Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <net/tcx.h>
111#include <linux/highmem.h>
112#include <linux/init.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <net/mpls.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <trace/events/net.h>
134#include <trace/events/skb.h>
135#include <trace/events/qdisc.h>
136#include <trace/events/xdp.h>
137#include <linux/inetdevice.h>
138#include <linux/cpu_rmap.h>
139#include <linux/static_key.h>
140#include <linux/hashtable.h>
141#include <linux/vmalloc.h>
142#include <linux/if_macvlan.h>
143#include <linux/errqueue.h>
144#include <linux/hrtimer.h>
145#include <linux/netfilter_netdev.h>
146#include <linux/crash_dump.h>
147#include <linux/sctp.h>
148#include <net/udp_tunnel.h>
149#include <linux/net_namespace.h>
150#include <linux/indirect_call_wrapper.h>
151#include <net/devlink.h>
152#include <linux/pm_runtime.h>
153#include <linux/prandom.h>
154#include <linux/once_lite.h>
155#include <net/netdev_rx_queue.h>
156
157#include "dev.h"
158#include "net-sysfs.h"
159
160static DEFINE_SPINLOCK(ptype_lock);
161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162struct list_head ptype_all __read_mostly; /* Taps */
163
164static int netif_rx_internal(struct sk_buff *skb);
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170/*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189DEFINE_RWLOCK(dev_base_lock);
190EXPORT_SYMBOL(dev_base_lock);
191
192static DEFINE_MUTEX(ifalias_mutex);
193
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
197static unsigned int napi_gen_id = NR_CPUS;
198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200static DECLARE_RWSEM(devnet_rename_sem);
201
202static inline void dev_base_seq_inc(struct net *net)
203{
204 while (++net->dev_base_seq == 0)
205 ;
206}
207
208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209{
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213}
214
215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216{
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218}
219
220static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222{
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227}
228
229static inline void rps_lock_irq_disable(struct softnet_data *sd)
230{
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235}
236
237static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239{
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244}
245
246static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247{
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252}
253
254static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256{
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266}
267
268static struct netdev_name_node *
269netdev_name_node_head_alloc(struct net_device *dev)
270{
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278}
279
280static void netdev_name_node_free(struct netdev_name_node *name_node)
281{
282 kfree(name_node);
283}
284
285static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287{
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290}
291
292static void netdev_name_node_del(struct netdev_name_node *name_node)
293{
294 hlist_del_rcu(&name_node->hlist);
295}
296
297static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299{
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307}
308
309static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311{
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319}
320
321bool netdev_name_in_use(struct net *net, const char *name)
322{
323 return netdev_name_node_lookup(net, name);
324}
325EXPORT_SYMBOL(netdev_name_in_use);
326
327int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343}
344
345static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346{
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
351}
352
353int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354{
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
357
358 name_node = netdev_name_node_lookup(net, name);
359 if (!name_node)
360 return -ENOENT;
361 /* lookup might have found our primary name or a name belonging
362 * to another device.
363 */
364 if (name_node == dev->name_node || name_node->dev != dev)
365 return -EINVAL;
366
367 __netdev_name_node_alt_destroy(name_node);
368
369 return 0;
370}
371
372static void netdev_name_node_alt_flush(struct net_device *dev)
373{
374 struct netdev_name_node *name_node, *tmp;
375
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
378}
379
380/* Device list insertion */
381static void list_netdevice(struct net_device *dev)
382{
383 struct net *net = dev_net(dev);
384
385 ASSERT_RTNL();
386
387 write_lock(&dev_base_lock);
388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 netdev_name_node_add(net, dev->name_node);
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
392 write_unlock(&dev_base_lock);
393 /* We reserved the ifindex, this can't fail */
394 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
395
396 dev_base_seq_inc(net);
397}
398
399/* Device list removal
400 * caller must respect a RCU grace period before freeing/reusing dev
401 */
402static void unlist_netdevice(struct net_device *dev, bool lock)
403{
404 struct net *net = dev_net(dev);
405
406 ASSERT_RTNL();
407
408 xa_erase(&net->dev_by_index, dev->ifindex);
409
410 /* Unlink dev from the device chain */
411 if (lock)
412 write_lock(&dev_base_lock);
413 list_del_rcu(&dev->dev_list);
414 netdev_name_node_del(dev->name_node);
415 hlist_del_rcu(&dev->index_hlist);
416 if (lock)
417 write_unlock(&dev_base_lock);
418
419 dev_base_seq_inc(dev_net(dev));
420}
421
422/*
423 * Our notifier list
424 */
425
426static RAW_NOTIFIER_HEAD(netdev_chain);
427
428/*
429 * Device drivers call our routines to queue packets here. We empty the
430 * queue in the local softnet handler.
431 */
432
433DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
434EXPORT_PER_CPU_SYMBOL(softnet_data);
435
436#ifdef CONFIG_LOCKDEP
437/*
438 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
439 * according to dev->type
440 */
441static const unsigned short netdev_lock_type[] = {
442 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
443 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
444 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
445 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
446 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
447 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
448 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
449 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
450 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
451 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
452 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
453 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
454 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
455 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
456 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
457
458static const char *const netdev_lock_name[] = {
459 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
460 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
461 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
462 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
463 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
464 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
465 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
466 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
467 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
468 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
469 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
470 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
471 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
472 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
473 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
474
475static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
476static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
477
478static inline unsigned short netdev_lock_pos(unsigned short dev_type)
479{
480 int i;
481
482 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
483 if (netdev_lock_type[i] == dev_type)
484 return i;
485 /* the last key is used by default */
486 return ARRAY_SIZE(netdev_lock_type) - 1;
487}
488
489static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
490 unsigned short dev_type)
491{
492 int i;
493
494 i = netdev_lock_pos(dev_type);
495 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
496 netdev_lock_name[i]);
497}
498
499static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
500{
501 int i;
502
503 i = netdev_lock_pos(dev->type);
504 lockdep_set_class_and_name(&dev->addr_list_lock,
505 &netdev_addr_lock_key[i],
506 netdev_lock_name[i]);
507}
508#else
509static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
510 unsigned short dev_type)
511{
512}
513
514static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
515{
516}
517#endif
518
519/*******************************************************************************
520 *
521 * Protocol management and registration routines
522 *
523 *******************************************************************************/
524
525
526/*
527 * Add a protocol ID to the list. Now that the input handler is
528 * smarter we can dispense with all the messy stuff that used to be
529 * here.
530 *
531 * BEWARE!!! Protocol handlers, mangling input packets,
532 * MUST BE last in hash buckets and checking protocol handlers
533 * MUST start from promiscuous ptype_all chain in net_bh.
534 * It is true now, do not change it.
535 * Explanation follows: if protocol handler, mangling packet, will
536 * be the first on list, it is not able to sense, that packet
537 * is cloned and should be copied-on-write, so that it will
538 * change it and subsequent readers will get broken packet.
539 * --ANK (980803)
540 */
541
542static inline struct list_head *ptype_head(const struct packet_type *pt)
543{
544 if (pt->type == htons(ETH_P_ALL))
545 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
546 else
547 return pt->dev ? &pt->dev->ptype_specific :
548 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
549}
550
551/**
552 * dev_add_pack - add packet handler
553 * @pt: packet type declaration
554 *
555 * Add a protocol handler to the networking stack. The passed &packet_type
556 * is linked into kernel lists and may not be freed until it has been
557 * removed from the kernel lists.
558 *
559 * This call does not sleep therefore it can not
560 * guarantee all CPU's that are in middle of receiving packets
561 * will see the new packet type (until the next received packet).
562 */
563
564void dev_add_pack(struct packet_type *pt)
565{
566 struct list_head *head = ptype_head(pt);
567
568 spin_lock(&ptype_lock);
569 list_add_rcu(&pt->list, head);
570 spin_unlock(&ptype_lock);
571}
572EXPORT_SYMBOL(dev_add_pack);
573
574/**
575 * __dev_remove_pack - remove packet handler
576 * @pt: packet type declaration
577 *
578 * Remove a protocol handler that was previously added to the kernel
579 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
580 * from the kernel lists and can be freed or reused once this function
581 * returns.
582 *
583 * The packet type might still be in use by receivers
584 * and must not be freed until after all the CPU's have gone
585 * through a quiescent state.
586 */
587void __dev_remove_pack(struct packet_type *pt)
588{
589 struct list_head *head = ptype_head(pt);
590 struct packet_type *pt1;
591
592 spin_lock(&ptype_lock);
593
594 list_for_each_entry(pt1, head, list) {
595 if (pt == pt1) {
596 list_del_rcu(&pt->list);
597 goto out;
598 }
599 }
600
601 pr_warn("dev_remove_pack: %p not found\n", pt);
602out:
603 spin_unlock(&ptype_lock);
604}
605EXPORT_SYMBOL(__dev_remove_pack);
606
607/**
608 * dev_remove_pack - remove packet handler
609 * @pt: packet type declaration
610 *
611 * Remove a protocol handler that was previously added to the kernel
612 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
613 * from the kernel lists and can be freed or reused once this function
614 * returns.
615 *
616 * This call sleeps to guarantee that no CPU is looking at the packet
617 * type after return.
618 */
619void dev_remove_pack(struct packet_type *pt)
620{
621 __dev_remove_pack(pt);
622
623 synchronize_net();
624}
625EXPORT_SYMBOL(dev_remove_pack);
626
627
628/*******************************************************************************
629 *
630 * Device Interface Subroutines
631 *
632 *******************************************************************************/
633
634/**
635 * dev_get_iflink - get 'iflink' value of a interface
636 * @dev: targeted interface
637 *
638 * Indicates the ifindex the interface is linked to.
639 * Physical interfaces have the same 'ifindex' and 'iflink' values.
640 */
641
642int dev_get_iflink(const struct net_device *dev)
643{
644 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
645 return dev->netdev_ops->ndo_get_iflink(dev);
646
647 return dev->ifindex;
648}
649EXPORT_SYMBOL(dev_get_iflink);
650
651/**
652 * dev_fill_metadata_dst - Retrieve tunnel egress information.
653 * @dev: targeted interface
654 * @skb: The packet.
655 *
656 * For better visibility of tunnel traffic OVS needs to retrieve
657 * egress tunnel information for a packet. Following API allows
658 * user to get this info.
659 */
660int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
661{
662 struct ip_tunnel_info *info;
663
664 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
665 return -EINVAL;
666
667 info = skb_tunnel_info_unclone(skb);
668 if (!info)
669 return -ENOMEM;
670 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
671 return -EINVAL;
672
673 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
674}
675EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
676
677static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
678{
679 int k = stack->num_paths++;
680
681 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
682 return NULL;
683
684 return &stack->path[k];
685}
686
687int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
688 struct net_device_path_stack *stack)
689{
690 const struct net_device *last_dev;
691 struct net_device_path_ctx ctx = {
692 .dev = dev,
693 };
694 struct net_device_path *path;
695 int ret = 0;
696
697 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
698 stack->num_paths = 0;
699 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
700 last_dev = ctx.dev;
701 path = dev_fwd_path(stack);
702 if (!path)
703 return -1;
704
705 memset(path, 0, sizeof(struct net_device_path));
706 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
707 if (ret < 0)
708 return -1;
709
710 if (WARN_ON_ONCE(last_dev == ctx.dev))
711 return -1;
712 }
713
714 if (!ctx.dev)
715 return ret;
716
717 path = dev_fwd_path(stack);
718 if (!path)
719 return -1;
720 path->type = DEV_PATH_ETHERNET;
721 path->dev = ctx.dev;
722
723 return ret;
724}
725EXPORT_SYMBOL_GPL(dev_fill_forward_path);
726
727/**
728 * __dev_get_by_name - find a device by its name
729 * @net: the applicable net namespace
730 * @name: name to find
731 *
732 * Find an interface by name. Must be called under RTNL semaphore
733 * or @dev_base_lock. If the name is found a pointer to the device
734 * is returned. If the name is not found then %NULL is returned. The
735 * reference counters are not incremented so the caller must be
736 * careful with locks.
737 */
738
739struct net_device *__dev_get_by_name(struct net *net, const char *name)
740{
741 struct netdev_name_node *node_name;
742
743 node_name = netdev_name_node_lookup(net, name);
744 return node_name ? node_name->dev : NULL;
745}
746EXPORT_SYMBOL(__dev_get_by_name);
747
748/**
749 * dev_get_by_name_rcu - find a device by its name
750 * @net: the applicable net namespace
751 * @name: name to find
752 *
753 * Find an interface by name.
754 * If the name is found a pointer to the device is returned.
755 * If the name is not found then %NULL is returned.
756 * The reference counters are not incremented so the caller must be
757 * careful with locks. The caller must hold RCU lock.
758 */
759
760struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761{
762 struct netdev_name_node *node_name;
763
764 node_name = netdev_name_node_lookup_rcu(net, name);
765 return node_name ? node_name->dev : NULL;
766}
767EXPORT_SYMBOL(dev_get_by_name_rcu);
768
769/* Deprecated for new users, call netdev_get_by_name() instead */
770struct net_device *dev_get_by_name(struct net *net, const char *name)
771{
772 struct net_device *dev;
773
774 rcu_read_lock();
775 dev = dev_get_by_name_rcu(net, name);
776 dev_hold(dev);
777 rcu_read_unlock();
778 return dev;
779}
780EXPORT_SYMBOL(dev_get_by_name);
781
782/**
783 * netdev_get_by_name() - find a device by its name
784 * @net: the applicable net namespace
785 * @name: name to find
786 * @tracker: tracking object for the acquired reference
787 * @gfp: allocation flags for the tracker
788 *
789 * Find an interface by name. This can be called from any
790 * context and does its own locking. The returned handle has
791 * the usage count incremented and the caller must use netdev_put() to
792 * release it when it is no longer needed. %NULL is returned if no
793 * matching device is found.
794 */
795struct net_device *netdev_get_by_name(struct net *net, const char *name,
796 netdevice_tracker *tracker, gfp_t gfp)
797{
798 struct net_device *dev;
799
800 dev = dev_get_by_name(net, name);
801 if (dev)
802 netdev_tracker_alloc(dev, tracker, gfp);
803 return dev;
804}
805EXPORT_SYMBOL(netdev_get_by_name);
806
807/**
808 * __dev_get_by_index - find a device by its ifindex
809 * @net: the applicable net namespace
810 * @ifindex: index of device
811 *
812 * Search for an interface by index. Returns %NULL if the device
813 * is not found or a pointer to the device. The device has not
814 * had its reference counter increased so the caller must be careful
815 * about locking. The caller must hold either the RTNL semaphore
816 * or @dev_base_lock.
817 */
818
819struct net_device *__dev_get_by_index(struct net *net, int ifindex)
820{
821 struct net_device *dev;
822 struct hlist_head *head = dev_index_hash(net, ifindex);
823
824 hlist_for_each_entry(dev, head, index_hlist)
825 if (dev->ifindex == ifindex)
826 return dev;
827
828 return NULL;
829}
830EXPORT_SYMBOL(__dev_get_by_index);
831
832/**
833 * dev_get_by_index_rcu - find a device by its ifindex
834 * @net: the applicable net namespace
835 * @ifindex: index of device
836 *
837 * Search for an interface by index. Returns %NULL if the device
838 * is not found or a pointer to the device. The device has not
839 * had its reference counter increased so the caller must be careful
840 * about locking. The caller must hold RCU lock.
841 */
842
843struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
844{
845 struct net_device *dev;
846 struct hlist_head *head = dev_index_hash(net, ifindex);
847
848 hlist_for_each_entry_rcu(dev, head, index_hlist)
849 if (dev->ifindex == ifindex)
850 return dev;
851
852 return NULL;
853}
854EXPORT_SYMBOL(dev_get_by_index_rcu);
855
856/* Deprecated for new users, call netdev_get_by_index() instead */
857struct net_device *dev_get_by_index(struct net *net, int ifindex)
858{
859 struct net_device *dev;
860
861 rcu_read_lock();
862 dev = dev_get_by_index_rcu(net, ifindex);
863 dev_hold(dev);
864 rcu_read_unlock();
865 return dev;
866}
867EXPORT_SYMBOL(dev_get_by_index);
868
869/**
870 * netdev_get_by_index() - find a device by its ifindex
871 * @net: the applicable net namespace
872 * @ifindex: index of device
873 * @tracker: tracking object for the acquired reference
874 * @gfp: allocation flags for the tracker
875 *
876 * Search for an interface by index. Returns NULL if the device
877 * is not found or a pointer to the device. The device returned has
878 * had a reference added and the pointer is safe until the user calls
879 * netdev_put() to indicate they have finished with it.
880 */
881struct net_device *netdev_get_by_index(struct net *net, int ifindex,
882 netdevice_tracker *tracker, gfp_t gfp)
883{
884 struct net_device *dev;
885
886 dev = dev_get_by_index(net, ifindex);
887 if (dev)
888 netdev_tracker_alloc(dev, tracker, gfp);
889 return dev;
890}
891EXPORT_SYMBOL(netdev_get_by_index);
892
893/**
894 * dev_get_by_napi_id - find a device by napi_id
895 * @napi_id: ID of the NAPI struct
896 *
897 * Search for an interface by NAPI ID. Returns %NULL if the device
898 * is not found or a pointer to the device. The device has not had
899 * its reference counter increased so the caller must be careful
900 * about locking. The caller must hold RCU lock.
901 */
902
903struct net_device *dev_get_by_napi_id(unsigned int napi_id)
904{
905 struct napi_struct *napi;
906
907 WARN_ON_ONCE(!rcu_read_lock_held());
908
909 if (napi_id < MIN_NAPI_ID)
910 return NULL;
911
912 napi = napi_by_id(napi_id);
913
914 return napi ? napi->dev : NULL;
915}
916EXPORT_SYMBOL(dev_get_by_napi_id);
917
918/**
919 * netdev_get_name - get a netdevice name, knowing its ifindex.
920 * @net: network namespace
921 * @name: a pointer to the buffer where the name will be stored.
922 * @ifindex: the ifindex of the interface to get the name from.
923 */
924int netdev_get_name(struct net *net, char *name, int ifindex)
925{
926 struct net_device *dev;
927 int ret;
928
929 down_read(&devnet_rename_sem);
930 rcu_read_lock();
931
932 dev = dev_get_by_index_rcu(net, ifindex);
933 if (!dev) {
934 ret = -ENODEV;
935 goto out;
936 }
937
938 strcpy(name, dev->name);
939
940 ret = 0;
941out:
942 rcu_read_unlock();
943 up_read(&devnet_rename_sem);
944 return ret;
945}
946
947/**
948 * dev_getbyhwaddr_rcu - find a device by its hardware address
949 * @net: the applicable net namespace
950 * @type: media type of device
951 * @ha: hardware address
952 *
953 * Search for an interface by MAC address. Returns NULL if the device
954 * is not found or a pointer to the device.
955 * The caller must hold RCU or RTNL.
956 * The returned device has not had its ref count increased
957 * and the caller must therefore be careful about locking
958 *
959 */
960
961struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
962 const char *ha)
963{
964 struct net_device *dev;
965
966 for_each_netdev_rcu(net, dev)
967 if (dev->type == type &&
968 !memcmp(dev->dev_addr, ha, dev->addr_len))
969 return dev;
970
971 return NULL;
972}
973EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
974
975struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976{
977 struct net_device *dev, *ret = NULL;
978
979 rcu_read_lock();
980 for_each_netdev_rcu(net, dev)
981 if (dev->type == type) {
982 dev_hold(dev);
983 ret = dev;
984 break;
985 }
986 rcu_read_unlock();
987 return ret;
988}
989EXPORT_SYMBOL(dev_getfirstbyhwtype);
990
991/**
992 * __dev_get_by_flags - find any device with given flags
993 * @net: the applicable net namespace
994 * @if_flags: IFF_* values
995 * @mask: bitmask of bits in if_flags to check
996 *
997 * Search for any interface with the given flags. Returns NULL if a device
998 * is not found or a pointer to the device. Must be called inside
999 * rtnl_lock(), and result refcount is unchanged.
1000 */
1001
1002struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003 unsigned short mask)
1004{
1005 struct net_device *dev, *ret;
1006
1007 ASSERT_RTNL();
1008
1009 ret = NULL;
1010 for_each_netdev(net, dev) {
1011 if (((dev->flags ^ if_flags) & mask) == 0) {
1012 ret = dev;
1013 break;
1014 }
1015 }
1016 return ret;
1017}
1018EXPORT_SYMBOL(__dev_get_by_flags);
1019
1020/**
1021 * dev_valid_name - check if name is okay for network device
1022 * @name: name string
1023 *
1024 * Network device names need to be valid file names to
1025 * allow sysfs to work. We also disallow any kind of
1026 * whitespace.
1027 */
1028bool dev_valid_name(const char *name)
1029{
1030 if (*name == '\0')
1031 return false;
1032 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033 return false;
1034 if (!strcmp(name, ".") || !strcmp(name, ".."))
1035 return false;
1036
1037 while (*name) {
1038 if (*name == '/' || *name == ':' || isspace(*name))
1039 return false;
1040 name++;
1041 }
1042 return true;
1043}
1044EXPORT_SYMBOL(dev_valid_name);
1045
1046/**
1047 * __dev_alloc_name - allocate a name for a device
1048 * @net: network namespace to allocate the device name in
1049 * @name: name format string
1050 * @buf: scratch buffer and result name string
1051 *
1052 * Passed a format string - eg "lt%d" it will try and find a suitable
1053 * id. It scans list of devices to build up a free map, then chooses
1054 * the first empty slot. The caller must hold the dev_base or rtnl lock
1055 * while allocating the name and adding the device in order to avoid
1056 * duplicates.
1057 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058 * Returns the number of the unit assigned or a negative errno code.
1059 */
1060
1061static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062{
1063 int i = 0;
1064 const char *p;
1065 const int max_netdevices = 8*PAGE_SIZE;
1066 unsigned long *inuse;
1067 struct net_device *d;
1068
1069 if (!dev_valid_name(name))
1070 return -EINVAL;
1071
1072 p = strchr(name, '%');
1073 if (p) {
1074 /*
1075 * Verify the string as this thing may have come from
1076 * the user. There must be either one "%d" and no other "%"
1077 * characters.
1078 */
1079 if (p[1] != 'd' || strchr(p + 2, '%'))
1080 return -EINVAL;
1081
1082 /* Use one page as a bit array of possible slots */
1083 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084 if (!inuse)
1085 return -ENOMEM;
1086
1087 for_each_netdev(net, d) {
1088 struct netdev_name_node *name_node;
1089 list_for_each_entry(name_node, &d->name_node->list, list) {
1090 if (!sscanf(name_node->name, name, &i))
1091 continue;
1092 if (i < 0 || i >= max_netdevices)
1093 continue;
1094
1095 /* avoid cases where sscanf is not exact inverse of printf */
1096 snprintf(buf, IFNAMSIZ, name, i);
1097 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1098 __set_bit(i, inuse);
1099 }
1100 if (!sscanf(d->name, name, &i))
1101 continue;
1102 if (i < 0 || i >= max_netdevices)
1103 continue;
1104
1105 /* avoid cases where sscanf is not exact inverse of printf */
1106 snprintf(buf, IFNAMSIZ, name, i);
1107 if (!strncmp(buf, d->name, IFNAMSIZ))
1108 __set_bit(i, inuse);
1109 }
1110
1111 i = find_first_zero_bit(inuse, max_netdevices);
1112 free_page((unsigned long) inuse);
1113 }
1114
1115 snprintf(buf, IFNAMSIZ, name, i);
1116 if (!netdev_name_in_use(net, buf))
1117 return i;
1118
1119 /* It is possible to run out of possible slots
1120 * when the name is long and there isn't enough space left
1121 * for the digits, or if all bits are used.
1122 */
1123 return -ENFILE;
1124}
1125
1126static int dev_alloc_name_ns(struct net *net,
1127 struct net_device *dev,
1128 const char *name)
1129{
1130 char buf[IFNAMSIZ];
1131 int ret;
1132
1133 BUG_ON(!net);
1134 ret = __dev_alloc_name(net, name, buf);
1135 if (ret >= 0)
1136 strscpy(dev->name, buf, IFNAMSIZ);
1137 return ret;
1138}
1139
1140/**
1141 * dev_alloc_name - allocate a name for a device
1142 * @dev: device
1143 * @name: name format string
1144 *
1145 * Passed a format string - eg "lt%d" it will try and find a suitable
1146 * id. It scans list of devices to build up a free map, then chooses
1147 * the first empty slot. The caller must hold the dev_base or rtnl lock
1148 * while allocating the name and adding the device in order to avoid
1149 * duplicates.
1150 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1151 * Returns the number of the unit assigned or a negative errno code.
1152 */
1153
1154int dev_alloc_name(struct net_device *dev, const char *name)
1155{
1156 return dev_alloc_name_ns(dev_net(dev), dev, name);
1157}
1158EXPORT_SYMBOL(dev_alloc_name);
1159
1160static int dev_get_valid_name(struct net *net, struct net_device *dev,
1161 const char *name)
1162{
1163 BUG_ON(!net);
1164
1165 if (!dev_valid_name(name))
1166 return -EINVAL;
1167
1168 if (strchr(name, '%'))
1169 return dev_alloc_name_ns(net, dev, name);
1170 else if (netdev_name_in_use(net, name))
1171 return -EEXIST;
1172 else if (dev->name != name)
1173 strscpy(dev->name, name, IFNAMSIZ);
1174
1175 return 0;
1176}
1177
1178/**
1179 * dev_change_name - change name of a device
1180 * @dev: device
1181 * @newname: name (or format string) must be at least IFNAMSIZ
1182 *
1183 * Change name of a device, can pass format strings "eth%d".
1184 * for wildcarding.
1185 */
1186int dev_change_name(struct net_device *dev, const char *newname)
1187{
1188 unsigned char old_assign_type;
1189 char oldname[IFNAMSIZ];
1190 int err = 0;
1191 int ret;
1192 struct net *net;
1193
1194 ASSERT_RTNL();
1195 BUG_ON(!dev_net(dev));
1196
1197 net = dev_net(dev);
1198
1199 down_write(&devnet_rename_sem);
1200
1201 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1202 up_write(&devnet_rename_sem);
1203 return 0;
1204 }
1205
1206 memcpy(oldname, dev->name, IFNAMSIZ);
1207
1208 err = dev_get_valid_name(net, dev, newname);
1209 if (err < 0) {
1210 up_write(&devnet_rename_sem);
1211 return err;
1212 }
1213
1214 if (oldname[0] && !strchr(oldname, '%'))
1215 netdev_info(dev, "renamed from %s%s\n", oldname,
1216 dev->flags & IFF_UP ? " (while UP)" : "");
1217
1218 old_assign_type = dev->name_assign_type;
1219 dev->name_assign_type = NET_NAME_RENAMED;
1220
1221rollback:
1222 ret = device_rename(&dev->dev, dev->name);
1223 if (ret) {
1224 memcpy(dev->name, oldname, IFNAMSIZ);
1225 dev->name_assign_type = old_assign_type;
1226 up_write(&devnet_rename_sem);
1227 return ret;
1228 }
1229
1230 up_write(&devnet_rename_sem);
1231
1232 netdev_adjacent_rename_links(dev, oldname);
1233
1234 write_lock(&dev_base_lock);
1235 netdev_name_node_del(dev->name_node);
1236 write_unlock(&dev_base_lock);
1237
1238 synchronize_rcu();
1239
1240 write_lock(&dev_base_lock);
1241 netdev_name_node_add(net, dev->name_node);
1242 write_unlock(&dev_base_lock);
1243
1244 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245 ret = notifier_to_errno(ret);
1246
1247 if (ret) {
1248 /* err >= 0 after dev_alloc_name() or stores the first errno */
1249 if (err >= 0) {
1250 err = ret;
1251 down_write(&devnet_rename_sem);
1252 memcpy(dev->name, oldname, IFNAMSIZ);
1253 memcpy(oldname, newname, IFNAMSIZ);
1254 dev->name_assign_type = old_assign_type;
1255 old_assign_type = NET_NAME_RENAMED;
1256 goto rollback;
1257 } else {
1258 netdev_err(dev, "name change rollback failed: %d\n",
1259 ret);
1260 }
1261 }
1262
1263 return err;
1264}
1265
1266/**
1267 * dev_set_alias - change ifalias of a device
1268 * @dev: device
1269 * @alias: name up to IFALIASZ
1270 * @len: limit of bytes to copy from info
1271 *
1272 * Set ifalias for a device,
1273 */
1274int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275{
1276 struct dev_ifalias *new_alias = NULL;
1277
1278 if (len >= IFALIASZ)
1279 return -EINVAL;
1280
1281 if (len) {
1282 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 if (!new_alias)
1284 return -ENOMEM;
1285
1286 memcpy(new_alias->ifalias, alias, len);
1287 new_alias->ifalias[len] = 0;
1288 }
1289
1290 mutex_lock(&ifalias_mutex);
1291 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1292 mutex_is_locked(&ifalias_mutex));
1293 mutex_unlock(&ifalias_mutex);
1294
1295 if (new_alias)
1296 kfree_rcu(new_alias, rcuhead);
1297
1298 return len;
1299}
1300EXPORT_SYMBOL(dev_set_alias);
1301
1302/**
1303 * dev_get_alias - get ifalias of a device
1304 * @dev: device
1305 * @name: buffer to store name of ifalias
1306 * @len: size of buffer
1307 *
1308 * get ifalias for a device. Caller must make sure dev cannot go
1309 * away, e.g. rcu read lock or own a reference count to device.
1310 */
1311int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312{
1313 const struct dev_ifalias *alias;
1314 int ret = 0;
1315
1316 rcu_read_lock();
1317 alias = rcu_dereference(dev->ifalias);
1318 if (alias)
1319 ret = snprintf(name, len, "%s", alias->ifalias);
1320 rcu_read_unlock();
1321
1322 return ret;
1323}
1324
1325/**
1326 * netdev_features_change - device changes features
1327 * @dev: device to cause notification
1328 *
1329 * Called to indicate a device has changed features.
1330 */
1331void netdev_features_change(struct net_device *dev)
1332{
1333 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334}
1335EXPORT_SYMBOL(netdev_features_change);
1336
1337/**
1338 * netdev_state_change - device changes state
1339 * @dev: device to cause notification
1340 *
1341 * Called to indicate a device has changed state. This function calls
1342 * the notifier chains for netdev_chain and sends a NEWLINK message
1343 * to the routing socket.
1344 */
1345void netdev_state_change(struct net_device *dev)
1346{
1347 if (dev->flags & IFF_UP) {
1348 struct netdev_notifier_change_info change_info = {
1349 .info.dev = dev,
1350 };
1351
1352 call_netdevice_notifiers_info(NETDEV_CHANGE,
1353 &change_info.info);
1354 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1355 }
1356}
1357EXPORT_SYMBOL(netdev_state_change);
1358
1359/**
1360 * __netdev_notify_peers - notify network peers about existence of @dev,
1361 * to be called when rtnl lock is already held.
1362 * @dev: network device
1363 *
1364 * Generate traffic such that interested network peers are aware of
1365 * @dev, such as by generating a gratuitous ARP. This may be used when
1366 * a device wants to inform the rest of the network about some sort of
1367 * reconfiguration such as a failover event or virtual machine
1368 * migration.
1369 */
1370void __netdev_notify_peers(struct net_device *dev)
1371{
1372 ASSERT_RTNL();
1373 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1374 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1375}
1376EXPORT_SYMBOL(__netdev_notify_peers);
1377
1378/**
1379 * netdev_notify_peers - notify network peers about existence of @dev
1380 * @dev: network device
1381 *
1382 * Generate traffic such that interested network peers are aware of
1383 * @dev, such as by generating a gratuitous ARP. This may be used when
1384 * a device wants to inform the rest of the network about some sort of
1385 * reconfiguration such as a failover event or virtual machine
1386 * migration.
1387 */
1388void netdev_notify_peers(struct net_device *dev)
1389{
1390 rtnl_lock();
1391 __netdev_notify_peers(dev);
1392 rtnl_unlock();
1393}
1394EXPORT_SYMBOL(netdev_notify_peers);
1395
1396static int napi_threaded_poll(void *data);
1397
1398static int napi_kthread_create(struct napi_struct *n)
1399{
1400 int err = 0;
1401
1402 /* Create and wake up the kthread once to put it in
1403 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1404 * warning and work with loadavg.
1405 */
1406 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1407 n->dev->name, n->napi_id);
1408 if (IS_ERR(n->thread)) {
1409 err = PTR_ERR(n->thread);
1410 pr_err("kthread_run failed with err %d\n", err);
1411 n->thread = NULL;
1412 }
1413
1414 return err;
1415}
1416
1417static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1418{
1419 const struct net_device_ops *ops = dev->netdev_ops;
1420 int ret;
1421
1422 ASSERT_RTNL();
1423 dev_addr_check(dev);
1424
1425 if (!netif_device_present(dev)) {
1426 /* may be detached because parent is runtime-suspended */
1427 if (dev->dev.parent)
1428 pm_runtime_resume(dev->dev.parent);
1429 if (!netif_device_present(dev))
1430 return -ENODEV;
1431 }
1432
1433 /* Block netpoll from trying to do any rx path servicing.
1434 * If we don't do this there is a chance ndo_poll_controller
1435 * or ndo_poll may be running while we open the device
1436 */
1437 netpoll_poll_disable(dev);
1438
1439 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1440 ret = notifier_to_errno(ret);
1441 if (ret)
1442 return ret;
1443
1444 set_bit(__LINK_STATE_START, &dev->state);
1445
1446 if (ops->ndo_validate_addr)
1447 ret = ops->ndo_validate_addr(dev);
1448
1449 if (!ret && ops->ndo_open)
1450 ret = ops->ndo_open(dev);
1451
1452 netpoll_poll_enable(dev);
1453
1454 if (ret)
1455 clear_bit(__LINK_STATE_START, &dev->state);
1456 else {
1457 dev->flags |= IFF_UP;
1458 dev_set_rx_mode(dev);
1459 dev_activate(dev);
1460 add_device_randomness(dev->dev_addr, dev->addr_len);
1461 }
1462
1463 return ret;
1464}
1465
1466/**
1467 * dev_open - prepare an interface for use.
1468 * @dev: device to open
1469 * @extack: netlink extended ack
1470 *
1471 * Takes a device from down to up state. The device's private open
1472 * function is invoked and then the multicast lists are loaded. Finally
1473 * the device is moved into the up state and a %NETDEV_UP message is
1474 * sent to the netdev notifier chain.
1475 *
1476 * Calling this function on an active interface is a nop. On a failure
1477 * a negative errno code is returned.
1478 */
1479int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1480{
1481 int ret;
1482
1483 if (dev->flags & IFF_UP)
1484 return 0;
1485
1486 ret = __dev_open(dev, extack);
1487 if (ret < 0)
1488 return ret;
1489
1490 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1491 call_netdevice_notifiers(NETDEV_UP, dev);
1492
1493 return ret;
1494}
1495EXPORT_SYMBOL(dev_open);
1496
1497static void __dev_close_many(struct list_head *head)
1498{
1499 struct net_device *dev;
1500
1501 ASSERT_RTNL();
1502 might_sleep();
1503
1504 list_for_each_entry(dev, head, close_list) {
1505 /* Temporarily disable netpoll until the interface is down */
1506 netpoll_poll_disable(dev);
1507
1508 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1509
1510 clear_bit(__LINK_STATE_START, &dev->state);
1511
1512 /* Synchronize to scheduled poll. We cannot touch poll list, it
1513 * can be even on different cpu. So just clear netif_running().
1514 *
1515 * dev->stop() will invoke napi_disable() on all of it's
1516 * napi_struct instances on this device.
1517 */
1518 smp_mb__after_atomic(); /* Commit netif_running(). */
1519 }
1520
1521 dev_deactivate_many(head);
1522
1523 list_for_each_entry(dev, head, close_list) {
1524 const struct net_device_ops *ops = dev->netdev_ops;
1525
1526 /*
1527 * Call the device specific close. This cannot fail.
1528 * Only if device is UP
1529 *
1530 * We allow it to be called even after a DETACH hot-plug
1531 * event.
1532 */
1533 if (ops->ndo_stop)
1534 ops->ndo_stop(dev);
1535
1536 dev->flags &= ~IFF_UP;
1537 netpoll_poll_enable(dev);
1538 }
1539}
1540
1541static void __dev_close(struct net_device *dev)
1542{
1543 LIST_HEAD(single);
1544
1545 list_add(&dev->close_list, &single);
1546 __dev_close_many(&single);
1547 list_del(&single);
1548}
1549
1550void dev_close_many(struct list_head *head, bool unlink)
1551{
1552 struct net_device *dev, *tmp;
1553
1554 /* Remove the devices that don't need to be closed */
1555 list_for_each_entry_safe(dev, tmp, head, close_list)
1556 if (!(dev->flags & IFF_UP))
1557 list_del_init(&dev->close_list);
1558
1559 __dev_close_many(head);
1560
1561 list_for_each_entry_safe(dev, tmp, head, close_list) {
1562 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1563 call_netdevice_notifiers(NETDEV_DOWN, dev);
1564 if (unlink)
1565 list_del_init(&dev->close_list);
1566 }
1567}
1568EXPORT_SYMBOL(dev_close_many);
1569
1570/**
1571 * dev_close - shutdown an interface.
1572 * @dev: device to shutdown
1573 *
1574 * This function moves an active device into down state. A
1575 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1576 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1577 * chain.
1578 */
1579void dev_close(struct net_device *dev)
1580{
1581 if (dev->flags & IFF_UP) {
1582 LIST_HEAD(single);
1583
1584 list_add(&dev->close_list, &single);
1585 dev_close_many(&single, true);
1586 list_del(&single);
1587 }
1588}
1589EXPORT_SYMBOL(dev_close);
1590
1591
1592/**
1593 * dev_disable_lro - disable Large Receive Offload on a device
1594 * @dev: device
1595 *
1596 * Disable Large Receive Offload (LRO) on a net device. Must be
1597 * called under RTNL. This is needed if received packets may be
1598 * forwarded to another interface.
1599 */
1600void dev_disable_lro(struct net_device *dev)
1601{
1602 struct net_device *lower_dev;
1603 struct list_head *iter;
1604
1605 dev->wanted_features &= ~NETIF_F_LRO;
1606 netdev_update_features(dev);
1607
1608 if (unlikely(dev->features & NETIF_F_LRO))
1609 netdev_WARN(dev, "failed to disable LRO!\n");
1610
1611 netdev_for_each_lower_dev(dev, lower_dev, iter)
1612 dev_disable_lro(lower_dev);
1613}
1614EXPORT_SYMBOL(dev_disable_lro);
1615
1616/**
1617 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1618 * @dev: device
1619 *
1620 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1621 * called under RTNL. This is needed if Generic XDP is installed on
1622 * the device.
1623 */
1624static void dev_disable_gro_hw(struct net_device *dev)
1625{
1626 dev->wanted_features &= ~NETIF_F_GRO_HW;
1627 netdev_update_features(dev);
1628
1629 if (unlikely(dev->features & NETIF_F_GRO_HW))
1630 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1631}
1632
1633const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1634{
1635#define N(val) \
1636 case NETDEV_##val: \
1637 return "NETDEV_" __stringify(val);
1638 switch (cmd) {
1639 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1640 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1641 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1642 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1643 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1644 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1645 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1646 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1647 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1648 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1649 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1650 N(XDP_FEAT_CHANGE)
1651 }
1652#undef N
1653 return "UNKNOWN_NETDEV_EVENT";
1654}
1655EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1656
1657static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1658 struct net_device *dev)
1659{
1660 struct netdev_notifier_info info = {
1661 .dev = dev,
1662 };
1663
1664 return nb->notifier_call(nb, val, &info);
1665}
1666
1667static int call_netdevice_register_notifiers(struct notifier_block *nb,
1668 struct net_device *dev)
1669{
1670 int err;
1671
1672 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1673 err = notifier_to_errno(err);
1674 if (err)
1675 return err;
1676
1677 if (!(dev->flags & IFF_UP))
1678 return 0;
1679
1680 call_netdevice_notifier(nb, NETDEV_UP, dev);
1681 return 0;
1682}
1683
1684static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1685 struct net_device *dev)
1686{
1687 if (dev->flags & IFF_UP) {
1688 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1689 dev);
1690 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1691 }
1692 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1693}
1694
1695static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1696 struct net *net)
1697{
1698 struct net_device *dev;
1699 int err;
1700
1701 for_each_netdev(net, dev) {
1702 err = call_netdevice_register_notifiers(nb, dev);
1703 if (err)
1704 goto rollback;
1705 }
1706 return 0;
1707
1708rollback:
1709 for_each_netdev_continue_reverse(net, dev)
1710 call_netdevice_unregister_notifiers(nb, dev);
1711 return err;
1712}
1713
1714static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1715 struct net *net)
1716{
1717 struct net_device *dev;
1718
1719 for_each_netdev(net, dev)
1720 call_netdevice_unregister_notifiers(nb, dev);
1721}
1722
1723static int dev_boot_phase = 1;
1724
1725/**
1726 * register_netdevice_notifier - register a network notifier block
1727 * @nb: notifier
1728 *
1729 * Register a notifier to be called when network device events occur.
1730 * The notifier passed is linked into the kernel structures and must
1731 * not be reused until it has been unregistered. A negative errno code
1732 * is returned on a failure.
1733 *
1734 * When registered all registration and up events are replayed
1735 * to the new notifier to allow device to have a race free
1736 * view of the network device list.
1737 */
1738
1739int register_netdevice_notifier(struct notifier_block *nb)
1740{
1741 struct net *net;
1742 int err;
1743
1744 /* Close race with setup_net() and cleanup_net() */
1745 down_write(&pernet_ops_rwsem);
1746 rtnl_lock();
1747 err = raw_notifier_chain_register(&netdev_chain, nb);
1748 if (err)
1749 goto unlock;
1750 if (dev_boot_phase)
1751 goto unlock;
1752 for_each_net(net) {
1753 err = call_netdevice_register_net_notifiers(nb, net);
1754 if (err)
1755 goto rollback;
1756 }
1757
1758unlock:
1759 rtnl_unlock();
1760 up_write(&pernet_ops_rwsem);
1761 return err;
1762
1763rollback:
1764 for_each_net_continue_reverse(net)
1765 call_netdevice_unregister_net_notifiers(nb, net);
1766
1767 raw_notifier_chain_unregister(&netdev_chain, nb);
1768 goto unlock;
1769}
1770EXPORT_SYMBOL(register_netdevice_notifier);
1771
1772/**
1773 * unregister_netdevice_notifier - unregister a network notifier block
1774 * @nb: notifier
1775 *
1776 * Unregister a notifier previously registered by
1777 * register_netdevice_notifier(). The notifier is unlinked into the
1778 * kernel structures and may then be reused. A negative errno code
1779 * is returned on a failure.
1780 *
1781 * After unregistering unregister and down device events are synthesized
1782 * for all devices on the device list to the removed notifier to remove
1783 * the need for special case cleanup code.
1784 */
1785
1786int unregister_netdevice_notifier(struct notifier_block *nb)
1787{
1788 struct net *net;
1789 int err;
1790
1791 /* Close race with setup_net() and cleanup_net() */
1792 down_write(&pernet_ops_rwsem);
1793 rtnl_lock();
1794 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1795 if (err)
1796 goto unlock;
1797
1798 for_each_net(net)
1799 call_netdevice_unregister_net_notifiers(nb, net);
1800
1801unlock:
1802 rtnl_unlock();
1803 up_write(&pernet_ops_rwsem);
1804 return err;
1805}
1806EXPORT_SYMBOL(unregister_netdevice_notifier);
1807
1808static int __register_netdevice_notifier_net(struct net *net,
1809 struct notifier_block *nb,
1810 bool ignore_call_fail)
1811{
1812 int err;
1813
1814 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1815 if (err)
1816 return err;
1817 if (dev_boot_phase)
1818 return 0;
1819
1820 err = call_netdevice_register_net_notifiers(nb, net);
1821 if (err && !ignore_call_fail)
1822 goto chain_unregister;
1823
1824 return 0;
1825
1826chain_unregister:
1827 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1828 return err;
1829}
1830
1831static int __unregister_netdevice_notifier_net(struct net *net,
1832 struct notifier_block *nb)
1833{
1834 int err;
1835
1836 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1837 if (err)
1838 return err;
1839
1840 call_netdevice_unregister_net_notifiers(nb, net);
1841 return 0;
1842}
1843
1844/**
1845 * register_netdevice_notifier_net - register a per-netns network notifier block
1846 * @net: network namespace
1847 * @nb: notifier
1848 *
1849 * Register a notifier to be called when network device events occur.
1850 * The notifier passed is linked into the kernel structures and must
1851 * not be reused until it has been unregistered. A negative errno code
1852 * is returned on a failure.
1853 *
1854 * When registered all registration and up events are replayed
1855 * to the new notifier to allow device to have a race free
1856 * view of the network device list.
1857 */
1858
1859int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1860{
1861 int err;
1862
1863 rtnl_lock();
1864 err = __register_netdevice_notifier_net(net, nb, false);
1865 rtnl_unlock();
1866 return err;
1867}
1868EXPORT_SYMBOL(register_netdevice_notifier_net);
1869
1870/**
1871 * unregister_netdevice_notifier_net - unregister a per-netns
1872 * network notifier block
1873 * @net: network namespace
1874 * @nb: notifier
1875 *
1876 * Unregister a notifier previously registered by
1877 * register_netdevice_notifier_net(). The notifier is unlinked from the
1878 * kernel structures and may then be reused. A negative errno code
1879 * is returned on a failure.
1880 *
1881 * After unregistering unregister and down device events are synthesized
1882 * for all devices on the device list to the removed notifier to remove
1883 * the need for special case cleanup code.
1884 */
1885
1886int unregister_netdevice_notifier_net(struct net *net,
1887 struct notifier_block *nb)
1888{
1889 int err;
1890
1891 rtnl_lock();
1892 err = __unregister_netdevice_notifier_net(net, nb);
1893 rtnl_unlock();
1894 return err;
1895}
1896EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1897
1898static void __move_netdevice_notifier_net(struct net *src_net,
1899 struct net *dst_net,
1900 struct notifier_block *nb)
1901{
1902 __unregister_netdevice_notifier_net(src_net, nb);
1903 __register_netdevice_notifier_net(dst_net, nb, true);
1904}
1905
1906int register_netdevice_notifier_dev_net(struct net_device *dev,
1907 struct notifier_block *nb,
1908 struct netdev_net_notifier *nn)
1909{
1910 int err;
1911
1912 rtnl_lock();
1913 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1914 if (!err) {
1915 nn->nb = nb;
1916 list_add(&nn->list, &dev->net_notifier_list);
1917 }
1918 rtnl_unlock();
1919 return err;
1920}
1921EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1922
1923int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1924 struct notifier_block *nb,
1925 struct netdev_net_notifier *nn)
1926{
1927 int err;
1928
1929 rtnl_lock();
1930 list_del(&nn->list);
1931 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1932 rtnl_unlock();
1933 return err;
1934}
1935EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1936
1937static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1938 struct net *net)
1939{
1940 struct netdev_net_notifier *nn;
1941
1942 list_for_each_entry(nn, &dev->net_notifier_list, list)
1943 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1944}
1945
1946/**
1947 * call_netdevice_notifiers_info - call all network notifier blocks
1948 * @val: value passed unmodified to notifier function
1949 * @info: notifier information data
1950 *
1951 * Call all network notifier blocks. Parameters and return value
1952 * are as for raw_notifier_call_chain().
1953 */
1954
1955int call_netdevice_notifiers_info(unsigned long val,
1956 struct netdev_notifier_info *info)
1957{
1958 struct net *net = dev_net(info->dev);
1959 int ret;
1960
1961 ASSERT_RTNL();
1962
1963 /* Run per-netns notifier block chain first, then run the global one.
1964 * Hopefully, one day, the global one is going to be removed after
1965 * all notifier block registrators get converted to be per-netns.
1966 */
1967 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1968 if (ret & NOTIFY_STOP_MASK)
1969 return ret;
1970 return raw_notifier_call_chain(&netdev_chain, val, info);
1971}
1972
1973/**
1974 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1975 * for and rollback on error
1976 * @val_up: value passed unmodified to notifier function
1977 * @val_down: value passed unmodified to the notifier function when
1978 * recovering from an error on @val_up
1979 * @info: notifier information data
1980 *
1981 * Call all per-netns network notifier blocks, but not notifier blocks on
1982 * the global notifier chain. Parameters and return value are as for
1983 * raw_notifier_call_chain_robust().
1984 */
1985
1986static int
1987call_netdevice_notifiers_info_robust(unsigned long val_up,
1988 unsigned long val_down,
1989 struct netdev_notifier_info *info)
1990{
1991 struct net *net = dev_net(info->dev);
1992
1993 ASSERT_RTNL();
1994
1995 return raw_notifier_call_chain_robust(&net->netdev_chain,
1996 val_up, val_down, info);
1997}
1998
1999static int call_netdevice_notifiers_extack(unsigned long val,
2000 struct net_device *dev,
2001 struct netlink_ext_ack *extack)
2002{
2003 struct netdev_notifier_info info = {
2004 .dev = dev,
2005 .extack = extack,
2006 };
2007
2008 return call_netdevice_notifiers_info(val, &info);
2009}
2010
2011/**
2012 * call_netdevice_notifiers - call all network notifier blocks
2013 * @val: value passed unmodified to notifier function
2014 * @dev: net_device pointer passed unmodified to notifier function
2015 *
2016 * Call all network notifier blocks. Parameters and return value
2017 * are as for raw_notifier_call_chain().
2018 */
2019
2020int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021{
2022 return call_netdevice_notifiers_extack(val, dev, NULL);
2023}
2024EXPORT_SYMBOL(call_netdevice_notifiers);
2025
2026/**
2027 * call_netdevice_notifiers_mtu - call all network notifier blocks
2028 * @val: value passed unmodified to notifier function
2029 * @dev: net_device pointer passed unmodified to notifier function
2030 * @arg: additional u32 argument passed to the notifier function
2031 *
2032 * Call all network notifier blocks. Parameters and return value
2033 * are as for raw_notifier_call_chain().
2034 */
2035static int call_netdevice_notifiers_mtu(unsigned long val,
2036 struct net_device *dev, u32 arg)
2037{
2038 struct netdev_notifier_info_ext info = {
2039 .info.dev = dev,
2040 .ext.mtu = arg,
2041 };
2042
2043 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044
2045 return call_netdevice_notifiers_info(val, &info.info);
2046}
2047
2048#ifdef CONFIG_NET_INGRESS
2049static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050
2051void net_inc_ingress_queue(void)
2052{
2053 static_branch_inc(&ingress_needed_key);
2054}
2055EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056
2057void net_dec_ingress_queue(void)
2058{
2059 static_branch_dec(&ingress_needed_key);
2060}
2061EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062#endif
2063
2064#ifdef CONFIG_NET_EGRESS
2065static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066
2067void net_inc_egress_queue(void)
2068{
2069 static_branch_inc(&egress_needed_key);
2070}
2071EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072
2073void net_dec_egress_queue(void)
2074{
2075 static_branch_dec(&egress_needed_key);
2076}
2077EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078#endif
2079
2080DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081EXPORT_SYMBOL(netstamp_needed_key);
2082#ifdef CONFIG_JUMP_LABEL
2083static atomic_t netstamp_needed_deferred;
2084static atomic_t netstamp_wanted;
2085static void netstamp_clear(struct work_struct *work)
2086{
2087 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2088 int wanted;
2089
2090 wanted = atomic_add_return(deferred, &netstamp_wanted);
2091 if (wanted > 0)
2092 static_branch_enable(&netstamp_needed_key);
2093 else
2094 static_branch_disable(&netstamp_needed_key);
2095}
2096static DECLARE_WORK(netstamp_work, netstamp_clear);
2097#endif
2098
2099void net_enable_timestamp(void)
2100{
2101#ifdef CONFIG_JUMP_LABEL
2102 int wanted = atomic_read(&netstamp_wanted);
2103
2104 while (wanted > 0) {
2105 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2106 return;
2107 }
2108 atomic_inc(&netstamp_needed_deferred);
2109 schedule_work(&netstamp_work);
2110#else
2111 static_branch_inc(&netstamp_needed_key);
2112#endif
2113}
2114EXPORT_SYMBOL(net_enable_timestamp);
2115
2116void net_disable_timestamp(void)
2117{
2118#ifdef CONFIG_JUMP_LABEL
2119 int wanted = atomic_read(&netstamp_wanted);
2120
2121 while (wanted > 1) {
2122 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2123 return;
2124 }
2125 atomic_dec(&netstamp_needed_deferred);
2126 schedule_work(&netstamp_work);
2127#else
2128 static_branch_dec(&netstamp_needed_key);
2129#endif
2130}
2131EXPORT_SYMBOL(net_disable_timestamp);
2132
2133static inline void net_timestamp_set(struct sk_buff *skb)
2134{
2135 skb->tstamp = 0;
2136 skb->mono_delivery_time = 0;
2137 if (static_branch_unlikely(&netstamp_needed_key))
2138 skb->tstamp = ktime_get_real();
2139}
2140
2141#define net_timestamp_check(COND, SKB) \
2142 if (static_branch_unlikely(&netstamp_needed_key)) { \
2143 if ((COND) && !(SKB)->tstamp) \
2144 (SKB)->tstamp = ktime_get_real(); \
2145 } \
2146
2147bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2148{
2149 return __is_skb_forwardable(dev, skb, true);
2150}
2151EXPORT_SYMBOL_GPL(is_skb_forwardable);
2152
2153static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2154 bool check_mtu)
2155{
2156 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2157
2158 if (likely(!ret)) {
2159 skb->protocol = eth_type_trans(skb, dev);
2160 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2161 }
2162
2163 return ret;
2164}
2165
2166int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2167{
2168 return __dev_forward_skb2(dev, skb, true);
2169}
2170EXPORT_SYMBOL_GPL(__dev_forward_skb);
2171
2172/**
2173 * dev_forward_skb - loopback an skb to another netif
2174 *
2175 * @dev: destination network device
2176 * @skb: buffer to forward
2177 *
2178 * return values:
2179 * NET_RX_SUCCESS (no congestion)
2180 * NET_RX_DROP (packet was dropped, but freed)
2181 *
2182 * dev_forward_skb can be used for injecting an skb from the
2183 * start_xmit function of one device into the receive queue
2184 * of another device.
2185 *
2186 * The receiving device may be in another namespace, so
2187 * we have to clear all information in the skb that could
2188 * impact namespace isolation.
2189 */
2190int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2191{
2192 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2193}
2194EXPORT_SYMBOL_GPL(dev_forward_skb);
2195
2196int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2197{
2198 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2199}
2200
2201static inline int deliver_skb(struct sk_buff *skb,
2202 struct packet_type *pt_prev,
2203 struct net_device *orig_dev)
2204{
2205 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2206 return -ENOMEM;
2207 refcount_inc(&skb->users);
2208 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2209}
2210
2211static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2212 struct packet_type **pt,
2213 struct net_device *orig_dev,
2214 __be16 type,
2215 struct list_head *ptype_list)
2216{
2217 struct packet_type *ptype, *pt_prev = *pt;
2218
2219 list_for_each_entry_rcu(ptype, ptype_list, list) {
2220 if (ptype->type != type)
2221 continue;
2222 if (pt_prev)
2223 deliver_skb(skb, pt_prev, orig_dev);
2224 pt_prev = ptype;
2225 }
2226 *pt = pt_prev;
2227}
2228
2229static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2230{
2231 if (!ptype->af_packet_priv || !skb->sk)
2232 return false;
2233
2234 if (ptype->id_match)
2235 return ptype->id_match(ptype, skb->sk);
2236 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2237 return true;
2238
2239 return false;
2240}
2241
2242/**
2243 * dev_nit_active - return true if any network interface taps are in use
2244 *
2245 * @dev: network device to check for the presence of taps
2246 */
2247bool dev_nit_active(struct net_device *dev)
2248{
2249 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2250}
2251EXPORT_SYMBOL_GPL(dev_nit_active);
2252
2253/*
2254 * Support routine. Sends outgoing frames to any network
2255 * taps currently in use.
2256 */
2257
2258void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2259{
2260 struct packet_type *ptype;
2261 struct sk_buff *skb2 = NULL;
2262 struct packet_type *pt_prev = NULL;
2263 struct list_head *ptype_list = &ptype_all;
2264
2265 rcu_read_lock();
2266again:
2267 list_for_each_entry_rcu(ptype, ptype_list, list) {
2268 if (ptype->ignore_outgoing)
2269 continue;
2270
2271 /* Never send packets back to the socket
2272 * they originated from - MvS (miquels@drinkel.ow.org)
2273 */
2274 if (skb_loop_sk(ptype, skb))
2275 continue;
2276
2277 if (pt_prev) {
2278 deliver_skb(skb2, pt_prev, skb->dev);
2279 pt_prev = ptype;
2280 continue;
2281 }
2282
2283 /* need to clone skb, done only once */
2284 skb2 = skb_clone(skb, GFP_ATOMIC);
2285 if (!skb2)
2286 goto out_unlock;
2287
2288 net_timestamp_set(skb2);
2289
2290 /* skb->nh should be correctly
2291 * set by sender, so that the second statement is
2292 * just protection against buggy protocols.
2293 */
2294 skb_reset_mac_header(skb2);
2295
2296 if (skb_network_header(skb2) < skb2->data ||
2297 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2298 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2299 ntohs(skb2->protocol),
2300 dev->name);
2301 skb_reset_network_header(skb2);
2302 }
2303
2304 skb2->transport_header = skb2->network_header;
2305 skb2->pkt_type = PACKET_OUTGOING;
2306 pt_prev = ptype;
2307 }
2308
2309 if (ptype_list == &ptype_all) {
2310 ptype_list = &dev->ptype_all;
2311 goto again;
2312 }
2313out_unlock:
2314 if (pt_prev) {
2315 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2316 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2317 else
2318 kfree_skb(skb2);
2319 }
2320 rcu_read_unlock();
2321}
2322EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2323
2324/**
2325 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2326 * @dev: Network device
2327 * @txq: number of queues available
2328 *
2329 * If real_num_tx_queues is changed the tc mappings may no longer be
2330 * valid. To resolve this verify the tc mapping remains valid and if
2331 * not NULL the mapping. With no priorities mapping to this
2332 * offset/count pair it will no longer be used. In the worst case TC0
2333 * is invalid nothing can be done so disable priority mappings. If is
2334 * expected that drivers will fix this mapping if they can before
2335 * calling netif_set_real_num_tx_queues.
2336 */
2337static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2338{
2339 int i;
2340 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2341
2342 /* If TC0 is invalidated disable TC mapping */
2343 if (tc->offset + tc->count > txq) {
2344 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2345 dev->num_tc = 0;
2346 return;
2347 }
2348
2349 /* Invalidated prio to tc mappings set to TC0 */
2350 for (i = 1; i < TC_BITMASK + 1; i++) {
2351 int q = netdev_get_prio_tc_map(dev, i);
2352
2353 tc = &dev->tc_to_txq[q];
2354 if (tc->offset + tc->count > txq) {
2355 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2356 i, q);
2357 netdev_set_prio_tc_map(dev, i, 0);
2358 }
2359 }
2360}
2361
2362int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2363{
2364 if (dev->num_tc) {
2365 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366 int i;
2367
2368 /* walk through the TCs and see if it falls into any of them */
2369 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2370 if ((txq - tc->offset) < tc->count)
2371 return i;
2372 }
2373
2374 /* didn't find it, just return -1 to indicate no match */
2375 return -1;
2376 }
2377
2378 return 0;
2379}
2380EXPORT_SYMBOL(netdev_txq_to_tc);
2381
2382#ifdef CONFIG_XPS
2383static struct static_key xps_needed __read_mostly;
2384static struct static_key xps_rxqs_needed __read_mostly;
2385static DEFINE_MUTEX(xps_map_mutex);
2386#define xmap_dereference(P) \
2387 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2388
2389static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2390 struct xps_dev_maps *old_maps, int tci, u16 index)
2391{
2392 struct xps_map *map = NULL;
2393 int pos;
2394
2395 map = xmap_dereference(dev_maps->attr_map[tci]);
2396 if (!map)
2397 return false;
2398
2399 for (pos = map->len; pos--;) {
2400 if (map->queues[pos] != index)
2401 continue;
2402
2403 if (map->len > 1) {
2404 map->queues[pos] = map->queues[--map->len];
2405 break;
2406 }
2407
2408 if (old_maps)
2409 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2410 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2411 kfree_rcu(map, rcu);
2412 return false;
2413 }
2414
2415 return true;
2416}
2417
2418static bool remove_xps_queue_cpu(struct net_device *dev,
2419 struct xps_dev_maps *dev_maps,
2420 int cpu, u16 offset, u16 count)
2421{
2422 int num_tc = dev_maps->num_tc;
2423 bool active = false;
2424 int tci;
2425
2426 for (tci = cpu * num_tc; num_tc--; tci++) {
2427 int i, j;
2428
2429 for (i = count, j = offset; i--; j++) {
2430 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2431 break;
2432 }
2433
2434 active |= i < 0;
2435 }
2436
2437 return active;
2438}
2439
2440static void reset_xps_maps(struct net_device *dev,
2441 struct xps_dev_maps *dev_maps,
2442 enum xps_map_type type)
2443{
2444 static_key_slow_dec_cpuslocked(&xps_needed);
2445 if (type == XPS_RXQS)
2446 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2447
2448 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2449
2450 kfree_rcu(dev_maps, rcu);
2451}
2452
2453static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2454 u16 offset, u16 count)
2455{
2456 struct xps_dev_maps *dev_maps;
2457 bool active = false;
2458 int i, j;
2459
2460 dev_maps = xmap_dereference(dev->xps_maps[type]);
2461 if (!dev_maps)
2462 return;
2463
2464 for (j = 0; j < dev_maps->nr_ids; j++)
2465 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2466 if (!active)
2467 reset_xps_maps(dev, dev_maps, type);
2468
2469 if (type == XPS_CPUS) {
2470 for (i = offset + (count - 1); count--; i--)
2471 netdev_queue_numa_node_write(
2472 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2473 }
2474}
2475
2476static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2477 u16 count)
2478{
2479 if (!static_key_false(&xps_needed))
2480 return;
2481
2482 cpus_read_lock();
2483 mutex_lock(&xps_map_mutex);
2484
2485 if (static_key_false(&xps_rxqs_needed))
2486 clean_xps_maps(dev, XPS_RXQS, offset, count);
2487
2488 clean_xps_maps(dev, XPS_CPUS, offset, count);
2489
2490 mutex_unlock(&xps_map_mutex);
2491 cpus_read_unlock();
2492}
2493
2494static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2495{
2496 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2497}
2498
2499static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2500 u16 index, bool is_rxqs_map)
2501{
2502 struct xps_map *new_map;
2503 int alloc_len = XPS_MIN_MAP_ALLOC;
2504 int i, pos;
2505
2506 for (pos = 0; map && pos < map->len; pos++) {
2507 if (map->queues[pos] != index)
2508 continue;
2509 return map;
2510 }
2511
2512 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2513 if (map) {
2514 if (pos < map->alloc_len)
2515 return map;
2516
2517 alloc_len = map->alloc_len * 2;
2518 }
2519
2520 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2521 * map
2522 */
2523 if (is_rxqs_map)
2524 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2525 else
2526 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2527 cpu_to_node(attr_index));
2528 if (!new_map)
2529 return NULL;
2530
2531 for (i = 0; i < pos; i++)
2532 new_map->queues[i] = map->queues[i];
2533 new_map->alloc_len = alloc_len;
2534 new_map->len = pos;
2535
2536 return new_map;
2537}
2538
2539/* Copy xps maps at a given index */
2540static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2541 struct xps_dev_maps *new_dev_maps, int index,
2542 int tc, bool skip_tc)
2543{
2544 int i, tci = index * dev_maps->num_tc;
2545 struct xps_map *map;
2546
2547 /* copy maps belonging to foreign traffic classes */
2548 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2549 if (i == tc && skip_tc)
2550 continue;
2551
2552 /* fill in the new device map from the old device map */
2553 map = xmap_dereference(dev_maps->attr_map[tci]);
2554 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2555 }
2556}
2557
2558/* Must be called under cpus_read_lock */
2559int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2560 u16 index, enum xps_map_type type)
2561{
2562 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2563 const unsigned long *online_mask = NULL;
2564 bool active = false, copy = false;
2565 int i, j, tci, numa_node_id = -2;
2566 int maps_sz, num_tc = 1, tc = 0;
2567 struct xps_map *map, *new_map;
2568 unsigned int nr_ids;
2569
2570 WARN_ON_ONCE(index >= dev->num_tx_queues);
2571
2572 if (dev->num_tc) {
2573 /* Do not allow XPS on subordinate device directly */
2574 num_tc = dev->num_tc;
2575 if (num_tc < 0)
2576 return -EINVAL;
2577
2578 /* If queue belongs to subordinate dev use its map */
2579 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2580
2581 tc = netdev_txq_to_tc(dev, index);
2582 if (tc < 0)
2583 return -EINVAL;
2584 }
2585
2586 mutex_lock(&xps_map_mutex);
2587
2588 dev_maps = xmap_dereference(dev->xps_maps[type]);
2589 if (type == XPS_RXQS) {
2590 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2591 nr_ids = dev->num_rx_queues;
2592 } else {
2593 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2594 if (num_possible_cpus() > 1)
2595 online_mask = cpumask_bits(cpu_online_mask);
2596 nr_ids = nr_cpu_ids;
2597 }
2598
2599 if (maps_sz < L1_CACHE_BYTES)
2600 maps_sz = L1_CACHE_BYTES;
2601
2602 /* The old dev_maps could be larger or smaller than the one we're
2603 * setting up now, as dev->num_tc or nr_ids could have been updated in
2604 * between. We could try to be smart, but let's be safe instead and only
2605 * copy foreign traffic classes if the two map sizes match.
2606 */
2607 if (dev_maps &&
2608 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2609 copy = true;
2610
2611 /* allocate memory for queue storage */
2612 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2613 j < nr_ids;) {
2614 if (!new_dev_maps) {
2615 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2616 if (!new_dev_maps) {
2617 mutex_unlock(&xps_map_mutex);
2618 return -ENOMEM;
2619 }
2620
2621 new_dev_maps->nr_ids = nr_ids;
2622 new_dev_maps->num_tc = num_tc;
2623 }
2624
2625 tci = j * num_tc + tc;
2626 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2627
2628 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2629 if (!map)
2630 goto error;
2631
2632 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2633 }
2634
2635 if (!new_dev_maps)
2636 goto out_no_new_maps;
2637
2638 if (!dev_maps) {
2639 /* Increment static keys at most once per type */
2640 static_key_slow_inc_cpuslocked(&xps_needed);
2641 if (type == XPS_RXQS)
2642 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2643 }
2644
2645 for (j = 0; j < nr_ids; j++) {
2646 bool skip_tc = false;
2647
2648 tci = j * num_tc + tc;
2649 if (netif_attr_test_mask(j, mask, nr_ids) &&
2650 netif_attr_test_online(j, online_mask, nr_ids)) {
2651 /* add tx-queue to CPU/rx-queue maps */
2652 int pos = 0;
2653
2654 skip_tc = true;
2655
2656 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657 while ((pos < map->len) && (map->queues[pos] != index))
2658 pos++;
2659
2660 if (pos == map->len)
2661 map->queues[map->len++] = index;
2662#ifdef CONFIG_NUMA
2663 if (type == XPS_CPUS) {
2664 if (numa_node_id == -2)
2665 numa_node_id = cpu_to_node(j);
2666 else if (numa_node_id != cpu_to_node(j))
2667 numa_node_id = -1;
2668 }
2669#endif
2670 }
2671
2672 if (copy)
2673 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2674 skip_tc);
2675 }
2676
2677 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2678
2679 /* Cleanup old maps */
2680 if (!dev_maps)
2681 goto out_no_old_maps;
2682
2683 for (j = 0; j < dev_maps->nr_ids; j++) {
2684 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2685 map = xmap_dereference(dev_maps->attr_map[tci]);
2686 if (!map)
2687 continue;
2688
2689 if (copy) {
2690 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2691 if (map == new_map)
2692 continue;
2693 }
2694
2695 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2696 kfree_rcu(map, rcu);
2697 }
2698 }
2699
2700 old_dev_maps = dev_maps;
2701
2702out_no_old_maps:
2703 dev_maps = new_dev_maps;
2704 active = true;
2705
2706out_no_new_maps:
2707 if (type == XPS_CPUS)
2708 /* update Tx queue numa node */
2709 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2710 (numa_node_id >= 0) ?
2711 numa_node_id : NUMA_NO_NODE);
2712
2713 if (!dev_maps)
2714 goto out_no_maps;
2715
2716 /* removes tx-queue from unused CPUs/rx-queues */
2717 for (j = 0; j < dev_maps->nr_ids; j++) {
2718 tci = j * dev_maps->num_tc;
2719
2720 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2721 if (i == tc &&
2722 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2723 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2724 continue;
2725
2726 active |= remove_xps_queue(dev_maps,
2727 copy ? old_dev_maps : NULL,
2728 tci, index);
2729 }
2730 }
2731
2732 if (old_dev_maps)
2733 kfree_rcu(old_dev_maps, rcu);
2734
2735 /* free map if not active */
2736 if (!active)
2737 reset_xps_maps(dev, dev_maps, type);
2738
2739out_no_maps:
2740 mutex_unlock(&xps_map_mutex);
2741
2742 return 0;
2743error:
2744 /* remove any maps that we added */
2745 for (j = 0; j < nr_ids; j++) {
2746 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2747 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2748 map = copy ?
2749 xmap_dereference(dev_maps->attr_map[tci]) :
2750 NULL;
2751 if (new_map && new_map != map)
2752 kfree(new_map);
2753 }
2754 }
2755
2756 mutex_unlock(&xps_map_mutex);
2757
2758 kfree(new_dev_maps);
2759 return -ENOMEM;
2760}
2761EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2762
2763int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2764 u16 index)
2765{
2766 int ret;
2767
2768 cpus_read_lock();
2769 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2770 cpus_read_unlock();
2771
2772 return ret;
2773}
2774EXPORT_SYMBOL(netif_set_xps_queue);
2775
2776#endif
2777static void netdev_unbind_all_sb_channels(struct net_device *dev)
2778{
2779 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2780
2781 /* Unbind any subordinate channels */
2782 while (txq-- != &dev->_tx[0]) {
2783 if (txq->sb_dev)
2784 netdev_unbind_sb_channel(dev, txq->sb_dev);
2785 }
2786}
2787
2788void netdev_reset_tc(struct net_device *dev)
2789{
2790#ifdef CONFIG_XPS
2791 netif_reset_xps_queues_gt(dev, 0);
2792#endif
2793 netdev_unbind_all_sb_channels(dev);
2794
2795 /* Reset TC configuration of device */
2796 dev->num_tc = 0;
2797 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2798 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2799}
2800EXPORT_SYMBOL(netdev_reset_tc);
2801
2802int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2803{
2804 if (tc >= dev->num_tc)
2805 return -EINVAL;
2806
2807#ifdef CONFIG_XPS
2808 netif_reset_xps_queues(dev, offset, count);
2809#endif
2810 dev->tc_to_txq[tc].count = count;
2811 dev->tc_to_txq[tc].offset = offset;
2812 return 0;
2813}
2814EXPORT_SYMBOL(netdev_set_tc_queue);
2815
2816int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2817{
2818 if (num_tc > TC_MAX_QUEUE)
2819 return -EINVAL;
2820
2821#ifdef CONFIG_XPS
2822 netif_reset_xps_queues_gt(dev, 0);
2823#endif
2824 netdev_unbind_all_sb_channels(dev);
2825
2826 dev->num_tc = num_tc;
2827 return 0;
2828}
2829EXPORT_SYMBOL(netdev_set_num_tc);
2830
2831void netdev_unbind_sb_channel(struct net_device *dev,
2832 struct net_device *sb_dev)
2833{
2834 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2835
2836#ifdef CONFIG_XPS
2837 netif_reset_xps_queues_gt(sb_dev, 0);
2838#endif
2839 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2840 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2841
2842 while (txq-- != &dev->_tx[0]) {
2843 if (txq->sb_dev == sb_dev)
2844 txq->sb_dev = NULL;
2845 }
2846}
2847EXPORT_SYMBOL(netdev_unbind_sb_channel);
2848
2849int netdev_bind_sb_channel_queue(struct net_device *dev,
2850 struct net_device *sb_dev,
2851 u8 tc, u16 count, u16 offset)
2852{
2853 /* Make certain the sb_dev and dev are already configured */
2854 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2855 return -EINVAL;
2856
2857 /* We cannot hand out queues we don't have */
2858 if ((offset + count) > dev->real_num_tx_queues)
2859 return -EINVAL;
2860
2861 /* Record the mapping */
2862 sb_dev->tc_to_txq[tc].count = count;
2863 sb_dev->tc_to_txq[tc].offset = offset;
2864
2865 /* Provide a way for Tx queue to find the tc_to_txq map or
2866 * XPS map for itself.
2867 */
2868 while (count--)
2869 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2870
2871 return 0;
2872}
2873EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2874
2875int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2876{
2877 /* Do not use a multiqueue device to represent a subordinate channel */
2878 if (netif_is_multiqueue(dev))
2879 return -ENODEV;
2880
2881 /* We allow channels 1 - 32767 to be used for subordinate channels.
2882 * Channel 0 is meant to be "native" mode and used only to represent
2883 * the main root device. We allow writing 0 to reset the device back
2884 * to normal mode after being used as a subordinate channel.
2885 */
2886 if (channel > S16_MAX)
2887 return -EINVAL;
2888
2889 dev->num_tc = -channel;
2890
2891 return 0;
2892}
2893EXPORT_SYMBOL(netdev_set_sb_channel);
2894
2895/*
2896 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2897 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2898 */
2899int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2900{
2901 bool disabling;
2902 int rc;
2903
2904 disabling = txq < dev->real_num_tx_queues;
2905
2906 if (txq < 1 || txq > dev->num_tx_queues)
2907 return -EINVAL;
2908
2909 if (dev->reg_state == NETREG_REGISTERED ||
2910 dev->reg_state == NETREG_UNREGISTERING) {
2911 ASSERT_RTNL();
2912
2913 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2914 txq);
2915 if (rc)
2916 return rc;
2917
2918 if (dev->num_tc)
2919 netif_setup_tc(dev, txq);
2920
2921 dev_qdisc_change_real_num_tx(dev, txq);
2922
2923 dev->real_num_tx_queues = txq;
2924
2925 if (disabling) {
2926 synchronize_net();
2927 qdisc_reset_all_tx_gt(dev, txq);
2928#ifdef CONFIG_XPS
2929 netif_reset_xps_queues_gt(dev, txq);
2930#endif
2931 }
2932 } else {
2933 dev->real_num_tx_queues = txq;
2934 }
2935
2936 return 0;
2937}
2938EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2939
2940#ifdef CONFIG_SYSFS
2941/**
2942 * netif_set_real_num_rx_queues - set actual number of RX queues used
2943 * @dev: Network device
2944 * @rxq: Actual number of RX queues
2945 *
2946 * This must be called either with the rtnl_lock held or before
2947 * registration of the net device. Returns 0 on success, or a
2948 * negative error code. If called before registration, it always
2949 * succeeds.
2950 */
2951int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2952{
2953 int rc;
2954
2955 if (rxq < 1 || rxq > dev->num_rx_queues)
2956 return -EINVAL;
2957
2958 if (dev->reg_state == NETREG_REGISTERED) {
2959 ASSERT_RTNL();
2960
2961 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2962 rxq);
2963 if (rc)
2964 return rc;
2965 }
2966
2967 dev->real_num_rx_queues = rxq;
2968 return 0;
2969}
2970EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2971#endif
2972
2973/**
2974 * netif_set_real_num_queues - set actual number of RX and TX queues used
2975 * @dev: Network device
2976 * @txq: Actual number of TX queues
2977 * @rxq: Actual number of RX queues
2978 *
2979 * Set the real number of both TX and RX queues.
2980 * Does nothing if the number of queues is already correct.
2981 */
2982int netif_set_real_num_queues(struct net_device *dev,
2983 unsigned int txq, unsigned int rxq)
2984{
2985 unsigned int old_rxq = dev->real_num_rx_queues;
2986 int err;
2987
2988 if (txq < 1 || txq > dev->num_tx_queues ||
2989 rxq < 1 || rxq > dev->num_rx_queues)
2990 return -EINVAL;
2991
2992 /* Start from increases, so the error path only does decreases -
2993 * decreases can't fail.
2994 */
2995 if (rxq > dev->real_num_rx_queues) {
2996 err = netif_set_real_num_rx_queues(dev, rxq);
2997 if (err)
2998 return err;
2999 }
3000 if (txq > dev->real_num_tx_queues) {
3001 err = netif_set_real_num_tx_queues(dev, txq);
3002 if (err)
3003 goto undo_rx;
3004 }
3005 if (rxq < dev->real_num_rx_queues)
3006 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3007 if (txq < dev->real_num_tx_queues)
3008 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3009
3010 return 0;
3011undo_rx:
3012 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3013 return err;
3014}
3015EXPORT_SYMBOL(netif_set_real_num_queues);
3016
3017/**
3018 * netif_set_tso_max_size() - set the max size of TSO frames supported
3019 * @dev: netdev to update
3020 * @size: max skb->len of a TSO frame
3021 *
3022 * Set the limit on the size of TSO super-frames the device can handle.
3023 * Unless explicitly set the stack will assume the value of
3024 * %GSO_LEGACY_MAX_SIZE.
3025 */
3026void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3027{
3028 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3029 if (size < READ_ONCE(dev->gso_max_size))
3030 netif_set_gso_max_size(dev, size);
3031 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3032 netif_set_gso_ipv4_max_size(dev, size);
3033}
3034EXPORT_SYMBOL(netif_set_tso_max_size);
3035
3036/**
3037 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3038 * @dev: netdev to update
3039 * @segs: max number of TCP segments
3040 *
3041 * Set the limit on the number of TCP segments the device can generate from
3042 * a single TSO super-frame.
3043 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3044 */
3045void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3046{
3047 dev->tso_max_segs = segs;
3048 if (segs < READ_ONCE(dev->gso_max_segs))
3049 netif_set_gso_max_segs(dev, segs);
3050}
3051EXPORT_SYMBOL(netif_set_tso_max_segs);
3052
3053/**
3054 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3055 * @to: netdev to update
3056 * @from: netdev from which to copy the limits
3057 */
3058void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3059{
3060 netif_set_tso_max_size(to, from->tso_max_size);
3061 netif_set_tso_max_segs(to, from->tso_max_segs);
3062}
3063EXPORT_SYMBOL(netif_inherit_tso_max);
3064
3065/**
3066 * netif_get_num_default_rss_queues - default number of RSS queues
3067 *
3068 * Default value is the number of physical cores if there are only 1 or 2, or
3069 * divided by 2 if there are more.
3070 */
3071int netif_get_num_default_rss_queues(void)
3072{
3073 cpumask_var_t cpus;
3074 int cpu, count = 0;
3075
3076 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3077 return 1;
3078
3079 cpumask_copy(cpus, cpu_online_mask);
3080 for_each_cpu(cpu, cpus) {
3081 ++count;
3082 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3083 }
3084 free_cpumask_var(cpus);
3085
3086 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3087}
3088EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3089
3090static void __netif_reschedule(struct Qdisc *q)
3091{
3092 struct softnet_data *sd;
3093 unsigned long flags;
3094
3095 local_irq_save(flags);
3096 sd = this_cpu_ptr(&softnet_data);
3097 q->next_sched = NULL;
3098 *sd->output_queue_tailp = q;
3099 sd->output_queue_tailp = &q->next_sched;
3100 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3101 local_irq_restore(flags);
3102}
3103
3104void __netif_schedule(struct Qdisc *q)
3105{
3106 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3107 __netif_reschedule(q);
3108}
3109EXPORT_SYMBOL(__netif_schedule);
3110
3111struct dev_kfree_skb_cb {
3112 enum skb_drop_reason reason;
3113};
3114
3115static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3116{
3117 return (struct dev_kfree_skb_cb *)skb->cb;
3118}
3119
3120void netif_schedule_queue(struct netdev_queue *txq)
3121{
3122 rcu_read_lock();
3123 if (!netif_xmit_stopped(txq)) {
3124 struct Qdisc *q = rcu_dereference(txq->qdisc);
3125
3126 __netif_schedule(q);
3127 }
3128 rcu_read_unlock();
3129}
3130EXPORT_SYMBOL(netif_schedule_queue);
3131
3132void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3133{
3134 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3135 struct Qdisc *q;
3136
3137 rcu_read_lock();
3138 q = rcu_dereference(dev_queue->qdisc);
3139 __netif_schedule(q);
3140 rcu_read_unlock();
3141 }
3142}
3143EXPORT_SYMBOL(netif_tx_wake_queue);
3144
3145void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3146{
3147 unsigned long flags;
3148
3149 if (unlikely(!skb))
3150 return;
3151
3152 if (likely(refcount_read(&skb->users) == 1)) {
3153 smp_rmb();
3154 refcount_set(&skb->users, 0);
3155 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3156 return;
3157 }
3158 get_kfree_skb_cb(skb)->reason = reason;
3159 local_irq_save(flags);
3160 skb->next = __this_cpu_read(softnet_data.completion_queue);
3161 __this_cpu_write(softnet_data.completion_queue, skb);
3162 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3163 local_irq_restore(flags);
3164}
3165EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3166
3167void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3168{
3169 if (in_hardirq() || irqs_disabled())
3170 dev_kfree_skb_irq_reason(skb, reason);
3171 else
3172 kfree_skb_reason(skb, reason);
3173}
3174EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3175
3176
3177/**
3178 * netif_device_detach - mark device as removed
3179 * @dev: network device
3180 *
3181 * Mark device as removed from system and therefore no longer available.
3182 */
3183void netif_device_detach(struct net_device *dev)
3184{
3185 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3186 netif_running(dev)) {
3187 netif_tx_stop_all_queues(dev);
3188 }
3189}
3190EXPORT_SYMBOL(netif_device_detach);
3191
3192/**
3193 * netif_device_attach - mark device as attached
3194 * @dev: network device
3195 *
3196 * Mark device as attached from system and restart if needed.
3197 */
3198void netif_device_attach(struct net_device *dev)
3199{
3200 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3201 netif_running(dev)) {
3202 netif_tx_wake_all_queues(dev);
3203 __netdev_watchdog_up(dev);
3204 }
3205}
3206EXPORT_SYMBOL(netif_device_attach);
3207
3208/*
3209 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3210 * to be used as a distribution range.
3211 */
3212static u16 skb_tx_hash(const struct net_device *dev,
3213 const struct net_device *sb_dev,
3214 struct sk_buff *skb)
3215{
3216 u32 hash;
3217 u16 qoffset = 0;
3218 u16 qcount = dev->real_num_tx_queues;
3219
3220 if (dev->num_tc) {
3221 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3222
3223 qoffset = sb_dev->tc_to_txq[tc].offset;
3224 qcount = sb_dev->tc_to_txq[tc].count;
3225 if (unlikely(!qcount)) {
3226 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3227 sb_dev->name, qoffset, tc);
3228 qoffset = 0;
3229 qcount = dev->real_num_tx_queues;
3230 }
3231 }
3232
3233 if (skb_rx_queue_recorded(skb)) {
3234 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3235 hash = skb_get_rx_queue(skb);
3236 if (hash >= qoffset)
3237 hash -= qoffset;
3238 while (unlikely(hash >= qcount))
3239 hash -= qcount;
3240 return hash + qoffset;
3241 }
3242
3243 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3244}
3245
3246void skb_warn_bad_offload(const struct sk_buff *skb)
3247{
3248 static const netdev_features_t null_features;
3249 struct net_device *dev = skb->dev;
3250 const char *name = "";
3251
3252 if (!net_ratelimit())
3253 return;
3254
3255 if (dev) {
3256 if (dev->dev.parent)
3257 name = dev_driver_string(dev->dev.parent);
3258 else
3259 name = netdev_name(dev);
3260 }
3261 skb_dump(KERN_WARNING, skb, false);
3262 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3263 name, dev ? &dev->features : &null_features,
3264 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3265}
3266
3267/*
3268 * Invalidate hardware checksum when packet is to be mangled, and
3269 * complete checksum manually on outgoing path.
3270 */
3271int skb_checksum_help(struct sk_buff *skb)
3272{
3273 __wsum csum;
3274 int ret = 0, offset;
3275
3276 if (skb->ip_summed == CHECKSUM_COMPLETE)
3277 goto out_set_summed;
3278
3279 if (unlikely(skb_is_gso(skb))) {
3280 skb_warn_bad_offload(skb);
3281 return -EINVAL;
3282 }
3283
3284 /* Before computing a checksum, we should make sure no frag could
3285 * be modified by an external entity : checksum could be wrong.
3286 */
3287 if (skb_has_shared_frag(skb)) {
3288 ret = __skb_linearize(skb);
3289 if (ret)
3290 goto out;
3291 }
3292
3293 offset = skb_checksum_start_offset(skb);
3294 ret = -EINVAL;
3295 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3296 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3297 goto out;
3298 }
3299 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3300
3301 offset += skb->csum_offset;
3302 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3303 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3304 goto out;
3305 }
3306 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3307 if (ret)
3308 goto out;
3309
3310 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3311out_set_summed:
3312 skb->ip_summed = CHECKSUM_NONE;
3313out:
3314 return ret;
3315}
3316EXPORT_SYMBOL(skb_checksum_help);
3317
3318int skb_crc32c_csum_help(struct sk_buff *skb)
3319{
3320 __le32 crc32c_csum;
3321 int ret = 0, offset, start;
3322
3323 if (skb->ip_summed != CHECKSUM_PARTIAL)
3324 goto out;
3325
3326 if (unlikely(skb_is_gso(skb)))
3327 goto out;
3328
3329 /* Before computing a checksum, we should make sure no frag could
3330 * be modified by an external entity : checksum could be wrong.
3331 */
3332 if (unlikely(skb_has_shared_frag(skb))) {
3333 ret = __skb_linearize(skb);
3334 if (ret)
3335 goto out;
3336 }
3337 start = skb_checksum_start_offset(skb);
3338 offset = start + offsetof(struct sctphdr, checksum);
3339 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3340 ret = -EINVAL;
3341 goto out;
3342 }
3343
3344 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3345 if (ret)
3346 goto out;
3347
3348 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3349 skb->len - start, ~(__u32)0,
3350 crc32c_csum_stub));
3351 *(__le32 *)(skb->data + offset) = crc32c_csum;
3352 skb_reset_csum_not_inet(skb);
3353out:
3354 return ret;
3355}
3356
3357__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3358{
3359 __be16 type = skb->protocol;
3360
3361 /* Tunnel gso handlers can set protocol to ethernet. */
3362 if (type == htons(ETH_P_TEB)) {
3363 struct ethhdr *eth;
3364
3365 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3366 return 0;
3367
3368 eth = (struct ethhdr *)skb->data;
3369 type = eth->h_proto;
3370 }
3371
3372 return vlan_get_protocol_and_depth(skb, type, depth);
3373}
3374
3375
3376/* Take action when hardware reception checksum errors are detected. */
3377#ifdef CONFIG_BUG
3378static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3379{
3380 netdev_err(dev, "hw csum failure\n");
3381 skb_dump(KERN_ERR, skb, true);
3382 dump_stack();
3383}
3384
3385void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3386{
3387 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3388}
3389EXPORT_SYMBOL(netdev_rx_csum_fault);
3390#endif
3391
3392/* XXX: check that highmem exists at all on the given machine. */
3393static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3394{
3395#ifdef CONFIG_HIGHMEM
3396 int i;
3397
3398 if (!(dev->features & NETIF_F_HIGHDMA)) {
3399 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3400 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3401
3402 if (PageHighMem(skb_frag_page(frag)))
3403 return 1;
3404 }
3405 }
3406#endif
3407 return 0;
3408}
3409
3410/* If MPLS offload request, verify we are testing hardware MPLS features
3411 * instead of standard features for the netdev.
3412 */
3413#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3414static netdev_features_t net_mpls_features(struct sk_buff *skb,
3415 netdev_features_t features,
3416 __be16 type)
3417{
3418 if (eth_p_mpls(type))
3419 features &= skb->dev->mpls_features;
3420
3421 return features;
3422}
3423#else
3424static netdev_features_t net_mpls_features(struct sk_buff *skb,
3425 netdev_features_t features,
3426 __be16 type)
3427{
3428 return features;
3429}
3430#endif
3431
3432static netdev_features_t harmonize_features(struct sk_buff *skb,
3433 netdev_features_t features)
3434{
3435 __be16 type;
3436
3437 type = skb_network_protocol(skb, NULL);
3438 features = net_mpls_features(skb, features, type);
3439
3440 if (skb->ip_summed != CHECKSUM_NONE &&
3441 !can_checksum_protocol(features, type)) {
3442 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3443 }
3444 if (illegal_highdma(skb->dev, skb))
3445 features &= ~NETIF_F_SG;
3446
3447 return features;
3448}
3449
3450netdev_features_t passthru_features_check(struct sk_buff *skb,
3451 struct net_device *dev,
3452 netdev_features_t features)
3453{
3454 return features;
3455}
3456EXPORT_SYMBOL(passthru_features_check);
3457
3458static netdev_features_t dflt_features_check(struct sk_buff *skb,
3459 struct net_device *dev,
3460 netdev_features_t features)
3461{
3462 return vlan_features_check(skb, features);
3463}
3464
3465static netdev_features_t gso_features_check(const struct sk_buff *skb,
3466 struct net_device *dev,
3467 netdev_features_t features)
3468{
3469 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3470
3471 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3472 return features & ~NETIF_F_GSO_MASK;
3473
3474 if (!skb_shinfo(skb)->gso_type) {
3475 skb_warn_bad_offload(skb);
3476 return features & ~NETIF_F_GSO_MASK;
3477 }
3478
3479 /* Support for GSO partial features requires software
3480 * intervention before we can actually process the packets
3481 * so we need to strip support for any partial features now
3482 * and we can pull them back in after we have partially
3483 * segmented the frame.
3484 */
3485 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3486 features &= ~dev->gso_partial_features;
3487
3488 /* Make sure to clear the IPv4 ID mangling feature if the
3489 * IPv4 header has the potential to be fragmented.
3490 */
3491 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3492 struct iphdr *iph = skb->encapsulation ?
3493 inner_ip_hdr(skb) : ip_hdr(skb);
3494
3495 if (!(iph->frag_off & htons(IP_DF)))
3496 features &= ~NETIF_F_TSO_MANGLEID;
3497 }
3498
3499 return features;
3500}
3501
3502netdev_features_t netif_skb_features(struct sk_buff *skb)
3503{
3504 struct net_device *dev = skb->dev;
3505 netdev_features_t features = dev->features;
3506
3507 if (skb_is_gso(skb))
3508 features = gso_features_check(skb, dev, features);
3509
3510 /* If encapsulation offload request, verify we are testing
3511 * hardware encapsulation features instead of standard
3512 * features for the netdev
3513 */
3514 if (skb->encapsulation)
3515 features &= dev->hw_enc_features;
3516
3517 if (skb_vlan_tagged(skb))
3518 features = netdev_intersect_features(features,
3519 dev->vlan_features |
3520 NETIF_F_HW_VLAN_CTAG_TX |
3521 NETIF_F_HW_VLAN_STAG_TX);
3522
3523 if (dev->netdev_ops->ndo_features_check)
3524 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3525 features);
3526 else
3527 features &= dflt_features_check(skb, dev, features);
3528
3529 return harmonize_features(skb, features);
3530}
3531EXPORT_SYMBOL(netif_skb_features);
3532
3533static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3534 struct netdev_queue *txq, bool more)
3535{
3536 unsigned int len;
3537 int rc;
3538
3539 if (dev_nit_active(dev))
3540 dev_queue_xmit_nit(skb, dev);
3541
3542 len = skb->len;
3543 trace_net_dev_start_xmit(skb, dev);
3544 rc = netdev_start_xmit(skb, dev, txq, more);
3545 trace_net_dev_xmit(skb, rc, dev, len);
3546
3547 return rc;
3548}
3549
3550struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3551 struct netdev_queue *txq, int *ret)
3552{
3553 struct sk_buff *skb = first;
3554 int rc = NETDEV_TX_OK;
3555
3556 while (skb) {
3557 struct sk_buff *next = skb->next;
3558
3559 skb_mark_not_on_list(skb);
3560 rc = xmit_one(skb, dev, txq, next != NULL);
3561 if (unlikely(!dev_xmit_complete(rc))) {
3562 skb->next = next;
3563 goto out;
3564 }
3565
3566 skb = next;
3567 if (netif_tx_queue_stopped(txq) && skb) {
3568 rc = NETDEV_TX_BUSY;
3569 break;
3570 }
3571 }
3572
3573out:
3574 *ret = rc;
3575 return skb;
3576}
3577
3578static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3579 netdev_features_t features)
3580{
3581 if (skb_vlan_tag_present(skb) &&
3582 !vlan_hw_offload_capable(features, skb->vlan_proto))
3583 skb = __vlan_hwaccel_push_inside(skb);
3584 return skb;
3585}
3586
3587int skb_csum_hwoffload_help(struct sk_buff *skb,
3588 const netdev_features_t features)
3589{
3590 if (unlikely(skb_csum_is_sctp(skb)))
3591 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3592 skb_crc32c_csum_help(skb);
3593
3594 if (features & NETIF_F_HW_CSUM)
3595 return 0;
3596
3597 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3598 switch (skb->csum_offset) {
3599 case offsetof(struct tcphdr, check):
3600 case offsetof(struct udphdr, check):
3601 return 0;
3602 }
3603 }
3604
3605 return skb_checksum_help(skb);
3606}
3607EXPORT_SYMBOL(skb_csum_hwoffload_help);
3608
3609static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3610{
3611 netdev_features_t features;
3612
3613 features = netif_skb_features(skb);
3614 skb = validate_xmit_vlan(skb, features);
3615 if (unlikely(!skb))
3616 goto out_null;
3617
3618 skb = sk_validate_xmit_skb(skb, dev);
3619 if (unlikely(!skb))
3620 goto out_null;
3621
3622 if (netif_needs_gso(skb, features)) {
3623 struct sk_buff *segs;
3624
3625 segs = skb_gso_segment(skb, features);
3626 if (IS_ERR(segs)) {
3627 goto out_kfree_skb;
3628 } else if (segs) {
3629 consume_skb(skb);
3630 skb = segs;
3631 }
3632 } else {
3633 if (skb_needs_linearize(skb, features) &&
3634 __skb_linearize(skb))
3635 goto out_kfree_skb;
3636
3637 /* If packet is not checksummed and device does not
3638 * support checksumming for this protocol, complete
3639 * checksumming here.
3640 */
3641 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3642 if (skb->encapsulation)
3643 skb_set_inner_transport_header(skb,
3644 skb_checksum_start_offset(skb));
3645 else
3646 skb_set_transport_header(skb,
3647 skb_checksum_start_offset(skb));
3648 if (skb_csum_hwoffload_help(skb, features))
3649 goto out_kfree_skb;
3650 }
3651 }
3652
3653 skb = validate_xmit_xfrm(skb, features, again);
3654
3655 return skb;
3656
3657out_kfree_skb:
3658 kfree_skb(skb);
3659out_null:
3660 dev_core_stats_tx_dropped_inc(dev);
3661 return NULL;
3662}
3663
3664struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3665{
3666 struct sk_buff *next, *head = NULL, *tail;
3667
3668 for (; skb != NULL; skb = next) {
3669 next = skb->next;
3670 skb_mark_not_on_list(skb);
3671
3672 /* in case skb wont be segmented, point to itself */
3673 skb->prev = skb;
3674
3675 skb = validate_xmit_skb(skb, dev, again);
3676 if (!skb)
3677 continue;
3678
3679 if (!head)
3680 head = skb;
3681 else
3682 tail->next = skb;
3683 /* If skb was segmented, skb->prev points to
3684 * the last segment. If not, it still contains skb.
3685 */
3686 tail = skb->prev;
3687 }
3688 return head;
3689}
3690EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3691
3692static void qdisc_pkt_len_init(struct sk_buff *skb)
3693{
3694 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3695
3696 qdisc_skb_cb(skb)->pkt_len = skb->len;
3697
3698 /* To get more precise estimation of bytes sent on wire,
3699 * we add to pkt_len the headers size of all segments
3700 */
3701 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3702 u16 gso_segs = shinfo->gso_segs;
3703 unsigned int hdr_len;
3704
3705 /* mac layer + network layer */
3706 hdr_len = skb_transport_offset(skb);
3707
3708 /* + transport layer */
3709 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3710 const struct tcphdr *th;
3711 struct tcphdr _tcphdr;
3712
3713 th = skb_header_pointer(skb, hdr_len,
3714 sizeof(_tcphdr), &_tcphdr);
3715 if (likely(th))
3716 hdr_len += __tcp_hdrlen(th);
3717 } else {
3718 struct udphdr _udphdr;
3719
3720 if (skb_header_pointer(skb, hdr_len,
3721 sizeof(_udphdr), &_udphdr))
3722 hdr_len += sizeof(struct udphdr);
3723 }
3724
3725 if (shinfo->gso_type & SKB_GSO_DODGY)
3726 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3727 shinfo->gso_size);
3728
3729 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3730 }
3731}
3732
3733static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3734 struct sk_buff **to_free,
3735 struct netdev_queue *txq)
3736{
3737 int rc;
3738
3739 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3740 if (rc == NET_XMIT_SUCCESS)
3741 trace_qdisc_enqueue(q, txq, skb);
3742 return rc;
3743}
3744
3745static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3746 struct net_device *dev,
3747 struct netdev_queue *txq)
3748{
3749 spinlock_t *root_lock = qdisc_lock(q);
3750 struct sk_buff *to_free = NULL;
3751 bool contended;
3752 int rc;
3753
3754 qdisc_calculate_pkt_len(skb, q);
3755
3756 if (q->flags & TCQ_F_NOLOCK) {
3757 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3758 qdisc_run_begin(q)) {
3759 /* Retest nolock_qdisc_is_empty() within the protection
3760 * of q->seqlock to protect from racing with requeuing.
3761 */
3762 if (unlikely(!nolock_qdisc_is_empty(q))) {
3763 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3764 __qdisc_run(q);
3765 qdisc_run_end(q);
3766
3767 goto no_lock_out;
3768 }
3769
3770 qdisc_bstats_cpu_update(q, skb);
3771 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3772 !nolock_qdisc_is_empty(q))
3773 __qdisc_run(q);
3774
3775 qdisc_run_end(q);
3776 return NET_XMIT_SUCCESS;
3777 }
3778
3779 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3780 qdisc_run(q);
3781
3782no_lock_out:
3783 if (unlikely(to_free))
3784 kfree_skb_list_reason(to_free,
3785 SKB_DROP_REASON_QDISC_DROP);
3786 return rc;
3787 }
3788
3789 /*
3790 * Heuristic to force contended enqueues to serialize on a
3791 * separate lock before trying to get qdisc main lock.
3792 * This permits qdisc->running owner to get the lock more
3793 * often and dequeue packets faster.
3794 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3795 * and then other tasks will only enqueue packets. The packets will be
3796 * sent after the qdisc owner is scheduled again. To prevent this
3797 * scenario the task always serialize on the lock.
3798 */
3799 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3800 if (unlikely(contended))
3801 spin_lock(&q->busylock);
3802
3803 spin_lock(root_lock);
3804 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3805 __qdisc_drop(skb, &to_free);
3806 rc = NET_XMIT_DROP;
3807 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3808 qdisc_run_begin(q)) {
3809 /*
3810 * This is a work-conserving queue; there are no old skbs
3811 * waiting to be sent out; and the qdisc is not running -
3812 * xmit the skb directly.
3813 */
3814
3815 qdisc_bstats_update(q, skb);
3816
3817 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3818 if (unlikely(contended)) {
3819 spin_unlock(&q->busylock);
3820 contended = false;
3821 }
3822 __qdisc_run(q);
3823 }
3824
3825 qdisc_run_end(q);
3826 rc = NET_XMIT_SUCCESS;
3827 } else {
3828 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3829 if (qdisc_run_begin(q)) {
3830 if (unlikely(contended)) {
3831 spin_unlock(&q->busylock);
3832 contended = false;
3833 }
3834 __qdisc_run(q);
3835 qdisc_run_end(q);
3836 }
3837 }
3838 spin_unlock(root_lock);
3839 if (unlikely(to_free))
3840 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3841 if (unlikely(contended))
3842 spin_unlock(&q->busylock);
3843 return rc;
3844}
3845
3846#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3847static void skb_update_prio(struct sk_buff *skb)
3848{
3849 const struct netprio_map *map;
3850 const struct sock *sk;
3851 unsigned int prioidx;
3852
3853 if (skb->priority)
3854 return;
3855 map = rcu_dereference_bh(skb->dev->priomap);
3856 if (!map)
3857 return;
3858 sk = skb_to_full_sk(skb);
3859 if (!sk)
3860 return;
3861
3862 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3863
3864 if (prioidx < map->priomap_len)
3865 skb->priority = map->priomap[prioidx];
3866}
3867#else
3868#define skb_update_prio(skb)
3869#endif
3870
3871/**
3872 * dev_loopback_xmit - loop back @skb
3873 * @net: network namespace this loopback is happening in
3874 * @sk: sk needed to be a netfilter okfn
3875 * @skb: buffer to transmit
3876 */
3877int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3878{
3879 skb_reset_mac_header(skb);
3880 __skb_pull(skb, skb_network_offset(skb));
3881 skb->pkt_type = PACKET_LOOPBACK;
3882 if (skb->ip_summed == CHECKSUM_NONE)
3883 skb->ip_summed = CHECKSUM_UNNECESSARY;
3884 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3885 skb_dst_force(skb);
3886 netif_rx(skb);
3887 return 0;
3888}
3889EXPORT_SYMBOL(dev_loopback_xmit);
3890
3891#ifdef CONFIG_NET_EGRESS
3892static struct netdev_queue *
3893netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3894{
3895 int qm = skb_get_queue_mapping(skb);
3896
3897 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3898}
3899
3900static bool netdev_xmit_txqueue_skipped(void)
3901{
3902 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3903}
3904
3905void netdev_xmit_skip_txqueue(bool skip)
3906{
3907 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3908}
3909EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3910#endif /* CONFIG_NET_EGRESS */
3911
3912#ifdef CONFIG_NET_XGRESS
3913static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3914{
3915 int ret = TC_ACT_UNSPEC;
3916#ifdef CONFIG_NET_CLS_ACT
3917 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3918 struct tcf_result res;
3919
3920 if (!miniq)
3921 return ret;
3922
3923 tc_skb_cb(skb)->mru = 0;
3924 tc_skb_cb(skb)->post_ct = false;
3925
3926 mini_qdisc_bstats_cpu_update(miniq, skb);
3927 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3928 /* Only tcf related quirks below. */
3929 switch (ret) {
3930 case TC_ACT_SHOT:
3931 mini_qdisc_qstats_cpu_drop(miniq);
3932 break;
3933 case TC_ACT_OK:
3934 case TC_ACT_RECLASSIFY:
3935 skb->tc_index = TC_H_MIN(res.classid);
3936 break;
3937 }
3938#endif /* CONFIG_NET_CLS_ACT */
3939 return ret;
3940}
3941
3942static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3943
3944void tcx_inc(void)
3945{
3946 static_branch_inc(&tcx_needed_key);
3947}
3948
3949void tcx_dec(void)
3950{
3951 static_branch_dec(&tcx_needed_key);
3952}
3953
3954static __always_inline enum tcx_action_base
3955tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3956 const bool needs_mac)
3957{
3958 const struct bpf_mprog_fp *fp;
3959 const struct bpf_prog *prog;
3960 int ret = TCX_NEXT;
3961
3962 if (needs_mac)
3963 __skb_push(skb, skb->mac_len);
3964 bpf_mprog_foreach_prog(entry, fp, prog) {
3965 bpf_compute_data_pointers(skb);
3966 ret = bpf_prog_run(prog, skb);
3967 if (ret != TCX_NEXT)
3968 break;
3969 }
3970 if (needs_mac)
3971 __skb_pull(skb, skb->mac_len);
3972 return tcx_action_code(skb, ret);
3973}
3974
3975static __always_inline struct sk_buff *
3976sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3977 struct net_device *orig_dev, bool *another)
3978{
3979 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3980 int sch_ret;
3981
3982 if (!entry)
3983 return skb;
3984 if (*pt_prev) {
3985 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3986 *pt_prev = NULL;
3987 }
3988
3989 qdisc_skb_cb(skb)->pkt_len = skb->len;
3990 tcx_set_ingress(skb, true);
3991
3992 if (static_branch_unlikely(&tcx_needed_key)) {
3993 sch_ret = tcx_run(entry, skb, true);
3994 if (sch_ret != TC_ACT_UNSPEC)
3995 goto ingress_verdict;
3996 }
3997 sch_ret = tc_run(tcx_entry(entry), skb);
3998ingress_verdict:
3999 switch (sch_ret) {
4000 case TC_ACT_REDIRECT:
4001 /* skb_mac_header check was done by BPF, so we can safely
4002 * push the L2 header back before redirecting to another
4003 * netdev.
4004 */
4005 __skb_push(skb, skb->mac_len);
4006 if (skb_do_redirect(skb) == -EAGAIN) {
4007 __skb_pull(skb, skb->mac_len);
4008 *another = true;
4009 break;
4010 }
4011 *ret = NET_RX_SUCCESS;
4012 return NULL;
4013 case TC_ACT_SHOT:
4014 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4015 *ret = NET_RX_DROP;
4016 return NULL;
4017 /* used by tc_run */
4018 case TC_ACT_STOLEN:
4019 case TC_ACT_QUEUED:
4020 case TC_ACT_TRAP:
4021 consume_skb(skb);
4022 fallthrough;
4023 case TC_ACT_CONSUMED:
4024 *ret = NET_RX_SUCCESS;
4025 return NULL;
4026 }
4027
4028 return skb;
4029}
4030
4031static __always_inline struct sk_buff *
4032sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4033{
4034 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4035 int sch_ret;
4036
4037 if (!entry)
4038 return skb;
4039
4040 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4041 * already set by the caller.
4042 */
4043 if (static_branch_unlikely(&tcx_needed_key)) {
4044 sch_ret = tcx_run(entry, skb, false);
4045 if (sch_ret != TC_ACT_UNSPEC)
4046 goto egress_verdict;
4047 }
4048 sch_ret = tc_run(tcx_entry(entry), skb);
4049egress_verdict:
4050 switch (sch_ret) {
4051 case TC_ACT_REDIRECT:
4052 /* No need to push/pop skb's mac_header here on egress! */
4053 skb_do_redirect(skb);
4054 *ret = NET_XMIT_SUCCESS;
4055 return NULL;
4056 case TC_ACT_SHOT:
4057 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4058 *ret = NET_XMIT_DROP;
4059 return NULL;
4060 /* used by tc_run */
4061 case TC_ACT_STOLEN:
4062 case TC_ACT_QUEUED:
4063 case TC_ACT_TRAP:
4064 consume_skb(skb);
4065 fallthrough;
4066 case TC_ACT_CONSUMED:
4067 *ret = NET_XMIT_SUCCESS;
4068 return NULL;
4069 }
4070
4071 return skb;
4072}
4073#else
4074static __always_inline struct sk_buff *
4075sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4076 struct net_device *orig_dev, bool *another)
4077{
4078 return skb;
4079}
4080
4081static __always_inline struct sk_buff *
4082sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4083{
4084 return skb;
4085}
4086#endif /* CONFIG_NET_XGRESS */
4087
4088#ifdef CONFIG_XPS
4089static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4090 struct xps_dev_maps *dev_maps, unsigned int tci)
4091{
4092 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4093 struct xps_map *map;
4094 int queue_index = -1;
4095
4096 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4097 return queue_index;
4098
4099 tci *= dev_maps->num_tc;
4100 tci += tc;
4101
4102 map = rcu_dereference(dev_maps->attr_map[tci]);
4103 if (map) {
4104 if (map->len == 1)
4105 queue_index = map->queues[0];
4106 else
4107 queue_index = map->queues[reciprocal_scale(
4108 skb_get_hash(skb), map->len)];
4109 if (unlikely(queue_index >= dev->real_num_tx_queues))
4110 queue_index = -1;
4111 }
4112 return queue_index;
4113}
4114#endif
4115
4116static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4117 struct sk_buff *skb)
4118{
4119#ifdef CONFIG_XPS
4120 struct xps_dev_maps *dev_maps;
4121 struct sock *sk = skb->sk;
4122 int queue_index = -1;
4123
4124 if (!static_key_false(&xps_needed))
4125 return -1;
4126
4127 rcu_read_lock();
4128 if (!static_key_false(&xps_rxqs_needed))
4129 goto get_cpus_map;
4130
4131 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4132 if (dev_maps) {
4133 int tci = sk_rx_queue_get(sk);
4134
4135 if (tci >= 0)
4136 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4137 tci);
4138 }
4139
4140get_cpus_map:
4141 if (queue_index < 0) {
4142 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4143 if (dev_maps) {
4144 unsigned int tci = skb->sender_cpu - 1;
4145
4146 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4147 tci);
4148 }
4149 }
4150 rcu_read_unlock();
4151
4152 return queue_index;
4153#else
4154 return -1;
4155#endif
4156}
4157
4158u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4159 struct net_device *sb_dev)
4160{
4161 return 0;
4162}
4163EXPORT_SYMBOL(dev_pick_tx_zero);
4164
4165u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4166 struct net_device *sb_dev)
4167{
4168 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4169}
4170EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4171
4172u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4173 struct net_device *sb_dev)
4174{
4175 struct sock *sk = skb->sk;
4176 int queue_index = sk_tx_queue_get(sk);
4177
4178 sb_dev = sb_dev ? : dev;
4179
4180 if (queue_index < 0 || skb->ooo_okay ||
4181 queue_index >= dev->real_num_tx_queues) {
4182 int new_index = get_xps_queue(dev, sb_dev, skb);
4183
4184 if (new_index < 0)
4185 new_index = skb_tx_hash(dev, sb_dev, skb);
4186
4187 if (queue_index != new_index && sk &&
4188 sk_fullsock(sk) &&
4189 rcu_access_pointer(sk->sk_dst_cache))
4190 sk_tx_queue_set(sk, new_index);
4191
4192 queue_index = new_index;
4193 }
4194
4195 return queue_index;
4196}
4197EXPORT_SYMBOL(netdev_pick_tx);
4198
4199struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4200 struct sk_buff *skb,
4201 struct net_device *sb_dev)
4202{
4203 int queue_index = 0;
4204
4205#ifdef CONFIG_XPS
4206 u32 sender_cpu = skb->sender_cpu - 1;
4207
4208 if (sender_cpu >= (u32)NR_CPUS)
4209 skb->sender_cpu = raw_smp_processor_id() + 1;
4210#endif
4211
4212 if (dev->real_num_tx_queues != 1) {
4213 const struct net_device_ops *ops = dev->netdev_ops;
4214
4215 if (ops->ndo_select_queue)
4216 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4217 else
4218 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4219
4220 queue_index = netdev_cap_txqueue(dev, queue_index);
4221 }
4222
4223 skb_set_queue_mapping(skb, queue_index);
4224 return netdev_get_tx_queue(dev, queue_index);
4225}
4226
4227/**
4228 * __dev_queue_xmit() - transmit a buffer
4229 * @skb: buffer to transmit
4230 * @sb_dev: suboordinate device used for L2 forwarding offload
4231 *
4232 * Queue a buffer for transmission to a network device. The caller must
4233 * have set the device and priority and built the buffer before calling
4234 * this function. The function can be called from an interrupt.
4235 *
4236 * When calling this method, interrupts MUST be enabled. This is because
4237 * the BH enable code must have IRQs enabled so that it will not deadlock.
4238 *
4239 * Regardless of the return value, the skb is consumed, so it is currently
4240 * difficult to retry a send to this method. (You can bump the ref count
4241 * before sending to hold a reference for retry if you are careful.)
4242 *
4243 * Return:
4244 * * 0 - buffer successfully transmitted
4245 * * positive qdisc return code - NET_XMIT_DROP etc.
4246 * * negative errno - other errors
4247 */
4248int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4249{
4250 struct net_device *dev = skb->dev;
4251 struct netdev_queue *txq = NULL;
4252 struct Qdisc *q;
4253 int rc = -ENOMEM;
4254 bool again = false;
4255
4256 skb_reset_mac_header(skb);
4257 skb_assert_len(skb);
4258
4259 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4260 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4261
4262 /* Disable soft irqs for various locks below. Also
4263 * stops preemption for RCU.
4264 */
4265 rcu_read_lock_bh();
4266
4267 skb_update_prio(skb);
4268
4269 qdisc_pkt_len_init(skb);
4270 tcx_set_ingress(skb, false);
4271#ifdef CONFIG_NET_EGRESS
4272 if (static_branch_unlikely(&egress_needed_key)) {
4273 if (nf_hook_egress_active()) {
4274 skb = nf_hook_egress(skb, &rc, dev);
4275 if (!skb)
4276 goto out;
4277 }
4278
4279 netdev_xmit_skip_txqueue(false);
4280
4281 nf_skip_egress(skb, true);
4282 skb = sch_handle_egress(skb, &rc, dev);
4283 if (!skb)
4284 goto out;
4285 nf_skip_egress(skb, false);
4286
4287 if (netdev_xmit_txqueue_skipped())
4288 txq = netdev_tx_queue_mapping(dev, skb);
4289 }
4290#endif
4291 /* If device/qdisc don't need skb->dst, release it right now while
4292 * its hot in this cpu cache.
4293 */
4294 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4295 skb_dst_drop(skb);
4296 else
4297 skb_dst_force(skb);
4298
4299 if (!txq)
4300 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4301
4302 q = rcu_dereference_bh(txq->qdisc);
4303
4304 trace_net_dev_queue(skb);
4305 if (q->enqueue) {
4306 rc = __dev_xmit_skb(skb, q, dev, txq);
4307 goto out;
4308 }
4309
4310 /* The device has no queue. Common case for software devices:
4311 * loopback, all the sorts of tunnels...
4312
4313 * Really, it is unlikely that netif_tx_lock protection is necessary
4314 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4315 * counters.)
4316 * However, it is possible, that they rely on protection
4317 * made by us here.
4318
4319 * Check this and shot the lock. It is not prone from deadlocks.
4320 *Either shot noqueue qdisc, it is even simpler 8)
4321 */
4322 if (dev->flags & IFF_UP) {
4323 int cpu = smp_processor_id(); /* ok because BHs are off */
4324
4325 /* Other cpus might concurrently change txq->xmit_lock_owner
4326 * to -1 or to their cpu id, but not to our id.
4327 */
4328 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4329 if (dev_xmit_recursion())
4330 goto recursion_alert;
4331
4332 skb = validate_xmit_skb(skb, dev, &again);
4333 if (!skb)
4334 goto out;
4335
4336 HARD_TX_LOCK(dev, txq, cpu);
4337
4338 if (!netif_xmit_stopped(txq)) {
4339 dev_xmit_recursion_inc();
4340 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4341 dev_xmit_recursion_dec();
4342 if (dev_xmit_complete(rc)) {
4343 HARD_TX_UNLOCK(dev, txq);
4344 goto out;
4345 }
4346 }
4347 HARD_TX_UNLOCK(dev, txq);
4348 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4349 dev->name);
4350 } else {
4351 /* Recursion is detected! It is possible,
4352 * unfortunately
4353 */
4354recursion_alert:
4355 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4356 dev->name);
4357 }
4358 }
4359
4360 rc = -ENETDOWN;
4361 rcu_read_unlock_bh();
4362
4363 dev_core_stats_tx_dropped_inc(dev);
4364 kfree_skb_list(skb);
4365 return rc;
4366out:
4367 rcu_read_unlock_bh();
4368 return rc;
4369}
4370EXPORT_SYMBOL(__dev_queue_xmit);
4371
4372int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4373{
4374 struct net_device *dev = skb->dev;
4375 struct sk_buff *orig_skb = skb;
4376 struct netdev_queue *txq;
4377 int ret = NETDEV_TX_BUSY;
4378 bool again = false;
4379
4380 if (unlikely(!netif_running(dev) ||
4381 !netif_carrier_ok(dev)))
4382 goto drop;
4383
4384 skb = validate_xmit_skb_list(skb, dev, &again);
4385 if (skb != orig_skb)
4386 goto drop;
4387
4388 skb_set_queue_mapping(skb, queue_id);
4389 txq = skb_get_tx_queue(dev, skb);
4390
4391 local_bh_disable();
4392
4393 dev_xmit_recursion_inc();
4394 HARD_TX_LOCK(dev, txq, smp_processor_id());
4395 if (!netif_xmit_frozen_or_drv_stopped(txq))
4396 ret = netdev_start_xmit(skb, dev, txq, false);
4397 HARD_TX_UNLOCK(dev, txq);
4398 dev_xmit_recursion_dec();
4399
4400 local_bh_enable();
4401 return ret;
4402drop:
4403 dev_core_stats_tx_dropped_inc(dev);
4404 kfree_skb_list(skb);
4405 return NET_XMIT_DROP;
4406}
4407EXPORT_SYMBOL(__dev_direct_xmit);
4408
4409/*************************************************************************
4410 * Receiver routines
4411 *************************************************************************/
4412
4413int netdev_max_backlog __read_mostly = 1000;
4414EXPORT_SYMBOL(netdev_max_backlog);
4415
4416int netdev_tstamp_prequeue __read_mostly = 1;
4417unsigned int sysctl_skb_defer_max __read_mostly = 64;
4418int netdev_budget __read_mostly = 300;
4419/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4420unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4421int weight_p __read_mostly = 64; /* old backlog weight */
4422int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4423int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4424int dev_rx_weight __read_mostly = 64;
4425int dev_tx_weight __read_mostly = 64;
4426
4427/* Called with irq disabled */
4428static inline void ____napi_schedule(struct softnet_data *sd,
4429 struct napi_struct *napi)
4430{
4431 struct task_struct *thread;
4432
4433 lockdep_assert_irqs_disabled();
4434
4435 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4436 /* Paired with smp_mb__before_atomic() in
4437 * napi_enable()/dev_set_threaded().
4438 * Use READ_ONCE() to guarantee a complete
4439 * read on napi->thread. Only call
4440 * wake_up_process() when it's not NULL.
4441 */
4442 thread = READ_ONCE(napi->thread);
4443 if (thread) {
4444 /* Avoid doing set_bit() if the thread is in
4445 * INTERRUPTIBLE state, cause napi_thread_wait()
4446 * makes sure to proceed with napi polling
4447 * if the thread is explicitly woken from here.
4448 */
4449 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4450 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4451 wake_up_process(thread);
4452 return;
4453 }
4454 }
4455
4456 list_add_tail(&napi->poll_list, &sd->poll_list);
4457 WRITE_ONCE(napi->list_owner, smp_processor_id());
4458 /* If not called from net_rx_action()
4459 * we have to raise NET_RX_SOFTIRQ.
4460 */
4461 if (!sd->in_net_rx_action)
4462 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4463}
4464
4465#ifdef CONFIG_RPS
4466
4467/* One global table that all flow-based protocols share. */
4468struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4469EXPORT_SYMBOL(rps_sock_flow_table);
4470u32 rps_cpu_mask __read_mostly;
4471EXPORT_SYMBOL(rps_cpu_mask);
4472
4473struct static_key_false rps_needed __read_mostly;
4474EXPORT_SYMBOL(rps_needed);
4475struct static_key_false rfs_needed __read_mostly;
4476EXPORT_SYMBOL(rfs_needed);
4477
4478static struct rps_dev_flow *
4479set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4480 struct rps_dev_flow *rflow, u16 next_cpu)
4481{
4482 if (next_cpu < nr_cpu_ids) {
4483#ifdef CONFIG_RFS_ACCEL
4484 struct netdev_rx_queue *rxqueue;
4485 struct rps_dev_flow_table *flow_table;
4486 struct rps_dev_flow *old_rflow;
4487 u32 flow_id;
4488 u16 rxq_index;
4489 int rc;
4490
4491 /* Should we steer this flow to a different hardware queue? */
4492 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4493 !(dev->features & NETIF_F_NTUPLE))
4494 goto out;
4495 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4496 if (rxq_index == skb_get_rx_queue(skb))
4497 goto out;
4498
4499 rxqueue = dev->_rx + rxq_index;
4500 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4501 if (!flow_table)
4502 goto out;
4503 flow_id = skb_get_hash(skb) & flow_table->mask;
4504 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4505 rxq_index, flow_id);
4506 if (rc < 0)
4507 goto out;
4508 old_rflow = rflow;
4509 rflow = &flow_table->flows[flow_id];
4510 rflow->filter = rc;
4511 if (old_rflow->filter == rflow->filter)
4512 old_rflow->filter = RPS_NO_FILTER;
4513 out:
4514#endif
4515 rflow->last_qtail =
4516 per_cpu(softnet_data, next_cpu).input_queue_head;
4517 }
4518
4519 rflow->cpu = next_cpu;
4520 return rflow;
4521}
4522
4523/*
4524 * get_rps_cpu is called from netif_receive_skb and returns the target
4525 * CPU from the RPS map of the receiving queue for a given skb.
4526 * rcu_read_lock must be held on entry.
4527 */
4528static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4529 struct rps_dev_flow **rflowp)
4530{
4531 const struct rps_sock_flow_table *sock_flow_table;
4532 struct netdev_rx_queue *rxqueue = dev->_rx;
4533 struct rps_dev_flow_table *flow_table;
4534 struct rps_map *map;
4535 int cpu = -1;
4536 u32 tcpu;
4537 u32 hash;
4538
4539 if (skb_rx_queue_recorded(skb)) {
4540 u16 index = skb_get_rx_queue(skb);
4541
4542 if (unlikely(index >= dev->real_num_rx_queues)) {
4543 WARN_ONCE(dev->real_num_rx_queues > 1,
4544 "%s received packet on queue %u, but number "
4545 "of RX queues is %u\n",
4546 dev->name, index, dev->real_num_rx_queues);
4547 goto done;
4548 }
4549 rxqueue += index;
4550 }
4551
4552 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4553
4554 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4555 map = rcu_dereference(rxqueue->rps_map);
4556 if (!flow_table && !map)
4557 goto done;
4558
4559 skb_reset_network_header(skb);
4560 hash = skb_get_hash(skb);
4561 if (!hash)
4562 goto done;
4563
4564 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4565 if (flow_table && sock_flow_table) {
4566 struct rps_dev_flow *rflow;
4567 u32 next_cpu;
4568 u32 ident;
4569
4570 /* First check into global flow table if there is a match.
4571 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4572 */
4573 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4574 if ((ident ^ hash) & ~rps_cpu_mask)
4575 goto try_rps;
4576
4577 next_cpu = ident & rps_cpu_mask;
4578
4579 /* OK, now we know there is a match,
4580 * we can look at the local (per receive queue) flow table
4581 */
4582 rflow = &flow_table->flows[hash & flow_table->mask];
4583 tcpu = rflow->cpu;
4584
4585 /*
4586 * If the desired CPU (where last recvmsg was done) is
4587 * different from current CPU (one in the rx-queue flow
4588 * table entry), switch if one of the following holds:
4589 * - Current CPU is unset (>= nr_cpu_ids).
4590 * - Current CPU is offline.
4591 * - The current CPU's queue tail has advanced beyond the
4592 * last packet that was enqueued using this table entry.
4593 * This guarantees that all previous packets for the flow
4594 * have been dequeued, thus preserving in order delivery.
4595 */
4596 if (unlikely(tcpu != next_cpu) &&
4597 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4598 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4599 rflow->last_qtail)) >= 0)) {
4600 tcpu = next_cpu;
4601 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4602 }
4603
4604 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4605 *rflowp = rflow;
4606 cpu = tcpu;
4607 goto done;
4608 }
4609 }
4610
4611try_rps:
4612
4613 if (map) {
4614 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4615 if (cpu_online(tcpu)) {
4616 cpu = tcpu;
4617 goto done;
4618 }
4619 }
4620
4621done:
4622 return cpu;
4623}
4624
4625#ifdef CONFIG_RFS_ACCEL
4626
4627/**
4628 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4629 * @dev: Device on which the filter was set
4630 * @rxq_index: RX queue index
4631 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4632 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4633 *
4634 * Drivers that implement ndo_rx_flow_steer() should periodically call
4635 * this function for each installed filter and remove the filters for
4636 * which it returns %true.
4637 */
4638bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4639 u32 flow_id, u16 filter_id)
4640{
4641 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4642 struct rps_dev_flow_table *flow_table;
4643 struct rps_dev_flow *rflow;
4644 bool expire = true;
4645 unsigned int cpu;
4646
4647 rcu_read_lock();
4648 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4649 if (flow_table && flow_id <= flow_table->mask) {
4650 rflow = &flow_table->flows[flow_id];
4651 cpu = READ_ONCE(rflow->cpu);
4652 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4653 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4654 rflow->last_qtail) <
4655 (int)(10 * flow_table->mask)))
4656 expire = false;
4657 }
4658 rcu_read_unlock();
4659 return expire;
4660}
4661EXPORT_SYMBOL(rps_may_expire_flow);
4662
4663#endif /* CONFIG_RFS_ACCEL */
4664
4665/* Called from hardirq (IPI) context */
4666static void rps_trigger_softirq(void *data)
4667{
4668 struct softnet_data *sd = data;
4669
4670 ____napi_schedule(sd, &sd->backlog);
4671 sd->received_rps++;
4672}
4673
4674#endif /* CONFIG_RPS */
4675
4676/* Called from hardirq (IPI) context */
4677static void trigger_rx_softirq(void *data)
4678{
4679 struct softnet_data *sd = data;
4680
4681 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4682 smp_store_release(&sd->defer_ipi_scheduled, 0);
4683}
4684
4685/*
4686 * After we queued a packet into sd->input_pkt_queue,
4687 * we need to make sure this queue is serviced soon.
4688 *
4689 * - If this is another cpu queue, link it to our rps_ipi_list,
4690 * and make sure we will process rps_ipi_list from net_rx_action().
4691 *
4692 * - If this is our own queue, NAPI schedule our backlog.
4693 * Note that this also raises NET_RX_SOFTIRQ.
4694 */
4695static void napi_schedule_rps(struct softnet_data *sd)
4696{
4697 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4698
4699#ifdef CONFIG_RPS
4700 if (sd != mysd) {
4701 sd->rps_ipi_next = mysd->rps_ipi_list;
4702 mysd->rps_ipi_list = sd;
4703
4704 /* If not called from net_rx_action() or napi_threaded_poll()
4705 * we have to raise NET_RX_SOFTIRQ.
4706 */
4707 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4708 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4709 return;
4710 }
4711#endif /* CONFIG_RPS */
4712 __napi_schedule_irqoff(&mysd->backlog);
4713}
4714
4715#ifdef CONFIG_NET_FLOW_LIMIT
4716int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4717#endif
4718
4719static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4720{
4721#ifdef CONFIG_NET_FLOW_LIMIT
4722 struct sd_flow_limit *fl;
4723 struct softnet_data *sd;
4724 unsigned int old_flow, new_flow;
4725
4726 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4727 return false;
4728
4729 sd = this_cpu_ptr(&softnet_data);
4730
4731 rcu_read_lock();
4732 fl = rcu_dereference(sd->flow_limit);
4733 if (fl) {
4734 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4735 old_flow = fl->history[fl->history_head];
4736 fl->history[fl->history_head] = new_flow;
4737
4738 fl->history_head++;
4739 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4740
4741 if (likely(fl->buckets[old_flow]))
4742 fl->buckets[old_flow]--;
4743
4744 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4745 fl->count++;
4746 rcu_read_unlock();
4747 return true;
4748 }
4749 }
4750 rcu_read_unlock();
4751#endif
4752 return false;
4753}
4754
4755/*
4756 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4757 * queue (may be a remote CPU queue).
4758 */
4759static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4760 unsigned int *qtail)
4761{
4762 enum skb_drop_reason reason;
4763 struct softnet_data *sd;
4764 unsigned long flags;
4765 unsigned int qlen;
4766
4767 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4768 sd = &per_cpu(softnet_data, cpu);
4769
4770 rps_lock_irqsave(sd, &flags);
4771 if (!netif_running(skb->dev))
4772 goto drop;
4773 qlen = skb_queue_len(&sd->input_pkt_queue);
4774 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4775 if (qlen) {
4776enqueue:
4777 __skb_queue_tail(&sd->input_pkt_queue, skb);
4778 input_queue_tail_incr_save(sd, qtail);
4779 rps_unlock_irq_restore(sd, &flags);
4780 return NET_RX_SUCCESS;
4781 }
4782
4783 /* Schedule NAPI for backlog device
4784 * We can use non atomic operation since we own the queue lock
4785 */
4786 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4787 napi_schedule_rps(sd);
4788 goto enqueue;
4789 }
4790 reason = SKB_DROP_REASON_CPU_BACKLOG;
4791
4792drop:
4793 sd->dropped++;
4794 rps_unlock_irq_restore(sd, &flags);
4795
4796 dev_core_stats_rx_dropped_inc(skb->dev);
4797 kfree_skb_reason(skb, reason);
4798 return NET_RX_DROP;
4799}
4800
4801static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4802{
4803 struct net_device *dev = skb->dev;
4804 struct netdev_rx_queue *rxqueue;
4805
4806 rxqueue = dev->_rx;
4807
4808 if (skb_rx_queue_recorded(skb)) {
4809 u16 index = skb_get_rx_queue(skb);
4810
4811 if (unlikely(index >= dev->real_num_rx_queues)) {
4812 WARN_ONCE(dev->real_num_rx_queues > 1,
4813 "%s received packet on queue %u, but number "
4814 "of RX queues is %u\n",
4815 dev->name, index, dev->real_num_rx_queues);
4816
4817 return rxqueue; /* Return first rxqueue */
4818 }
4819 rxqueue += index;
4820 }
4821 return rxqueue;
4822}
4823
4824u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4825 struct bpf_prog *xdp_prog)
4826{
4827 void *orig_data, *orig_data_end, *hard_start;
4828 struct netdev_rx_queue *rxqueue;
4829 bool orig_bcast, orig_host;
4830 u32 mac_len, frame_sz;
4831 __be16 orig_eth_type;
4832 struct ethhdr *eth;
4833 u32 metalen, act;
4834 int off;
4835
4836 /* The XDP program wants to see the packet starting at the MAC
4837 * header.
4838 */
4839 mac_len = skb->data - skb_mac_header(skb);
4840 hard_start = skb->data - skb_headroom(skb);
4841
4842 /* SKB "head" area always have tailroom for skb_shared_info */
4843 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4844 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4845
4846 rxqueue = netif_get_rxqueue(skb);
4847 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4848 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4849 skb_headlen(skb) + mac_len, true);
4850
4851 orig_data_end = xdp->data_end;
4852 orig_data = xdp->data;
4853 eth = (struct ethhdr *)xdp->data;
4854 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4855 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4856 orig_eth_type = eth->h_proto;
4857
4858 act = bpf_prog_run_xdp(xdp_prog, xdp);
4859
4860 /* check if bpf_xdp_adjust_head was used */
4861 off = xdp->data - orig_data;
4862 if (off) {
4863 if (off > 0)
4864 __skb_pull(skb, off);
4865 else if (off < 0)
4866 __skb_push(skb, -off);
4867
4868 skb->mac_header += off;
4869 skb_reset_network_header(skb);
4870 }
4871
4872 /* check if bpf_xdp_adjust_tail was used */
4873 off = xdp->data_end - orig_data_end;
4874 if (off != 0) {
4875 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4876 skb->len += off; /* positive on grow, negative on shrink */
4877 }
4878
4879 /* check if XDP changed eth hdr such SKB needs update */
4880 eth = (struct ethhdr *)xdp->data;
4881 if ((orig_eth_type != eth->h_proto) ||
4882 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4883 skb->dev->dev_addr)) ||
4884 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4885 __skb_push(skb, ETH_HLEN);
4886 skb->pkt_type = PACKET_HOST;
4887 skb->protocol = eth_type_trans(skb, skb->dev);
4888 }
4889
4890 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4891 * before calling us again on redirect path. We do not call do_redirect
4892 * as we leave that up to the caller.
4893 *
4894 * Caller is responsible for managing lifetime of skb (i.e. calling
4895 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4896 */
4897 switch (act) {
4898 case XDP_REDIRECT:
4899 case XDP_TX:
4900 __skb_push(skb, mac_len);
4901 break;
4902 case XDP_PASS:
4903 metalen = xdp->data - xdp->data_meta;
4904 if (metalen)
4905 skb_metadata_set(skb, metalen);
4906 break;
4907 }
4908
4909 return act;
4910}
4911
4912static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4913 struct xdp_buff *xdp,
4914 struct bpf_prog *xdp_prog)
4915{
4916 u32 act = XDP_DROP;
4917
4918 /* Reinjected packets coming from act_mirred or similar should
4919 * not get XDP generic processing.
4920 */
4921 if (skb_is_redirected(skb))
4922 return XDP_PASS;
4923
4924 /* XDP packets must be linear and must have sufficient headroom
4925 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4926 * native XDP provides, thus we need to do it here as well.
4927 */
4928 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4929 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4930 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4931 int troom = skb->tail + skb->data_len - skb->end;
4932
4933 /* In case we have to go down the path and also linearize,
4934 * then lets do the pskb_expand_head() work just once here.
4935 */
4936 if (pskb_expand_head(skb,
4937 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4938 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4939 goto do_drop;
4940 if (skb_linearize(skb))
4941 goto do_drop;
4942 }
4943
4944 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4945 switch (act) {
4946 case XDP_REDIRECT:
4947 case XDP_TX:
4948 case XDP_PASS:
4949 break;
4950 default:
4951 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4952 fallthrough;
4953 case XDP_ABORTED:
4954 trace_xdp_exception(skb->dev, xdp_prog, act);
4955 fallthrough;
4956 case XDP_DROP:
4957 do_drop:
4958 kfree_skb(skb);
4959 break;
4960 }
4961
4962 return act;
4963}
4964
4965/* When doing generic XDP we have to bypass the qdisc layer and the
4966 * network taps in order to match in-driver-XDP behavior. This also means
4967 * that XDP packets are able to starve other packets going through a qdisc,
4968 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4969 * queues, so they do not have this starvation issue.
4970 */
4971void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4972{
4973 struct net_device *dev = skb->dev;
4974 struct netdev_queue *txq;
4975 bool free_skb = true;
4976 int cpu, rc;
4977
4978 txq = netdev_core_pick_tx(dev, skb, NULL);
4979 cpu = smp_processor_id();
4980 HARD_TX_LOCK(dev, txq, cpu);
4981 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4982 rc = netdev_start_xmit(skb, dev, txq, 0);
4983 if (dev_xmit_complete(rc))
4984 free_skb = false;
4985 }
4986 HARD_TX_UNLOCK(dev, txq);
4987 if (free_skb) {
4988 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4989 dev_core_stats_tx_dropped_inc(dev);
4990 kfree_skb(skb);
4991 }
4992}
4993
4994static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4995
4996int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4997{
4998 if (xdp_prog) {
4999 struct xdp_buff xdp;
5000 u32 act;
5001 int err;
5002
5003 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5004 if (act != XDP_PASS) {
5005 switch (act) {
5006 case XDP_REDIRECT:
5007 err = xdp_do_generic_redirect(skb->dev, skb,
5008 &xdp, xdp_prog);
5009 if (err)
5010 goto out_redir;
5011 break;
5012 case XDP_TX:
5013 generic_xdp_tx(skb, xdp_prog);
5014 break;
5015 }
5016 return XDP_DROP;
5017 }
5018 }
5019 return XDP_PASS;
5020out_redir:
5021 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5022 return XDP_DROP;
5023}
5024EXPORT_SYMBOL_GPL(do_xdp_generic);
5025
5026static int netif_rx_internal(struct sk_buff *skb)
5027{
5028 int ret;
5029
5030 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5031
5032 trace_netif_rx(skb);
5033
5034#ifdef CONFIG_RPS
5035 if (static_branch_unlikely(&rps_needed)) {
5036 struct rps_dev_flow voidflow, *rflow = &voidflow;
5037 int cpu;
5038
5039 rcu_read_lock();
5040
5041 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5042 if (cpu < 0)
5043 cpu = smp_processor_id();
5044
5045 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5046
5047 rcu_read_unlock();
5048 } else
5049#endif
5050 {
5051 unsigned int qtail;
5052
5053 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5054 }
5055 return ret;
5056}
5057
5058/**
5059 * __netif_rx - Slightly optimized version of netif_rx
5060 * @skb: buffer to post
5061 *
5062 * This behaves as netif_rx except that it does not disable bottom halves.
5063 * As a result this function may only be invoked from the interrupt context
5064 * (either hard or soft interrupt).
5065 */
5066int __netif_rx(struct sk_buff *skb)
5067{
5068 int ret;
5069
5070 lockdep_assert_once(hardirq_count() | softirq_count());
5071
5072 trace_netif_rx_entry(skb);
5073 ret = netif_rx_internal(skb);
5074 trace_netif_rx_exit(ret);
5075 return ret;
5076}
5077EXPORT_SYMBOL(__netif_rx);
5078
5079/**
5080 * netif_rx - post buffer to the network code
5081 * @skb: buffer to post
5082 *
5083 * This function receives a packet from a device driver and queues it for
5084 * the upper (protocol) levels to process via the backlog NAPI device. It
5085 * always succeeds. The buffer may be dropped during processing for
5086 * congestion control or by the protocol layers.
5087 * The network buffer is passed via the backlog NAPI device. Modern NIC
5088 * driver should use NAPI and GRO.
5089 * This function can used from interrupt and from process context. The
5090 * caller from process context must not disable interrupts before invoking
5091 * this function.
5092 *
5093 * return values:
5094 * NET_RX_SUCCESS (no congestion)
5095 * NET_RX_DROP (packet was dropped)
5096 *
5097 */
5098int netif_rx(struct sk_buff *skb)
5099{
5100 bool need_bh_off = !(hardirq_count() | softirq_count());
5101 int ret;
5102
5103 if (need_bh_off)
5104 local_bh_disable();
5105 trace_netif_rx_entry(skb);
5106 ret = netif_rx_internal(skb);
5107 trace_netif_rx_exit(ret);
5108 if (need_bh_off)
5109 local_bh_enable();
5110 return ret;
5111}
5112EXPORT_SYMBOL(netif_rx);
5113
5114static __latent_entropy void net_tx_action(struct softirq_action *h)
5115{
5116 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5117
5118 if (sd->completion_queue) {
5119 struct sk_buff *clist;
5120
5121 local_irq_disable();
5122 clist = sd->completion_queue;
5123 sd->completion_queue = NULL;
5124 local_irq_enable();
5125
5126 while (clist) {
5127 struct sk_buff *skb = clist;
5128
5129 clist = clist->next;
5130
5131 WARN_ON(refcount_read(&skb->users));
5132 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5133 trace_consume_skb(skb, net_tx_action);
5134 else
5135 trace_kfree_skb(skb, net_tx_action,
5136 get_kfree_skb_cb(skb)->reason);
5137
5138 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5139 __kfree_skb(skb);
5140 else
5141 __napi_kfree_skb(skb,
5142 get_kfree_skb_cb(skb)->reason);
5143 }
5144 }
5145
5146 if (sd->output_queue) {
5147 struct Qdisc *head;
5148
5149 local_irq_disable();
5150 head = sd->output_queue;
5151 sd->output_queue = NULL;
5152 sd->output_queue_tailp = &sd->output_queue;
5153 local_irq_enable();
5154
5155 rcu_read_lock();
5156
5157 while (head) {
5158 struct Qdisc *q = head;
5159 spinlock_t *root_lock = NULL;
5160
5161 head = head->next_sched;
5162
5163 /* We need to make sure head->next_sched is read
5164 * before clearing __QDISC_STATE_SCHED
5165 */
5166 smp_mb__before_atomic();
5167
5168 if (!(q->flags & TCQ_F_NOLOCK)) {
5169 root_lock = qdisc_lock(q);
5170 spin_lock(root_lock);
5171 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5172 &q->state))) {
5173 /* There is a synchronize_net() between
5174 * STATE_DEACTIVATED flag being set and
5175 * qdisc_reset()/some_qdisc_is_busy() in
5176 * dev_deactivate(), so we can safely bail out
5177 * early here to avoid data race between
5178 * qdisc_deactivate() and some_qdisc_is_busy()
5179 * for lockless qdisc.
5180 */
5181 clear_bit(__QDISC_STATE_SCHED, &q->state);
5182 continue;
5183 }
5184
5185 clear_bit(__QDISC_STATE_SCHED, &q->state);
5186 qdisc_run(q);
5187 if (root_lock)
5188 spin_unlock(root_lock);
5189 }
5190
5191 rcu_read_unlock();
5192 }
5193
5194 xfrm_dev_backlog(sd);
5195}
5196
5197#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5198/* This hook is defined here for ATM LANE */
5199int (*br_fdb_test_addr_hook)(struct net_device *dev,
5200 unsigned char *addr) __read_mostly;
5201EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5202#endif
5203
5204/**
5205 * netdev_is_rx_handler_busy - check if receive handler is registered
5206 * @dev: device to check
5207 *
5208 * Check if a receive handler is already registered for a given device.
5209 * Return true if there one.
5210 *
5211 * The caller must hold the rtnl_mutex.
5212 */
5213bool netdev_is_rx_handler_busy(struct net_device *dev)
5214{
5215 ASSERT_RTNL();
5216 return dev && rtnl_dereference(dev->rx_handler);
5217}
5218EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5219
5220/**
5221 * netdev_rx_handler_register - register receive handler
5222 * @dev: device to register a handler for
5223 * @rx_handler: receive handler to register
5224 * @rx_handler_data: data pointer that is used by rx handler
5225 *
5226 * Register a receive handler for a device. This handler will then be
5227 * called from __netif_receive_skb. A negative errno code is returned
5228 * on a failure.
5229 *
5230 * The caller must hold the rtnl_mutex.
5231 *
5232 * For a general description of rx_handler, see enum rx_handler_result.
5233 */
5234int netdev_rx_handler_register(struct net_device *dev,
5235 rx_handler_func_t *rx_handler,
5236 void *rx_handler_data)
5237{
5238 if (netdev_is_rx_handler_busy(dev))
5239 return -EBUSY;
5240
5241 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5242 return -EINVAL;
5243
5244 /* Note: rx_handler_data must be set before rx_handler */
5245 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5246 rcu_assign_pointer(dev->rx_handler, rx_handler);
5247
5248 return 0;
5249}
5250EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5251
5252/**
5253 * netdev_rx_handler_unregister - unregister receive handler
5254 * @dev: device to unregister a handler from
5255 *
5256 * Unregister a receive handler from a device.
5257 *
5258 * The caller must hold the rtnl_mutex.
5259 */
5260void netdev_rx_handler_unregister(struct net_device *dev)
5261{
5262
5263 ASSERT_RTNL();
5264 RCU_INIT_POINTER(dev->rx_handler, NULL);
5265 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5266 * section has a guarantee to see a non NULL rx_handler_data
5267 * as well.
5268 */
5269 synchronize_net();
5270 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5271}
5272EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5273
5274/*
5275 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5276 * the special handling of PFMEMALLOC skbs.
5277 */
5278static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5279{
5280 switch (skb->protocol) {
5281 case htons(ETH_P_ARP):
5282 case htons(ETH_P_IP):
5283 case htons(ETH_P_IPV6):
5284 case htons(ETH_P_8021Q):
5285 case htons(ETH_P_8021AD):
5286 return true;
5287 default:
5288 return false;
5289 }
5290}
5291
5292static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5293 int *ret, struct net_device *orig_dev)
5294{
5295 if (nf_hook_ingress_active(skb)) {
5296 int ingress_retval;
5297
5298 if (*pt_prev) {
5299 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5300 *pt_prev = NULL;
5301 }
5302
5303 rcu_read_lock();
5304 ingress_retval = nf_hook_ingress(skb);
5305 rcu_read_unlock();
5306 return ingress_retval;
5307 }
5308 return 0;
5309}
5310
5311static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5312 struct packet_type **ppt_prev)
5313{
5314 struct packet_type *ptype, *pt_prev;
5315 rx_handler_func_t *rx_handler;
5316 struct sk_buff *skb = *pskb;
5317 struct net_device *orig_dev;
5318 bool deliver_exact = false;
5319 int ret = NET_RX_DROP;
5320 __be16 type;
5321
5322 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5323
5324 trace_netif_receive_skb(skb);
5325
5326 orig_dev = skb->dev;
5327
5328 skb_reset_network_header(skb);
5329 if (!skb_transport_header_was_set(skb))
5330 skb_reset_transport_header(skb);
5331 skb_reset_mac_len(skb);
5332
5333 pt_prev = NULL;
5334
5335another_round:
5336 skb->skb_iif = skb->dev->ifindex;
5337
5338 __this_cpu_inc(softnet_data.processed);
5339
5340 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5341 int ret2;
5342
5343 migrate_disable();
5344 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5345 migrate_enable();
5346
5347 if (ret2 != XDP_PASS) {
5348 ret = NET_RX_DROP;
5349 goto out;
5350 }
5351 }
5352
5353 if (eth_type_vlan(skb->protocol)) {
5354 skb = skb_vlan_untag(skb);
5355 if (unlikely(!skb))
5356 goto out;
5357 }
5358
5359 if (skb_skip_tc_classify(skb))
5360 goto skip_classify;
5361
5362 if (pfmemalloc)
5363 goto skip_taps;
5364
5365 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5366 if (pt_prev)
5367 ret = deliver_skb(skb, pt_prev, orig_dev);
5368 pt_prev = ptype;
5369 }
5370
5371 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5372 if (pt_prev)
5373 ret = deliver_skb(skb, pt_prev, orig_dev);
5374 pt_prev = ptype;
5375 }
5376
5377skip_taps:
5378#ifdef CONFIG_NET_INGRESS
5379 if (static_branch_unlikely(&ingress_needed_key)) {
5380 bool another = false;
5381
5382 nf_skip_egress(skb, true);
5383 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5384 &another);
5385 if (another)
5386 goto another_round;
5387 if (!skb)
5388 goto out;
5389
5390 nf_skip_egress(skb, false);
5391 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5392 goto out;
5393 }
5394#endif
5395 skb_reset_redirect(skb);
5396skip_classify:
5397 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5398 goto drop;
5399
5400 if (skb_vlan_tag_present(skb)) {
5401 if (pt_prev) {
5402 ret = deliver_skb(skb, pt_prev, orig_dev);
5403 pt_prev = NULL;
5404 }
5405 if (vlan_do_receive(&skb))
5406 goto another_round;
5407 else if (unlikely(!skb))
5408 goto out;
5409 }
5410
5411 rx_handler = rcu_dereference(skb->dev->rx_handler);
5412 if (rx_handler) {
5413 if (pt_prev) {
5414 ret = deliver_skb(skb, pt_prev, orig_dev);
5415 pt_prev = NULL;
5416 }
5417 switch (rx_handler(&skb)) {
5418 case RX_HANDLER_CONSUMED:
5419 ret = NET_RX_SUCCESS;
5420 goto out;
5421 case RX_HANDLER_ANOTHER:
5422 goto another_round;
5423 case RX_HANDLER_EXACT:
5424 deliver_exact = true;
5425 break;
5426 case RX_HANDLER_PASS:
5427 break;
5428 default:
5429 BUG();
5430 }
5431 }
5432
5433 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5434check_vlan_id:
5435 if (skb_vlan_tag_get_id(skb)) {
5436 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5437 * find vlan device.
5438 */
5439 skb->pkt_type = PACKET_OTHERHOST;
5440 } else if (eth_type_vlan(skb->protocol)) {
5441 /* Outer header is 802.1P with vlan 0, inner header is
5442 * 802.1Q or 802.1AD and vlan_do_receive() above could
5443 * not find vlan dev for vlan id 0.
5444 */
5445 __vlan_hwaccel_clear_tag(skb);
5446 skb = skb_vlan_untag(skb);
5447 if (unlikely(!skb))
5448 goto out;
5449 if (vlan_do_receive(&skb))
5450 /* After stripping off 802.1P header with vlan 0
5451 * vlan dev is found for inner header.
5452 */
5453 goto another_round;
5454 else if (unlikely(!skb))
5455 goto out;
5456 else
5457 /* We have stripped outer 802.1P vlan 0 header.
5458 * But could not find vlan dev.
5459 * check again for vlan id to set OTHERHOST.
5460 */
5461 goto check_vlan_id;
5462 }
5463 /* Note: we might in the future use prio bits
5464 * and set skb->priority like in vlan_do_receive()
5465 * For the time being, just ignore Priority Code Point
5466 */
5467 __vlan_hwaccel_clear_tag(skb);
5468 }
5469
5470 type = skb->protocol;
5471
5472 /* deliver only exact match when indicated */
5473 if (likely(!deliver_exact)) {
5474 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5475 &ptype_base[ntohs(type) &
5476 PTYPE_HASH_MASK]);
5477 }
5478
5479 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5480 &orig_dev->ptype_specific);
5481
5482 if (unlikely(skb->dev != orig_dev)) {
5483 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5484 &skb->dev->ptype_specific);
5485 }
5486
5487 if (pt_prev) {
5488 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5489 goto drop;
5490 *ppt_prev = pt_prev;
5491 } else {
5492drop:
5493 if (!deliver_exact)
5494 dev_core_stats_rx_dropped_inc(skb->dev);
5495 else
5496 dev_core_stats_rx_nohandler_inc(skb->dev);
5497 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5498 /* Jamal, now you will not able to escape explaining
5499 * me how you were going to use this. :-)
5500 */
5501 ret = NET_RX_DROP;
5502 }
5503
5504out:
5505 /* The invariant here is that if *ppt_prev is not NULL
5506 * then skb should also be non-NULL.
5507 *
5508 * Apparently *ppt_prev assignment above holds this invariant due to
5509 * skb dereferencing near it.
5510 */
5511 *pskb = skb;
5512 return ret;
5513}
5514
5515static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5516{
5517 struct net_device *orig_dev = skb->dev;
5518 struct packet_type *pt_prev = NULL;
5519 int ret;
5520
5521 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5522 if (pt_prev)
5523 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5524 skb->dev, pt_prev, orig_dev);
5525 return ret;
5526}
5527
5528/**
5529 * netif_receive_skb_core - special purpose version of netif_receive_skb
5530 * @skb: buffer to process
5531 *
5532 * More direct receive version of netif_receive_skb(). It should
5533 * only be used by callers that have a need to skip RPS and Generic XDP.
5534 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5535 *
5536 * This function may only be called from softirq context and interrupts
5537 * should be enabled.
5538 *
5539 * Return values (usually ignored):
5540 * NET_RX_SUCCESS: no congestion
5541 * NET_RX_DROP: packet was dropped
5542 */
5543int netif_receive_skb_core(struct sk_buff *skb)
5544{
5545 int ret;
5546
5547 rcu_read_lock();
5548 ret = __netif_receive_skb_one_core(skb, false);
5549 rcu_read_unlock();
5550
5551 return ret;
5552}
5553EXPORT_SYMBOL(netif_receive_skb_core);
5554
5555static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5556 struct packet_type *pt_prev,
5557 struct net_device *orig_dev)
5558{
5559 struct sk_buff *skb, *next;
5560
5561 if (!pt_prev)
5562 return;
5563 if (list_empty(head))
5564 return;
5565 if (pt_prev->list_func != NULL)
5566 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5567 ip_list_rcv, head, pt_prev, orig_dev);
5568 else
5569 list_for_each_entry_safe(skb, next, head, list) {
5570 skb_list_del_init(skb);
5571 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5572 }
5573}
5574
5575static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5576{
5577 /* Fast-path assumptions:
5578 * - There is no RX handler.
5579 * - Only one packet_type matches.
5580 * If either of these fails, we will end up doing some per-packet
5581 * processing in-line, then handling the 'last ptype' for the whole
5582 * sublist. This can't cause out-of-order delivery to any single ptype,
5583 * because the 'last ptype' must be constant across the sublist, and all
5584 * other ptypes are handled per-packet.
5585 */
5586 /* Current (common) ptype of sublist */
5587 struct packet_type *pt_curr = NULL;
5588 /* Current (common) orig_dev of sublist */
5589 struct net_device *od_curr = NULL;
5590 struct list_head sublist;
5591 struct sk_buff *skb, *next;
5592
5593 INIT_LIST_HEAD(&sublist);
5594 list_for_each_entry_safe(skb, next, head, list) {
5595 struct net_device *orig_dev = skb->dev;
5596 struct packet_type *pt_prev = NULL;
5597
5598 skb_list_del_init(skb);
5599 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5600 if (!pt_prev)
5601 continue;
5602 if (pt_curr != pt_prev || od_curr != orig_dev) {
5603 /* dispatch old sublist */
5604 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5605 /* start new sublist */
5606 INIT_LIST_HEAD(&sublist);
5607 pt_curr = pt_prev;
5608 od_curr = orig_dev;
5609 }
5610 list_add_tail(&skb->list, &sublist);
5611 }
5612
5613 /* dispatch final sublist */
5614 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5615}
5616
5617static int __netif_receive_skb(struct sk_buff *skb)
5618{
5619 int ret;
5620
5621 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5622 unsigned int noreclaim_flag;
5623
5624 /*
5625 * PFMEMALLOC skbs are special, they should
5626 * - be delivered to SOCK_MEMALLOC sockets only
5627 * - stay away from userspace
5628 * - have bounded memory usage
5629 *
5630 * Use PF_MEMALLOC as this saves us from propagating the allocation
5631 * context down to all allocation sites.
5632 */
5633 noreclaim_flag = memalloc_noreclaim_save();
5634 ret = __netif_receive_skb_one_core(skb, true);
5635 memalloc_noreclaim_restore(noreclaim_flag);
5636 } else
5637 ret = __netif_receive_skb_one_core(skb, false);
5638
5639 return ret;
5640}
5641
5642static void __netif_receive_skb_list(struct list_head *head)
5643{
5644 unsigned long noreclaim_flag = 0;
5645 struct sk_buff *skb, *next;
5646 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5647
5648 list_for_each_entry_safe(skb, next, head, list) {
5649 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5650 struct list_head sublist;
5651
5652 /* Handle the previous sublist */
5653 list_cut_before(&sublist, head, &skb->list);
5654 if (!list_empty(&sublist))
5655 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5656 pfmemalloc = !pfmemalloc;
5657 /* See comments in __netif_receive_skb */
5658 if (pfmemalloc)
5659 noreclaim_flag = memalloc_noreclaim_save();
5660 else
5661 memalloc_noreclaim_restore(noreclaim_flag);
5662 }
5663 }
5664 /* Handle the remaining sublist */
5665 if (!list_empty(head))
5666 __netif_receive_skb_list_core(head, pfmemalloc);
5667 /* Restore pflags */
5668 if (pfmemalloc)
5669 memalloc_noreclaim_restore(noreclaim_flag);
5670}
5671
5672static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5673{
5674 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5675 struct bpf_prog *new = xdp->prog;
5676 int ret = 0;
5677
5678 switch (xdp->command) {
5679 case XDP_SETUP_PROG:
5680 rcu_assign_pointer(dev->xdp_prog, new);
5681 if (old)
5682 bpf_prog_put(old);
5683
5684 if (old && !new) {
5685 static_branch_dec(&generic_xdp_needed_key);
5686 } else if (new && !old) {
5687 static_branch_inc(&generic_xdp_needed_key);
5688 dev_disable_lro(dev);
5689 dev_disable_gro_hw(dev);
5690 }
5691 break;
5692
5693 default:
5694 ret = -EINVAL;
5695 break;
5696 }
5697
5698 return ret;
5699}
5700
5701static int netif_receive_skb_internal(struct sk_buff *skb)
5702{
5703 int ret;
5704
5705 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5706
5707 if (skb_defer_rx_timestamp(skb))
5708 return NET_RX_SUCCESS;
5709
5710 rcu_read_lock();
5711#ifdef CONFIG_RPS
5712 if (static_branch_unlikely(&rps_needed)) {
5713 struct rps_dev_flow voidflow, *rflow = &voidflow;
5714 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5715
5716 if (cpu >= 0) {
5717 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5718 rcu_read_unlock();
5719 return ret;
5720 }
5721 }
5722#endif
5723 ret = __netif_receive_skb(skb);
5724 rcu_read_unlock();
5725 return ret;
5726}
5727
5728void netif_receive_skb_list_internal(struct list_head *head)
5729{
5730 struct sk_buff *skb, *next;
5731 struct list_head sublist;
5732
5733 INIT_LIST_HEAD(&sublist);
5734 list_for_each_entry_safe(skb, next, head, list) {
5735 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5736 skb_list_del_init(skb);
5737 if (!skb_defer_rx_timestamp(skb))
5738 list_add_tail(&skb->list, &sublist);
5739 }
5740 list_splice_init(&sublist, head);
5741
5742 rcu_read_lock();
5743#ifdef CONFIG_RPS
5744 if (static_branch_unlikely(&rps_needed)) {
5745 list_for_each_entry_safe(skb, next, head, list) {
5746 struct rps_dev_flow voidflow, *rflow = &voidflow;
5747 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5748
5749 if (cpu >= 0) {
5750 /* Will be handled, remove from list */
5751 skb_list_del_init(skb);
5752 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5753 }
5754 }
5755 }
5756#endif
5757 __netif_receive_skb_list(head);
5758 rcu_read_unlock();
5759}
5760
5761/**
5762 * netif_receive_skb - process receive buffer from network
5763 * @skb: buffer to process
5764 *
5765 * netif_receive_skb() is the main receive data processing function.
5766 * It always succeeds. The buffer may be dropped during processing
5767 * for congestion control or by the protocol layers.
5768 *
5769 * This function may only be called from softirq context and interrupts
5770 * should be enabled.
5771 *
5772 * Return values (usually ignored):
5773 * NET_RX_SUCCESS: no congestion
5774 * NET_RX_DROP: packet was dropped
5775 */
5776int netif_receive_skb(struct sk_buff *skb)
5777{
5778 int ret;
5779
5780 trace_netif_receive_skb_entry(skb);
5781
5782 ret = netif_receive_skb_internal(skb);
5783 trace_netif_receive_skb_exit(ret);
5784
5785 return ret;
5786}
5787EXPORT_SYMBOL(netif_receive_skb);
5788
5789/**
5790 * netif_receive_skb_list - process many receive buffers from network
5791 * @head: list of skbs to process.
5792 *
5793 * Since return value of netif_receive_skb() is normally ignored, and
5794 * wouldn't be meaningful for a list, this function returns void.
5795 *
5796 * This function may only be called from softirq context and interrupts
5797 * should be enabled.
5798 */
5799void netif_receive_skb_list(struct list_head *head)
5800{
5801 struct sk_buff *skb;
5802
5803 if (list_empty(head))
5804 return;
5805 if (trace_netif_receive_skb_list_entry_enabled()) {
5806 list_for_each_entry(skb, head, list)
5807 trace_netif_receive_skb_list_entry(skb);
5808 }
5809 netif_receive_skb_list_internal(head);
5810 trace_netif_receive_skb_list_exit(0);
5811}
5812EXPORT_SYMBOL(netif_receive_skb_list);
5813
5814static DEFINE_PER_CPU(struct work_struct, flush_works);
5815
5816/* Network device is going away, flush any packets still pending */
5817static void flush_backlog(struct work_struct *work)
5818{
5819 struct sk_buff *skb, *tmp;
5820 struct softnet_data *sd;
5821
5822 local_bh_disable();
5823 sd = this_cpu_ptr(&softnet_data);
5824
5825 rps_lock_irq_disable(sd);
5826 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5827 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5828 __skb_unlink(skb, &sd->input_pkt_queue);
5829 dev_kfree_skb_irq(skb);
5830 input_queue_head_incr(sd);
5831 }
5832 }
5833 rps_unlock_irq_enable(sd);
5834
5835 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5836 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5837 __skb_unlink(skb, &sd->process_queue);
5838 kfree_skb(skb);
5839 input_queue_head_incr(sd);
5840 }
5841 }
5842 local_bh_enable();
5843}
5844
5845static bool flush_required(int cpu)
5846{
5847#if IS_ENABLED(CONFIG_RPS)
5848 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5849 bool do_flush;
5850
5851 rps_lock_irq_disable(sd);
5852
5853 /* as insertion into process_queue happens with the rps lock held,
5854 * process_queue access may race only with dequeue
5855 */
5856 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5857 !skb_queue_empty_lockless(&sd->process_queue);
5858 rps_unlock_irq_enable(sd);
5859
5860 return do_flush;
5861#endif
5862 /* without RPS we can't safely check input_pkt_queue: during a
5863 * concurrent remote skb_queue_splice() we can detect as empty both
5864 * input_pkt_queue and process_queue even if the latter could end-up
5865 * containing a lot of packets.
5866 */
5867 return true;
5868}
5869
5870static void flush_all_backlogs(void)
5871{
5872 static cpumask_t flush_cpus;
5873 unsigned int cpu;
5874
5875 /* since we are under rtnl lock protection we can use static data
5876 * for the cpumask and avoid allocating on stack the possibly
5877 * large mask
5878 */
5879 ASSERT_RTNL();
5880
5881 cpus_read_lock();
5882
5883 cpumask_clear(&flush_cpus);
5884 for_each_online_cpu(cpu) {
5885 if (flush_required(cpu)) {
5886 queue_work_on(cpu, system_highpri_wq,
5887 per_cpu_ptr(&flush_works, cpu));
5888 cpumask_set_cpu(cpu, &flush_cpus);
5889 }
5890 }
5891
5892 /* we can have in flight packet[s] on the cpus we are not flushing,
5893 * synchronize_net() in unregister_netdevice_many() will take care of
5894 * them
5895 */
5896 for_each_cpu(cpu, &flush_cpus)
5897 flush_work(per_cpu_ptr(&flush_works, cpu));
5898
5899 cpus_read_unlock();
5900}
5901
5902static void net_rps_send_ipi(struct softnet_data *remsd)
5903{
5904#ifdef CONFIG_RPS
5905 while (remsd) {
5906 struct softnet_data *next = remsd->rps_ipi_next;
5907
5908 if (cpu_online(remsd->cpu))
5909 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5910 remsd = next;
5911 }
5912#endif
5913}
5914
5915/*
5916 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5917 * Note: called with local irq disabled, but exits with local irq enabled.
5918 */
5919static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5920{
5921#ifdef CONFIG_RPS
5922 struct softnet_data *remsd = sd->rps_ipi_list;
5923
5924 if (remsd) {
5925 sd->rps_ipi_list = NULL;
5926
5927 local_irq_enable();
5928
5929 /* Send pending IPI's to kick RPS processing on remote cpus. */
5930 net_rps_send_ipi(remsd);
5931 } else
5932#endif
5933 local_irq_enable();
5934}
5935
5936static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5937{
5938#ifdef CONFIG_RPS
5939 return sd->rps_ipi_list != NULL;
5940#else
5941 return false;
5942#endif
5943}
5944
5945static int process_backlog(struct napi_struct *napi, int quota)
5946{
5947 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5948 bool again = true;
5949 int work = 0;
5950
5951 /* Check if we have pending ipi, its better to send them now,
5952 * not waiting net_rx_action() end.
5953 */
5954 if (sd_has_rps_ipi_waiting(sd)) {
5955 local_irq_disable();
5956 net_rps_action_and_irq_enable(sd);
5957 }
5958
5959 napi->weight = READ_ONCE(dev_rx_weight);
5960 while (again) {
5961 struct sk_buff *skb;
5962
5963 while ((skb = __skb_dequeue(&sd->process_queue))) {
5964 rcu_read_lock();
5965 __netif_receive_skb(skb);
5966 rcu_read_unlock();
5967 input_queue_head_incr(sd);
5968 if (++work >= quota)
5969 return work;
5970
5971 }
5972
5973 rps_lock_irq_disable(sd);
5974 if (skb_queue_empty(&sd->input_pkt_queue)) {
5975 /*
5976 * Inline a custom version of __napi_complete().
5977 * only current cpu owns and manipulates this napi,
5978 * and NAPI_STATE_SCHED is the only possible flag set
5979 * on backlog.
5980 * We can use a plain write instead of clear_bit(),
5981 * and we dont need an smp_mb() memory barrier.
5982 */
5983 napi->state = 0;
5984 again = false;
5985 } else {
5986 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5987 &sd->process_queue);
5988 }
5989 rps_unlock_irq_enable(sd);
5990 }
5991
5992 return work;
5993}
5994
5995/**
5996 * __napi_schedule - schedule for receive
5997 * @n: entry to schedule
5998 *
5999 * The entry's receive function will be scheduled to run.
6000 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6001 */
6002void __napi_schedule(struct napi_struct *n)
6003{
6004 unsigned long flags;
6005
6006 local_irq_save(flags);
6007 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6008 local_irq_restore(flags);
6009}
6010EXPORT_SYMBOL(__napi_schedule);
6011
6012/**
6013 * napi_schedule_prep - check if napi can be scheduled
6014 * @n: napi context
6015 *
6016 * Test if NAPI routine is already running, and if not mark
6017 * it as running. This is used as a condition variable to
6018 * insure only one NAPI poll instance runs. We also make
6019 * sure there is no pending NAPI disable.
6020 */
6021bool napi_schedule_prep(struct napi_struct *n)
6022{
6023 unsigned long new, val = READ_ONCE(n->state);
6024
6025 do {
6026 if (unlikely(val & NAPIF_STATE_DISABLE))
6027 return false;
6028 new = val | NAPIF_STATE_SCHED;
6029
6030 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6031 * This was suggested by Alexander Duyck, as compiler
6032 * emits better code than :
6033 * if (val & NAPIF_STATE_SCHED)
6034 * new |= NAPIF_STATE_MISSED;
6035 */
6036 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6037 NAPIF_STATE_MISSED;
6038 } while (!try_cmpxchg(&n->state, &val, new));
6039
6040 return !(val & NAPIF_STATE_SCHED);
6041}
6042EXPORT_SYMBOL(napi_schedule_prep);
6043
6044/**
6045 * __napi_schedule_irqoff - schedule for receive
6046 * @n: entry to schedule
6047 *
6048 * Variant of __napi_schedule() assuming hard irqs are masked.
6049 *
6050 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6051 * because the interrupt disabled assumption might not be true
6052 * due to force-threaded interrupts and spinlock substitution.
6053 */
6054void __napi_schedule_irqoff(struct napi_struct *n)
6055{
6056 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6057 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6058 else
6059 __napi_schedule(n);
6060}
6061EXPORT_SYMBOL(__napi_schedule_irqoff);
6062
6063bool napi_complete_done(struct napi_struct *n, int work_done)
6064{
6065 unsigned long flags, val, new, timeout = 0;
6066 bool ret = true;
6067
6068 /*
6069 * 1) Don't let napi dequeue from the cpu poll list
6070 * just in case its running on a different cpu.
6071 * 2) If we are busy polling, do nothing here, we have
6072 * the guarantee we will be called later.
6073 */
6074 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6075 NAPIF_STATE_IN_BUSY_POLL)))
6076 return false;
6077
6078 if (work_done) {
6079 if (n->gro_bitmask)
6080 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6081 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6082 }
6083 if (n->defer_hard_irqs_count > 0) {
6084 n->defer_hard_irqs_count--;
6085 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6086 if (timeout)
6087 ret = false;
6088 }
6089 if (n->gro_bitmask) {
6090 /* When the NAPI instance uses a timeout and keeps postponing
6091 * it, we need to bound somehow the time packets are kept in
6092 * the GRO layer
6093 */
6094 napi_gro_flush(n, !!timeout);
6095 }
6096
6097 gro_normal_list(n);
6098
6099 if (unlikely(!list_empty(&n->poll_list))) {
6100 /* If n->poll_list is not empty, we need to mask irqs */
6101 local_irq_save(flags);
6102 list_del_init(&n->poll_list);
6103 local_irq_restore(flags);
6104 }
6105 WRITE_ONCE(n->list_owner, -1);
6106
6107 val = READ_ONCE(n->state);
6108 do {
6109 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6110
6111 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6112 NAPIF_STATE_SCHED_THREADED |
6113 NAPIF_STATE_PREFER_BUSY_POLL);
6114
6115 /* If STATE_MISSED was set, leave STATE_SCHED set,
6116 * because we will call napi->poll() one more time.
6117 * This C code was suggested by Alexander Duyck to help gcc.
6118 */
6119 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6120 NAPIF_STATE_SCHED;
6121 } while (!try_cmpxchg(&n->state, &val, new));
6122
6123 if (unlikely(val & NAPIF_STATE_MISSED)) {
6124 __napi_schedule(n);
6125 return false;
6126 }
6127
6128 if (timeout)
6129 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6130 HRTIMER_MODE_REL_PINNED);
6131 return ret;
6132}
6133EXPORT_SYMBOL(napi_complete_done);
6134
6135/* must be called under rcu_read_lock(), as we dont take a reference */
6136static struct napi_struct *napi_by_id(unsigned int napi_id)
6137{
6138 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6139 struct napi_struct *napi;
6140
6141 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6142 if (napi->napi_id == napi_id)
6143 return napi;
6144
6145 return NULL;
6146}
6147
6148#if defined(CONFIG_NET_RX_BUSY_POLL)
6149
6150static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6151{
6152 if (!skip_schedule) {
6153 gro_normal_list(napi);
6154 __napi_schedule(napi);
6155 return;
6156 }
6157
6158 if (napi->gro_bitmask) {
6159 /* flush too old packets
6160 * If HZ < 1000, flush all packets.
6161 */
6162 napi_gro_flush(napi, HZ >= 1000);
6163 }
6164
6165 gro_normal_list(napi);
6166 clear_bit(NAPI_STATE_SCHED, &napi->state);
6167}
6168
6169static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6170 u16 budget)
6171{
6172 bool skip_schedule = false;
6173 unsigned long timeout;
6174 int rc;
6175
6176 /* Busy polling means there is a high chance device driver hard irq
6177 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6178 * set in napi_schedule_prep().
6179 * Since we are about to call napi->poll() once more, we can safely
6180 * clear NAPI_STATE_MISSED.
6181 *
6182 * Note: x86 could use a single "lock and ..." instruction
6183 * to perform these two clear_bit()
6184 */
6185 clear_bit(NAPI_STATE_MISSED, &napi->state);
6186 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6187
6188 local_bh_disable();
6189
6190 if (prefer_busy_poll) {
6191 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6192 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6193 if (napi->defer_hard_irqs_count && timeout) {
6194 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6195 skip_schedule = true;
6196 }
6197 }
6198
6199 /* All we really want here is to re-enable device interrupts.
6200 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6201 */
6202 rc = napi->poll(napi, budget);
6203 /* We can't gro_normal_list() here, because napi->poll() might have
6204 * rearmed the napi (napi_complete_done()) in which case it could
6205 * already be running on another CPU.
6206 */
6207 trace_napi_poll(napi, rc, budget);
6208 netpoll_poll_unlock(have_poll_lock);
6209 if (rc == budget)
6210 __busy_poll_stop(napi, skip_schedule);
6211 local_bh_enable();
6212}
6213
6214void napi_busy_loop(unsigned int napi_id,
6215 bool (*loop_end)(void *, unsigned long),
6216 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6217{
6218 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6219 int (*napi_poll)(struct napi_struct *napi, int budget);
6220 void *have_poll_lock = NULL;
6221 struct napi_struct *napi;
6222
6223restart:
6224 napi_poll = NULL;
6225
6226 rcu_read_lock();
6227
6228 napi = napi_by_id(napi_id);
6229 if (!napi)
6230 goto out;
6231
6232 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6233 preempt_disable();
6234 for (;;) {
6235 int work = 0;
6236
6237 local_bh_disable();
6238 if (!napi_poll) {
6239 unsigned long val = READ_ONCE(napi->state);
6240
6241 /* If multiple threads are competing for this napi,
6242 * we avoid dirtying napi->state as much as we can.
6243 */
6244 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6245 NAPIF_STATE_IN_BUSY_POLL)) {
6246 if (prefer_busy_poll)
6247 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6248 goto count;
6249 }
6250 if (cmpxchg(&napi->state, val,
6251 val | NAPIF_STATE_IN_BUSY_POLL |
6252 NAPIF_STATE_SCHED) != val) {
6253 if (prefer_busy_poll)
6254 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6255 goto count;
6256 }
6257 have_poll_lock = netpoll_poll_lock(napi);
6258 napi_poll = napi->poll;
6259 }
6260 work = napi_poll(napi, budget);
6261 trace_napi_poll(napi, work, budget);
6262 gro_normal_list(napi);
6263count:
6264 if (work > 0)
6265 __NET_ADD_STATS(dev_net(napi->dev),
6266 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6267 local_bh_enable();
6268
6269 if (!loop_end || loop_end(loop_end_arg, start_time))
6270 break;
6271
6272 if (unlikely(need_resched())) {
6273 if (napi_poll)
6274 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6275 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6276 preempt_enable();
6277 rcu_read_unlock();
6278 cond_resched();
6279 if (loop_end(loop_end_arg, start_time))
6280 return;
6281 goto restart;
6282 }
6283 cpu_relax();
6284 }
6285 if (napi_poll)
6286 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6287 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6288 preempt_enable();
6289out:
6290 rcu_read_unlock();
6291}
6292EXPORT_SYMBOL(napi_busy_loop);
6293
6294#endif /* CONFIG_NET_RX_BUSY_POLL */
6295
6296static void napi_hash_add(struct napi_struct *napi)
6297{
6298 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6299 return;
6300
6301 spin_lock(&napi_hash_lock);
6302
6303 /* 0..NR_CPUS range is reserved for sender_cpu use */
6304 do {
6305 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6306 napi_gen_id = MIN_NAPI_ID;
6307 } while (napi_by_id(napi_gen_id));
6308 napi->napi_id = napi_gen_id;
6309
6310 hlist_add_head_rcu(&napi->napi_hash_node,
6311 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6312
6313 spin_unlock(&napi_hash_lock);
6314}
6315
6316/* Warning : caller is responsible to make sure rcu grace period
6317 * is respected before freeing memory containing @napi
6318 */
6319static void napi_hash_del(struct napi_struct *napi)
6320{
6321 spin_lock(&napi_hash_lock);
6322
6323 hlist_del_init_rcu(&napi->napi_hash_node);
6324
6325 spin_unlock(&napi_hash_lock);
6326}
6327
6328static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6329{
6330 struct napi_struct *napi;
6331
6332 napi = container_of(timer, struct napi_struct, timer);
6333
6334 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6335 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6336 */
6337 if (!napi_disable_pending(napi) &&
6338 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6339 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6340 __napi_schedule_irqoff(napi);
6341 }
6342
6343 return HRTIMER_NORESTART;
6344}
6345
6346static void init_gro_hash(struct napi_struct *napi)
6347{
6348 int i;
6349
6350 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6351 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6352 napi->gro_hash[i].count = 0;
6353 }
6354 napi->gro_bitmask = 0;
6355}
6356
6357int dev_set_threaded(struct net_device *dev, bool threaded)
6358{
6359 struct napi_struct *napi;
6360 int err = 0;
6361
6362 if (dev->threaded == threaded)
6363 return 0;
6364
6365 if (threaded) {
6366 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6367 if (!napi->thread) {
6368 err = napi_kthread_create(napi);
6369 if (err) {
6370 threaded = false;
6371 break;
6372 }
6373 }
6374 }
6375 }
6376
6377 dev->threaded = threaded;
6378
6379 /* Make sure kthread is created before THREADED bit
6380 * is set.
6381 */
6382 smp_mb__before_atomic();
6383
6384 /* Setting/unsetting threaded mode on a napi might not immediately
6385 * take effect, if the current napi instance is actively being
6386 * polled. In this case, the switch between threaded mode and
6387 * softirq mode will happen in the next round of napi_schedule().
6388 * This should not cause hiccups/stalls to the live traffic.
6389 */
6390 list_for_each_entry(napi, &dev->napi_list, dev_list)
6391 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6392
6393 return err;
6394}
6395EXPORT_SYMBOL(dev_set_threaded);
6396
6397void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6398 int (*poll)(struct napi_struct *, int), int weight)
6399{
6400 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6401 return;
6402
6403 INIT_LIST_HEAD(&napi->poll_list);
6404 INIT_HLIST_NODE(&napi->napi_hash_node);
6405 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6406 napi->timer.function = napi_watchdog;
6407 init_gro_hash(napi);
6408 napi->skb = NULL;
6409 INIT_LIST_HEAD(&napi->rx_list);
6410 napi->rx_count = 0;
6411 napi->poll = poll;
6412 if (weight > NAPI_POLL_WEIGHT)
6413 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6414 weight);
6415 napi->weight = weight;
6416 napi->dev = dev;
6417#ifdef CONFIG_NETPOLL
6418 napi->poll_owner = -1;
6419#endif
6420 napi->list_owner = -1;
6421 set_bit(NAPI_STATE_SCHED, &napi->state);
6422 set_bit(NAPI_STATE_NPSVC, &napi->state);
6423 list_add_rcu(&napi->dev_list, &dev->napi_list);
6424 napi_hash_add(napi);
6425 napi_get_frags_check(napi);
6426 /* Create kthread for this napi if dev->threaded is set.
6427 * Clear dev->threaded if kthread creation failed so that
6428 * threaded mode will not be enabled in napi_enable().
6429 */
6430 if (dev->threaded && napi_kthread_create(napi))
6431 dev->threaded = 0;
6432}
6433EXPORT_SYMBOL(netif_napi_add_weight);
6434
6435void napi_disable(struct napi_struct *n)
6436{
6437 unsigned long val, new;
6438
6439 might_sleep();
6440 set_bit(NAPI_STATE_DISABLE, &n->state);
6441
6442 val = READ_ONCE(n->state);
6443 do {
6444 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6445 usleep_range(20, 200);
6446 val = READ_ONCE(n->state);
6447 }
6448
6449 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6450 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6451 } while (!try_cmpxchg(&n->state, &val, new));
6452
6453 hrtimer_cancel(&n->timer);
6454
6455 clear_bit(NAPI_STATE_DISABLE, &n->state);
6456}
6457EXPORT_SYMBOL(napi_disable);
6458
6459/**
6460 * napi_enable - enable NAPI scheduling
6461 * @n: NAPI context
6462 *
6463 * Resume NAPI from being scheduled on this context.
6464 * Must be paired with napi_disable.
6465 */
6466void napi_enable(struct napi_struct *n)
6467{
6468 unsigned long new, val = READ_ONCE(n->state);
6469
6470 do {
6471 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6472
6473 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6474 if (n->dev->threaded && n->thread)
6475 new |= NAPIF_STATE_THREADED;
6476 } while (!try_cmpxchg(&n->state, &val, new));
6477}
6478EXPORT_SYMBOL(napi_enable);
6479
6480static void flush_gro_hash(struct napi_struct *napi)
6481{
6482 int i;
6483
6484 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6485 struct sk_buff *skb, *n;
6486
6487 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6488 kfree_skb(skb);
6489 napi->gro_hash[i].count = 0;
6490 }
6491}
6492
6493/* Must be called in process context */
6494void __netif_napi_del(struct napi_struct *napi)
6495{
6496 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6497 return;
6498
6499 napi_hash_del(napi);
6500 list_del_rcu(&napi->dev_list);
6501 napi_free_frags(napi);
6502
6503 flush_gro_hash(napi);
6504 napi->gro_bitmask = 0;
6505
6506 if (napi->thread) {
6507 kthread_stop(napi->thread);
6508 napi->thread = NULL;
6509 }
6510}
6511EXPORT_SYMBOL(__netif_napi_del);
6512
6513static int __napi_poll(struct napi_struct *n, bool *repoll)
6514{
6515 int work, weight;
6516
6517 weight = n->weight;
6518
6519 /* This NAPI_STATE_SCHED test is for avoiding a race
6520 * with netpoll's poll_napi(). Only the entity which
6521 * obtains the lock and sees NAPI_STATE_SCHED set will
6522 * actually make the ->poll() call. Therefore we avoid
6523 * accidentally calling ->poll() when NAPI is not scheduled.
6524 */
6525 work = 0;
6526 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6527 work = n->poll(n, weight);
6528 trace_napi_poll(n, work, weight);
6529 }
6530
6531 if (unlikely(work > weight))
6532 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6533 n->poll, work, weight);
6534
6535 if (likely(work < weight))
6536 return work;
6537
6538 /* Drivers must not modify the NAPI state if they
6539 * consume the entire weight. In such cases this code
6540 * still "owns" the NAPI instance and therefore can
6541 * move the instance around on the list at-will.
6542 */
6543 if (unlikely(napi_disable_pending(n))) {
6544 napi_complete(n);
6545 return work;
6546 }
6547
6548 /* The NAPI context has more processing work, but busy-polling
6549 * is preferred. Exit early.
6550 */
6551 if (napi_prefer_busy_poll(n)) {
6552 if (napi_complete_done(n, work)) {
6553 /* If timeout is not set, we need to make sure
6554 * that the NAPI is re-scheduled.
6555 */
6556 napi_schedule(n);
6557 }
6558 return work;
6559 }
6560
6561 if (n->gro_bitmask) {
6562 /* flush too old packets
6563 * If HZ < 1000, flush all packets.
6564 */
6565 napi_gro_flush(n, HZ >= 1000);
6566 }
6567
6568 gro_normal_list(n);
6569
6570 /* Some drivers may have called napi_schedule
6571 * prior to exhausting their budget.
6572 */
6573 if (unlikely(!list_empty(&n->poll_list))) {
6574 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6575 n->dev ? n->dev->name : "backlog");
6576 return work;
6577 }
6578
6579 *repoll = true;
6580
6581 return work;
6582}
6583
6584static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6585{
6586 bool do_repoll = false;
6587 void *have;
6588 int work;
6589
6590 list_del_init(&n->poll_list);
6591
6592 have = netpoll_poll_lock(n);
6593
6594 work = __napi_poll(n, &do_repoll);
6595
6596 if (do_repoll)
6597 list_add_tail(&n->poll_list, repoll);
6598
6599 netpoll_poll_unlock(have);
6600
6601 return work;
6602}
6603
6604static int napi_thread_wait(struct napi_struct *napi)
6605{
6606 bool woken = false;
6607
6608 set_current_state(TASK_INTERRUPTIBLE);
6609
6610 while (!kthread_should_stop()) {
6611 /* Testing SCHED_THREADED bit here to make sure the current
6612 * kthread owns this napi and could poll on this napi.
6613 * Testing SCHED bit is not enough because SCHED bit might be
6614 * set by some other busy poll thread or by napi_disable().
6615 */
6616 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6617 WARN_ON(!list_empty(&napi->poll_list));
6618 __set_current_state(TASK_RUNNING);
6619 return 0;
6620 }
6621
6622 schedule();
6623 /* woken being true indicates this thread owns this napi. */
6624 woken = true;
6625 set_current_state(TASK_INTERRUPTIBLE);
6626 }
6627 __set_current_state(TASK_RUNNING);
6628
6629 return -1;
6630}
6631
6632static void skb_defer_free_flush(struct softnet_data *sd)
6633{
6634 struct sk_buff *skb, *next;
6635
6636 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6637 if (!READ_ONCE(sd->defer_list))
6638 return;
6639
6640 spin_lock(&sd->defer_lock);
6641 skb = sd->defer_list;
6642 sd->defer_list = NULL;
6643 sd->defer_count = 0;
6644 spin_unlock(&sd->defer_lock);
6645
6646 while (skb != NULL) {
6647 next = skb->next;
6648 napi_consume_skb(skb, 1);
6649 skb = next;
6650 }
6651}
6652
6653static int napi_threaded_poll(void *data)
6654{
6655 struct napi_struct *napi = data;
6656 struct softnet_data *sd;
6657 void *have;
6658
6659 while (!napi_thread_wait(napi)) {
6660 for (;;) {
6661 bool repoll = false;
6662
6663 local_bh_disable();
6664 sd = this_cpu_ptr(&softnet_data);
6665 sd->in_napi_threaded_poll = true;
6666
6667 have = netpoll_poll_lock(napi);
6668 __napi_poll(napi, &repoll);
6669 netpoll_poll_unlock(have);
6670
6671 sd->in_napi_threaded_poll = false;
6672 barrier();
6673
6674 if (sd_has_rps_ipi_waiting(sd)) {
6675 local_irq_disable();
6676 net_rps_action_and_irq_enable(sd);
6677 }
6678 skb_defer_free_flush(sd);
6679 local_bh_enable();
6680
6681 if (!repoll)
6682 break;
6683
6684 cond_resched();
6685 }
6686 }
6687 return 0;
6688}
6689
6690static __latent_entropy void net_rx_action(struct softirq_action *h)
6691{
6692 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6693 unsigned long time_limit = jiffies +
6694 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6695 int budget = READ_ONCE(netdev_budget);
6696 LIST_HEAD(list);
6697 LIST_HEAD(repoll);
6698
6699start:
6700 sd->in_net_rx_action = true;
6701 local_irq_disable();
6702 list_splice_init(&sd->poll_list, &list);
6703 local_irq_enable();
6704
6705 for (;;) {
6706 struct napi_struct *n;
6707
6708 skb_defer_free_flush(sd);
6709
6710 if (list_empty(&list)) {
6711 if (list_empty(&repoll)) {
6712 sd->in_net_rx_action = false;
6713 barrier();
6714 /* We need to check if ____napi_schedule()
6715 * had refilled poll_list while
6716 * sd->in_net_rx_action was true.
6717 */
6718 if (!list_empty(&sd->poll_list))
6719 goto start;
6720 if (!sd_has_rps_ipi_waiting(sd))
6721 goto end;
6722 }
6723 break;
6724 }
6725
6726 n = list_first_entry(&list, struct napi_struct, poll_list);
6727 budget -= napi_poll(n, &repoll);
6728
6729 /* If softirq window is exhausted then punt.
6730 * Allow this to run for 2 jiffies since which will allow
6731 * an average latency of 1.5/HZ.
6732 */
6733 if (unlikely(budget <= 0 ||
6734 time_after_eq(jiffies, time_limit))) {
6735 sd->time_squeeze++;
6736 break;
6737 }
6738 }
6739
6740 local_irq_disable();
6741
6742 list_splice_tail_init(&sd->poll_list, &list);
6743 list_splice_tail(&repoll, &list);
6744 list_splice(&list, &sd->poll_list);
6745 if (!list_empty(&sd->poll_list))
6746 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6747 else
6748 sd->in_net_rx_action = false;
6749
6750 net_rps_action_and_irq_enable(sd);
6751end:;
6752}
6753
6754struct netdev_adjacent {
6755 struct net_device *dev;
6756 netdevice_tracker dev_tracker;
6757
6758 /* upper master flag, there can only be one master device per list */
6759 bool master;
6760
6761 /* lookup ignore flag */
6762 bool ignore;
6763
6764 /* counter for the number of times this device was added to us */
6765 u16 ref_nr;
6766
6767 /* private field for the users */
6768 void *private;
6769
6770 struct list_head list;
6771 struct rcu_head rcu;
6772};
6773
6774static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6775 struct list_head *adj_list)
6776{
6777 struct netdev_adjacent *adj;
6778
6779 list_for_each_entry(adj, adj_list, list) {
6780 if (adj->dev == adj_dev)
6781 return adj;
6782 }
6783 return NULL;
6784}
6785
6786static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6787 struct netdev_nested_priv *priv)
6788{
6789 struct net_device *dev = (struct net_device *)priv->data;
6790
6791 return upper_dev == dev;
6792}
6793
6794/**
6795 * netdev_has_upper_dev - Check if device is linked to an upper device
6796 * @dev: device
6797 * @upper_dev: upper device to check
6798 *
6799 * Find out if a device is linked to specified upper device and return true
6800 * in case it is. Note that this checks only immediate upper device,
6801 * not through a complete stack of devices. The caller must hold the RTNL lock.
6802 */
6803bool netdev_has_upper_dev(struct net_device *dev,
6804 struct net_device *upper_dev)
6805{
6806 struct netdev_nested_priv priv = {
6807 .data = (void *)upper_dev,
6808 };
6809
6810 ASSERT_RTNL();
6811
6812 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6813 &priv);
6814}
6815EXPORT_SYMBOL(netdev_has_upper_dev);
6816
6817/**
6818 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6819 * @dev: device
6820 * @upper_dev: upper device to check
6821 *
6822 * Find out if a device is linked to specified upper device and return true
6823 * in case it is. Note that this checks the entire upper device chain.
6824 * The caller must hold rcu lock.
6825 */
6826
6827bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6828 struct net_device *upper_dev)
6829{
6830 struct netdev_nested_priv priv = {
6831 .data = (void *)upper_dev,
6832 };
6833
6834 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6835 &priv);
6836}
6837EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6838
6839/**
6840 * netdev_has_any_upper_dev - Check if device is linked to some device
6841 * @dev: device
6842 *
6843 * Find out if a device is linked to an upper device and return true in case
6844 * it is. The caller must hold the RTNL lock.
6845 */
6846bool netdev_has_any_upper_dev(struct net_device *dev)
6847{
6848 ASSERT_RTNL();
6849
6850 return !list_empty(&dev->adj_list.upper);
6851}
6852EXPORT_SYMBOL(netdev_has_any_upper_dev);
6853
6854/**
6855 * netdev_master_upper_dev_get - Get master upper device
6856 * @dev: device
6857 *
6858 * Find a master upper device and return pointer to it or NULL in case
6859 * it's not there. The caller must hold the RTNL lock.
6860 */
6861struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6862{
6863 struct netdev_adjacent *upper;
6864
6865 ASSERT_RTNL();
6866
6867 if (list_empty(&dev->adj_list.upper))
6868 return NULL;
6869
6870 upper = list_first_entry(&dev->adj_list.upper,
6871 struct netdev_adjacent, list);
6872 if (likely(upper->master))
6873 return upper->dev;
6874 return NULL;
6875}
6876EXPORT_SYMBOL(netdev_master_upper_dev_get);
6877
6878static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6879{
6880 struct netdev_adjacent *upper;
6881
6882 ASSERT_RTNL();
6883
6884 if (list_empty(&dev->adj_list.upper))
6885 return NULL;
6886
6887 upper = list_first_entry(&dev->adj_list.upper,
6888 struct netdev_adjacent, list);
6889 if (likely(upper->master) && !upper->ignore)
6890 return upper->dev;
6891 return NULL;
6892}
6893
6894/**
6895 * netdev_has_any_lower_dev - Check if device is linked to some device
6896 * @dev: device
6897 *
6898 * Find out if a device is linked to a lower device and return true in case
6899 * it is. The caller must hold the RTNL lock.
6900 */
6901static bool netdev_has_any_lower_dev(struct net_device *dev)
6902{
6903 ASSERT_RTNL();
6904
6905 return !list_empty(&dev->adj_list.lower);
6906}
6907
6908void *netdev_adjacent_get_private(struct list_head *adj_list)
6909{
6910 struct netdev_adjacent *adj;
6911
6912 adj = list_entry(adj_list, struct netdev_adjacent, list);
6913
6914 return adj->private;
6915}
6916EXPORT_SYMBOL(netdev_adjacent_get_private);
6917
6918/**
6919 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6920 * @dev: device
6921 * @iter: list_head ** of the current position
6922 *
6923 * Gets the next device from the dev's upper list, starting from iter
6924 * position. The caller must hold RCU read lock.
6925 */
6926struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6927 struct list_head **iter)
6928{
6929 struct netdev_adjacent *upper;
6930
6931 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6932
6933 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6934
6935 if (&upper->list == &dev->adj_list.upper)
6936 return NULL;
6937
6938 *iter = &upper->list;
6939
6940 return upper->dev;
6941}
6942EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6943
6944static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6945 struct list_head **iter,
6946 bool *ignore)
6947{
6948 struct netdev_adjacent *upper;
6949
6950 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6951
6952 if (&upper->list == &dev->adj_list.upper)
6953 return NULL;
6954
6955 *iter = &upper->list;
6956 *ignore = upper->ignore;
6957
6958 return upper->dev;
6959}
6960
6961static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6962 struct list_head **iter)
6963{
6964 struct netdev_adjacent *upper;
6965
6966 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6967
6968 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6969
6970 if (&upper->list == &dev->adj_list.upper)
6971 return NULL;
6972
6973 *iter = &upper->list;
6974
6975 return upper->dev;
6976}
6977
6978static int __netdev_walk_all_upper_dev(struct net_device *dev,
6979 int (*fn)(struct net_device *dev,
6980 struct netdev_nested_priv *priv),
6981 struct netdev_nested_priv *priv)
6982{
6983 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6984 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6985 int ret, cur = 0;
6986 bool ignore;
6987
6988 now = dev;
6989 iter = &dev->adj_list.upper;
6990
6991 while (1) {
6992 if (now != dev) {
6993 ret = fn(now, priv);
6994 if (ret)
6995 return ret;
6996 }
6997
6998 next = NULL;
6999 while (1) {
7000 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7001 if (!udev)
7002 break;
7003 if (ignore)
7004 continue;
7005
7006 next = udev;
7007 niter = &udev->adj_list.upper;
7008 dev_stack[cur] = now;
7009 iter_stack[cur++] = iter;
7010 break;
7011 }
7012
7013 if (!next) {
7014 if (!cur)
7015 return 0;
7016 next = dev_stack[--cur];
7017 niter = iter_stack[cur];
7018 }
7019
7020 now = next;
7021 iter = niter;
7022 }
7023
7024 return 0;
7025}
7026
7027int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7028 int (*fn)(struct net_device *dev,
7029 struct netdev_nested_priv *priv),
7030 struct netdev_nested_priv *priv)
7031{
7032 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7033 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7034 int ret, cur = 0;
7035
7036 now = dev;
7037 iter = &dev->adj_list.upper;
7038
7039 while (1) {
7040 if (now != dev) {
7041 ret = fn(now, priv);
7042 if (ret)
7043 return ret;
7044 }
7045
7046 next = NULL;
7047 while (1) {
7048 udev = netdev_next_upper_dev_rcu(now, &iter);
7049 if (!udev)
7050 break;
7051
7052 next = udev;
7053 niter = &udev->adj_list.upper;
7054 dev_stack[cur] = now;
7055 iter_stack[cur++] = iter;
7056 break;
7057 }
7058
7059 if (!next) {
7060 if (!cur)
7061 return 0;
7062 next = dev_stack[--cur];
7063 niter = iter_stack[cur];
7064 }
7065
7066 now = next;
7067 iter = niter;
7068 }
7069
7070 return 0;
7071}
7072EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7073
7074static bool __netdev_has_upper_dev(struct net_device *dev,
7075 struct net_device *upper_dev)
7076{
7077 struct netdev_nested_priv priv = {
7078 .flags = 0,
7079 .data = (void *)upper_dev,
7080 };
7081
7082 ASSERT_RTNL();
7083
7084 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7085 &priv);
7086}
7087
7088/**
7089 * netdev_lower_get_next_private - Get the next ->private from the
7090 * lower neighbour list
7091 * @dev: device
7092 * @iter: list_head ** of the current position
7093 *
7094 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7095 * list, starting from iter position. The caller must hold either hold the
7096 * RTNL lock or its own locking that guarantees that the neighbour lower
7097 * list will remain unchanged.
7098 */
7099void *netdev_lower_get_next_private(struct net_device *dev,
7100 struct list_head **iter)
7101{
7102 struct netdev_adjacent *lower;
7103
7104 lower = list_entry(*iter, struct netdev_adjacent, list);
7105
7106 if (&lower->list == &dev->adj_list.lower)
7107 return NULL;
7108
7109 *iter = lower->list.next;
7110
7111 return lower->private;
7112}
7113EXPORT_SYMBOL(netdev_lower_get_next_private);
7114
7115/**
7116 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7117 * lower neighbour list, RCU
7118 * variant
7119 * @dev: device
7120 * @iter: list_head ** of the current position
7121 *
7122 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7123 * list, starting from iter position. The caller must hold RCU read lock.
7124 */
7125void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7126 struct list_head **iter)
7127{
7128 struct netdev_adjacent *lower;
7129
7130 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7131
7132 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7133
7134 if (&lower->list == &dev->adj_list.lower)
7135 return NULL;
7136
7137 *iter = &lower->list;
7138
7139 return lower->private;
7140}
7141EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7142
7143/**
7144 * netdev_lower_get_next - Get the next device from the lower neighbour
7145 * list
7146 * @dev: device
7147 * @iter: list_head ** of the current position
7148 *
7149 * Gets the next netdev_adjacent from the dev's lower neighbour
7150 * list, starting from iter position. The caller must hold RTNL lock or
7151 * its own locking that guarantees that the neighbour lower
7152 * list will remain unchanged.
7153 */
7154void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7155{
7156 struct netdev_adjacent *lower;
7157
7158 lower = list_entry(*iter, struct netdev_adjacent, list);
7159
7160 if (&lower->list == &dev->adj_list.lower)
7161 return NULL;
7162
7163 *iter = lower->list.next;
7164
7165 return lower->dev;
7166}
7167EXPORT_SYMBOL(netdev_lower_get_next);
7168
7169static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7170 struct list_head **iter)
7171{
7172 struct netdev_adjacent *lower;
7173
7174 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7175
7176 if (&lower->list == &dev->adj_list.lower)
7177 return NULL;
7178
7179 *iter = &lower->list;
7180
7181 return lower->dev;
7182}
7183
7184static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7185 struct list_head **iter,
7186 bool *ignore)
7187{
7188 struct netdev_adjacent *lower;
7189
7190 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7191
7192 if (&lower->list == &dev->adj_list.lower)
7193 return NULL;
7194
7195 *iter = &lower->list;
7196 *ignore = lower->ignore;
7197
7198 return lower->dev;
7199}
7200
7201int netdev_walk_all_lower_dev(struct net_device *dev,
7202 int (*fn)(struct net_device *dev,
7203 struct netdev_nested_priv *priv),
7204 struct netdev_nested_priv *priv)
7205{
7206 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7207 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7208 int ret, cur = 0;
7209
7210 now = dev;
7211 iter = &dev->adj_list.lower;
7212
7213 while (1) {
7214 if (now != dev) {
7215 ret = fn(now, priv);
7216 if (ret)
7217 return ret;
7218 }
7219
7220 next = NULL;
7221 while (1) {
7222 ldev = netdev_next_lower_dev(now, &iter);
7223 if (!ldev)
7224 break;
7225
7226 next = ldev;
7227 niter = &ldev->adj_list.lower;
7228 dev_stack[cur] = now;
7229 iter_stack[cur++] = iter;
7230 break;
7231 }
7232
7233 if (!next) {
7234 if (!cur)
7235 return 0;
7236 next = dev_stack[--cur];
7237 niter = iter_stack[cur];
7238 }
7239
7240 now = next;
7241 iter = niter;
7242 }
7243
7244 return 0;
7245}
7246EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7247
7248static int __netdev_walk_all_lower_dev(struct net_device *dev,
7249 int (*fn)(struct net_device *dev,
7250 struct netdev_nested_priv *priv),
7251 struct netdev_nested_priv *priv)
7252{
7253 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7254 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7255 int ret, cur = 0;
7256 bool ignore;
7257
7258 now = dev;
7259 iter = &dev->adj_list.lower;
7260
7261 while (1) {
7262 if (now != dev) {
7263 ret = fn(now, priv);
7264 if (ret)
7265 return ret;
7266 }
7267
7268 next = NULL;
7269 while (1) {
7270 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7271 if (!ldev)
7272 break;
7273 if (ignore)
7274 continue;
7275
7276 next = ldev;
7277 niter = &ldev->adj_list.lower;
7278 dev_stack[cur] = now;
7279 iter_stack[cur++] = iter;
7280 break;
7281 }
7282
7283 if (!next) {
7284 if (!cur)
7285 return 0;
7286 next = dev_stack[--cur];
7287 niter = iter_stack[cur];
7288 }
7289
7290 now = next;
7291 iter = niter;
7292 }
7293
7294 return 0;
7295}
7296
7297struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7298 struct list_head **iter)
7299{
7300 struct netdev_adjacent *lower;
7301
7302 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7303 if (&lower->list == &dev->adj_list.lower)
7304 return NULL;
7305
7306 *iter = &lower->list;
7307
7308 return lower->dev;
7309}
7310EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7311
7312static u8 __netdev_upper_depth(struct net_device *dev)
7313{
7314 struct net_device *udev;
7315 struct list_head *iter;
7316 u8 max_depth = 0;
7317 bool ignore;
7318
7319 for (iter = &dev->adj_list.upper,
7320 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7321 udev;
7322 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7323 if (ignore)
7324 continue;
7325 if (max_depth < udev->upper_level)
7326 max_depth = udev->upper_level;
7327 }
7328
7329 return max_depth;
7330}
7331
7332static u8 __netdev_lower_depth(struct net_device *dev)
7333{
7334 struct net_device *ldev;
7335 struct list_head *iter;
7336 u8 max_depth = 0;
7337 bool ignore;
7338
7339 for (iter = &dev->adj_list.lower,
7340 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7341 ldev;
7342 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7343 if (ignore)
7344 continue;
7345 if (max_depth < ldev->lower_level)
7346 max_depth = ldev->lower_level;
7347 }
7348
7349 return max_depth;
7350}
7351
7352static int __netdev_update_upper_level(struct net_device *dev,
7353 struct netdev_nested_priv *__unused)
7354{
7355 dev->upper_level = __netdev_upper_depth(dev) + 1;
7356 return 0;
7357}
7358
7359#ifdef CONFIG_LOCKDEP
7360static LIST_HEAD(net_unlink_list);
7361
7362static void net_unlink_todo(struct net_device *dev)
7363{
7364 if (list_empty(&dev->unlink_list))
7365 list_add_tail(&dev->unlink_list, &net_unlink_list);
7366}
7367#endif
7368
7369static int __netdev_update_lower_level(struct net_device *dev,
7370 struct netdev_nested_priv *priv)
7371{
7372 dev->lower_level = __netdev_lower_depth(dev) + 1;
7373
7374#ifdef CONFIG_LOCKDEP
7375 if (!priv)
7376 return 0;
7377
7378 if (priv->flags & NESTED_SYNC_IMM)
7379 dev->nested_level = dev->lower_level - 1;
7380 if (priv->flags & NESTED_SYNC_TODO)
7381 net_unlink_todo(dev);
7382#endif
7383 return 0;
7384}
7385
7386int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7387 int (*fn)(struct net_device *dev,
7388 struct netdev_nested_priv *priv),
7389 struct netdev_nested_priv *priv)
7390{
7391 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7392 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7393 int ret, cur = 0;
7394
7395 now = dev;
7396 iter = &dev->adj_list.lower;
7397
7398 while (1) {
7399 if (now != dev) {
7400 ret = fn(now, priv);
7401 if (ret)
7402 return ret;
7403 }
7404
7405 next = NULL;
7406 while (1) {
7407 ldev = netdev_next_lower_dev_rcu(now, &iter);
7408 if (!ldev)
7409 break;
7410
7411 next = ldev;
7412 niter = &ldev->adj_list.lower;
7413 dev_stack[cur] = now;
7414 iter_stack[cur++] = iter;
7415 break;
7416 }
7417
7418 if (!next) {
7419 if (!cur)
7420 return 0;
7421 next = dev_stack[--cur];
7422 niter = iter_stack[cur];
7423 }
7424
7425 now = next;
7426 iter = niter;
7427 }
7428
7429 return 0;
7430}
7431EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7432
7433/**
7434 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7435 * lower neighbour list, RCU
7436 * variant
7437 * @dev: device
7438 *
7439 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7440 * list. The caller must hold RCU read lock.
7441 */
7442void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7443{
7444 struct netdev_adjacent *lower;
7445
7446 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7447 struct netdev_adjacent, list);
7448 if (lower)
7449 return lower->private;
7450 return NULL;
7451}
7452EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7453
7454/**
7455 * netdev_master_upper_dev_get_rcu - Get master upper device
7456 * @dev: device
7457 *
7458 * Find a master upper device and return pointer to it or NULL in case
7459 * it's not there. The caller must hold the RCU read lock.
7460 */
7461struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7462{
7463 struct netdev_adjacent *upper;
7464
7465 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7466 struct netdev_adjacent, list);
7467 if (upper && likely(upper->master))
7468 return upper->dev;
7469 return NULL;
7470}
7471EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7472
7473static int netdev_adjacent_sysfs_add(struct net_device *dev,
7474 struct net_device *adj_dev,
7475 struct list_head *dev_list)
7476{
7477 char linkname[IFNAMSIZ+7];
7478
7479 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7480 "upper_%s" : "lower_%s", adj_dev->name);
7481 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7482 linkname);
7483}
7484static void netdev_adjacent_sysfs_del(struct net_device *dev,
7485 char *name,
7486 struct list_head *dev_list)
7487{
7488 char linkname[IFNAMSIZ+7];
7489
7490 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7491 "upper_%s" : "lower_%s", name);
7492 sysfs_remove_link(&(dev->dev.kobj), linkname);
7493}
7494
7495static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7496 struct net_device *adj_dev,
7497 struct list_head *dev_list)
7498{
7499 return (dev_list == &dev->adj_list.upper ||
7500 dev_list == &dev->adj_list.lower) &&
7501 net_eq(dev_net(dev), dev_net(adj_dev));
7502}
7503
7504static int __netdev_adjacent_dev_insert(struct net_device *dev,
7505 struct net_device *adj_dev,
7506 struct list_head *dev_list,
7507 void *private, bool master)
7508{
7509 struct netdev_adjacent *adj;
7510 int ret;
7511
7512 adj = __netdev_find_adj(adj_dev, dev_list);
7513
7514 if (adj) {
7515 adj->ref_nr += 1;
7516 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7517 dev->name, adj_dev->name, adj->ref_nr);
7518
7519 return 0;
7520 }
7521
7522 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7523 if (!adj)
7524 return -ENOMEM;
7525
7526 adj->dev = adj_dev;
7527 adj->master = master;
7528 adj->ref_nr = 1;
7529 adj->private = private;
7530 adj->ignore = false;
7531 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7532
7533 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7534 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7535
7536 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7537 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7538 if (ret)
7539 goto free_adj;
7540 }
7541
7542 /* Ensure that master link is always the first item in list. */
7543 if (master) {
7544 ret = sysfs_create_link(&(dev->dev.kobj),
7545 &(adj_dev->dev.kobj), "master");
7546 if (ret)
7547 goto remove_symlinks;
7548
7549 list_add_rcu(&adj->list, dev_list);
7550 } else {
7551 list_add_tail_rcu(&adj->list, dev_list);
7552 }
7553
7554 return 0;
7555
7556remove_symlinks:
7557 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7558 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7559free_adj:
7560 netdev_put(adj_dev, &adj->dev_tracker);
7561 kfree(adj);
7562
7563 return ret;
7564}
7565
7566static void __netdev_adjacent_dev_remove(struct net_device *dev,
7567 struct net_device *adj_dev,
7568 u16 ref_nr,
7569 struct list_head *dev_list)
7570{
7571 struct netdev_adjacent *adj;
7572
7573 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7574 dev->name, adj_dev->name, ref_nr);
7575
7576 adj = __netdev_find_adj(adj_dev, dev_list);
7577
7578 if (!adj) {
7579 pr_err("Adjacency does not exist for device %s from %s\n",
7580 dev->name, adj_dev->name);
7581 WARN_ON(1);
7582 return;
7583 }
7584
7585 if (adj->ref_nr > ref_nr) {
7586 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7587 dev->name, adj_dev->name, ref_nr,
7588 adj->ref_nr - ref_nr);
7589 adj->ref_nr -= ref_nr;
7590 return;
7591 }
7592
7593 if (adj->master)
7594 sysfs_remove_link(&(dev->dev.kobj), "master");
7595
7596 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7597 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7598
7599 list_del_rcu(&adj->list);
7600 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7601 adj_dev->name, dev->name, adj_dev->name);
7602 netdev_put(adj_dev, &adj->dev_tracker);
7603 kfree_rcu(adj, rcu);
7604}
7605
7606static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7607 struct net_device *upper_dev,
7608 struct list_head *up_list,
7609 struct list_head *down_list,
7610 void *private, bool master)
7611{
7612 int ret;
7613
7614 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7615 private, master);
7616 if (ret)
7617 return ret;
7618
7619 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7620 private, false);
7621 if (ret) {
7622 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7623 return ret;
7624 }
7625
7626 return 0;
7627}
7628
7629static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7630 struct net_device *upper_dev,
7631 u16 ref_nr,
7632 struct list_head *up_list,
7633 struct list_head *down_list)
7634{
7635 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7636 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7637}
7638
7639static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7640 struct net_device *upper_dev,
7641 void *private, bool master)
7642{
7643 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7644 &dev->adj_list.upper,
7645 &upper_dev->adj_list.lower,
7646 private, master);
7647}
7648
7649static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7650 struct net_device *upper_dev)
7651{
7652 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7653 &dev->adj_list.upper,
7654 &upper_dev->adj_list.lower);
7655}
7656
7657static int __netdev_upper_dev_link(struct net_device *dev,
7658 struct net_device *upper_dev, bool master,
7659 void *upper_priv, void *upper_info,
7660 struct netdev_nested_priv *priv,
7661 struct netlink_ext_ack *extack)
7662{
7663 struct netdev_notifier_changeupper_info changeupper_info = {
7664 .info = {
7665 .dev = dev,
7666 .extack = extack,
7667 },
7668 .upper_dev = upper_dev,
7669 .master = master,
7670 .linking = true,
7671 .upper_info = upper_info,
7672 };
7673 struct net_device *master_dev;
7674 int ret = 0;
7675
7676 ASSERT_RTNL();
7677
7678 if (dev == upper_dev)
7679 return -EBUSY;
7680
7681 /* To prevent loops, check if dev is not upper device to upper_dev. */
7682 if (__netdev_has_upper_dev(upper_dev, dev))
7683 return -EBUSY;
7684
7685 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7686 return -EMLINK;
7687
7688 if (!master) {
7689 if (__netdev_has_upper_dev(dev, upper_dev))
7690 return -EEXIST;
7691 } else {
7692 master_dev = __netdev_master_upper_dev_get(dev);
7693 if (master_dev)
7694 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7695 }
7696
7697 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7698 &changeupper_info.info);
7699 ret = notifier_to_errno(ret);
7700 if (ret)
7701 return ret;
7702
7703 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7704 master);
7705 if (ret)
7706 return ret;
7707
7708 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7709 &changeupper_info.info);
7710 ret = notifier_to_errno(ret);
7711 if (ret)
7712 goto rollback;
7713
7714 __netdev_update_upper_level(dev, NULL);
7715 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7716
7717 __netdev_update_lower_level(upper_dev, priv);
7718 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7719 priv);
7720
7721 return 0;
7722
7723rollback:
7724 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7725
7726 return ret;
7727}
7728
7729/**
7730 * netdev_upper_dev_link - Add a link to the upper device
7731 * @dev: device
7732 * @upper_dev: new upper device
7733 * @extack: netlink extended ack
7734 *
7735 * Adds a link to device which is upper to this one. The caller must hold
7736 * the RTNL lock. On a failure a negative errno code is returned.
7737 * On success the reference counts are adjusted and the function
7738 * returns zero.
7739 */
7740int netdev_upper_dev_link(struct net_device *dev,
7741 struct net_device *upper_dev,
7742 struct netlink_ext_ack *extack)
7743{
7744 struct netdev_nested_priv priv = {
7745 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7746 .data = NULL,
7747 };
7748
7749 return __netdev_upper_dev_link(dev, upper_dev, false,
7750 NULL, NULL, &priv, extack);
7751}
7752EXPORT_SYMBOL(netdev_upper_dev_link);
7753
7754/**
7755 * netdev_master_upper_dev_link - Add a master link to the upper device
7756 * @dev: device
7757 * @upper_dev: new upper device
7758 * @upper_priv: upper device private
7759 * @upper_info: upper info to be passed down via notifier
7760 * @extack: netlink extended ack
7761 *
7762 * Adds a link to device which is upper to this one. In this case, only
7763 * one master upper device can be linked, although other non-master devices
7764 * might be linked as well. The caller must hold the RTNL lock.
7765 * On a failure a negative errno code is returned. On success the reference
7766 * counts are adjusted and the function returns zero.
7767 */
7768int netdev_master_upper_dev_link(struct net_device *dev,
7769 struct net_device *upper_dev,
7770 void *upper_priv, void *upper_info,
7771 struct netlink_ext_ack *extack)
7772{
7773 struct netdev_nested_priv priv = {
7774 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7775 .data = NULL,
7776 };
7777
7778 return __netdev_upper_dev_link(dev, upper_dev, true,
7779 upper_priv, upper_info, &priv, extack);
7780}
7781EXPORT_SYMBOL(netdev_master_upper_dev_link);
7782
7783static void __netdev_upper_dev_unlink(struct net_device *dev,
7784 struct net_device *upper_dev,
7785 struct netdev_nested_priv *priv)
7786{
7787 struct netdev_notifier_changeupper_info changeupper_info = {
7788 .info = {
7789 .dev = dev,
7790 },
7791 .upper_dev = upper_dev,
7792 .linking = false,
7793 };
7794
7795 ASSERT_RTNL();
7796
7797 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7798
7799 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7800 &changeupper_info.info);
7801
7802 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7803
7804 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7805 &changeupper_info.info);
7806
7807 __netdev_update_upper_level(dev, NULL);
7808 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7809
7810 __netdev_update_lower_level(upper_dev, priv);
7811 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7812 priv);
7813}
7814
7815/**
7816 * netdev_upper_dev_unlink - Removes a link to upper device
7817 * @dev: device
7818 * @upper_dev: new upper device
7819 *
7820 * Removes a link to device which is upper to this one. The caller must hold
7821 * the RTNL lock.
7822 */
7823void netdev_upper_dev_unlink(struct net_device *dev,
7824 struct net_device *upper_dev)
7825{
7826 struct netdev_nested_priv priv = {
7827 .flags = NESTED_SYNC_TODO,
7828 .data = NULL,
7829 };
7830
7831 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7832}
7833EXPORT_SYMBOL(netdev_upper_dev_unlink);
7834
7835static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7836 struct net_device *lower_dev,
7837 bool val)
7838{
7839 struct netdev_adjacent *adj;
7840
7841 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7842 if (adj)
7843 adj->ignore = val;
7844
7845 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7846 if (adj)
7847 adj->ignore = val;
7848}
7849
7850static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7851 struct net_device *lower_dev)
7852{
7853 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7854}
7855
7856static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7857 struct net_device *lower_dev)
7858{
7859 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7860}
7861
7862int netdev_adjacent_change_prepare(struct net_device *old_dev,
7863 struct net_device *new_dev,
7864 struct net_device *dev,
7865 struct netlink_ext_ack *extack)
7866{
7867 struct netdev_nested_priv priv = {
7868 .flags = 0,
7869 .data = NULL,
7870 };
7871 int err;
7872
7873 if (!new_dev)
7874 return 0;
7875
7876 if (old_dev && new_dev != old_dev)
7877 netdev_adjacent_dev_disable(dev, old_dev);
7878 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7879 extack);
7880 if (err) {
7881 if (old_dev && new_dev != old_dev)
7882 netdev_adjacent_dev_enable(dev, old_dev);
7883 return err;
7884 }
7885
7886 return 0;
7887}
7888EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7889
7890void netdev_adjacent_change_commit(struct net_device *old_dev,
7891 struct net_device *new_dev,
7892 struct net_device *dev)
7893{
7894 struct netdev_nested_priv priv = {
7895 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7896 .data = NULL,
7897 };
7898
7899 if (!new_dev || !old_dev)
7900 return;
7901
7902 if (new_dev == old_dev)
7903 return;
7904
7905 netdev_adjacent_dev_enable(dev, old_dev);
7906 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7907}
7908EXPORT_SYMBOL(netdev_adjacent_change_commit);
7909
7910void netdev_adjacent_change_abort(struct net_device *old_dev,
7911 struct net_device *new_dev,
7912 struct net_device *dev)
7913{
7914 struct netdev_nested_priv priv = {
7915 .flags = 0,
7916 .data = NULL,
7917 };
7918
7919 if (!new_dev)
7920 return;
7921
7922 if (old_dev && new_dev != old_dev)
7923 netdev_adjacent_dev_enable(dev, old_dev);
7924
7925 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7926}
7927EXPORT_SYMBOL(netdev_adjacent_change_abort);
7928
7929/**
7930 * netdev_bonding_info_change - Dispatch event about slave change
7931 * @dev: device
7932 * @bonding_info: info to dispatch
7933 *
7934 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7935 * The caller must hold the RTNL lock.
7936 */
7937void netdev_bonding_info_change(struct net_device *dev,
7938 struct netdev_bonding_info *bonding_info)
7939{
7940 struct netdev_notifier_bonding_info info = {
7941 .info.dev = dev,
7942 };
7943
7944 memcpy(&info.bonding_info, bonding_info,
7945 sizeof(struct netdev_bonding_info));
7946 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7947 &info.info);
7948}
7949EXPORT_SYMBOL(netdev_bonding_info_change);
7950
7951static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7952 struct netlink_ext_ack *extack)
7953{
7954 struct netdev_notifier_offload_xstats_info info = {
7955 .info.dev = dev,
7956 .info.extack = extack,
7957 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7958 };
7959 int err;
7960 int rc;
7961
7962 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7963 GFP_KERNEL);
7964 if (!dev->offload_xstats_l3)
7965 return -ENOMEM;
7966
7967 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7968 NETDEV_OFFLOAD_XSTATS_DISABLE,
7969 &info.info);
7970 err = notifier_to_errno(rc);
7971 if (err)
7972 goto free_stats;
7973
7974 return 0;
7975
7976free_stats:
7977 kfree(dev->offload_xstats_l3);
7978 dev->offload_xstats_l3 = NULL;
7979 return err;
7980}
7981
7982int netdev_offload_xstats_enable(struct net_device *dev,
7983 enum netdev_offload_xstats_type type,
7984 struct netlink_ext_ack *extack)
7985{
7986 ASSERT_RTNL();
7987
7988 if (netdev_offload_xstats_enabled(dev, type))
7989 return -EALREADY;
7990
7991 switch (type) {
7992 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7993 return netdev_offload_xstats_enable_l3(dev, extack);
7994 }
7995
7996 WARN_ON(1);
7997 return -EINVAL;
7998}
7999EXPORT_SYMBOL(netdev_offload_xstats_enable);
8000
8001static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8002{
8003 struct netdev_notifier_offload_xstats_info info = {
8004 .info.dev = dev,
8005 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8006 };
8007
8008 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8009 &info.info);
8010 kfree(dev->offload_xstats_l3);
8011 dev->offload_xstats_l3 = NULL;
8012}
8013
8014int netdev_offload_xstats_disable(struct net_device *dev,
8015 enum netdev_offload_xstats_type type)
8016{
8017 ASSERT_RTNL();
8018
8019 if (!netdev_offload_xstats_enabled(dev, type))
8020 return -EALREADY;
8021
8022 switch (type) {
8023 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8024 netdev_offload_xstats_disable_l3(dev);
8025 return 0;
8026 }
8027
8028 WARN_ON(1);
8029 return -EINVAL;
8030}
8031EXPORT_SYMBOL(netdev_offload_xstats_disable);
8032
8033static void netdev_offload_xstats_disable_all(struct net_device *dev)
8034{
8035 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8036}
8037
8038static struct rtnl_hw_stats64 *
8039netdev_offload_xstats_get_ptr(const struct net_device *dev,
8040 enum netdev_offload_xstats_type type)
8041{
8042 switch (type) {
8043 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8044 return dev->offload_xstats_l3;
8045 }
8046
8047 WARN_ON(1);
8048 return NULL;
8049}
8050
8051bool netdev_offload_xstats_enabled(const struct net_device *dev,
8052 enum netdev_offload_xstats_type type)
8053{
8054 ASSERT_RTNL();
8055
8056 return netdev_offload_xstats_get_ptr(dev, type);
8057}
8058EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8059
8060struct netdev_notifier_offload_xstats_ru {
8061 bool used;
8062};
8063
8064struct netdev_notifier_offload_xstats_rd {
8065 struct rtnl_hw_stats64 stats;
8066 bool used;
8067};
8068
8069static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8070 const struct rtnl_hw_stats64 *src)
8071{
8072 dest->rx_packets += src->rx_packets;
8073 dest->tx_packets += src->tx_packets;
8074 dest->rx_bytes += src->rx_bytes;
8075 dest->tx_bytes += src->tx_bytes;
8076 dest->rx_errors += src->rx_errors;
8077 dest->tx_errors += src->tx_errors;
8078 dest->rx_dropped += src->rx_dropped;
8079 dest->tx_dropped += src->tx_dropped;
8080 dest->multicast += src->multicast;
8081}
8082
8083static int netdev_offload_xstats_get_used(struct net_device *dev,
8084 enum netdev_offload_xstats_type type,
8085 bool *p_used,
8086 struct netlink_ext_ack *extack)
8087{
8088 struct netdev_notifier_offload_xstats_ru report_used = {};
8089 struct netdev_notifier_offload_xstats_info info = {
8090 .info.dev = dev,
8091 .info.extack = extack,
8092 .type = type,
8093 .report_used = &report_used,
8094 };
8095 int rc;
8096
8097 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8098 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8099 &info.info);
8100 *p_used = report_used.used;
8101 return notifier_to_errno(rc);
8102}
8103
8104static int netdev_offload_xstats_get_stats(struct net_device *dev,
8105 enum netdev_offload_xstats_type type,
8106 struct rtnl_hw_stats64 *p_stats,
8107 bool *p_used,
8108 struct netlink_ext_ack *extack)
8109{
8110 struct netdev_notifier_offload_xstats_rd report_delta = {};
8111 struct netdev_notifier_offload_xstats_info info = {
8112 .info.dev = dev,
8113 .info.extack = extack,
8114 .type = type,
8115 .report_delta = &report_delta,
8116 };
8117 struct rtnl_hw_stats64 *stats;
8118 int rc;
8119
8120 stats = netdev_offload_xstats_get_ptr(dev, type);
8121 if (WARN_ON(!stats))
8122 return -EINVAL;
8123
8124 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8125 &info.info);
8126
8127 /* Cache whatever we got, even if there was an error, otherwise the
8128 * successful stats retrievals would get lost.
8129 */
8130 netdev_hw_stats64_add(stats, &report_delta.stats);
8131
8132 if (p_stats)
8133 *p_stats = *stats;
8134 *p_used = report_delta.used;
8135
8136 return notifier_to_errno(rc);
8137}
8138
8139int netdev_offload_xstats_get(struct net_device *dev,
8140 enum netdev_offload_xstats_type type,
8141 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8142 struct netlink_ext_ack *extack)
8143{
8144 ASSERT_RTNL();
8145
8146 if (p_stats)
8147 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8148 p_used, extack);
8149 else
8150 return netdev_offload_xstats_get_used(dev, type, p_used,
8151 extack);
8152}
8153EXPORT_SYMBOL(netdev_offload_xstats_get);
8154
8155void
8156netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8157 const struct rtnl_hw_stats64 *stats)
8158{
8159 report_delta->used = true;
8160 netdev_hw_stats64_add(&report_delta->stats, stats);
8161}
8162EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8163
8164void
8165netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8166{
8167 report_used->used = true;
8168}
8169EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8170
8171void netdev_offload_xstats_push_delta(struct net_device *dev,
8172 enum netdev_offload_xstats_type type,
8173 const struct rtnl_hw_stats64 *p_stats)
8174{
8175 struct rtnl_hw_stats64 *stats;
8176
8177 ASSERT_RTNL();
8178
8179 stats = netdev_offload_xstats_get_ptr(dev, type);
8180 if (WARN_ON(!stats))
8181 return;
8182
8183 netdev_hw_stats64_add(stats, p_stats);
8184}
8185EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8186
8187/**
8188 * netdev_get_xmit_slave - Get the xmit slave of master device
8189 * @dev: device
8190 * @skb: The packet
8191 * @all_slaves: assume all the slaves are active
8192 *
8193 * The reference counters are not incremented so the caller must be
8194 * careful with locks. The caller must hold RCU lock.
8195 * %NULL is returned if no slave is found.
8196 */
8197
8198struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8199 struct sk_buff *skb,
8200 bool all_slaves)
8201{
8202 const struct net_device_ops *ops = dev->netdev_ops;
8203
8204 if (!ops->ndo_get_xmit_slave)
8205 return NULL;
8206 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8207}
8208EXPORT_SYMBOL(netdev_get_xmit_slave);
8209
8210static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8211 struct sock *sk)
8212{
8213 const struct net_device_ops *ops = dev->netdev_ops;
8214
8215 if (!ops->ndo_sk_get_lower_dev)
8216 return NULL;
8217 return ops->ndo_sk_get_lower_dev(dev, sk);
8218}
8219
8220/**
8221 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8222 * @dev: device
8223 * @sk: the socket
8224 *
8225 * %NULL is returned if no lower device is found.
8226 */
8227
8228struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8229 struct sock *sk)
8230{
8231 struct net_device *lower;
8232
8233 lower = netdev_sk_get_lower_dev(dev, sk);
8234 while (lower) {
8235 dev = lower;
8236 lower = netdev_sk_get_lower_dev(dev, sk);
8237 }
8238
8239 return dev;
8240}
8241EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8242
8243static void netdev_adjacent_add_links(struct net_device *dev)
8244{
8245 struct netdev_adjacent *iter;
8246
8247 struct net *net = dev_net(dev);
8248
8249 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8250 if (!net_eq(net, dev_net(iter->dev)))
8251 continue;
8252 netdev_adjacent_sysfs_add(iter->dev, dev,
8253 &iter->dev->adj_list.lower);
8254 netdev_adjacent_sysfs_add(dev, iter->dev,
8255 &dev->adj_list.upper);
8256 }
8257
8258 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8259 if (!net_eq(net, dev_net(iter->dev)))
8260 continue;
8261 netdev_adjacent_sysfs_add(iter->dev, dev,
8262 &iter->dev->adj_list.upper);
8263 netdev_adjacent_sysfs_add(dev, iter->dev,
8264 &dev->adj_list.lower);
8265 }
8266}
8267
8268static void netdev_adjacent_del_links(struct net_device *dev)
8269{
8270 struct netdev_adjacent *iter;
8271
8272 struct net *net = dev_net(dev);
8273
8274 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8275 if (!net_eq(net, dev_net(iter->dev)))
8276 continue;
8277 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8278 &iter->dev->adj_list.lower);
8279 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8280 &dev->adj_list.upper);
8281 }
8282
8283 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8284 if (!net_eq(net, dev_net(iter->dev)))
8285 continue;
8286 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8287 &iter->dev->adj_list.upper);
8288 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8289 &dev->adj_list.lower);
8290 }
8291}
8292
8293void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8294{
8295 struct netdev_adjacent *iter;
8296
8297 struct net *net = dev_net(dev);
8298
8299 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8300 if (!net_eq(net, dev_net(iter->dev)))
8301 continue;
8302 netdev_adjacent_sysfs_del(iter->dev, oldname,
8303 &iter->dev->adj_list.lower);
8304 netdev_adjacent_sysfs_add(iter->dev, dev,
8305 &iter->dev->adj_list.lower);
8306 }
8307
8308 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8309 if (!net_eq(net, dev_net(iter->dev)))
8310 continue;
8311 netdev_adjacent_sysfs_del(iter->dev, oldname,
8312 &iter->dev->adj_list.upper);
8313 netdev_adjacent_sysfs_add(iter->dev, dev,
8314 &iter->dev->adj_list.upper);
8315 }
8316}
8317
8318void *netdev_lower_dev_get_private(struct net_device *dev,
8319 struct net_device *lower_dev)
8320{
8321 struct netdev_adjacent *lower;
8322
8323 if (!lower_dev)
8324 return NULL;
8325 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8326 if (!lower)
8327 return NULL;
8328
8329 return lower->private;
8330}
8331EXPORT_SYMBOL(netdev_lower_dev_get_private);
8332
8333
8334/**
8335 * netdev_lower_state_changed - Dispatch event about lower device state change
8336 * @lower_dev: device
8337 * @lower_state_info: state to dispatch
8338 *
8339 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8340 * The caller must hold the RTNL lock.
8341 */
8342void netdev_lower_state_changed(struct net_device *lower_dev,
8343 void *lower_state_info)
8344{
8345 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8346 .info.dev = lower_dev,
8347 };
8348
8349 ASSERT_RTNL();
8350 changelowerstate_info.lower_state_info = lower_state_info;
8351 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8352 &changelowerstate_info.info);
8353}
8354EXPORT_SYMBOL(netdev_lower_state_changed);
8355
8356static void dev_change_rx_flags(struct net_device *dev, int flags)
8357{
8358 const struct net_device_ops *ops = dev->netdev_ops;
8359
8360 if (ops->ndo_change_rx_flags)
8361 ops->ndo_change_rx_flags(dev, flags);
8362}
8363
8364static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8365{
8366 unsigned int old_flags = dev->flags;
8367 kuid_t uid;
8368 kgid_t gid;
8369
8370 ASSERT_RTNL();
8371
8372 dev->flags |= IFF_PROMISC;
8373 dev->promiscuity += inc;
8374 if (dev->promiscuity == 0) {
8375 /*
8376 * Avoid overflow.
8377 * If inc causes overflow, untouch promisc and return error.
8378 */
8379 if (inc < 0)
8380 dev->flags &= ~IFF_PROMISC;
8381 else {
8382 dev->promiscuity -= inc;
8383 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8384 return -EOVERFLOW;
8385 }
8386 }
8387 if (dev->flags != old_flags) {
8388 netdev_info(dev, "%s promiscuous mode\n",
8389 dev->flags & IFF_PROMISC ? "entered" : "left");
8390 if (audit_enabled) {
8391 current_uid_gid(&uid, &gid);
8392 audit_log(audit_context(), GFP_ATOMIC,
8393 AUDIT_ANOM_PROMISCUOUS,
8394 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8395 dev->name, (dev->flags & IFF_PROMISC),
8396 (old_flags & IFF_PROMISC),
8397 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8398 from_kuid(&init_user_ns, uid),
8399 from_kgid(&init_user_ns, gid),
8400 audit_get_sessionid(current));
8401 }
8402
8403 dev_change_rx_flags(dev, IFF_PROMISC);
8404 }
8405 if (notify)
8406 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8407 return 0;
8408}
8409
8410/**
8411 * dev_set_promiscuity - update promiscuity count on a device
8412 * @dev: device
8413 * @inc: modifier
8414 *
8415 * Add or remove promiscuity from a device. While the count in the device
8416 * remains above zero the interface remains promiscuous. Once it hits zero
8417 * the device reverts back to normal filtering operation. A negative inc
8418 * value is used to drop promiscuity on the device.
8419 * Return 0 if successful or a negative errno code on error.
8420 */
8421int dev_set_promiscuity(struct net_device *dev, int inc)
8422{
8423 unsigned int old_flags = dev->flags;
8424 int err;
8425
8426 err = __dev_set_promiscuity(dev, inc, true);
8427 if (err < 0)
8428 return err;
8429 if (dev->flags != old_flags)
8430 dev_set_rx_mode(dev);
8431 return err;
8432}
8433EXPORT_SYMBOL(dev_set_promiscuity);
8434
8435static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8436{
8437 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8438
8439 ASSERT_RTNL();
8440
8441 dev->flags |= IFF_ALLMULTI;
8442 dev->allmulti += inc;
8443 if (dev->allmulti == 0) {
8444 /*
8445 * Avoid overflow.
8446 * If inc causes overflow, untouch allmulti and return error.
8447 */
8448 if (inc < 0)
8449 dev->flags &= ~IFF_ALLMULTI;
8450 else {
8451 dev->allmulti -= inc;
8452 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8453 return -EOVERFLOW;
8454 }
8455 }
8456 if (dev->flags ^ old_flags) {
8457 netdev_info(dev, "%s allmulticast mode\n",
8458 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8459 dev_change_rx_flags(dev, IFF_ALLMULTI);
8460 dev_set_rx_mode(dev);
8461 if (notify)
8462 __dev_notify_flags(dev, old_flags,
8463 dev->gflags ^ old_gflags, 0, NULL);
8464 }
8465 return 0;
8466}
8467
8468/**
8469 * dev_set_allmulti - update allmulti count on a device
8470 * @dev: device
8471 * @inc: modifier
8472 *
8473 * Add or remove reception of all multicast frames to a device. While the
8474 * count in the device remains above zero the interface remains listening
8475 * to all interfaces. Once it hits zero the device reverts back to normal
8476 * filtering operation. A negative @inc value is used to drop the counter
8477 * when releasing a resource needing all multicasts.
8478 * Return 0 if successful or a negative errno code on error.
8479 */
8480
8481int dev_set_allmulti(struct net_device *dev, int inc)
8482{
8483 return __dev_set_allmulti(dev, inc, true);
8484}
8485EXPORT_SYMBOL(dev_set_allmulti);
8486
8487/*
8488 * Upload unicast and multicast address lists to device and
8489 * configure RX filtering. When the device doesn't support unicast
8490 * filtering it is put in promiscuous mode while unicast addresses
8491 * are present.
8492 */
8493void __dev_set_rx_mode(struct net_device *dev)
8494{
8495 const struct net_device_ops *ops = dev->netdev_ops;
8496
8497 /* dev_open will call this function so the list will stay sane. */
8498 if (!(dev->flags&IFF_UP))
8499 return;
8500
8501 if (!netif_device_present(dev))
8502 return;
8503
8504 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8505 /* Unicast addresses changes may only happen under the rtnl,
8506 * therefore calling __dev_set_promiscuity here is safe.
8507 */
8508 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8509 __dev_set_promiscuity(dev, 1, false);
8510 dev->uc_promisc = true;
8511 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8512 __dev_set_promiscuity(dev, -1, false);
8513 dev->uc_promisc = false;
8514 }
8515 }
8516
8517 if (ops->ndo_set_rx_mode)
8518 ops->ndo_set_rx_mode(dev);
8519}
8520
8521void dev_set_rx_mode(struct net_device *dev)
8522{
8523 netif_addr_lock_bh(dev);
8524 __dev_set_rx_mode(dev);
8525 netif_addr_unlock_bh(dev);
8526}
8527
8528/**
8529 * dev_get_flags - get flags reported to userspace
8530 * @dev: device
8531 *
8532 * Get the combination of flag bits exported through APIs to userspace.
8533 */
8534unsigned int dev_get_flags(const struct net_device *dev)
8535{
8536 unsigned int flags;
8537
8538 flags = (dev->flags & ~(IFF_PROMISC |
8539 IFF_ALLMULTI |
8540 IFF_RUNNING |
8541 IFF_LOWER_UP |
8542 IFF_DORMANT)) |
8543 (dev->gflags & (IFF_PROMISC |
8544 IFF_ALLMULTI));
8545
8546 if (netif_running(dev)) {
8547 if (netif_oper_up(dev))
8548 flags |= IFF_RUNNING;
8549 if (netif_carrier_ok(dev))
8550 flags |= IFF_LOWER_UP;
8551 if (netif_dormant(dev))
8552 flags |= IFF_DORMANT;
8553 }
8554
8555 return flags;
8556}
8557EXPORT_SYMBOL(dev_get_flags);
8558
8559int __dev_change_flags(struct net_device *dev, unsigned int flags,
8560 struct netlink_ext_ack *extack)
8561{
8562 unsigned int old_flags = dev->flags;
8563 int ret;
8564
8565 ASSERT_RTNL();
8566
8567 /*
8568 * Set the flags on our device.
8569 */
8570
8571 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8572 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8573 IFF_AUTOMEDIA)) |
8574 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8575 IFF_ALLMULTI));
8576
8577 /*
8578 * Load in the correct multicast list now the flags have changed.
8579 */
8580
8581 if ((old_flags ^ flags) & IFF_MULTICAST)
8582 dev_change_rx_flags(dev, IFF_MULTICAST);
8583
8584 dev_set_rx_mode(dev);
8585
8586 /*
8587 * Have we downed the interface. We handle IFF_UP ourselves
8588 * according to user attempts to set it, rather than blindly
8589 * setting it.
8590 */
8591
8592 ret = 0;
8593 if ((old_flags ^ flags) & IFF_UP) {
8594 if (old_flags & IFF_UP)
8595 __dev_close(dev);
8596 else
8597 ret = __dev_open(dev, extack);
8598 }
8599
8600 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8601 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8602 unsigned int old_flags = dev->flags;
8603
8604 dev->gflags ^= IFF_PROMISC;
8605
8606 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8607 if (dev->flags != old_flags)
8608 dev_set_rx_mode(dev);
8609 }
8610
8611 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8612 * is important. Some (broken) drivers set IFF_PROMISC, when
8613 * IFF_ALLMULTI is requested not asking us and not reporting.
8614 */
8615 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8616 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8617
8618 dev->gflags ^= IFF_ALLMULTI;
8619 __dev_set_allmulti(dev, inc, false);
8620 }
8621
8622 return ret;
8623}
8624
8625void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8626 unsigned int gchanges, u32 portid,
8627 const struct nlmsghdr *nlh)
8628{
8629 unsigned int changes = dev->flags ^ old_flags;
8630
8631 if (gchanges)
8632 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8633
8634 if (changes & IFF_UP) {
8635 if (dev->flags & IFF_UP)
8636 call_netdevice_notifiers(NETDEV_UP, dev);
8637 else
8638 call_netdevice_notifiers(NETDEV_DOWN, dev);
8639 }
8640
8641 if (dev->flags & IFF_UP &&
8642 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8643 struct netdev_notifier_change_info change_info = {
8644 .info = {
8645 .dev = dev,
8646 },
8647 .flags_changed = changes,
8648 };
8649
8650 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8651 }
8652}
8653
8654/**
8655 * dev_change_flags - change device settings
8656 * @dev: device
8657 * @flags: device state flags
8658 * @extack: netlink extended ack
8659 *
8660 * Change settings on device based state flags. The flags are
8661 * in the userspace exported format.
8662 */
8663int dev_change_flags(struct net_device *dev, unsigned int flags,
8664 struct netlink_ext_ack *extack)
8665{
8666 int ret;
8667 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8668
8669 ret = __dev_change_flags(dev, flags, extack);
8670 if (ret < 0)
8671 return ret;
8672
8673 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8674 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8675 return ret;
8676}
8677EXPORT_SYMBOL(dev_change_flags);
8678
8679int __dev_set_mtu(struct net_device *dev, int new_mtu)
8680{
8681 const struct net_device_ops *ops = dev->netdev_ops;
8682
8683 if (ops->ndo_change_mtu)
8684 return ops->ndo_change_mtu(dev, new_mtu);
8685
8686 /* Pairs with all the lockless reads of dev->mtu in the stack */
8687 WRITE_ONCE(dev->mtu, new_mtu);
8688 return 0;
8689}
8690EXPORT_SYMBOL(__dev_set_mtu);
8691
8692int dev_validate_mtu(struct net_device *dev, int new_mtu,
8693 struct netlink_ext_ack *extack)
8694{
8695 /* MTU must be positive, and in range */
8696 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8697 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8698 return -EINVAL;
8699 }
8700
8701 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8702 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8703 return -EINVAL;
8704 }
8705 return 0;
8706}
8707
8708/**
8709 * dev_set_mtu_ext - Change maximum transfer unit
8710 * @dev: device
8711 * @new_mtu: new transfer unit
8712 * @extack: netlink extended ack
8713 *
8714 * Change the maximum transfer size of the network device.
8715 */
8716int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8717 struct netlink_ext_ack *extack)
8718{
8719 int err, orig_mtu;
8720
8721 if (new_mtu == dev->mtu)
8722 return 0;
8723
8724 err = dev_validate_mtu(dev, new_mtu, extack);
8725 if (err)
8726 return err;
8727
8728 if (!netif_device_present(dev))
8729 return -ENODEV;
8730
8731 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8732 err = notifier_to_errno(err);
8733 if (err)
8734 return err;
8735
8736 orig_mtu = dev->mtu;
8737 err = __dev_set_mtu(dev, new_mtu);
8738
8739 if (!err) {
8740 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8741 orig_mtu);
8742 err = notifier_to_errno(err);
8743 if (err) {
8744 /* setting mtu back and notifying everyone again,
8745 * so that they have a chance to revert changes.
8746 */
8747 __dev_set_mtu(dev, orig_mtu);
8748 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8749 new_mtu);
8750 }
8751 }
8752 return err;
8753}
8754
8755int dev_set_mtu(struct net_device *dev, int new_mtu)
8756{
8757 struct netlink_ext_ack extack;
8758 int err;
8759
8760 memset(&extack, 0, sizeof(extack));
8761 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8762 if (err && extack._msg)
8763 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8764 return err;
8765}
8766EXPORT_SYMBOL(dev_set_mtu);
8767
8768/**
8769 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8770 * @dev: device
8771 * @new_len: new tx queue length
8772 */
8773int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8774{
8775 unsigned int orig_len = dev->tx_queue_len;
8776 int res;
8777
8778 if (new_len != (unsigned int)new_len)
8779 return -ERANGE;
8780
8781 if (new_len != orig_len) {
8782 dev->tx_queue_len = new_len;
8783 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8784 res = notifier_to_errno(res);
8785 if (res)
8786 goto err_rollback;
8787 res = dev_qdisc_change_tx_queue_len(dev);
8788 if (res)
8789 goto err_rollback;
8790 }
8791
8792 return 0;
8793
8794err_rollback:
8795 netdev_err(dev, "refused to change device tx_queue_len\n");
8796 dev->tx_queue_len = orig_len;
8797 return res;
8798}
8799
8800/**
8801 * dev_set_group - Change group this device belongs to
8802 * @dev: device
8803 * @new_group: group this device should belong to
8804 */
8805void dev_set_group(struct net_device *dev, int new_group)
8806{
8807 dev->group = new_group;
8808}
8809
8810/**
8811 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8812 * @dev: device
8813 * @addr: new address
8814 * @extack: netlink extended ack
8815 */
8816int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8817 struct netlink_ext_ack *extack)
8818{
8819 struct netdev_notifier_pre_changeaddr_info info = {
8820 .info.dev = dev,
8821 .info.extack = extack,
8822 .dev_addr = addr,
8823 };
8824 int rc;
8825
8826 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8827 return notifier_to_errno(rc);
8828}
8829EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8830
8831/**
8832 * dev_set_mac_address - Change Media Access Control Address
8833 * @dev: device
8834 * @sa: new address
8835 * @extack: netlink extended ack
8836 *
8837 * Change the hardware (MAC) address of the device
8838 */
8839int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8840 struct netlink_ext_ack *extack)
8841{
8842 const struct net_device_ops *ops = dev->netdev_ops;
8843 int err;
8844
8845 if (!ops->ndo_set_mac_address)
8846 return -EOPNOTSUPP;
8847 if (sa->sa_family != dev->type)
8848 return -EINVAL;
8849 if (!netif_device_present(dev))
8850 return -ENODEV;
8851 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8852 if (err)
8853 return err;
8854 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8855 err = ops->ndo_set_mac_address(dev, sa);
8856 if (err)
8857 return err;
8858 }
8859 dev->addr_assign_type = NET_ADDR_SET;
8860 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8861 add_device_randomness(dev->dev_addr, dev->addr_len);
8862 return 0;
8863}
8864EXPORT_SYMBOL(dev_set_mac_address);
8865
8866static DECLARE_RWSEM(dev_addr_sem);
8867
8868int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8869 struct netlink_ext_ack *extack)
8870{
8871 int ret;
8872
8873 down_write(&dev_addr_sem);
8874 ret = dev_set_mac_address(dev, sa, extack);
8875 up_write(&dev_addr_sem);
8876 return ret;
8877}
8878EXPORT_SYMBOL(dev_set_mac_address_user);
8879
8880int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8881{
8882 size_t size = sizeof(sa->sa_data_min);
8883 struct net_device *dev;
8884 int ret = 0;
8885
8886 down_read(&dev_addr_sem);
8887 rcu_read_lock();
8888
8889 dev = dev_get_by_name_rcu(net, dev_name);
8890 if (!dev) {
8891 ret = -ENODEV;
8892 goto unlock;
8893 }
8894 if (!dev->addr_len)
8895 memset(sa->sa_data, 0, size);
8896 else
8897 memcpy(sa->sa_data, dev->dev_addr,
8898 min_t(size_t, size, dev->addr_len));
8899 sa->sa_family = dev->type;
8900
8901unlock:
8902 rcu_read_unlock();
8903 up_read(&dev_addr_sem);
8904 return ret;
8905}
8906EXPORT_SYMBOL(dev_get_mac_address);
8907
8908/**
8909 * dev_change_carrier - Change device carrier
8910 * @dev: device
8911 * @new_carrier: new value
8912 *
8913 * Change device carrier
8914 */
8915int dev_change_carrier(struct net_device *dev, bool new_carrier)
8916{
8917 const struct net_device_ops *ops = dev->netdev_ops;
8918
8919 if (!ops->ndo_change_carrier)
8920 return -EOPNOTSUPP;
8921 if (!netif_device_present(dev))
8922 return -ENODEV;
8923 return ops->ndo_change_carrier(dev, new_carrier);
8924}
8925
8926/**
8927 * dev_get_phys_port_id - Get device physical port ID
8928 * @dev: device
8929 * @ppid: port ID
8930 *
8931 * Get device physical port ID
8932 */
8933int dev_get_phys_port_id(struct net_device *dev,
8934 struct netdev_phys_item_id *ppid)
8935{
8936 const struct net_device_ops *ops = dev->netdev_ops;
8937
8938 if (!ops->ndo_get_phys_port_id)
8939 return -EOPNOTSUPP;
8940 return ops->ndo_get_phys_port_id(dev, ppid);
8941}
8942
8943/**
8944 * dev_get_phys_port_name - Get device physical port name
8945 * @dev: device
8946 * @name: port name
8947 * @len: limit of bytes to copy to name
8948 *
8949 * Get device physical port name
8950 */
8951int dev_get_phys_port_name(struct net_device *dev,
8952 char *name, size_t len)
8953{
8954 const struct net_device_ops *ops = dev->netdev_ops;
8955 int err;
8956
8957 if (ops->ndo_get_phys_port_name) {
8958 err = ops->ndo_get_phys_port_name(dev, name, len);
8959 if (err != -EOPNOTSUPP)
8960 return err;
8961 }
8962 return devlink_compat_phys_port_name_get(dev, name, len);
8963}
8964
8965/**
8966 * dev_get_port_parent_id - Get the device's port parent identifier
8967 * @dev: network device
8968 * @ppid: pointer to a storage for the port's parent identifier
8969 * @recurse: allow/disallow recursion to lower devices
8970 *
8971 * Get the devices's port parent identifier
8972 */
8973int dev_get_port_parent_id(struct net_device *dev,
8974 struct netdev_phys_item_id *ppid,
8975 bool recurse)
8976{
8977 const struct net_device_ops *ops = dev->netdev_ops;
8978 struct netdev_phys_item_id first = { };
8979 struct net_device *lower_dev;
8980 struct list_head *iter;
8981 int err;
8982
8983 if (ops->ndo_get_port_parent_id) {
8984 err = ops->ndo_get_port_parent_id(dev, ppid);
8985 if (err != -EOPNOTSUPP)
8986 return err;
8987 }
8988
8989 err = devlink_compat_switch_id_get(dev, ppid);
8990 if (!recurse || err != -EOPNOTSUPP)
8991 return err;
8992
8993 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8994 err = dev_get_port_parent_id(lower_dev, ppid, true);
8995 if (err)
8996 break;
8997 if (!first.id_len)
8998 first = *ppid;
8999 else if (memcmp(&first, ppid, sizeof(*ppid)))
9000 return -EOPNOTSUPP;
9001 }
9002
9003 return err;
9004}
9005EXPORT_SYMBOL(dev_get_port_parent_id);
9006
9007/**
9008 * netdev_port_same_parent_id - Indicate if two network devices have
9009 * the same port parent identifier
9010 * @a: first network device
9011 * @b: second network device
9012 */
9013bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9014{
9015 struct netdev_phys_item_id a_id = { };
9016 struct netdev_phys_item_id b_id = { };
9017
9018 if (dev_get_port_parent_id(a, &a_id, true) ||
9019 dev_get_port_parent_id(b, &b_id, true))
9020 return false;
9021
9022 return netdev_phys_item_id_same(&a_id, &b_id);
9023}
9024EXPORT_SYMBOL(netdev_port_same_parent_id);
9025
9026/**
9027 * dev_change_proto_down - set carrier according to proto_down.
9028 *
9029 * @dev: device
9030 * @proto_down: new value
9031 */
9032int dev_change_proto_down(struct net_device *dev, bool proto_down)
9033{
9034 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9035 return -EOPNOTSUPP;
9036 if (!netif_device_present(dev))
9037 return -ENODEV;
9038 if (proto_down)
9039 netif_carrier_off(dev);
9040 else
9041 netif_carrier_on(dev);
9042 dev->proto_down = proto_down;
9043 return 0;
9044}
9045
9046/**
9047 * dev_change_proto_down_reason - proto down reason
9048 *
9049 * @dev: device
9050 * @mask: proto down mask
9051 * @value: proto down value
9052 */
9053void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9054 u32 value)
9055{
9056 int b;
9057
9058 if (!mask) {
9059 dev->proto_down_reason = value;
9060 } else {
9061 for_each_set_bit(b, &mask, 32) {
9062 if (value & (1 << b))
9063 dev->proto_down_reason |= BIT(b);
9064 else
9065 dev->proto_down_reason &= ~BIT(b);
9066 }
9067 }
9068}
9069
9070struct bpf_xdp_link {
9071 struct bpf_link link;
9072 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9073 int flags;
9074};
9075
9076static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9077{
9078 if (flags & XDP_FLAGS_HW_MODE)
9079 return XDP_MODE_HW;
9080 if (flags & XDP_FLAGS_DRV_MODE)
9081 return XDP_MODE_DRV;
9082 if (flags & XDP_FLAGS_SKB_MODE)
9083 return XDP_MODE_SKB;
9084 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9085}
9086
9087static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9088{
9089 switch (mode) {
9090 case XDP_MODE_SKB:
9091 return generic_xdp_install;
9092 case XDP_MODE_DRV:
9093 case XDP_MODE_HW:
9094 return dev->netdev_ops->ndo_bpf;
9095 default:
9096 return NULL;
9097 }
9098}
9099
9100static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9101 enum bpf_xdp_mode mode)
9102{
9103 return dev->xdp_state[mode].link;
9104}
9105
9106static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9107 enum bpf_xdp_mode mode)
9108{
9109 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9110
9111 if (link)
9112 return link->link.prog;
9113 return dev->xdp_state[mode].prog;
9114}
9115
9116u8 dev_xdp_prog_count(struct net_device *dev)
9117{
9118 u8 count = 0;
9119 int i;
9120
9121 for (i = 0; i < __MAX_XDP_MODE; i++)
9122 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9123 count++;
9124 return count;
9125}
9126EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9127
9128u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9129{
9130 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9131
9132 return prog ? prog->aux->id : 0;
9133}
9134
9135static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9136 struct bpf_xdp_link *link)
9137{
9138 dev->xdp_state[mode].link = link;
9139 dev->xdp_state[mode].prog = NULL;
9140}
9141
9142static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9143 struct bpf_prog *prog)
9144{
9145 dev->xdp_state[mode].link = NULL;
9146 dev->xdp_state[mode].prog = prog;
9147}
9148
9149static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9150 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9151 u32 flags, struct bpf_prog *prog)
9152{
9153 struct netdev_bpf xdp;
9154 int err;
9155
9156 memset(&xdp, 0, sizeof(xdp));
9157 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9158 xdp.extack = extack;
9159 xdp.flags = flags;
9160 xdp.prog = prog;
9161
9162 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9163 * "moved" into driver), so they don't increment it on their own, but
9164 * they do decrement refcnt when program is detached or replaced.
9165 * Given net_device also owns link/prog, we need to bump refcnt here
9166 * to prevent drivers from underflowing it.
9167 */
9168 if (prog)
9169 bpf_prog_inc(prog);
9170 err = bpf_op(dev, &xdp);
9171 if (err) {
9172 if (prog)
9173 bpf_prog_put(prog);
9174 return err;
9175 }
9176
9177 if (mode != XDP_MODE_HW)
9178 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9179
9180 return 0;
9181}
9182
9183static void dev_xdp_uninstall(struct net_device *dev)
9184{
9185 struct bpf_xdp_link *link;
9186 struct bpf_prog *prog;
9187 enum bpf_xdp_mode mode;
9188 bpf_op_t bpf_op;
9189
9190 ASSERT_RTNL();
9191
9192 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9193 prog = dev_xdp_prog(dev, mode);
9194 if (!prog)
9195 continue;
9196
9197 bpf_op = dev_xdp_bpf_op(dev, mode);
9198 if (!bpf_op)
9199 continue;
9200
9201 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9202
9203 /* auto-detach link from net device */
9204 link = dev_xdp_link(dev, mode);
9205 if (link)
9206 link->dev = NULL;
9207 else
9208 bpf_prog_put(prog);
9209
9210 dev_xdp_set_link(dev, mode, NULL);
9211 }
9212}
9213
9214static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9215 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9216 struct bpf_prog *old_prog, u32 flags)
9217{
9218 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9219 struct bpf_prog *cur_prog;
9220 struct net_device *upper;
9221 struct list_head *iter;
9222 enum bpf_xdp_mode mode;
9223 bpf_op_t bpf_op;
9224 int err;
9225
9226 ASSERT_RTNL();
9227
9228 /* either link or prog attachment, never both */
9229 if (link && (new_prog || old_prog))
9230 return -EINVAL;
9231 /* link supports only XDP mode flags */
9232 if (link && (flags & ~XDP_FLAGS_MODES)) {
9233 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9234 return -EINVAL;
9235 }
9236 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9237 if (num_modes > 1) {
9238 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9239 return -EINVAL;
9240 }
9241 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9242 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9243 NL_SET_ERR_MSG(extack,
9244 "More than one program loaded, unset mode is ambiguous");
9245 return -EINVAL;
9246 }
9247 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9248 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9249 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9250 return -EINVAL;
9251 }
9252
9253 mode = dev_xdp_mode(dev, flags);
9254 /* can't replace attached link */
9255 if (dev_xdp_link(dev, mode)) {
9256 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9257 return -EBUSY;
9258 }
9259
9260 /* don't allow if an upper device already has a program */
9261 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9262 if (dev_xdp_prog_count(upper) > 0) {
9263 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9264 return -EEXIST;
9265 }
9266 }
9267
9268 cur_prog = dev_xdp_prog(dev, mode);
9269 /* can't replace attached prog with link */
9270 if (link && cur_prog) {
9271 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9272 return -EBUSY;
9273 }
9274 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9275 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9276 return -EEXIST;
9277 }
9278
9279 /* put effective new program into new_prog */
9280 if (link)
9281 new_prog = link->link.prog;
9282
9283 if (new_prog) {
9284 bool offload = mode == XDP_MODE_HW;
9285 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9286 ? XDP_MODE_DRV : XDP_MODE_SKB;
9287
9288 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9289 NL_SET_ERR_MSG(extack, "XDP program already attached");
9290 return -EBUSY;
9291 }
9292 if (!offload && dev_xdp_prog(dev, other_mode)) {
9293 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9294 return -EEXIST;
9295 }
9296 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9297 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9298 return -EINVAL;
9299 }
9300 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9301 NL_SET_ERR_MSG(extack, "Program bound to different device");
9302 return -EINVAL;
9303 }
9304 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9305 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9306 return -EINVAL;
9307 }
9308 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9309 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9310 return -EINVAL;
9311 }
9312 }
9313
9314 /* don't call drivers if the effective program didn't change */
9315 if (new_prog != cur_prog) {
9316 bpf_op = dev_xdp_bpf_op(dev, mode);
9317 if (!bpf_op) {
9318 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9319 return -EOPNOTSUPP;
9320 }
9321
9322 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9323 if (err)
9324 return err;
9325 }
9326
9327 if (link)
9328 dev_xdp_set_link(dev, mode, link);
9329 else
9330 dev_xdp_set_prog(dev, mode, new_prog);
9331 if (cur_prog)
9332 bpf_prog_put(cur_prog);
9333
9334 return 0;
9335}
9336
9337static int dev_xdp_attach_link(struct net_device *dev,
9338 struct netlink_ext_ack *extack,
9339 struct bpf_xdp_link *link)
9340{
9341 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9342}
9343
9344static int dev_xdp_detach_link(struct net_device *dev,
9345 struct netlink_ext_ack *extack,
9346 struct bpf_xdp_link *link)
9347{
9348 enum bpf_xdp_mode mode;
9349 bpf_op_t bpf_op;
9350
9351 ASSERT_RTNL();
9352
9353 mode = dev_xdp_mode(dev, link->flags);
9354 if (dev_xdp_link(dev, mode) != link)
9355 return -EINVAL;
9356
9357 bpf_op = dev_xdp_bpf_op(dev, mode);
9358 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9359 dev_xdp_set_link(dev, mode, NULL);
9360 return 0;
9361}
9362
9363static void bpf_xdp_link_release(struct bpf_link *link)
9364{
9365 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9366
9367 rtnl_lock();
9368
9369 /* if racing with net_device's tear down, xdp_link->dev might be
9370 * already NULL, in which case link was already auto-detached
9371 */
9372 if (xdp_link->dev) {
9373 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9374 xdp_link->dev = NULL;
9375 }
9376
9377 rtnl_unlock();
9378}
9379
9380static int bpf_xdp_link_detach(struct bpf_link *link)
9381{
9382 bpf_xdp_link_release(link);
9383 return 0;
9384}
9385
9386static void bpf_xdp_link_dealloc(struct bpf_link *link)
9387{
9388 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9389
9390 kfree(xdp_link);
9391}
9392
9393static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9394 struct seq_file *seq)
9395{
9396 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9397 u32 ifindex = 0;
9398
9399 rtnl_lock();
9400 if (xdp_link->dev)
9401 ifindex = xdp_link->dev->ifindex;
9402 rtnl_unlock();
9403
9404 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9405}
9406
9407static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9408 struct bpf_link_info *info)
9409{
9410 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9411 u32 ifindex = 0;
9412
9413 rtnl_lock();
9414 if (xdp_link->dev)
9415 ifindex = xdp_link->dev->ifindex;
9416 rtnl_unlock();
9417
9418 info->xdp.ifindex = ifindex;
9419 return 0;
9420}
9421
9422static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9423 struct bpf_prog *old_prog)
9424{
9425 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9426 enum bpf_xdp_mode mode;
9427 bpf_op_t bpf_op;
9428 int err = 0;
9429
9430 rtnl_lock();
9431
9432 /* link might have been auto-released already, so fail */
9433 if (!xdp_link->dev) {
9434 err = -ENOLINK;
9435 goto out_unlock;
9436 }
9437
9438 if (old_prog && link->prog != old_prog) {
9439 err = -EPERM;
9440 goto out_unlock;
9441 }
9442 old_prog = link->prog;
9443 if (old_prog->type != new_prog->type ||
9444 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9445 err = -EINVAL;
9446 goto out_unlock;
9447 }
9448
9449 if (old_prog == new_prog) {
9450 /* no-op, don't disturb drivers */
9451 bpf_prog_put(new_prog);
9452 goto out_unlock;
9453 }
9454
9455 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9456 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9457 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9458 xdp_link->flags, new_prog);
9459 if (err)
9460 goto out_unlock;
9461
9462 old_prog = xchg(&link->prog, new_prog);
9463 bpf_prog_put(old_prog);
9464
9465out_unlock:
9466 rtnl_unlock();
9467 return err;
9468}
9469
9470static const struct bpf_link_ops bpf_xdp_link_lops = {
9471 .release = bpf_xdp_link_release,
9472 .dealloc = bpf_xdp_link_dealloc,
9473 .detach = bpf_xdp_link_detach,
9474 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9475 .fill_link_info = bpf_xdp_link_fill_link_info,
9476 .update_prog = bpf_xdp_link_update,
9477};
9478
9479int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9480{
9481 struct net *net = current->nsproxy->net_ns;
9482 struct bpf_link_primer link_primer;
9483 struct netlink_ext_ack extack = {};
9484 struct bpf_xdp_link *link;
9485 struct net_device *dev;
9486 int err, fd;
9487
9488 rtnl_lock();
9489 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9490 if (!dev) {
9491 rtnl_unlock();
9492 return -EINVAL;
9493 }
9494
9495 link = kzalloc(sizeof(*link), GFP_USER);
9496 if (!link) {
9497 err = -ENOMEM;
9498 goto unlock;
9499 }
9500
9501 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9502 link->dev = dev;
9503 link->flags = attr->link_create.flags;
9504
9505 err = bpf_link_prime(&link->link, &link_primer);
9506 if (err) {
9507 kfree(link);
9508 goto unlock;
9509 }
9510
9511 err = dev_xdp_attach_link(dev, &extack, link);
9512 rtnl_unlock();
9513
9514 if (err) {
9515 link->dev = NULL;
9516 bpf_link_cleanup(&link_primer);
9517 trace_bpf_xdp_link_attach_failed(extack._msg);
9518 goto out_put_dev;
9519 }
9520
9521 fd = bpf_link_settle(&link_primer);
9522 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9523 dev_put(dev);
9524 return fd;
9525
9526unlock:
9527 rtnl_unlock();
9528
9529out_put_dev:
9530 dev_put(dev);
9531 return err;
9532}
9533
9534/**
9535 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9536 * @dev: device
9537 * @extack: netlink extended ack
9538 * @fd: new program fd or negative value to clear
9539 * @expected_fd: old program fd that userspace expects to replace or clear
9540 * @flags: xdp-related flags
9541 *
9542 * Set or clear a bpf program for a device
9543 */
9544int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9545 int fd, int expected_fd, u32 flags)
9546{
9547 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9548 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9549 int err;
9550
9551 ASSERT_RTNL();
9552
9553 if (fd >= 0) {
9554 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9555 mode != XDP_MODE_SKB);
9556 if (IS_ERR(new_prog))
9557 return PTR_ERR(new_prog);
9558 }
9559
9560 if (expected_fd >= 0) {
9561 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9562 mode != XDP_MODE_SKB);
9563 if (IS_ERR(old_prog)) {
9564 err = PTR_ERR(old_prog);
9565 old_prog = NULL;
9566 goto err_out;
9567 }
9568 }
9569
9570 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9571
9572err_out:
9573 if (err && new_prog)
9574 bpf_prog_put(new_prog);
9575 if (old_prog)
9576 bpf_prog_put(old_prog);
9577 return err;
9578}
9579
9580/**
9581 * dev_index_reserve() - allocate an ifindex in a namespace
9582 * @net: the applicable net namespace
9583 * @ifindex: requested ifindex, pass %0 to get one allocated
9584 *
9585 * Allocate a ifindex for a new device. Caller must either use the ifindex
9586 * to store the device (via list_netdevice()) or call dev_index_release()
9587 * to give the index up.
9588 *
9589 * Return: a suitable unique value for a new device interface number or -errno.
9590 */
9591static int dev_index_reserve(struct net *net, u32 ifindex)
9592{
9593 int err;
9594
9595 if (ifindex > INT_MAX) {
9596 DEBUG_NET_WARN_ON_ONCE(1);
9597 return -EINVAL;
9598 }
9599
9600 if (!ifindex)
9601 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9602 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9603 else
9604 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9605 if (err < 0)
9606 return err;
9607
9608 return ifindex;
9609}
9610
9611static void dev_index_release(struct net *net, int ifindex)
9612{
9613 /* Expect only unused indexes, unlist_netdevice() removes the used */
9614 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9615}
9616
9617/* Delayed registration/unregisteration */
9618LIST_HEAD(net_todo_list);
9619DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9620
9621static void net_set_todo(struct net_device *dev)
9622{
9623 list_add_tail(&dev->todo_list, &net_todo_list);
9624 atomic_inc(&dev_net(dev)->dev_unreg_count);
9625}
9626
9627static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9628 struct net_device *upper, netdev_features_t features)
9629{
9630 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9631 netdev_features_t feature;
9632 int feature_bit;
9633
9634 for_each_netdev_feature(upper_disables, feature_bit) {
9635 feature = __NETIF_F_BIT(feature_bit);
9636 if (!(upper->wanted_features & feature)
9637 && (features & feature)) {
9638 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9639 &feature, upper->name);
9640 features &= ~feature;
9641 }
9642 }
9643
9644 return features;
9645}
9646
9647static void netdev_sync_lower_features(struct net_device *upper,
9648 struct net_device *lower, netdev_features_t features)
9649{
9650 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9651 netdev_features_t feature;
9652 int feature_bit;
9653
9654 for_each_netdev_feature(upper_disables, feature_bit) {
9655 feature = __NETIF_F_BIT(feature_bit);
9656 if (!(features & feature) && (lower->features & feature)) {
9657 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9658 &feature, lower->name);
9659 lower->wanted_features &= ~feature;
9660 __netdev_update_features(lower);
9661
9662 if (unlikely(lower->features & feature))
9663 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9664 &feature, lower->name);
9665 else
9666 netdev_features_change(lower);
9667 }
9668 }
9669}
9670
9671static netdev_features_t netdev_fix_features(struct net_device *dev,
9672 netdev_features_t features)
9673{
9674 /* Fix illegal checksum combinations */
9675 if ((features & NETIF_F_HW_CSUM) &&
9676 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9677 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9678 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9679 }
9680
9681 /* TSO requires that SG is present as well. */
9682 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9683 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9684 features &= ~NETIF_F_ALL_TSO;
9685 }
9686
9687 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9688 !(features & NETIF_F_IP_CSUM)) {
9689 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9690 features &= ~NETIF_F_TSO;
9691 features &= ~NETIF_F_TSO_ECN;
9692 }
9693
9694 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9695 !(features & NETIF_F_IPV6_CSUM)) {
9696 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9697 features &= ~NETIF_F_TSO6;
9698 }
9699
9700 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9701 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9702 features &= ~NETIF_F_TSO_MANGLEID;
9703
9704 /* TSO ECN requires that TSO is present as well. */
9705 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9706 features &= ~NETIF_F_TSO_ECN;
9707
9708 /* Software GSO depends on SG. */
9709 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9710 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9711 features &= ~NETIF_F_GSO;
9712 }
9713
9714 /* GSO partial features require GSO partial be set */
9715 if ((features & dev->gso_partial_features) &&
9716 !(features & NETIF_F_GSO_PARTIAL)) {
9717 netdev_dbg(dev,
9718 "Dropping partially supported GSO features since no GSO partial.\n");
9719 features &= ~dev->gso_partial_features;
9720 }
9721
9722 if (!(features & NETIF_F_RXCSUM)) {
9723 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9724 * successfully merged by hardware must also have the
9725 * checksum verified by hardware. If the user does not
9726 * want to enable RXCSUM, logically, we should disable GRO_HW.
9727 */
9728 if (features & NETIF_F_GRO_HW) {
9729 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9730 features &= ~NETIF_F_GRO_HW;
9731 }
9732 }
9733
9734 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9735 if (features & NETIF_F_RXFCS) {
9736 if (features & NETIF_F_LRO) {
9737 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9738 features &= ~NETIF_F_LRO;
9739 }
9740
9741 if (features & NETIF_F_GRO_HW) {
9742 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9743 features &= ~NETIF_F_GRO_HW;
9744 }
9745 }
9746
9747 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9748 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9749 features &= ~NETIF_F_LRO;
9750 }
9751
9752 if (features & NETIF_F_HW_TLS_TX) {
9753 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9754 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9755 bool hw_csum = features & NETIF_F_HW_CSUM;
9756
9757 if (!ip_csum && !hw_csum) {
9758 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9759 features &= ~NETIF_F_HW_TLS_TX;
9760 }
9761 }
9762
9763 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9764 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9765 features &= ~NETIF_F_HW_TLS_RX;
9766 }
9767
9768 return features;
9769}
9770
9771int __netdev_update_features(struct net_device *dev)
9772{
9773 struct net_device *upper, *lower;
9774 netdev_features_t features;
9775 struct list_head *iter;
9776 int err = -1;
9777
9778 ASSERT_RTNL();
9779
9780 features = netdev_get_wanted_features(dev);
9781
9782 if (dev->netdev_ops->ndo_fix_features)
9783 features = dev->netdev_ops->ndo_fix_features(dev, features);
9784
9785 /* driver might be less strict about feature dependencies */
9786 features = netdev_fix_features(dev, features);
9787
9788 /* some features can't be enabled if they're off on an upper device */
9789 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9790 features = netdev_sync_upper_features(dev, upper, features);
9791
9792 if (dev->features == features)
9793 goto sync_lower;
9794
9795 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9796 &dev->features, &features);
9797
9798 if (dev->netdev_ops->ndo_set_features)
9799 err = dev->netdev_ops->ndo_set_features(dev, features);
9800 else
9801 err = 0;
9802
9803 if (unlikely(err < 0)) {
9804 netdev_err(dev,
9805 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9806 err, &features, &dev->features);
9807 /* return non-0 since some features might have changed and
9808 * it's better to fire a spurious notification than miss it
9809 */
9810 return -1;
9811 }
9812
9813sync_lower:
9814 /* some features must be disabled on lower devices when disabled
9815 * on an upper device (think: bonding master or bridge)
9816 */
9817 netdev_for_each_lower_dev(dev, lower, iter)
9818 netdev_sync_lower_features(dev, lower, features);
9819
9820 if (!err) {
9821 netdev_features_t diff = features ^ dev->features;
9822
9823 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9824 /* udp_tunnel_{get,drop}_rx_info both need
9825 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9826 * device, or they won't do anything.
9827 * Thus we need to update dev->features
9828 * *before* calling udp_tunnel_get_rx_info,
9829 * but *after* calling udp_tunnel_drop_rx_info.
9830 */
9831 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9832 dev->features = features;
9833 udp_tunnel_get_rx_info(dev);
9834 } else {
9835 udp_tunnel_drop_rx_info(dev);
9836 }
9837 }
9838
9839 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9840 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9841 dev->features = features;
9842 err |= vlan_get_rx_ctag_filter_info(dev);
9843 } else {
9844 vlan_drop_rx_ctag_filter_info(dev);
9845 }
9846 }
9847
9848 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9849 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9850 dev->features = features;
9851 err |= vlan_get_rx_stag_filter_info(dev);
9852 } else {
9853 vlan_drop_rx_stag_filter_info(dev);
9854 }
9855 }
9856
9857 dev->features = features;
9858 }
9859
9860 return err < 0 ? 0 : 1;
9861}
9862
9863/**
9864 * netdev_update_features - recalculate device features
9865 * @dev: the device to check
9866 *
9867 * Recalculate dev->features set and send notifications if it
9868 * has changed. Should be called after driver or hardware dependent
9869 * conditions might have changed that influence the features.
9870 */
9871void netdev_update_features(struct net_device *dev)
9872{
9873 if (__netdev_update_features(dev))
9874 netdev_features_change(dev);
9875}
9876EXPORT_SYMBOL(netdev_update_features);
9877
9878/**
9879 * netdev_change_features - recalculate device features
9880 * @dev: the device to check
9881 *
9882 * Recalculate dev->features set and send notifications even
9883 * if they have not changed. Should be called instead of
9884 * netdev_update_features() if also dev->vlan_features might
9885 * have changed to allow the changes to be propagated to stacked
9886 * VLAN devices.
9887 */
9888void netdev_change_features(struct net_device *dev)
9889{
9890 __netdev_update_features(dev);
9891 netdev_features_change(dev);
9892}
9893EXPORT_SYMBOL(netdev_change_features);
9894
9895/**
9896 * netif_stacked_transfer_operstate - transfer operstate
9897 * @rootdev: the root or lower level device to transfer state from
9898 * @dev: the device to transfer operstate to
9899 *
9900 * Transfer operational state from root to device. This is normally
9901 * called when a stacking relationship exists between the root
9902 * device and the device(a leaf device).
9903 */
9904void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9905 struct net_device *dev)
9906{
9907 if (rootdev->operstate == IF_OPER_DORMANT)
9908 netif_dormant_on(dev);
9909 else
9910 netif_dormant_off(dev);
9911
9912 if (rootdev->operstate == IF_OPER_TESTING)
9913 netif_testing_on(dev);
9914 else
9915 netif_testing_off(dev);
9916
9917 if (netif_carrier_ok(rootdev))
9918 netif_carrier_on(dev);
9919 else
9920 netif_carrier_off(dev);
9921}
9922EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9923
9924static int netif_alloc_rx_queues(struct net_device *dev)
9925{
9926 unsigned int i, count = dev->num_rx_queues;
9927 struct netdev_rx_queue *rx;
9928 size_t sz = count * sizeof(*rx);
9929 int err = 0;
9930
9931 BUG_ON(count < 1);
9932
9933 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9934 if (!rx)
9935 return -ENOMEM;
9936
9937 dev->_rx = rx;
9938
9939 for (i = 0; i < count; i++) {
9940 rx[i].dev = dev;
9941
9942 /* XDP RX-queue setup */
9943 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9944 if (err < 0)
9945 goto err_rxq_info;
9946 }
9947 return 0;
9948
9949err_rxq_info:
9950 /* Rollback successful reg's and free other resources */
9951 while (i--)
9952 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9953 kvfree(dev->_rx);
9954 dev->_rx = NULL;
9955 return err;
9956}
9957
9958static void netif_free_rx_queues(struct net_device *dev)
9959{
9960 unsigned int i, count = dev->num_rx_queues;
9961
9962 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9963 if (!dev->_rx)
9964 return;
9965
9966 for (i = 0; i < count; i++)
9967 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9968
9969 kvfree(dev->_rx);
9970}
9971
9972static void netdev_init_one_queue(struct net_device *dev,
9973 struct netdev_queue *queue, void *_unused)
9974{
9975 /* Initialize queue lock */
9976 spin_lock_init(&queue->_xmit_lock);
9977 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9978 queue->xmit_lock_owner = -1;
9979 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9980 queue->dev = dev;
9981#ifdef CONFIG_BQL
9982 dql_init(&queue->dql, HZ);
9983#endif
9984}
9985
9986static void netif_free_tx_queues(struct net_device *dev)
9987{
9988 kvfree(dev->_tx);
9989}
9990
9991static int netif_alloc_netdev_queues(struct net_device *dev)
9992{
9993 unsigned int count = dev->num_tx_queues;
9994 struct netdev_queue *tx;
9995 size_t sz = count * sizeof(*tx);
9996
9997 if (count < 1 || count > 0xffff)
9998 return -EINVAL;
9999
10000 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10001 if (!tx)
10002 return -ENOMEM;
10003
10004 dev->_tx = tx;
10005
10006 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10007 spin_lock_init(&dev->tx_global_lock);
10008
10009 return 0;
10010}
10011
10012void netif_tx_stop_all_queues(struct net_device *dev)
10013{
10014 unsigned int i;
10015
10016 for (i = 0; i < dev->num_tx_queues; i++) {
10017 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10018
10019 netif_tx_stop_queue(txq);
10020 }
10021}
10022EXPORT_SYMBOL(netif_tx_stop_all_queues);
10023
10024/**
10025 * register_netdevice() - register a network device
10026 * @dev: device to register
10027 *
10028 * Take a prepared network device structure and make it externally accessible.
10029 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10030 * Callers must hold the rtnl lock - you may want register_netdev()
10031 * instead of this.
10032 */
10033int register_netdevice(struct net_device *dev)
10034{
10035 int ret;
10036 struct net *net = dev_net(dev);
10037
10038 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10039 NETDEV_FEATURE_COUNT);
10040 BUG_ON(dev_boot_phase);
10041 ASSERT_RTNL();
10042
10043 might_sleep();
10044
10045 /* When net_device's are persistent, this will be fatal. */
10046 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10047 BUG_ON(!net);
10048
10049 ret = ethtool_check_ops(dev->ethtool_ops);
10050 if (ret)
10051 return ret;
10052
10053 spin_lock_init(&dev->addr_list_lock);
10054 netdev_set_addr_lockdep_class(dev);
10055
10056 ret = dev_get_valid_name(net, dev, dev->name);
10057 if (ret < 0)
10058 goto out;
10059
10060 ret = -ENOMEM;
10061 dev->name_node = netdev_name_node_head_alloc(dev);
10062 if (!dev->name_node)
10063 goto out;
10064
10065 /* Init, if this function is available */
10066 if (dev->netdev_ops->ndo_init) {
10067 ret = dev->netdev_ops->ndo_init(dev);
10068 if (ret) {
10069 if (ret > 0)
10070 ret = -EIO;
10071 goto err_free_name;
10072 }
10073 }
10074
10075 if (((dev->hw_features | dev->features) &
10076 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10077 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10078 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10079 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10080 ret = -EINVAL;
10081 goto err_uninit;
10082 }
10083
10084 ret = dev_index_reserve(net, dev->ifindex);
10085 if (ret < 0)
10086 goto err_uninit;
10087 dev->ifindex = ret;
10088
10089 /* Transfer changeable features to wanted_features and enable
10090 * software offloads (GSO and GRO).
10091 */
10092 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10093 dev->features |= NETIF_F_SOFT_FEATURES;
10094
10095 if (dev->udp_tunnel_nic_info) {
10096 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10097 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10098 }
10099
10100 dev->wanted_features = dev->features & dev->hw_features;
10101
10102 if (!(dev->flags & IFF_LOOPBACK))
10103 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10104
10105 /* If IPv4 TCP segmentation offload is supported we should also
10106 * allow the device to enable segmenting the frame with the option
10107 * of ignoring a static IP ID value. This doesn't enable the
10108 * feature itself but allows the user to enable it later.
10109 */
10110 if (dev->hw_features & NETIF_F_TSO)
10111 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10112 if (dev->vlan_features & NETIF_F_TSO)
10113 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10114 if (dev->mpls_features & NETIF_F_TSO)
10115 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10116 if (dev->hw_enc_features & NETIF_F_TSO)
10117 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10118
10119 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10120 */
10121 dev->vlan_features |= NETIF_F_HIGHDMA;
10122
10123 /* Make NETIF_F_SG inheritable to tunnel devices.
10124 */
10125 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10126
10127 /* Make NETIF_F_SG inheritable to MPLS.
10128 */
10129 dev->mpls_features |= NETIF_F_SG;
10130
10131 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10132 ret = notifier_to_errno(ret);
10133 if (ret)
10134 goto err_ifindex_release;
10135
10136 ret = netdev_register_kobject(dev);
10137 write_lock(&dev_base_lock);
10138 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10139 write_unlock(&dev_base_lock);
10140 if (ret)
10141 goto err_uninit_notify;
10142
10143 __netdev_update_features(dev);
10144
10145 /*
10146 * Default initial state at registry is that the
10147 * device is present.
10148 */
10149
10150 set_bit(__LINK_STATE_PRESENT, &dev->state);
10151
10152 linkwatch_init_dev(dev);
10153
10154 dev_init_scheduler(dev);
10155
10156 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10157 list_netdevice(dev);
10158
10159 add_device_randomness(dev->dev_addr, dev->addr_len);
10160
10161 /* If the device has permanent device address, driver should
10162 * set dev_addr and also addr_assign_type should be set to
10163 * NET_ADDR_PERM (default value).
10164 */
10165 if (dev->addr_assign_type == NET_ADDR_PERM)
10166 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10167
10168 /* Notify protocols, that a new device appeared. */
10169 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10170 ret = notifier_to_errno(ret);
10171 if (ret) {
10172 /* Expect explicit free_netdev() on failure */
10173 dev->needs_free_netdev = false;
10174 unregister_netdevice_queue(dev, NULL);
10175 goto out;
10176 }
10177 /*
10178 * Prevent userspace races by waiting until the network
10179 * device is fully setup before sending notifications.
10180 */
10181 if (!dev->rtnl_link_ops ||
10182 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10183 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10184
10185out:
10186 return ret;
10187
10188err_uninit_notify:
10189 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10190err_ifindex_release:
10191 dev_index_release(net, dev->ifindex);
10192err_uninit:
10193 if (dev->netdev_ops->ndo_uninit)
10194 dev->netdev_ops->ndo_uninit(dev);
10195 if (dev->priv_destructor)
10196 dev->priv_destructor(dev);
10197err_free_name:
10198 netdev_name_node_free(dev->name_node);
10199 goto out;
10200}
10201EXPORT_SYMBOL(register_netdevice);
10202
10203/**
10204 * init_dummy_netdev - init a dummy network device for NAPI
10205 * @dev: device to init
10206 *
10207 * This takes a network device structure and initialize the minimum
10208 * amount of fields so it can be used to schedule NAPI polls without
10209 * registering a full blown interface. This is to be used by drivers
10210 * that need to tie several hardware interfaces to a single NAPI
10211 * poll scheduler due to HW limitations.
10212 */
10213int init_dummy_netdev(struct net_device *dev)
10214{
10215 /* Clear everything. Note we don't initialize spinlocks
10216 * are they aren't supposed to be taken by any of the
10217 * NAPI code and this dummy netdev is supposed to be
10218 * only ever used for NAPI polls
10219 */
10220 memset(dev, 0, sizeof(struct net_device));
10221
10222 /* make sure we BUG if trying to hit standard
10223 * register/unregister code path
10224 */
10225 dev->reg_state = NETREG_DUMMY;
10226
10227 /* NAPI wants this */
10228 INIT_LIST_HEAD(&dev->napi_list);
10229
10230 /* a dummy interface is started by default */
10231 set_bit(__LINK_STATE_PRESENT, &dev->state);
10232 set_bit(__LINK_STATE_START, &dev->state);
10233
10234 /* napi_busy_loop stats accounting wants this */
10235 dev_net_set(dev, &init_net);
10236
10237 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10238 * because users of this 'device' dont need to change
10239 * its refcount.
10240 */
10241
10242 return 0;
10243}
10244EXPORT_SYMBOL_GPL(init_dummy_netdev);
10245
10246
10247/**
10248 * register_netdev - register a network device
10249 * @dev: device to register
10250 *
10251 * Take a completed network device structure and add it to the kernel
10252 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10253 * chain. 0 is returned on success. A negative errno code is returned
10254 * on a failure to set up the device, or if the name is a duplicate.
10255 *
10256 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10257 * and expands the device name if you passed a format string to
10258 * alloc_netdev.
10259 */
10260int register_netdev(struct net_device *dev)
10261{
10262 int err;
10263
10264 if (rtnl_lock_killable())
10265 return -EINTR;
10266 err = register_netdevice(dev);
10267 rtnl_unlock();
10268 return err;
10269}
10270EXPORT_SYMBOL(register_netdev);
10271
10272int netdev_refcnt_read(const struct net_device *dev)
10273{
10274#ifdef CONFIG_PCPU_DEV_REFCNT
10275 int i, refcnt = 0;
10276
10277 for_each_possible_cpu(i)
10278 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10279 return refcnt;
10280#else
10281 return refcount_read(&dev->dev_refcnt);
10282#endif
10283}
10284EXPORT_SYMBOL(netdev_refcnt_read);
10285
10286int netdev_unregister_timeout_secs __read_mostly = 10;
10287
10288#define WAIT_REFS_MIN_MSECS 1
10289#define WAIT_REFS_MAX_MSECS 250
10290/**
10291 * netdev_wait_allrefs_any - wait until all references are gone.
10292 * @list: list of net_devices to wait on
10293 *
10294 * This is called when unregistering network devices.
10295 *
10296 * Any protocol or device that holds a reference should register
10297 * for netdevice notification, and cleanup and put back the
10298 * reference if they receive an UNREGISTER event.
10299 * We can get stuck here if buggy protocols don't correctly
10300 * call dev_put.
10301 */
10302static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10303{
10304 unsigned long rebroadcast_time, warning_time;
10305 struct net_device *dev;
10306 int wait = 0;
10307
10308 rebroadcast_time = warning_time = jiffies;
10309
10310 list_for_each_entry(dev, list, todo_list)
10311 if (netdev_refcnt_read(dev) == 1)
10312 return dev;
10313
10314 while (true) {
10315 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10316 rtnl_lock();
10317
10318 /* Rebroadcast unregister notification */
10319 list_for_each_entry(dev, list, todo_list)
10320 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10321
10322 __rtnl_unlock();
10323 rcu_barrier();
10324 rtnl_lock();
10325
10326 list_for_each_entry(dev, list, todo_list)
10327 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10328 &dev->state)) {
10329 /* We must not have linkwatch events
10330 * pending on unregister. If this
10331 * happens, we simply run the queue
10332 * unscheduled, resulting in a noop
10333 * for this device.
10334 */
10335 linkwatch_run_queue();
10336 break;
10337 }
10338
10339 __rtnl_unlock();
10340
10341 rebroadcast_time = jiffies;
10342 }
10343
10344 if (!wait) {
10345 rcu_barrier();
10346 wait = WAIT_REFS_MIN_MSECS;
10347 } else {
10348 msleep(wait);
10349 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10350 }
10351
10352 list_for_each_entry(dev, list, todo_list)
10353 if (netdev_refcnt_read(dev) == 1)
10354 return dev;
10355
10356 if (time_after(jiffies, warning_time +
10357 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10358 list_for_each_entry(dev, list, todo_list) {
10359 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10360 dev->name, netdev_refcnt_read(dev));
10361 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10362 }
10363
10364 warning_time = jiffies;
10365 }
10366 }
10367}
10368
10369/* The sequence is:
10370 *
10371 * rtnl_lock();
10372 * ...
10373 * register_netdevice(x1);
10374 * register_netdevice(x2);
10375 * ...
10376 * unregister_netdevice(y1);
10377 * unregister_netdevice(y2);
10378 * ...
10379 * rtnl_unlock();
10380 * free_netdev(y1);
10381 * free_netdev(y2);
10382 *
10383 * We are invoked by rtnl_unlock().
10384 * This allows us to deal with problems:
10385 * 1) We can delete sysfs objects which invoke hotplug
10386 * without deadlocking with linkwatch via keventd.
10387 * 2) Since we run with the RTNL semaphore not held, we can sleep
10388 * safely in order to wait for the netdev refcnt to drop to zero.
10389 *
10390 * We must not return until all unregister events added during
10391 * the interval the lock was held have been completed.
10392 */
10393void netdev_run_todo(void)
10394{
10395 struct net_device *dev, *tmp;
10396 struct list_head list;
10397#ifdef CONFIG_LOCKDEP
10398 struct list_head unlink_list;
10399
10400 list_replace_init(&net_unlink_list, &unlink_list);
10401
10402 while (!list_empty(&unlink_list)) {
10403 struct net_device *dev = list_first_entry(&unlink_list,
10404 struct net_device,
10405 unlink_list);
10406 list_del_init(&dev->unlink_list);
10407 dev->nested_level = dev->lower_level - 1;
10408 }
10409#endif
10410
10411 /* Snapshot list, allow later requests */
10412 list_replace_init(&net_todo_list, &list);
10413
10414 __rtnl_unlock();
10415
10416 /* Wait for rcu callbacks to finish before next phase */
10417 if (!list_empty(&list))
10418 rcu_barrier();
10419
10420 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10421 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10422 netdev_WARN(dev, "run_todo but not unregistering\n");
10423 list_del(&dev->todo_list);
10424 continue;
10425 }
10426
10427 write_lock(&dev_base_lock);
10428 dev->reg_state = NETREG_UNREGISTERED;
10429 write_unlock(&dev_base_lock);
10430 linkwatch_forget_dev(dev);
10431 }
10432
10433 while (!list_empty(&list)) {
10434 dev = netdev_wait_allrefs_any(&list);
10435 list_del(&dev->todo_list);
10436
10437 /* paranoia */
10438 BUG_ON(netdev_refcnt_read(dev) != 1);
10439 BUG_ON(!list_empty(&dev->ptype_all));
10440 BUG_ON(!list_empty(&dev->ptype_specific));
10441 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10442 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10443
10444 if (dev->priv_destructor)
10445 dev->priv_destructor(dev);
10446 if (dev->needs_free_netdev)
10447 free_netdev(dev);
10448
10449 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10450 wake_up(&netdev_unregistering_wq);
10451
10452 /* Free network device */
10453 kobject_put(&dev->dev.kobj);
10454 }
10455}
10456
10457/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10458 * all the same fields in the same order as net_device_stats, with only
10459 * the type differing, but rtnl_link_stats64 may have additional fields
10460 * at the end for newer counters.
10461 */
10462void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10463 const struct net_device_stats *netdev_stats)
10464{
10465 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10466 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10467 u64 *dst = (u64 *)stats64;
10468
10469 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10470 for (i = 0; i < n; i++)
10471 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10472 /* zero out counters that only exist in rtnl_link_stats64 */
10473 memset((char *)stats64 + n * sizeof(u64), 0,
10474 sizeof(*stats64) - n * sizeof(u64));
10475}
10476EXPORT_SYMBOL(netdev_stats_to_stats64);
10477
10478struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10479{
10480 struct net_device_core_stats __percpu *p;
10481
10482 p = alloc_percpu_gfp(struct net_device_core_stats,
10483 GFP_ATOMIC | __GFP_NOWARN);
10484
10485 if (p && cmpxchg(&dev->core_stats, NULL, p))
10486 free_percpu(p);
10487
10488 /* This READ_ONCE() pairs with the cmpxchg() above */
10489 return READ_ONCE(dev->core_stats);
10490}
10491EXPORT_SYMBOL(netdev_core_stats_alloc);
10492
10493/**
10494 * dev_get_stats - get network device statistics
10495 * @dev: device to get statistics from
10496 * @storage: place to store stats
10497 *
10498 * Get network statistics from device. Return @storage.
10499 * The device driver may provide its own method by setting
10500 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10501 * otherwise the internal statistics structure is used.
10502 */
10503struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10504 struct rtnl_link_stats64 *storage)
10505{
10506 const struct net_device_ops *ops = dev->netdev_ops;
10507 const struct net_device_core_stats __percpu *p;
10508
10509 if (ops->ndo_get_stats64) {
10510 memset(storage, 0, sizeof(*storage));
10511 ops->ndo_get_stats64(dev, storage);
10512 } else if (ops->ndo_get_stats) {
10513 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10514 } else {
10515 netdev_stats_to_stats64(storage, &dev->stats);
10516 }
10517
10518 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10519 p = READ_ONCE(dev->core_stats);
10520 if (p) {
10521 const struct net_device_core_stats *core_stats;
10522 int i;
10523
10524 for_each_possible_cpu(i) {
10525 core_stats = per_cpu_ptr(p, i);
10526 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10527 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10528 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10529 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10530 }
10531 }
10532 return storage;
10533}
10534EXPORT_SYMBOL(dev_get_stats);
10535
10536/**
10537 * dev_fetch_sw_netstats - get per-cpu network device statistics
10538 * @s: place to store stats
10539 * @netstats: per-cpu network stats to read from
10540 *
10541 * Read per-cpu network statistics and populate the related fields in @s.
10542 */
10543void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10544 const struct pcpu_sw_netstats __percpu *netstats)
10545{
10546 int cpu;
10547
10548 for_each_possible_cpu(cpu) {
10549 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10550 const struct pcpu_sw_netstats *stats;
10551 unsigned int start;
10552
10553 stats = per_cpu_ptr(netstats, cpu);
10554 do {
10555 start = u64_stats_fetch_begin(&stats->syncp);
10556 rx_packets = u64_stats_read(&stats->rx_packets);
10557 rx_bytes = u64_stats_read(&stats->rx_bytes);
10558 tx_packets = u64_stats_read(&stats->tx_packets);
10559 tx_bytes = u64_stats_read(&stats->tx_bytes);
10560 } while (u64_stats_fetch_retry(&stats->syncp, start));
10561
10562 s->rx_packets += rx_packets;
10563 s->rx_bytes += rx_bytes;
10564 s->tx_packets += tx_packets;
10565 s->tx_bytes += tx_bytes;
10566 }
10567}
10568EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10569
10570/**
10571 * dev_get_tstats64 - ndo_get_stats64 implementation
10572 * @dev: device to get statistics from
10573 * @s: place to store stats
10574 *
10575 * Populate @s from dev->stats and dev->tstats. Can be used as
10576 * ndo_get_stats64() callback.
10577 */
10578void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10579{
10580 netdev_stats_to_stats64(s, &dev->stats);
10581 dev_fetch_sw_netstats(s, dev->tstats);
10582}
10583EXPORT_SYMBOL_GPL(dev_get_tstats64);
10584
10585struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10586{
10587 struct netdev_queue *queue = dev_ingress_queue(dev);
10588
10589#ifdef CONFIG_NET_CLS_ACT
10590 if (queue)
10591 return queue;
10592 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10593 if (!queue)
10594 return NULL;
10595 netdev_init_one_queue(dev, queue, NULL);
10596 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10597 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10598 rcu_assign_pointer(dev->ingress_queue, queue);
10599#endif
10600 return queue;
10601}
10602
10603static const struct ethtool_ops default_ethtool_ops;
10604
10605void netdev_set_default_ethtool_ops(struct net_device *dev,
10606 const struct ethtool_ops *ops)
10607{
10608 if (dev->ethtool_ops == &default_ethtool_ops)
10609 dev->ethtool_ops = ops;
10610}
10611EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10612
10613/**
10614 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10615 * @dev: netdev to enable the IRQ coalescing on
10616 *
10617 * Sets a conservative default for SW IRQ coalescing. Users can use
10618 * sysfs attributes to override the default values.
10619 */
10620void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10621{
10622 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10623
10624 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10625 dev->gro_flush_timeout = 20000;
10626 dev->napi_defer_hard_irqs = 1;
10627 }
10628}
10629EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10630
10631void netdev_freemem(struct net_device *dev)
10632{
10633 char *addr = (char *)dev - dev->padded;
10634
10635 kvfree(addr);
10636}
10637
10638/**
10639 * alloc_netdev_mqs - allocate network device
10640 * @sizeof_priv: size of private data to allocate space for
10641 * @name: device name format string
10642 * @name_assign_type: origin of device name
10643 * @setup: callback to initialize device
10644 * @txqs: the number of TX subqueues to allocate
10645 * @rxqs: the number of RX subqueues to allocate
10646 *
10647 * Allocates a struct net_device with private data area for driver use
10648 * and performs basic initialization. Also allocates subqueue structs
10649 * for each queue on the device.
10650 */
10651struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10652 unsigned char name_assign_type,
10653 void (*setup)(struct net_device *),
10654 unsigned int txqs, unsigned int rxqs)
10655{
10656 struct net_device *dev;
10657 unsigned int alloc_size;
10658 struct net_device *p;
10659
10660 BUG_ON(strlen(name) >= sizeof(dev->name));
10661
10662 if (txqs < 1) {
10663 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10664 return NULL;
10665 }
10666
10667 if (rxqs < 1) {
10668 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10669 return NULL;
10670 }
10671
10672 alloc_size = sizeof(struct net_device);
10673 if (sizeof_priv) {
10674 /* ensure 32-byte alignment of private area */
10675 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10676 alloc_size += sizeof_priv;
10677 }
10678 /* ensure 32-byte alignment of whole construct */
10679 alloc_size += NETDEV_ALIGN - 1;
10680
10681 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10682 if (!p)
10683 return NULL;
10684
10685 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10686 dev->padded = (char *)dev - (char *)p;
10687
10688 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10689#ifdef CONFIG_PCPU_DEV_REFCNT
10690 dev->pcpu_refcnt = alloc_percpu(int);
10691 if (!dev->pcpu_refcnt)
10692 goto free_dev;
10693 __dev_hold(dev);
10694#else
10695 refcount_set(&dev->dev_refcnt, 1);
10696#endif
10697
10698 if (dev_addr_init(dev))
10699 goto free_pcpu;
10700
10701 dev_mc_init(dev);
10702 dev_uc_init(dev);
10703
10704 dev_net_set(dev, &init_net);
10705
10706 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10707 dev->xdp_zc_max_segs = 1;
10708 dev->gso_max_segs = GSO_MAX_SEGS;
10709 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10710 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10711 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10712 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10713 dev->tso_max_segs = TSO_MAX_SEGS;
10714 dev->upper_level = 1;
10715 dev->lower_level = 1;
10716#ifdef CONFIG_LOCKDEP
10717 dev->nested_level = 0;
10718 INIT_LIST_HEAD(&dev->unlink_list);
10719#endif
10720
10721 INIT_LIST_HEAD(&dev->napi_list);
10722 INIT_LIST_HEAD(&dev->unreg_list);
10723 INIT_LIST_HEAD(&dev->close_list);
10724 INIT_LIST_HEAD(&dev->link_watch_list);
10725 INIT_LIST_HEAD(&dev->adj_list.upper);
10726 INIT_LIST_HEAD(&dev->adj_list.lower);
10727 INIT_LIST_HEAD(&dev->ptype_all);
10728 INIT_LIST_HEAD(&dev->ptype_specific);
10729 INIT_LIST_HEAD(&dev->net_notifier_list);
10730#ifdef CONFIG_NET_SCHED
10731 hash_init(dev->qdisc_hash);
10732#endif
10733 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10734 setup(dev);
10735
10736 if (!dev->tx_queue_len) {
10737 dev->priv_flags |= IFF_NO_QUEUE;
10738 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10739 }
10740
10741 dev->num_tx_queues = txqs;
10742 dev->real_num_tx_queues = txqs;
10743 if (netif_alloc_netdev_queues(dev))
10744 goto free_all;
10745
10746 dev->num_rx_queues = rxqs;
10747 dev->real_num_rx_queues = rxqs;
10748 if (netif_alloc_rx_queues(dev))
10749 goto free_all;
10750
10751 strcpy(dev->name, name);
10752 dev->name_assign_type = name_assign_type;
10753 dev->group = INIT_NETDEV_GROUP;
10754 if (!dev->ethtool_ops)
10755 dev->ethtool_ops = &default_ethtool_ops;
10756
10757 nf_hook_netdev_init(dev);
10758
10759 return dev;
10760
10761free_all:
10762 free_netdev(dev);
10763 return NULL;
10764
10765free_pcpu:
10766#ifdef CONFIG_PCPU_DEV_REFCNT
10767 free_percpu(dev->pcpu_refcnt);
10768free_dev:
10769#endif
10770 netdev_freemem(dev);
10771 return NULL;
10772}
10773EXPORT_SYMBOL(alloc_netdev_mqs);
10774
10775/**
10776 * free_netdev - free network device
10777 * @dev: device
10778 *
10779 * This function does the last stage of destroying an allocated device
10780 * interface. The reference to the device object is released. If this
10781 * is the last reference then it will be freed.Must be called in process
10782 * context.
10783 */
10784void free_netdev(struct net_device *dev)
10785{
10786 struct napi_struct *p, *n;
10787
10788 might_sleep();
10789
10790 /* When called immediately after register_netdevice() failed the unwind
10791 * handling may still be dismantling the device. Handle that case by
10792 * deferring the free.
10793 */
10794 if (dev->reg_state == NETREG_UNREGISTERING) {
10795 ASSERT_RTNL();
10796 dev->needs_free_netdev = true;
10797 return;
10798 }
10799
10800 netif_free_tx_queues(dev);
10801 netif_free_rx_queues(dev);
10802
10803 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10804
10805 /* Flush device addresses */
10806 dev_addr_flush(dev);
10807
10808 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10809 netif_napi_del(p);
10810
10811 ref_tracker_dir_exit(&dev->refcnt_tracker);
10812#ifdef CONFIG_PCPU_DEV_REFCNT
10813 free_percpu(dev->pcpu_refcnt);
10814 dev->pcpu_refcnt = NULL;
10815#endif
10816 free_percpu(dev->core_stats);
10817 dev->core_stats = NULL;
10818 free_percpu(dev->xdp_bulkq);
10819 dev->xdp_bulkq = NULL;
10820
10821 /* Compatibility with error handling in drivers */
10822 if (dev->reg_state == NETREG_UNINITIALIZED) {
10823 netdev_freemem(dev);
10824 return;
10825 }
10826
10827 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10828 dev->reg_state = NETREG_RELEASED;
10829
10830 /* will free via device release */
10831 put_device(&dev->dev);
10832}
10833EXPORT_SYMBOL(free_netdev);
10834
10835/**
10836 * synchronize_net - Synchronize with packet receive processing
10837 *
10838 * Wait for packets currently being received to be done.
10839 * Does not block later packets from starting.
10840 */
10841void synchronize_net(void)
10842{
10843 might_sleep();
10844 if (rtnl_is_locked())
10845 synchronize_rcu_expedited();
10846 else
10847 synchronize_rcu();
10848}
10849EXPORT_SYMBOL(synchronize_net);
10850
10851/**
10852 * unregister_netdevice_queue - remove device from the kernel
10853 * @dev: device
10854 * @head: list
10855 *
10856 * This function shuts down a device interface and removes it
10857 * from the kernel tables.
10858 * If head not NULL, device is queued to be unregistered later.
10859 *
10860 * Callers must hold the rtnl semaphore. You may want
10861 * unregister_netdev() instead of this.
10862 */
10863
10864void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10865{
10866 ASSERT_RTNL();
10867
10868 if (head) {
10869 list_move_tail(&dev->unreg_list, head);
10870 } else {
10871 LIST_HEAD(single);
10872
10873 list_add(&dev->unreg_list, &single);
10874 unregister_netdevice_many(&single);
10875 }
10876}
10877EXPORT_SYMBOL(unregister_netdevice_queue);
10878
10879void unregister_netdevice_many_notify(struct list_head *head,
10880 u32 portid, const struct nlmsghdr *nlh)
10881{
10882 struct net_device *dev, *tmp;
10883 LIST_HEAD(close_head);
10884
10885 BUG_ON(dev_boot_phase);
10886 ASSERT_RTNL();
10887
10888 if (list_empty(head))
10889 return;
10890
10891 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10892 /* Some devices call without registering
10893 * for initialization unwind. Remove those
10894 * devices and proceed with the remaining.
10895 */
10896 if (dev->reg_state == NETREG_UNINITIALIZED) {
10897 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10898 dev->name, dev);
10899
10900 WARN_ON(1);
10901 list_del(&dev->unreg_list);
10902 continue;
10903 }
10904 dev->dismantle = true;
10905 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10906 }
10907
10908 /* If device is running, close it first. */
10909 list_for_each_entry(dev, head, unreg_list)
10910 list_add_tail(&dev->close_list, &close_head);
10911 dev_close_many(&close_head, true);
10912
10913 list_for_each_entry(dev, head, unreg_list) {
10914 /* And unlink it from device chain. */
10915 write_lock(&dev_base_lock);
10916 unlist_netdevice(dev, false);
10917 dev->reg_state = NETREG_UNREGISTERING;
10918 write_unlock(&dev_base_lock);
10919 }
10920 flush_all_backlogs();
10921
10922 synchronize_net();
10923
10924 list_for_each_entry(dev, head, unreg_list) {
10925 struct sk_buff *skb = NULL;
10926
10927 /* Shutdown queueing discipline. */
10928 dev_shutdown(dev);
10929 dev_tcx_uninstall(dev);
10930 dev_xdp_uninstall(dev);
10931 bpf_dev_bound_netdev_unregister(dev);
10932
10933 netdev_offload_xstats_disable_all(dev);
10934
10935 /* Notify protocols, that we are about to destroy
10936 * this device. They should clean all the things.
10937 */
10938 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10939
10940 if (!dev->rtnl_link_ops ||
10941 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10942 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10943 GFP_KERNEL, NULL, 0,
10944 portid, nlh);
10945
10946 /*
10947 * Flush the unicast and multicast chains
10948 */
10949 dev_uc_flush(dev);
10950 dev_mc_flush(dev);
10951
10952 netdev_name_node_alt_flush(dev);
10953 netdev_name_node_free(dev->name_node);
10954
10955 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10956
10957 if (dev->netdev_ops->ndo_uninit)
10958 dev->netdev_ops->ndo_uninit(dev);
10959
10960 if (skb)
10961 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10962
10963 /* Notifier chain MUST detach us all upper devices. */
10964 WARN_ON(netdev_has_any_upper_dev(dev));
10965 WARN_ON(netdev_has_any_lower_dev(dev));
10966
10967 /* Remove entries from kobject tree */
10968 netdev_unregister_kobject(dev);
10969#ifdef CONFIG_XPS
10970 /* Remove XPS queueing entries */
10971 netif_reset_xps_queues_gt(dev, 0);
10972#endif
10973 }
10974
10975 synchronize_net();
10976
10977 list_for_each_entry(dev, head, unreg_list) {
10978 netdev_put(dev, &dev->dev_registered_tracker);
10979 net_set_todo(dev);
10980 }
10981
10982 list_del(head);
10983}
10984
10985/**
10986 * unregister_netdevice_many - unregister many devices
10987 * @head: list of devices
10988 *
10989 * Note: As most callers use a stack allocated list_head,
10990 * we force a list_del() to make sure stack wont be corrupted later.
10991 */
10992void unregister_netdevice_many(struct list_head *head)
10993{
10994 unregister_netdevice_many_notify(head, 0, NULL);
10995}
10996EXPORT_SYMBOL(unregister_netdevice_many);
10997
10998/**
10999 * unregister_netdev - remove device from the kernel
11000 * @dev: device
11001 *
11002 * This function shuts down a device interface and removes it
11003 * from the kernel tables.
11004 *
11005 * This is just a wrapper for unregister_netdevice that takes
11006 * the rtnl semaphore. In general you want to use this and not
11007 * unregister_netdevice.
11008 */
11009void unregister_netdev(struct net_device *dev)
11010{
11011 rtnl_lock();
11012 unregister_netdevice(dev);
11013 rtnl_unlock();
11014}
11015EXPORT_SYMBOL(unregister_netdev);
11016
11017/**
11018 * __dev_change_net_namespace - move device to different nethost namespace
11019 * @dev: device
11020 * @net: network namespace
11021 * @pat: If not NULL name pattern to try if the current device name
11022 * is already taken in the destination network namespace.
11023 * @new_ifindex: If not zero, specifies device index in the target
11024 * namespace.
11025 *
11026 * This function shuts down a device interface and moves it
11027 * to a new network namespace. On success 0 is returned, on
11028 * a failure a netagive errno code is returned.
11029 *
11030 * Callers must hold the rtnl semaphore.
11031 */
11032
11033int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11034 const char *pat, int new_ifindex)
11035{
11036 struct net *net_old = dev_net(dev);
11037 int err, new_nsid;
11038
11039 ASSERT_RTNL();
11040
11041 /* Don't allow namespace local devices to be moved. */
11042 err = -EINVAL;
11043 if (dev->features & NETIF_F_NETNS_LOCAL)
11044 goto out;
11045
11046 /* Ensure the device has been registrered */
11047 if (dev->reg_state != NETREG_REGISTERED)
11048 goto out;
11049
11050 /* Get out if there is nothing todo */
11051 err = 0;
11052 if (net_eq(net_old, net))
11053 goto out;
11054
11055 /* Pick the destination device name, and ensure
11056 * we can use it in the destination network namespace.
11057 */
11058 err = -EEXIST;
11059 if (netdev_name_in_use(net, dev->name)) {
11060 /* We get here if we can't use the current device name */
11061 if (!pat)
11062 goto out;
11063 err = dev_get_valid_name(net, dev, pat);
11064 if (err < 0)
11065 goto out;
11066 }
11067
11068 /* Check that new_ifindex isn't used yet. */
11069 if (new_ifindex) {
11070 err = dev_index_reserve(net, new_ifindex);
11071 if (err < 0)
11072 goto out;
11073 } else {
11074 /* If there is an ifindex conflict assign a new one */
11075 err = dev_index_reserve(net, dev->ifindex);
11076 if (err == -EBUSY)
11077 err = dev_index_reserve(net, 0);
11078 if (err < 0)
11079 goto out;
11080 new_ifindex = err;
11081 }
11082
11083 /*
11084 * And now a mini version of register_netdevice unregister_netdevice.
11085 */
11086
11087 /* If device is running close it first. */
11088 dev_close(dev);
11089
11090 /* And unlink it from device chain */
11091 unlist_netdevice(dev, true);
11092
11093 synchronize_net();
11094
11095 /* Shutdown queueing discipline. */
11096 dev_shutdown(dev);
11097
11098 /* Notify protocols, that we are about to destroy
11099 * this device. They should clean all the things.
11100 *
11101 * Note that dev->reg_state stays at NETREG_REGISTERED.
11102 * This is wanted because this way 8021q and macvlan know
11103 * the device is just moving and can keep their slaves up.
11104 */
11105 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11106 rcu_barrier();
11107
11108 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11109
11110 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11111 new_ifindex);
11112
11113 /*
11114 * Flush the unicast and multicast chains
11115 */
11116 dev_uc_flush(dev);
11117 dev_mc_flush(dev);
11118
11119 /* Send a netdev-removed uevent to the old namespace */
11120 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11121 netdev_adjacent_del_links(dev);
11122
11123 /* Move per-net netdevice notifiers that are following the netdevice */
11124 move_netdevice_notifiers_dev_net(dev, net);
11125
11126 /* Actually switch the network namespace */
11127 dev_net_set(dev, net);
11128 dev->ifindex = new_ifindex;
11129
11130 /* Send a netdev-add uevent to the new namespace */
11131 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11132 netdev_adjacent_add_links(dev);
11133
11134 /* Fixup kobjects */
11135 err = device_rename(&dev->dev, dev->name);
11136 WARN_ON(err);
11137
11138 /* Adapt owner in case owning user namespace of target network
11139 * namespace is different from the original one.
11140 */
11141 err = netdev_change_owner(dev, net_old, net);
11142 WARN_ON(err);
11143
11144 /* Add the device back in the hashes */
11145 list_netdevice(dev);
11146
11147 /* Notify protocols, that a new device appeared. */
11148 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11149
11150 /*
11151 * Prevent userspace races by waiting until the network
11152 * device is fully setup before sending notifications.
11153 */
11154 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11155
11156 synchronize_net();
11157 err = 0;
11158out:
11159 return err;
11160}
11161EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11162
11163static int dev_cpu_dead(unsigned int oldcpu)
11164{
11165 struct sk_buff **list_skb;
11166 struct sk_buff *skb;
11167 unsigned int cpu;
11168 struct softnet_data *sd, *oldsd, *remsd = NULL;
11169
11170 local_irq_disable();
11171 cpu = smp_processor_id();
11172 sd = &per_cpu(softnet_data, cpu);
11173 oldsd = &per_cpu(softnet_data, oldcpu);
11174
11175 /* Find end of our completion_queue. */
11176 list_skb = &sd->completion_queue;
11177 while (*list_skb)
11178 list_skb = &(*list_skb)->next;
11179 /* Append completion queue from offline CPU. */
11180 *list_skb = oldsd->completion_queue;
11181 oldsd->completion_queue = NULL;
11182
11183 /* Append output queue from offline CPU. */
11184 if (oldsd->output_queue) {
11185 *sd->output_queue_tailp = oldsd->output_queue;
11186 sd->output_queue_tailp = oldsd->output_queue_tailp;
11187 oldsd->output_queue = NULL;
11188 oldsd->output_queue_tailp = &oldsd->output_queue;
11189 }
11190 /* Append NAPI poll list from offline CPU, with one exception :
11191 * process_backlog() must be called by cpu owning percpu backlog.
11192 * We properly handle process_queue & input_pkt_queue later.
11193 */
11194 while (!list_empty(&oldsd->poll_list)) {
11195 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11196 struct napi_struct,
11197 poll_list);
11198
11199 list_del_init(&napi->poll_list);
11200 if (napi->poll == process_backlog)
11201 napi->state = 0;
11202 else
11203 ____napi_schedule(sd, napi);
11204 }
11205
11206 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11207 local_irq_enable();
11208
11209#ifdef CONFIG_RPS
11210 remsd = oldsd->rps_ipi_list;
11211 oldsd->rps_ipi_list = NULL;
11212#endif
11213 /* send out pending IPI's on offline CPU */
11214 net_rps_send_ipi(remsd);
11215
11216 /* Process offline CPU's input_pkt_queue */
11217 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11218 netif_rx(skb);
11219 input_queue_head_incr(oldsd);
11220 }
11221 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11222 netif_rx(skb);
11223 input_queue_head_incr(oldsd);
11224 }
11225
11226 return 0;
11227}
11228
11229/**
11230 * netdev_increment_features - increment feature set by one
11231 * @all: current feature set
11232 * @one: new feature set
11233 * @mask: mask feature set
11234 *
11235 * Computes a new feature set after adding a device with feature set
11236 * @one to the master device with current feature set @all. Will not
11237 * enable anything that is off in @mask. Returns the new feature set.
11238 */
11239netdev_features_t netdev_increment_features(netdev_features_t all,
11240 netdev_features_t one, netdev_features_t mask)
11241{
11242 if (mask & NETIF_F_HW_CSUM)
11243 mask |= NETIF_F_CSUM_MASK;
11244 mask |= NETIF_F_VLAN_CHALLENGED;
11245
11246 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11247 all &= one | ~NETIF_F_ALL_FOR_ALL;
11248
11249 /* If one device supports hw checksumming, set for all. */
11250 if (all & NETIF_F_HW_CSUM)
11251 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11252
11253 return all;
11254}
11255EXPORT_SYMBOL(netdev_increment_features);
11256
11257static struct hlist_head * __net_init netdev_create_hash(void)
11258{
11259 int i;
11260 struct hlist_head *hash;
11261
11262 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11263 if (hash != NULL)
11264 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11265 INIT_HLIST_HEAD(&hash[i]);
11266
11267 return hash;
11268}
11269
11270/* Initialize per network namespace state */
11271static int __net_init netdev_init(struct net *net)
11272{
11273 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11274 8 * sizeof_field(struct napi_struct, gro_bitmask));
11275
11276 INIT_LIST_HEAD(&net->dev_base_head);
11277
11278 net->dev_name_head = netdev_create_hash();
11279 if (net->dev_name_head == NULL)
11280 goto err_name;
11281
11282 net->dev_index_head = netdev_create_hash();
11283 if (net->dev_index_head == NULL)
11284 goto err_idx;
11285
11286 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11287
11288 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11289
11290 return 0;
11291
11292err_idx:
11293 kfree(net->dev_name_head);
11294err_name:
11295 return -ENOMEM;
11296}
11297
11298/**
11299 * netdev_drivername - network driver for the device
11300 * @dev: network device
11301 *
11302 * Determine network driver for device.
11303 */
11304const char *netdev_drivername(const struct net_device *dev)
11305{
11306 const struct device_driver *driver;
11307 const struct device *parent;
11308 const char *empty = "";
11309
11310 parent = dev->dev.parent;
11311 if (!parent)
11312 return empty;
11313
11314 driver = parent->driver;
11315 if (driver && driver->name)
11316 return driver->name;
11317 return empty;
11318}
11319
11320static void __netdev_printk(const char *level, const struct net_device *dev,
11321 struct va_format *vaf)
11322{
11323 if (dev && dev->dev.parent) {
11324 dev_printk_emit(level[1] - '0',
11325 dev->dev.parent,
11326 "%s %s %s%s: %pV",
11327 dev_driver_string(dev->dev.parent),
11328 dev_name(dev->dev.parent),
11329 netdev_name(dev), netdev_reg_state(dev),
11330 vaf);
11331 } else if (dev) {
11332 printk("%s%s%s: %pV",
11333 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11334 } else {
11335 printk("%s(NULL net_device): %pV", level, vaf);
11336 }
11337}
11338
11339void netdev_printk(const char *level, const struct net_device *dev,
11340 const char *format, ...)
11341{
11342 struct va_format vaf;
11343 va_list args;
11344
11345 va_start(args, format);
11346
11347 vaf.fmt = format;
11348 vaf.va = &args;
11349
11350 __netdev_printk(level, dev, &vaf);
11351
11352 va_end(args);
11353}
11354EXPORT_SYMBOL(netdev_printk);
11355
11356#define define_netdev_printk_level(func, level) \
11357void func(const struct net_device *dev, const char *fmt, ...) \
11358{ \
11359 struct va_format vaf; \
11360 va_list args; \
11361 \
11362 va_start(args, fmt); \
11363 \
11364 vaf.fmt = fmt; \
11365 vaf.va = &args; \
11366 \
11367 __netdev_printk(level, dev, &vaf); \
11368 \
11369 va_end(args); \
11370} \
11371EXPORT_SYMBOL(func);
11372
11373define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11374define_netdev_printk_level(netdev_alert, KERN_ALERT);
11375define_netdev_printk_level(netdev_crit, KERN_CRIT);
11376define_netdev_printk_level(netdev_err, KERN_ERR);
11377define_netdev_printk_level(netdev_warn, KERN_WARNING);
11378define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11379define_netdev_printk_level(netdev_info, KERN_INFO);
11380
11381static void __net_exit netdev_exit(struct net *net)
11382{
11383 kfree(net->dev_name_head);
11384 kfree(net->dev_index_head);
11385 xa_destroy(&net->dev_by_index);
11386 if (net != &init_net)
11387 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11388}
11389
11390static struct pernet_operations __net_initdata netdev_net_ops = {
11391 .init = netdev_init,
11392 .exit = netdev_exit,
11393};
11394
11395static void __net_exit default_device_exit_net(struct net *net)
11396{
11397 struct net_device *dev, *aux;
11398 /*
11399 * Push all migratable network devices back to the
11400 * initial network namespace
11401 */
11402 ASSERT_RTNL();
11403 for_each_netdev_safe(net, dev, aux) {
11404 int err;
11405 char fb_name[IFNAMSIZ];
11406
11407 /* Ignore unmoveable devices (i.e. loopback) */
11408 if (dev->features & NETIF_F_NETNS_LOCAL)
11409 continue;
11410
11411 /* Leave virtual devices for the generic cleanup */
11412 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11413 continue;
11414
11415 /* Push remaining network devices to init_net */
11416 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11417 if (netdev_name_in_use(&init_net, fb_name))
11418 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11419 err = dev_change_net_namespace(dev, &init_net, fb_name);
11420 if (err) {
11421 pr_emerg("%s: failed to move %s to init_net: %d\n",
11422 __func__, dev->name, err);
11423 BUG();
11424 }
11425 }
11426}
11427
11428static void __net_exit default_device_exit_batch(struct list_head *net_list)
11429{
11430 /* At exit all network devices most be removed from a network
11431 * namespace. Do this in the reverse order of registration.
11432 * Do this across as many network namespaces as possible to
11433 * improve batching efficiency.
11434 */
11435 struct net_device *dev;
11436 struct net *net;
11437 LIST_HEAD(dev_kill_list);
11438
11439 rtnl_lock();
11440 list_for_each_entry(net, net_list, exit_list) {
11441 default_device_exit_net(net);
11442 cond_resched();
11443 }
11444
11445 list_for_each_entry(net, net_list, exit_list) {
11446 for_each_netdev_reverse(net, dev) {
11447 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11448 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11449 else
11450 unregister_netdevice_queue(dev, &dev_kill_list);
11451 }
11452 }
11453 unregister_netdevice_many(&dev_kill_list);
11454 rtnl_unlock();
11455}
11456
11457static struct pernet_operations __net_initdata default_device_ops = {
11458 .exit_batch = default_device_exit_batch,
11459};
11460
11461/*
11462 * Initialize the DEV module. At boot time this walks the device list and
11463 * unhooks any devices that fail to initialise (normally hardware not
11464 * present) and leaves us with a valid list of present and active devices.
11465 *
11466 */
11467
11468/*
11469 * This is called single threaded during boot, so no need
11470 * to take the rtnl semaphore.
11471 */
11472static int __init net_dev_init(void)
11473{
11474 int i, rc = -ENOMEM;
11475
11476 BUG_ON(!dev_boot_phase);
11477
11478 if (dev_proc_init())
11479 goto out;
11480
11481 if (netdev_kobject_init())
11482 goto out;
11483
11484 INIT_LIST_HEAD(&ptype_all);
11485 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11486 INIT_LIST_HEAD(&ptype_base[i]);
11487
11488 if (register_pernet_subsys(&netdev_net_ops))
11489 goto out;
11490
11491 /*
11492 * Initialise the packet receive queues.
11493 */
11494
11495 for_each_possible_cpu(i) {
11496 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11497 struct softnet_data *sd = &per_cpu(softnet_data, i);
11498
11499 INIT_WORK(flush, flush_backlog);
11500
11501 skb_queue_head_init(&sd->input_pkt_queue);
11502 skb_queue_head_init(&sd->process_queue);
11503#ifdef CONFIG_XFRM_OFFLOAD
11504 skb_queue_head_init(&sd->xfrm_backlog);
11505#endif
11506 INIT_LIST_HEAD(&sd->poll_list);
11507 sd->output_queue_tailp = &sd->output_queue;
11508#ifdef CONFIG_RPS
11509 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11510 sd->cpu = i;
11511#endif
11512 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11513 spin_lock_init(&sd->defer_lock);
11514
11515 init_gro_hash(&sd->backlog);
11516 sd->backlog.poll = process_backlog;
11517 sd->backlog.weight = weight_p;
11518 }
11519
11520 dev_boot_phase = 0;
11521
11522 /* The loopback device is special if any other network devices
11523 * is present in a network namespace the loopback device must
11524 * be present. Since we now dynamically allocate and free the
11525 * loopback device ensure this invariant is maintained by
11526 * keeping the loopback device as the first device on the
11527 * list of network devices. Ensuring the loopback devices
11528 * is the first device that appears and the last network device
11529 * that disappears.
11530 */
11531 if (register_pernet_device(&loopback_net_ops))
11532 goto out;
11533
11534 if (register_pernet_device(&default_device_ops))
11535 goto out;
11536
11537 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11538 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11539
11540 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11541 NULL, dev_cpu_dead);
11542 WARN_ON(rc < 0);
11543 rc = 0;
11544out:
11545 return rc;
11546}
11547
11548subsys_initcall(net_dev_init);