at v6.6-rc3 46 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT) 10 11#ifndef __ASSEMBLY__ 12#ifdef CONFIG_MMU 13 14#include <linux/mm_types.h> 15#include <linux/bug.h> 16#include <linux/errno.h> 17#include <asm-generic/pgtable_uffd.h> 18#include <linux/page_table_check.h> 19 20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 23#endif 24 25/* 26 * On almost all architectures and configurations, 0 can be used as the 27 * upper ceiling to free_pgtables(): on many architectures it has the same 28 * effect as using TASK_SIZE. However, there is one configuration which 29 * must impose a more careful limit, to avoid freeing kernel pgtables. 30 */ 31#ifndef USER_PGTABLES_CEILING 32#define USER_PGTABLES_CEILING 0UL 33#endif 34 35/* 36 * This defines the first usable user address. Platforms 37 * can override its value with custom FIRST_USER_ADDRESS 38 * defined in their respective <asm/pgtable.h>. 39 */ 40#ifndef FIRST_USER_ADDRESS 41#define FIRST_USER_ADDRESS 0UL 42#endif 43 44/* 45 * This defines the generic helper for accessing PMD page 46 * table page. Although platforms can still override this 47 * via their respective <asm/pgtable.h>. 48 */ 49#ifndef pmd_pgtable 50#define pmd_pgtable(pmd) pmd_page(pmd) 51#endif 52 53/* 54 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 55 * 56 * The pXx_index() functions return the index of the entry in the page 57 * table page which would control the given virtual address 58 * 59 * As these functions may be used by the same code for different levels of 60 * the page table folding, they are always available, regardless of 61 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 62 * because in such cases PTRS_PER_PxD equals 1. 63 */ 64 65static inline unsigned long pte_index(unsigned long address) 66{ 67 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 68} 69 70#ifndef pmd_index 71static inline unsigned long pmd_index(unsigned long address) 72{ 73 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 74} 75#define pmd_index pmd_index 76#endif 77 78#ifndef pud_index 79static inline unsigned long pud_index(unsigned long address) 80{ 81 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 82} 83#define pud_index pud_index 84#endif 85 86#ifndef pgd_index 87/* Must be a compile-time constant, so implement it as a macro */ 88#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 89#endif 90 91#ifndef pte_offset_kernel 92static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 93{ 94 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 95} 96#define pte_offset_kernel pte_offset_kernel 97#endif 98 99#ifdef CONFIG_HIGHPTE 100#define __pte_map(pmd, address) \ 101 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address))) 102#define pte_unmap(pte) do { \ 103 kunmap_local((pte)); \ 104 rcu_read_unlock(); \ 105} while (0) 106#else 107static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address) 108{ 109 return pte_offset_kernel(pmd, address); 110} 111static inline void pte_unmap(pte_t *pte) 112{ 113 rcu_read_unlock(); 114} 115#endif 116 117void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable); 118 119/* Find an entry in the second-level page table.. */ 120#ifndef pmd_offset 121static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 122{ 123 return pud_pgtable(*pud) + pmd_index(address); 124} 125#define pmd_offset pmd_offset 126#endif 127 128#ifndef pud_offset 129static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 130{ 131 return p4d_pgtable(*p4d) + pud_index(address); 132} 133#define pud_offset pud_offset 134#endif 135 136static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 137{ 138 return (pgd + pgd_index(address)); 139}; 140 141/* 142 * a shortcut to get a pgd_t in a given mm 143 */ 144#ifndef pgd_offset 145#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 146#endif 147 148/* 149 * a shortcut which implies the use of the kernel's pgd, instead 150 * of a process's 151 */ 152#ifndef pgd_offset_k 153#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 154#endif 155 156/* 157 * In many cases it is known that a virtual address is mapped at PMD or PTE 158 * level, so instead of traversing all the page table levels, we can get a 159 * pointer to the PMD entry in user or kernel page table or translate a virtual 160 * address to the pointer in the PTE in the kernel page tables with simple 161 * helpers. 162 */ 163static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 164{ 165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 166} 167 168static inline pmd_t *pmd_off_k(unsigned long va) 169{ 170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 171} 172 173static inline pte_t *virt_to_kpte(unsigned long vaddr) 174{ 175 pmd_t *pmd = pmd_off_k(vaddr); 176 177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 178} 179 180#ifndef pmd_young 181static inline int pmd_young(pmd_t pmd) 182{ 183 return 0; 184} 185#endif 186 187/* 188 * A facility to provide lazy MMU batching. This allows PTE updates and 189 * page invalidations to be delayed until a call to leave lazy MMU mode 190 * is issued. Some architectures may benefit from doing this, and it is 191 * beneficial for both shadow and direct mode hypervisors, which may batch 192 * the PTE updates which happen during this window. Note that using this 193 * interface requires that read hazards be removed from the code. A read 194 * hazard could result in the direct mode hypervisor case, since the actual 195 * write to the page tables may not yet have taken place, so reads though 196 * a raw PTE pointer after it has been modified are not guaranteed to be 197 * up to date. This mode can only be entered and left under the protection of 198 * the page table locks for all page tables which may be modified. In the UP 199 * case, this is required so that preemption is disabled, and in the SMP case, 200 * it must synchronize the delayed page table writes properly on other CPUs. 201 */ 202#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 203#define arch_enter_lazy_mmu_mode() do {} while (0) 204#define arch_leave_lazy_mmu_mode() do {} while (0) 205#define arch_flush_lazy_mmu_mode() do {} while (0) 206#endif 207 208#ifndef set_ptes 209/** 210 * set_ptes - Map consecutive pages to a contiguous range of addresses. 211 * @mm: Address space to map the pages into. 212 * @addr: Address to map the first page at. 213 * @ptep: Page table pointer for the first entry. 214 * @pte: Page table entry for the first page. 215 * @nr: Number of pages to map. 216 * 217 * May be overridden by the architecture, or the architecture can define 218 * set_pte() and PFN_PTE_SHIFT. 219 * 220 * Context: The caller holds the page table lock. The pages all belong 221 * to the same folio. The PTEs are all in the same PMD. 222 */ 223static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 224 pte_t *ptep, pte_t pte, unsigned int nr) 225{ 226 page_table_check_ptes_set(mm, ptep, pte, nr); 227 228 arch_enter_lazy_mmu_mode(); 229 for (;;) { 230 set_pte(ptep, pte); 231 if (--nr == 0) 232 break; 233 ptep++; 234 pte = __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT)); 235 } 236 arch_leave_lazy_mmu_mode(); 237} 238#endif 239#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1) 240 241#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 242extern int ptep_set_access_flags(struct vm_area_struct *vma, 243 unsigned long address, pte_t *ptep, 244 pte_t entry, int dirty); 245#endif 246 247#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 248#ifdef CONFIG_TRANSPARENT_HUGEPAGE 249extern int pmdp_set_access_flags(struct vm_area_struct *vma, 250 unsigned long address, pmd_t *pmdp, 251 pmd_t entry, int dirty); 252extern int pudp_set_access_flags(struct vm_area_struct *vma, 253 unsigned long address, pud_t *pudp, 254 pud_t entry, int dirty); 255#else 256static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 257 unsigned long address, pmd_t *pmdp, 258 pmd_t entry, int dirty) 259{ 260 BUILD_BUG(); 261 return 0; 262} 263static inline int pudp_set_access_flags(struct vm_area_struct *vma, 264 unsigned long address, pud_t *pudp, 265 pud_t entry, int dirty) 266{ 267 BUILD_BUG(); 268 return 0; 269} 270#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 271#endif 272 273#ifndef ptep_get 274static inline pte_t ptep_get(pte_t *ptep) 275{ 276 return READ_ONCE(*ptep); 277} 278#endif 279 280#ifndef pmdp_get 281static inline pmd_t pmdp_get(pmd_t *pmdp) 282{ 283 return READ_ONCE(*pmdp); 284} 285#endif 286 287#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 288static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 289 unsigned long address, 290 pte_t *ptep) 291{ 292 pte_t pte = ptep_get(ptep); 293 int r = 1; 294 if (!pte_young(pte)) 295 r = 0; 296 else 297 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 298 return r; 299} 300#endif 301 302#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 303#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 304static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 305 unsigned long address, 306 pmd_t *pmdp) 307{ 308 pmd_t pmd = *pmdp; 309 int r = 1; 310 if (!pmd_young(pmd)) 311 r = 0; 312 else 313 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 314 return r; 315} 316#else 317static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 318 unsigned long address, 319 pmd_t *pmdp) 320{ 321 BUILD_BUG(); 322 return 0; 323} 324#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 325#endif 326 327#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 328int ptep_clear_flush_young(struct vm_area_struct *vma, 329 unsigned long address, pte_t *ptep); 330#endif 331 332#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 333#ifdef CONFIG_TRANSPARENT_HUGEPAGE 334extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 335 unsigned long address, pmd_t *pmdp); 336#else 337/* 338 * Despite relevant to THP only, this API is called from generic rmap code 339 * under PageTransHuge(), hence needs a dummy implementation for !THP 340 */ 341static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 342 unsigned long address, pmd_t *pmdp) 343{ 344 BUILD_BUG(); 345 return 0; 346} 347#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 348#endif 349 350#ifndef arch_has_hw_nonleaf_pmd_young 351/* 352 * Return whether the accessed bit in non-leaf PMD entries is supported on the 353 * local CPU. 354 */ 355static inline bool arch_has_hw_nonleaf_pmd_young(void) 356{ 357 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); 358} 359#endif 360 361#ifndef arch_has_hw_pte_young 362/* 363 * Return whether the accessed bit is supported on the local CPU. 364 * 365 * This stub assumes accessing through an old PTE triggers a page fault. 366 * Architectures that automatically set the access bit should overwrite it. 367 */ 368static inline bool arch_has_hw_pte_young(void) 369{ 370 return false; 371} 372#endif 373 374#ifndef arch_check_zapped_pte 375static inline void arch_check_zapped_pte(struct vm_area_struct *vma, 376 pte_t pte) 377{ 378} 379#endif 380 381#ifndef arch_check_zapped_pmd 382static inline void arch_check_zapped_pmd(struct vm_area_struct *vma, 383 pmd_t pmd) 384{ 385} 386#endif 387 388#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 389static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 390 unsigned long address, 391 pte_t *ptep) 392{ 393 pte_t pte = ptep_get(ptep); 394 pte_clear(mm, address, ptep); 395 page_table_check_pte_clear(mm, pte); 396 return pte; 397} 398#endif 399 400static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, 401 pte_t *ptep) 402{ 403 ptep_get_and_clear(mm, addr, ptep); 404} 405 406#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH 407/* 408 * For walking the pagetables without holding any locks. Some architectures 409 * (eg x86-32 PAE) cannot load the entries atomically without using expensive 410 * instructions. We are guaranteed that a PTE will only either go from not 411 * present to present, or present to not present -- it will not switch to a 412 * completely different present page without a TLB flush inbetween; which we 413 * are blocking by holding interrupts off. 414 * 415 * Setting ptes from not present to present goes: 416 * 417 * ptep->pte_high = h; 418 * smp_wmb(); 419 * ptep->pte_low = l; 420 * 421 * And present to not present goes: 422 * 423 * ptep->pte_low = 0; 424 * smp_wmb(); 425 * ptep->pte_high = 0; 426 * 427 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 428 * We load pte_high *after* loading pte_low, which ensures we don't see an older 429 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 430 * picked up a changed pte high. We might have gotten rubbish values from 431 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 432 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 433 * operates on present ptes we're safe. 434 */ 435static inline pte_t ptep_get_lockless(pte_t *ptep) 436{ 437 pte_t pte; 438 439 do { 440 pte.pte_low = ptep->pte_low; 441 smp_rmb(); 442 pte.pte_high = ptep->pte_high; 443 smp_rmb(); 444 } while (unlikely(pte.pte_low != ptep->pte_low)); 445 446 return pte; 447} 448#define ptep_get_lockless ptep_get_lockless 449 450#if CONFIG_PGTABLE_LEVELS > 2 451static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 452{ 453 pmd_t pmd; 454 455 do { 456 pmd.pmd_low = pmdp->pmd_low; 457 smp_rmb(); 458 pmd.pmd_high = pmdp->pmd_high; 459 smp_rmb(); 460 } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); 461 462 return pmd; 463} 464#define pmdp_get_lockless pmdp_get_lockless 465#define pmdp_get_lockless_sync() tlb_remove_table_sync_one() 466#endif /* CONFIG_PGTABLE_LEVELS > 2 */ 467#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ 468 469/* 470 * We require that the PTE can be read atomically. 471 */ 472#ifndef ptep_get_lockless 473static inline pte_t ptep_get_lockless(pte_t *ptep) 474{ 475 return ptep_get(ptep); 476} 477#endif 478 479#ifndef pmdp_get_lockless 480static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 481{ 482 return pmdp_get(pmdp); 483} 484static inline void pmdp_get_lockless_sync(void) 485{ 486} 487#endif 488 489#ifdef CONFIG_TRANSPARENT_HUGEPAGE 490#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 491static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 492 unsigned long address, 493 pmd_t *pmdp) 494{ 495 pmd_t pmd = *pmdp; 496 497 pmd_clear(pmdp); 498 page_table_check_pmd_clear(mm, pmd); 499 500 return pmd; 501} 502#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 503#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 504static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 505 unsigned long address, 506 pud_t *pudp) 507{ 508 pud_t pud = *pudp; 509 510 pud_clear(pudp); 511 page_table_check_pud_clear(mm, pud); 512 513 return pud; 514} 515#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 516#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 517 518#ifdef CONFIG_TRANSPARENT_HUGEPAGE 519#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 520static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 521 unsigned long address, pmd_t *pmdp, 522 int full) 523{ 524 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 525} 526#endif 527 528#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 529static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 530 unsigned long address, pud_t *pudp, 531 int full) 532{ 533 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp); 534} 535#endif 536#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 537 538#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 539static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 540 unsigned long address, pte_t *ptep, 541 int full) 542{ 543 return ptep_get_and_clear(mm, address, ptep); 544} 545#endif 546 547 548/* 549 * If two threads concurrently fault at the same page, the thread that 550 * won the race updates the PTE and its local TLB/Cache. The other thread 551 * gives up, simply does nothing, and continues; on architectures where 552 * software can update TLB, local TLB can be updated here to avoid next page 553 * fault. This function updates TLB only, do nothing with cache or others. 554 * It is the difference with function update_mmu_cache. 555 */ 556#ifndef __HAVE_ARCH_UPDATE_MMU_TLB 557static inline void update_mmu_tlb(struct vm_area_struct *vma, 558 unsigned long address, pte_t *ptep) 559{ 560} 561#define __HAVE_ARCH_UPDATE_MMU_TLB 562#endif 563 564/* 565 * Some architectures may be able to avoid expensive synchronization 566 * primitives when modifications are made to PTE's which are already 567 * not present, or in the process of an address space destruction. 568 */ 569#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 570static inline void pte_clear_not_present_full(struct mm_struct *mm, 571 unsigned long address, 572 pte_t *ptep, 573 int full) 574{ 575 pte_clear(mm, address, ptep); 576} 577#endif 578 579#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 580extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 581 unsigned long address, 582 pte_t *ptep); 583#endif 584 585#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 586extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 587 unsigned long address, 588 pmd_t *pmdp); 589extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 590 unsigned long address, 591 pud_t *pudp); 592#endif 593 594#ifndef pte_mkwrite 595static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) 596{ 597 return pte_mkwrite_novma(pte); 598} 599#endif 600 601#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite) 602static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 603{ 604 return pmd_mkwrite_novma(pmd); 605} 606#endif 607 608#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 609struct mm_struct; 610static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 611{ 612 pte_t old_pte = ptep_get(ptep); 613 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 614} 615#endif 616 617/* 618 * On some architectures hardware does not set page access bit when accessing 619 * memory page, it is responsibility of software setting this bit. It brings 620 * out extra page fault penalty to track page access bit. For optimization page 621 * access bit can be set during all page fault flow on these arches. 622 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 623 * where software maintains page access bit. 624 */ 625#ifndef pte_sw_mkyoung 626static inline pte_t pte_sw_mkyoung(pte_t pte) 627{ 628 return pte; 629} 630#define pte_sw_mkyoung pte_sw_mkyoung 631#endif 632 633#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 634#ifdef CONFIG_TRANSPARENT_HUGEPAGE 635static inline void pmdp_set_wrprotect(struct mm_struct *mm, 636 unsigned long address, pmd_t *pmdp) 637{ 638 pmd_t old_pmd = *pmdp; 639 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 640} 641#else 642static inline void pmdp_set_wrprotect(struct mm_struct *mm, 643 unsigned long address, pmd_t *pmdp) 644{ 645 BUILD_BUG(); 646} 647#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 648#endif 649#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 650#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 651#ifdef CONFIG_TRANSPARENT_HUGEPAGE 652static inline void pudp_set_wrprotect(struct mm_struct *mm, 653 unsigned long address, pud_t *pudp) 654{ 655 pud_t old_pud = *pudp; 656 657 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 658} 659#else 660static inline void pudp_set_wrprotect(struct mm_struct *mm, 661 unsigned long address, pud_t *pudp) 662{ 663 BUILD_BUG(); 664} 665#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 666#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 667#endif 668 669#ifndef pmdp_collapse_flush 670#ifdef CONFIG_TRANSPARENT_HUGEPAGE 671extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 672 unsigned long address, pmd_t *pmdp); 673#else 674static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 675 unsigned long address, 676 pmd_t *pmdp) 677{ 678 BUILD_BUG(); 679 return *pmdp; 680} 681#define pmdp_collapse_flush pmdp_collapse_flush 682#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 683#endif 684 685#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 686extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 687 pgtable_t pgtable); 688#endif 689 690#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 691extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 692#endif 693 694#ifndef arch_needs_pgtable_deposit 695#define arch_needs_pgtable_deposit() (false) 696#endif 697 698#ifdef CONFIG_TRANSPARENT_HUGEPAGE 699/* 700 * This is an implementation of pmdp_establish() that is only suitable for an 701 * architecture that doesn't have hardware dirty/accessed bits. In this case we 702 * can't race with CPU which sets these bits and non-atomic approach is fine. 703 */ 704static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 705 unsigned long address, pmd_t *pmdp, pmd_t pmd) 706{ 707 pmd_t old_pmd = *pmdp; 708 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 709 return old_pmd; 710} 711#endif 712 713#ifndef __HAVE_ARCH_PMDP_INVALIDATE 714extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 715 pmd_t *pmdp); 716#endif 717 718#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD 719 720/* 721 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent 722 * hugepage mapping in the page tables. This function is similar to 723 * pmdp_invalidate(), but should only be used if the access and dirty bits would 724 * not be cleared by the software in the new PMD value. The function ensures 725 * that hardware changes of the access and dirty bits updates would not be lost. 726 * 727 * Doing so can allow in certain architectures to avoid a TLB flush in most 728 * cases. Yet, another TLB flush might be necessary later if the PMD update 729 * itself requires such flush (e.g., if protection was set to be stricter). Yet, 730 * even when a TLB flush is needed because of the update, the caller may be able 731 * to batch these TLB flushing operations, so fewer TLB flush operations are 732 * needed. 733 */ 734extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, 735 unsigned long address, pmd_t *pmdp); 736#endif 737 738#ifndef __HAVE_ARCH_PTE_SAME 739static inline int pte_same(pte_t pte_a, pte_t pte_b) 740{ 741 return pte_val(pte_a) == pte_val(pte_b); 742} 743#endif 744 745#ifndef __HAVE_ARCH_PTE_UNUSED 746/* 747 * Some architectures provide facilities to virtualization guests 748 * so that they can flag allocated pages as unused. This allows the 749 * host to transparently reclaim unused pages. This function returns 750 * whether the pte's page is unused. 751 */ 752static inline int pte_unused(pte_t pte) 753{ 754 return 0; 755} 756#endif 757 758#ifndef pte_access_permitted 759#define pte_access_permitted(pte, write) \ 760 (pte_present(pte) && (!(write) || pte_write(pte))) 761#endif 762 763#ifndef pmd_access_permitted 764#define pmd_access_permitted(pmd, write) \ 765 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 766#endif 767 768#ifndef pud_access_permitted 769#define pud_access_permitted(pud, write) \ 770 (pud_present(pud) && (!(write) || pud_write(pud))) 771#endif 772 773#ifndef p4d_access_permitted 774#define p4d_access_permitted(p4d, write) \ 775 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 776#endif 777 778#ifndef pgd_access_permitted 779#define pgd_access_permitted(pgd, write) \ 780 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 781#endif 782 783#ifndef __HAVE_ARCH_PMD_SAME 784static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 785{ 786 return pmd_val(pmd_a) == pmd_val(pmd_b); 787} 788#endif 789 790#ifndef pud_same 791static inline int pud_same(pud_t pud_a, pud_t pud_b) 792{ 793 return pud_val(pud_a) == pud_val(pud_b); 794} 795#define pud_same pud_same 796#endif 797 798#ifndef __HAVE_ARCH_P4D_SAME 799static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 800{ 801 return p4d_val(p4d_a) == p4d_val(p4d_b); 802} 803#endif 804 805#ifndef __HAVE_ARCH_PGD_SAME 806static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 807{ 808 return pgd_val(pgd_a) == pgd_val(pgd_b); 809} 810#endif 811 812/* 813 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 814 * TLB flush will be required as a result of the "set". For example, use 815 * in scenarios where it is known ahead of time that the routine is 816 * setting non-present entries, or re-setting an existing entry to the 817 * same value. Otherwise, use the typical "set" helpers and flush the 818 * TLB. 819 */ 820#define set_pte_safe(ptep, pte) \ 821({ \ 822 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 823 set_pte(ptep, pte); \ 824}) 825 826#define set_pmd_safe(pmdp, pmd) \ 827({ \ 828 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 829 set_pmd(pmdp, pmd); \ 830}) 831 832#define set_pud_safe(pudp, pud) \ 833({ \ 834 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 835 set_pud(pudp, pud); \ 836}) 837 838#define set_p4d_safe(p4dp, p4d) \ 839({ \ 840 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 841 set_p4d(p4dp, p4d); \ 842}) 843 844#define set_pgd_safe(pgdp, pgd) \ 845({ \ 846 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 847 set_pgd(pgdp, pgd); \ 848}) 849 850#ifndef __HAVE_ARCH_DO_SWAP_PAGE 851/* 852 * Some architectures support metadata associated with a page. When a 853 * page is being swapped out, this metadata must be saved so it can be 854 * restored when the page is swapped back in. SPARC M7 and newer 855 * processors support an ADI (Application Data Integrity) tag for the 856 * page as metadata for the page. arch_do_swap_page() can restore this 857 * metadata when a page is swapped back in. 858 */ 859static inline void arch_do_swap_page(struct mm_struct *mm, 860 struct vm_area_struct *vma, 861 unsigned long addr, 862 pte_t pte, pte_t oldpte) 863{ 864 865} 866#endif 867 868#ifndef __HAVE_ARCH_UNMAP_ONE 869/* 870 * Some architectures support metadata associated with a page. When a 871 * page is being swapped out, this metadata must be saved so it can be 872 * restored when the page is swapped back in. SPARC M7 and newer 873 * processors support an ADI (Application Data Integrity) tag for the 874 * page as metadata for the page. arch_unmap_one() can save this 875 * metadata on a swap-out of a page. 876 */ 877static inline int arch_unmap_one(struct mm_struct *mm, 878 struct vm_area_struct *vma, 879 unsigned long addr, 880 pte_t orig_pte) 881{ 882 return 0; 883} 884#endif 885 886/* 887 * Allow architectures to preserve additional metadata associated with 888 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 889 * prototypes must be defined in the arch-specific asm/pgtable.h file. 890 */ 891#ifndef __HAVE_ARCH_PREPARE_TO_SWAP 892static inline int arch_prepare_to_swap(struct page *page) 893{ 894 return 0; 895} 896#endif 897 898#ifndef __HAVE_ARCH_SWAP_INVALIDATE 899static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 900{ 901} 902 903static inline void arch_swap_invalidate_area(int type) 904{ 905} 906#endif 907 908#ifndef __HAVE_ARCH_SWAP_RESTORE 909static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) 910{ 911} 912#endif 913 914#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 915#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 916#endif 917 918#ifndef __HAVE_ARCH_MOVE_PTE 919#define move_pte(pte, prot, old_addr, new_addr) (pte) 920#endif 921 922#ifndef pte_accessible 923# define pte_accessible(mm, pte) ((void)(pte), 1) 924#endif 925 926#ifndef flush_tlb_fix_spurious_fault 927#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address) 928#endif 929 930/* 931 * When walking page tables, get the address of the next boundary, 932 * or the end address of the range if that comes earlier. Although no 933 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 934 */ 935 936#define pgd_addr_end(addr, end) \ 937({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 938 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 939}) 940 941#ifndef p4d_addr_end 942#define p4d_addr_end(addr, end) \ 943({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 944 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 945}) 946#endif 947 948#ifndef pud_addr_end 949#define pud_addr_end(addr, end) \ 950({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 951 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 952}) 953#endif 954 955#ifndef pmd_addr_end 956#define pmd_addr_end(addr, end) \ 957({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 958 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 959}) 960#endif 961 962/* 963 * When walking page tables, we usually want to skip any p?d_none entries; 964 * and any p?d_bad entries - reporting the error before resetting to none. 965 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 966 */ 967void pgd_clear_bad(pgd_t *); 968 969#ifndef __PAGETABLE_P4D_FOLDED 970void p4d_clear_bad(p4d_t *); 971#else 972#define p4d_clear_bad(p4d) do { } while (0) 973#endif 974 975#ifndef __PAGETABLE_PUD_FOLDED 976void pud_clear_bad(pud_t *); 977#else 978#define pud_clear_bad(p4d) do { } while (0) 979#endif 980 981void pmd_clear_bad(pmd_t *); 982 983static inline int pgd_none_or_clear_bad(pgd_t *pgd) 984{ 985 if (pgd_none(*pgd)) 986 return 1; 987 if (unlikely(pgd_bad(*pgd))) { 988 pgd_clear_bad(pgd); 989 return 1; 990 } 991 return 0; 992} 993 994static inline int p4d_none_or_clear_bad(p4d_t *p4d) 995{ 996 if (p4d_none(*p4d)) 997 return 1; 998 if (unlikely(p4d_bad(*p4d))) { 999 p4d_clear_bad(p4d); 1000 return 1; 1001 } 1002 return 0; 1003} 1004 1005static inline int pud_none_or_clear_bad(pud_t *pud) 1006{ 1007 if (pud_none(*pud)) 1008 return 1; 1009 if (unlikely(pud_bad(*pud))) { 1010 pud_clear_bad(pud); 1011 return 1; 1012 } 1013 return 0; 1014} 1015 1016static inline int pmd_none_or_clear_bad(pmd_t *pmd) 1017{ 1018 if (pmd_none(*pmd)) 1019 return 1; 1020 if (unlikely(pmd_bad(*pmd))) { 1021 pmd_clear_bad(pmd); 1022 return 1; 1023 } 1024 return 0; 1025} 1026 1027static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 1028 unsigned long addr, 1029 pte_t *ptep) 1030{ 1031 /* 1032 * Get the current pte state, but zero it out to make it 1033 * non-present, preventing the hardware from asynchronously 1034 * updating it. 1035 */ 1036 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 1037} 1038 1039static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 1040 unsigned long addr, 1041 pte_t *ptep, pte_t pte) 1042{ 1043 /* 1044 * The pte is non-present, so there's no hardware state to 1045 * preserve. 1046 */ 1047 set_pte_at(vma->vm_mm, addr, ptep, pte); 1048} 1049 1050#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1051/* 1052 * Start a pte protection read-modify-write transaction, which 1053 * protects against asynchronous hardware modifications to the pte. 1054 * The intention is not to prevent the hardware from making pte 1055 * updates, but to prevent any updates it may make from being lost. 1056 * 1057 * This does not protect against other software modifications of the 1058 * pte; the appropriate pte lock must be held over the transaction. 1059 * 1060 * Note that this interface is intended to be batchable, meaning that 1061 * ptep_modify_prot_commit may not actually update the pte, but merely 1062 * queue the update to be done at some later time. The update must be 1063 * actually committed before the pte lock is released, however. 1064 */ 1065static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1066 unsigned long addr, 1067 pte_t *ptep) 1068{ 1069 return __ptep_modify_prot_start(vma, addr, ptep); 1070} 1071 1072/* 1073 * Commit an update to a pte, leaving any hardware-controlled bits in 1074 * the PTE unmodified. 1075 */ 1076static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 1077 unsigned long addr, 1078 pte_t *ptep, pte_t old_pte, pte_t pte) 1079{ 1080 __ptep_modify_prot_commit(vma, addr, ptep, pte); 1081} 1082#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 1083#endif /* CONFIG_MMU */ 1084 1085/* 1086 * No-op macros that just return the current protection value. Defined here 1087 * because these macros can be used even if CONFIG_MMU is not defined. 1088 */ 1089 1090#ifndef pgprot_nx 1091#define pgprot_nx(prot) (prot) 1092#endif 1093 1094#ifndef pgprot_noncached 1095#define pgprot_noncached(prot) (prot) 1096#endif 1097 1098#ifndef pgprot_writecombine 1099#define pgprot_writecombine pgprot_noncached 1100#endif 1101 1102#ifndef pgprot_writethrough 1103#define pgprot_writethrough pgprot_noncached 1104#endif 1105 1106#ifndef pgprot_device 1107#define pgprot_device pgprot_noncached 1108#endif 1109 1110#ifndef pgprot_mhp 1111#define pgprot_mhp(prot) (prot) 1112#endif 1113 1114#ifdef CONFIG_MMU 1115#ifndef pgprot_modify 1116#define pgprot_modify pgprot_modify 1117static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 1118{ 1119 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 1120 newprot = pgprot_noncached(newprot); 1121 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 1122 newprot = pgprot_writecombine(newprot); 1123 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 1124 newprot = pgprot_device(newprot); 1125 return newprot; 1126} 1127#endif 1128#endif /* CONFIG_MMU */ 1129 1130#ifndef pgprot_encrypted 1131#define pgprot_encrypted(prot) (prot) 1132#endif 1133 1134#ifndef pgprot_decrypted 1135#define pgprot_decrypted(prot) (prot) 1136#endif 1137 1138/* 1139 * A facility to provide batching of the reload of page tables and 1140 * other process state with the actual context switch code for 1141 * paravirtualized guests. By convention, only one of the batched 1142 * update (lazy) modes (CPU, MMU) should be active at any given time, 1143 * entry should never be nested, and entry and exits should always be 1144 * paired. This is for sanity of maintaining and reasoning about the 1145 * kernel code. In this case, the exit (end of the context switch) is 1146 * in architecture-specific code, and so doesn't need a generic 1147 * definition. 1148 */ 1149#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 1150#define arch_start_context_switch(prev) do {} while (0) 1151#endif 1152 1153#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1154#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 1155static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1156{ 1157 return pmd; 1158} 1159 1160static inline int pmd_swp_soft_dirty(pmd_t pmd) 1161{ 1162 return 0; 1163} 1164 1165static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1166{ 1167 return pmd; 1168} 1169#endif 1170#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1171static inline int pte_soft_dirty(pte_t pte) 1172{ 1173 return 0; 1174} 1175 1176static inline int pmd_soft_dirty(pmd_t pmd) 1177{ 1178 return 0; 1179} 1180 1181static inline pte_t pte_mksoft_dirty(pte_t pte) 1182{ 1183 return pte; 1184} 1185 1186static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1187{ 1188 return pmd; 1189} 1190 1191static inline pte_t pte_clear_soft_dirty(pte_t pte) 1192{ 1193 return pte; 1194} 1195 1196static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1197{ 1198 return pmd; 1199} 1200 1201static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1202{ 1203 return pte; 1204} 1205 1206static inline int pte_swp_soft_dirty(pte_t pte) 1207{ 1208 return 0; 1209} 1210 1211static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1212{ 1213 return pte; 1214} 1215 1216static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1217{ 1218 return pmd; 1219} 1220 1221static inline int pmd_swp_soft_dirty(pmd_t pmd) 1222{ 1223 return 0; 1224} 1225 1226static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1227{ 1228 return pmd; 1229} 1230#endif 1231 1232#ifndef __HAVE_PFNMAP_TRACKING 1233/* 1234 * Interfaces that can be used by architecture code to keep track of 1235 * memory type of pfn mappings specified by the remap_pfn_range, 1236 * vmf_insert_pfn. 1237 */ 1238 1239/* 1240 * track_pfn_remap is called when a _new_ pfn mapping is being established 1241 * by remap_pfn_range() for physical range indicated by pfn and size. 1242 */ 1243static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1244 unsigned long pfn, unsigned long addr, 1245 unsigned long size) 1246{ 1247 return 0; 1248} 1249 1250/* 1251 * track_pfn_insert is called when a _new_ single pfn is established 1252 * by vmf_insert_pfn(). 1253 */ 1254static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1255 pfn_t pfn) 1256{ 1257} 1258 1259/* 1260 * track_pfn_copy is called when vma that is covering the pfnmap gets 1261 * copied through copy_page_range(). 1262 */ 1263static inline int track_pfn_copy(struct vm_area_struct *vma) 1264{ 1265 return 0; 1266} 1267 1268/* 1269 * untrack_pfn is called while unmapping a pfnmap for a region. 1270 * untrack can be called for a specific region indicated by pfn and size or 1271 * can be for the entire vma (in which case pfn, size are zero). 1272 */ 1273static inline void untrack_pfn(struct vm_area_struct *vma, 1274 unsigned long pfn, unsigned long size, 1275 bool mm_wr_locked) 1276{ 1277} 1278 1279/* 1280 * untrack_pfn_clear is called while mremapping a pfnmap for a new region 1281 * or fails to copy pgtable during duplicate vm area. 1282 */ 1283static inline void untrack_pfn_clear(struct vm_area_struct *vma) 1284{ 1285} 1286#else 1287extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1288 unsigned long pfn, unsigned long addr, 1289 unsigned long size); 1290extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1291 pfn_t pfn); 1292extern int track_pfn_copy(struct vm_area_struct *vma); 1293extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1294 unsigned long size, bool mm_wr_locked); 1295extern void untrack_pfn_clear(struct vm_area_struct *vma); 1296#endif 1297 1298#ifdef CONFIG_MMU 1299#ifdef __HAVE_COLOR_ZERO_PAGE 1300static inline int is_zero_pfn(unsigned long pfn) 1301{ 1302 extern unsigned long zero_pfn; 1303 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1304 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1305} 1306 1307#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1308 1309#else 1310static inline int is_zero_pfn(unsigned long pfn) 1311{ 1312 extern unsigned long zero_pfn; 1313 return pfn == zero_pfn; 1314} 1315 1316static inline unsigned long my_zero_pfn(unsigned long addr) 1317{ 1318 extern unsigned long zero_pfn; 1319 return zero_pfn; 1320} 1321#endif 1322#else 1323static inline int is_zero_pfn(unsigned long pfn) 1324{ 1325 return 0; 1326} 1327 1328static inline unsigned long my_zero_pfn(unsigned long addr) 1329{ 1330 return 0; 1331} 1332#endif /* CONFIG_MMU */ 1333 1334#ifdef CONFIG_MMU 1335 1336#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1337static inline int pmd_trans_huge(pmd_t pmd) 1338{ 1339 return 0; 1340} 1341#ifndef pmd_write 1342static inline int pmd_write(pmd_t pmd) 1343{ 1344 BUG(); 1345 return 0; 1346} 1347#endif /* pmd_write */ 1348#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1349 1350#ifndef pud_write 1351static inline int pud_write(pud_t pud) 1352{ 1353 BUG(); 1354 return 0; 1355} 1356#endif /* pud_write */ 1357 1358#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1359static inline int pmd_devmap(pmd_t pmd) 1360{ 1361 return 0; 1362} 1363static inline int pud_devmap(pud_t pud) 1364{ 1365 return 0; 1366} 1367static inline int pgd_devmap(pgd_t pgd) 1368{ 1369 return 0; 1370} 1371#endif 1372 1373#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1374 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1375static inline int pud_trans_huge(pud_t pud) 1376{ 1377 return 0; 1378} 1379#endif 1380 1381static inline int pud_trans_unstable(pud_t *pud) 1382{ 1383#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1384 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1385 pud_t pudval = READ_ONCE(*pud); 1386 1387 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1388 return 1; 1389 if (unlikely(pud_bad(pudval))) { 1390 pud_clear_bad(pud); 1391 return 1; 1392 } 1393#endif 1394 return 0; 1395} 1396 1397#ifndef CONFIG_NUMA_BALANCING 1398/* 1399 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is 1400 * perfectly valid to indicate "no" in that case, which is why our default 1401 * implementation defaults to "always no". 1402 * 1403 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE 1404 * page protection due to NUMA hinting. NUMA hinting faults only apply in 1405 * accessible VMAs. 1406 * 1407 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault, 1408 * looking at the VMA accessibility is sufficient. 1409 */ 1410static inline int pte_protnone(pte_t pte) 1411{ 1412 return 0; 1413} 1414 1415static inline int pmd_protnone(pmd_t pmd) 1416{ 1417 return 0; 1418} 1419#endif /* CONFIG_NUMA_BALANCING */ 1420 1421#endif /* CONFIG_MMU */ 1422 1423#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1424 1425#ifndef __PAGETABLE_P4D_FOLDED 1426int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1427void p4d_clear_huge(p4d_t *p4d); 1428#else 1429static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1430{ 1431 return 0; 1432} 1433static inline void p4d_clear_huge(p4d_t *p4d) { } 1434#endif /* !__PAGETABLE_P4D_FOLDED */ 1435 1436int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1437int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1438int pud_clear_huge(pud_t *pud); 1439int pmd_clear_huge(pmd_t *pmd); 1440int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1441int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1442int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1443#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1444static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1445{ 1446 return 0; 1447} 1448static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1449{ 1450 return 0; 1451} 1452static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1453{ 1454 return 0; 1455} 1456static inline void p4d_clear_huge(p4d_t *p4d) { } 1457static inline int pud_clear_huge(pud_t *pud) 1458{ 1459 return 0; 1460} 1461static inline int pmd_clear_huge(pmd_t *pmd) 1462{ 1463 return 0; 1464} 1465static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1466{ 1467 return 0; 1468} 1469static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1470{ 1471 return 0; 1472} 1473static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1474{ 1475 return 0; 1476} 1477#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1478 1479#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1480#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1481/* 1482 * ARCHes with special requirements for evicting THP backing TLB entries can 1483 * implement this. Otherwise also, it can help optimize normal TLB flush in 1484 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1485 * entire TLB if flush span is greater than a threshold, which will 1486 * likely be true for a single huge page. Thus a single THP flush will 1487 * invalidate the entire TLB which is not desirable. 1488 * e.g. see arch/arc: flush_pmd_tlb_range 1489 */ 1490#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1491#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1492#else 1493#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1494#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1495#endif 1496#endif 1497 1498struct file; 1499int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1500 unsigned long size, pgprot_t *vma_prot); 1501 1502#ifndef CONFIG_X86_ESPFIX64 1503static inline void init_espfix_bsp(void) { } 1504#endif 1505 1506extern void __init pgtable_cache_init(void); 1507 1508#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1509static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1510{ 1511 return true; 1512} 1513 1514static inline bool arch_has_pfn_modify_check(void) 1515{ 1516 return false; 1517} 1518#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1519 1520/* 1521 * Architecture PAGE_KERNEL_* fallbacks 1522 * 1523 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1524 * because they really don't support them, or the port needs to be updated to 1525 * reflect the required functionality. Below are a set of relatively safe 1526 * fallbacks, as best effort, which we can count on in lieu of the architectures 1527 * not defining them on their own yet. 1528 */ 1529 1530#ifndef PAGE_KERNEL_RO 1531# define PAGE_KERNEL_RO PAGE_KERNEL 1532#endif 1533 1534#ifndef PAGE_KERNEL_EXEC 1535# define PAGE_KERNEL_EXEC PAGE_KERNEL 1536#endif 1537 1538/* 1539 * Page Table Modification bits for pgtbl_mod_mask. 1540 * 1541 * These are used by the p?d_alloc_track*() set of functions an in the generic 1542 * vmalloc/ioremap code to track at which page-table levels entries have been 1543 * modified. Based on that the code can better decide when vmalloc and ioremap 1544 * mapping changes need to be synchronized to other page-tables in the system. 1545 */ 1546#define __PGTBL_PGD_MODIFIED 0 1547#define __PGTBL_P4D_MODIFIED 1 1548#define __PGTBL_PUD_MODIFIED 2 1549#define __PGTBL_PMD_MODIFIED 3 1550#define __PGTBL_PTE_MODIFIED 4 1551 1552#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1553#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1554#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1555#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1556#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1557 1558/* Page-Table Modification Mask */ 1559typedef unsigned int pgtbl_mod_mask; 1560 1561#endif /* !__ASSEMBLY__ */ 1562 1563#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1564#ifdef CONFIG_PHYS_ADDR_T_64BIT 1565/* 1566 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1567 * with physical address space extension, but falls back to 1568 * BITS_PER_LONG otherwise. 1569 */ 1570#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1571#else 1572#define MAX_POSSIBLE_PHYSMEM_BITS 32 1573#endif 1574#endif 1575 1576#ifndef has_transparent_hugepage 1577#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) 1578#endif 1579 1580#ifndef has_transparent_pud_hugepage 1581#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1582#endif 1583/* 1584 * On some architectures it depends on the mm if the p4d/pud or pmd 1585 * layer of the page table hierarchy is folded or not. 1586 */ 1587#ifndef mm_p4d_folded 1588#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1589#endif 1590 1591#ifndef mm_pud_folded 1592#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1593#endif 1594 1595#ifndef mm_pmd_folded 1596#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1597#endif 1598 1599#ifndef p4d_offset_lockless 1600#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1601#endif 1602#ifndef pud_offset_lockless 1603#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1604#endif 1605#ifndef pmd_offset_lockless 1606#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1607#endif 1608 1609/* 1610 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1611 * This differs from p?d_huge() by the fact that they are always available (if 1612 * the architecture supports large pages at the appropriate level) even 1613 * if CONFIG_HUGETLB_PAGE is not defined. 1614 * Only meaningful when called on a valid entry. 1615 */ 1616#ifndef pgd_leaf 1617#define pgd_leaf(x) 0 1618#endif 1619#ifndef p4d_leaf 1620#define p4d_leaf(x) 0 1621#endif 1622#ifndef pud_leaf 1623#define pud_leaf(x) 0 1624#endif 1625#ifndef pmd_leaf 1626#define pmd_leaf(x) 0 1627#endif 1628 1629#ifndef pgd_leaf_size 1630#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 1631#endif 1632#ifndef p4d_leaf_size 1633#define p4d_leaf_size(x) P4D_SIZE 1634#endif 1635#ifndef pud_leaf_size 1636#define pud_leaf_size(x) PUD_SIZE 1637#endif 1638#ifndef pmd_leaf_size 1639#define pmd_leaf_size(x) PMD_SIZE 1640#endif 1641#ifndef pte_leaf_size 1642#define pte_leaf_size(x) PAGE_SIZE 1643#endif 1644 1645/* 1646 * Some architectures have MMUs that are configurable or selectable at boot 1647 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it 1648 * helps to have a static maximum value. 1649 */ 1650 1651#ifndef MAX_PTRS_PER_PTE 1652#define MAX_PTRS_PER_PTE PTRS_PER_PTE 1653#endif 1654 1655#ifndef MAX_PTRS_PER_PMD 1656#define MAX_PTRS_PER_PMD PTRS_PER_PMD 1657#endif 1658 1659#ifndef MAX_PTRS_PER_PUD 1660#define MAX_PTRS_PER_PUD PTRS_PER_PUD 1661#endif 1662 1663#ifndef MAX_PTRS_PER_P4D 1664#define MAX_PTRS_PER_P4D PTRS_PER_P4D 1665#endif 1666 1667/* description of effects of mapping type and prot in current implementation. 1668 * this is due to the limited x86 page protection hardware. The expected 1669 * behavior is in parens: 1670 * 1671 * map_type prot 1672 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 1673 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1674 * w: (no) no w: (no) no w: (yes) yes w: (no) no 1675 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1676 * 1677 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1678 * w: (no) no w: (no) no w: (copy) copy w: (no) no 1679 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1680 * 1681 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 1682 * MAP_PRIVATE (with Enhanced PAN supported): 1683 * r: (no) no 1684 * w: (no) no 1685 * x: (yes) yes 1686 */ 1687#define DECLARE_VM_GET_PAGE_PROT \ 1688pgprot_t vm_get_page_prot(unsigned long vm_flags) \ 1689{ \ 1690 return protection_map[vm_flags & \ 1691 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ 1692} \ 1693EXPORT_SYMBOL(vm_get_page_prot); 1694 1695#endif /* _LINUX_PGTABLE_H */