Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_FS_H
3#define _LINUX_FS_H
4
5#include <linux/linkage.h>
6#include <linux/wait_bit.h>
7#include <linux/kdev_t.h>
8#include <linux/dcache.h>
9#include <linux/path.h>
10#include <linux/stat.h>
11#include <linux/cache.h>
12#include <linux/list.h>
13#include <linux/list_lru.h>
14#include <linux/llist.h>
15#include <linux/radix-tree.h>
16#include <linux/xarray.h>
17#include <linux/rbtree.h>
18#include <linux/init.h>
19#include <linux/pid.h>
20#include <linux/bug.h>
21#include <linux/mutex.h>
22#include <linux/rwsem.h>
23#include <linux/mm_types.h>
24#include <linux/capability.h>
25#include <linux/semaphore.h>
26#include <linux/fcntl.h>
27#include <linux/rculist_bl.h>
28#include <linux/atomic.h>
29#include <linux/shrinker.h>
30#include <linux/migrate_mode.h>
31#include <linux/uidgid.h>
32#include <linux/lockdep.h>
33#include <linux/percpu-rwsem.h>
34#include <linux/workqueue.h>
35#include <linux/delayed_call.h>
36#include <linux/uuid.h>
37#include <linux/errseq.h>
38#include <linux/ioprio.h>
39#include <linux/fs_types.h>
40#include <linux/build_bug.h>
41#include <linux/stddef.h>
42#include <linux/mount.h>
43#include <linux/cred.h>
44#include <linux/mnt_idmapping.h>
45#include <linux/slab.h>
46
47#include <asm/byteorder.h>
48#include <uapi/linux/fs.h>
49
50struct backing_dev_info;
51struct bdi_writeback;
52struct bio;
53struct io_comp_batch;
54struct export_operations;
55struct fiemap_extent_info;
56struct hd_geometry;
57struct iovec;
58struct kiocb;
59struct kobject;
60struct pipe_inode_info;
61struct poll_table_struct;
62struct kstatfs;
63struct vm_area_struct;
64struct vfsmount;
65struct cred;
66struct swap_info_struct;
67struct seq_file;
68struct workqueue_struct;
69struct iov_iter;
70struct fscrypt_info;
71struct fscrypt_operations;
72struct fsverity_info;
73struct fsverity_operations;
74struct fs_context;
75struct fs_parameter_spec;
76struct fileattr;
77struct iomap_ops;
78
79extern void __init inode_init(void);
80extern void __init inode_init_early(void);
81extern void __init files_init(void);
82extern void __init files_maxfiles_init(void);
83
84extern unsigned long get_max_files(void);
85extern unsigned int sysctl_nr_open;
86
87typedef __kernel_rwf_t rwf_t;
88
89struct buffer_head;
90typedef int (get_block_t)(struct inode *inode, sector_t iblock,
91 struct buffer_head *bh_result, int create);
92typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset,
93 ssize_t bytes, void *private);
94
95#define MAY_EXEC 0x00000001
96#define MAY_WRITE 0x00000002
97#define MAY_READ 0x00000004
98#define MAY_APPEND 0x00000008
99#define MAY_ACCESS 0x00000010
100#define MAY_OPEN 0x00000020
101#define MAY_CHDIR 0x00000040
102/* called from RCU mode, don't block */
103#define MAY_NOT_BLOCK 0x00000080
104
105/*
106 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond
107 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open()
108 */
109
110/* file is open for reading */
111#define FMODE_READ ((__force fmode_t)0x1)
112/* file is open for writing */
113#define FMODE_WRITE ((__force fmode_t)0x2)
114/* file is seekable */
115#define FMODE_LSEEK ((__force fmode_t)0x4)
116/* file can be accessed using pread */
117#define FMODE_PREAD ((__force fmode_t)0x8)
118/* file can be accessed using pwrite */
119#define FMODE_PWRITE ((__force fmode_t)0x10)
120/* File is opened for execution with sys_execve / sys_uselib */
121#define FMODE_EXEC ((__force fmode_t)0x20)
122/* 32bit hashes as llseek() offset (for directories) */
123#define FMODE_32BITHASH ((__force fmode_t)0x200)
124/* 64bit hashes as llseek() offset (for directories) */
125#define FMODE_64BITHASH ((__force fmode_t)0x400)
126
127/*
128 * Don't update ctime and mtime.
129 *
130 * Currently a special hack for the XFS open_by_handle ioctl, but we'll
131 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon.
132 */
133#define FMODE_NOCMTIME ((__force fmode_t)0x800)
134
135/* Expect random access pattern */
136#define FMODE_RANDOM ((__force fmode_t)0x1000)
137
138/* File is huge (eg. /dev/mem): treat loff_t as unsigned */
139#define FMODE_UNSIGNED_OFFSET ((__force fmode_t)0x2000)
140
141/* File is opened with O_PATH; almost nothing can be done with it */
142#define FMODE_PATH ((__force fmode_t)0x4000)
143
144/* File needs atomic accesses to f_pos */
145#define FMODE_ATOMIC_POS ((__force fmode_t)0x8000)
146/* Write access to underlying fs */
147#define FMODE_WRITER ((__force fmode_t)0x10000)
148/* Has read method(s) */
149#define FMODE_CAN_READ ((__force fmode_t)0x20000)
150/* Has write method(s) */
151#define FMODE_CAN_WRITE ((__force fmode_t)0x40000)
152
153#define FMODE_OPENED ((__force fmode_t)0x80000)
154#define FMODE_CREATED ((__force fmode_t)0x100000)
155
156/* File is stream-like */
157#define FMODE_STREAM ((__force fmode_t)0x200000)
158
159/* File supports DIRECT IO */
160#define FMODE_CAN_ODIRECT ((__force fmode_t)0x400000)
161
162#define FMODE_NOREUSE ((__force fmode_t)0x800000)
163
164/* File supports non-exclusive O_DIRECT writes from multiple threads */
165#define FMODE_DIO_PARALLEL_WRITE ((__force fmode_t)0x1000000)
166
167/* File is embedded in backing_file object */
168#define FMODE_BACKING ((__force fmode_t)0x2000000)
169
170/* File was opened by fanotify and shouldn't generate fanotify events */
171#define FMODE_NONOTIFY ((__force fmode_t)0x4000000)
172
173/* File is capable of returning -EAGAIN if I/O will block */
174#define FMODE_NOWAIT ((__force fmode_t)0x8000000)
175
176/* File represents mount that needs unmounting */
177#define FMODE_NEED_UNMOUNT ((__force fmode_t)0x10000000)
178
179/* File does not contribute to nr_files count */
180#define FMODE_NOACCOUNT ((__force fmode_t)0x20000000)
181
182/* File supports async buffered reads */
183#define FMODE_BUF_RASYNC ((__force fmode_t)0x40000000)
184
185/* File supports async nowait buffered writes */
186#define FMODE_BUF_WASYNC ((__force fmode_t)0x80000000)
187
188/*
189 * Attribute flags. These should be or-ed together to figure out what
190 * has been changed!
191 */
192#define ATTR_MODE (1 << 0)
193#define ATTR_UID (1 << 1)
194#define ATTR_GID (1 << 2)
195#define ATTR_SIZE (1 << 3)
196#define ATTR_ATIME (1 << 4)
197#define ATTR_MTIME (1 << 5)
198#define ATTR_CTIME (1 << 6)
199#define ATTR_ATIME_SET (1 << 7)
200#define ATTR_MTIME_SET (1 << 8)
201#define ATTR_FORCE (1 << 9) /* Not a change, but a change it */
202#define ATTR_KILL_SUID (1 << 11)
203#define ATTR_KILL_SGID (1 << 12)
204#define ATTR_FILE (1 << 13)
205#define ATTR_KILL_PRIV (1 << 14)
206#define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */
207#define ATTR_TIMES_SET (1 << 16)
208#define ATTR_TOUCH (1 << 17)
209
210/*
211 * Whiteout is represented by a char device. The following constants define the
212 * mode and device number to use.
213 */
214#define WHITEOUT_MODE 0
215#define WHITEOUT_DEV 0
216
217/*
218 * This is the Inode Attributes structure, used for notify_change(). It
219 * uses the above definitions as flags, to know which values have changed.
220 * Also, in this manner, a Filesystem can look at only the values it cares
221 * about. Basically, these are the attributes that the VFS layer can
222 * request to change from the FS layer.
223 *
224 * Derek Atkins <warlord@MIT.EDU> 94-10-20
225 */
226struct iattr {
227 unsigned int ia_valid;
228 umode_t ia_mode;
229 /*
230 * The two anonymous unions wrap structures with the same member.
231 *
232 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which
233 * are a dedicated type requiring the filesystem to use the dedicated
234 * helpers. Other filesystem can continue to use ia_{g,u}id until they
235 * have been ported.
236 *
237 * They always contain the same value. In other words FS_ALLOW_IDMAP
238 * pass down the same value on idmapped mounts as they would on regular
239 * mounts.
240 */
241 union {
242 kuid_t ia_uid;
243 vfsuid_t ia_vfsuid;
244 };
245 union {
246 kgid_t ia_gid;
247 vfsgid_t ia_vfsgid;
248 };
249 loff_t ia_size;
250 struct timespec64 ia_atime;
251 struct timespec64 ia_mtime;
252 struct timespec64 ia_ctime;
253
254 /*
255 * Not an attribute, but an auxiliary info for filesystems wanting to
256 * implement an ftruncate() like method. NOTE: filesystem should
257 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL).
258 */
259 struct file *ia_file;
260};
261
262/*
263 * Includes for diskquotas.
264 */
265#include <linux/quota.h>
266
267/*
268 * Maximum number of layers of fs stack. Needs to be limited to
269 * prevent kernel stack overflow
270 */
271#define FILESYSTEM_MAX_STACK_DEPTH 2
272
273/**
274 * enum positive_aop_returns - aop return codes with specific semantics
275 *
276 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has
277 * completed, that the page is still locked, and
278 * should be considered active. The VM uses this hint
279 * to return the page to the active list -- it won't
280 * be a candidate for writeback again in the near
281 * future. Other callers must be careful to unlock
282 * the page if they get this return. Returned by
283 * writepage();
284 *
285 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has
286 * unlocked it and the page might have been truncated.
287 * The caller should back up to acquiring a new page and
288 * trying again. The aop will be taking reasonable
289 * precautions not to livelock. If the caller held a page
290 * reference, it should drop it before retrying. Returned
291 * by read_folio().
292 *
293 * address_space_operation functions return these large constants to indicate
294 * special semantics to the caller. These are much larger than the bytes in a
295 * page to allow for functions that return the number of bytes operated on in a
296 * given page.
297 */
298
299enum positive_aop_returns {
300 AOP_WRITEPAGE_ACTIVATE = 0x80000,
301 AOP_TRUNCATED_PAGE = 0x80001,
302};
303
304/*
305 * oh the beauties of C type declarations.
306 */
307struct page;
308struct address_space;
309struct writeback_control;
310struct readahead_control;
311
312/*
313 * Write life time hint values.
314 * Stored in struct inode as u8.
315 */
316enum rw_hint {
317 WRITE_LIFE_NOT_SET = 0,
318 WRITE_LIFE_NONE = RWH_WRITE_LIFE_NONE,
319 WRITE_LIFE_SHORT = RWH_WRITE_LIFE_SHORT,
320 WRITE_LIFE_MEDIUM = RWH_WRITE_LIFE_MEDIUM,
321 WRITE_LIFE_LONG = RWH_WRITE_LIFE_LONG,
322 WRITE_LIFE_EXTREME = RWH_WRITE_LIFE_EXTREME,
323};
324
325/* Match RWF_* bits to IOCB bits */
326#define IOCB_HIPRI (__force int) RWF_HIPRI
327#define IOCB_DSYNC (__force int) RWF_DSYNC
328#define IOCB_SYNC (__force int) RWF_SYNC
329#define IOCB_NOWAIT (__force int) RWF_NOWAIT
330#define IOCB_APPEND (__force int) RWF_APPEND
331
332/* non-RWF related bits - start at 16 */
333#define IOCB_EVENTFD (1 << 16)
334#define IOCB_DIRECT (1 << 17)
335#define IOCB_WRITE (1 << 18)
336/* iocb->ki_waitq is valid */
337#define IOCB_WAITQ (1 << 19)
338#define IOCB_NOIO (1 << 20)
339/* can use bio alloc cache */
340#define IOCB_ALLOC_CACHE (1 << 21)
341/*
342 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the
343 * iocb completion can be passed back to the owner for execution from a safe
344 * context rather than needing to be punted through a workqueue. If this
345 * flag is set, the bio completion handling may set iocb->dio_complete to a
346 * handler function and iocb->private to context information for that handler.
347 * The issuer should call the handler with that context information from task
348 * context to complete the processing of the iocb. Note that while this
349 * provides a task context for the dio_complete() callback, it should only be
350 * used on the completion side for non-IO generating completions. It's fine to
351 * call blocking functions from this callback, but they should not wait for
352 * unrelated IO (like cache flushing, new IO generation, etc).
353 */
354#define IOCB_DIO_CALLER_COMP (1 << 22)
355
356/* for use in trace events */
357#define TRACE_IOCB_STRINGS \
358 { IOCB_HIPRI, "HIPRI" }, \
359 { IOCB_DSYNC, "DSYNC" }, \
360 { IOCB_SYNC, "SYNC" }, \
361 { IOCB_NOWAIT, "NOWAIT" }, \
362 { IOCB_APPEND, "APPEND" }, \
363 { IOCB_EVENTFD, "EVENTFD"}, \
364 { IOCB_DIRECT, "DIRECT" }, \
365 { IOCB_WRITE, "WRITE" }, \
366 { IOCB_WAITQ, "WAITQ" }, \
367 { IOCB_NOIO, "NOIO" }, \
368 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \
369 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" }
370
371struct kiocb {
372 struct file *ki_filp;
373 loff_t ki_pos;
374 void (*ki_complete)(struct kiocb *iocb, long ret);
375 void *private;
376 int ki_flags;
377 u16 ki_ioprio; /* See linux/ioprio.h */
378 union {
379 /*
380 * Only used for async buffered reads, where it denotes the
381 * page waitqueue associated with completing the read. Valid
382 * IFF IOCB_WAITQ is set.
383 */
384 struct wait_page_queue *ki_waitq;
385 /*
386 * Can be used for O_DIRECT IO, where the completion handling
387 * is punted back to the issuer of the IO. May only be set
388 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer
389 * must then check for presence of this handler when ki_complete
390 * is invoked. The data passed in to this handler must be
391 * assigned to ->private when dio_complete is assigned.
392 */
393 ssize_t (*dio_complete)(void *data);
394 };
395};
396
397static inline bool is_sync_kiocb(struct kiocb *kiocb)
398{
399 return kiocb->ki_complete == NULL;
400}
401
402struct address_space_operations {
403 int (*writepage)(struct page *page, struct writeback_control *wbc);
404 int (*read_folio)(struct file *, struct folio *);
405
406 /* Write back some dirty pages from this mapping. */
407 int (*writepages)(struct address_space *, struct writeback_control *);
408
409 /* Mark a folio dirty. Return true if this dirtied it */
410 bool (*dirty_folio)(struct address_space *, struct folio *);
411
412 void (*readahead)(struct readahead_control *);
413
414 int (*write_begin)(struct file *, struct address_space *mapping,
415 loff_t pos, unsigned len,
416 struct page **pagep, void **fsdata);
417 int (*write_end)(struct file *, struct address_space *mapping,
418 loff_t pos, unsigned len, unsigned copied,
419 struct page *page, void *fsdata);
420
421 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */
422 sector_t (*bmap)(struct address_space *, sector_t);
423 void (*invalidate_folio) (struct folio *, size_t offset, size_t len);
424 bool (*release_folio)(struct folio *, gfp_t);
425 void (*free_folio)(struct folio *folio);
426 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
427 /*
428 * migrate the contents of a folio to the specified target. If
429 * migrate_mode is MIGRATE_ASYNC, it must not block.
430 */
431 int (*migrate_folio)(struct address_space *, struct folio *dst,
432 struct folio *src, enum migrate_mode);
433 int (*launder_folio)(struct folio *);
434 bool (*is_partially_uptodate) (struct folio *, size_t from,
435 size_t count);
436 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb);
437 int (*error_remove_page)(struct address_space *, struct page *);
438
439 /* swapfile support */
440 int (*swap_activate)(struct swap_info_struct *sis, struct file *file,
441 sector_t *span);
442 void (*swap_deactivate)(struct file *file);
443 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter);
444};
445
446extern const struct address_space_operations empty_aops;
447
448/**
449 * struct address_space - Contents of a cacheable, mappable object.
450 * @host: Owner, either the inode or the block_device.
451 * @i_pages: Cached pages.
452 * @invalidate_lock: Guards coherency between page cache contents and
453 * file offset->disk block mappings in the filesystem during invalidates.
454 * It is also used to block modification of page cache contents through
455 * memory mappings.
456 * @gfp_mask: Memory allocation flags to use for allocating pages.
457 * @i_mmap_writable: Number of VM_SHARED mappings.
458 * @nr_thps: Number of THPs in the pagecache (non-shmem only).
459 * @i_mmap: Tree of private and shared mappings.
460 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable.
461 * @nrpages: Number of page entries, protected by the i_pages lock.
462 * @writeback_index: Writeback starts here.
463 * @a_ops: Methods.
464 * @flags: Error bits and flags (AS_*).
465 * @wb_err: The most recent error which has occurred.
466 * @private_lock: For use by the owner of the address_space.
467 * @private_list: For use by the owner of the address_space.
468 * @private_data: For use by the owner of the address_space.
469 */
470struct address_space {
471 struct inode *host;
472 struct xarray i_pages;
473 struct rw_semaphore invalidate_lock;
474 gfp_t gfp_mask;
475 atomic_t i_mmap_writable;
476#ifdef CONFIG_READ_ONLY_THP_FOR_FS
477 /* number of thp, only for non-shmem files */
478 atomic_t nr_thps;
479#endif
480 struct rb_root_cached i_mmap;
481 unsigned long nrpages;
482 pgoff_t writeback_index;
483 const struct address_space_operations *a_ops;
484 unsigned long flags;
485 struct rw_semaphore i_mmap_rwsem;
486 errseq_t wb_err;
487 spinlock_t private_lock;
488 struct list_head private_list;
489 void *private_data;
490} __attribute__((aligned(sizeof(long)))) __randomize_layout;
491 /*
492 * On most architectures that alignment is already the case; but
493 * must be enforced here for CRIS, to let the least significant bit
494 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON.
495 */
496
497/* XArray tags, for tagging dirty and writeback pages in the pagecache. */
498#define PAGECACHE_TAG_DIRTY XA_MARK_0
499#define PAGECACHE_TAG_WRITEBACK XA_MARK_1
500#define PAGECACHE_TAG_TOWRITE XA_MARK_2
501
502/*
503 * Returns true if any of the pages in the mapping are marked with the tag.
504 */
505static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag)
506{
507 return xa_marked(&mapping->i_pages, tag);
508}
509
510static inline void i_mmap_lock_write(struct address_space *mapping)
511{
512 down_write(&mapping->i_mmap_rwsem);
513}
514
515static inline int i_mmap_trylock_write(struct address_space *mapping)
516{
517 return down_write_trylock(&mapping->i_mmap_rwsem);
518}
519
520static inline void i_mmap_unlock_write(struct address_space *mapping)
521{
522 up_write(&mapping->i_mmap_rwsem);
523}
524
525static inline int i_mmap_trylock_read(struct address_space *mapping)
526{
527 return down_read_trylock(&mapping->i_mmap_rwsem);
528}
529
530static inline void i_mmap_lock_read(struct address_space *mapping)
531{
532 down_read(&mapping->i_mmap_rwsem);
533}
534
535static inline void i_mmap_unlock_read(struct address_space *mapping)
536{
537 up_read(&mapping->i_mmap_rwsem);
538}
539
540static inline void i_mmap_assert_locked(struct address_space *mapping)
541{
542 lockdep_assert_held(&mapping->i_mmap_rwsem);
543}
544
545static inline void i_mmap_assert_write_locked(struct address_space *mapping)
546{
547 lockdep_assert_held_write(&mapping->i_mmap_rwsem);
548}
549
550/*
551 * Might pages of this file be mapped into userspace?
552 */
553static inline int mapping_mapped(struct address_space *mapping)
554{
555 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root);
556}
557
558/*
559 * Might pages of this file have been modified in userspace?
560 * Note that i_mmap_writable counts all VM_SHARED vmas: do_mmap
561 * marks vma as VM_SHARED if it is shared, and the file was opened for
562 * writing i.e. vma may be mprotected writable even if now readonly.
563 *
564 * If i_mmap_writable is negative, no new writable mappings are allowed. You
565 * can only deny writable mappings, if none exists right now.
566 */
567static inline int mapping_writably_mapped(struct address_space *mapping)
568{
569 return atomic_read(&mapping->i_mmap_writable) > 0;
570}
571
572static inline int mapping_map_writable(struct address_space *mapping)
573{
574 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ?
575 0 : -EPERM;
576}
577
578static inline void mapping_unmap_writable(struct address_space *mapping)
579{
580 atomic_dec(&mapping->i_mmap_writable);
581}
582
583static inline int mapping_deny_writable(struct address_space *mapping)
584{
585 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ?
586 0 : -EBUSY;
587}
588
589static inline void mapping_allow_writable(struct address_space *mapping)
590{
591 atomic_inc(&mapping->i_mmap_writable);
592}
593
594/*
595 * Use sequence counter to get consistent i_size on 32-bit processors.
596 */
597#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
598#include <linux/seqlock.h>
599#define __NEED_I_SIZE_ORDERED
600#define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount)
601#else
602#define i_size_ordered_init(inode) do { } while (0)
603#endif
604
605struct posix_acl;
606#define ACL_NOT_CACHED ((void *)(-1))
607/*
608 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to
609 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU
610 * mode with the LOOKUP_RCU flag.
611 */
612#define ACL_DONT_CACHE ((void *)(-3))
613
614static inline struct posix_acl *
615uncached_acl_sentinel(struct task_struct *task)
616{
617 return (void *)task + 1;
618}
619
620static inline bool
621is_uncached_acl(struct posix_acl *acl)
622{
623 return (long)acl & 1;
624}
625
626#define IOP_FASTPERM 0x0001
627#define IOP_LOOKUP 0x0002
628#define IOP_NOFOLLOW 0x0004
629#define IOP_XATTR 0x0008
630#define IOP_DEFAULT_READLINK 0x0010
631
632struct fsnotify_mark_connector;
633
634/*
635 * Keep mostly read-only and often accessed (especially for
636 * the RCU path lookup and 'stat' data) fields at the beginning
637 * of the 'struct inode'
638 */
639struct inode {
640 umode_t i_mode;
641 unsigned short i_opflags;
642 kuid_t i_uid;
643 kgid_t i_gid;
644 unsigned int i_flags;
645
646#ifdef CONFIG_FS_POSIX_ACL
647 struct posix_acl *i_acl;
648 struct posix_acl *i_default_acl;
649#endif
650
651 const struct inode_operations *i_op;
652 struct super_block *i_sb;
653 struct address_space *i_mapping;
654
655#ifdef CONFIG_SECURITY
656 void *i_security;
657#endif
658
659 /* Stat data, not accessed from path walking */
660 unsigned long i_ino;
661 /*
662 * Filesystems may only read i_nlink directly. They shall use the
663 * following functions for modification:
664 *
665 * (set|clear|inc|drop)_nlink
666 * inode_(inc|dec)_link_count
667 */
668 union {
669 const unsigned int i_nlink;
670 unsigned int __i_nlink;
671 };
672 dev_t i_rdev;
673 loff_t i_size;
674 struct timespec64 i_atime;
675 struct timespec64 i_mtime;
676 struct timespec64 __i_ctime; /* use inode_*_ctime accessors! */
677 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */
678 unsigned short i_bytes;
679 u8 i_blkbits;
680 u8 i_write_hint;
681 blkcnt_t i_blocks;
682
683#ifdef __NEED_I_SIZE_ORDERED
684 seqcount_t i_size_seqcount;
685#endif
686
687 /* Misc */
688 unsigned long i_state;
689 struct rw_semaphore i_rwsem;
690
691 unsigned long dirtied_when; /* jiffies of first dirtying */
692 unsigned long dirtied_time_when;
693
694 struct hlist_node i_hash;
695 struct list_head i_io_list; /* backing dev IO list */
696#ifdef CONFIG_CGROUP_WRITEBACK
697 struct bdi_writeback *i_wb; /* the associated cgroup wb */
698
699 /* foreign inode detection, see wbc_detach_inode() */
700 int i_wb_frn_winner;
701 u16 i_wb_frn_avg_time;
702 u16 i_wb_frn_history;
703#endif
704 struct list_head i_lru; /* inode LRU list */
705 struct list_head i_sb_list;
706 struct list_head i_wb_list; /* backing dev writeback list */
707 union {
708 struct hlist_head i_dentry;
709 struct rcu_head i_rcu;
710 };
711 atomic64_t i_version;
712 atomic64_t i_sequence; /* see futex */
713 atomic_t i_count;
714 atomic_t i_dio_count;
715 atomic_t i_writecount;
716#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
717 atomic_t i_readcount; /* struct files open RO */
718#endif
719 union {
720 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */
721 void (*free_inode)(struct inode *);
722 };
723 struct file_lock_context *i_flctx;
724 struct address_space i_data;
725 struct list_head i_devices;
726 union {
727 struct pipe_inode_info *i_pipe;
728 struct cdev *i_cdev;
729 char *i_link;
730 unsigned i_dir_seq;
731 };
732
733 __u32 i_generation;
734
735#ifdef CONFIG_FSNOTIFY
736 __u32 i_fsnotify_mask; /* all events this inode cares about */
737 struct fsnotify_mark_connector __rcu *i_fsnotify_marks;
738#endif
739
740#ifdef CONFIG_FS_ENCRYPTION
741 struct fscrypt_info *i_crypt_info;
742#endif
743
744#ifdef CONFIG_FS_VERITY
745 struct fsverity_info *i_verity_info;
746#endif
747
748 void *i_private; /* fs or device private pointer */
749} __randomize_layout;
750
751struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode);
752
753static inline unsigned int i_blocksize(const struct inode *node)
754{
755 return (1 << node->i_blkbits);
756}
757
758static inline int inode_unhashed(struct inode *inode)
759{
760 return hlist_unhashed(&inode->i_hash);
761}
762
763/*
764 * __mark_inode_dirty expects inodes to be hashed. Since we don't
765 * want special inodes in the fileset inode space, we make them
766 * appear hashed, but do not put on any lists. hlist_del()
767 * will work fine and require no locking.
768 */
769static inline void inode_fake_hash(struct inode *inode)
770{
771 hlist_add_fake(&inode->i_hash);
772}
773
774/*
775 * inode->i_mutex nesting subclasses for the lock validator:
776 *
777 * 0: the object of the current VFS operation
778 * 1: parent
779 * 2: child/target
780 * 3: xattr
781 * 4: second non-directory
782 * 5: second parent (when locking independent directories in rename)
783 *
784 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two
785 * non-directories at once.
786 *
787 * The locking order between these classes is
788 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory
789 */
790enum inode_i_mutex_lock_class
791{
792 I_MUTEX_NORMAL,
793 I_MUTEX_PARENT,
794 I_MUTEX_CHILD,
795 I_MUTEX_XATTR,
796 I_MUTEX_NONDIR2,
797 I_MUTEX_PARENT2,
798};
799
800static inline void inode_lock(struct inode *inode)
801{
802 down_write(&inode->i_rwsem);
803}
804
805static inline void inode_unlock(struct inode *inode)
806{
807 up_write(&inode->i_rwsem);
808}
809
810static inline void inode_lock_shared(struct inode *inode)
811{
812 down_read(&inode->i_rwsem);
813}
814
815static inline void inode_unlock_shared(struct inode *inode)
816{
817 up_read(&inode->i_rwsem);
818}
819
820static inline int inode_trylock(struct inode *inode)
821{
822 return down_write_trylock(&inode->i_rwsem);
823}
824
825static inline int inode_trylock_shared(struct inode *inode)
826{
827 return down_read_trylock(&inode->i_rwsem);
828}
829
830static inline int inode_is_locked(struct inode *inode)
831{
832 return rwsem_is_locked(&inode->i_rwsem);
833}
834
835static inline void inode_lock_nested(struct inode *inode, unsigned subclass)
836{
837 down_write_nested(&inode->i_rwsem, subclass);
838}
839
840static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass)
841{
842 down_read_nested(&inode->i_rwsem, subclass);
843}
844
845static inline void filemap_invalidate_lock(struct address_space *mapping)
846{
847 down_write(&mapping->invalidate_lock);
848}
849
850static inline void filemap_invalidate_unlock(struct address_space *mapping)
851{
852 up_write(&mapping->invalidate_lock);
853}
854
855static inline void filemap_invalidate_lock_shared(struct address_space *mapping)
856{
857 down_read(&mapping->invalidate_lock);
858}
859
860static inline int filemap_invalidate_trylock_shared(
861 struct address_space *mapping)
862{
863 return down_read_trylock(&mapping->invalidate_lock);
864}
865
866static inline void filemap_invalidate_unlock_shared(
867 struct address_space *mapping)
868{
869 up_read(&mapping->invalidate_lock);
870}
871
872void lock_two_nondirectories(struct inode *, struct inode*);
873void unlock_two_nondirectories(struct inode *, struct inode*);
874
875void filemap_invalidate_lock_two(struct address_space *mapping1,
876 struct address_space *mapping2);
877void filemap_invalidate_unlock_two(struct address_space *mapping1,
878 struct address_space *mapping2);
879
880
881/*
882 * NOTE: in a 32bit arch with a preemptable kernel and
883 * an UP compile the i_size_read/write must be atomic
884 * with respect to the local cpu (unlike with preempt disabled),
885 * but they don't need to be atomic with respect to other cpus like in
886 * true SMP (so they need either to either locally disable irq around
887 * the read or for example on x86 they can be still implemented as a
888 * cmpxchg8b without the need of the lock prefix). For SMP compiles
889 * and 64bit archs it makes no difference if preempt is enabled or not.
890 */
891static inline loff_t i_size_read(const struct inode *inode)
892{
893#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
894 loff_t i_size;
895 unsigned int seq;
896
897 do {
898 seq = read_seqcount_begin(&inode->i_size_seqcount);
899 i_size = inode->i_size;
900 } while (read_seqcount_retry(&inode->i_size_seqcount, seq));
901 return i_size;
902#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
903 loff_t i_size;
904
905 preempt_disable();
906 i_size = inode->i_size;
907 preempt_enable();
908 return i_size;
909#else
910 return inode->i_size;
911#endif
912}
913
914/*
915 * NOTE: unlike i_size_read(), i_size_write() does need locking around it
916 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount
917 * can be lost, resulting in subsequent i_size_read() calls spinning forever.
918 */
919static inline void i_size_write(struct inode *inode, loff_t i_size)
920{
921#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
922 preempt_disable();
923 write_seqcount_begin(&inode->i_size_seqcount);
924 inode->i_size = i_size;
925 write_seqcount_end(&inode->i_size_seqcount);
926 preempt_enable();
927#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
928 preempt_disable();
929 inode->i_size = i_size;
930 preempt_enable();
931#else
932 inode->i_size = i_size;
933#endif
934}
935
936static inline unsigned iminor(const struct inode *inode)
937{
938 return MINOR(inode->i_rdev);
939}
940
941static inline unsigned imajor(const struct inode *inode)
942{
943 return MAJOR(inode->i_rdev);
944}
945
946struct fown_struct {
947 rwlock_t lock; /* protects pid, uid, euid fields */
948 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */
949 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */
950 kuid_t uid, euid; /* uid/euid of process setting the owner */
951 int signum; /* posix.1b rt signal to be delivered on IO */
952};
953
954/**
955 * struct file_ra_state - Track a file's readahead state.
956 * @start: Where the most recent readahead started.
957 * @size: Number of pages read in the most recent readahead.
958 * @async_size: Numer of pages that were/are not needed immediately
959 * and so were/are genuinely "ahead". Start next readahead when
960 * the first of these pages is accessed.
961 * @ra_pages: Maximum size of a readahead request, copied from the bdi.
962 * @mmap_miss: How many mmap accesses missed in the page cache.
963 * @prev_pos: The last byte in the most recent read request.
964 *
965 * When this structure is passed to ->readahead(), the "most recent"
966 * readahead means the current readahead.
967 */
968struct file_ra_state {
969 pgoff_t start;
970 unsigned int size;
971 unsigned int async_size;
972 unsigned int ra_pages;
973 unsigned int mmap_miss;
974 loff_t prev_pos;
975};
976
977/*
978 * Check if @index falls in the readahead windows.
979 */
980static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index)
981{
982 return (index >= ra->start &&
983 index < ra->start + ra->size);
984}
985
986/*
987 * f_{lock,count,pos_lock} members can be highly contended and share
988 * the same cacheline. f_{lock,mode} are very frequently used together
989 * and so share the same cacheline as well. The read-mostly
990 * f_{path,inode,op} are kept on a separate cacheline.
991 */
992struct file {
993 union {
994 struct llist_node f_llist;
995 struct rcu_head f_rcuhead;
996 unsigned int f_iocb_flags;
997 };
998
999 /*
1000 * Protects f_ep, f_flags.
1001 * Must not be taken from IRQ context.
1002 */
1003 spinlock_t f_lock;
1004 fmode_t f_mode;
1005 atomic_long_t f_count;
1006 struct mutex f_pos_lock;
1007 loff_t f_pos;
1008 unsigned int f_flags;
1009 struct fown_struct f_owner;
1010 const struct cred *f_cred;
1011 struct file_ra_state f_ra;
1012 struct path f_path;
1013 struct inode *f_inode; /* cached value */
1014 const struct file_operations *f_op;
1015
1016 u64 f_version;
1017#ifdef CONFIG_SECURITY
1018 void *f_security;
1019#endif
1020 /* needed for tty driver, and maybe others */
1021 void *private_data;
1022
1023#ifdef CONFIG_EPOLL
1024 /* Used by fs/eventpoll.c to link all the hooks to this file */
1025 struct hlist_head *f_ep;
1026#endif /* #ifdef CONFIG_EPOLL */
1027 struct address_space *f_mapping;
1028 errseq_t f_wb_err;
1029 errseq_t f_sb_err; /* for syncfs */
1030} __randomize_layout
1031 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */
1032
1033struct file_handle {
1034 __u32 handle_bytes;
1035 int handle_type;
1036 /* file identifier */
1037 unsigned char f_handle[];
1038};
1039
1040static inline struct file *get_file(struct file *f)
1041{
1042 atomic_long_inc(&f->f_count);
1043 return f;
1044}
1045#define get_file_rcu(x) atomic_long_inc_not_zero(&(x)->f_count)
1046#define file_count(x) atomic_long_read(&(x)->f_count)
1047
1048#define MAX_NON_LFS ((1UL<<31) - 1)
1049
1050/* Page cache limit. The filesystems should put that into their s_maxbytes
1051 limits, otherwise bad things can happen in VM. */
1052#if BITS_PER_LONG==32
1053#define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT)
1054#elif BITS_PER_LONG==64
1055#define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX)
1056#endif
1057
1058/* legacy typedef, should eventually be removed */
1059typedef void *fl_owner_t;
1060
1061struct file_lock;
1062
1063/* The following constant reflects the upper bound of the file/locking space */
1064#ifndef OFFSET_MAX
1065#define OFFSET_MAX type_max(loff_t)
1066#define OFFT_OFFSET_MAX type_max(off_t)
1067#endif
1068
1069extern void send_sigio(struct fown_struct *fown, int fd, int band);
1070
1071static inline struct inode *file_inode(const struct file *f)
1072{
1073 return f->f_inode;
1074}
1075
1076static inline struct dentry *file_dentry(const struct file *file)
1077{
1078 return d_real(file->f_path.dentry, file_inode(file));
1079}
1080
1081struct fasync_struct {
1082 rwlock_t fa_lock;
1083 int magic;
1084 int fa_fd;
1085 struct fasync_struct *fa_next; /* singly linked list */
1086 struct file *fa_file;
1087 struct rcu_head fa_rcu;
1088};
1089
1090#define FASYNC_MAGIC 0x4601
1091
1092/* SMP safe fasync helpers: */
1093extern int fasync_helper(int, struct file *, int, struct fasync_struct **);
1094extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *);
1095extern int fasync_remove_entry(struct file *, struct fasync_struct **);
1096extern struct fasync_struct *fasync_alloc(void);
1097extern void fasync_free(struct fasync_struct *);
1098
1099/* can be called from interrupts */
1100extern void kill_fasync(struct fasync_struct **, int, int);
1101
1102extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force);
1103extern int f_setown(struct file *filp, int who, int force);
1104extern void f_delown(struct file *filp);
1105extern pid_t f_getown(struct file *filp);
1106extern int send_sigurg(struct fown_struct *fown);
1107
1108/*
1109 * sb->s_flags. Note that these mirror the equivalent MS_* flags where
1110 * represented in both.
1111 */
1112#define SB_RDONLY BIT(0) /* Mount read-only */
1113#define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */
1114#define SB_NODEV BIT(2) /* Disallow access to device special files */
1115#define SB_NOEXEC BIT(3) /* Disallow program execution */
1116#define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */
1117#define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */
1118#define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */
1119#define SB_NOATIME BIT(10) /* Do not update access times. */
1120#define SB_NODIRATIME BIT(11) /* Do not update directory access times */
1121#define SB_SILENT BIT(15)
1122#define SB_POSIXACL BIT(16) /* VFS does not apply the umask */
1123#define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */
1124#define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */
1125#define SB_I_VERSION BIT(23) /* Update inode I_version field */
1126#define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */
1127
1128/* These sb flags are internal to the kernel */
1129#define SB_DEAD BIT(21)
1130#define SB_DYING BIT(24)
1131#define SB_SUBMOUNT BIT(26)
1132#define SB_FORCE BIT(27)
1133#define SB_NOSEC BIT(28)
1134#define SB_BORN BIT(29)
1135#define SB_ACTIVE BIT(30)
1136#define SB_NOUSER BIT(31)
1137
1138/* These flags relate to encoding and casefolding */
1139#define SB_ENC_STRICT_MODE_FL (1 << 0)
1140
1141#define sb_has_strict_encoding(sb) \
1142 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL)
1143
1144/*
1145 * Umount options
1146 */
1147
1148#define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */
1149#define MNT_DETACH 0x00000002 /* Just detach from the tree */
1150#define MNT_EXPIRE 0x00000004 /* Mark for expiry */
1151#define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */
1152#define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */
1153
1154/* sb->s_iflags */
1155#define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */
1156#define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */
1157#define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */
1158#define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */
1159
1160/* sb->s_iflags to limit user namespace mounts */
1161#define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */
1162#define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020
1163#define SB_I_UNTRUSTED_MOUNTER 0x00000040
1164
1165#define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */
1166#define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */
1167#define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */
1168#define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */
1169
1170/* Possible states of 'frozen' field */
1171enum {
1172 SB_UNFROZEN = 0, /* FS is unfrozen */
1173 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */
1174 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */
1175 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop
1176 * internal threads if needed) */
1177 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */
1178};
1179
1180#define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1)
1181
1182struct sb_writers {
1183 unsigned short frozen; /* Is sb frozen? */
1184 unsigned short freeze_holders; /* Who froze fs? */
1185 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS];
1186};
1187
1188struct super_block {
1189 struct list_head s_list; /* Keep this first */
1190 dev_t s_dev; /* search index; _not_ kdev_t */
1191 unsigned char s_blocksize_bits;
1192 unsigned long s_blocksize;
1193 loff_t s_maxbytes; /* Max file size */
1194 struct file_system_type *s_type;
1195 const struct super_operations *s_op;
1196 const struct dquot_operations *dq_op;
1197 const struct quotactl_ops *s_qcop;
1198 const struct export_operations *s_export_op;
1199 unsigned long s_flags;
1200 unsigned long s_iflags; /* internal SB_I_* flags */
1201 unsigned long s_magic;
1202 struct dentry *s_root;
1203 struct rw_semaphore s_umount;
1204 int s_count;
1205 atomic_t s_active;
1206#ifdef CONFIG_SECURITY
1207 void *s_security;
1208#endif
1209 const struct xattr_handler **s_xattr;
1210#ifdef CONFIG_FS_ENCRYPTION
1211 const struct fscrypt_operations *s_cop;
1212 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */
1213#endif
1214#ifdef CONFIG_FS_VERITY
1215 const struct fsverity_operations *s_vop;
1216#endif
1217#if IS_ENABLED(CONFIG_UNICODE)
1218 struct unicode_map *s_encoding;
1219 __u16 s_encoding_flags;
1220#endif
1221 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */
1222 struct list_head s_mounts; /* list of mounts; _not_ for fs use */
1223 struct block_device *s_bdev;
1224 struct backing_dev_info *s_bdi;
1225 struct mtd_info *s_mtd;
1226 struct hlist_node s_instances;
1227 unsigned int s_quota_types; /* Bitmask of supported quota types */
1228 struct quota_info s_dquot; /* Diskquota specific options */
1229
1230 struct sb_writers s_writers;
1231
1232 /*
1233 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and
1234 * s_fsnotify_marks together for cache efficiency. They are frequently
1235 * accessed and rarely modified.
1236 */
1237 void *s_fs_info; /* Filesystem private info */
1238
1239 /* Granularity of c/m/atime in ns (cannot be worse than a second) */
1240 u32 s_time_gran;
1241 /* Time limits for c/m/atime in seconds */
1242 time64_t s_time_min;
1243 time64_t s_time_max;
1244#ifdef CONFIG_FSNOTIFY
1245 __u32 s_fsnotify_mask;
1246 struct fsnotify_mark_connector __rcu *s_fsnotify_marks;
1247#endif
1248
1249 char s_id[32]; /* Informational name */
1250 uuid_t s_uuid; /* UUID */
1251
1252 unsigned int s_max_links;
1253
1254 /*
1255 * The next field is for VFS *only*. No filesystems have any business
1256 * even looking at it. You had been warned.
1257 */
1258 struct mutex s_vfs_rename_mutex; /* Kludge */
1259
1260 /*
1261 * Filesystem subtype. If non-empty the filesystem type field
1262 * in /proc/mounts will be "type.subtype"
1263 */
1264 const char *s_subtype;
1265
1266 const struct dentry_operations *s_d_op; /* default d_op for dentries */
1267
1268 struct shrinker s_shrink; /* per-sb shrinker handle */
1269
1270 /* Number of inodes with nlink == 0 but still referenced */
1271 atomic_long_t s_remove_count;
1272
1273 /*
1274 * Number of inode/mount/sb objects that are being watched, note that
1275 * inodes objects are currently double-accounted.
1276 */
1277 atomic_long_t s_fsnotify_connectors;
1278
1279 /* Read-only state of the superblock is being changed */
1280 int s_readonly_remount;
1281
1282 /* per-sb errseq_t for reporting writeback errors via syncfs */
1283 errseq_t s_wb_err;
1284
1285 /* AIO completions deferred from interrupt context */
1286 struct workqueue_struct *s_dio_done_wq;
1287 struct hlist_head s_pins;
1288
1289 /*
1290 * Owning user namespace and default context in which to
1291 * interpret filesystem uids, gids, quotas, device nodes,
1292 * xattrs and security labels.
1293 */
1294 struct user_namespace *s_user_ns;
1295
1296 /*
1297 * The list_lru structure is essentially just a pointer to a table
1298 * of per-node lru lists, each of which has its own spinlock.
1299 * There is no need to put them into separate cachelines.
1300 */
1301 struct list_lru s_dentry_lru;
1302 struct list_lru s_inode_lru;
1303 struct rcu_head rcu;
1304 struct work_struct destroy_work;
1305
1306 struct mutex s_sync_lock; /* sync serialisation lock */
1307
1308 /*
1309 * Indicates how deep in a filesystem stack this SB is
1310 */
1311 int s_stack_depth;
1312
1313 /* s_inode_list_lock protects s_inodes */
1314 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp;
1315 struct list_head s_inodes; /* all inodes */
1316
1317 spinlock_t s_inode_wblist_lock;
1318 struct list_head s_inodes_wb; /* writeback inodes */
1319} __randomize_layout;
1320
1321static inline struct user_namespace *i_user_ns(const struct inode *inode)
1322{
1323 return inode->i_sb->s_user_ns;
1324}
1325
1326/* Helper functions so that in most cases filesystems will
1327 * not need to deal directly with kuid_t and kgid_t and can
1328 * instead deal with the raw numeric values that are stored
1329 * in the filesystem.
1330 */
1331static inline uid_t i_uid_read(const struct inode *inode)
1332{
1333 return from_kuid(i_user_ns(inode), inode->i_uid);
1334}
1335
1336static inline gid_t i_gid_read(const struct inode *inode)
1337{
1338 return from_kgid(i_user_ns(inode), inode->i_gid);
1339}
1340
1341static inline void i_uid_write(struct inode *inode, uid_t uid)
1342{
1343 inode->i_uid = make_kuid(i_user_ns(inode), uid);
1344}
1345
1346static inline void i_gid_write(struct inode *inode, gid_t gid)
1347{
1348 inode->i_gid = make_kgid(i_user_ns(inode), gid);
1349}
1350
1351/**
1352 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping
1353 * @idmap: idmap of the mount the inode was found from
1354 * @inode: inode to map
1355 *
1356 * Return: whe inode's i_uid mapped down according to @idmap.
1357 * If the inode's i_uid has no mapping INVALID_VFSUID is returned.
1358 */
1359static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap,
1360 const struct inode *inode)
1361{
1362 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid);
1363}
1364
1365/**
1366 * i_uid_needs_update - check whether inode's i_uid needs to be updated
1367 * @idmap: idmap of the mount the inode was found from
1368 * @attr: the new attributes of @inode
1369 * @inode: the inode to update
1370 *
1371 * Check whether the $inode's i_uid field needs to be updated taking idmapped
1372 * mounts into account if the filesystem supports it.
1373 *
1374 * Return: true if @inode's i_uid field needs to be updated, false if not.
1375 */
1376static inline bool i_uid_needs_update(struct mnt_idmap *idmap,
1377 const struct iattr *attr,
1378 const struct inode *inode)
1379{
1380 return ((attr->ia_valid & ATTR_UID) &&
1381 !vfsuid_eq(attr->ia_vfsuid,
1382 i_uid_into_vfsuid(idmap, inode)));
1383}
1384
1385/**
1386 * i_uid_update - update @inode's i_uid field
1387 * @idmap: idmap of the mount the inode was found from
1388 * @attr: the new attributes of @inode
1389 * @inode: the inode to update
1390 *
1391 * Safely update @inode's i_uid field translating the vfsuid of any idmapped
1392 * mount into the filesystem kuid.
1393 */
1394static inline void i_uid_update(struct mnt_idmap *idmap,
1395 const struct iattr *attr,
1396 struct inode *inode)
1397{
1398 if (attr->ia_valid & ATTR_UID)
1399 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode),
1400 attr->ia_vfsuid);
1401}
1402
1403/**
1404 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping
1405 * @idmap: idmap of the mount the inode was found from
1406 * @inode: inode to map
1407 *
1408 * Return: the inode's i_gid mapped down according to @idmap.
1409 * If the inode's i_gid has no mapping INVALID_VFSGID is returned.
1410 */
1411static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap,
1412 const struct inode *inode)
1413{
1414 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid);
1415}
1416
1417/**
1418 * i_gid_needs_update - check whether inode's i_gid needs to be updated
1419 * @idmap: idmap of the mount the inode was found from
1420 * @attr: the new attributes of @inode
1421 * @inode: the inode to update
1422 *
1423 * Check whether the $inode's i_gid field needs to be updated taking idmapped
1424 * mounts into account if the filesystem supports it.
1425 *
1426 * Return: true if @inode's i_gid field needs to be updated, false if not.
1427 */
1428static inline bool i_gid_needs_update(struct mnt_idmap *idmap,
1429 const struct iattr *attr,
1430 const struct inode *inode)
1431{
1432 return ((attr->ia_valid & ATTR_GID) &&
1433 !vfsgid_eq(attr->ia_vfsgid,
1434 i_gid_into_vfsgid(idmap, inode)));
1435}
1436
1437/**
1438 * i_gid_update - update @inode's i_gid field
1439 * @idmap: idmap of the mount the inode was found from
1440 * @attr: the new attributes of @inode
1441 * @inode: the inode to update
1442 *
1443 * Safely update @inode's i_gid field translating the vfsgid of any idmapped
1444 * mount into the filesystem kgid.
1445 */
1446static inline void i_gid_update(struct mnt_idmap *idmap,
1447 const struct iattr *attr,
1448 struct inode *inode)
1449{
1450 if (attr->ia_valid & ATTR_GID)
1451 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode),
1452 attr->ia_vfsgid);
1453}
1454
1455/**
1456 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid
1457 * @inode: inode to initialize
1458 * @idmap: idmap of the mount the inode was found from
1459 *
1460 * Initialize the i_uid field of @inode. If the inode was found/created via
1461 * an idmapped mount map the caller's fsuid according to @idmap.
1462 */
1463static inline void inode_fsuid_set(struct inode *inode,
1464 struct mnt_idmap *idmap)
1465{
1466 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode));
1467}
1468
1469/**
1470 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid
1471 * @inode: inode to initialize
1472 * @idmap: idmap of the mount the inode was found from
1473 *
1474 * Initialize the i_gid field of @inode. If the inode was found/created via
1475 * an idmapped mount map the caller's fsgid according to @idmap.
1476 */
1477static inline void inode_fsgid_set(struct inode *inode,
1478 struct mnt_idmap *idmap)
1479{
1480 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode));
1481}
1482
1483/**
1484 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped
1485 * @sb: the superblock we want a mapping in
1486 * @idmap: idmap of the relevant mount
1487 *
1488 * Check whether the caller's fsuid and fsgid have a valid mapping in the
1489 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map
1490 * the caller's fsuid and fsgid according to the @idmap first.
1491 *
1492 * Return: true if fsuid and fsgid is mapped, false if not.
1493 */
1494static inline bool fsuidgid_has_mapping(struct super_block *sb,
1495 struct mnt_idmap *idmap)
1496{
1497 struct user_namespace *fs_userns = sb->s_user_ns;
1498 kuid_t kuid;
1499 kgid_t kgid;
1500
1501 kuid = mapped_fsuid(idmap, fs_userns);
1502 if (!uid_valid(kuid))
1503 return false;
1504 kgid = mapped_fsgid(idmap, fs_userns);
1505 if (!gid_valid(kgid))
1506 return false;
1507 return kuid_has_mapping(fs_userns, kuid) &&
1508 kgid_has_mapping(fs_userns, kgid);
1509}
1510
1511struct timespec64 current_mgtime(struct inode *inode);
1512struct timespec64 current_time(struct inode *inode);
1513struct timespec64 inode_set_ctime_current(struct inode *inode);
1514
1515/*
1516 * Multigrain timestamps
1517 *
1518 * Conditionally use fine-grained ctime and mtime timestamps when there
1519 * are users actively observing them via getattr. The primary use-case
1520 * for this is NFS clients that use the ctime to distinguish between
1521 * different states of the file, and that are often fooled by multiple
1522 * operations that occur in the same coarse-grained timer tick.
1523 *
1524 * The kernel always keeps normalized struct timespec64 values in the ctime,
1525 * which means that only the first 30 bits of the value are used. Use the
1526 * 31st bit of the ctime's tv_nsec field as a flag to indicate that the value
1527 * has been queried since it was last updated.
1528 */
1529#define I_CTIME_QUERIED (1L<<30)
1530
1531/**
1532 * inode_get_ctime - fetch the current ctime from the inode
1533 * @inode: inode from which to fetch ctime
1534 *
1535 * Grab the current ctime tv_nsec field from the inode, mask off the
1536 * I_CTIME_QUERIED flag and return it. This is mostly intended for use by
1537 * internal consumers of the ctime that aren't concerned with ensuring a
1538 * fine-grained update on the next change (e.g. when preparing to store
1539 * the value in the backing store for later retrieval).
1540 *
1541 * This is safe to call regardless of whether the underlying filesystem
1542 * is using multigrain timestamps.
1543 */
1544static inline struct timespec64 inode_get_ctime(const struct inode *inode)
1545{
1546 struct timespec64 ctime;
1547
1548 ctime.tv_sec = inode->__i_ctime.tv_sec;
1549 ctime.tv_nsec = inode->__i_ctime.tv_nsec & ~I_CTIME_QUERIED;
1550
1551 return ctime;
1552}
1553
1554/**
1555 * inode_set_ctime_to_ts - set the ctime in the inode
1556 * @inode: inode in which to set the ctime
1557 * @ts: value to set in the ctime field
1558 *
1559 * Set the ctime in @inode to @ts
1560 */
1561static inline struct timespec64 inode_set_ctime_to_ts(struct inode *inode,
1562 struct timespec64 ts)
1563{
1564 inode->__i_ctime = ts;
1565 return ts;
1566}
1567
1568/**
1569 * inode_set_ctime - set the ctime in the inode
1570 * @inode: inode in which to set the ctime
1571 * @sec: tv_sec value to set
1572 * @nsec: tv_nsec value to set
1573 *
1574 * Set the ctime in @inode to { @sec, @nsec }
1575 */
1576static inline struct timespec64 inode_set_ctime(struct inode *inode,
1577 time64_t sec, long nsec)
1578{
1579 struct timespec64 ts = { .tv_sec = sec,
1580 .tv_nsec = nsec };
1581
1582 return inode_set_ctime_to_ts(inode, ts);
1583}
1584
1585/*
1586 * Snapshotting support.
1587 */
1588
1589/*
1590 * These are internal functions, please use sb_start_{write,pagefault,intwrite}
1591 * instead.
1592 */
1593static inline void __sb_end_write(struct super_block *sb, int level)
1594{
1595 percpu_up_read(sb->s_writers.rw_sem + level-1);
1596}
1597
1598static inline void __sb_start_write(struct super_block *sb, int level)
1599{
1600 percpu_down_read(sb->s_writers.rw_sem + level - 1);
1601}
1602
1603static inline bool __sb_start_write_trylock(struct super_block *sb, int level)
1604{
1605 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1);
1606}
1607
1608#define __sb_writers_acquired(sb, lev) \
1609 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1610#define __sb_writers_release(sb, lev) \
1611 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_)
1612
1613static inline bool sb_write_started(const struct super_block *sb)
1614{
1615 return lockdep_is_held_type(sb->s_writers.rw_sem + SB_FREEZE_WRITE - 1, 1);
1616}
1617
1618/**
1619 * sb_end_write - drop write access to a superblock
1620 * @sb: the super we wrote to
1621 *
1622 * Decrement number of writers to the filesystem. Wake up possible waiters
1623 * wanting to freeze the filesystem.
1624 */
1625static inline void sb_end_write(struct super_block *sb)
1626{
1627 __sb_end_write(sb, SB_FREEZE_WRITE);
1628}
1629
1630/**
1631 * sb_end_pagefault - drop write access to a superblock from a page fault
1632 * @sb: the super we wrote to
1633 *
1634 * Decrement number of processes handling write page fault to the filesystem.
1635 * Wake up possible waiters wanting to freeze the filesystem.
1636 */
1637static inline void sb_end_pagefault(struct super_block *sb)
1638{
1639 __sb_end_write(sb, SB_FREEZE_PAGEFAULT);
1640}
1641
1642/**
1643 * sb_end_intwrite - drop write access to a superblock for internal fs purposes
1644 * @sb: the super we wrote to
1645 *
1646 * Decrement fs-internal number of writers to the filesystem. Wake up possible
1647 * waiters wanting to freeze the filesystem.
1648 */
1649static inline void sb_end_intwrite(struct super_block *sb)
1650{
1651 __sb_end_write(sb, SB_FREEZE_FS);
1652}
1653
1654/**
1655 * sb_start_write - get write access to a superblock
1656 * @sb: the super we write to
1657 *
1658 * When a process wants to write data or metadata to a file system (i.e. dirty
1659 * a page or an inode), it should embed the operation in a sb_start_write() -
1660 * sb_end_write() pair to get exclusion against file system freezing. This
1661 * function increments number of writers preventing freezing. If the file
1662 * system is already frozen, the function waits until the file system is
1663 * thawed.
1664 *
1665 * Since freeze protection behaves as a lock, users have to preserve
1666 * ordering of freeze protection and other filesystem locks. Generally,
1667 * freeze protection should be the outermost lock. In particular, we have:
1668 *
1669 * sb_start_write
1670 * -> i_mutex (write path, truncate, directory ops, ...)
1671 * -> s_umount (freeze_super, thaw_super)
1672 */
1673static inline void sb_start_write(struct super_block *sb)
1674{
1675 __sb_start_write(sb, SB_FREEZE_WRITE);
1676}
1677
1678static inline bool sb_start_write_trylock(struct super_block *sb)
1679{
1680 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE);
1681}
1682
1683/**
1684 * sb_start_pagefault - get write access to a superblock from a page fault
1685 * @sb: the super we write to
1686 *
1687 * When a process starts handling write page fault, it should embed the
1688 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get
1689 * exclusion against file system freezing. This is needed since the page fault
1690 * is going to dirty a page. This function increments number of running page
1691 * faults preventing freezing. If the file system is already frozen, the
1692 * function waits until the file system is thawed.
1693 *
1694 * Since page fault freeze protection behaves as a lock, users have to preserve
1695 * ordering of freeze protection and other filesystem locks. It is advised to
1696 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault
1697 * handling code implies lock dependency:
1698 *
1699 * mmap_lock
1700 * -> sb_start_pagefault
1701 */
1702static inline void sb_start_pagefault(struct super_block *sb)
1703{
1704 __sb_start_write(sb, SB_FREEZE_PAGEFAULT);
1705}
1706
1707/**
1708 * sb_start_intwrite - get write access to a superblock for internal fs purposes
1709 * @sb: the super we write to
1710 *
1711 * This is the third level of protection against filesystem freezing. It is
1712 * free for use by a filesystem. The only requirement is that it must rank
1713 * below sb_start_pagefault.
1714 *
1715 * For example filesystem can call sb_start_intwrite() when starting a
1716 * transaction which somewhat eases handling of freezing for internal sources
1717 * of filesystem changes (internal fs threads, discarding preallocation on file
1718 * close, etc.).
1719 */
1720static inline void sb_start_intwrite(struct super_block *sb)
1721{
1722 __sb_start_write(sb, SB_FREEZE_FS);
1723}
1724
1725static inline bool sb_start_intwrite_trylock(struct super_block *sb)
1726{
1727 return __sb_start_write_trylock(sb, SB_FREEZE_FS);
1728}
1729
1730bool inode_owner_or_capable(struct mnt_idmap *idmap,
1731 const struct inode *inode);
1732
1733/*
1734 * VFS helper functions..
1735 */
1736int vfs_create(struct mnt_idmap *, struct inode *,
1737 struct dentry *, umode_t, bool);
1738int vfs_mkdir(struct mnt_idmap *, struct inode *,
1739 struct dentry *, umode_t);
1740int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *,
1741 umode_t, dev_t);
1742int vfs_symlink(struct mnt_idmap *, struct inode *,
1743 struct dentry *, const char *);
1744int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *,
1745 struct dentry *, struct inode **);
1746int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *);
1747int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *,
1748 struct inode **);
1749
1750/**
1751 * struct renamedata - contains all information required for renaming
1752 * @old_mnt_idmap: idmap of the old mount the inode was found from
1753 * @old_dir: parent of source
1754 * @old_dentry: source
1755 * @new_mnt_idmap: idmap of the new mount the inode was found from
1756 * @new_dir: parent of destination
1757 * @new_dentry: destination
1758 * @delegated_inode: returns an inode needing a delegation break
1759 * @flags: rename flags
1760 */
1761struct renamedata {
1762 struct mnt_idmap *old_mnt_idmap;
1763 struct inode *old_dir;
1764 struct dentry *old_dentry;
1765 struct mnt_idmap *new_mnt_idmap;
1766 struct inode *new_dir;
1767 struct dentry *new_dentry;
1768 struct inode **delegated_inode;
1769 unsigned int flags;
1770} __randomize_layout;
1771
1772int vfs_rename(struct renamedata *);
1773
1774static inline int vfs_whiteout(struct mnt_idmap *idmap,
1775 struct inode *dir, struct dentry *dentry)
1776{
1777 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE,
1778 WHITEOUT_DEV);
1779}
1780
1781struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
1782 const struct path *parentpath,
1783 umode_t mode, int open_flag,
1784 const struct cred *cred);
1785struct file *kernel_file_open(const struct path *path, int flags,
1786 struct inode *inode, const struct cred *cred);
1787
1788int vfs_mkobj(struct dentry *, umode_t,
1789 int (*f)(struct dentry *, umode_t, void *),
1790 void *);
1791
1792int vfs_fchown(struct file *file, uid_t user, gid_t group);
1793int vfs_fchmod(struct file *file, umode_t mode);
1794int vfs_utimes(const struct path *path, struct timespec64 *times);
1795
1796extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
1797
1798#ifdef CONFIG_COMPAT
1799extern long compat_ptr_ioctl(struct file *file, unsigned int cmd,
1800 unsigned long arg);
1801#else
1802#define compat_ptr_ioctl NULL
1803#endif
1804
1805/*
1806 * VFS file helper functions.
1807 */
1808void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
1809 const struct inode *dir, umode_t mode);
1810extern bool may_open_dev(const struct path *path);
1811umode_t mode_strip_sgid(struct mnt_idmap *idmap,
1812 const struct inode *dir, umode_t mode);
1813
1814/*
1815 * This is the "filldir" function type, used by readdir() to let
1816 * the kernel specify what kind of dirent layout it wants to have.
1817 * This allows the kernel to read directories into kernel space or
1818 * to have different dirent layouts depending on the binary type.
1819 * Return 'true' to keep going and 'false' if there are no more entries.
1820 */
1821struct dir_context;
1822typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64,
1823 unsigned);
1824
1825struct dir_context {
1826 filldir_t actor;
1827 loff_t pos;
1828};
1829
1830/*
1831 * These flags let !MMU mmap() govern direct device mapping vs immediate
1832 * copying more easily for MAP_PRIVATE, especially for ROM filesystems.
1833 *
1834 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE)
1835 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED)
1836 * NOMMU_MAP_READ: Can be mapped for reading
1837 * NOMMU_MAP_WRITE: Can be mapped for writing
1838 * NOMMU_MAP_EXEC: Can be mapped for execution
1839 */
1840#define NOMMU_MAP_COPY 0x00000001
1841#define NOMMU_MAP_DIRECT 0x00000008
1842#define NOMMU_MAP_READ VM_MAYREAD
1843#define NOMMU_MAP_WRITE VM_MAYWRITE
1844#define NOMMU_MAP_EXEC VM_MAYEXEC
1845
1846#define NOMMU_VMFLAGS \
1847 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC)
1848
1849/*
1850 * These flags control the behavior of the remap_file_range function pointer.
1851 * If it is called with len == 0 that means "remap to end of source file".
1852 * See Documentation/filesystems/vfs.rst for more details about this call.
1853 *
1854 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate)
1855 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request
1856 */
1857#define REMAP_FILE_DEDUP (1 << 0)
1858#define REMAP_FILE_CAN_SHORTEN (1 << 1)
1859
1860/*
1861 * These flags signal that the caller is ok with altering various aspects of
1862 * the behavior of the remap operation. The changes must be made by the
1863 * implementation; the vfs remap helper functions can take advantage of them.
1864 * Flags in this category exist to preserve the quirky behavior of the hoisted
1865 * btrfs clone/dedupe ioctls.
1866 */
1867#define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN)
1868
1869/*
1870 * These flags control the behavior of vfs_copy_file_range().
1871 * They are not available to the user via syscall.
1872 *
1873 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops
1874 */
1875#define COPY_FILE_SPLICE (1 << 0)
1876
1877struct iov_iter;
1878struct io_uring_cmd;
1879struct offset_ctx;
1880
1881struct file_operations {
1882 struct module *owner;
1883 loff_t (*llseek) (struct file *, loff_t, int);
1884 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
1885 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
1886 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
1887 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
1888 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *,
1889 unsigned int flags);
1890 int (*iterate_shared) (struct file *, struct dir_context *);
1891 __poll_t (*poll) (struct file *, struct poll_table_struct *);
1892 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
1893 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
1894 int (*mmap) (struct file *, struct vm_area_struct *);
1895 unsigned long mmap_supported_flags;
1896 int (*open) (struct inode *, struct file *);
1897 int (*flush) (struct file *, fl_owner_t id);
1898 int (*release) (struct inode *, struct file *);
1899 int (*fsync) (struct file *, loff_t, loff_t, int datasync);
1900 int (*fasync) (int, struct file *, int);
1901 int (*lock) (struct file *, int, struct file_lock *);
1902 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1903 int (*check_flags)(int);
1904 int (*flock) (struct file *, int, struct file_lock *);
1905 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
1906 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
1907 void (*splice_eof)(struct file *file);
1908 int (*setlease)(struct file *, int, struct file_lock **, void **);
1909 long (*fallocate)(struct file *file, int mode, loff_t offset,
1910 loff_t len);
1911 void (*show_fdinfo)(struct seq_file *m, struct file *f);
1912#ifndef CONFIG_MMU
1913 unsigned (*mmap_capabilities)(struct file *);
1914#endif
1915 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
1916 loff_t, size_t, unsigned int);
1917 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in,
1918 struct file *file_out, loff_t pos_out,
1919 loff_t len, unsigned int remap_flags);
1920 int (*fadvise)(struct file *, loff_t, loff_t, int);
1921 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
1922 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
1923 unsigned int poll_flags);
1924} __randomize_layout;
1925
1926/* Wrap a directory iterator that needs exclusive inode access */
1927int wrap_directory_iterator(struct file *, struct dir_context *,
1928 int (*) (struct file *, struct dir_context *));
1929#define WRAP_DIR_ITER(x) \
1930 static int shared_##x(struct file *file , struct dir_context *ctx) \
1931 { return wrap_directory_iterator(file, ctx, x); }
1932
1933struct inode_operations {
1934 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
1935 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
1936 int (*permission) (struct mnt_idmap *, struct inode *, int);
1937 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool);
1938
1939 int (*readlink) (struct dentry *, char __user *,int);
1940
1941 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *,
1942 umode_t, bool);
1943 int (*link) (struct dentry *,struct inode *,struct dentry *);
1944 int (*unlink) (struct inode *,struct dentry *);
1945 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *,
1946 const char *);
1947 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *,
1948 umode_t);
1949 int (*rmdir) (struct inode *,struct dentry *);
1950 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *,
1951 umode_t,dev_t);
1952 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *,
1953 struct inode *, struct dentry *, unsigned int);
1954 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *);
1955 int (*getattr) (struct mnt_idmap *, const struct path *,
1956 struct kstat *, u32, unsigned int);
1957 ssize_t (*listxattr) (struct dentry *, char *, size_t);
1958 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
1959 u64 len);
1960 int (*update_time)(struct inode *, int);
1961 int (*atomic_open)(struct inode *, struct dentry *,
1962 struct file *, unsigned open_flag,
1963 umode_t create_mode);
1964 int (*tmpfile) (struct mnt_idmap *, struct inode *,
1965 struct file *, umode_t);
1966 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *,
1967 int);
1968 int (*set_acl)(struct mnt_idmap *, struct dentry *,
1969 struct posix_acl *, int);
1970 int (*fileattr_set)(struct mnt_idmap *idmap,
1971 struct dentry *dentry, struct fileattr *fa);
1972 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa);
1973 struct offset_ctx *(*get_offset_ctx)(struct inode *inode);
1974} ____cacheline_aligned;
1975
1976static inline ssize_t call_read_iter(struct file *file, struct kiocb *kio,
1977 struct iov_iter *iter)
1978{
1979 return file->f_op->read_iter(kio, iter);
1980}
1981
1982static inline ssize_t call_write_iter(struct file *file, struct kiocb *kio,
1983 struct iov_iter *iter)
1984{
1985 return file->f_op->write_iter(kio, iter);
1986}
1987
1988static inline int call_mmap(struct file *file, struct vm_area_struct *vma)
1989{
1990 return file->f_op->mmap(file, vma);
1991}
1992
1993extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *);
1994extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *);
1995extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *,
1996 loff_t, size_t, unsigned int);
1997extern ssize_t generic_copy_file_range(struct file *file_in, loff_t pos_in,
1998 struct file *file_out, loff_t pos_out,
1999 size_t len, unsigned int flags);
2000int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2001 struct file *file_out, loff_t pos_out,
2002 loff_t *len, unsigned int remap_flags,
2003 const struct iomap_ops *dax_read_ops);
2004int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2005 struct file *file_out, loff_t pos_out,
2006 loff_t *count, unsigned int remap_flags);
2007extern loff_t do_clone_file_range(struct file *file_in, loff_t pos_in,
2008 struct file *file_out, loff_t pos_out,
2009 loff_t len, unsigned int remap_flags);
2010extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in,
2011 struct file *file_out, loff_t pos_out,
2012 loff_t len, unsigned int remap_flags);
2013extern int vfs_dedupe_file_range(struct file *file,
2014 struct file_dedupe_range *same);
2015extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos,
2016 struct file *dst_file, loff_t dst_pos,
2017 loff_t len, unsigned int remap_flags);
2018
2019enum freeze_holder {
2020 FREEZE_HOLDER_KERNEL = (1U << 0),
2021 FREEZE_HOLDER_USERSPACE = (1U << 1),
2022};
2023
2024struct super_operations {
2025 struct inode *(*alloc_inode)(struct super_block *sb);
2026 void (*destroy_inode)(struct inode *);
2027 void (*free_inode)(struct inode *);
2028
2029 void (*dirty_inode) (struct inode *, int flags);
2030 int (*write_inode) (struct inode *, struct writeback_control *wbc);
2031 int (*drop_inode) (struct inode *);
2032 void (*evict_inode) (struct inode *);
2033 void (*put_super) (struct super_block *);
2034 int (*sync_fs)(struct super_block *sb, int wait);
2035 int (*freeze_super) (struct super_block *, enum freeze_holder who);
2036 int (*freeze_fs) (struct super_block *);
2037 int (*thaw_super) (struct super_block *, enum freeze_holder who);
2038 int (*unfreeze_fs) (struct super_block *);
2039 int (*statfs) (struct dentry *, struct kstatfs *);
2040 int (*remount_fs) (struct super_block *, int *, char *);
2041 void (*umount_begin) (struct super_block *);
2042
2043 int (*show_options)(struct seq_file *, struct dentry *);
2044 int (*show_devname)(struct seq_file *, struct dentry *);
2045 int (*show_path)(struct seq_file *, struct dentry *);
2046 int (*show_stats)(struct seq_file *, struct dentry *);
2047#ifdef CONFIG_QUOTA
2048 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
2049 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
2050 struct dquot **(*get_dquots)(struct inode *);
2051#endif
2052 long (*nr_cached_objects)(struct super_block *,
2053 struct shrink_control *);
2054 long (*free_cached_objects)(struct super_block *,
2055 struct shrink_control *);
2056 void (*shutdown)(struct super_block *sb);
2057};
2058
2059/*
2060 * Inode flags - they have no relation to superblock flags now
2061 */
2062#define S_SYNC (1 << 0) /* Writes are synced at once */
2063#define S_NOATIME (1 << 1) /* Do not update access times */
2064#define S_APPEND (1 << 2) /* Append-only file */
2065#define S_IMMUTABLE (1 << 3) /* Immutable file */
2066#define S_DEAD (1 << 4) /* removed, but still open directory */
2067#define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */
2068#define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */
2069#define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */
2070#define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */
2071#define S_PRIVATE (1 << 9) /* Inode is fs-internal */
2072#define S_IMA (1 << 10) /* Inode has an associated IMA struct */
2073#define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */
2074#define S_NOSEC (1 << 12) /* no suid or xattr security attributes */
2075#ifdef CONFIG_FS_DAX
2076#define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */
2077#else
2078#define S_DAX 0 /* Make all the DAX code disappear */
2079#endif
2080#define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */
2081#define S_CASEFOLD (1 << 15) /* Casefolded file */
2082#define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */
2083#define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */
2084
2085/*
2086 * Note that nosuid etc flags are inode-specific: setting some file-system
2087 * flags just means all the inodes inherit those flags by default. It might be
2088 * possible to override it selectively if you really wanted to with some
2089 * ioctl() that is not currently implemented.
2090 *
2091 * Exception: SB_RDONLY is always applied to the entire file system.
2092 *
2093 * Unfortunately, it is possible to change a filesystems flags with it mounted
2094 * with files in use. This means that all of the inodes will not have their
2095 * i_flags updated. Hence, i_flags no longer inherit the superblock mount
2096 * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org
2097 */
2098#define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg))
2099
2100static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; }
2101#define IS_RDONLY(inode) sb_rdonly((inode)->i_sb)
2102#define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \
2103 ((inode)->i_flags & S_SYNC))
2104#define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \
2105 ((inode)->i_flags & (S_SYNC|S_DIRSYNC)))
2106#define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK)
2107#define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME)
2108#define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION)
2109
2110#define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA)
2111#define IS_APPEND(inode) ((inode)->i_flags & S_APPEND)
2112#define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE)
2113#define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL)
2114
2115#define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD)
2116#define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME)
2117#define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE)
2118#define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE)
2119#define IS_IMA(inode) ((inode)->i_flags & S_IMA)
2120#define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT)
2121#define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC)
2122#define IS_DAX(inode) ((inode)->i_flags & S_DAX)
2123#define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED)
2124#define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD)
2125#define IS_VERITY(inode) ((inode)->i_flags & S_VERITY)
2126
2127#define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \
2128 (inode)->i_rdev == WHITEOUT_DEV)
2129
2130static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap,
2131 struct inode *inode)
2132{
2133 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2134 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode));
2135}
2136
2137static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp)
2138{
2139 *kiocb = (struct kiocb) {
2140 .ki_filp = filp,
2141 .ki_flags = filp->f_iocb_flags,
2142 .ki_ioprio = get_current_ioprio(),
2143 };
2144}
2145
2146static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
2147 struct file *filp)
2148{
2149 *kiocb = (struct kiocb) {
2150 .ki_filp = filp,
2151 .ki_flags = kiocb_src->ki_flags,
2152 .ki_ioprio = kiocb_src->ki_ioprio,
2153 .ki_pos = kiocb_src->ki_pos,
2154 };
2155}
2156
2157/*
2158 * Inode state bits. Protected by inode->i_lock
2159 *
2160 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC,
2161 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME.
2162 *
2163 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW,
2164 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at
2165 * various stages of removing an inode.
2166 *
2167 * Two bits are used for locking and completion notification, I_NEW and I_SYNC.
2168 *
2169 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on
2170 * fdatasync() (unless I_DIRTY_DATASYNC is also set).
2171 * Timestamp updates are the usual cause.
2172 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of
2173 * these changes separately from I_DIRTY_SYNC so that we
2174 * don't have to write inode on fdatasync() when only
2175 * e.g. the timestamps have changed.
2176 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean.
2177 * I_DIRTY_TIME The inode itself has dirty timestamps, and the
2178 * lazytime mount option is enabled. We keep track of this
2179 * separately from I_DIRTY_SYNC in order to implement
2180 * lazytime. This gets cleared if I_DIRTY_INODE
2181 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But
2182 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already
2183 * in place because writeback might already be in progress
2184 * and we don't want to lose the time update
2185 * I_NEW Serves as both a mutex and completion notification.
2186 * New inodes set I_NEW. If two processes both create
2187 * the same inode, one of them will release its inode and
2188 * wait for I_NEW to be released before returning.
2189 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can
2190 * also cause waiting on I_NEW, without I_NEW actually
2191 * being set. find_inode() uses this to prevent returning
2192 * nearly-dead inodes.
2193 * I_WILL_FREE Must be set when calling write_inode_now() if i_count
2194 * is zero. I_FREEING must be set when I_WILL_FREE is
2195 * cleared.
2196 * I_FREEING Set when inode is about to be freed but still has dirty
2197 * pages or buffers attached or the inode itself is still
2198 * dirty.
2199 * I_CLEAR Added by clear_inode(). In this state the inode is
2200 * clean and can be destroyed. Inode keeps I_FREEING.
2201 *
2202 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are
2203 * prohibited for many purposes. iget() must wait for
2204 * the inode to be completely released, then create it
2205 * anew. Other functions will just ignore such inodes,
2206 * if appropriate. I_NEW is used for waiting.
2207 *
2208 * I_SYNC Writeback of inode is running. The bit is set during
2209 * data writeback, and cleared with a wakeup on the bit
2210 * address once it is done. The bit is also used to pin
2211 * the inode in memory for flusher thread.
2212 *
2213 * I_REFERENCED Marks the inode as recently references on the LRU list.
2214 *
2215 * I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit().
2216 *
2217 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to
2218 * synchronize competing switching instances and to tell
2219 * wb stat updates to grab the i_pages lock. See
2220 * inode_switch_wbs_work_fn() for details.
2221 *
2222 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper
2223 * and work dirs among overlayfs mounts.
2224 *
2225 * I_CREATING New object's inode in the middle of setting up.
2226 *
2227 * I_DONTCACHE Evict inode as soon as it is not used anymore.
2228 *
2229 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists.
2230 * Used to detect that mark_inode_dirty() should not move
2231 * inode between dirty lists.
2232 *
2233 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback.
2234 *
2235 * Q: What is the difference between I_WILL_FREE and I_FREEING?
2236 */
2237#define I_DIRTY_SYNC (1 << 0)
2238#define I_DIRTY_DATASYNC (1 << 1)
2239#define I_DIRTY_PAGES (1 << 2)
2240#define __I_NEW 3
2241#define I_NEW (1 << __I_NEW)
2242#define I_WILL_FREE (1 << 4)
2243#define I_FREEING (1 << 5)
2244#define I_CLEAR (1 << 6)
2245#define __I_SYNC 7
2246#define I_SYNC (1 << __I_SYNC)
2247#define I_REFERENCED (1 << 8)
2248#define __I_DIO_WAKEUP 9
2249#define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP)
2250#define I_LINKABLE (1 << 10)
2251#define I_DIRTY_TIME (1 << 11)
2252#define I_WB_SWITCH (1 << 13)
2253#define I_OVL_INUSE (1 << 14)
2254#define I_CREATING (1 << 15)
2255#define I_DONTCACHE (1 << 16)
2256#define I_SYNC_QUEUED (1 << 17)
2257#define I_PINNING_FSCACHE_WB (1 << 18)
2258
2259#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2260#define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)
2261#define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME)
2262
2263extern void __mark_inode_dirty(struct inode *, int);
2264static inline void mark_inode_dirty(struct inode *inode)
2265{
2266 __mark_inode_dirty(inode, I_DIRTY);
2267}
2268
2269static inline void mark_inode_dirty_sync(struct inode *inode)
2270{
2271 __mark_inode_dirty(inode, I_DIRTY_SYNC);
2272}
2273
2274/*
2275 * Returns true if the given inode itself only has dirty timestamps (its pages
2276 * may still be dirty) and isn't currently being allocated or freed.
2277 * Filesystems should call this if when writing an inode when lazytime is
2278 * enabled, they want to opportunistically write the timestamps of other inodes
2279 * located very nearby on-disk, e.g. in the same inode block. This returns true
2280 * if the given inode is in need of such an opportunistic update. Requires
2281 * i_lock, or at least later re-checking under i_lock.
2282 */
2283static inline bool inode_is_dirtytime_only(struct inode *inode)
2284{
2285 return (inode->i_state & (I_DIRTY_TIME | I_NEW |
2286 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME;
2287}
2288
2289extern void inc_nlink(struct inode *inode);
2290extern void drop_nlink(struct inode *inode);
2291extern void clear_nlink(struct inode *inode);
2292extern void set_nlink(struct inode *inode, unsigned int nlink);
2293
2294static inline void inode_inc_link_count(struct inode *inode)
2295{
2296 inc_nlink(inode);
2297 mark_inode_dirty(inode);
2298}
2299
2300static inline void inode_dec_link_count(struct inode *inode)
2301{
2302 drop_nlink(inode);
2303 mark_inode_dirty(inode);
2304}
2305
2306enum file_time_flags {
2307 S_ATIME = 1,
2308 S_MTIME = 2,
2309 S_CTIME = 4,
2310 S_VERSION = 8,
2311};
2312
2313extern bool atime_needs_update(const struct path *, struct inode *);
2314extern void touch_atime(const struct path *);
2315int inode_update_time(struct inode *inode, int flags);
2316
2317static inline void file_accessed(struct file *file)
2318{
2319 if (!(file->f_flags & O_NOATIME))
2320 touch_atime(&file->f_path);
2321}
2322
2323extern int file_modified(struct file *file);
2324int kiocb_modified(struct kiocb *iocb);
2325
2326int sync_inode_metadata(struct inode *inode, int wait);
2327
2328struct file_system_type {
2329 const char *name;
2330 int fs_flags;
2331#define FS_REQUIRES_DEV 1
2332#define FS_BINARY_MOUNTDATA 2
2333#define FS_HAS_SUBTYPE 4
2334#define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */
2335#define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */
2336#define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */
2337#define FS_MGTIME 64 /* FS uses multigrain timestamps */
2338#define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */
2339 int (*init_fs_context)(struct fs_context *);
2340 const struct fs_parameter_spec *parameters;
2341 struct dentry *(*mount) (struct file_system_type *, int,
2342 const char *, void *);
2343 void (*kill_sb) (struct super_block *);
2344 struct module *owner;
2345 struct file_system_type * next;
2346 struct hlist_head fs_supers;
2347
2348 struct lock_class_key s_lock_key;
2349 struct lock_class_key s_umount_key;
2350 struct lock_class_key s_vfs_rename_key;
2351 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS];
2352
2353 struct lock_class_key i_lock_key;
2354 struct lock_class_key i_mutex_key;
2355 struct lock_class_key invalidate_lock_key;
2356 struct lock_class_key i_mutex_dir_key;
2357};
2358
2359#define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME)
2360
2361/**
2362 * is_mgtime: is this inode using multigrain timestamps
2363 * @inode: inode to test for multigrain timestamps
2364 *
2365 * Return true if the inode uses multigrain timestamps, false otherwise.
2366 */
2367static inline bool is_mgtime(const struct inode *inode)
2368{
2369 return inode->i_sb->s_type->fs_flags & FS_MGTIME;
2370}
2371
2372extern struct dentry *mount_bdev(struct file_system_type *fs_type,
2373 int flags, const char *dev_name, void *data,
2374 int (*fill_super)(struct super_block *, void *, int));
2375extern struct dentry *mount_single(struct file_system_type *fs_type,
2376 int flags, void *data,
2377 int (*fill_super)(struct super_block *, void *, int));
2378extern struct dentry *mount_nodev(struct file_system_type *fs_type,
2379 int flags, void *data,
2380 int (*fill_super)(struct super_block *, void *, int));
2381extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path);
2382void retire_super(struct super_block *sb);
2383void generic_shutdown_super(struct super_block *sb);
2384void kill_block_super(struct super_block *sb);
2385void kill_anon_super(struct super_block *sb);
2386void kill_litter_super(struct super_block *sb);
2387void deactivate_super(struct super_block *sb);
2388void deactivate_locked_super(struct super_block *sb);
2389int set_anon_super(struct super_block *s, void *data);
2390int set_anon_super_fc(struct super_block *s, struct fs_context *fc);
2391int get_anon_bdev(dev_t *);
2392void free_anon_bdev(dev_t);
2393struct super_block *sget_fc(struct fs_context *fc,
2394 int (*test)(struct super_block *, struct fs_context *),
2395 int (*set)(struct super_block *, struct fs_context *));
2396struct super_block *sget(struct file_system_type *type,
2397 int (*test)(struct super_block *,void *),
2398 int (*set)(struct super_block *,void *),
2399 int flags, void *data);
2400struct super_block *sget_dev(struct fs_context *fc, dev_t dev);
2401
2402/* Alas, no aliases. Too much hassle with bringing module.h everywhere */
2403#define fops_get(fops) \
2404 (((fops) && try_module_get((fops)->owner) ? (fops) : NULL))
2405#define fops_put(fops) \
2406 do { if (fops) module_put((fops)->owner); } while(0)
2407/*
2408 * This one is to be used *ONLY* from ->open() instances.
2409 * fops must be non-NULL, pinned down *and* module dependencies
2410 * should be sufficient to pin the caller down as well.
2411 */
2412#define replace_fops(f, fops) \
2413 do { \
2414 struct file *__file = (f); \
2415 fops_put(__file->f_op); \
2416 BUG_ON(!(__file->f_op = (fops))); \
2417 } while(0)
2418
2419extern int register_filesystem(struct file_system_type *);
2420extern int unregister_filesystem(struct file_system_type *);
2421extern int vfs_statfs(const struct path *, struct kstatfs *);
2422extern int user_statfs(const char __user *, struct kstatfs *);
2423extern int fd_statfs(int, struct kstatfs *);
2424int freeze_super(struct super_block *super, enum freeze_holder who);
2425int thaw_super(struct super_block *super, enum freeze_holder who);
2426extern __printf(2, 3)
2427int super_setup_bdi_name(struct super_block *sb, char *fmt, ...);
2428extern int super_setup_bdi(struct super_block *sb);
2429
2430extern int current_umask(void);
2431
2432extern void ihold(struct inode * inode);
2433extern void iput(struct inode *);
2434int inode_update_timestamps(struct inode *inode, int flags);
2435int generic_update_time(struct inode *, int);
2436
2437/* /sys/fs */
2438extern struct kobject *fs_kobj;
2439
2440#define MAX_RW_COUNT (INT_MAX & PAGE_MASK)
2441
2442/* fs/open.c */
2443struct audit_names;
2444struct filename {
2445 const char *name; /* pointer to actual string */
2446 const __user char *uptr; /* original userland pointer */
2447 int refcnt;
2448 struct audit_names *aname;
2449 const char iname[];
2450};
2451static_assert(offsetof(struct filename, iname) % sizeof(long) == 0);
2452
2453static inline struct mnt_idmap *file_mnt_idmap(struct file *file)
2454{
2455 return mnt_idmap(file->f_path.mnt);
2456}
2457
2458/**
2459 * is_idmapped_mnt - check whether a mount is mapped
2460 * @mnt: the mount to check
2461 *
2462 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped.
2463 *
2464 * Return: true if mount is mapped, false if not.
2465 */
2466static inline bool is_idmapped_mnt(const struct vfsmount *mnt)
2467{
2468 return mnt_idmap(mnt) != &nop_mnt_idmap;
2469}
2470
2471extern long vfs_truncate(const struct path *, loff_t);
2472int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start,
2473 unsigned int time_attrs, struct file *filp);
2474extern int vfs_fallocate(struct file *file, int mode, loff_t offset,
2475 loff_t len);
2476extern long do_sys_open(int dfd, const char __user *filename, int flags,
2477 umode_t mode);
2478extern struct file *file_open_name(struct filename *, int, umode_t);
2479extern struct file *filp_open(const char *, int, umode_t);
2480extern struct file *file_open_root(const struct path *,
2481 const char *, int, umode_t);
2482static inline struct file *file_open_root_mnt(struct vfsmount *mnt,
2483 const char *name, int flags, umode_t mode)
2484{
2485 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root},
2486 name, flags, mode);
2487}
2488struct file *dentry_open(const struct path *path, int flags,
2489 const struct cred *creds);
2490struct file *dentry_create(const struct path *path, int flags, umode_t mode,
2491 const struct cred *cred);
2492struct file *backing_file_open(const struct path *path, int flags,
2493 const struct path *real_path,
2494 const struct cred *cred);
2495struct path *backing_file_real_path(struct file *f);
2496
2497/*
2498 * file_real_path - get the path corresponding to f_inode
2499 *
2500 * When opening a backing file for a stackable filesystem (e.g.,
2501 * overlayfs) f_path may be on the stackable filesystem and f_inode on
2502 * the underlying filesystem. When the path associated with f_inode is
2503 * needed, this helper should be used instead of accessing f_path
2504 * directly.
2505*/
2506static inline const struct path *file_real_path(struct file *f)
2507{
2508 if (unlikely(f->f_mode & FMODE_BACKING))
2509 return backing_file_real_path(f);
2510 return &f->f_path;
2511}
2512
2513static inline struct file *file_clone_open(struct file *file)
2514{
2515 return dentry_open(&file->f_path, file->f_flags, file->f_cred);
2516}
2517extern int filp_close(struct file *, fl_owner_t id);
2518
2519extern struct filename *getname_flags(const char __user *, int, int *);
2520extern struct filename *getname_uflags(const char __user *, int);
2521extern struct filename *getname(const char __user *);
2522extern struct filename *getname_kernel(const char *);
2523extern void putname(struct filename *name);
2524
2525extern int finish_open(struct file *file, struct dentry *dentry,
2526 int (*open)(struct inode *, struct file *));
2527extern int finish_no_open(struct file *file, struct dentry *dentry);
2528
2529/* Helper for the simple case when original dentry is used */
2530static inline int finish_open_simple(struct file *file, int error)
2531{
2532 if (error)
2533 return error;
2534
2535 return finish_open(file, file->f_path.dentry, NULL);
2536}
2537
2538/* fs/dcache.c */
2539extern void __init vfs_caches_init_early(void);
2540extern void __init vfs_caches_init(void);
2541
2542extern struct kmem_cache *names_cachep;
2543
2544#define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL)
2545#define __putname(name) kmem_cache_free(names_cachep, (void *)(name))
2546
2547extern struct super_block *blockdev_superblock;
2548static inline bool sb_is_blkdev_sb(struct super_block *sb)
2549{
2550 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock;
2551}
2552
2553void emergency_thaw_all(void);
2554extern int sync_filesystem(struct super_block *);
2555extern const struct file_operations def_blk_fops;
2556extern const struct file_operations def_chr_fops;
2557
2558/* fs/char_dev.c */
2559#define CHRDEV_MAJOR_MAX 512
2560/* Marks the bottom of the first segment of free char majors */
2561#define CHRDEV_MAJOR_DYN_END 234
2562/* Marks the top and bottom of the second segment of free char majors */
2563#define CHRDEV_MAJOR_DYN_EXT_START 511
2564#define CHRDEV_MAJOR_DYN_EXT_END 384
2565
2566extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *);
2567extern int register_chrdev_region(dev_t, unsigned, const char *);
2568extern int __register_chrdev(unsigned int major, unsigned int baseminor,
2569 unsigned int count, const char *name,
2570 const struct file_operations *fops);
2571extern void __unregister_chrdev(unsigned int major, unsigned int baseminor,
2572 unsigned int count, const char *name);
2573extern void unregister_chrdev_region(dev_t, unsigned);
2574extern void chrdev_show(struct seq_file *,off_t);
2575
2576static inline int register_chrdev(unsigned int major, const char *name,
2577 const struct file_operations *fops)
2578{
2579 return __register_chrdev(major, 0, 256, name, fops);
2580}
2581
2582static inline void unregister_chrdev(unsigned int major, const char *name)
2583{
2584 __unregister_chrdev(major, 0, 256, name);
2585}
2586
2587extern void init_special_inode(struct inode *, umode_t, dev_t);
2588
2589/* Invalid inode operations -- fs/bad_inode.c */
2590extern void make_bad_inode(struct inode *);
2591extern bool is_bad_inode(struct inode *);
2592
2593extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart,
2594 loff_t lend);
2595extern int __must_check file_check_and_advance_wb_err(struct file *file);
2596extern int __must_check file_write_and_wait_range(struct file *file,
2597 loff_t start, loff_t end);
2598
2599static inline int file_write_and_wait(struct file *file)
2600{
2601 return file_write_and_wait_range(file, 0, LLONG_MAX);
2602}
2603
2604extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end,
2605 int datasync);
2606extern int vfs_fsync(struct file *file, int datasync);
2607
2608extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
2609 unsigned int flags);
2610
2611static inline bool iocb_is_dsync(const struct kiocb *iocb)
2612{
2613 return (iocb->ki_flags & IOCB_DSYNC) ||
2614 IS_SYNC(iocb->ki_filp->f_mapping->host);
2615}
2616
2617/*
2618 * Sync the bytes written if this was a synchronous write. Expect ki_pos
2619 * to already be updated for the write, and will return either the amount
2620 * of bytes passed in, or an error if syncing the file failed.
2621 */
2622static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count)
2623{
2624 if (iocb_is_dsync(iocb)) {
2625 int ret = vfs_fsync_range(iocb->ki_filp,
2626 iocb->ki_pos - count, iocb->ki_pos - 1,
2627 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1);
2628 if (ret)
2629 return ret;
2630 }
2631
2632 return count;
2633}
2634
2635extern void emergency_sync(void);
2636extern void emergency_remount(void);
2637
2638#ifdef CONFIG_BLOCK
2639extern int bmap(struct inode *inode, sector_t *block);
2640#else
2641static inline int bmap(struct inode *inode, sector_t *block)
2642{
2643 return -EINVAL;
2644}
2645#endif
2646
2647int notify_change(struct mnt_idmap *, struct dentry *,
2648 struct iattr *, struct inode **);
2649int inode_permission(struct mnt_idmap *, struct inode *, int);
2650int generic_permission(struct mnt_idmap *, struct inode *, int);
2651static inline int file_permission(struct file *file, int mask)
2652{
2653 return inode_permission(file_mnt_idmap(file),
2654 file_inode(file), mask);
2655}
2656static inline int path_permission(const struct path *path, int mask)
2657{
2658 return inode_permission(mnt_idmap(path->mnt),
2659 d_inode(path->dentry), mask);
2660}
2661int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2662 struct inode *inode);
2663
2664static inline bool execute_ok(struct inode *inode)
2665{
2666 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode);
2667}
2668
2669static inline bool inode_wrong_type(const struct inode *inode, umode_t mode)
2670{
2671 return (inode->i_mode ^ mode) & S_IFMT;
2672}
2673
2674/**
2675 * file_start_write - get write access to a superblock for regular file io
2676 * @file: the file we want to write to
2677 *
2678 * This is a variant of sb_start_write() which is a noop on non-regualr file.
2679 * Should be matched with a call to file_end_write().
2680 */
2681static inline void file_start_write(struct file *file)
2682{
2683 if (!S_ISREG(file_inode(file)->i_mode))
2684 return;
2685 sb_start_write(file_inode(file)->i_sb);
2686}
2687
2688static inline bool file_start_write_trylock(struct file *file)
2689{
2690 if (!S_ISREG(file_inode(file)->i_mode))
2691 return true;
2692 return sb_start_write_trylock(file_inode(file)->i_sb);
2693}
2694
2695/**
2696 * file_end_write - drop write access to a superblock of a regular file
2697 * @file: the file we wrote to
2698 *
2699 * Should be matched with a call to file_start_write().
2700 */
2701static inline void file_end_write(struct file *file)
2702{
2703 if (!S_ISREG(file_inode(file)->i_mode))
2704 return;
2705 sb_end_write(file_inode(file)->i_sb);
2706}
2707
2708/**
2709 * kiocb_start_write - get write access to a superblock for async file io
2710 * @iocb: the io context we want to submit the write with
2711 *
2712 * This is a variant of sb_start_write() for async io submission.
2713 * Should be matched with a call to kiocb_end_write().
2714 */
2715static inline void kiocb_start_write(struct kiocb *iocb)
2716{
2717 struct inode *inode = file_inode(iocb->ki_filp);
2718
2719 sb_start_write(inode->i_sb);
2720 /*
2721 * Fool lockdep by telling it the lock got released so that it
2722 * doesn't complain about the held lock when we return to userspace.
2723 */
2724 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
2725}
2726
2727/**
2728 * kiocb_end_write - drop write access to a superblock after async file io
2729 * @iocb: the io context we sumbitted the write with
2730 *
2731 * Should be matched with a call to kiocb_start_write().
2732 */
2733static inline void kiocb_end_write(struct kiocb *iocb)
2734{
2735 struct inode *inode = file_inode(iocb->ki_filp);
2736
2737 /*
2738 * Tell lockdep we inherited freeze protection from submission thread.
2739 */
2740 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2741 sb_end_write(inode->i_sb);
2742}
2743
2744/*
2745 * This is used for regular files where some users -- especially the
2746 * currently executed binary in a process, previously handled via
2747 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap
2748 * read-write shared) accesses.
2749 *
2750 * get_write_access() gets write permission for a file.
2751 * put_write_access() releases this write permission.
2752 * deny_write_access() denies write access to a file.
2753 * allow_write_access() re-enables write access to a file.
2754 *
2755 * The i_writecount field of an inode can have the following values:
2756 * 0: no write access, no denied write access
2757 * < 0: (-i_writecount) users that denied write access to the file.
2758 * > 0: (i_writecount) users that have write access to the file.
2759 *
2760 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
2761 * except for the cases where we don't hold i_writecount yet. Then we need to
2762 * use {get,deny}_write_access() - these functions check the sign and refuse
2763 * to do the change if sign is wrong.
2764 */
2765static inline int get_write_access(struct inode *inode)
2766{
2767 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY;
2768}
2769static inline int deny_write_access(struct file *file)
2770{
2771 struct inode *inode = file_inode(file);
2772 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY;
2773}
2774static inline void put_write_access(struct inode * inode)
2775{
2776 atomic_dec(&inode->i_writecount);
2777}
2778static inline void allow_write_access(struct file *file)
2779{
2780 if (file)
2781 atomic_inc(&file_inode(file)->i_writecount);
2782}
2783static inline bool inode_is_open_for_write(const struct inode *inode)
2784{
2785 return atomic_read(&inode->i_writecount) > 0;
2786}
2787
2788#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING)
2789static inline void i_readcount_dec(struct inode *inode)
2790{
2791 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0);
2792}
2793static inline void i_readcount_inc(struct inode *inode)
2794{
2795 atomic_inc(&inode->i_readcount);
2796}
2797#else
2798static inline void i_readcount_dec(struct inode *inode)
2799{
2800 return;
2801}
2802static inline void i_readcount_inc(struct inode *inode)
2803{
2804 return;
2805}
2806#endif
2807extern int do_pipe_flags(int *, int);
2808
2809extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *);
2810ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos);
2811extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *);
2812extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *);
2813extern struct file * open_exec(const char *);
2814
2815/* fs/dcache.c -- generic fs support functions */
2816extern bool is_subdir(struct dentry *, struct dentry *);
2817extern bool path_is_under(const struct path *, const struct path *);
2818
2819extern char *file_path(struct file *, char *, int);
2820
2821#include <linux/err.h>
2822
2823/* needed for stackable file system support */
2824extern loff_t default_llseek(struct file *file, loff_t offset, int whence);
2825
2826extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence);
2827
2828extern int inode_init_always(struct super_block *, struct inode *);
2829extern void inode_init_once(struct inode *);
2830extern void address_space_init_once(struct address_space *mapping);
2831extern struct inode * igrab(struct inode *);
2832extern ino_t iunique(struct super_block *, ino_t);
2833extern int inode_needs_sync(struct inode *inode);
2834extern int generic_delete_inode(struct inode *inode);
2835static inline int generic_drop_inode(struct inode *inode)
2836{
2837 return !inode->i_nlink || inode_unhashed(inode);
2838}
2839extern void d_mark_dontcache(struct inode *inode);
2840
2841extern struct inode *ilookup5_nowait(struct super_block *sb,
2842 unsigned long hashval, int (*test)(struct inode *, void *),
2843 void *data);
2844extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
2845 int (*test)(struct inode *, void *), void *data);
2846extern struct inode *ilookup(struct super_block *sb, unsigned long ino);
2847
2848extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
2849 int (*test)(struct inode *, void *),
2850 int (*set)(struct inode *, void *),
2851 void *data);
2852extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *);
2853extern struct inode * iget_locked(struct super_block *, unsigned long);
2854extern struct inode *find_inode_nowait(struct super_block *,
2855 unsigned long,
2856 int (*match)(struct inode *,
2857 unsigned long, void *),
2858 void *data);
2859extern struct inode *find_inode_rcu(struct super_block *, unsigned long,
2860 int (*)(struct inode *, void *), void *);
2861extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long);
2862extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *);
2863extern int insert_inode_locked(struct inode *);
2864#ifdef CONFIG_DEBUG_LOCK_ALLOC
2865extern void lockdep_annotate_inode_mutex_key(struct inode *inode);
2866#else
2867static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { };
2868#endif
2869extern void unlock_new_inode(struct inode *);
2870extern void discard_new_inode(struct inode *);
2871extern unsigned int get_next_ino(void);
2872extern void evict_inodes(struct super_block *sb);
2873void dump_mapping(const struct address_space *);
2874
2875/*
2876 * Userspace may rely on the inode number being non-zero. For example, glibc
2877 * simply ignores files with zero i_ino in unlink() and other places.
2878 *
2879 * As an additional complication, if userspace was compiled with
2880 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the
2881 * lower 32 bits, so we need to check that those aren't zero explicitly. With
2882 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but
2883 * better safe than sorry.
2884 */
2885static inline bool is_zero_ino(ino_t ino)
2886{
2887 return (u32)ino == 0;
2888}
2889
2890extern void __iget(struct inode * inode);
2891extern void iget_failed(struct inode *);
2892extern void clear_inode(struct inode *);
2893extern void __destroy_inode(struct inode *);
2894extern struct inode *new_inode_pseudo(struct super_block *sb);
2895extern struct inode *new_inode(struct super_block *sb);
2896extern void free_inode_nonrcu(struct inode *inode);
2897extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *);
2898extern int file_remove_privs(struct file *);
2899int setattr_should_drop_sgid(struct mnt_idmap *idmap,
2900 const struct inode *inode);
2901
2902/*
2903 * This must be used for allocating filesystems specific inodes to set
2904 * up the inode reclaim context correctly.
2905 */
2906static inline void *
2907alloc_inode_sb(struct super_block *sb, struct kmem_cache *cache, gfp_t gfp)
2908{
2909 return kmem_cache_alloc_lru(cache, &sb->s_inode_lru, gfp);
2910}
2911
2912extern void __insert_inode_hash(struct inode *, unsigned long hashval);
2913static inline void insert_inode_hash(struct inode *inode)
2914{
2915 __insert_inode_hash(inode, inode->i_ino);
2916}
2917
2918extern void __remove_inode_hash(struct inode *);
2919static inline void remove_inode_hash(struct inode *inode)
2920{
2921 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash))
2922 __remove_inode_hash(inode);
2923}
2924
2925extern void inode_sb_list_add(struct inode *inode);
2926extern void inode_add_lru(struct inode *inode);
2927
2928extern int sb_set_blocksize(struct super_block *, int);
2929extern int sb_min_blocksize(struct super_block *, int);
2930
2931extern int generic_file_mmap(struct file *, struct vm_area_struct *);
2932extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *);
2933extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *);
2934int generic_write_checks_count(struct kiocb *iocb, loff_t *count);
2935extern int generic_write_check_limits(struct file *file, loff_t pos,
2936 loff_t *count);
2937extern int generic_file_rw_checks(struct file *file_in, struct file *file_out);
2938ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to,
2939 ssize_t already_read);
2940extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *);
2941extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *);
2942extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *);
2943extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *);
2944ssize_t generic_perform_write(struct kiocb *, struct iov_iter *);
2945ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2946 ssize_t direct_written, ssize_t buffered_written);
2947
2948ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos,
2949 rwf_t flags);
2950ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos,
2951 rwf_t flags);
2952ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb,
2953 struct iov_iter *iter);
2954ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb,
2955 struct iov_iter *iter);
2956
2957/* fs/splice.c */
2958ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2959 struct pipe_inode_info *pipe,
2960 size_t len, unsigned int flags);
2961ssize_t copy_splice_read(struct file *in, loff_t *ppos,
2962 struct pipe_inode_info *pipe,
2963 size_t len, unsigned int flags);
2964extern ssize_t iter_file_splice_write(struct pipe_inode_info *,
2965 struct file *, loff_t *, size_t, unsigned int);
2966extern long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
2967 loff_t *opos, size_t len, unsigned int flags);
2968
2969
2970extern void
2971file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping);
2972extern loff_t noop_llseek(struct file *file, loff_t offset, int whence);
2973#define no_llseek NULL
2974extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize);
2975extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence);
2976extern loff_t generic_file_llseek_size(struct file *file, loff_t offset,
2977 int whence, loff_t maxsize, loff_t eof);
2978extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
2979 int whence, loff_t size);
2980extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t);
2981extern loff_t no_seek_end_llseek(struct file *, loff_t, int);
2982int rw_verify_area(int, struct file *, const loff_t *, size_t);
2983extern int generic_file_open(struct inode * inode, struct file * filp);
2984extern int nonseekable_open(struct inode * inode, struct file * filp);
2985extern int stream_open(struct inode * inode, struct file * filp);
2986
2987#ifdef CONFIG_BLOCK
2988typedef void (dio_submit_t)(struct bio *bio, struct inode *inode,
2989 loff_t file_offset);
2990
2991enum {
2992 /* need locking between buffered and direct access */
2993 DIO_LOCKING = 0x01,
2994
2995 /* filesystem does not support filling holes */
2996 DIO_SKIP_HOLES = 0x02,
2997};
2998
2999ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
3000 struct block_device *bdev, struct iov_iter *iter,
3001 get_block_t get_block,
3002 dio_iodone_t end_io,
3003 int flags);
3004
3005static inline ssize_t blockdev_direct_IO(struct kiocb *iocb,
3006 struct inode *inode,
3007 struct iov_iter *iter,
3008 get_block_t get_block)
3009{
3010 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3011 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES);
3012}
3013#endif
3014
3015void inode_dio_wait(struct inode *inode);
3016
3017/**
3018 * inode_dio_begin - signal start of a direct I/O requests
3019 * @inode: inode the direct I/O happens on
3020 *
3021 * This is called once we've finished processing a direct I/O request,
3022 * and is used to wake up callers waiting for direct I/O to be quiesced.
3023 */
3024static inline void inode_dio_begin(struct inode *inode)
3025{
3026 atomic_inc(&inode->i_dio_count);
3027}
3028
3029/**
3030 * inode_dio_end - signal finish of a direct I/O requests
3031 * @inode: inode the direct I/O happens on
3032 *
3033 * This is called once we've finished processing a direct I/O request,
3034 * and is used to wake up callers waiting for direct I/O to be quiesced.
3035 */
3036static inline void inode_dio_end(struct inode *inode)
3037{
3038 if (atomic_dec_and_test(&inode->i_dio_count))
3039 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
3040}
3041
3042extern void inode_set_flags(struct inode *inode, unsigned int flags,
3043 unsigned int mask);
3044
3045extern const struct file_operations generic_ro_fops;
3046
3047#define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m))
3048
3049extern int readlink_copy(char __user *, int, const char *);
3050extern int page_readlink(struct dentry *, char __user *, int);
3051extern const char *page_get_link(struct dentry *, struct inode *,
3052 struct delayed_call *);
3053extern void page_put_link(void *);
3054extern int page_symlink(struct inode *inode, const char *symname, int len);
3055extern const struct inode_operations page_symlink_inode_operations;
3056extern void kfree_link(void *);
3057void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode);
3058void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *);
3059void generic_fill_statx_attr(struct inode *inode, struct kstat *stat);
3060extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int);
3061extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int);
3062void __inode_add_bytes(struct inode *inode, loff_t bytes);
3063void inode_add_bytes(struct inode *inode, loff_t bytes);
3064void __inode_sub_bytes(struct inode *inode, loff_t bytes);
3065void inode_sub_bytes(struct inode *inode, loff_t bytes);
3066static inline loff_t __inode_get_bytes(struct inode *inode)
3067{
3068 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes;
3069}
3070loff_t inode_get_bytes(struct inode *inode);
3071void inode_set_bytes(struct inode *inode, loff_t bytes);
3072const char *simple_get_link(struct dentry *, struct inode *,
3073 struct delayed_call *);
3074extern const struct inode_operations simple_symlink_inode_operations;
3075
3076extern int iterate_dir(struct file *, struct dir_context *);
3077
3078int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat,
3079 int flags);
3080int vfs_fstat(int fd, struct kstat *stat);
3081
3082static inline int vfs_stat(const char __user *filename, struct kstat *stat)
3083{
3084 return vfs_fstatat(AT_FDCWD, filename, stat, 0);
3085}
3086static inline int vfs_lstat(const char __user *name, struct kstat *stat)
3087{
3088 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW);
3089}
3090
3091extern const char *vfs_get_link(struct dentry *, struct delayed_call *);
3092extern int vfs_readlink(struct dentry *, char __user *, int);
3093
3094extern struct file_system_type *get_filesystem(struct file_system_type *fs);
3095extern void put_filesystem(struct file_system_type *fs);
3096extern struct file_system_type *get_fs_type(const char *name);
3097extern struct super_block *get_active_super(struct block_device *bdev);
3098extern void drop_super(struct super_block *sb);
3099extern void drop_super_exclusive(struct super_block *sb);
3100extern void iterate_supers(void (*)(struct super_block *, void *), void *);
3101extern void iterate_supers_type(struct file_system_type *,
3102 void (*)(struct super_block *, void *), void *);
3103
3104extern int dcache_dir_open(struct inode *, struct file *);
3105extern int dcache_dir_close(struct inode *, struct file *);
3106extern loff_t dcache_dir_lseek(struct file *, loff_t, int);
3107extern int dcache_readdir(struct file *, struct dir_context *);
3108extern int simple_setattr(struct mnt_idmap *, struct dentry *,
3109 struct iattr *);
3110extern int simple_getattr(struct mnt_idmap *, const struct path *,
3111 struct kstat *, u32, unsigned int);
3112extern int simple_statfs(struct dentry *, struct kstatfs *);
3113extern int simple_open(struct inode *inode, struct file *file);
3114extern int simple_link(struct dentry *, struct inode *, struct dentry *);
3115extern int simple_unlink(struct inode *, struct dentry *);
3116extern int simple_rmdir(struct inode *, struct dentry *);
3117void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
3118 struct inode *new_dir, struct dentry *new_dentry);
3119extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
3120 struct inode *new_dir, struct dentry *new_dentry);
3121extern int simple_rename(struct mnt_idmap *, struct inode *,
3122 struct dentry *, struct inode *, struct dentry *,
3123 unsigned int);
3124extern void simple_recursive_removal(struct dentry *,
3125 void (*callback)(struct dentry *));
3126extern int noop_fsync(struct file *, loff_t, loff_t, int);
3127extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
3128extern int simple_empty(struct dentry *);
3129extern int simple_write_begin(struct file *file, struct address_space *mapping,
3130 loff_t pos, unsigned len,
3131 struct page **pagep, void **fsdata);
3132extern const struct address_space_operations ram_aops;
3133extern int always_delete_dentry(const struct dentry *);
3134extern struct inode *alloc_anon_inode(struct super_block *);
3135extern int simple_nosetlease(struct file *, int, struct file_lock **, void **);
3136extern const struct dentry_operations simple_dentry_operations;
3137
3138extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags);
3139extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *);
3140extern const struct file_operations simple_dir_operations;
3141extern const struct inode_operations simple_dir_inode_operations;
3142extern void make_empty_dir_inode(struct inode *inode);
3143extern bool is_empty_dir_inode(struct inode *inode);
3144struct tree_descr { const char *name; const struct file_operations *ops; int mode; };
3145struct dentry *d_alloc_name(struct dentry *, const char *);
3146extern int simple_fill_super(struct super_block *, unsigned long,
3147 const struct tree_descr *);
3148extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count);
3149extern void simple_release_fs(struct vfsmount **mount, int *count);
3150
3151extern ssize_t simple_read_from_buffer(void __user *to, size_t count,
3152 loff_t *ppos, const void *from, size_t available);
3153extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
3154 const void __user *from, size_t count);
3155
3156struct offset_ctx {
3157 struct xarray xa;
3158 u32 next_offset;
3159};
3160
3161void simple_offset_init(struct offset_ctx *octx);
3162int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry);
3163void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry);
3164int simple_offset_rename_exchange(struct inode *old_dir,
3165 struct dentry *old_dentry,
3166 struct inode *new_dir,
3167 struct dentry *new_dentry);
3168void simple_offset_destroy(struct offset_ctx *octx);
3169
3170extern const struct file_operations simple_offset_dir_operations;
3171
3172extern int __generic_file_fsync(struct file *, loff_t, loff_t, int);
3173extern int generic_file_fsync(struct file *, loff_t, loff_t, int);
3174
3175extern int generic_check_addressable(unsigned, u64);
3176
3177extern void generic_set_encrypted_ci_d_ops(struct dentry *dentry);
3178
3179int may_setattr(struct mnt_idmap *idmap, struct inode *inode,
3180 unsigned int ia_valid);
3181int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *);
3182extern int inode_newsize_ok(const struct inode *, loff_t offset);
3183void setattr_copy(struct mnt_idmap *, struct inode *inode,
3184 const struct iattr *attr);
3185
3186extern int file_update_time(struct file *file);
3187
3188static inline bool vma_is_dax(const struct vm_area_struct *vma)
3189{
3190 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host);
3191}
3192
3193static inline bool vma_is_fsdax(struct vm_area_struct *vma)
3194{
3195 struct inode *inode;
3196
3197 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file)
3198 return false;
3199 if (!vma_is_dax(vma))
3200 return false;
3201 inode = file_inode(vma->vm_file);
3202 if (S_ISCHR(inode->i_mode))
3203 return false; /* device-dax */
3204 return true;
3205}
3206
3207static inline int iocb_flags(struct file *file)
3208{
3209 int res = 0;
3210 if (file->f_flags & O_APPEND)
3211 res |= IOCB_APPEND;
3212 if (file->f_flags & O_DIRECT)
3213 res |= IOCB_DIRECT;
3214 if (file->f_flags & O_DSYNC)
3215 res |= IOCB_DSYNC;
3216 if (file->f_flags & __O_SYNC)
3217 res |= IOCB_SYNC;
3218 return res;
3219}
3220
3221static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags)
3222{
3223 int kiocb_flags = 0;
3224
3225 /* make sure there's no overlap between RWF and private IOCB flags */
3226 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD);
3227
3228 if (!flags)
3229 return 0;
3230 if (unlikely(flags & ~RWF_SUPPORTED))
3231 return -EOPNOTSUPP;
3232
3233 if (flags & RWF_NOWAIT) {
3234 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT))
3235 return -EOPNOTSUPP;
3236 kiocb_flags |= IOCB_NOIO;
3237 }
3238 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED);
3239 if (flags & RWF_SYNC)
3240 kiocb_flags |= IOCB_DSYNC;
3241
3242 ki->ki_flags |= kiocb_flags;
3243 return 0;
3244}
3245
3246static inline ino_t parent_ino(struct dentry *dentry)
3247{
3248 ino_t res;
3249
3250 /*
3251 * Don't strictly need d_lock here? If the parent ino could change
3252 * then surely we'd have a deeper race in the caller?
3253 */
3254 spin_lock(&dentry->d_lock);
3255 res = dentry->d_parent->d_inode->i_ino;
3256 spin_unlock(&dentry->d_lock);
3257 return res;
3258}
3259
3260/* Transaction based IO helpers */
3261
3262/*
3263 * An argresp is stored in an allocated page and holds the
3264 * size of the argument or response, along with its content
3265 */
3266struct simple_transaction_argresp {
3267 ssize_t size;
3268 char data[];
3269};
3270
3271#define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp))
3272
3273char *simple_transaction_get(struct file *file, const char __user *buf,
3274 size_t size);
3275ssize_t simple_transaction_read(struct file *file, char __user *buf,
3276 size_t size, loff_t *pos);
3277int simple_transaction_release(struct inode *inode, struct file *file);
3278
3279void simple_transaction_set(struct file *file, size_t n);
3280
3281/*
3282 * simple attribute files
3283 *
3284 * These attributes behave similar to those in sysfs:
3285 *
3286 * Writing to an attribute immediately sets a value, an open file can be
3287 * written to multiple times.
3288 *
3289 * Reading from an attribute creates a buffer from the value that might get
3290 * read with multiple read calls. When the attribute has been read
3291 * completely, no further read calls are possible until the file is opened
3292 * again.
3293 *
3294 * All attributes contain a text representation of a numeric value
3295 * that are accessed with the get() and set() functions.
3296 */
3297#define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \
3298static int __fops ## _open(struct inode *inode, struct file *file) \
3299{ \
3300 __simple_attr_check_format(__fmt, 0ull); \
3301 return simple_attr_open(inode, file, __get, __set, __fmt); \
3302} \
3303static const struct file_operations __fops = { \
3304 .owner = THIS_MODULE, \
3305 .open = __fops ## _open, \
3306 .release = simple_attr_release, \
3307 .read = simple_attr_read, \
3308 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \
3309 .llseek = generic_file_llseek, \
3310}
3311
3312#define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
3313 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false)
3314
3315#define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \
3316 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true)
3317
3318static inline __printf(1, 2)
3319void __simple_attr_check_format(const char *fmt, ...)
3320{
3321 /* don't do anything, just let the compiler check the arguments; */
3322}
3323
3324int simple_attr_open(struct inode *inode, struct file *file,
3325 int (*get)(void *, u64 *), int (*set)(void *, u64),
3326 const char *fmt);
3327int simple_attr_release(struct inode *inode, struct file *file);
3328ssize_t simple_attr_read(struct file *file, char __user *buf,
3329 size_t len, loff_t *ppos);
3330ssize_t simple_attr_write(struct file *file, const char __user *buf,
3331 size_t len, loff_t *ppos);
3332ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
3333 size_t len, loff_t *ppos);
3334
3335struct ctl_table;
3336int __init list_bdev_fs_names(char *buf, size_t size);
3337
3338#define __FMODE_EXEC ((__force int) FMODE_EXEC)
3339#define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY)
3340
3341#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
3342#define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \
3343 (flag & __FMODE_NONOTIFY)))
3344
3345static inline bool is_sxid(umode_t mode)
3346{
3347 return mode & (S_ISUID | S_ISGID);
3348}
3349
3350static inline int check_sticky(struct mnt_idmap *idmap,
3351 struct inode *dir, struct inode *inode)
3352{
3353 if (!(dir->i_mode & S_ISVTX))
3354 return 0;
3355
3356 return __check_sticky(idmap, dir, inode);
3357}
3358
3359static inline void inode_has_no_xattr(struct inode *inode)
3360{
3361 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC))
3362 inode->i_flags |= S_NOSEC;
3363}
3364
3365static inline bool is_root_inode(struct inode *inode)
3366{
3367 return inode == inode->i_sb->s_root->d_inode;
3368}
3369
3370static inline bool dir_emit(struct dir_context *ctx,
3371 const char *name, int namelen,
3372 u64 ino, unsigned type)
3373{
3374 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type);
3375}
3376static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx)
3377{
3378 return ctx->actor(ctx, ".", 1, ctx->pos,
3379 file->f_path.dentry->d_inode->i_ino, DT_DIR);
3380}
3381static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx)
3382{
3383 return ctx->actor(ctx, "..", 2, ctx->pos,
3384 parent_ino(file->f_path.dentry), DT_DIR);
3385}
3386static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx)
3387{
3388 if (ctx->pos == 0) {
3389 if (!dir_emit_dot(file, ctx))
3390 return false;
3391 ctx->pos = 1;
3392 }
3393 if (ctx->pos == 1) {
3394 if (!dir_emit_dotdot(file, ctx))
3395 return false;
3396 ctx->pos = 2;
3397 }
3398 return true;
3399}
3400static inline bool dir_relax(struct inode *inode)
3401{
3402 inode_unlock(inode);
3403 inode_lock(inode);
3404 return !IS_DEADDIR(inode);
3405}
3406
3407static inline bool dir_relax_shared(struct inode *inode)
3408{
3409 inode_unlock_shared(inode);
3410 inode_lock_shared(inode);
3411 return !IS_DEADDIR(inode);
3412}
3413
3414extern bool path_noexec(const struct path *path);
3415extern void inode_nohighmem(struct inode *inode);
3416
3417/* mm/fadvise.c */
3418extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len,
3419 int advice);
3420extern int generic_fadvise(struct file *file, loff_t offset, loff_t len,
3421 int advice);
3422
3423#endif /* _LINUX_FS_H */