (mem_cgroup_disabled())
1037 return NULL;
1038
1039 /*
1040 * Page cache insertions can happen without an
1041 * actual mm context, e.g. during disk probing
1042 * on boot, loopback IO, acct() writes etc.
1043 *
1044 * No need to css_get on root memcg as the reference
1045 * counting is disabled on the root level in the
1046 * cgroup core. See CSS_NO_REF.
1047 */
1048 if (unlikely(!mm)) {
1049 memcg = active_memcg();
1050 if (unlikely(memcg)) {
1051 /* remote memcg must hold a ref */
1052 css_get(&memcg->css);
1053 return memcg;
1054 }
1055 mm = current->mm;
1056 if (unlikely(!mm))
1057 return root_mem_cgroup;
1058 }
1059
1060 rcu_read_lock();
1061 do {
1062 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063 if (unlikely(!memcg))
1064 memcg = root_mem_cgroup;
1065 } while (!css_tryget(&memcg->css));
1066 rcu_read_unlock();
1067 return memcg;
1068}
1069EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1070
1071static __always_inline bool memcg_kmem_bypass(void)
1072{
1073 /* Allow remote memcg charging from any context. */
1074 if (unlikely(active_memcg()))
1075 return false;
1076
1077 /* Memcg to charge can't be determined. */
1078 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1079 return true;
1080
1081 return false;
1082}
1083
1084/**
1085 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1086 * @root: hierarchy root
1087 * @prev: previously returned memcg, NULL on first invocation
1088 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1089 *
1090 * Returns references to children of the hierarchy below @root, or
1091 * @root itself, or %NULL after a full round-trip.
1092 *
1093 * Caller must pass the return value in @prev on subsequent
1094 * invocations for reference counting, or use mem_cgroup_iter_break()
1095 * to cancel a hierarchy walk before the round-trip is complete.
1096 *
1097 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1098 * in the hierarchy among all concurrent reclaimers operating on the
1099 * same node.
1100 */
1101struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1102 struct mem_cgroup *prev,
1103 struct mem_cgroup_reclaim_cookie *reclaim)
1104{
1105 struct mem_cgroup_reclaim_iter *iter;
1106 struct cgroup_subsys_state *css = NULL;
1107 struct mem_cgroup *memcg = NULL;
1108 struct mem_cgroup *pos = NULL;
1109
1110 if (mem_cgroup_disabled())
1111 return NULL;
1112
1113 if (!root)
1114 root = root_mem_cgroup;
1115
1116 rcu_read_lock();
1117
1118 if (reclaim) {
1119 struct mem_cgroup_per_node *mz;
1120
1121 mz = root->nodeinfo[reclaim->pgdat->node_id];
1122 iter = &mz->iter;
1123
1124 /*
1125 * On start, join the current reclaim iteration cycle.
1126 * Exit when a concurrent walker completes it.
1127 */
1128 if (!prev)
1129 reclaim->generation = iter->generation;
1130 else if (reclaim->generation != iter->generation)
1131 goto out_unlock;
1132
1133 while (1) {
1134 pos = READ_ONCE(iter->position);
1135 if (!pos || css_tryget(&pos->css))
1136 break;
1137 /*
1138 * css reference reached zero, so iter->position will
1139 * be cleared by ->css_released. However, we should not
1140 * rely on this happening soon, because ->css_released
1141 * is called from a work queue, and by busy-waiting we
1142 * might block it. So we clear iter->position right
1143 * away.
1144 */
1145 (void)cmpxchg(&iter->position, pos, NULL);
1146 }
1147 } else if (prev) {
1148 pos = prev;
1149 }
1150
1151 if (pos)
1152 css = &pos->css;
1153
1154 for (;;) {
1155 css = css_next_descendant_pre(css, &root->css);
1156 if (!css) {
1157 /*
1158 * Reclaimers share the hierarchy walk, and a
1159 * new one might jump in right at the end of
1160 * the hierarchy - make sure they see at least
1161 * one group and restart from the beginning.
1162 */
1163 if (!prev)
1164 continue;
1165 break;
1166 }
1167
1168 /*
1169 * Verify the css and acquire a reference. The root
1170 * is provided by the caller, so we know it's alive
1171 * and kicking, and don't take an extra reference.
1172 */
1173 if (css == &root->css || css_tryget(css)) {
1174 memcg = mem_cgroup_from_css(css);
1175 break;
1176 }
1177 }
1178
1179 if (reclaim) {
1180 /*
1181 * The position could have already been updated by a competing
1182 * thread, so check that the value hasn't changed since we read
1183 * it to avoid reclaiming from the same cgroup twice.
1184 */
1185 (void)cmpxchg(&iter->position, pos, memcg);
1186
1187 if (pos)
1188 css_put(&pos->css);
1189
1190 if (!memcg)
1191 iter->generation++;
1192 }
1193
1194out_unlock:
1195 rcu_read_unlock();
1196 if (prev && prev != root)
1197 css_put(&prev->css);
1198
1199 return memcg;
1200}
1201
1202/**
1203 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1204 * @root: hierarchy root
1205 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1206 */
1207void mem_cgroup_iter_break(struct mem_cgroup *root,
1208 struct mem_cgroup *prev)
1209{
1210 if (!root)
1211 root = root_mem_cgroup;
1212 if (prev && prev != root)
1213 css_put(&prev->css);
1214}
1215
1216static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1217 struct mem_cgroup *dead_memcg)
1218{
1219 struct mem_cgroup_reclaim_iter *iter;
1220 struct mem_cgroup_per_node *mz;
1221 int nid;
1222
1223 for_each_node(nid) {
1224 mz = from->nodeinfo[nid];
1225 iter = &mz->iter;
1226 cmpxchg(&iter->position, dead_memcg, NULL);
1227 }
1228}
1229
1230static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1231{
1232 struct mem_cgroup *memcg = dead_memcg;
1233 struct mem_cgroup *last;
1234
1235 do {
1236 __invalidate_reclaim_iterators(memcg, dead_memcg);
1237 last = memcg;
1238 } while ((memcg = parent_mem_cgroup(memcg)));
1239
1240 /*
1241 * When cgroup1 non-hierarchy mode is used,
1242 * parent_mem_cgroup() does not walk all the way up to the
1243 * cgroup root (root_mem_cgroup). So we have to handle
1244 * dead_memcg from cgroup root separately.
1245 */
1246 if (!mem_cgroup_is_root(last))
1247 __invalidate_reclaim_iterators(root_mem_cgroup,
1248 dead_memcg);
1249}
1250
1251/**
1252 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1253 * @memcg: hierarchy root
1254 * @fn: function to call for each task
1255 * @arg: argument passed to @fn
1256 *
1257 * This function iterates over tasks attached to @memcg or to any of its
1258 * descendants and calls @fn for each task. If @fn returns a non-zero
1259 * value, the function breaks the iteration loop. Otherwise, it will iterate
1260 * over all tasks and return 0.
1261 *
1262 * This function must not be called for the root memory cgroup.
1263 */
1264void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1265 int (*fn)(struct task_struct *, void *), void *arg)
1266{
1267 struct mem_cgroup *iter;
1268 int ret = 0;
1269
1270 BUG_ON(mem_cgroup_is_root(memcg));
1271
1272 for_each_mem_cgroup_tree(iter, memcg) {
1273 struct css_task_iter it;
1274 struct task_struct *task;
1275
1276 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1277 while (!ret && (task = css_task_iter_next(&it)))
1278 ret = fn(task, arg);
1279 css_task_iter_end(&it);
1280 if (ret) {
1281 mem_cgroup_iter_break(memcg, iter);
1282 break;
1283 }
1284 }
1285}
1286
1287#ifdef CONFIG_DEBUG_VM
1288void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1289{
1290 struct mem_cgroup *memcg;
1291
1292 if (mem_cgroup_disabled())
1293 return;
1294
1295 memcg = folio_memcg(folio);
1296
1297 if (!memcg)
1298 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1299 else
1300 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1301}
1302#endif
1303
1304/**
1305 * folio_lruvec_lock - Lock the lruvec for a folio.
1306 * @folio: Pointer to the folio.
1307 *
1308 * These functions are safe to use under any of the following conditions:
1309 * - folio locked
1310 * - folio_test_lru false
1311 * - folio_memcg_lock()
1312 * - folio frozen (refcount of 0)
1313 *
1314 * Return: The lruvec this folio is on with its lock held.
1315 */
1316struct lruvec *folio_lruvec_lock(struct folio *folio)
1317{
1318 struct lruvec *lruvec = folio_lruvec(folio);
1319
1320 spin_lock(&lruvec->lru_lock);
1321 lruvec_memcg_debug(lruvec, folio);
1322
1323 return lruvec;
1324}
1325
1326/**
1327 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1328 * @folio: Pointer to the folio.
1329 *
1330 * These functions are safe to use under any of the following conditions:
1331 * - folio locked
1332 * - folio_test_lru false
1333 * - folio_memcg_lock()
1334 * - folio frozen (refcount of 0)
1335 *
1336 * Return: The lruvec this folio is on with its lock held and interrupts
1337 * disabled.
1338 */
1339struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1340{
1341 struct lruvec *lruvec = folio_lruvec(folio);
1342
1343 spin_lock_irq(&lruvec->lru_lock);
1344 lruvec_memcg_debug(lruvec, folio);
1345
1346 return lruvec;
1347}
1348
1349/**
1350 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1351 * @folio: Pointer to the folio.
1352 * @flags: Pointer to irqsave flags.
1353 *
1354 * These functions are safe to use under any of the following conditions:
1355 * - folio locked
1356 * - folio_test_lru false
1357 * - folio_memcg_lock()
1358 * - folio frozen (refcount of 0)
1359 *
1360 * Return: The lruvec this folio is on with its lock held and interrupts
1361 * disabled.
1362 */
1363struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1364 unsigned long *flags)
1365{
1366 struct lruvec *lruvec = folio_lruvec(folio);
1367
1368 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1369 lruvec_memcg_debug(lruvec, folio);
1370
1371 return lruvec;
1372}
1373
1374/**
1375 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1376 * @lruvec: mem_cgroup per zone lru vector
1377 * @lru: index of lru list the page is sitting on
1378 * @zid: zone id of the accounted pages
1379 * @nr_pages: positive when adding or negative when removing
1380 *
1381 * This function must be called under lru_lock, just before a page is added
1382 * to or just after a page is removed from an lru list.
1383 */
1384void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385 int zid, int nr_pages)
1386{
1387 struct mem_cgroup_per_node *mz;
1388 unsigned long *lru_size;
1389 long size;
1390
1391 if (mem_cgroup_disabled())
1392 return;
1393
1394 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1395 lru_size = &mz->lru_zone_size[zid][lru];
1396
1397 if (nr_pages < 0)
1398 *lru_size += nr_pages;
1399
1400 size = *lru_size;
1401 if (WARN_ONCE(size < 0,
1402 "%s(%p, %d, %d): lru_size %ld\n",
1403 __func__, lruvec, lru, nr_pages, size)) {
1404 VM_BUG_ON(1);
1405 *lru_size = 0;
1406 }
1407
1408 if (nr_pages > 0)
1409 *lru_size += nr_pages;
1410}
1411
1412/**
1413 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1414 * @memcg: the memory cgroup
1415 *
1416 * Returns the maximum amount of memory @mem can be charged with, in
1417 * pages.
1418 */
1419static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420{
1421 unsigned long margin = 0;
1422 unsigned long count;
1423 unsigned long limit;
1424
1425 count = page_counter_read(&memcg->memory);
1426 limit = READ_ONCE(memcg->memory.max);
1427 if (count < limit)
1428 margin = limit - count;
1429
1430 if (do_memsw_account()) {
1431 count = page_counter_read(&memcg->memsw);
1432 limit = READ_ONCE(memcg->memsw.max);
1433 if (count < limit)
1434 margin = min(margin, limit - count);
1435 else
1436 margin = 0;
1437 }
1438
1439 return margin;
1440}
1441
1442/*
1443 * A routine for checking "mem" is under move_account() or not.
1444 *
1445 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1446 * moving cgroups. This is for waiting at high-memory pressure
1447 * caused by "move".
1448 */
1449static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1450{
1451 struct mem_cgroup *from;
1452 struct mem_cgroup *to;
1453 bool ret = false;
1454 /*
1455 * Unlike task_move routines, we access mc.to, mc.from not under
1456 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1457 */
1458 spin_lock(&mc.lock);
1459 from = mc.from;
1460 to = mc.to;
1461 if (!from)
1462 goto unlock;
1463
1464 ret = mem_cgroup_is_descendant(from, memcg) ||
1465 mem_cgroup_is_descendant(to, memcg);
1466unlock:
1467 spin_unlock(&mc.lock);
1468 return ret;
1469}
1470
1471static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1472{
1473 if (mc.moving_task && current != mc.moving_task) {
1474 if (mem_cgroup_under_move(memcg)) {
1475 DEFINE_WAIT(wait);
1476 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1477 /* moving charge context might have finished. */
1478 if (mc.moving_task)
1479 schedule();
1480 finish_wait(&mc.waitq, &wait);
1481 return true;
1482 }
1483 }
1484 return false;
1485}
1486
1487struct memory_stat {
1488 const char *name;
1489 unsigned int idx;
1490};
1491
1492static const struct memory_stat memory_stats[] = {
1493 { "anon", NR_ANON_MAPPED },
1494 { "file", NR_FILE_PAGES },
1495 { "kernel", MEMCG_KMEM },
1496 { "kernel_stack", NR_KERNEL_STACK_KB },
1497 { "pagetables", NR_PAGETABLE },
1498 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1499 { "percpu", MEMCG_PERCPU_B },
1500 { "sock", MEMCG_SOCK },
1501 { "vmalloc", MEMCG_VMALLOC },
1502 { "shmem", NR_SHMEM },
1503#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1504 { "zswap", MEMCG_ZSWAP_B },
1505 { "zswapped", MEMCG_ZSWAPPED },
1506#endif
1507 { "file_mapped", NR_FILE_MAPPED },
1508 { "file_dirty", NR_FILE_DIRTY },
1509 { "file_writeback", NR_WRITEBACK },
1510#ifdef CONFIG_SWAP
1511 { "swapcached", NR_SWAPCACHE },
1512#endif
1513#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1514 { "anon_thp", NR_ANON_THPS },
1515 { "file_thp", NR_FILE_THPS },
1516 { "shmem_thp", NR_SHMEM_THPS },
1517#endif
1518 { "inactive_anon", NR_INACTIVE_ANON },
1519 { "active_anon", NR_ACTIVE_ANON },
1520 { "inactive_file", NR_INACTIVE_FILE },
1521 { "active_file", NR_ACTIVE_FILE },
1522 { "unevictable", NR_UNEVICTABLE },
1523 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1524 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1525
1526 /* The memory events */
1527 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1528 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1529 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1530 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1531 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1532 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1533 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1534};
1535
1536/* Translate stat items to the correct unit for memory.stat output */
1537static int memcg_page_state_unit(int item)
1538{
1539 switch (item) {
1540 case MEMCG_PERCPU_B:
1541 case MEMCG_ZSWAP_B:
1542 case NR_SLAB_RECLAIMABLE_B:
1543 case NR_SLAB_UNRECLAIMABLE_B:
1544 case WORKINGSET_REFAULT_ANON:
1545 case WORKINGSET_REFAULT_FILE:
1546 case WORKINGSET_ACTIVATE_ANON:
1547 case WORKINGSET_ACTIVATE_FILE:
1548 case WORKINGSET_RESTORE_ANON:
1549 case WORKINGSET_RESTORE_FILE:
1550 case WORKINGSET_NODERECLAIM:
1551 return 1;
1552 case NR_KERNEL_STACK_KB:
1553 return SZ_1K;
1554 default:
1555 return PAGE_SIZE;
1556 }
1557}
1558
1559static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1560 int item)
1561{
1562 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1563}
1564
1565static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1566{
1567 int i;
1568
1569 /*
1570 * Provide statistics on the state of the memory subsystem as
1571 * well as cumulative event counters that show past behavior.
1572 *
1573 * This list is ordered following a combination of these gradients:
1574 * 1) generic big picture -> specifics and details
1575 * 2) reflecting userspace activity -> reflecting kernel heuristics
1576 *
1577 * Current memory state:
1578 */
1579 mem_cgroup_flush_stats();
1580
1581 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1582 u64 size;
1583
1584 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1585 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1586
1587 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1588 size += memcg_page_state_output(memcg,
1589 NR_SLAB_RECLAIMABLE_B);
1590 seq_buf_printf(s, "slab %llu\n", size);
1591 }
1592 }
1593
1594 /* Accumulated memory events */
1595 seq_buf_printf(s, "pgscan %lu\n",
1596 memcg_events(memcg, PGSCAN_KSWAPD) +
1597 memcg_events(memcg, PGSCAN_DIRECT) +
1598 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1599 seq_buf_printf(s, "pgsteal %lu\n",
1600 memcg_events(memcg, PGSTEAL_KSWAPD) +
1601 memcg_events(memcg, PGSTEAL_DIRECT) +
1602 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1603
1604 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1605 if (memcg_vm_event_stat[i] == PGPGIN ||
1606 memcg_vm_event_stat[i] == PGPGOUT)
1607 continue;
1608
1609 seq_buf_printf(s, "%s %lu\n",
1610 vm_event_name(memcg_vm_event_stat[i]),
1611 memcg_events(memcg, memcg_vm_event_stat[i]));
1612 }
1613
1614 /* The above should easily fit into one page */
1615 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1616}
1617
1618static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1619
1620static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1621{
1622 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1623 memcg_stat_format(memcg, s);
1624 else
1625 memcg1_stat_format(memcg, s);
1626 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1627}
1628
1629/**
1630 * mem_cgroup_print_oom_context: Print OOM information relevant to
1631 * memory controller.
1632 * @memcg: The memory cgroup that went over limit
1633 * @p: Task that is going to be killed
1634 *
1635 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1636 * enabled
1637 */
1638void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1639{
1640 rcu_read_lock();
1641
1642 if (memcg) {
1643 pr_cont(",oom_memcg=");
1644 pr_cont_cgroup_path(memcg->css.cgroup);
1645 } else
1646 pr_cont(",global_oom");
1647 if (p) {
1648 pr_cont(",task_memcg=");
1649 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1650 }
1651 rcu_read_unlock();
1652}
1653
1654/**
1655 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1656 * memory controller.
1657 * @memcg: The memory cgroup that went over limit
1658 */
1659void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1660{
1661 /* Use static buffer, for the caller is holding oom_lock. */
1662 static char buf[PAGE_SIZE];
1663 struct seq_buf s;
1664
1665 lockdep_assert_held(&oom_lock);
1666
1667 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1668 K((u64)page_counter_read(&memcg->memory)),
1669 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1670 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1671 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1672 K((u64)page_counter_read(&memcg->swap)),
1673 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1674 else {
1675 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1676 K((u64)page_counter_read(&memcg->memsw)),
1677 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1678 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1679 K((u64)page_counter_read(&memcg->kmem)),
1680 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1681 }
1682
1683 pr_info("Memory cgroup stats for ");
1684 pr_cont_cgroup_path(memcg->css.cgroup);
1685 pr_cont(":");
1686 seq_buf_init(&s, buf, sizeof(buf));
1687 memory_stat_format(memcg, &s);
1688 seq_buf_do_printk(&s, KERN_INFO);
1689}
1690
1691/*
1692 * Return the memory (and swap, if configured) limit for a memcg.
1693 */
1694unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1695{
1696 unsigned long max = READ_ONCE(memcg->memory.max);
1697
1698 if (do_memsw_account()) {
1699 if (mem_cgroup_swappiness(memcg)) {
1700 /* Calculate swap excess capacity from memsw limit */
1701 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1702
1703 max += min(swap, (unsigned long)total_swap_pages);
1704 }
1705 } else {
1706 if (mem_cgroup_swappiness(memcg))
1707 max += min(READ_ONCE(memcg->swap.max),
1708 (unsigned long)total_swap_pages);
1709 }
1710 return max;
1711}
1712
1713unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1714{
1715 return page_counter_read(&memcg->memory);
1716}
1717
1718static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1719 int order)
1720{
1721 struct oom_control oc = {
1722 .zonelist = NULL,
1723 .nodemask = NULL,
1724 .memcg = memcg,
1725 .gfp_mask = gfp_mask,
1726 .order = order,
1727 };
1728 bool ret = true;
1729
1730 if (mutex_lock_killable(&oom_lock))
1731 return true;
1732
1733 if (mem_cgroup_margin(memcg) >= (1 << order))
1734 goto unlock;
1735
1736 /*
1737 * A few threads which were not waiting at mutex_lock_killable() can
1738 * fail to bail out. Therefore, check again after holding oom_lock.
1739 */
1740 ret = task_is_dying() || out_of_memory(&oc);
1741
1742unlock:
1743 mutex_unlock(&oom_lock);
1744 return ret;
1745}
1746
1747static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1748 pg_data_t *pgdat,
1749 gfp_t gfp_mask,
1750 unsigned long *total_scanned)
1751{
1752 struct mem_cgroup *victim = NULL;
1753 int total = 0;
1754 int loop = 0;
1755 unsigned long excess;
1756 unsigned long nr_scanned;
1757 struct mem_cgroup_reclaim_cookie reclaim = {
1758 .pgdat = pgdat,
1759 };
1760
1761 excess = soft_limit_excess(root_memcg);
1762
1763 while (1) {
1764 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1765 if (!victim) {
1766 loop++;
1767 if (loop >= 2) {
1768 /*
1769 * If we have not been able to reclaim
1770 * anything, it might because there are
1771 * no reclaimable pages under this hierarchy
1772 */
1773 if (!total)
1774 break;
1775 /*
1776 * We want to do more targeted reclaim.
1777 * excess >> 2 is not to excessive so as to
1778 * reclaim too much, nor too less that we keep
1779 * coming back to reclaim from this cgroup
1780 */
1781 if (total >= (excess >> 2) ||
1782 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1783 break;
1784 }
1785 continue;
1786 }
1787 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1788 pgdat, &nr_scanned);
1789 *total_scanned += nr_scanned;
1790 if (!soft_limit_excess(root_memcg))
1791 break;
1792 }
1793 mem_cgroup_iter_break(root_memcg, victim);
1794 return total;
1795}
1796
1797#ifdef CONFIG_LOCKDEP
1798static struct lockdep_map memcg_oom_lock_dep_map = {
1799 .name = "memcg_oom_lock",
1800};
1801#endif
1802
1803static DEFINE_SPINLOCK(memcg_oom_lock);
1804
1805/*
1806 * Check OOM-Killer is already running under our hierarchy.
1807 * If someone is running, return false.
1808 */
1809static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1810{
1811 struct mem_cgroup *iter, *failed = NULL;
1812
1813 spin_lock(&memcg_oom_lock);
1814
1815 for_each_mem_cgroup_tree(iter, memcg) {
1816 if (iter->oom_lock) {
1817 /*
1818 * this subtree of our hierarchy is already locked
1819 * so we cannot give a lock.
1820 */
1821 failed = iter;
1822 mem_cgroup_iter_break(memcg, iter);
1823 break;
1824 } else
1825 iter->oom_lock = true;
1826 }
1827
1828 if (failed) {
1829 /*
1830 * OK, we failed to lock the whole subtree so we have
1831 * to clean up what we set up to the failing subtree
1832 */
1833 for_each_mem_cgroup_tree(iter, memcg) {
1834 if (iter == failed) {
1835 mem_cgroup_iter_break(memcg, iter);
1836 break;
1837 }
1838 iter->oom_lock = false;
1839 }
1840 } else
1841 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1842
1843 spin_unlock(&memcg_oom_lock);
1844
1845 return !failed;
1846}
1847
1848static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1849{
1850 struct mem_cgroup *iter;
1851
1852 spin_lock(&memcg_oom_lock);
1853 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1854 for_each_mem_cgroup_tree(iter, memcg)
1855 iter->oom_lock = false;
1856 spin_unlock(&memcg_oom_lock);
1857}
1858
1859static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1860{
1861 struct mem_cgroup *iter;
1862
1863 spin_lock(&memcg_oom_lock);
1864 for_each_mem_cgroup_tree(iter, memcg)
1865 iter->under_oom++;
1866 spin_unlock(&memcg_oom_lock);
1867}
1868
1869static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1870{
1871 struct mem_cgroup *iter;
1872
1873 /*
1874 * Be careful about under_oom underflows because a child memcg
1875 * could have been added after mem_cgroup_mark_under_oom.
1876 */
1877 spin_lock(&memcg_oom_lock);
1878 for_each_mem_cgroup_tree(iter, memcg)
1879 if (iter->under_oom > 0)
1880 iter->under_oom--;
1881 spin_unlock(&memcg_oom_lock);
1882}
1883
1884static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1885
1886struct oom_wait_info {
1887 struct mem_cgroup *memcg;
1888 wait_queue_entry_t wait;
1889};
1890
1891static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1892 unsigned mode, int sync, void *arg)
1893{
1894 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1895 struct mem_cgroup *oom_wait_memcg;
1896 struct oom_wait_info *oom_wait_info;
1897
1898 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1899 oom_wait_memcg = oom_wait_info->memcg;
1900
1901 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1902 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1903 return 0;
1904 return autoremove_wake_function(wait, mode, sync, arg);
1905}
1906
1907static void memcg_oom_recover(struct mem_cgroup *memcg)
1908{
1909 /*
1910 * For the following lockless ->under_oom test, the only required
1911 * guarantee is that it must see the state asserted by an OOM when
1912 * this function is called as a result of userland actions
1913 * triggered by the notification of the OOM. This is trivially
1914 * achieved by invoking mem_cgroup_mark_under_oom() before
1915 * triggering notification.
1916 */
1917 if (memcg && memcg->under_oom)
1918 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1919}
1920
1921/*
1922 * Returns true if successfully killed one or more processes. Though in some
1923 * corner cases it can return true even without killing any process.
1924 */
1925static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1926{
1927 bool locked, ret;
1928
1929 if (order > PAGE_ALLOC_COSTLY_ORDER)
1930 return false;
1931
1932 memcg_memory_event(memcg, MEMCG_OOM);
1933
1934 /*
1935 * We are in the middle of the charge context here, so we
1936 * don't want to block when potentially sitting on a callstack
1937 * that holds all kinds of filesystem and mm locks.
1938 *
1939 * cgroup1 allows disabling the OOM killer and waiting for outside
1940 * handling until the charge can succeed; remember the context and put
1941 * the task to sleep at the end of the page fault when all locks are
1942 * released.
1943 *
1944 * On the other hand, in-kernel OOM killer allows for an async victim
1945 * memory reclaim (oom_reaper) and that means that we are not solely
1946 * relying on the oom victim to make a forward progress and we can
1947 * invoke the oom killer here.
1948 *
1949 * Please note that mem_cgroup_out_of_memory might fail to find a
1950 * victim and then we have to bail out from the charge path.
1951 */
1952 if (READ_ONCE(memcg->oom_kill_disable)) {
1953 if (current->in_user_fault) {
1954 css_get(&memcg->css);
1955 current->memcg_in_oom = memcg;
1956 current->memcg_oom_gfp_mask = mask;
1957 current->memcg_oom_order = order;
1958 }
1959 return false;
1960 }
1961
1962 mem_cgroup_mark_under_oom(memcg);
1963
1964 locked = mem_cgroup_oom_trylock(memcg);
1965
1966 if (locked)
1967 mem_cgroup_oom_notify(memcg);
1968
1969 mem_cgroup_unmark_under_oom(memcg);
1970 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1971
1972 if (locked)
1973 mem_cgroup_oom_unlock(memcg);
1974
1975 return ret;
1976}
1977
1978/**
1979 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1980 * @handle: actually kill/wait or just clean up the OOM state
1981 *
1982 * This has to be called at the end of a page fault if the memcg OOM
1983 * handler was enabled.
1984 *
1985 * Memcg supports userspace OOM handling where failed allocations must
1986 * sleep on a waitqueue until the userspace task resolves the
1987 * situation. Sleeping directly in the charge context with all kinds
1988 * of locks held is not a good idea, instead we remember an OOM state
1989 * in the task and mem_cgroup_oom_synchronize() has to be called at
1990 * the end of the page fault to complete the OOM handling.
1991 *
1992 * Returns %true if an ongoing memcg OOM situation was detected and
1993 * completed, %false otherwise.
1994 */
1995bool mem_cgroup_oom_synchronize(bool handle)
1996{
1997 struct mem_cgroup *memcg = current->memcg_in_oom;
1998 struct oom_wait_info owait;
1999 bool locked;
2000
2001 /* OOM is global, do not handle */
2002 if (!memcg)
2003 return false;
2004
2005 if (!handle)
2006 goto cleanup;
2007
2008 owait.memcg = memcg;
2009 owait.wait.flags = 0;
2010 owait.wait.func = memcg_oom_wake_function;
2011 owait.wait.private = current;
2012 INIT_LIST_HEAD(&owait.wait.entry);
2013
2014 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2015 mem_cgroup_mark_under_oom(memcg);
2016
2017 locked = mem_cgroup_oom_trylock(memcg);
2018
2019 if (locked)
2020 mem_cgroup_oom_notify(memcg);
2021
2022 schedule();
2023 mem_cgroup_unmark_under_oom(memcg);
2024 finish_wait(&memcg_oom_waitq, &owait.wait);
2025
2026 if (locked)
2027 mem_cgroup_oom_unlock(memcg);
2028cleanup:
2029 current->memcg_in_oom = NULL;
2030 css_put(&memcg->css);
2031 return true;
2032}
2033
2034/**
2035 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2036 * @victim: task to be killed by the OOM killer
2037 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2038 *
2039 * Returns a pointer to a memory cgroup, which has to be cleaned up
2040 * by killing all belonging OOM-killable tasks.
2041 *
2042 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2043 */
2044struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2045 struct mem_cgroup *oom_domain)
2046{
2047 struct mem_cgroup *oom_group = NULL;
2048 struct mem_cgroup *memcg;
2049
2050 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2051 return NULL;
2052
2053 if (!oom_domain)
2054 oom_domain = root_mem_cgroup;
2055
2056 rcu_read_lock();
2057
2058 memcg = mem_cgroup_from_task(victim);
2059 if (mem_cgroup_is_root(memcg))
2060 goto out;
2061
2062 /*
2063 * If the victim task has been asynchronously moved to a different
2064 * memory cgroup, we might end up killing tasks outside oom_domain.
2065 * In this case it's better to ignore memory.group.oom.
2066 */
2067 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2068 goto out;
2069
2070 /*
2071 * Traverse the memory cgroup hierarchy from the victim task's
2072 * cgroup up to the OOMing cgroup (or root) to find the
2073 * highest-level memory cgroup with oom.group set.
2074 */
2075 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2076 if (READ_ONCE(memcg->oom_group))
2077 oom_group = memcg;
2078
2079 if (memcg == oom_domain)
2080 break;
2081 }
2082
2083 if (oom_group)
2084 css_get(&oom_group->css);
2085out:
2086 rcu_read_unlock();
2087
2088 return oom_group;
2089}
2090
2091void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2092{
2093 pr_info("Tasks in ");
2094 pr_cont_cgroup_path(memcg->css.cgroup);
2095 pr_cont(" are going to be killed due to memory.oom.group set\n");
2096}
2097
2098/**
2099 * folio_memcg_lock - Bind a folio to its memcg.
2100 * @folio: The folio.
2101 *
2102 * This function prevents unlocked LRU folios from being moved to
2103 * another cgroup.
2104 *
2105 * It ensures lifetime of the bound memcg. The caller is responsible
2106 * for the lifetime of the folio.
2107 */
2108void folio_memcg_lock(struct folio *folio)
2109{
2110 struct mem_cgroup *memcg;
2111 unsigned long flags;
2112
2113 /*
2114 * The RCU lock is held throughout the transaction. The fast
2115 * path can get away without acquiring the memcg->move_lock
2116 * because page moving starts with an RCU grace period.
2117 */
2118 rcu_read_lock();
2119
2120 if (mem_cgroup_disabled())
2121 return;
2122again:
2123 memcg = folio_memcg(folio);
2124 if (unlikely(!memcg))
2125 return;
2126
2127#ifdef CONFIG_PROVE_LOCKING
2128 local_irq_save(flags);
2129 might_lock(&memcg->move_lock);
2130 local_irq_restore(flags);
2131#endif
2132
2133 if (atomic_read(&memcg->moving_account) <= 0)
2134 return;
2135
2136 spin_lock_irqsave(&memcg->move_lock, flags);
2137 if (memcg != folio_memcg(folio)) {
2138 spin_unlock_irqrestore(&memcg->move_lock, flags);
2139 goto again;
2140 }
2141
2142 /*
2143 * When charge migration first begins, we can have multiple
2144 * critical sections holding the fast-path RCU lock and one
2145 * holding the slowpath move_lock. Track the task who has the
2146 * move_lock for folio_memcg_unlock().
2147 */
2148 memcg->move_lock_task = current;
2149 memcg->move_lock_flags = flags;
2150}
2151
2152static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2153{
2154 if (memcg && memcg->move_lock_task == current) {
2155 unsigned long flags = memcg->move_lock_flags;
2156
2157 memcg->move_lock_task = NULL;
2158 memcg->move_lock_flags = 0;
2159
2160 spin_unlock_irqrestore(&memcg->move_lock, flags);
2161 }
2162
2163 rcu_read_unlock();
2164}
2165
2166/**
2167 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2168 * @folio: The folio.
2169 *
2170 * This releases the binding created by folio_memcg_lock(). This does
2171 * not change the accounting of this folio to its memcg, but it does
2172 * permit others to change it.
2173 */
2174void folio_memcg_unlock(struct folio *folio)
2175{
2176 __folio_memcg_unlock(folio_memcg(folio));
2177}
2178
2179struct memcg_stock_pcp {
2180 local_lock_t stock_lock;
2181 struct mem_cgroup *cached; /* this never be root cgroup */
2182 unsigned int nr_pages;
2183
2184#ifdef CONFIG_MEMCG_KMEM
2185 struct obj_cgroup *cached_objcg;
2186 struct pglist_data *cached_pgdat;
2187 unsigned int nr_bytes;
2188 int nr_slab_reclaimable_b;
2189 int nr_slab_unreclaimable_b;
2190#endif
2191
2192 struct work_struct work;
2193 unsigned long flags;
2194#define FLUSHING_CACHED_CHARGE 0
2195};
2196static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2197 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2198};
2199static DEFINE_MUTEX(percpu_charge_mutex);
2200
2201#ifdef CONFIG_MEMCG_KMEM
2202static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2203static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2204 struct mem_cgroup *root_memcg);
2205static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2206
2207#else
2208static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2209{
2210 return NULL;
2211}
2212static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2213 struct mem_cgroup *root_memcg)
2214{
2215 return false;
2216}
2217static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2218{
2219}
2220#endif
2221
2222/**
2223 * consume_stock: Try to consume stocked charge on this cpu.
2224 * @memcg: memcg to consume from.
2225 * @nr_pages: how many pages to charge.
2226 *
2227 * The charges will only happen if @memcg matches the current cpu's memcg
2228 * stock, and at least @nr_pages are available in that stock. Failure to
2229 * service an allocation will refill the stock.
2230 *
2231 * returns true if successful, false otherwise.
2232 */
2233static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2234{
2235 struct memcg_stock_pcp *stock;
2236 unsigned long flags;
2237 bool ret = false;
2238
2239 if (nr_pages > MEMCG_CHARGE_BATCH)
2240 return ret;
2241
2242 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2243
2244 stock = this_cpu_ptr(&memcg_stock);
2245 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2246 stock->nr_pages -= nr_pages;
2247 ret = true;
2248 }
2249
2250 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2251
2252 return ret;
2253}
2254
2255/*
2256 * Returns stocks cached in percpu and reset cached information.
2257 */
2258static void drain_stock(struct memcg_stock_pcp *stock)
2259{
2260 struct mem_cgroup *old = READ_ONCE(stock->cached);
2261
2262 if (!old)
2263 return;
2264
2265 if (stock->nr_pages) {
2266 page_counter_uncharge(&old->memory, stock->nr_pages);
2267 if (do_memsw_account())
2268 page_counter_uncharge(&old->memsw, stock->nr_pages);
2269 stock->nr_pages = 0;
2270 }
2271
2272 css_put(&old->css);
2273 WRITE_ONCE(stock->cached, NULL);
2274}
2275
2276static void drain_local_stock(struct work_struct *dummy)
2277{
2278 struct memcg_stock_pcp *stock;
2279 struct obj_cgroup *old = NULL;
2280 unsigned long flags;
2281
2282 /*
2283 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2284 * drain_stock races is that we always operate on local CPU stock
2285 * here with IRQ disabled
2286 */
2287 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2288
2289 stock = this_cpu_ptr(&memcg_stock);
2290 old = drain_obj_stock(stock);
2291 drain_stock(stock);
2292 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2293
2294 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2295 if (old)
2296 obj_cgroup_put(old);
2297}
2298
2299/*
2300 * Cache charges(val) to local per_cpu area.
2301 * This will be consumed by consume_stock() function, later.
2302 */
2303static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2304{
2305 struct memcg_stock_pcp *stock;
2306
2307 stock = this_cpu_ptr(&memcg_stock);
2308 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2309 drain_stock(stock);
2310 css_get(&memcg->css);
2311 WRITE_ONCE(stock->cached, memcg);
2312 }
2313 stock->nr_pages += nr_pages;
2314
2315 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2316 drain_stock(stock);
2317}
2318
2319static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2320{
2321 unsigned long flags;
2322
2323 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2324 __refill_stock(memcg, nr_pages);
2325 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2326}
2327
2328/*
2329 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2330 * of the hierarchy under it.
2331 */
2332static void drain_all_stock(struct mem_cgroup *root_memcg)
2333{
2334 int cpu, curcpu;
2335
2336 /* If someone's already draining, avoid adding running more workers. */
2337 if (!mutex_trylock(&percpu_charge_mutex))
2338 return;
2339 /*
2340 * Notify other cpus that system-wide "drain" is running
2341 * We do not care about races with the cpu hotplug because cpu down
2342 * as well as workers from this path always operate on the local
2343 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2344 */
2345 migrate_disable();
2346 curcpu = smp_processor_id();
2347 for_each_online_cpu(cpu) {
2348 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2349 struct mem_cgroup *memcg;
2350 bool flush = false;
2351
2352 rcu_read_lock();
2353 memcg = READ_ONCE(stock->cached);
2354 if (memcg && stock->nr_pages &&
2355 mem_cgroup_is_descendant(memcg, root_memcg))
2356 flush = true;
2357 else if (obj_stock_flush_required(stock, root_memcg))
2358 flush = true;
2359 rcu_read_unlock();
2360
2361 if (flush &&
2362 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2363 if (cpu == curcpu)
2364 drain_local_stock(&stock->work);
2365 else if (!cpu_is_isolated(cpu))
2366 schedule_work_on(cpu, &stock->work);
2367 }
2368 }
2369 migrate_enable();
2370 mutex_unlock(&percpu_charge_mutex);
2371}
2372
2373static int memcg_hotplug_cpu_dead(unsigned int cpu)
2374{
2375 struct memcg_stock_pcp *stock;
2376
2377 stock = &per_cpu(memcg_stock, cpu);
2378 drain_stock(stock);
2379
2380 return 0;
2381}
2382
2383static unsigned long reclaim_high(struct mem_cgroup *memcg,
2384 unsigned int nr_pages,
2385 gfp_t gfp_mask)
2386{
2387 unsigned long nr_reclaimed = 0;
2388
2389 do {
2390 unsigned long pflags;
2391
2392 if (page_counter_read(&memcg->memory) <=
2393 READ_ONCE(memcg->memory.high))
2394 continue;
2395
2396 memcg_memory_event(memcg, MEMCG_HIGH);
2397
2398 psi_memstall_enter(&pflags);
2399 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2400 gfp_mask,
2401 MEMCG_RECLAIM_MAY_SWAP);
2402 psi_memstall_leave(&pflags);
2403 } while ((memcg = parent_mem_cgroup(memcg)) &&
2404 !mem_cgroup_is_root(memcg));
2405
2406 return nr_reclaimed;
2407}
2408
2409static void high_work_func(struct work_struct *work)
2410{
2411 struct mem_cgroup *memcg;
2412
2413 memcg = container_of(work, struct mem_cgroup, high_work);
2414 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2415}
2416
2417/*
2418 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2419 * enough to still cause a significant slowdown in most cases, while still
2420 * allowing diagnostics and tracing to proceed without becoming stuck.
2421 */
2422#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2423
2424/*
2425 * When calculating the delay, we use these either side of the exponentiation to
2426 * maintain precision and scale to a reasonable number of jiffies (see the table
2427 * below.
2428 *
2429 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2430 * overage ratio to a delay.
2431 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2432 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2433 * to produce a reasonable delay curve.
2434 *
2435 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2436 * reasonable delay curve compared to precision-adjusted overage, not
2437 * penalising heavily at first, but still making sure that growth beyond the
2438 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2439 * example, with a high of 100 megabytes:
2440 *
2441 * +-------+------------------------+
2442 * | usage | time to allocate in ms |
2443 * +-------+------------------------+
2444 * | 100M | 0 |
2445 * | 101M | 6 |
2446 * | 102M | 25 |
2447 * | 103M | 57 |
2448 * | 104M | 102 |
2449 * | 105M | 159 |
2450 * | 106M | 230 |
2451 * | 107M | 313 |
2452 * | 108M | 409 |
2453 * | 109M | 518 |
2454 * | 110M | 639 |
2455 * | 111M | 774 |
2456 * | 112M | 921 |
2457 * | 113M | 1081 |
2458 * | 114M | 1254 |
2459 * | 115M | 1439 |
2460 * | 116M | 1638 |
2461 * | 117M | 1849 |
2462 * | 118M | 2000 |
2463 * | 119M | 2000 |
2464 * | 120M | 2000 |
2465 * +-------+------------------------+
2466 */
2467 #define MEMCG_DELAY_PRECISION_SHIFT 20
2468 #define MEMCG_DELAY_SCALING_SHIFT 14
2469
2470static u64 calculate_overage(unsigned long usage, unsigned long high)
2471{
2472 u64 overage;
2473
2474 if (usage <= high)
2475 return 0;
2476
2477 /*
2478 * Prevent division by 0 in overage calculation by acting as if
2479 * it was a threshold of 1 page
2480 */
2481 high = max(high, 1UL);
2482
2483 overage = usage - high;
2484 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2485 return div64_u64(overage, high);
2486}
2487
2488static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2489{
2490 u64 overage, max_overage = 0;
2491
2492 do {
2493 overage = calculate_overage(page_counter_read(&memcg->memory),
2494 READ_ONCE(memcg->memory.high));
2495 max_overage = max(overage, max_overage);
2496 } while ((memcg = parent_mem_cgroup(memcg)) &&
2497 !mem_cgroup_is_root(memcg));
2498
2499 return max_overage;
2500}
2501
2502static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2503{
2504 u64 overage, max_overage = 0;
2505
2506 do {
2507 overage = calculate_overage(page_counter_read(&memcg->swap),
2508 READ_ONCE(memcg->swap.high));
2509 if (overage)
2510 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2511 max_overage = max(overage, max_overage);
2512 } while ((memcg = parent_mem_cgroup(memcg)) &&
2513 !mem_cgroup_is_root(memcg));
2514
2515 return max_overage;
2516}
2517
2518/*
2519 * Get the number of jiffies that we should penalise a mischievous cgroup which
2520 * is exceeding its memory.high by checking both it and its ancestors.
2521 */
2522static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2523 unsigned int nr_pages,
2524 u64 max_overage)
2525{
2526 unsigned long penalty_jiffies;
2527
2528 if (!max_overage)
2529 return 0;
2530
2531 /*
2532 * We use overage compared to memory.high to calculate the number of
2533 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2534 * fairly lenient on small overages, and increasingly harsh when the
2535 * memcg in question makes it clear that it has no intention of stopping
2536 * its crazy behaviour, so we exponentially increase the delay based on
2537 * overage amount.
2538 */
2539 penalty_jiffies = max_overage * max_overage * HZ;
2540 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2541 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2542
2543 /*
2544 * Factor in the task's own contribution to the overage, such that four
2545 * N-sized allocations are throttled approximately the same as one
2546 * 4N-sized allocation.
2547 *
2548 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2549 * larger the current charge patch is than that.
2550 */
2551 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2552}
2553
2554/*
2555 * Scheduled by try_charge() to be executed from the userland return path
2556 * and reclaims memory over the high limit.
2557 */
2558void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2559{
2560 unsigned long penalty_jiffies;
2561 unsigned long pflags;
2562 unsigned long nr_reclaimed;
2563 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2564 int nr_retries = MAX_RECLAIM_RETRIES;
2565 struct mem_cgroup *memcg;
2566 bool in_retry = false;
2567
2568 if (likely(!nr_pages))
2569 return;
2570
2571 memcg = get_mem_cgroup_from_mm(current->mm);
2572 current->memcg_nr_pages_over_high = 0;
2573
2574retry_reclaim:
2575 /*
2576 * The allocating task should reclaim at least the batch size, but for
2577 * subsequent retries we only want to do what's necessary to prevent oom
2578 * or breaching resource isolation.
2579 *
2580 * This is distinct from memory.max or page allocator behaviour because
2581 * memory.high is currently batched, whereas memory.max and the page
2582 * allocator run every time an allocation is made.
2583 */
2584 nr_reclaimed = reclaim_high(memcg,
2585 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2586 gfp_mask);
2587
2588 /*
2589 * memory.high is breached and reclaim is unable to keep up. Throttle
2590 * allocators proactively to slow down excessive growth.
2591 */
2592 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2593 mem_find_max_overage(memcg));
2594
2595 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2596 swap_find_max_overage(memcg));
2597
2598 /*
2599 * Clamp the max delay per usermode return so as to still keep the
2600 * application moving forwards and also permit diagnostics, albeit
2601 * extremely slowly.
2602 */
2603 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2604
2605 /*
2606 * Don't sleep if the amount of jiffies this memcg owes us is so low
2607 * that it's not even worth doing, in an attempt to be nice to those who
2608 * go only a small amount over their memory.high value and maybe haven't
2609 * been aggressively reclaimed enough yet.
2610 */
2611 if (penalty_jiffies <= HZ / 100)
2612 goto out;
2613
2614 /*
2615 * If reclaim is making forward progress but we're still over
2616 * memory.high, we want to encourage that rather than doing allocator
2617 * throttling.
2618 */
2619 if (nr_reclaimed || nr_retries--) {
2620 in_retry = true;
2621 goto retry_reclaim;
2622 }
2623
2624 /*
2625 * If we exit early, we're guaranteed to die (since
2626 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2627 * need to account for any ill-begotten jiffies to pay them off later.
2628 */
2629 psi_memstall_enter(&pflags);
2630 schedule_timeout_killable(penalty_jiffies);
2631 psi_memstall_leave(&pflags);
2632
2633out:
2634 css_put(&memcg->css);
2635}
2636
2637static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2638 unsigned int nr_pages)
2639{
2640 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2641 int nr_retries = MAX_RECLAIM_RETRIES;
2642 struct mem_cgroup *mem_over_limit;
2643 struct page_counter *counter;
2644 unsigned long nr_reclaimed;
2645 bool passed_oom = false;
2646 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2647 bool drained = false;
2648 bool raised_max_event = false;
2649 unsigned long pflags;
2650
2651retry:
2652 if (consume_stock(memcg, nr_pages))
2653 return 0;
2654
2655 if (!do_memsw_account() ||
2656 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2657 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2658 goto done_restock;
2659 if (do_memsw_account())
2660 page_counter_uncharge(&memcg->memsw, batch);
2661 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2662 } else {
2663 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2664 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2665 }
2666
2667 if (batch > nr_pages) {
2668 batch = nr_pages;
2669 goto retry;
2670 }
2671
2672 /*
2673 * Prevent unbounded recursion when reclaim operations need to
2674 * allocate memory. This might exceed the limits temporarily,
2675 * but we prefer facilitating memory reclaim and getting back
2676 * under the limit over triggering OOM kills in these cases.
2677 */
2678 if (unlikely(current->flags & PF_MEMALLOC))
2679 goto force;
2680
2681 if (unlikely(task_in_memcg_oom(current)))
2682 goto nomem;
2683
2684 if (!gfpflags_allow_blocking(gfp_mask))
2685 goto nomem;
2686
2687 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2688 raised_max_event = true;
2689
2690 psi_memstall_enter(&pflags);
2691 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2692 gfp_mask, reclaim_options);
2693 psi_memstall_leave(&pflags);
2694
2695 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2696 goto retry;
2697
2698 if (!drained) {
2699 drain_all_stock(mem_over_limit);
2700 drained = true;
2701 goto retry;
2702 }
2703
2704 if (gfp_mask & __GFP_NORETRY)
2705 goto nomem;
2706 /*
2707 * Even though the limit is exceeded at this point, reclaim
2708 * may have been able to free some pages. Retry the charge
2709 * before killing the task.
2710 *
2711 * Only for regular pages, though: huge pages are rather
2712 * unlikely to succeed so close to the limit, and we fall back
2713 * to regular pages anyway in case of failure.
2714 */
2715 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2716 goto retry;
2717 /*
2718 * At task move, charge accounts can be doubly counted. So, it's
2719 * better to wait until the end of task_move if something is going on.
2720 */
2721 if (mem_cgroup_wait_acct_move(mem_over_limit))
2722 goto retry;
2723
2724 if (nr_retries--)
2725 goto retry;
2726
2727 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2728 goto nomem;
2729
2730 /* Avoid endless loop for tasks bypassed by the oom killer */
2731 if (passed_oom && task_is_dying())
2732 goto nomem;
2733
2734 /*
2735 * keep retrying as long as the memcg oom killer is able to make
2736 * a forward progress or bypass the charge if the oom killer
2737 * couldn't make any progress.
2738 */
2739 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2740 get_order(nr_pages * PAGE_SIZE))) {
2741 passed_oom = true;
2742 nr_retries = MAX_RECLAIM_RETRIES;
2743 goto retry;
2744 }
2745nomem:
2746 /*
2747 * Memcg doesn't have a dedicated reserve for atomic
2748 * allocations. But like the global atomic pool, we need to
2749 * put the burden of reclaim on regular allocation requests
2750 * and let these go through as privileged allocations.
2751 */
2752 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2753 return -ENOMEM;
2754force:
2755 /*
2756 * If the allocation has to be enforced, don't forget to raise
2757 * a MEMCG_MAX event.
2758 */
2759 if (!raised_max_event)
2760 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2761
2762 /*
2763 * The allocation either can't fail or will lead to more memory
2764 * being freed very soon. Allow memory usage go over the limit
2765 * temporarily by force charging it.
2766 */
2767 page_counter_charge(&memcg->memory, nr_pages);
2768 if (do_memsw_account())
2769 page_counter_charge(&memcg->memsw, nr_pages);
2770
2771 return 0;
2772
2773done_restock:
2774 if (batch > nr_pages)
2775 refill_stock(memcg, batch - nr_pages);
2776
2777 /*
2778 * If the hierarchy is above the normal consumption range, schedule
2779 * reclaim on returning to userland. We can perform reclaim here
2780 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2781 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2782 * not recorded as it most likely matches current's and won't
2783 * change in the meantime. As high limit is checked again before
2784 * reclaim, the cost of mismatch is negligible.
2785 */
2786 do {
2787 bool mem_high, swap_high;
2788
2789 mem_high = page_counter_read(&memcg->memory) >
2790 READ_ONCE(memcg->memory.high);
2791 swap_high = page_counter_read(&memcg->swap) >
2792 READ_ONCE(memcg->swap.high);
2793
2794 /* Don't bother a random interrupted task */
2795 if (!in_task()) {
2796 if (mem_high) {
2797 schedule_work(&memcg->high_work);
2798 break;
2799 }
2800 continue;
2801 }
2802
2803 if (mem_high || swap_high) {
2804 /*
2805 * The allocating tasks in this cgroup will need to do
2806 * reclaim or be throttled to prevent further growth
2807 * of the memory or swap footprints.
2808 *
2809 * Target some best-effort fairness between the tasks,
2810 * and distribute reclaim work and delay penalties
2811 * based on how much each task is actually allocating.
2812 */
2813 current->memcg_nr_pages_over_high += batch;
2814 set_notify_resume(current);
2815 break;
2816 }
2817 } while ((memcg = parent_mem_cgroup(memcg)));
2818
2819 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2820 !(current->flags & PF_MEMALLOC) &&
2821 gfpflags_allow_blocking(gfp_mask)) {
2822 mem_cgroup_handle_over_high(gfp_mask);
2823 }
2824 return 0;
2825}
2826
2827static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2828 unsigned int nr_pages)
2829{
2830 if (mem_cgroup_is_root(memcg))
2831 return 0;
2832
2833 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2834}
2835
2836static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2837{
2838 if (mem_cgroup_is_root(memcg))
2839 return;
2840
2841 page_counter_uncharge(&memcg->memory, nr_pages);
2842 if (do_memsw_account())
2843 page_counter_uncharge(&memcg->memsw, nr_pages);
2844}
2845
2846static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2847{
2848 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2849 /*
2850 * Any of the following ensures page's memcg stability:
2851 *
2852 * - the page lock
2853 * - LRU isolation
2854 * - folio_memcg_lock()
2855 * - exclusive reference
2856 * - mem_cgroup_trylock_pages()
2857 */
2858 folio->memcg_data = (unsigned long)memcg;
2859}
2860
2861#ifdef CONFIG_MEMCG_KMEM
2862/*
2863 * The allocated objcg pointers array is not accounted directly.
2864 * Moreover, it should not come from DMA buffer and is not readily
2865 * reclaimable. So those GFP bits should be masked off.
2866 */
2867#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2868
2869/*
2870 * mod_objcg_mlstate() may be called with irq enabled, so
2871 * mod_memcg_lruvec_state() should be used.
2872 */
2873static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2874 struct pglist_data *pgdat,
2875 enum node_stat_item idx, int nr)
2876{
2877 struct mem_cgroup *memcg;
2878 struct lruvec *lruvec;
2879
2880 rcu_read_lock();
2881 memcg = obj_cgroup_memcg(objcg);
2882 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2883 mod_memcg_lruvec_state(lruvec, idx, nr);
2884 rcu_read_unlock();
2885}
2886
2887int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2888 gfp_t gfp, bool new_slab)
2889{
2890 unsigned int objects = objs_per_slab(s, slab);
2891 unsigned long memcg_data;
2892 void *vec;
2893
2894 gfp &= ~OBJCGS_CLEAR_MASK;
2895 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2896 slab_nid(slab));
2897 if (!vec)
2898 return -ENOMEM;
2899
2900 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2901 if (new_slab) {
2902 /*
2903 * If the slab is brand new and nobody can yet access its
2904 * memcg_data, no synchronization is required and memcg_data can
2905 * be simply assigned.
2906 */
2907 slab->memcg_data = memcg_data;
2908 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2909 /*
2910 * If the slab is already in use, somebody can allocate and
2911 * assign obj_cgroups in parallel. In this case the existing
2912 * objcg vector should be reused.
2913 */
2914 kfree(vec);
2915 return 0;
2916 }
2917
2918 kmemleak_not_leak(vec);
2919 return 0;
2920}
2921
2922static __always_inline
2923struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2924{
2925 /*
2926 * Slab objects are accounted individually, not per-page.
2927 * Memcg membership data for each individual object is saved in
2928 * slab->memcg_data.
2929 */
2930 if (folio_test_slab(folio)) {
2931 struct obj_cgroup **objcgs;
2932 struct slab *slab;
2933 unsigned int off;
2934
2935 slab = folio_slab(folio);
2936 objcgs = slab_objcgs(slab);
2937 if (!objcgs)
2938 return NULL;
2939
2940 off = obj_to_index(slab->slab_cache, slab, p);
2941 if (objcgs[off])
2942 return obj_cgroup_memcg(objcgs[off]);
2943
2944 return NULL;
2945 }
2946
2947 /*
2948 * folio_memcg_check() is used here, because in theory we can encounter
2949 * a folio where the slab flag has been cleared already, but
2950 * slab->memcg_data has not been freed yet
2951 * folio_memcg_check() will guarantee that a proper memory
2952 * cgroup pointer or NULL will be returned.
2953 */
2954 return folio_memcg_check(folio);
2955}
2956
2957/*
2958 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2959 *
2960 * A passed kernel object can be a slab object, vmalloc object or a generic
2961 * kernel page, so different mechanisms for getting the memory cgroup pointer
2962 * should be used.
2963 *
2964 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2965 * can not know for sure how the kernel object is implemented.
2966 * mem_cgroup_from_obj() can be safely used in such cases.
2967 *
2968 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2969 * cgroup_mutex, etc.
2970 */
2971struct mem_cgroup *mem_cgroup_from_obj(void *p)
2972{
2973 struct folio *folio;
2974
2975 if (mem_cgroup_disabled())
2976 return NULL;
2977
2978 if (unlikely(is_vmalloc_addr(p)))
2979 folio = page_folio(vmalloc_to_page(p));
2980 else
2981 folio = virt_to_folio(p);
2982
2983 return mem_cgroup_from_obj_folio(folio, p);
2984}
2985
2986/*
2987 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2988 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2989 * allocated using vmalloc().
2990 *
2991 * A passed kernel object must be a slab object or a generic kernel page.
2992 *
2993 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2994 * cgroup_mutex, etc.
2995 */
2996struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2997{
2998 if (mem_cgroup_disabled())
2999 return NULL;
3000
3001 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3002}
3003
3004static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3005{
3006 struct obj_cgroup *objcg = NULL;
3007
3008 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3009 objcg = rcu_dereference(memcg->objcg);
3010 if (objcg && obj_cgroup_tryget(objcg))
3011 break;
3012 objcg = NULL;
3013 }
3014 return objcg;
3015}
3016
3017__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3018{
3019 struct obj_cgroup *objcg = NULL;
3020 struct mem_cgroup *memcg;
3021
3022 if (memcg_kmem_bypass())
3023 return NULL;
3024
3025 rcu_read_lock();
3026 if (unlikely(active_memcg()))
3027 memcg = active_memcg();
3028 else
3029 memcg = mem_cgroup_from_task(current);
3030 objcg = __get_obj_cgroup_from_memcg(memcg);
3031 rcu_read_unlock();
3032 return objcg;
3033}
3034
3035struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3036{
3037 struct obj_cgroup *objcg;
3038
3039 if (!memcg_kmem_online())
3040 return NULL;
3041
3042 if (folio_memcg_kmem(folio)) {
3043 objcg = __folio_objcg(folio);
3044 obj_cgroup_get(objcg);
3045 } else {
3046 struct mem_cgroup *memcg;
3047
3048 rcu_read_lock();
3049 memcg = __folio_memcg(folio);
3050 if (memcg)
3051 objcg = __get_obj_cgroup_from_memcg(memcg);
3052 else
3053 objcg = NULL;
3054 rcu_read_unlock();
3055 }
3056 return objcg;
3057}
3058
3059static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3060{
3061 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3062 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3063 if (nr_pages > 0)
3064 page_counter_charge(&memcg->kmem, nr_pages);
3065 else
3066 page_counter_uncharge(&memcg->kmem, -nr_pages);
3067 }
3068}
3069
3070
3071/*
3072 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3073 * @objcg: object cgroup to uncharge
3074 * @nr_pages: number of pages to uncharge
3075 */
3076static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3077 unsigned int nr_pages)
3078{
3079 struct mem_cgroup *memcg;
3080
3081 memcg = get_mem_cgroup_from_objcg(objcg);
3082
3083 memcg_account_kmem(memcg, -nr_pages);
3084 refill_stock(memcg, nr_pages);
3085
3086 css_put(&memcg->css);
3087}
3088
3089/*
3090 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3091 * @objcg: object cgroup to charge
3092 * @gfp: reclaim mode
3093 * @nr_pages: number of pages to charge
3094 *
3095 * Returns 0 on success, an error code on failure.
3096 */
3097static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3098 unsigned int nr_pages)
3099{
3100 struct mem_cgroup *memcg;
3101 int ret;
3102
3103 memcg = get_mem_cgroup_from_objcg(objcg);
3104
3105 ret = try_charge_memcg(memcg, gfp, nr_pages);
3106 if (ret)
3107 goto out;
3108
3109 memcg_account_kmem(memcg, nr_pages);
3110out:
3111 css_put(&memcg->css);
3112
3113 return ret;
3114}
3115
3116/**
3117 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3118 * @page: page to charge
3119 * @gfp: reclaim mode
3120 * @order: allocation order
3121 *
3122 * Returns 0 on success, an error code on failure.
3123 */
3124int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3125{
3126 struct obj_cgroup *objcg;
3127 int ret = 0;
3128
3129 objcg = get_obj_cgroup_from_current();
3130 if (objcg) {
3131 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3132 if (!ret) {
3133 page->memcg_data = (unsigned long)objcg |
3134 MEMCG_DATA_KMEM;
3135 return 0;
3136 }
3137 obj_cgroup_put(objcg);
3138 }
3139 return ret;
3140}
3141
3142/**
3143 * __memcg_kmem_uncharge_page: uncharge a kmem page
3144 * @page: page to uncharge
3145 * @order: allocation order
3146 */
3147void __memcg_kmem_uncharge_page(struct page *page, int order)
3148{
3149 struct folio *folio = page_folio(page);
3150 struct obj_cgroup *objcg;
3151 unsigned int nr_pages = 1 << order;
3152
3153 if (!folio_memcg_kmem(folio))
3154 return;
3155
3156 objcg = __folio_objcg(folio);
3157 obj_cgroup_uncharge_pages(objcg, nr_pages);
3158 folio->memcg_data = 0;
3159 obj_cgroup_put(objcg);
3160}
3161
3162void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3163 enum node_stat_item idx, int nr)
3164{
3165 struct memcg_stock_pcp *stock;
3166 struct obj_cgroup *old = NULL;
3167 unsigned long flags;
3168 int *bytes;
3169
3170 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3171 stock = this_cpu_ptr(&memcg_stock);
3172
3173 /*
3174 * Save vmstat data in stock and skip vmstat array update unless
3175 * accumulating over a page of vmstat data or when pgdat or idx
3176 * changes.
3177 */
3178 if (READ_ONCE(stock->cached_objcg) != objcg) {
3179 old = drain_obj_stock(stock);
3180 obj_cgroup_get(objcg);
3181 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3182 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3183 WRITE_ONCE(stock->cached_objcg, objcg);
3184 stock->cached_pgdat = pgdat;
3185 } else if (stock->cached_pgdat != pgdat) {
3186 /* Flush the existing cached vmstat data */
3187 struct pglist_data *oldpg = stock->cached_pgdat;
3188
3189 if (stock->nr_slab_reclaimable_b) {
3190 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3191 stock->nr_slab_reclaimable_b);
3192 stock->nr_slab_reclaimable_b = 0;
3193 }
3194 if (stock->nr_slab_unreclaimable_b) {
3195 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3196 stock->nr_slab_unreclaimable_b);
3197 stock->nr_slab_unreclaimable_b = 0;
3198 }
3199 stock->cached_pgdat = pgdat;
3200 }
3201
3202 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3203 : &stock->nr_slab_unreclaimable_b;
3204 /*
3205 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3206 * cached locally at least once before pushing it out.
3207 */
3208 if (!*bytes) {
3209 *bytes = nr;
3210 nr = 0;
3211 } else {
3212 *bytes += nr;
3213 if (abs(*bytes) > PAGE_SIZE) {
3214 nr = *bytes;
3215 *bytes = 0;
3216 } else {
3217 nr = 0;
3218 }
3219 }
3220 if (nr)
3221 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3222
3223 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3224 if (old)
3225 obj_cgroup_put(old);
3226}
3227
3228static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3229{
3230 struct memcg_stock_pcp *stock;
3231 unsigned long flags;
3232 bool ret = false;
3233
3234 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3235
3236 stock = this_cpu_ptr(&memcg_stock);
3237 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3238 stock->nr_bytes -= nr_bytes;
3239 ret = true;
3240 }
3241
3242 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3243
3244 return ret;
3245}
3246
3247static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3248{
3249 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3250
3251 if (!old)
3252 return NULL;
3253
3254 if (stock->nr_bytes) {
3255 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3256 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3257
3258 if (nr_pages) {
3259 struct mem_cgroup *memcg;
3260
3261 memcg = get_mem_cgroup_from_objcg(old);
3262
3263 memcg_account_kmem(memcg, -nr_pages);
3264 __refill_stock(memcg, nr_pages);
3265
3266 css_put(&memcg->css);
3267 }
3268
3269 /*
3270 * The leftover is flushed to the centralized per-memcg value.
3271 * On the next attempt to refill obj stock it will be moved
3272 * to a per-cpu stock (probably, on an other CPU), see
3273 * refill_obj_stock().
3274 *
3275 * How often it's flushed is a trade-off between the memory
3276 * limit enforcement accuracy and potential CPU contention,
3277 * so it might be changed in the future.
3278 */
3279 atomic_add(nr_bytes, &old->nr_charged_bytes);
3280 stock->nr_bytes = 0;
3281 }
3282
3283 /*
3284 * Flush the vmstat data in current stock
3285 */
3286 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3287 if (stock->nr_slab_reclaimable_b) {
3288 mod_objcg_mlstate(old, stock->cached_pgdat,
3289 NR_SLAB_RECLAIMABLE_B,
3290 stock->nr_slab_reclaimable_b);
3291 stock->nr_slab_reclaimable_b = 0;
3292 }
3293 if (stock->nr_slab_unreclaimable_b) {
3294 mod_objcg_mlstate(old, stock->cached_pgdat,
3295 NR_SLAB_UNRECLAIMABLE_B,
3296 stock->nr_slab_unreclaimable_b);
3297 stock->nr_slab_unreclaimable_b = 0;
3298 }
3299 stock->cached_pgdat = NULL;
3300 }
3301
3302 WRITE_ONCE(stock->cached_objcg, NULL);
3303 /*
3304 * The `old' objects needs to be released by the caller via
3305 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3306 */
3307 return old;
3308}
3309
3310static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3311 struct mem_cgroup *root_memcg)
3312{
3313 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3314 struct mem_cgroup *memcg;
3315
3316 if (objcg) {
3317 memcg = obj_cgroup_memcg(objcg);
3318 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3319 return true;
3320 }
3321
3322 return false;
3323}
3324
3325static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3326 bool allow_uncharge)
3327{
3328 struct memcg_stock_pcp *stock;
3329 struct obj_cgroup *old = NULL;
3330 unsigned long flags;
3331 unsigned int nr_pages = 0;
3332
3333 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3334
3335 stock = this_cpu_ptr(&memcg_stock);
3336 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3337 old = drain_obj_stock(stock);
3338 obj_cgroup_get(objcg);
3339 WRITE_ONCE(stock->cached_objcg, objcg);
3340 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3341 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3342 allow_uncharge = true; /* Allow uncharge when objcg changes */
3343 }
3344 stock->nr_bytes += nr_bytes;
3345
3346 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3347 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3348 stock->nr_bytes &= (PAGE_SIZE - 1);
3349 }
3350
3351 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3352 if (old)
3353 obj_cgroup_put(old);
3354
3355 if (nr_pages)
3356 obj_cgroup_uncharge_pages(objcg, nr_pages);
3357}
3358
3359int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3360{
3361 unsigned int nr_pages, nr_bytes;
3362 int ret;
3363
3364 if (consume_obj_stock(objcg, size))
3365 return 0;
3366
3367 /*
3368 * In theory, objcg->nr_charged_bytes can have enough
3369 * pre-charged bytes to satisfy the allocation. However,
3370 * flushing objcg->nr_charged_bytes requires two atomic
3371 * operations, and objcg->nr_charged_bytes can't be big.
3372 * The shared objcg->nr_charged_bytes can also become a
3373 * performance bottleneck if all tasks of the same memcg are
3374 * trying to update it. So it's better to ignore it and try
3375 * grab some new pages. The stock's nr_bytes will be flushed to
3376 * objcg->nr_charged_bytes later on when objcg changes.
3377 *
3378 * The stock's nr_bytes may contain enough pre-charged bytes
3379 * to allow one less page from being charged, but we can't rely
3380 * on the pre-charged bytes not being changed outside of
3381 * consume_obj_stock() or refill_obj_stock(). So ignore those
3382 * pre-charged bytes as well when charging pages. To avoid a
3383 * page uncharge right after a page charge, we set the
3384 * allow_uncharge flag to false when calling refill_obj_stock()
3385 * to temporarily allow the pre-charged bytes to exceed the page
3386 * size limit. The maximum reachable value of the pre-charged
3387 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3388 * race.
3389 */
3390 nr_pages = size >> PAGE_SHIFT;
3391 nr_bytes = size & (PAGE_SIZE - 1);
3392
3393 if (nr_bytes)
3394 nr_pages += 1;
3395
3396 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3397 if (!ret && nr_bytes)
3398 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3399
3400 return ret;
3401}
3402
3403void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3404{
3405 refill_obj_stock(objcg, size, true);
3406}
3407
3408#endif /* CONFIG_MEMCG_KMEM */
3409
3410/*
3411 * Because page_memcg(head) is not set on tails, set it now.
3412 */
3413void split_page_memcg(struct page *head, unsigned int nr)
3414{
3415 struct folio *folio = page_folio(head);
3416 struct mem_cgroup *memcg = folio_memcg(folio);
3417 int i;
3418
3419 if (mem_cgroup_disabled() || !memcg)
3420 return;
3421
3422 for (i = 1; i < nr; i++)
3423 folio_page(folio, i)->memcg_data = folio->memcg_data;
3424
3425 if (folio_memcg_kmem(folio))
3426 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3427 else
3428 css_get_many(&memcg->css, nr - 1);
3429}
3430
3431#ifdef CONFIG_SWAP
3432/**
3433 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3434 * @entry: swap entry to be moved
3435 * @from: mem_cgroup which the entry is moved from
3436 * @to: mem_cgroup which the entry is moved to
3437 *
3438 * It succeeds only when the swap_cgroup's record for this entry is the same
3439 * as the mem_cgroup's id of @from.
3440 *
3441 * Returns 0 on success, -EINVAL on failure.
3442 *
3443 * The caller must have charged to @to, IOW, called page_counter_charge() about
3444 * both res and memsw, and called css_get().
3445 */
3446static int mem_cgroup_move_swap_account(swp_entry_t entry,
3447 struct mem_cgroup *from, struct mem_cgroup *to)
3448{
3449 unsigned short old_id, new_id;
3450
3451 old_id = mem_cgroup_id(from);
3452 new_id = mem_cgroup_id(to);
3453
3454 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3455 mod_memcg_state(from, MEMCG_SWAP, -1);
3456 mod_memcg_state(to, MEMCG_SWAP, 1);
3457 return 0;
3458 }
3459 return -EINVAL;
3460}
3461#else
3462static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3463 struct mem_cgroup *from, struct mem_cgroup *to)
3464{
3465 return -EINVAL;
3466}
3467#endif
3468
3469static DEFINE_MUTEX(memcg_max_mutex);
3470
3471static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3472 unsigned long max, bool memsw)
3473{
3474 bool enlarge = false;
3475 bool drained = false;
3476 int ret;
3477 bool limits_invariant;
3478 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3479
3480 do {
3481 if (signal_pending(current)) {
3482 ret = -EINTR;
3483 break;
3484 }
3485
3486 mutex_lock(&memcg_max_mutex);
3487 /*
3488 * Make sure that the new limit (memsw or memory limit) doesn't
3489 * break our basic invariant rule memory.max <= memsw.max.
3490 */
3491 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3492 max <= memcg->memsw.max;
3493 if (!limits_invariant) {
3494 mutex_unlock(&memcg_max_mutex);
3495 ret = -EINVAL;
3496 break;
3497 }
3498 if (max > counter->max)
3499 enlarge = true;
3500 ret = page_counter_set_max(counter, max);
3501 mutex_unlock(&memcg_max_mutex);
3502
3503 if (!ret)
3504 break;
3505
3506 if (!drained) {
3507 drain_all_stock(memcg);
3508 drained = true;
3509 continue;
3510 }
3511
3512 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3513 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3514 ret = -EBUSY;
3515 break;
3516 }
3517 } while (true);
3518
3519 if (!ret && enlarge)
3520 memcg_oom_recover(memcg);
3521
3522 return ret;
3523}
3524
3525unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3526 gfp_t gfp_mask,
3527 unsigned long *total_scanned)
3528{
3529 unsigned long nr_reclaimed = 0;
3530 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3531 unsigned long reclaimed;
3532 int loop = 0;
3533 struct mem_cgroup_tree_per_node *mctz;
3534 unsigned long excess;
3535
3536 if (lru_gen_enabled())
3537 return 0;
3538
3539 if (order > 0)
3540 return 0;
3541
3542 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3543
3544 /*
3545 * Do not even bother to check the largest node if the root
3546 * is empty. Do it lockless to prevent lock bouncing. Races
3547 * are acceptable as soft limit is best effort anyway.
3548 */
3549 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3550 return 0;
3551
3552 /*
3553 * This loop can run a while, specially if mem_cgroup's continuously
3554 * keep exceeding their soft limit and putting the system under
3555 * pressure
3556 */
3557 do {
3558 if (next_mz)
3559 mz = next_mz;
3560 else
3561 mz = mem_cgroup_largest_soft_limit_node(mctz);
3562 if (!mz)
3563 break;
3564
3565 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3566 gfp_mask, total_scanned);
3567 nr_reclaimed += reclaimed;
3568 spin_lock_irq(&mctz->lock);
3569
3570 /*
3571 * If we failed to reclaim anything from this memory cgroup
3572 * it is time to move on to the next cgroup
3573 */
3574 next_mz = NULL;
3575 if (!reclaimed)
3576 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3577
3578 excess = soft_limit_excess(mz->memcg);
3579 /*
3580 * One school of thought says that we should not add
3581 * back the node to the tree if reclaim returns 0.
3582 * But our reclaim could return 0, simply because due
3583 * to priority we are exposing a smaller subset of
3584 * memory to reclaim from. Consider this as a longer
3585 * term TODO.
3586 */
3587 /* If excess == 0, no tree ops */
3588 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3589 spin_unlock_irq(&mctz->lock);
3590 css_put(&mz->memcg->css);
3591 loop++;
3592 /*
3593 * Could not reclaim anything and there are no more
3594 * mem cgroups to try or we seem to be looping without
3595 * reclaiming anything.
3596 */
3597 if (!nr_reclaimed &&
3598 (next_mz == NULL ||
3599 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3600 break;
3601 } while (!nr_reclaimed);
3602 if (next_mz)
3603 css_put(&next_mz->memcg->css);
3604 return nr_reclaimed;
3605}
3606
3607/*
3608 * Reclaims as many pages from the given memcg as possible.
3609 *
3610 * Caller is responsible for holding css reference for memcg.
3611 */
3612static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3613{
3614 int nr_retries = MAX_RECLAIM_RETRIES;
3615
3616 /* we call try-to-free pages for make this cgroup empty */
3617 lru_add_drain_all();
3618
3619 drain_all_stock(memcg);
3620
3621 /* try to free all pages in this cgroup */
3622 while (nr_retries && page_counter_read(&memcg->memory)) {
3623 if (signal_pending(current))
3624 return -EINTR;
3625
3626 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3627 MEMCG_RECLAIM_MAY_SWAP))
3628 nr_retries--;
3629 }
3630
3631 return 0;
3632}
3633
3634static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3635 char *buf, size_t nbytes,
3636 loff_t off)
3637{
3638 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3639
3640 if (mem_cgroup_is_root(memcg))
3641 return -EINVAL;
3642 return mem_cgroup_force_empty(memcg) ?: nbytes;
3643}
3644
3645static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3646 struct cftype *cft)
3647{
3648 return 1;
3649}
3650
3651static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3652 struct cftype *cft, u64 val)
3653{
3654 if (val == 1)
3655 return 0;
3656
3657 pr_warn_once("Non-hierarchical mode is deprecated. "
3658 "Please report your usecase to linux-mm@kvack.org if you "
3659 "depend on this functionality.\n");
3660
3661 return -EINVAL;
3662}
3663
3664static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3665{
3666 unsigned long val;
3667
3668 if (mem_cgroup_is_root(memcg)) {
3669 /*
3670 * Approximate root's usage from global state. This isn't
3671 * perfect, but the root usage was always an approximation.
3672 */
3673 val = global_node_page_state(NR_FILE_PAGES) +
3674 global_node_page_state(NR_ANON_MAPPED);
3675 if (swap)
3676 val += total_swap_pages - get_nr_swap_pages();
3677 } else {
3678 if (!swap)
3679 val = page_counter_read(&memcg->memory);
3680 else
3681 val = page_counter_read(&memcg->memsw);
3682 }
3683 return val;
3684}
3685
3686enum {
3687 RES_USAGE,
3688 RES_LIMIT,
3689 RES_MAX_USAGE,
3690 RES_FAILCNT,
3691 RES_SOFT_LIMIT,
3692};
3693
3694static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3695 struct cftype *cft)
3696{
3697 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3698 struct page_counter *counter;
3699
3700 switch (MEMFILE_TYPE(cft->private)) {
3701 case _MEM:
3702 counter = &memcg->memory;
3703 break;
3704 case _MEMSWAP:
3705 counter = &memcg->memsw;
3706 break;
3707 case _KMEM:
3708 counter = &memcg->kmem;
3709 break;
3710 case _TCP:
3711 counter = &memcg->tcpmem;
3712 break;
3713 default:
3714 BUG();
3715 }
3716
3717 switch (MEMFILE_ATTR(cft->private)) {
3718 case RES_USAGE:
3719 if (counter == &memcg->memory)
3720 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3721 if (counter == &memcg->memsw)
3722 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3723 return (u64)page_counter_read(counter) * PAGE_SIZE;
3724 case RES_LIMIT:
3725 return (u64)counter->max * PAGE_SIZE;
3726 case RES_MAX_USAGE:
3727 return (u64)counter->watermark * PAGE_SIZE;
3728 case RES_FAILCNT:
3729 return counter->failcnt;
3730 case RES_SOFT_LIMIT:
3731 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3732 default:
3733 BUG();
3734 }
3735}
3736
3737/*
3738 * This function doesn't do anything useful. Its only job is to provide a read
3739 * handler for a file so that cgroup_file_mode() will add read permissions.
3740 */
3741static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3742 __always_unused void *v)
3743{
3744 return -EINVAL;
3745}
3746
3747#ifdef CONFIG_MEMCG_KMEM
3748static int memcg_online_kmem(struct mem_cgroup *memcg)
3749{
3750 struct obj_cgroup *objcg;
3751
3752 if (mem_cgroup_kmem_disabled())
3753 return 0;
3754
3755 if (unlikely(mem_cgroup_is_root(memcg)))
3756 return 0;
3757
3758 objcg = obj_cgroup_alloc();
3759 if (!objcg)
3760 return -ENOMEM;
3761
3762 objcg->memcg = memcg;
3763 rcu_assign_pointer(memcg->objcg, objcg);
3764
3765 static_branch_enable(&memcg_kmem_online_key);
3766
3767 memcg->kmemcg_id = memcg->id.id;
3768
3769 return 0;
3770}
3771
3772static void memcg_offline_kmem(struct mem_cgroup *memcg)
3773{
3774 struct mem_cgroup *parent;
3775
3776 if (mem_cgroup_kmem_disabled())
3777 return;
3778
3779 if (unlikely(mem_cgroup_is_root(memcg)))
3780 return;
3781
3782 parent = parent_mem_cgroup(memcg);
3783 if (!parent)
3784 parent = root_mem_cgroup;
3785
3786 memcg_reparent_objcgs(memcg, parent);
3787
3788 /*
3789 * After we have finished memcg_reparent_objcgs(), all list_lrus
3790 * corresponding to this cgroup are guaranteed to remain empty.
3791 * The ordering is imposed by list_lru_node->lock taken by
3792 * memcg_reparent_list_lrus().
3793 */
3794 memcg_reparent_list_lrus(memcg, parent);
3795}
3796#else
3797static int memcg_online_kmem(struct mem_cgroup *memcg)
3798{
3799 return 0;
3800}
3801static void memcg_offline_kmem(struct mem_cgroup *memcg)
3802{
3803}
3804#endif /* CONFIG_MEMCG_KMEM */
3805
3806static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3807{
3808 int ret;
3809
3810 mutex_lock(&memcg_max_mutex);
3811
3812 ret = page_counter_set_max(&memcg->tcpmem, max);
3813 if (ret)
3814 goto out;
3815
3816 if (!memcg->tcpmem_active) {
3817 /*
3818 * The active flag needs to be written after the static_key
3819 * update. This is what guarantees that the socket activation
3820 * function is the last one to run. See mem_cgroup_sk_alloc()
3821 * for details, and note that we don't mark any socket as
3822 * belonging to this memcg until that flag is up.
3823 *
3824 * We need to do this, because static_keys will span multiple
3825 * sites, but we can't control their order. If we mark a socket
3826 * as accounted, but the accounting functions are not patched in
3827 * yet, we'll lose accounting.
3828 *
3829 * We never race with the readers in mem_cgroup_sk_alloc(),
3830 * because when this value change, the code to process it is not
3831 * patched in yet.
3832 */
3833 static_branch_inc(&memcg_sockets_enabled_key);
3834 memcg->tcpmem_active = true;
3835 }
3836out:
3837 mutex_unlock(&memcg_max_mutex);
3838 return ret;
3839}
3840
3841/*
3842 * The user of this function is...
3843 * RES_LIMIT.
3844 */
3845static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3846 char *buf, size_t nbytes, loff_t off)
3847{
3848 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3849 unsigned long nr_pages;
3850 int ret;
3851
3852 buf = strstrip(buf);
3853 ret = page_counter_memparse(buf, "-1", &nr_pages);
3854 if (ret)
3855 return ret;
3856
3857 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3858 case RES_LIMIT:
3859 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3860 ret = -EINVAL;
3861 break;
3862 }
3863 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3864 case _MEM:
3865 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3866 break;
3867 case _MEMSWAP:
3868 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3869 break;
3870 case _TCP:
3871 ret = memcg_update_tcp_max(memcg, nr_pages);
3872 break;
3873 }
3874 break;
3875 case RES_SOFT_LIMIT:
3876 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3877 ret = -EOPNOTSUPP;
3878 } else {
3879 WRITE_ONCE(memcg->soft_limit, nr_pages);
3880 ret = 0;
3881 }
3882 break;
3883 }
3884 return ret ?: nbytes;
3885}
3886
3887static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3888 size_t nbytes, loff_t off)
3889{
3890 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3891 struct page_counter *counter;
3892
3893 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3894 case _MEM:
3895 counter = &memcg->memory;
3896 break;
3897 case _MEMSWAP:
3898 counter = &memcg->memsw;
3899 break;
3900 case _KMEM:
3901 counter = &memcg->kmem;
3902 break;
3903 case _TCP:
3904 counter = &memcg->tcpmem;
3905 break;
3906 default:
3907 BUG();
3908 }
3909
3910 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3911 case RES_MAX_USAGE:
3912 page_counter_reset_watermark(counter);
3913 break;
3914 case RES_FAILCNT:
3915 counter->failcnt = 0;
3916 break;
3917 default:
3918 BUG();
3919 }
3920
3921 return nbytes;
3922}
3923
3924static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3925 struct cftype *cft)
3926{
3927 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3928}
3929
3930#ifdef CONFIG_MMU
3931static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3932 struct cftype *cft, u64 val)
3933{
3934 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3935
3936 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3937 "Please report your usecase to linux-mm@kvack.org if you "
3938 "depend on this functionality.\n");
3939
3940 if (val & ~MOVE_MASK)
3941 return -EINVAL;
3942
3943 /*
3944 * No kind of locking is needed in here, because ->can_attach() will
3945 * check this value once in the beginning of the process, and then carry
3946 * on with stale data. This means that changes to this value will only
3947 * affect task migrations starting after the change.
3948 */
3949 memcg->move_charge_at_immigrate = val;
3950 return 0;
3951}
3952#else
3953static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3954 struct cftype *cft, u64 val)
3955{
3956 return -ENOSYS;
3957}
3958#endif
3959
3960#ifdef CONFIG_NUMA
3961
3962#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3963#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3964#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3965
3966static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3967 int nid, unsigned int lru_mask, bool tree)
3968{
3969 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3970 unsigned long nr = 0;
3971 enum lru_list lru;
3972
3973 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3974
3975 for_each_lru(lru) {
3976 if (!(BIT(lru) & lru_mask))
3977 continue;
3978 if (tree)
3979 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3980 else
3981 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3982 }
3983 return nr;
3984}
3985
3986static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3987 unsigned int lru_mask,
3988 bool tree)
3989{
3990 unsigned long nr = 0;
3991 enum lru_list lru;
3992
3993 for_each_lru(lru) {
3994 if (!(BIT(lru) & lru_mask))
3995 continue;
3996 if (tree)
3997 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3998 else
3999 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4000 }
4001 return nr;
4002}
4003
4004static int memcg_numa_stat_show(struct seq_file *m, void *v)
4005{
4006 struct numa_stat {
4007 const char *name;
4008 unsigned int lru_mask;
4009 };
4010
4011 static const struct numa_stat stats[] = {
4012 { "total", LRU_ALL },
4013 { "file", LRU_ALL_FILE },
4014 { "anon", LRU_ALL_ANON },
4015 { "unevictable", BIT(LRU_UNEVICTABLE) },
4016 };
4017 const struct numa_stat *stat;
4018 int nid;
4019 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4020
4021 mem_cgroup_flush_stats();
4022
4023 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4024 seq_printf(m, "%s=%lu", stat->name,
4025 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4026 false));
4027 for_each_node_state(nid, N_MEMORY)
4028 seq_printf(m, " N%d=%lu", nid,
4029 mem_cgroup_node_nr_lru_pages(memcg, nid,
4030 stat->lru_mask, false));
4031 seq_putc(m, '\n');
4032 }
4033
4034 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4035
4036 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4037 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4038 true));
4039 for_each_node_state(nid, N_MEMORY)
4040 seq_printf(m, " N%d=%lu", nid,
4041 mem_cgroup_node_nr_lru_pages(memcg, nid,
4042 stat->lru_mask, true));
4043 seq_putc(m, '\n');
4044 }
4045
4046 return 0;
4047}
4048#endif /* CONFIG_NUMA */
4049
4050static const unsigned int memcg1_stats[] = {
4051 NR_FILE_PAGES,
4052 NR_ANON_MAPPED,
4053#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4054 NR_ANON_THPS,
4055#endif
4056 NR_SHMEM,
4057 NR_FILE_MAPPED,
4058 NR_FILE_DIRTY,
4059 NR_WRITEBACK,
4060 WORKINGSET_REFAULT_ANON,
4061 WORKINGSET_REFAULT_FILE,
4062 MEMCG_SWAP,
4063};
4064
4065static const char *const memcg1_stat_names[] = {
4066 "cache",
4067 "rss",
4068#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4069 "rss_huge",
4070#endif
4071 "shmem",
4072 "mapped_file",
4073 "dirty",
4074 "writeback",
4075 "workingset_refault_anon",
4076 "workingset_refault_file",
4077 "swap",
4078};
4079
4080/* Universal VM events cgroup1 shows, original sort order */
4081static const unsigned int memcg1_events[] = {
4082 PGPGIN,
4083 PGPGOUT,
4084 PGFAULT,
4085 PGMAJFAULT,
4086};
4087
4088static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4089{
4090 unsigned long memory, memsw;
4091 struct mem_cgroup *mi;
4092 unsigned int i;
4093
4094 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4095
4096 mem_cgroup_flush_stats();
4097
4098 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4099 unsigned long nr;
4100
4101 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4102 continue;
4103 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4104 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4105 nr * memcg_page_state_unit(memcg1_stats[i]));
4106 }
4107
4108 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4109 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4110 memcg_events_local(memcg, memcg1_events[i]));
4111
4112 for (i = 0; i < NR_LRU_LISTS; i++)
4113 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4114 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4115 PAGE_SIZE);
4116
4117 /* Hierarchical information */
4118 memory = memsw = PAGE_COUNTER_MAX;
4119 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4120 memory = min(memory, READ_ONCE(mi->memory.max));
4121 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4122 }
4123 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4124 (u64)memory * PAGE_SIZE);
4125 if (do_memsw_account())
4126 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4127 (u64)memsw * PAGE_SIZE);
4128
4129 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4130 unsigned long nr;
4131
4132 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4133 continue;
4134 nr = memcg_page_state(memcg, memcg1_stats[i]);
4135 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4136 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4137 }
4138
4139 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4140 seq_buf_printf(s, "total_%s %llu\n",
4141 vm_event_name(memcg1_events[i]),
4142 (u64)memcg_events(memcg, memcg1_events[i]));
4143
4144 for (i = 0; i < NR_LRU_LISTS; i++)
4145 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4146 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4147 PAGE_SIZE);
4148
4149#ifdef CONFIG_DEBUG_VM
4150 {
4151 pg_data_t *pgdat;
4152 struct mem_cgroup_per_node *mz;
4153 unsigned long anon_cost = 0;
4154 unsigned long file_cost = 0;
4155
4156 for_each_online_pgdat(pgdat) {
4157 mz = memcg->nodeinfo[pgdat->node_id];
4158
4159 anon_cost += mz->lruvec.anon_cost;
4160 file_cost += mz->lruvec.file_cost;
4161 }
4162 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4163 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4164 }
4165#endif
4166}
4167
4168static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4169 struct cftype *cft)
4170{
4171 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4172
4173 return mem_cgroup_swappiness(memcg);
4174}
4175
4176static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4177 struct cftype *cft, u64 val)
4178{
4179 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4180
4181 if (val > 200)
4182 return -EINVAL;
4183
4184 if (!mem_cgroup_is_root(memcg))
4185 WRITE_ONCE(memcg->swappiness, val);
4186 else
4187 WRITE_ONCE(vm_swappiness, val);
4188
4189 return 0;
4190}
4191
4192static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4193{
4194 struct mem_cgroup_threshold_ary *t;
4195 unsigned long usage;
4196 int i;
4197
4198 rcu_read_lock();
4199 if (!swap)
4200 t = rcu_dereference(memcg->thresholds.primary);
4201 else
4202 t = rcu_dereference(memcg->memsw_thresholds.primary);
4203
4204 if (!t)
4205 goto unlock;
4206
4207 usage = mem_cgroup_usage(memcg, swap);
4208
4209 /*
4210 * current_threshold points to threshold just below or equal to usage.
4211 * If it's not true, a threshold was crossed after last
4212 * call of __mem_cgroup_threshold().
4213 */
4214 i = t->current_threshold;
4215
4216 /*
4217 * Iterate backward over array of thresholds starting from
4218 * current_threshold and check if a threshold is crossed.
4219 * If none of thresholds below usage is crossed, we read
4220 * only one element of the array here.
4221 */
4222 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4223 eventfd_signal(t->entries[i].eventfd, 1);
4224
4225 /* i = current_threshold + 1 */
4226 i++;
4227
4228 /*
4229 * Iterate forward over array of thresholds starting from
4230 * current_threshold+1 and check if a threshold is crossed.
4231 * If none of thresholds above usage is crossed, we read
4232 * only one element of the array here.
4233 */
4234 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4235 eventfd_signal(t->entries[i].eventfd, 1);
4236
4237 /* Update current_threshold */
4238 t->current_threshold = i - 1;
4239unlock:
4240 rcu_read_unlock();
4241}
4242
4243static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4244{
4245 while (memcg) {
4246 __mem_cgroup_threshold(memcg, false);
4247 if (do_memsw_account())
4248 __mem_cgroup_threshold(memcg, true);
4249
4250 memcg = parent_mem_cgroup(memcg);
4251 }
4252}
4253
4254static int compare_thresholds(const void *a, const void *b)
4255{
4256 const struct mem_cgroup_threshold *_a = a;
4257 const struct mem_cgroup_threshold *_b = b;
4258
4259 if (_a->threshold > _b->threshold)
4260 return 1;
4261
4262 if (_a->threshold < _b->threshold)
4263 return -1;
4264
4265 return 0;
4266}
4267
4268static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4269{
4270 struct mem_cgroup_eventfd_list *ev;
4271
4272 spin_lock(&memcg_oom_lock);
4273
4274 list_for_each_entry(ev, &memcg->oom_notify, list)
4275 eventfd_signal(ev->eventfd, 1);
4276
4277 spin_unlock(&memcg_oom_lock);
4278 return 0;
4279}
4280
4281static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4282{
4283 struct mem_cgroup *iter;
4284
4285 for_each_mem_cgroup_tree(iter, memcg)
4286 mem_cgroup_oom_notify_cb(iter);
4287}
4288
4289static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4290 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4291{
4292 struct mem_cgroup_thresholds *thresholds;
4293 struct mem_cgroup_threshold_ary *new;
4294 unsigned long threshold;
4295 unsigned long usage;
4296 int i, size, ret;
4297
4298 ret = page_counter_memparse(args, "-1", &threshold);
4299 if (ret)
4300 return ret;
4301
4302 mutex_lock(&memcg->thresholds_lock);
4303
4304 if (type == _MEM) {
4305 thresholds = &memcg->thresholds;
4306 usage = mem_cgroup_usage(memcg, false);
4307 } else if (type == _MEMSWAP) {
4308 thresholds = &memcg->memsw_thresholds;
4309 usage = mem_cgroup_usage(memcg, true);
4310 } else
4311 BUG();
4312
4313 /* Check if a threshold crossed before adding a new one */
4314 if (thresholds->primary)
4315 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4316
4317 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4318
4319 /* Allocate memory for new array of thresholds */
4320 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4321 if (!new) {
4322 ret = -ENOMEM;
4323 goto unlock;
4324 }
4325 new->size = size;
4326
4327 /* Copy thresholds (if any) to new array */
4328 if (thresholds->primary)
4329 memcpy(new->entries, thresholds->primary->entries,
4330 flex_array_size(new, entries, size - 1));
4331
4332 /* Add new threshold */
4333 new->entries[size - 1].eventfd = eventfd;
4334 new->entries[size - 1].threshold = threshold;
4335
4336 /* Sort thresholds. Registering of new threshold isn't time-critical */
4337 sort(new->entries, size, sizeof(*new->entries),
4338 compare_thresholds, NULL);
4339
4340 /* Find current threshold */
4341 new->current_threshold = -1;
4342 for (i = 0; i < size; i++) {
4343 if (new->entries[i].threshold <= usage) {
4344 /*
4345 * new->current_threshold will not be used until
4346 * rcu_assign_pointer(), so it's safe to increment
4347 * it here.
4348 */
4349 ++new->current_threshold;
4350 } else
4351 break;
4352 }
4353
4354 /* Free old spare buffer and save old primary buffer as spare */
4355 kfree(thresholds->spare);
4356 thresholds->spare = thresholds->primary;
4357
4358 rcu_assign_pointer(thresholds->primary, new);
4359
4360 /* To be sure that nobody uses thresholds */
4361 synchronize_rcu();
4362
4363unlock:
4364 mutex_unlock(&memcg->thresholds_lock);
4365
4366 return ret;
4367}
4368
4369static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4370 struct eventfd_ctx *eventfd, const char *args)
4371{
4372 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4373}
4374
4375static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4376 struct eventfd_ctx *eventfd, const char *args)
4377{
4378 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4379}
4380
4381static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4382 struct eventfd_ctx *eventfd, enum res_type type)
4383{
4384 struct mem_cgroup_thresholds *thresholds;
4385 struct mem_cgroup_threshold_ary *new;
4386 unsigned long usage;
4387 int i, j, size, entries;
4388
4389 mutex_lock(&memcg->thresholds_lock);
4390
4391 if (type == _MEM) {
4392 thresholds = &memcg->thresholds;
4393 usage = mem_cgroup_usage(memcg, false);
4394 } else if (type == _MEMSWAP) {
4395 thresholds = &memcg->memsw_thresholds;
4396 usage = mem_cgroup_usage(memcg, true);
4397 } else
4398 BUG();
4399
4400 if (!thresholds->primary)
4401 goto unlock;
4402
4403 /* Check if a threshold crossed before removing */
4404 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4405
4406 /* Calculate new number of threshold */
4407 size = entries = 0;
4408 for (i = 0; i < thresholds->primary->size; i++) {
4409 if (thresholds->primary->entries[i].eventfd != eventfd)
4410 size++;
4411 else
4412 entries++;
4413 }
4414
4415 new = thresholds->spare;
4416
4417 /* If no items related to eventfd have been cleared, nothing to do */
4418 if (!entries)
4419 goto unlock;
4420
4421 /* Set thresholds array to NULL if we don't have thresholds */
4422 if (!size) {
4423 kfree(new);
4424 new = NULL;
4425 goto swap_buffers;
4426 }
4427
4428 new->size = size;
4429
4430 /* Copy thresholds and find current threshold */
4431 new->current_threshold = -1;
4432 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4433 if (thresholds->primary->entries[i].eventfd == eventfd)
4434 continue;
4435
4436 new->entries[j] = thresholds->primary->entries[i];
4437 if (new->entries[j].threshold <= usage) {
4438 /*
4439 * new->current_threshold will not be used
4440 * until rcu_assign_pointer(), so it's safe to increment
4441 * it here.
4442 */
4443 ++new->current_threshold;
4444 }
4445 j++;
4446 }
4447
4448swap_buffers:
4449 /* Swap primary and spare array */
4450 thresholds->spare = thresholds->primary;
4451
4452 rcu_assign_pointer(thresholds->primary, new);
4453
4454 /* To be sure that nobody uses thresholds */
4455 synchronize_rcu();
4456
4457 /* If all events are unregistered, free the spare array */
4458 if (!new) {
4459 kfree(thresholds->spare);
4460 thresholds->spare = NULL;
4461 }
4462unlock:
4463 mutex_unlock(&memcg->thresholds_lock);
4464}
4465
4466static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4467 struct eventfd_ctx *eventfd)
4468{
4469 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4470}
4471
4472static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4473 struct eventfd_ctx *eventfd)
4474{
4475 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4476}
4477
4478static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4479 struct eventfd_ctx *eventfd, const char *args)
4480{
4481 struct mem_cgroup_eventfd_list *event;
4482
4483 event = kmalloc(sizeof(*event), GFP_KERNEL);
4484 if (!event)
4485 return -ENOMEM;
4486
4487 spin_lock(&memcg_oom_lock);
4488
4489 event->eventfd = eventfd;
4490 list_add(&event->list, &memcg->oom_notify);
4491
4492 /* already in OOM ? */
4493 if (memcg->under_oom)
4494 eventfd_signal(eventfd, 1);
4495 spin_unlock(&memcg_oom_lock);
4496
4497 return 0;
4498}
4499
4500static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4501 struct eventfd_ctx *eventfd)
4502{
4503 struct mem_cgroup_eventfd_list *ev, *tmp;
4504
4505 spin_lock(&memcg_oom_lock);
4506
4507 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4508 if (ev->eventfd == eventfd) {
4509 list_del(&ev->list);
4510 kfree(ev);
4511 }
4512 }
4513
4514 spin_unlock(&memcg_oom_lock);
4515}
4516
4517static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4518{
4519 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4520
4521 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4522 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4523 seq_printf(sf, "oom_kill %lu\n",
4524 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4525 return 0;
4526}
4527
4528static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4529 struct cftype *cft, u64 val)
4530{
4531 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4532
4533 /* cannot set to root cgroup and only 0 and 1 are allowed */
4534 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4535 return -EINVAL;
4536
4537 WRITE_ONCE(memcg->oom_kill_disable, val);
4538 if (!val)
4539 memcg_oom_recover(memcg);
4540
4541 return 0;
4542}
4543
4544#ifdef CONFIG_CGROUP_WRITEBACK
4545
4546#include <trace/events/writeback.h>
4547
4548static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4549{
4550 return wb_domain_init(&memcg->cgwb_domain, gfp);
4551}
4552
4553static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4554{
4555 wb_domain_exit(&memcg->cgwb_domain);
4556}
4557
4558static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4559{
4560 wb_domain_size_changed(&memcg->cgwb_domain);
4561}
4562
4563struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4564{
4565 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4566
4567 if (!memcg->css.parent)
4568 return NULL;
4569
4570 return &memcg->cgwb_domain;
4571}
4572
4573/**
4574 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4575 * @wb: bdi_writeback in question
4576 * @pfilepages: out parameter for number of file pages
4577 * @pheadroom: out parameter for number of allocatable pages according to memcg
4578 * @pdirty: out parameter for number of dirty pages
4579 * @pwriteback: out parameter for number of pages under writeback
4580 *
4581 * Determine the numbers of file, headroom, dirty, and writeback pages in
4582 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4583 * is a bit more involved.
4584 *
4585 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4586 * headroom is calculated as the lowest headroom of itself and the
4587 * ancestors. Note that this doesn't consider the actual amount of
4588 * available memory in the system. The caller should further cap
4589 * *@pheadroom accordingly.
4590 */
4591void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4592 unsigned long *pheadroom, unsigned long *pdirty,
4593 unsigned long *pwriteback)
4594{
4595 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4596 struct mem_cgroup *parent;
4597
4598 mem_cgroup_flush_stats();
4599
4600 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4601 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4602 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4603 memcg_page_state(memcg, NR_ACTIVE_FILE);
4604
4605 *pheadroom = PAGE_COUNTER_MAX;
4606 while ((parent = parent_mem_cgroup(memcg))) {
4607 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4608 READ_ONCE(memcg->memory.high));
4609 unsigned long used = page_counter_read(&memcg->memory);
4610
4611 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4612 memcg = parent;
4613 }
4614}
4615
4616/*
4617 * Foreign dirty flushing
4618 *
4619 * There's an inherent mismatch between memcg and writeback. The former
4620 * tracks ownership per-page while the latter per-inode. This was a
4621 * deliberate design decision because honoring per-page ownership in the
4622 * writeback path is complicated, may lead to higher CPU and IO overheads
4623 * and deemed unnecessary given that write-sharing an inode across
4624 * different cgroups isn't a common use-case.
4625 *
4626 * Combined with inode majority-writer ownership switching, this works well
4627 * enough in most cases but there are some pathological cases. For
4628 * example, let's say there are two cgroups A and B which keep writing to
4629 * different but confined parts of the same inode. B owns the inode and
4630 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4631 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4632 * triggering background writeback. A will be slowed down without a way to
4633 * make writeback of the dirty pages happen.
4634 *
4635 * Conditions like the above can lead to a cgroup getting repeatedly and
4636 * severely throttled after making some progress after each
4637 * dirty_expire_interval while the underlying IO device is almost
4638 * completely idle.
4639 *
4640 * Solving this problem completely requires matching the ownership tracking
4641 * granularities between memcg and writeback in either direction. However,
4642 * the more egregious behaviors can be avoided by simply remembering the
4643 * most recent foreign dirtying events and initiating remote flushes on
4644 * them when local writeback isn't enough to keep the memory clean enough.
4645 *
4646 * The following two functions implement such mechanism. When a foreign
4647 * page - a page whose memcg and writeback ownerships don't match - is
4648 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4649 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4650 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4651 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4652 * foreign bdi_writebacks which haven't expired. Both the numbers of
4653 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4654 * limited to MEMCG_CGWB_FRN_CNT.
4655 *
4656 * The mechanism only remembers IDs and doesn't hold any object references.
4657 * As being wrong occasionally doesn't matter, updates and accesses to the
4658 * records are lockless and racy.
4659 */
4660void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4661 struct bdi_writeback *wb)
4662{
4663 struct mem_cgroup *memcg = folio_memcg(folio);
4664 struct memcg_cgwb_frn *frn;
4665 u64 now = get_jiffies_64();
4666 u64 oldest_at = now;
4667 int oldest = -1;
4668 int i;
4669
4670 trace_track_foreign_dirty(folio, wb);
4671
4672 /*
4673 * Pick the slot to use. If there is already a slot for @wb, keep
4674 * using it. If not replace the oldest one which isn't being
4675 * written out.
4676 */
4677 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4678 frn = &memcg->cgwb_frn[i];
4679 if (frn->bdi_id == wb->bdi->id &&
4680 frn->memcg_id == wb->memcg_css->id)
4681 break;
4682 if (time_before64(frn->at, oldest_at) &&
4683 atomic_read(&frn->done.cnt) == 1) {
4684 oldest = i;
4685 oldest_at = frn->at;
4686 }
4687 }
4688
4689 if (i < MEMCG_CGWB_FRN_CNT) {
4690 /*
4691 * Re-using an existing one. Update timestamp lazily to
4692 * avoid making the cacheline hot. We want them to be
4693 * reasonably up-to-date and significantly shorter than
4694 * dirty_expire_interval as that's what expires the record.
4695 * Use the shorter of 1s and dirty_expire_interval / 8.
4696 */
4697 unsigned long update_intv =
4698 min_t(unsigned long, HZ,
4699 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4700
4701 if (time_before64(frn->at, now - update_intv))
4702 frn->at = now;
4703 } else if (oldest >= 0) {
4704 /* replace the oldest free one */
4705 frn = &memcg->cgwb_frn[oldest];
4706 frn->bdi_id = wb->bdi->id;
4707 frn->memcg_id = wb->memcg_css->id;
4708 frn->at = now;
4709 }
4710}
4711
4712/* issue foreign writeback flushes for recorded foreign dirtying events */
4713void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4714{
4715 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4716 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4717 u64 now = jiffies_64;
4718 int i;
4719
4720 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4721 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4722
4723 /*
4724 * If the record is older than dirty_expire_interval,
4725 * writeback on it has already started. No need to kick it
4726 * off again. Also, don't start a new one if there's
4727 * already one in flight.
4728 */
4729 if (time_after64(frn->at, now - intv) &&
4730 atomic_read(&frn->done.cnt) == 1) {
4731 frn->at = 0;
4732 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4733 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4734 WB_REASON_FOREIGN_FLUSH,
4735 &frn->done);
4736 }
4737 }
4738}
4739
4740#else /* CONFIG_CGROUP_WRITEBACK */
4741
4742static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4743{
4744 return 0;
4745}
4746
4747static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4748{
4749}
4750
4751static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4752{
4753}
4754
4755#endif /* CONFIG_CGROUP_WRITEBACK */
4756
4757/*
4758 * DO NOT USE IN NEW FILES.
4759 *
4760 * "cgroup.event_control" implementation.
4761 *
4762 * This is way over-engineered. It tries to support fully configurable
4763 * events for each user. Such level of flexibility is completely
4764 * unnecessary especially in the light of the planned unified hierarchy.
4765 *
4766 * Please deprecate this and replace with something simpler if at all
4767 * possible.
4768 */
4769
4770/*
4771 * Unregister event and free resources.
4772 *
4773 * Gets called from workqueue.
4774 */
4775static void memcg_event_remove(struct work_struct *work)
4776{
4777 struct mem_cgroup_event *event =
4778 container_of(work, struct mem_cgroup_event, remove);
4779 struct mem_cgroup *memcg = event->memcg;
4780
4781 remove_wait_queue(event->wqh, &event->wait);
4782
4783 event->unregister_event(memcg, event->eventfd);
4784
4785 /* Notify userspace the event is going away. */
4786 eventfd_signal(event->eventfd, 1);
4787
4788 eventfd_ctx_put(event->eventfd);
4789 kfree(event);
4790 css_put(&memcg->css);
4791}
4792
4793/*
4794 * Gets called on EPOLLHUP on eventfd when user closes it.
4795 *
4796 * Called with wqh->lock held and interrupts disabled.
4797 */
4798static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4799 int sync, void *key)
4800{
4801 struct mem_cgroup_event *event =
4802 container_of(wait, struct mem_cgroup_event, wait);
4803 struct mem_cgroup *memcg = event->memcg;
4804 __poll_t flags = key_to_poll(key);
4805
4806 if (flags & EPOLLHUP) {
4807 /*
4808 * If the event has been detached at cgroup removal, we
4809 * can simply return knowing the other side will cleanup
4810 * for us.
4811 *
4812 * We can't race against event freeing since the other
4813 * side will require wqh->lock via remove_wait_queue(),
4814 * which we hold.
4815 */
4816 spin_lock(&memcg->event_list_lock);
4817 if (!list_empty(&event->list)) {
4818 list_del_init(&event->list);
4819 /*
4820 * We are in atomic context, but cgroup_event_remove()
4821 * may sleep, so we have to call it in workqueue.
4822 */
4823 schedule_work(&event->remove);
4824 }
4825 spin_unlock(&memcg->event_list_lock);
4826 }
4827
4828 return 0;
4829}
4830
4831static void memcg_event_ptable_queue_proc(struct file *file,
4832 wait_queue_head_t *wqh, poll_table *pt)
4833{
4834 struct mem_cgroup_event *event =
4835 container_of(pt, struct mem_cgroup_event, pt);
4836
4837 event->wqh = wqh;
4838 add_wait_queue(wqh, &event->wait);
4839}
4840
4841/*
4842 * DO NOT USE IN NEW FILES.
4843 *
4844 * Parse input and register new cgroup event handler.
4845 *
4846 * Input must be in format '<event_fd> <control_fd> <args>'.
4847 * Interpretation of args is defined by control file implementation.
4848 */
4849static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4850 char *buf, size_t nbytes, loff_t off)
4851{
4852 struct cgroup_subsys_state *css = of_css(of);
4853 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4854 struct mem_cgroup_event *event;
4855 struct cgroup_subsys_state *cfile_css;
4856 unsigned int efd, cfd;
4857 struct fd efile;
4858 struct fd cfile;
4859 struct dentry *cdentry;
4860 const char *name;
4861 char *endp;
4862 int ret;
4863
4864 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4865 return -EOPNOTSUPP;
4866
4867 buf = strstrip(buf);
4868
4869 efd = simple_strtoul(buf, &endp, 10);
4870 if (*endp != ' ')
4871 return -EINVAL;
4872 buf = endp + 1;
4873
4874 cfd = simple_strtoul(buf, &endp, 10);
4875 if ((*endp != ' ') && (*endp != '\0'))
4876 return -EINVAL;
4877 buf = endp + 1;
4878
4879 event = kzalloc(sizeof(*event), GFP_KERNEL);
4880 if (!event)
4881 return -ENOMEM;
4882
4883 event->memcg = memcg;
4884 INIT_LIST_HEAD(&event->list);
4885 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4886 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4887 INIT_WORK(&event->remove, memcg_event_remove);
4888
4889 efile = fdget(efd);
4890 if (!efile.file) {
4891 ret = -EBADF;
4892 goto out_kfree;
4893 }
4894
4895 event->eventfd = eventfd_ctx_fileget(efile.file);
4896 if (IS_ERR(event->eventfd)) {
4897 ret = PTR_ERR(event->eventfd);
4898 goto out_put_efile;
4899 }
4900
4901 cfile = fdget(cfd);
4902 if (!cfile.file) {
4903 ret = -EBADF;
4904 goto out_put_eventfd;
4905 }
4906
4907 /* the process need read permission on control file */
4908 /* AV: shouldn't we check that it's been opened for read instead? */
4909 ret = file_permission(cfile.file, MAY_READ);
4910 if (ret < 0)
4911 goto out_put_cfile;
4912
4913 /*
4914 * The control file must be a regular cgroup1 file. As a regular cgroup
4915 * file can't be renamed, it's safe to access its name afterwards.
4916 */
4917 cdentry = cfile.file->f_path.dentry;
4918 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4919 ret = -EINVAL;
4920 goto out_put_cfile;
4921 }
4922
4923 /*
4924 * Determine the event callbacks and set them in @event. This used
4925 * to be done via struct cftype but cgroup core no longer knows
4926 * about these events. The following is crude but the whole thing
4927 * is for compatibility anyway.
4928 *
4929 * DO NOT ADD NEW FILES.
4930 */
4931 name = cdentry->d_name.name;
4932
4933 if (!strcmp(name, "memory.usage_in_bytes")) {
4934 event->register_event = mem_cgroup_usage_register_event;
4935 event->unregister_event = mem_cgroup_usage_unregister_event;
4936 } else if (!strcmp(name, "memory.oom_control")) {
4937 event->register_event = mem_cgroup_oom_register_event;
4938 event->unregister_event = mem_cgroup_oom_unregister_event;
4939 } else if (!strcmp(name, "memory.pressure_level")) {
4940 event->register_event = vmpressure_register_event;
4941 event->unregister_event = vmpressure_unregister_event;
4942 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4943 event->register_event = memsw_cgroup_usage_register_event;
4944 event->unregister_event = memsw_cgroup_usage_unregister_event;
4945 } else {
4946 ret = -EINVAL;
4947 goto out_put_cfile;
4948 }
4949
4950 /*
4951 * Verify @cfile should belong to @css. Also, remaining events are
4952 * automatically removed on cgroup destruction but the removal is
4953 * asynchronous, so take an extra ref on @css.
4954 */
4955 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4956 &memory_cgrp_subsys);
4957 ret = -EINVAL;
4958 if (IS_ERR(cfile_css))
4959 goto out_put_cfile;
4960 if (cfile_css != css) {
4961 css_put(cfile_css);
4962 goto out_put_cfile;
4963 }
4964
4965 ret = event->register_event(memcg, event->eventfd, buf);
4966 if (ret)
4967 goto out_put_css;
4968
4969 vfs_poll(efile.file, &event->pt);
4970
4971 spin_lock_irq(&memcg->event_list_lock);
4972 list_add(&event->list, &memcg->event_list);
4973 spin_unlock_irq(&memcg->event_list_lock);
4974
4975 fdput(cfile);
4976 fdput(efile);
4977
4978 return nbytes;
4979
4980out_put_css:
4981 css_put(css);
4982out_put_cfile:
4983 fdput(cfile);
4984out_put_eventfd:
4985 eventfd_ctx_put(event->eventfd);
4986out_put_efile:
4987 fdput(efile);
4988out_kfree:
4989 kfree(event);
4990
4991 return ret;
4992}
4993
4994#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4995static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4996{
4997 /*
4998 * Deprecated.
4999 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5000 */
5001 return 0;
5002}
5003#endif
5004
5005static int memory_stat_show(struct seq_file *m, void *v);
5006
5007static struct cftype mem_cgroup_legacy_files[] = {
5008 {
5009 .name = "usage_in_bytes",
5010 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5011 .read_u64 = mem_cgroup_read_u64,
5012 },
5013 {
5014 .name = "max_usage_in_bytes",
5015 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5016 .write = mem_cgroup_reset,
5017 .read_u64 = mem_cgroup_read_u64,
5018 },
5019 {
5020 .name = "limit_in_bytes",
5021 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5022 .write = mem_cgroup_write,
5023 .read_u64 = mem_cgroup_read_u64,
5024 },
5025 {
5026 .name = "soft_limit_in_bytes",
5027 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5028 .write = mem_cgroup_write,
5029 .read_u64 = mem_cgroup_read_u64,
5030 },
5031 {
5032 .name = "failcnt",
5033 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5034 .write = mem_cgroup_reset,
5035 .read_u64 = mem_cgroup_read_u64,
5036 },
5037 {
5038 .name = "stat",
5039 .seq_show = memory_stat_show,
5040 },
5041 {
5042 .name = "force_empty",
5043 .write = mem_cgroup_force_empty_write,
5044 },
5045 {
5046 .name = "use_hierarchy",
5047 .write_u64 = mem_cgroup_hierarchy_write,
5048 .read_u64 = mem_cgroup_hierarchy_read,
5049 },
5050 {
5051 .name = "cgroup.event_control", /* XXX: for compat */
5052 .write = memcg_write_event_control,
5053 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5054 },
5055 {
5056 .name = "swappiness",
5057 .read_u64 = mem_cgroup_swappiness_read,
5058 .write_u64 = mem_cgroup_swappiness_write,
5059 },
5060 {
5061 .name = "move_charge_at_immigrate",
5062 .read_u64 = mem_cgroup_move_charge_read,
5063 .write_u64 = mem_cgroup_move_charge_write,
5064 },
5065 {
5066 .name = "oom_control",
5067 .seq_show = mem_cgroup_oom_control_read,
5068 .write_u64 = mem_cgroup_oom_control_write,
5069 },
5070 {
5071 .name = "pressure_level",
5072 .seq_show = mem_cgroup_dummy_seq_show,
5073 },
5074#ifdef CONFIG_NUMA
5075 {
5076 .name = "numa_stat",
5077 .seq_show = memcg_numa_stat_show,
5078 },
5079#endif
5080 {
5081 .name = "kmem.usage_in_bytes",
5082 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5083 .read_u64 = mem_cgroup_read_u64,
5084 },
5085 {
5086 .name = "kmem.failcnt",
5087 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5088 .write = mem_cgroup_reset,
5089 .read_u64 = mem_cgroup_read_u64,
5090 },
5091 {
5092 .name = "kmem.max_usage_in_bytes",
5093 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5094 .write = mem_cgroup_reset,
5095 .read_u64 = mem_cgroup_read_u64,
5096 },
5097#if defined(CONFIG_MEMCG_KMEM) && \
5098 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5099 {
5100 .name = "kmem.slabinfo",
5101 .seq_show = mem_cgroup_slab_show,
5102 },
5103#endif
5104 {
5105 .name = "kmem.tcp.limit_in_bytes",
5106 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5107 .write = mem_cgroup_write,
5108 .read_u64 = mem_cgroup_read_u64,
5109 },
5110 {
5111 .name = "kmem.tcp.usage_in_bytes",
5112 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5113 .read_u64 = mem_cgroup_read_u64,
5114 },
5115 {
5116 .name = "kmem.tcp.failcnt",
5117 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5118 .write = mem_cgroup_reset,
5119 .read_u64 = mem_cgroup_read_u64,
5120 },
5121 {
5122 .name = "kmem.tcp.max_usage_in_bytes",
5123 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5124 .write = mem_cgroup_reset,
5125 .read_u64 = mem_cgroup_read_u64,
5126 },
5127 { }, /* terminate */
5128};
5129
5130/*
5131 * Private memory cgroup IDR
5132 *
5133 * Swap-out records and page cache shadow entries need to store memcg
5134 * references in constrained space, so we maintain an ID space that is
5135 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5136 * memory-controlled cgroups to 64k.
5137 *
5138 * However, there usually are many references to the offline CSS after
5139 * the cgroup has been destroyed, such as page cache or reclaimable
5140 * slab objects, that don't need to hang on to the ID. We want to keep
5141 * those dead CSS from occupying IDs, or we might quickly exhaust the
5142 * relatively small ID space and prevent the creation of new cgroups
5143 * even when there are much fewer than 64k cgroups - possibly none.
5144 *
5145 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5146 * be freed and recycled when it's no longer needed, which is usually
5147 * when the CSS is offlined.
5148 *
5149 * The only exception to that are records of swapped out tmpfs/shmem
5150 * pages that need to be attributed to live ancestors on swapin. But
5151 * those references are manageable from userspace.
5152 */
5153
5154#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5155static DEFINE_IDR(mem_cgroup_idr);
5156
5157static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5158{
5159 if (memcg->id.id > 0) {
5160 idr_remove(&mem_cgroup_idr, memcg->id.id);
5161 memcg->id.id = 0;
5162 }
5163}
5164
5165static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5166 unsigned int n)
5167{
5168 refcount_add(n, &memcg->id.ref);
5169}
5170
5171static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5172{
5173 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5174 mem_cgroup_id_remove(memcg);
5175
5176 /* Memcg ID pins CSS */
5177 css_put(&memcg->css);
5178 }
5179}
5180
5181static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5182{
5183 mem_cgroup_id_put_many(memcg, 1);
5184}
5185
5186/**
5187 * mem_cgroup_from_id - look up a memcg from a memcg id
5188 * @id: the memcg id to look up
5189 *
5190 * Caller must hold rcu_read_lock().
5191 */
5192struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5193{
5194 WARN_ON_ONCE(!rcu_read_lock_held());
5195 return idr_find(&mem_cgroup_idr, id);
5196}
5197
5198#ifdef CONFIG_SHRINKER_DEBUG
5199struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5200{
5201 struct cgroup *cgrp;
5202 struct cgroup_subsys_state *css;
5203 struct mem_cgroup *memcg;
5204
5205 cgrp = cgroup_get_from_id(ino);
5206 if (IS_ERR(cgrp))
5207 return ERR_CAST(cgrp);
5208
5209 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5210 if (css)
5211 memcg = container_of(css, struct mem_cgroup, css);
5212 else
5213 memcg = ERR_PTR(-ENOENT);
5214
5215 cgroup_put(cgrp);
5216
5217 return memcg;
5218}
5219#endif
5220
5221static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5222{
5223 struct mem_cgroup_per_node *pn;
5224
5225 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5226 if (!pn)
5227 return 1;
5228
5229 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5230 GFP_KERNEL_ACCOUNT);
5231 if (!pn->lruvec_stats_percpu) {
5232 kfree(pn);
5233 return 1;
5234 }
5235
5236 lruvec_init(&pn->lruvec);
5237 pn->memcg = memcg;
5238
5239 memcg->nodeinfo[node] = pn;
5240 return 0;
5241}
5242
5243static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5244{
5245 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5246
5247 if (!pn)
5248 return;
5249
5250 free_percpu(pn->lruvec_stats_percpu);
5251 kfree(pn);
5252}
5253
5254static void __mem_cgroup_free(struct mem_cgroup *memcg)
5255{
5256 int node;
5257
5258 for_each_node(node)
5259 free_mem_cgroup_per_node_info(memcg, node);
5260 kfree(memcg->vmstats);
5261 free_percpu(memcg->vmstats_percpu);
5262 kfree(memcg);
5263}
5264
5265static void mem_cgroup_free(struct mem_cgroup *memcg)
5266{
5267 lru_gen_exit_memcg(memcg);
5268 memcg_wb_domain_exit(memcg);
5269 __mem_cgroup_free(memcg);
5270}
5271
5272static struct mem_cgroup *mem_cgroup_alloc(void)
5273{
5274 struct mem_cgroup *memcg;
5275 int node;
5276 int __maybe_unused i;
5277 long error = -ENOMEM;
5278
5279 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5280 if (!memcg)
5281 return ERR_PTR(error);
5282
5283 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5284 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5285 if (memcg->id.id < 0) {
5286 error = memcg->id.id;
5287 goto fail;
5288 }
5289
5290 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5291 if (!memcg->vmstats)
5292 goto fail;
5293
5294 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5295 GFP_KERNEL_ACCOUNT);
5296 if (!memcg->vmstats_percpu)
5297 goto fail;
5298
5299 for_each_node(node)
5300 if (alloc_mem_cgroup_per_node_info(memcg, node))
5301 goto fail;
5302
5303 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5304 goto fail;
5305
5306 INIT_WORK(&memcg->high_work, high_work_func);
5307 INIT_LIST_HEAD(&memcg->oom_notify);
5308 mutex_init(&memcg->thresholds_lock);
5309 spin_lock_init(&memcg->move_lock);
5310 vmpressure_init(&memcg->vmpressure);
5311 INIT_LIST_HEAD(&memcg->event_list);
5312 spin_lock_init(&memcg->event_list_lock);
5313 memcg->socket_pressure = jiffies;
5314#ifdef CONFIG_MEMCG_KMEM
5315 memcg->kmemcg_id = -1;
5316 INIT_LIST_HEAD(&memcg->objcg_list);
5317#endif
5318#ifdef CONFIG_CGROUP_WRITEBACK
5319 INIT_LIST_HEAD(&memcg->cgwb_list);
5320 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5321 memcg->cgwb_frn[i].done =
5322 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5323#endif
5324#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5325 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5326 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5327 memcg->deferred_split_queue.split_queue_len = 0;
5328#endif
5329 lru_gen_init_memcg(memcg);
5330 return memcg;
5331fail:
5332 mem_cgroup_id_remove(memcg);
5333 __mem_cgroup_free(memcg);
5334 return ERR_PTR(error);
5335}
5336
5337static struct cgroup_subsys_state * __ref
5338mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5339{
5340 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5341 struct mem_cgroup *memcg, *old_memcg;
5342
5343 old_memcg = set_active_memcg(parent);
5344 memcg = mem_cgroup_alloc();
5345 set_active_memcg(old_memcg);
5346 if (IS_ERR(memcg))
5347 return ERR_CAST(memcg);
5348
5349 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5350 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5351#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5352 memcg->zswap_max = PAGE_COUNTER_MAX;
5353#endif
5354 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5355 if (parent) {
5356 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5357 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5358
5359 page_counter_init(&memcg->memory, &parent->memory);
5360 page_counter_init(&memcg->swap, &parent->swap);
5361 page_counter_init(&memcg->kmem, &parent->kmem);
5362 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5363 } else {
5364 init_memcg_events();
5365 page_counter_init(&memcg->memory, NULL);
5366 page_counter_init(&memcg->swap, NULL);
5367 page_counter_init(&memcg->kmem, NULL);
5368 page_counter_init(&memcg->tcpmem, NULL);
5369
5370 root_mem_cgroup = memcg;
5371 return &memcg->css;
5372 }
5373
5374 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5375 static_branch_inc(&memcg_sockets_enabled_key);
5376
5377#if defined(CONFIG_MEMCG_KMEM)
5378 if (!cgroup_memory_nobpf)
5379 static_branch_inc(&memcg_bpf_enabled_key);
5380#endif
5381
5382 return &memcg->css;
5383}
5384
5385static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5386{
5387 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5388
5389 if (memcg_online_kmem(memcg))
5390 goto remove_id;
5391
5392 /*
5393 * A memcg must be visible for expand_shrinker_info()
5394 * by the time the maps are allocated. So, we allocate maps
5395 * here, when for_each_mem_cgroup() can't skip it.
5396 */
5397 if (alloc_shrinker_info(memcg))
5398 goto offline_kmem;
5399
5400 if (unlikely(mem_cgroup_is_root(memcg)))
5401 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5402 FLUSH_TIME);
5403 lru_gen_online_memcg(memcg);
5404
5405 /* Online state pins memcg ID, memcg ID pins CSS */
5406 refcount_set(&memcg->id.ref, 1);
5407 css_get(css);
5408
5409 /*
5410 * Ensure mem_cgroup_from_id() works once we're fully online.
5411 *
5412 * We could do this earlier and require callers to filter with
5413 * css_tryget_online(). But right now there are no users that
5414 * need earlier access, and the workingset code relies on the
5415 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5416 * publish it here at the end of onlining. This matches the
5417 * regular ID destruction during offlining.
5418 */
5419 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5420
5421 return 0;
5422offline_kmem:
5423 memcg_offline_kmem(memcg);
5424remove_id:
5425 mem_cgroup_id_remove(memcg);
5426 return -ENOMEM;
5427}
5428
5429static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5430{
5431 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5432 struct mem_cgroup_event *event, *tmp;
5433
5434 /*
5435 * Unregister events and notify userspace.
5436 * Notify userspace about cgroup removing only after rmdir of cgroup
5437 * directory to avoid race between userspace and kernelspace.
5438 */
5439 spin_lock_irq(&memcg->event_list_lock);
5440 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5441 list_del_init(&event->list);
5442 schedule_work(&event->remove);
5443 }
5444 spin_unlock_irq(&memcg->event_list_lock);
5445
5446 page_counter_set_min(&memcg->memory, 0);
5447 page_counter_set_low(&memcg->memory, 0);
5448
5449 memcg_offline_kmem(memcg);
5450 reparent_shrinker_deferred(memcg);
5451 wb_memcg_offline(memcg);
5452 lru_gen_offline_memcg(memcg);
5453
5454 drain_all_stock(memcg);
5455
5456 mem_cgroup_id_put(memcg);
5457}
5458
5459static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5460{
5461 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5462
5463 invalidate_reclaim_iterators(memcg);
5464 lru_gen_release_memcg(memcg);
5465}
5466
5467static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5468{
5469 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5470 int __maybe_unused i;
5471
5472#ifdef CONFIG_CGROUP_WRITEBACK
5473 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5474 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5475#endif
5476 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5477 static_branch_dec(&memcg_sockets_enabled_key);
5478
5479 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5480 static_branch_dec(&memcg_sockets_enabled_key);
5481
5482#if defined(CONFIG_MEMCG_KMEM)
5483 if (!cgroup_memory_nobpf)
5484 static_branch_dec(&memcg_bpf_enabled_key);
5485#endif
5486
5487 vmpressure_cleanup(&memcg->vmpressure);
5488 cancel_work_sync(&memcg->high_work);
5489 mem_cgroup_remove_from_trees(memcg);
5490 free_shrinker_info(memcg);
5491 mem_cgroup_free(memcg);
5492}
5493
5494/**
5495 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5496 * @css: the target css
5497 *
5498 * Reset the states of the mem_cgroup associated with @css. This is
5499 * invoked when the userland requests disabling on the default hierarchy
5500 * but the memcg is pinned through dependency. The memcg should stop
5501 * applying policies and should revert to the vanilla state as it may be
5502 * made visible again.
5503 *
5504 * The current implementation only resets the essential configurations.
5505 * This needs to be expanded to cover all the visible parts.
5506 */
5507static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5508{
5509 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5510
5511 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5512 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5513 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5514 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5515 page_counter_set_min(&memcg->memory, 0);
5516 page_counter_set_low(&memcg->memory, 0);
5517 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5518 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5519 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5520 memcg_wb_domain_size_changed(memcg);
5521}
5522
5523static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5524{
5525 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5526 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5527 struct memcg_vmstats_percpu *statc;
5528 long delta, delta_cpu, v;
5529 int i, nid;
5530
5531 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5532
5533 for (i = 0; i < MEMCG_NR_STAT; i++) {
5534 /*
5535 * Collect the aggregated propagation counts of groups
5536 * below us. We're in a per-cpu loop here and this is
5537 * a global counter, so the first cycle will get them.
5538 */
5539 delta = memcg->vmstats->state_pending[i];
5540 if (delta)
5541 memcg->vmstats->state_pending[i] = 0;
5542
5543 /* Add CPU changes on this level since the last flush */
5544 delta_cpu = 0;
5545 v = READ_ONCE(statc->state[i]);
5546 if (v != statc->state_prev[i]) {
5547 delta_cpu = v - statc->state_prev[i];
5548 delta += delta_cpu;
5549 statc->state_prev[i] = v;
5550 }
5551
5552 /* Aggregate counts on this level and propagate upwards */
5553 if (delta_cpu)
5554 memcg->vmstats->state_local[i] += delta_cpu;
5555
5556 if (delta) {
5557 memcg->vmstats->state[i] += delta;
5558 if (parent)
5559 parent->vmstats->state_pending[i] += delta;
5560 }
5561 }
5562
5563 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5564 delta = memcg->vmstats->events_pending[i];
5565 if (delta)
5566 memcg->vmstats->events_pending[i] = 0;
5567
5568 delta_cpu = 0;
5569 v = READ_ONCE(statc->events[i]);
5570 if (v != statc->events_prev[i]) {
5571 delta_cpu = v - statc->events_prev[i];
5572 delta += delta_cpu;
5573 statc->events_prev[i] = v;
5574 }
5575
5576 if (delta_cpu)
5577 memcg->vmstats->events_local[i] += delta_cpu;
5578
5579 if (delta) {
5580 memcg->vmstats->events[i] += delta;
5581 if (parent)
5582 parent->vmstats->events_pending[i] += delta;
5583 }
5584 }
5585
5586 for_each_node_state(nid, N_MEMORY) {
5587 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5588 struct mem_cgroup_per_node *ppn = NULL;
5589 struct lruvec_stats_percpu *lstatc;
5590
5591 if (parent)
5592 ppn = parent->nodeinfo[nid];
5593
5594 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5595
5596 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5597 delta = pn->lruvec_stats.state_pending[i];
5598 if (delta)
5599 pn->lruvec_stats.state_pending[i] = 0;
5600
5601 delta_cpu = 0;
5602 v = READ_ONCE(lstatc->state[i]);
5603 if (v != lstatc->state_prev[i]) {
5604 delta_cpu = v - lstatc->state_prev[i];
5605 delta += delta_cpu;
5606 lstatc->state_prev[i] = v;
5607 }
5608
5609 if (delta_cpu)
5610 pn->lruvec_stats.state_local[i] += delta_cpu;
5611
5612 if (delta) {
5613 pn->lruvec_stats.state[i] += delta;
5614 if (ppn)
5615 ppn->lruvec_stats.state_pending[i] += delta;
5616 }
5617 }
5618 }
5619}
5620
5621#ifdef CONFIG_MMU
5622/* Handlers for move charge at task migration. */
5623static int mem_cgroup_do_precharge(unsigned long count)
5624{
5625 int ret;
5626
5627 /* Try a single bulk charge without reclaim first, kswapd may wake */
5628 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5629 if (!ret) {
5630 mc.precharge += count;
5631 return ret;
5632 }
5633
5634 /* Try charges one by one with reclaim, but do not retry */
5635 while (count--) {
5636 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5637 if (ret)
5638 return ret;
5639 mc.precharge++;
5640 cond_resched();
5641 }
5642 return 0;
5643}
5644
5645union mc_target {
5646 struct page *page;
5647 swp_entry_t ent;
5648};
5649
5650enum mc_target_type {
5651 MC_TARGET_NONE = 0,
5652 MC_TARGET_PAGE,
5653 MC_TARGET_SWAP,
5654 MC_TARGET_DEVICE,
5655};
5656
5657static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5658 unsigned long addr, pte_t ptent)
5659{
5660 struct page *page = vm_normal_page(vma, addr, ptent);
5661
5662 if (!page)
5663 return NULL;
5664 if (PageAnon(page)) {
5665 if (!(mc.flags & MOVE_ANON))
5666 return NULL;
5667 } else {
5668 if (!(mc.flags & MOVE_FILE))
5669 return NULL;
5670 }
5671 get_page(page);
5672
5673 return page;
5674}
5675
5676#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5677static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5678 pte_t ptent, swp_entry_t *entry)
5679{
5680 struct page *page = NULL;
5681 swp_entry_t ent = pte_to_swp_entry(ptent);
5682
5683 if (!(mc.flags & MOVE_ANON))
5684 return NULL;
5685
5686 /*
5687 * Handle device private pages that are not accessible by the CPU, but
5688 * stored as special swap entries in the page table.
5689 */
5690 if (is_device_private_entry(ent)) {
5691 page = pfn_swap_entry_to_page(ent);
5692 if (!get_page_unless_zero(page))
5693 return NULL;
5694 return page;
5695 }
5696
5697 if (non_swap_entry(ent))
5698 return NULL;
5699
5700 /*
5701 * Because swap_cache_get_folio() updates some statistics counter,
5702 * we call find_get_page() with swapper_space directly.
5703 */
5704 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5705 entry->val = ent.val;
5706
5707 return page;
5708}
5709#else
5710static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5711 pte_t ptent, swp_entry_t *entry)
5712{
5713 return NULL;
5714}
5715#endif
5716
5717static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5718 unsigned long addr, pte_t ptent)
5719{
5720 unsigned long index;
5721 struct folio *folio;
5722
5723 if (!vma->vm_file) /* anonymous vma */
5724 return NULL;
5725 if (!(mc.flags & MOVE_FILE))
5726 return NULL;
5727
5728 /* folio is moved even if it's not RSS of this task(page-faulted). */
5729 /* shmem/tmpfs may report page out on swap: account for that too. */
5730 index = linear_page_index(vma, addr);
5731 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5732 if (IS_ERR(folio))
5733 return NULL;
5734 return folio_file_page(folio, index);
5735}
5736
5737/**
5738 * mem_cgroup_move_account - move account of the page
5739 * @page: the page
5740 * @compound: charge the page as compound or small page
5741 * @from: mem_cgroup which the page is moved from.
5742 * @to: mem_cgroup which the page is moved to. @from != @to.
5743 *
5744 * The page must be locked and not on the LRU.
5745 *
5746 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5747 * from old cgroup.
5748 */
5749static int mem_cgroup_move_account(struct page *page,
5750 bool compound,
5751 struct mem_cgroup *from,
5752 struct mem_cgroup *to)
5753{
5754 struct folio *folio = page_folio(page);
5755 struct lruvec *from_vec, *to_vec;
5756 struct pglist_data *pgdat;
5757 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5758 int nid, ret;
5759
5760 VM_BUG_ON(from == to);
5761 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5762 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5763 VM_BUG_ON(compound && !folio_test_large(folio));
5764
5765 ret = -EINVAL;
5766 if (folio_memcg(folio) != from)
5767 goto out;
5768
5769 pgdat = folio_pgdat(folio);
5770 from_vec = mem_cgroup_lruvec(from, pgdat);
5771 to_vec = mem_cgroup_lruvec(to, pgdat);
5772
5773 folio_memcg_lock(folio);
5774
5775 if (folio_test_anon(folio)) {
5776 if (folio_mapped(folio)) {
5777 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5778 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5779 if (folio_test_pmd_mappable(folio)) {
5780 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5781 -nr_pages);
5782 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5783 nr_pages);
5784 }
5785 }
5786 } else {
5787 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5788 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5789
5790 if (folio_test_swapbacked(folio)) {
5791 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5792 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5793 }
5794
5795 if (folio_mapped(folio)) {
5796 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5797 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5798 }
5799
5800 if (folio_test_dirty(folio)) {
5801 struct address_space *mapping = folio_mapping(folio);
5802
5803 if (mapping_can_writeback(mapping)) {
5804 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5805 -nr_pages);
5806 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5807 nr_pages);
5808 }
5809 }
5810 }
5811
5812#ifdef CONFIG_SWAP
5813 if (folio_test_swapcache(folio)) {
5814 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5815 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5816 }
5817#endif
5818 if (folio_test_writeback(folio)) {
5819 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5820 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5821 }
5822
5823 /*
5824 * All state has been migrated, let's switch to the new memcg.
5825 *
5826 * It is safe to change page's memcg here because the page
5827 * is referenced, charged, isolated, and locked: we can't race
5828 * with (un)charging, migration, LRU putback, or anything else
5829 * that would rely on a stable page's memory cgroup.
5830 *
5831 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5832 * to save space. As soon as we switch page's memory cgroup to a
5833 * new memcg that isn't locked, the above state can change
5834 * concurrently again. Make sure we're truly done with it.
5835 */
5836 smp_mb();
5837
5838 css_get(&to->css);
5839 css_put(&from->css);
5840
5841 folio->memcg_data = (unsigned long)to;
5842
5843 __folio_memcg_unlock(from);
5844
5845 ret = 0;
5846 nid = folio_nid(folio);
5847
5848 local_irq_disable();
5849 mem_cgroup_charge_statistics(to, nr_pages);
5850 memcg_check_events(to, nid);
5851 mem_cgroup_charge_statistics(from, -nr_pages);
5852 memcg_check_events(from, nid);
5853 local_irq_enable();
5854out:
5855 return ret;
5856}
5857
5858/**
5859 * get_mctgt_type - get target type of moving charge
5860 * @vma: the vma the pte to be checked belongs
5861 * @addr: the address corresponding to the pte to be checked
5862 * @ptent: the pte to be checked
5863 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5864 *
5865 * Context: Called with pte lock held.
5866 * Return:
5867 * * MC_TARGET_NONE - If the pte is not a target for move charge.
5868 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
5869 * move charge. If @target is not NULL, the page is stored in target->page
5870 * with extra refcnt taken (Caller should release it).
5871 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
5872 * target for charge migration. If @target is not NULL, the entry is
5873 * stored in target->ent.
5874 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
5875 * thus not on the lru. For now such page is charged like a regular page
5876 * would be as it is just special memory taking the place of a regular page.
5877 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5878 */
5879static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5880 unsigned long addr, pte_t ptent, union mc_target *target)
5881{
5882 struct page *page = NULL;
5883 enum mc_target_type ret = MC_TARGET_NONE;
5884 swp_entry_t ent = { .val = 0 };
5885
5886 if (pte_present(ptent))
5887 page = mc_handle_present_pte(vma, addr, ptent);
5888 else if (pte_none_mostly(ptent))
5889 /*
5890 * PTE markers should be treated as a none pte here, separated
5891 * from other swap handling below.
5892 */
5893 page = mc_handle_file_pte(vma, addr, ptent);
5894 else if (is_swap_pte(ptent))
5895 page = mc_handle_swap_pte(vma, ptent, &ent);
5896
5897 if (target && page) {
5898 if (!trylock_page(page)) {
5899 put_page(page);
5900 return ret;
5901 }
5902 /*
5903 * page_mapped() must be stable during the move. This
5904 * pte is locked, so if it's present, the page cannot
5905 * become unmapped. If it isn't, we have only partial
5906 * control over the mapped state: the page lock will
5907 * prevent new faults against pagecache and swapcache,
5908 * so an unmapped page cannot become mapped. However,
5909 * if the page is already mapped elsewhere, it can
5910 * unmap, and there is nothing we can do about it.
5911 * Alas, skip moving the page in this case.
5912 */
5913 if (!pte_present(ptent) && page_mapped(page)) {
5914 unlock_page(page);
5915 put_page(page);
5916 return ret;
5917 }
5918 }
5919
5920 if (!page && !ent.val)
5921 return ret;
5922 if (page) {
5923 /*
5924 * Do only loose check w/o serialization.
5925 * mem_cgroup_move_account() checks the page is valid or
5926 * not under LRU exclusion.
5927 */
5928 if (page_memcg(page) == mc.from) {
5929 ret = MC_TARGET_PAGE;
5930 if (is_device_private_page(page) ||
5931 is_device_coherent_page(page))
5932 ret = MC_TARGET_DEVICE;
5933 if (target)
5934 target->page = page;
5935 }
5936 if (!ret || !target) {
5937 if (target)
5938 unlock_page(page);
5939 put_page(page);
5940 }
5941 }
5942 /*
5943 * There is a swap entry and a page doesn't exist or isn't charged.
5944 * But we cannot move a tail-page in a THP.
5945 */
5946 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5947 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5948 ret = MC_TARGET_SWAP;
5949 if (target)
5950 target->ent = ent;
5951 }
5952 return ret;
5953}
5954
5955#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5956/*
5957 * We don't consider PMD mapped swapping or file mapped pages because THP does
5958 * not support them for now.
5959 * Caller should make sure that pmd_trans_huge(pmd) is true.
5960 */
5961static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5962 unsigned long addr, pmd_t pmd, union mc_target *target)
5963{
5964 struct page *page = NULL;
5965 enum mc_target_type ret = MC_TARGET_NONE;
5966
5967 if (unlikely(is_swap_pmd(pmd))) {
5968 VM_BUG_ON(thp_migration_supported() &&
5969 !is_pmd_migration_entry(pmd));
5970 return ret;
5971 }
5972 page = pmd_page(pmd);
5973 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5974 if (!(mc.flags & MOVE_ANON))
5975 return ret;
5976 if (page_memcg(page) == mc.from) {
5977 ret = MC_TARGET_PAGE;
5978 if (target) {
5979 get_page(page);
5980 if (!trylock_page(page)) {
5981 put_page(page);
5982 return MC_TARGET_NONE;
5983 }
5984 target->page = page;
5985 }
5986 }
5987 return ret;
5988}
5989#else
5990static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5991 unsigned long addr, pmd_t pmd, union mc_target *target)
5992{
5993 return MC_TARGET_NONE;
5994}
5995#endif
5996
5997static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5998 unsigned long addr, unsigned long end,
5999 struct mm_walk *walk)
6000{
6001 struct vm_area_struct *vma = walk->vma;
6002 pte_t *pte;
6003 spinlock_t *ptl;
6004
6005 ptl = pmd_trans_huge_lock(pmd, vma);
6006 if (ptl) {
6007 /*
6008 * Note their can not be MC_TARGET_DEVICE for now as we do not
6009 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6010 * this might change.
6011 */
6012 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6013 mc.precharge += HPAGE_PMD_NR;
6014 spin_unlock(ptl);
6015 return 0;
6016 }
6017
6018 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6019 if (!pte)
6020 return 0;
6021 for (; addr != end; pte++, addr += PAGE_SIZE)
6022 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6023 mc.precharge++; /* increment precharge temporarily */
6024 pte_unmap_unlock(pte - 1, ptl);
6025 cond_resched();
6026
6027 return 0;
6028}
6029
6030static const struct mm_walk_ops precharge_walk_ops = {
6031 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6032 .walk_lock = PGWALK_RDLOCK,
6033};
6034
6035static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6036{
6037 unsigned long precharge;
6038
6039 mmap_read_lock(mm);
6040 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6041 mmap_read_unlock(mm);
6042
6043 precharge = mc.precharge;
6044 mc.precharge = 0;
6045
6046 return precharge;
6047}
6048
6049static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6050{
6051 unsigned long precharge = mem_cgroup_count_precharge(mm);
6052
6053 VM_BUG_ON(mc.moving_task);
6054 mc.moving_task = current;
6055 return mem_cgroup_do_precharge(precharge);
6056}
6057
6058/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6059static void __mem_cgroup_clear_mc(void)
6060{
6061 struct mem_cgroup *from = mc.from;
6062 struct mem_cgroup *to = mc.to;
6063
6064 /* we must uncharge all the leftover precharges from mc.to */
6065 if (mc.precharge) {
6066 cancel_charge(mc.to, mc.precharge);
6067 mc.precharge = 0;
6068 }
6069 /*
6070 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6071 * we must uncharge here.
6072 */
6073 if (mc.moved_charge) {
6074 cancel_charge(mc.from, mc.moved_charge);
6075 mc.moved_charge = 0;
6076 }
6077 /* we must fixup refcnts and charges */
6078 if (mc.moved_swap) {
6079 /* uncharge swap account from the old cgroup */
6080 if (!mem_cgroup_is_root(mc.from))
6081 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6082
6083 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6084
6085 /*
6086 * we charged both to->memory and to->memsw, so we
6087 * should uncharge to->memory.
6088 */
6089 if (!mem_cgroup_is_root(mc.to))
6090 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6091
6092 mc.moved_swap = 0;
6093 }
6094 memcg_oom_recover(from);
6095 memcg_oom_recover(to);
6096 wake_up_all(&mc.waitq);
6097}
6098
6099static void mem_cgroup_clear_mc(void)
6100{
6101 struct mm_struct *mm = mc.mm;
6102
6103 /*
6104 * we must clear moving_task before waking up waiters at the end of
6105 * task migration.
6106 */
6107 mc.moving_task = NULL;
6108 __mem_cgroup_clear_mc();
6109 spin_lock(&mc.lock);
6110 mc.from = NULL;
6111 mc.to = NULL;
6112 mc.mm = NULL;
6113 spin_unlock(&mc.lock);
6114
6115 mmput(mm);
6116}
6117
6118static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6119{
6120 struct cgroup_subsys_state *css;
6121 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6122 struct mem_cgroup *from;
6123 struct task_struct *leader, *p;
6124 struct mm_struct *mm;
6125 unsigned long move_flags;
6126 int ret = 0;
6127
6128 /* charge immigration isn't supported on the default hierarchy */
6129 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6130 return 0;
6131
6132 /*
6133 * Multi-process migrations only happen on the default hierarchy
6134 * where charge immigration is not used. Perform charge
6135 * immigration if @tset contains a leader and whine if there are
6136 * multiple.
6137 */
6138 p = NULL;
6139 cgroup_taskset_for_each_leader(leader, css, tset) {
6140 WARN_ON_ONCE(p);
6141 p = leader;
6142 memcg = mem_cgroup_from_css(css);
6143 }
6144 if (!p)
6145 return 0;
6146
6147 /*
6148 * We are now committed to this value whatever it is. Changes in this
6149 * tunable will only affect upcoming migrations, not the current one.
6150 * So we need to save it, and keep it going.
6151 */
6152 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6153 if (!move_flags)
6154 return 0;
6155
6156 from = mem_cgroup_from_task(p);
6157
6158 VM_BUG_ON(from == memcg);
6159
6160 mm = get_task_mm(p);
6161 if (!mm)
6162 return 0;
6163 /* We move charges only when we move a owner of the mm */
6164 if (mm->owner == p) {
6165 VM_BUG_ON(mc.from);
6166 VM_BUG_ON(mc.to);
6167 VM_BUG_ON(mc.precharge);
6168 VM_BUG_ON(mc.moved_charge);
6169 VM_BUG_ON(mc.moved_swap);
6170
6171 spin_lock(&mc.lock);
6172 mc.mm = mm;
6173 mc.from = from;
6174 mc.to = memcg;
6175 mc.flags = move_flags;
6176 spin_unlock(&mc.lock);
6177 /* We set mc.moving_task later */
6178
6179 ret = mem_cgroup_precharge_mc(mm);
6180 if (ret)
6181 mem_cgroup_clear_mc();
6182 } else {
6183 mmput(mm);
6184 }
6185 return ret;
6186}
6187
6188static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6189{
6190 if (mc.to)
6191 mem_cgroup_clear_mc();
6192}
6193
6194static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6195 unsigned long addr, unsigned long end,
6196 struct mm_walk *walk)
6197{
6198 int ret = 0;
6199 struct vm_area_struct *vma = walk->vma;
6200 pte_t *pte;
6201 spinlock_t *ptl;
6202 enum mc_target_type target_type;
6203 union mc_target target;
6204 struct page *page;
6205
6206 ptl = pmd_trans_huge_lock(pmd, vma);
6207 if (ptl) {
6208 if (mc.precharge < HPAGE_PMD_NR) {
6209 spin_unlock(ptl);
6210 return 0;
6211 }
6212 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6213 if (target_type == MC_TARGET_PAGE) {
6214 page = target.page;
6215 if (isolate_lru_page(page)) {
6216 if (!mem_cgroup_move_account(page, true,
6217 mc.from, mc.to)) {
6218 mc.precharge -= HPAGE_PMD_NR;
6219 mc.moved_charge += HPAGE_PMD_NR;
6220 }
6221 putback_lru_page(page);
6222 }
6223 unlock_page(page);
6224 put_page(page);
6225 } else if (target_type == MC_TARGET_DEVICE) {
6226 page = target.page;
6227 if (!mem_cgroup_move_account(page, true,
6228 mc.from, mc.to)) {
6229 mc.precharge -= HPAGE_PMD_NR;
6230 mc.moved_charge += HPAGE_PMD_NR;
6231 }
6232 unlock_page(page);
6233 put_page(page);
6234 }
6235 spin_unlock(ptl);
6236 return 0;
6237 }
6238
6239retry:
6240 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6241 if (!pte)
6242 return 0;
6243 for (; addr != end; addr += PAGE_SIZE) {
6244 pte_t ptent = ptep_get(pte++);
6245 bool device = false;
6246 swp_entry_t ent;
6247
6248 if (!mc.precharge)
6249 break;
6250
6251 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6252 case MC_TARGET_DEVICE:
6253 device = true;
6254 fallthrough;
6255 case MC_TARGET_PAGE:
6256 page = target.page;
6257 /*
6258 * We can have a part of the split pmd here. Moving it
6259 * can be done but it would be too convoluted so simply
6260 * ignore such a partial THP and keep it in original
6261 * memcg. There should be somebody mapping the head.
6262 */
6263 if (PageTransCompound(page))
6264 goto put;
6265 if (!device && !isolate_lru_page(page))
6266 goto put;
6267 if (!mem_cgroup_move_account(page, false,
6268 mc.from, mc.to)) {
6269 mc.precharge--;
6270 /* we uncharge from mc.from later. */
6271 mc.moved_charge++;
6272 }
6273 if (!device)
6274 putback_lru_page(page);
6275put: /* get_mctgt_type() gets & locks the page */
6276 unlock_page(page);
6277 put_page(page);
6278 break;
6279 case MC_TARGET_SWAP:
6280 ent = target.ent;
6281 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6282 mc.precharge--;
6283 mem_cgroup_id_get_many(mc.to, 1);
6284 /* we fixup other refcnts and charges later. */
6285 mc.moved_swap++;
6286 }
6287 break;
6288 default:
6289 break;
6290 }
6291 }
6292 pte_unmap_unlock(pte - 1, ptl);
6293 cond_resched();
6294
6295 if (addr != end) {
6296 /*
6297 * We have consumed all precharges we got in can_attach().
6298 * We try charge one by one, but don't do any additional
6299 * charges to mc.to if we have failed in charge once in attach()
6300 * phase.
6301 */
6302 ret = mem_cgroup_do_precharge(1);
6303 if (!ret)
6304 goto retry;
6305 }
6306
6307 return ret;
6308}
6309
6310static const struct mm_walk_ops charge_walk_ops = {
6311 .pmd_entry = mem_cgroup_move_charge_pte_range,
6312 .walk_lock = PGWALK_RDLOCK,
6313};
6314
6315static void mem_cgroup_move_charge(void)
6316{
6317 lru_add_drain_all();
6318 /*
6319 * Signal folio_memcg_lock() to take the memcg's move_lock
6320 * while we're moving its pages to another memcg. Then wait
6321 * for already started RCU-only updates to finish.
6322 */
6323 atomic_inc(&mc.from->moving_account);
6324 synchronize_rcu();
6325retry:
6326 if (unlikely(!mmap_read_trylock(mc.mm))) {
6327 /*
6328 * Someone who are holding the mmap_lock might be waiting in
6329 * waitq. So we cancel all extra charges, wake up all waiters,
6330 * and retry. Because we cancel precharges, we might not be able
6331 * to move enough charges, but moving charge is a best-effort
6332 * feature anyway, so it wouldn't be a big problem.
6333 */
6334 __mem_cgroup_clear_mc();
6335 cond_resched();
6336 goto retry;
6337 }
6338 /*
6339 * When we have consumed all precharges and failed in doing
6340 * additional charge, the page walk just aborts.
6341 */
6342 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6343 mmap_read_unlock(mc.mm);
6344 atomic_dec(&mc.from->moving_account);
6345}
6346
6347static void mem_cgroup_move_task(void)
6348{
6349 if (mc.to) {
6350 mem_cgroup_move_charge();
6351 mem_cgroup_clear_mc();
6352 }
6353}
6354#else /* !CONFIG_MMU */
6355static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6356{
6357 return 0;
6358}
6359static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6360{
6361}
6362static void mem_cgroup_move_task(void)
6363{
6364}
6365#endif
6366
6367#ifdef CONFIG_LRU_GEN
6368static void mem_cgroup_attach(struct cgroup_taskset *tset)
6369{
6370 struct task_struct *task;
6371 struct cgroup_subsys_state *css;
6372
6373 /* find the first leader if there is any */
6374 cgroup_taskset_for_each_leader(task, css, tset)
6375 break;
6376
6377 if (!task)
6378 return;
6379
6380 task_lock(task);
6381 if (task->mm && READ_ONCE(task->mm->owner) == task)
6382 lru_gen_migrate_mm(task->mm);
6383 task_unlock(task);
6384}
6385#else
6386static void mem_cgroup_attach(struct cgroup_taskset *tset)
6387{
6388}
6389#endif /* CONFIG_LRU_GEN */
6390
6391static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6392{
6393 if (value == PAGE_COUNTER_MAX)
6394 seq_puts(m, "max\n");
6395 else
6396 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6397
6398 return 0;
6399}
6400
6401static u64 memory_current_read(struct cgroup_subsys_state *css,
6402 struct cftype *cft)
6403{
6404 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6405
6406 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6407}
6408
6409static u64 memory_peak_read(struct cgroup_subsys_state *css,
6410 struct cftype *cft)
6411{
6412 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6413
6414 return (u64)memcg->memory.watermark * PAGE_SIZE;
6415}
6416
6417static int memory_min_show(struct seq_file *m, void *v)
6418{
6419 return seq_puts_memcg_tunable(m,
6420 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6421}
6422
6423static ssize_t memory_min_write(struct kernfs_open_file *of,
6424 char *buf, size_t nbytes, loff_t off)
6425{
6426 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6427 unsigned long min;
6428 int err;
6429
6430 buf = strstrip(buf);
6431 err = page_counter_memparse(buf, "max", &min);
6432 if (err)
6433 return err;
6434
6435 page_counter_set_min(&memcg->memory, min);
6436
6437 return nbytes;
6438}
6439
6440static int memory_low_show(struct seq_file *m, void *v)
6441{
6442 return seq_puts_memcg_tunable(m,
6443 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6444}
6445
6446static ssize_t memory_low_write(struct kernfs_open_file *of,
6447 char *buf, size_t nbytes, loff_t off)
6448{
6449 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6450 unsigned long low;
6451 int err;
6452
6453 buf = strstrip(buf);
6454 err = page_counter_memparse(buf, "max", &low);
6455 if (err)
6456 return err;
6457
6458 page_counter_set_low(&memcg->memory, low);
6459
6460 return nbytes;
6461}
6462
6463static int memory_high_show(struct seq_file *m, void *v)
6464{
6465 return seq_puts_memcg_tunable(m,
6466 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6467}
6468
6469static ssize_t memory_high_write(struct kernfs_open_file *of,
6470 char *buf, size_t nbytes, loff_t off)
6471{
6472 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6473 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6474 bool drained = false;
6475 unsigned long high;
6476 int err;
6477
6478 buf = strstrip(buf);
6479 err = page_counter_memparse(buf, "max", &high);
6480 if (err)
6481 return err;
6482
6483 page_counter_set_high(&memcg->memory, high);
6484
6485 for (;;) {
6486 unsigned long nr_pages = page_counter_read(&memcg->memory);
6487 unsigned long reclaimed;
6488
6489 if (nr_pages <= high)
6490 break;
6491
6492 if (signal_pending(current))
6493 break;
6494
6495 if (!drained) {
6496 drain_all_stock(memcg);
6497 drained = true;
6498 continue;
6499 }
6500
6501 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6502 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6503
6504 if (!reclaimed && !nr_retries--)
6505 break;
6506 }
6507
6508 memcg_wb_domain_size_changed(memcg);
6509 return nbytes;
6510}
6511
6512static int memory_max_show(struct seq_file *m, void *v)
6513{
6514 return seq_puts_memcg_tunable(m,
6515 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6516}
6517
6518static ssize_t memory_max_write(struct kernfs_open_file *of,
6519 char *buf, size_t nbytes, loff_t off)
6520{
6521 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6522 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6523 bool drained = false;
6524 unsigned long max;
6525 int err;
6526
6527 buf = strstrip(buf);
6528 err = page_counter_memparse(buf, "max", &max);
6529 if (err)
6530 return err;
6531
6532 xchg(&memcg->memory.max, max);
6533
6534 for (;;) {
6535 unsigned long nr_pages = page_counter_read(&memcg->memory);
6536
6537 if (nr_pages <= max)
6538 break;
6539
6540 if (signal_pending(current))
6541 break;
6542
6543 if (!drained) {
6544 drain_all_stock(memcg);
6545 drained = true;
6546 continue;
6547 }
6548
6549 if (nr_reclaims) {
6550 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6551 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6552 nr_reclaims--;
6553 continue;
6554 }
6555
6556 memcg_memory_event(memcg, MEMCG_OOM);
6557 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6558 break;
6559 }
6560
6561 memcg_wb_domain_size_changed(memcg);
6562 return nbytes;
6563}
6564
6565static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6566{
6567 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6568 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6569 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6570 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6571 seq_printf(m, "oom_kill %lu\n",
6572 atomic_long_read(&events[MEMCG_OOM_KILL]));
6573 seq_printf(m, "oom_group_kill %lu\n",
6574 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6575}
6576
6577static int memory_events_show(struct seq_file *m, void *v)
6578{
6579 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6580
6581 __memory_events_show(m, memcg->memory_events);
6582 return 0;
6583}
6584
6585static int memory_events_local_show(struct seq_file *m, void *v)
6586{
6587 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6588
6589 __memory_events_show(m, memcg->memory_events_local);
6590 return 0;
6591}
6592
6593static int memory_stat_show(struct seq_file *m, void *v)
6594{
6595 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6596 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6597 struct seq_buf s;
6598
6599 if (!buf)
6600 return -ENOMEM;
6601 seq_buf_init(&s, buf, PAGE_SIZE);
6602 memory_stat_format(memcg, &s);
6603 seq_puts(m, buf);
6604 kfree(buf);
6605 return 0;
6606}
6607
6608#ifdef CONFIG_NUMA
6609static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6610 int item)
6611{
6612 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6613}
6614
6615static int memory_numa_stat_show(struct seq_file *m, void *v)
6616{
6617 int i;
6618 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6619
6620 mem_cgroup_flush_stats();
6621
6622 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6623 int nid;
6624
6625 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6626 continue;
6627
6628 seq_printf(m, "%s", memory_stats[i].name);
6629 for_each_node_state(nid, N_MEMORY) {
6630 u64 size;
6631 struct lruvec *lruvec;
6632
6633 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6634 size = lruvec_page_state_output(lruvec,
6635 memory_stats[i].idx);
6636 seq_printf(m, " N%d=%llu", nid, size);
6637 }
6638 seq_putc(m, '\n');
6639 }
6640
6641 return 0;
6642}
6643#endif
6644
6645static int memory_oom_group_show(struct seq_file *m, void *v)
6646{
6647 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6648
6649 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6650
6651 return 0;
6652}
6653
6654static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6655 char *buf, size_t nbytes, loff_t off)
6656{
6657 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6658 int ret, oom_group;
6659
6660 buf = strstrip(buf);
6661 if (!buf)
6662 return -EINVAL;
6663
6664 ret = kstrtoint(buf, 0, &oom_group);
6665 if (ret)
6666 return ret;
6667
6668 if (oom_group != 0 && oom_group != 1)
6669 return -EINVAL;
6670
6671 WRITE_ONCE(memcg->oom_group, oom_group);
6672
6673 return nbytes;
6674}
6675
6676static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6677 size_t nbytes, loff_t off)
6678{
6679 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6680 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6681 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6682 unsigned int reclaim_options;
6683 int err;
6684
6685 buf = strstrip(buf);
6686 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6687 if (err)
6688 return err;
6689
6690 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6691 while (nr_reclaimed < nr_to_reclaim) {
6692 unsigned long reclaimed;
6693
6694 if (signal_pending(current))
6695 return -EINTR;
6696
6697 /*
6698 * This is the final attempt, drain percpu lru caches in the
6699 * hope of introducing more evictable pages for
6700 * try_to_free_mem_cgroup_pages().
6701 */
6702 if (!nr_retries)
6703 lru_add_drain_all();
6704
6705 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6706 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6707 GFP_KERNEL, reclaim_options);
6708
6709 if (!reclaimed && !nr_retries--)
6710 return -EAGAIN;
6711
6712 nr_reclaimed += reclaimed;
6713 }
6714
6715 return nbytes;
6716}
6717
6718static struct cftype memory_files[] = {
6719 {
6720 .name = "current",
6721 .flags = CFTYPE_NOT_ON_ROOT,
6722 .read_u64 = memory_current_read,
6723 },
6724 {
6725 .name = "peak",
6726 .flags = CFTYPE_NOT_ON_ROOT,
6727 .read_u64 = memory_peak_read,
6728 },
6729 {
6730 .name = "min",
6731 .flags = CFTYPE_NOT_ON_ROOT,
6732 .seq_show = memory_min_show,
6733 .write = memory_min_write,
6734 },
6735 {
6736 .name = "low",
6737 .flags = CFTYPE_NOT_ON_ROOT,
6738 .seq_show = memory_low_show,
6739 .write = memory_low_write,
6740 },
6741 {
6742 .name = "high",
6743 .flags = CFTYPE_NOT_ON_ROOT,
6744 .seq_show = memory_high_show,
6745 .write = memory_high_write,
6746 },
6747 {
6748 .name = "max",
6749 .flags = CFTYPE_NOT_ON_ROOT,
6750 .seq_show = memory_max_show,
6751 .write = memory_max_write,
6752 },
6753 {
6754 .name = "events",
6755 .flags = CFTYPE_NOT_ON_ROOT,
6756 .file_offset = offsetof(struct mem_cgroup, events_file),
6757 .seq_show = memory_events_show,
6758 },
6759 {
6760 .name = "events.local",
6761 .flags = CFTYPE_NOT_ON_ROOT,
6762 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6763 .seq_show = memory_events_local_show,
6764 },
6765 {
6766 .name = "stat",
6767 .seq_show = memory_stat_show,
6768 },
6769#ifdef CONFIG_NUMA
6770 {
6771 .name = "numa_stat",
6772 .seq_show = memory_numa_stat_show,
6773 },
6774#endif
6775 {
6776 .name = "oom.group",
6777 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6778 .seq_show = memory_oom_group_show,
6779 .write = memory_oom_group_write,
6780 },
6781 {
6782 .name = "reclaim",
6783 .flags = CFTYPE_NS_DELEGATABLE,
6784 .write = memory_reclaim,
6785 },
6786 { } /* terminate */
6787};
6788
6789struct cgroup_subsys memory_cgrp_subsys = {
6790 .css_alloc = mem_cgroup_css_alloc,
6791 .css_online = mem_cgroup_css_online,
6792 .css_offline = mem_cgroup_css_offline,
6793 .css_released = mem_cgroup_css_released,
6794 .css_free = mem_cgroup_css_free,
6795 .css_reset = mem_cgroup_css_reset,
6796 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6797 .can_attach = mem_cgroup_can_attach,
6798 .attach = mem_cgroup_attach,
6799 .cancel_attach = mem_cgroup_cancel_attach,
6800 .post_attach = mem_cgroup_move_task,
6801 .dfl_cftypes = memory_files,
6802 .legacy_cftypes = mem_cgroup_legacy_files,
6803 .early_init = 0,
6804};
6805
6806/*
6807 * This function calculates an individual cgroup's effective
6808 * protection which is derived from its own memory.min/low, its
6809 * parent's and siblings' settings, as well as the actual memory
6810 * distribution in the tree.
6811 *
6812 * The following rules apply to the effective protection values:
6813 *
6814 * 1. At the first level of reclaim, effective protection is equal to
6815 * the declared protection in memory.min and memory.low.
6816 *
6817 * 2. To enable safe delegation of the protection configuration, at
6818 * subsequent levels the effective protection is capped to the
6819 * parent's effective protection.
6820 *
6821 * 3. To make complex and dynamic subtrees easier to configure, the
6822 * user is allowed to overcommit the declared protection at a given
6823 * level. If that is the case, the parent's effective protection is
6824 * distributed to the children in proportion to how much protection
6825 * they have declared and how much of it they are utilizing.
6826 *
6827 * This makes distribution proportional, but also work-conserving:
6828 * if one cgroup claims much more protection than it uses memory,
6829 * the unused remainder is available to its siblings.
6830 *
6831 * 4. Conversely, when the declared protection is undercommitted at a
6832 * given level, the distribution of the larger parental protection
6833 * budget is NOT proportional. A cgroup's protection from a sibling
6834 * is capped to its own memory.min/low setting.
6835 *
6836 * 5. However, to allow protecting recursive subtrees from each other
6837 * without having to declare each individual cgroup's fixed share
6838 * of the ancestor's claim to protection, any unutilized -
6839 * "floating" - protection from up the tree is distributed in
6840 * proportion to each cgroup's *usage*. This makes the protection
6841 * neutral wrt sibling cgroups and lets them compete freely over
6842 * the shared parental protection budget, but it protects the
6843 * subtree as a whole from neighboring subtrees.
6844 *
6845 * Note that 4. and 5. are not in conflict: 4. is about protecting
6846 * against immediate siblings whereas 5. is about protecting against
6847 * neighboring subtrees.
6848 */
6849static unsigned long effective_protection(unsigned long usage,
6850 unsigned long parent_usage,
6851 unsigned long setting,
6852 unsigned long parent_effective,
6853 unsigned long siblings_protected)
6854{
6855 unsigned long protected;
6856 unsigned long ep;
6857
6858 protected = min(usage, setting);
6859 /*
6860 * If all cgroups at this level combined claim and use more
6861 * protection than what the parent affords them, distribute
6862 * shares in proportion to utilization.
6863 *
6864 * We are using actual utilization rather than the statically
6865 * claimed protection in order to be work-conserving: claimed
6866 * but unused protection is available to siblings that would
6867 * otherwise get a smaller chunk than what they claimed.
6868 */
6869 if (siblings_protected > parent_effective)
6870 return protected * parent_effective / siblings_protected;
6871
6872 /*
6873 * Ok, utilized protection of all children is within what the
6874 * parent affords them, so we know whatever this child claims
6875 * and utilizes is effectively protected.
6876 *
6877 * If there is unprotected usage beyond this value, reclaim
6878 * will apply pressure in proportion to that amount.
6879 *
6880 * If there is unutilized protection, the cgroup will be fully
6881 * shielded from reclaim, but we do return a smaller value for
6882 * protection than what the group could enjoy in theory. This
6883 * is okay. With the overcommit distribution above, effective
6884 * protection is always dependent on how memory is actually
6885 * consumed among the siblings anyway.
6886 */
6887 ep = protected;
6888
6889 /*
6890 * If the children aren't claiming (all of) the protection
6891 * afforded to them by the parent, distribute the remainder in
6892 * proportion to the (unprotected) memory of each cgroup. That
6893 * way, cgroups that aren't explicitly prioritized wrt each
6894 * other compete freely over the allowance, but they are
6895 * collectively protected from neighboring trees.
6896 *
6897 * We're using unprotected memory for the weight so that if
6898 * some cgroups DO claim explicit protection, we don't protect
6899 * the same bytes twice.
6900 *
6901 * Check both usage and parent_usage against the respective
6902 * protected values. One should imply the other, but they
6903 * aren't read atomically - make sure the division is sane.
6904 */
6905 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6906 return ep;
6907 if (parent_effective > siblings_protected &&
6908 parent_usage > siblings_protected &&
6909 usage > protected) {
6910 unsigned long unclaimed;
6911
6912 unclaimed = parent_effective - siblings_protected;
6913 unclaimed *= usage - protected;
6914 unclaimed /= parent_usage - siblings_protected;
6915
6916 ep += unclaimed;
6917 }
6918
6919 return ep;
6920}
6921
6922/**
6923 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6924 * @root: the top ancestor of the sub-tree being checked
6925 * @memcg: the memory cgroup to check
6926 *
6927 * WARNING: This function is not stateless! It can only be used as part
6928 * of a top-down tree iteration, not for isolated queries.
6929 */
6930void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6931 struct mem_cgroup *memcg)
6932{
6933 unsigned long usage, parent_usage;
6934 struct mem_cgroup *parent;
6935
6936 if (mem_cgroup_disabled())
6937 return;
6938
6939 if (!root)
6940 root = root_mem_cgroup;
6941
6942 /*
6943 * Effective values of the reclaim targets are ignored so they
6944 * can be stale. Have a look at mem_cgroup_protection for more
6945 * details.
6946 * TODO: calculation should be more robust so that we do not need
6947 * that special casing.
6948 */
6949 if (memcg == root)
6950 return;
6951
6952 usage = page_counter_read(&memcg->memory);
6953 if (!usage)
6954 return;
6955
6956 parent = parent_mem_cgroup(memcg);
6957
6958 if (parent == root) {
6959 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6960 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6961 return;
6962 }
6963
6964 parent_usage = page_counter_read(&parent->memory);
6965
6966 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6967 READ_ONCE(memcg->memory.min),
6968 READ_ONCE(parent->memory.emin),
6969 atomic_long_read(&parent->memory.children_min_usage)));
6970
6971 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6972 READ_ONCE(memcg->memory.low),
6973 READ_ONCE(parent->memory.elow),
6974 atomic_long_read(&parent->memory.children_low_usage)));
6975}
6976
6977static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6978 gfp_t gfp)
6979{
6980 long nr_pages = folio_nr_pages(folio);
6981 int ret;
6982
6983 ret = try_charge(memcg, gfp, nr_pages);
6984 if (ret)
6985 goto out;
6986
6987 css_get(&memcg->css);
6988 commit_charge(folio, memcg);
6989
6990 local_irq_disable();
6991 mem_cgroup_charge_statistics(memcg, nr_pages);
6992 memcg_check_events(memcg, folio_nid(folio));
6993 local_irq_enable();
6994out:
6995 return ret;
6996}
6997
6998int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6999{
7000 struct mem_cgroup *memcg;
7001 int ret;
7002
7003 memcg = get_mem_cgroup_from_mm(mm);
7004 ret = charge_memcg(folio, memcg, gfp);
7005 css_put(&memcg->css);
7006
7007 return ret;
7008}
7009
7010/**
7011 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7012 * @folio: folio to charge.
7013 * @mm: mm context of the victim
7014 * @gfp: reclaim mode
7015 * @entry: swap entry for which the folio is allocated
7016 *
7017 * This function charges a folio allocated for swapin. Please call this before
7018 * adding the folio to the swapcache.
7019 *
7020 * Returns 0 on success. Otherwise, an error code is returned.
7021 */
7022int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7023 gfp_t gfp, swp_entry_t entry)
7024{
7025 struct mem_cgroup *memcg;
7026 unsigned short id;
7027 int ret;
7028
7029 if (mem_cgroup_disabled())
7030 return 0;
7031
7032 id = lookup_swap_cgroup_id(entry);
7033 rcu_read_lock();
7034 memcg = mem_cgroup_from_id(id);
7035 if (!memcg || !css_tryget_online(&memcg->css))
7036 memcg = get_mem_cgroup_from_mm(mm);
7037 rcu_read_unlock();
7038
7039 ret = charge_memcg(folio, memcg, gfp);
7040
7041 css_put(&memcg->css);
7042 return ret;
7043}
7044
7045/*
7046 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7047 * @entry: swap entry for which the page is charged
7048 *
7049 * Call this function after successfully adding the charged page to swapcache.
7050 *
7051 * Note: This function assumes the page for which swap slot is being uncharged
7052 * is order 0 page.
7053 */
7054void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7055{
7056 /*
7057 * Cgroup1's unified memory+swap counter has been charged with the
7058 * new swapcache page, finish the transfer by uncharging the swap
7059 * slot. The swap slot would also get uncharged when it dies, but
7060 * it can stick around indefinitely and we'd count the page twice
7061 * the entire time.
7062 *
7063 * Cgroup2 has separate resource counters for memory and swap,
7064 * so this is a non-issue here. Memory and swap charge lifetimes
7065 * correspond 1:1 to page and swap slot lifetimes: we charge the
7066 * page to memory here, and uncharge swap when the slot is freed.
7067 */
7068 if (!mem_cgroup_disabled() && do_memsw_account()) {
7069 /*
7070 * The swap entry might not get freed for a long time,
7071 * let's not wait for it. The page already received a
7072 * memory+swap charge, drop the swap entry duplicate.
7073 */
7074 mem_cgroup_uncharge_swap(entry, 1);
7075 }
7076}
7077
7078struct uncharge_gather {
7079 struct mem_cgroup *memcg;
7080 unsigned long nr_memory;
7081 unsigned long pgpgout;
7082 unsigned long nr_kmem;
7083 int nid;
7084};
7085
7086static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7087{
7088 memset(ug, 0, sizeof(*ug));
7089}
7090
7091static void uncharge_batch(const struct uncharge_gather *ug)
7092{
7093 unsigned long flags;
7094
7095 if (ug->nr_memory) {
7096 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7097 if (do_memsw_account())
7098 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7099 if (ug->nr_kmem)
7100 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7101 memcg_oom_recover(ug->memcg);
7102 }
7103
7104 local_irq_save(flags);
7105 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7106 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7107 memcg_check_events(ug->memcg, ug->nid);
7108 local_irq_restore(flags);
7109
7110 /* drop reference from uncharge_folio */
7111 css_put(&ug->memcg->css);
7112}
7113
7114static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7115{
7116 long nr_pages;
7117 struct mem_cgroup *memcg;
7118 struct obj_cgroup *objcg;
7119
7120 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7121
7122 /*
7123 * Nobody should be changing or seriously looking at
7124 * folio memcg or objcg at this point, we have fully
7125 * exclusive access to the folio.
7126 */
7127 if (folio_memcg_kmem(folio)) {
7128 objcg = __folio_objcg(folio);
7129 /*
7130 * This get matches the put at the end of the function and
7131 * kmem pages do not hold memcg references anymore.
7132 */
7133 memcg = get_mem_cgroup_from_objcg(objcg);
7134 } else {
7135 memcg = __folio_memcg(folio);
7136 }
7137
7138 if (!memcg)
7139 return;
7140
7141 if (ug->memcg != memcg) {
7142 if (ug->memcg) {
7143 uncharge_batch(ug);
7144 uncharge_gather_clear(ug);
7145 }
7146 ug->memcg = memcg;
7147 ug->nid = folio_nid(folio);
7148
7149 /* pairs with css_put in uncharge_batch */
7150 css_get(&memcg->css);
7151 }
7152
7153 nr_pages = folio_nr_pages(folio);
7154
7155 if (folio_memcg_kmem(folio)) {
7156 ug->nr_memory += nr_pages;
7157 ug->nr_kmem += nr_pages;
7158
7159 folio->memcg_data = 0;
7160 obj_cgroup_put(objcg);
7161 } else {
7162 /* LRU pages aren't accounted at the root level */
7163 if (!mem_cgroup_is_root(memcg))
7164 ug->nr_memory += nr_pages;
7165 ug->pgpgout++;
7166
7167 folio->memcg_data = 0;
7168 }
7169
7170 css_put(&memcg->css);
7171}
7172
7173void __mem_cgroup_uncharge(struct folio *folio)
7174{
7175 struct uncharge_gather ug;
7176
7177 /* Don't touch folio->lru of any random page, pre-check: */
7178 if (!folio_memcg(folio))
7179 return;
7180
7181 uncharge_gather_clear(&ug);
7182 uncharge_folio(folio, &ug);
7183 uncharge_batch(&ug);
7184}
7185
7186/**
7187 * __mem_cgroup_uncharge_list - uncharge a list of page
7188 * @page_list: list of pages to uncharge
7189 *
7190 * Uncharge a list of pages previously charged with
7191 * __mem_cgroup_charge().
7192 */
7193void __mem_cgroup_uncharge_list(struct list_head *page_list)
7194{
7195 struct uncharge_gather ug;
7196 struct folio *folio;
7197
7198 uncharge_gather_clear(&ug);
7199 list_for_each_entry(folio, page_list, lru)
7200 uncharge_folio(folio, &ug);
7201 if (ug.memcg)
7202 uncharge_batch(&ug);
7203}
7204
7205/**
7206 * mem_cgroup_migrate - Charge a folio's replacement.
7207 * @old: Currently circulating folio.
7208 * @new: Replacement folio.
7209 *
7210 * Charge @new as a replacement folio for @old. @old will
7211 * be uncharged upon free.
7212 *
7213 * Both folios must be locked, @new->mapping must be set up.
7214 */
7215void mem_cgroup_migrate(struct folio *old, struct folio *new)
7216{
7217 struct mem_cgroup *memcg;
7218 long nr_pages = folio_nr_pages(new);
7219 unsigned long flags;
7220
7221 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7222 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7223 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7224 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7225
7226 if (mem_cgroup_disabled())
7227 return;
7228
7229 /* Page cache replacement: new folio already charged? */
7230 if (folio_memcg(new))
7231 return;
7232
7233 memcg = folio_memcg(old);
7234 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7235 if (!memcg)
7236 return;
7237
7238 /* Force-charge the new page. The old one will be freed soon */
7239 if (!mem_cgroup_is_root(memcg)) {
7240 page_counter_charge(&memcg->memory, nr_pages);
7241 if (do_memsw_account())
7242 page_counter_charge(&memcg->memsw, nr_pages);
7243 }
7244
7245 css_get(&memcg->css);
7246 commit_charge(new, memcg);
7247
7248 local_irq_save(flags);
7249 mem_cgroup_charge_statistics(memcg, nr_pages);
7250 memcg_check_events(memcg, folio_nid(new));
7251 local_irq_restore(flags);
7252}
7253
7254DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7255EXPORT_SYMBOL(memcg_sockets_enabled_key);
7256
7257void mem_cgroup_sk_alloc(struct sock *sk)
7258{
7259 struct mem_cgroup *memcg;
7260
7261 if (!mem_cgroup_sockets_enabled)
7262 return;
7263
7264 /* Do not associate the sock with unrelated interrupted task's memcg. */
7265 if (!in_task())
7266 return;
7267
7268 rcu_read_lock();
7269 memcg = mem_cgroup_from_task(current);
7270 if (mem_cgroup_is_root(memcg))
7271 goto out;
7272 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7273 goto out;
7274 if (css_tryget(&memcg->css))
7275 sk->sk_memcg = memcg;
7276out:
7277 rcu_read_unlock();
7278}
7279
7280void mem_cgroup_sk_free(struct sock *sk)
7281{
7282 if (sk->sk_memcg)
7283 css_put(&sk->sk_memcg->css);
7284}
7285
7286/**
7287 * mem_cgroup_charge_skmem - charge socket memory
7288 * @memcg: memcg to charge
7289 * @nr_pages: number of pages to charge
7290 * @gfp_mask: reclaim mode
7291 *
7292 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7293 * @memcg's configured limit, %false if it doesn't.
7294 */
7295bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7296 gfp_t gfp_mask)
7297{
7298 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7299 struct page_counter *fail;
7300
7301 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7302 memcg->tcpmem_pressure = 0;
7303 return true;
7304 }
7305 memcg->tcpmem_pressure = 1;
7306 if (gfp_mask & __GFP_NOFAIL) {
7307 page_counter_charge(&memcg->tcpmem, nr_pages);
7308 return true;
7309 }
7310 return false;
7311 }
7312
7313 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7314 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7315 return true;
7316 }
7317
7318 return false;
7319}
7320
7321/**
7322 * mem_cgroup_uncharge_skmem - uncharge socket memory
7323 * @memcg: memcg to uncharge
7324 * @nr_pages: number of pages to uncharge
7325 */
7326void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7327{
7328 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7329 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7330 return;
7331 }
7332
7333 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7334
7335 refill_stock(memcg, nr_pages);
7336}
7337
7338static int __init cgroup_memory(char *s)
7339{
7340 char *token;
7341
7342 while ((token = strsep(&s, ",")) != NULL) {
7343 if (!*token)
7344 continue;
7345 if (!strcmp(token, "nosocket"))
7346 cgroup_memory_nosocket = true;
7347 if (!strcmp(token, "nokmem"))
7348 cgroup_memory_nokmem = true;
7349 if (!strcmp(token, "nobpf"))
7350 cgroup_memory_nobpf = true;
7351 }
7352 return 1;
7353}
7354__setup("cgroup.memory=", cgroup_memory);
7355
7356/*
7357 * subsys_initcall() for memory controller.
7358 *
7359 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7360 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7361 * basically everything that doesn't depend on a specific mem_cgroup structure
7362 * should be initialized from here.
7363 */
7364static int __init mem_cgroup_init(void)
7365{
7366 int cpu, node;
7367
7368 /*
7369 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7370 * used for per-memcg-per-cpu caching of per-node statistics. In order
7371 * to work fine, we should make sure that the overfill threshold can't
7372 * exceed S32_MAX / PAGE_SIZE.
7373 */
7374 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7375
7376 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7377 memcg_hotplug_cpu_dead);
7378
7379 for_each_possible_cpu(cpu)
7380 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7381 drain_local_stock);
7382
7383 for_each_node(node) {
7384 struct mem_cgroup_tree_per_node *rtpn;
7385
7386 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7387
7388 rtpn->rb_root = RB_ROOT;
7389 rtpn->rb_rightmost = NULL;
7390 spin_lock_init(&rtpn->lock);
7391 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7392 }
7393
7394 return 0;
7395}
7396subsys_initcall(mem_cgroup_init);
7397
7398#ifdef CONFIG_SWAP
7399static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7400{
7401 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7402 /*
7403 * The root cgroup cannot be destroyed, so it's refcount must
7404 * always be >= 1.
7405 */
7406 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7407 VM_BUG_ON(1);
7408 break;
7409 }
7410 memcg = parent_mem_cgroup(memcg);
7411 if (!memcg)
7412 memcg = root_mem_cgroup;
7413 }
7414 return memcg;
7415}
7416
7417/**
7418 * mem_cgroup_swapout - transfer a memsw charge to swap
7419 * @folio: folio whose memsw charge to transfer
7420 * @entry: swap entry to move the charge to
7421 *
7422 * Transfer the memsw charge of @folio to @entry.
7423 */
7424void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7425{
7426 struct mem_cgroup *memcg, *swap_memcg;
7427 unsigned int nr_entries;
7428 unsigned short oldid;
7429
7430 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7431 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7432
7433 if (mem_cgroup_disabled())
7434 return;
7435
7436 if (!do_memsw_account())
7437 return;
7438
7439 memcg = folio_memcg(folio);
7440
7441 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7442 if (!memcg)
7443 return;
7444
7445 /*
7446 * In case the memcg owning these pages has been offlined and doesn't
7447 * have an ID allocated to it anymore, charge the closest online
7448 * ancestor for the swap instead and transfer the memory+swap charge.
7449 */
7450 swap_memcg = mem_cgroup_id_get_online(memcg);
7451 nr_entries = folio_nr_pages(folio);
7452 /* Get references for the tail pages, too */
7453 if (nr_entries > 1)
7454 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7455 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7456 nr_entries);
7457 VM_BUG_ON_FOLIO(oldid, folio);
7458 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7459
7460 folio->memcg_data = 0;
7461
7462 if (!mem_cgroup_is_root(memcg))
7463 page_counter_uncharge(&memcg->memory, nr_entries);
7464
7465 if (memcg != swap_memcg) {
7466 if (!mem_cgroup_is_root(swap_memcg))
7467 page_counter_charge(&swap_memcg->memsw, nr_entries);
7468 page_counter_uncharge(&memcg->memsw, nr_entries);
7469 }
7470
7471 /*
7472 * Interrupts should be disabled here because the caller holds the
7473 * i_pages lock which is taken with interrupts-off. It is
7474 * important here to have the interrupts disabled because it is the
7475 * only synchronisation we have for updating the per-CPU variables.
7476 */
7477 memcg_stats_lock();
7478 mem_cgroup_charge_statistics(memcg, -nr_entries);
7479 memcg_stats_unlock();
7480 memcg_check_events(memcg, folio_nid(folio));
7481
7482 css_put(&memcg->css);
7483}
7484
7485/**
7486 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7487 * @folio: folio being added to swap
7488 * @entry: swap entry to charge
7489 *
7490 * Try to charge @folio's memcg for the swap space at @entry.
7491 *
7492 * Returns 0 on success, -ENOMEM on failure.
7493 */
7494int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7495{
7496 unsigned int nr_pages = folio_nr_pages(folio);
7497 struct page_counter *counter;
7498 struct mem_cgroup *memcg;
7499 unsigned short oldid;
7500
7501 if (do_memsw_account())
7502 return 0;
7503
7504 memcg = folio_memcg(folio);
7505
7506 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7507 if (!memcg)
7508 return 0;
7509
7510 if (!entry.val) {
7511 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7512 return 0;
7513 }
7514
7515 memcg = mem_cgroup_id_get_online(memcg);
7516
7517 if (!mem_cgroup_is_root(memcg) &&
7518 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7519 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7520 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7521 mem_cgroup_id_put(memcg);
7522 return -ENOMEM;
7523 }
7524
7525 /* Get references for the tail pages, too */
7526 if (nr_pages > 1)
7527 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7528 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7529 VM_BUG_ON_FOLIO(oldid, folio);
7530 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7531
7532 return 0;
7533}
7534
7535/**
7536 * __mem_cgroup_uncharge_swap - uncharge swap space
7537 * @entry: swap entry to uncharge
7538 * @nr_pages: the amount of swap space to uncharge
7539 */
7540void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7541{
7542 struct mem_cgroup *memcg;
7543 unsigned short id;
7544
7545 id = swap_cgroup_record(entry, 0, nr_pages);
7546 rcu_read_lock();
7547 memcg = mem_cgroup_from_id(id);
7548 if (memcg) {
7549 if (!mem_cgroup_is_root(memcg)) {
7550 if (do_memsw_account())
7551 page_counter_uncharge(&memcg->memsw, nr_pages);
7552 else
7553 page_counter_uncharge(&memcg->swap, nr_pages);
7554 }
7555 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7556 mem_cgroup_id_put_many(memcg, nr_pages);
7557 }
7558 rcu_read_unlock();
7559}
7560
7561long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7562{
7563 long nr_swap_pages = get_nr_swap_pages();
7564
7565 if (mem_cgroup_disabled() || do_memsw_account())
7566 return nr_swap_pages;
7567 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7568 nr_swap_pages = min_t(long, nr_swap_pages,
7569 READ_ONCE(memcg->swap.max) -
7570 page_counter_read(&memcg->swap));
7571 return nr_swap_pages;
7572}
7573
7574bool mem_cgroup_swap_full(struct folio *folio)
7575{
7576 struct mem_cgroup *memcg;
7577
7578 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7579
7580 if (vm_swap_full())
7581 return true;
7582 if (do_memsw_account())
7583 return false;
7584
7585 memcg = folio_memcg(folio);
7586 if (!memcg)
7587 return false;
7588
7589 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7590 unsigned long usage = page_counter_read(&memcg->swap);
7591
7592 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7593 usage * 2 >= READ_ONCE(memcg->swap.max))
7594 return true;
7595 }
7596
7597 return false;
7598}
7599
7600static int __init setup_swap_account(char *s)
7601{
7602 pr_warn_once("The swapaccount= commandline option is deprecated. "
7603 "Please report your usecase to linux-mm@kvack.org if you "
7604 "depend on this functionality.\n");
7605 return 1;
7606}
7607__setup("swapaccount=", setup_swap_account);
7608
7609static u64 swap_current_read(struct cgroup_subsys_state *css,
7610 struct cftype *cft)
7611{
7612 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7613
7614 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7615}
7616
7617static u64 swap_peak_read(struct cgroup_subsys_state *css,
7618 struct cftype *cft)
7619{
7620 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7621
7622 return (u64)memcg->swap.watermark * PAGE_SIZE;
7623}
7624
7625static int swap_high_show(struct seq_file *m, void *v)
7626{
7627 return seq_puts_memcg_tunable(m,
7628 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7629}
7630
7631static ssize_t swap_high_write(struct kernfs_open_file *of,
7632 char *buf, size_t nbytes, loff_t off)
7633{
7634 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7635 unsigned long high;
7636 int err;
7637
7638 buf = strstrip(buf);
7639 err = page_counter_memparse(buf, "max", &high);
7640 if (err)
7641 return err;
7642
7643 page_counter_set_high(&memcg->swap, high);
7644
7645 return nbytes;
7646}
7647
7648static int swap_max_show(struct seq_file *m, void *v)
7649{
7650 return seq_puts_memcg_tunable(m,
7651 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7652}
7653
7654static ssize_t swap_max_write(struct kernfs_open_file *of,
7655 char *buf, size_t nbytes, loff_t off)
7656{
7657 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7658 unsigned long max;
7659 int err;
7660
7661 buf = strstrip(buf);
7662 err = page_counter_memparse(buf, "max", &max);
7663 if (err)
7664 return err;
7665
7666 xchg(&memcg->swap.max, max);
7667
7668 return nbytes;
7669}
7670
7671static int swap_events_show(struct seq_file *m, void *v)
7672{
7673 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7674
7675 seq_printf(m, "high %lu\n",
7676 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7677 seq_printf(m, "max %lu\n",
7678 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7679 seq_printf(m, "fail %lu\n",
7680 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7681
7682 return 0;
7683}
7684
7685static struct cftype swap_files[] = {
7686 {
7687 .name = "swap.current",
7688 .flags = CFTYPE_NOT_ON_ROOT,
7689 .read_u64 = swap_current_read,
7690 },
7691 {
7692 .name = "swap.high",
7693 .flags = CFTYPE_NOT_ON_ROOT,
7694 .seq_show = swap_high_show,
7695 .write = swap_high_write,
7696 },
7697 {
7698 .name = "swap.max",
7699 .flags = CFTYPE_NOT_ON_ROOT,
7700 .seq_show = swap_max_show,
7701 .write = swap_max_write,
7702 },
7703 {
7704 .name = "swap.peak",
7705 .flags = CFTYPE_NOT_ON_ROOT,
7706 .read_u64 = swap_peak_read,
7707 },
7708 {
7709 .name = "swap.events",
7710 .flags = CFTYPE_NOT_ON_ROOT,
7711 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7712 .seq_show = swap_events_show,
7713 },
7714 { } /* terminate */
7715};
7716
7717static struct cftype memsw_files[] = {
7718 {
7719 .name = "memsw.usage_in_bytes",
7720 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7721 .read_u64 = mem_cgroup_read_u64,
7722 },
7723 {
7724 .name = "memsw.max_usage_in_bytes",
7725 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7726 .write = mem_cgroup_reset,
7727 .read_u64 = mem_cgroup_read_u64,
7728 },
7729 {
7730 .name = "memsw.limit_in_bytes",
7731 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7732 .write = mem_cgroup_write,
7733 .read_u64 = mem_cgroup_read_u64,
7734 },
7735 {
7736 .name = "memsw.failcnt",
7737 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7738 .write = mem_cgroup_reset,
7739 .read_u64 = mem_cgroup_read_u64,
7740 },
7741 { }, /* terminate */
7742};
7743
7744#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7745/**
7746 * obj_cgroup_may_zswap - check if this cgroup can zswap
7747 * @objcg: the object cgroup
7748 *
7749 * Check if the hierarchical zswap limit has been reached.
7750 *
7751 * This doesn't check for specific headroom, and it is not atomic
7752 * either. But with zswap, the size of the allocation is only known
7753 * once compression has occured, and this optimistic pre-check avoids
7754 * spending cycles on compression when there is already no room left
7755 * or zswap is disabled altogether somewhere in the hierarchy.
7756 */
7757bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7758{
7759 struct mem_cgroup *memcg, *original_memcg;
7760 bool ret = true;
7761
7762 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7763 return true;
7764
7765 original_memcg = get_mem_cgroup_from_objcg(objcg);
7766 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7767 memcg = parent_mem_cgroup(memcg)) {
7768 unsigned long max = READ_ONCE(memcg->zswap_max);
7769 unsigned long pages;
7770
7771 if (max == PAGE_COUNTER_MAX)
7772 continue;
7773 if (max == 0) {
7774 ret = false;
7775 break;
7776 }
7777
7778 cgroup_rstat_flush(memcg->css.cgroup);
7779 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7780 if (pages < max)
7781 continue;
7782 ret = false;
7783 break;
7784 }
7785 mem_cgroup_put(original_memcg);
7786 return ret;
7787}
7788
7789/**
7790 * obj_cgroup_charge_zswap - charge compression backend memory
7791 * @objcg: the object cgroup
7792 * @size: size of compressed object
7793 *
7794 * This forces the charge after obj_cgroup_may_zswap() allowed
7795 * compression and storage in zwap for this cgroup to go ahead.
7796 */
7797void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7798{
7799 struct mem_cgroup *memcg;
7800
7801 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7802 return;
7803
7804 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7805
7806 /* PF_MEMALLOC context, charging must succeed */
7807 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7808 VM_WARN_ON_ONCE(1);
7809
7810 rcu_read_lock();
7811 memcg = obj_cgroup_memcg(objcg);
7812 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7813 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7814 rcu_read_unlock();
7815}
7816
7817/**
7818 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7819 * @objcg: the object cgroup
7820 * @size: size of compressed object
7821 *
7822 * Uncharges zswap memory on page in.
7823 */
7824void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7825{
7826 struct mem_cgroup *memcg;
7827
7828 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7829 return;
7830
7831 obj_cgroup_uncharge(objcg, size);
7832
7833 rcu_read_lock();
7834 memcg = obj_cgroup_memcg(objcg);
7835 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7836 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7837 rcu_read_unlock();
7838}
7839
7840static u64 zswap_current_read(struct cgroup_subsys_state *css,
7841 struct cftype *cft)
7842{
7843 cgroup_rstat_flush(css->cgroup);
7844 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7845}
7846
7847static int zswap_max_show(struct seq_file *m, void *v)
7848{
7849 return seq_puts_memcg_tunable(m,
7850 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7851}
7852
7853static ssize_t zswap_max_write(struct kernfs_open_file *of,
7854 char *buf, size_t nbytes, loff_t off)
7855{
7856 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7857 unsigned long max;
7858 int err;
7859
7860 buf = strstrip(buf);
7861 err = page_counter_memparse(buf, "max", &max);
7862 if (err)
7863 return err;
7864
7865 xchg(&memcg->zswap_max, max);
7866
7867 return nbytes;
7868}
7869
7870static struct cftype zswap_files[] = {
7871 {
7872 .name = "zswap.current",
7873 .flags = CFTYPE_NOT_ON_ROOT,
7874 .read_u64 = zswap_current_read,
7875 },
7876 {
7877 .name = "zswap.max",
7878 .flags = CFTYPE_NOT_ON_ROOT,
7879 .seq_show = zswap_max_show,
7880 .write = zswap_max_write,
7881 },
7882 { } /* terminate */
7883};
7884#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7885
7886static int __init mem_cgroup_swap_init(void)
7887{
7888 if (mem_cgroup_disabled())
7889 return 0;
7890
7891 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7892 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7893#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7894 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7895#endif
7896 return 0;
7897}
7898subsys_initcall(mem_cgroup_swap_init);
7899
7900#endif /* CONFIG_SWAP */