at v6.6-rc2 116 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_FS_H 3#define _LINUX_FS_H 4 5#include <linux/linkage.h> 6#include <linux/wait_bit.h> 7#include <linux/kdev_t.h> 8#include <linux/dcache.h> 9#include <linux/path.h> 10#include <linux/stat.h> 11#include <linux/cache.h> 12#include <linux/list.h> 13#include <linux/list_lru.h> 14#include <linux/llist.h> 15#include <linux/radix-tree.h> 16#include <linux/xarray.h> 17#include <linux/rbtree.h> 18#include <linux/init.h> 19#include <linux/pid.h> 20#include <linux/bug.h> 21#include <linux/mutex.h> 22#include <linux/rwsem.h> 23#include <linux/mm_types.h> 24#include <linux/capability.h> 25#include <linux/semaphore.h> 26#include <linux/fcntl.h> 27#include <linux/rculist_bl.h> 28#include <linux/atomic.h> 29#include <linux/shrinker.h> 30#include <linux/migrate_mode.h> 31#include <linux/uidgid.h> 32#include <linux/lockdep.h> 33#include <linux/percpu-rwsem.h> 34#include <linux/workqueue.h> 35#include <linux/delayed_call.h> 36#include <linux/uuid.h> 37#include <linux/errseq.h> 38#include <linux/ioprio.h> 39#include <linux/fs_types.h> 40#include <linux/build_bug.h> 41#include <linux/stddef.h> 42#include <linux/mount.h> 43#include <linux/cred.h> 44#include <linux/mnt_idmapping.h> 45#include <linux/slab.h> 46 47#include <asm/byteorder.h> 48#include <uapi/linux/fs.h> 49 50struct backing_dev_info; 51struct bdi_writeback; 52struct bio; 53struct io_comp_batch; 54struct export_operations; 55struct fiemap_extent_info; 56struct hd_geometry; 57struct iovec; 58struct kiocb; 59struct kobject; 60struct pipe_inode_info; 61struct poll_table_struct; 62struct kstatfs; 63struct vm_area_struct; 64struct vfsmount; 65struct cred; 66struct swap_info_struct; 67struct seq_file; 68struct workqueue_struct; 69struct iov_iter; 70struct fscrypt_info; 71struct fscrypt_operations; 72struct fsverity_info; 73struct fsverity_operations; 74struct fs_context; 75struct fs_parameter_spec; 76struct fileattr; 77struct iomap_ops; 78 79extern void __init inode_init(void); 80extern void __init inode_init_early(void); 81extern void __init files_init(void); 82extern void __init files_maxfiles_init(void); 83 84extern unsigned long get_max_files(void); 85extern unsigned int sysctl_nr_open; 86 87typedef __kernel_rwf_t rwf_t; 88 89struct buffer_head; 90typedef int (get_block_t)(struct inode *inode, sector_t iblock, 91 struct buffer_head *bh_result, int create); 92typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, 93 ssize_t bytes, void *private); 94 95#define MAY_EXEC 0x00000001 96#define MAY_WRITE 0x00000002 97#define MAY_READ 0x00000004 98#define MAY_APPEND 0x00000008 99#define MAY_ACCESS 0x00000010 100#define MAY_OPEN 0x00000020 101#define MAY_CHDIR 0x00000040 102/* called from RCU mode, don't block */ 103#define MAY_NOT_BLOCK 0x00000080 104 105/* 106 * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond 107 * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() 108 */ 109 110/* file is open for reading */ 111#define FMODE_READ ((__force fmode_t)0x1) 112/* file is open for writing */ 113#define FMODE_WRITE ((__force fmode_t)0x2) 114/* file is seekable */ 115#define FMODE_LSEEK ((__force fmode_t)0x4) 116/* file can be accessed using pread */ 117#define FMODE_PREAD ((__force fmode_t)0x8) 118/* file can be accessed using pwrite */ 119#define FMODE_PWRITE ((__force fmode_t)0x10) 120/* File is opened for execution with sys_execve / sys_uselib */ 121#define FMODE_EXEC ((__force fmode_t)0x20) 122/* 32bit hashes as llseek() offset (for directories) */ 123#define FMODE_32BITHASH ((__force fmode_t)0x200) 124/* 64bit hashes as llseek() offset (for directories) */ 125#define FMODE_64BITHASH ((__force fmode_t)0x400) 126 127/* 128 * Don't update ctime and mtime. 129 * 130 * Currently a special hack for the XFS open_by_handle ioctl, but we'll 131 * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. 132 */ 133#define FMODE_NOCMTIME ((__force fmode_t)0x800) 134 135/* Expect random access pattern */ 136#define FMODE_RANDOM ((__force fmode_t)0x1000) 137 138/* File is huge (eg. /dev/mem): treat loff_t as unsigned */ 139#define FMODE_UNSIGNED_OFFSET ((__force fmode_t)0x2000) 140 141/* File is opened with O_PATH; almost nothing can be done with it */ 142#define FMODE_PATH ((__force fmode_t)0x4000) 143 144/* File needs atomic accesses to f_pos */ 145#define FMODE_ATOMIC_POS ((__force fmode_t)0x8000) 146/* Write access to underlying fs */ 147#define FMODE_WRITER ((__force fmode_t)0x10000) 148/* Has read method(s) */ 149#define FMODE_CAN_READ ((__force fmode_t)0x20000) 150/* Has write method(s) */ 151#define FMODE_CAN_WRITE ((__force fmode_t)0x40000) 152 153#define FMODE_OPENED ((__force fmode_t)0x80000) 154#define FMODE_CREATED ((__force fmode_t)0x100000) 155 156/* File is stream-like */ 157#define FMODE_STREAM ((__force fmode_t)0x200000) 158 159/* File supports DIRECT IO */ 160#define FMODE_CAN_ODIRECT ((__force fmode_t)0x400000) 161 162#define FMODE_NOREUSE ((__force fmode_t)0x800000) 163 164/* File supports non-exclusive O_DIRECT writes from multiple threads */ 165#define FMODE_DIO_PARALLEL_WRITE ((__force fmode_t)0x1000000) 166 167/* File is embedded in backing_file object */ 168#define FMODE_BACKING ((__force fmode_t)0x2000000) 169 170/* File was opened by fanotify and shouldn't generate fanotify events */ 171#define FMODE_NONOTIFY ((__force fmode_t)0x4000000) 172 173/* File is capable of returning -EAGAIN if I/O will block */ 174#define FMODE_NOWAIT ((__force fmode_t)0x8000000) 175 176/* File represents mount that needs unmounting */ 177#define FMODE_NEED_UNMOUNT ((__force fmode_t)0x10000000) 178 179/* File does not contribute to nr_files count */ 180#define FMODE_NOACCOUNT ((__force fmode_t)0x20000000) 181 182/* File supports async buffered reads */ 183#define FMODE_BUF_RASYNC ((__force fmode_t)0x40000000) 184 185/* File supports async nowait buffered writes */ 186#define FMODE_BUF_WASYNC ((__force fmode_t)0x80000000) 187 188/* 189 * Attribute flags. These should be or-ed together to figure out what 190 * has been changed! 191 */ 192#define ATTR_MODE (1 << 0) 193#define ATTR_UID (1 << 1) 194#define ATTR_GID (1 << 2) 195#define ATTR_SIZE (1 << 3) 196#define ATTR_ATIME (1 << 4) 197#define ATTR_MTIME (1 << 5) 198#define ATTR_CTIME (1 << 6) 199#define ATTR_ATIME_SET (1 << 7) 200#define ATTR_MTIME_SET (1 << 8) 201#define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ 202#define ATTR_KILL_SUID (1 << 11) 203#define ATTR_KILL_SGID (1 << 12) 204#define ATTR_FILE (1 << 13) 205#define ATTR_KILL_PRIV (1 << 14) 206#define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ 207#define ATTR_TIMES_SET (1 << 16) 208#define ATTR_TOUCH (1 << 17) 209 210/* 211 * Whiteout is represented by a char device. The following constants define the 212 * mode and device number to use. 213 */ 214#define WHITEOUT_MODE 0 215#define WHITEOUT_DEV 0 216 217/* 218 * This is the Inode Attributes structure, used for notify_change(). It 219 * uses the above definitions as flags, to know which values have changed. 220 * Also, in this manner, a Filesystem can look at only the values it cares 221 * about. Basically, these are the attributes that the VFS layer can 222 * request to change from the FS layer. 223 * 224 * Derek Atkins <warlord@MIT.EDU> 94-10-20 225 */ 226struct iattr { 227 unsigned int ia_valid; 228 umode_t ia_mode; 229 /* 230 * The two anonymous unions wrap structures with the same member. 231 * 232 * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which 233 * are a dedicated type requiring the filesystem to use the dedicated 234 * helpers. Other filesystem can continue to use ia_{g,u}id until they 235 * have been ported. 236 * 237 * They always contain the same value. In other words FS_ALLOW_IDMAP 238 * pass down the same value on idmapped mounts as they would on regular 239 * mounts. 240 */ 241 union { 242 kuid_t ia_uid; 243 vfsuid_t ia_vfsuid; 244 }; 245 union { 246 kgid_t ia_gid; 247 vfsgid_t ia_vfsgid; 248 }; 249 loff_t ia_size; 250 struct timespec64 ia_atime; 251 struct timespec64 ia_mtime; 252 struct timespec64 ia_ctime; 253 254 /* 255 * Not an attribute, but an auxiliary info for filesystems wanting to 256 * implement an ftruncate() like method. NOTE: filesystem should 257 * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). 258 */ 259 struct file *ia_file; 260}; 261 262/* 263 * Includes for diskquotas. 264 */ 265#include <linux/quota.h> 266 267/* 268 * Maximum number of layers of fs stack. Needs to be limited to 269 * prevent kernel stack overflow 270 */ 271#define FILESYSTEM_MAX_STACK_DEPTH 2 272 273/** 274 * enum positive_aop_returns - aop return codes with specific semantics 275 * 276 * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has 277 * completed, that the page is still locked, and 278 * should be considered active. The VM uses this hint 279 * to return the page to the active list -- it won't 280 * be a candidate for writeback again in the near 281 * future. Other callers must be careful to unlock 282 * the page if they get this return. Returned by 283 * writepage(); 284 * 285 * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has 286 * unlocked it and the page might have been truncated. 287 * The caller should back up to acquiring a new page and 288 * trying again. The aop will be taking reasonable 289 * precautions not to livelock. If the caller held a page 290 * reference, it should drop it before retrying. Returned 291 * by read_folio(). 292 * 293 * address_space_operation functions return these large constants to indicate 294 * special semantics to the caller. These are much larger than the bytes in a 295 * page to allow for functions that return the number of bytes operated on in a 296 * given page. 297 */ 298 299enum positive_aop_returns { 300 AOP_WRITEPAGE_ACTIVATE = 0x80000, 301 AOP_TRUNCATED_PAGE = 0x80001, 302}; 303 304/* 305 * oh the beauties of C type declarations. 306 */ 307struct page; 308struct address_space; 309struct writeback_control; 310struct readahead_control; 311 312/* 313 * Write life time hint values. 314 * Stored in struct inode as u8. 315 */ 316enum rw_hint { 317 WRITE_LIFE_NOT_SET = 0, 318 WRITE_LIFE_NONE = RWH_WRITE_LIFE_NONE, 319 WRITE_LIFE_SHORT = RWH_WRITE_LIFE_SHORT, 320 WRITE_LIFE_MEDIUM = RWH_WRITE_LIFE_MEDIUM, 321 WRITE_LIFE_LONG = RWH_WRITE_LIFE_LONG, 322 WRITE_LIFE_EXTREME = RWH_WRITE_LIFE_EXTREME, 323}; 324 325/* Match RWF_* bits to IOCB bits */ 326#define IOCB_HIPRI (__force int) RWF_HIPRI 327#define IOCB_DSYNC (__force int) RWF_DSYNC 328#define IOCB_SYNC (__force int) RWF_SYNC 329#define IOCB_NOWAIT (__force int) RWF_NOWAIT 330#define IOCB_APPEND (__force int) RWF_APPEND 331 332/* non-RWF related bits - start at 16 */ 333#define IOCB_EVENTFD (1 << 16) 334#define IOCB_DIRECT (1 << 17) 335#define IOCB_WRITE (1 << 18) 336/* iocb->ki_waitq is valid */ 337#define IOCB_WAITQ (1 << 19) 338#define IOCB_NOIO (1 << 20) 339/* can use bio alloc cache */ 340#define IOCB_ALLOC_CACHE (1 << 21) 341/* 342 * IOCB_DIO_CALLER_COMP can be set by the iocb owner, to indicate that the 343 * iocb completion can be passed back to the owner for execution from a safe 344 * context rather than needing to be punted through a workqueue. If this 345 * flag is set, the bio completion handling may set iocb->dio_complete to a 346 * handler function and iocb->private to context information for that handler. 347 * The issuer should call the handler with that context information from task 348 * context to complete the processing of the iocb. Note that while this 349 * provides a task context for the dio_complete() callback, it should only be 350 * used on the completion side for non-IO generating completions. It's fine to 351 * call blocking functions from this callback, but they should not wait for 352 * unrelated IO (like cache flushing, new IO generation, etc). 353 */ 354#define IOCB_DIO_CALLER_COMP (1 << 22) 355 356/* for use in trace events */ 357#define TRACE_IOCB_STRINGS \ 358 { IOCB_HIPRI, "HIPRI" }, \ 359 { IOCB_DSYNC, "DSYNC" }, \ 360 { IOCB_SYNC, "SYNC" }, \ 361 { IOCB_NOWAIT, "NOWAIT" }, \ 362 { IOCB_APPEND, "APPEND" }, \ 363 { IOCB_EVENTFD, "EVENTFD"}, \ 364 { IOCB_DIRECT, "DIRECT" }, \ 365 { IOCB_WRITE, "WRITE" }, \ 366 { IOCB_WAITQ, "WAITQ" }, \ 367 { IOCB_NOIO, "NOIO" }, \ 368 { IOCB_ALLOC_CACHE, "ALLOC_CACHE" }, \ 369 { IOCB_DIO_CALLER_COMP, "CALLER_COMP" } 370 371struct kiocb { 372 struct file *ki_filp; 373 loff_t ki_pos; 374 void (*ki_complete)(struct kiocb *iocb, long ret); 375 void *private; 376 int ki_flags; 377 u16 ki_ioprio; /* See linux/ioprio.h */ 378 union { 379 /* 380 * Only used for async buffered reads, where it denotes the 381 * page waitqueue associated with completing the read. Valid 382 * IFF IOCB_WAITQ is set. 383 */ 384 struct wait_page_queue *ki_waitq; 385 /* 386 * Can be used for O_DIRECT IO, where the completion handling 387 * is punted back to the issuer of the IO. May only be set 388 * if IOCB_DIO_CALLER_COMP is set by the issuer, and the issuer 389 * must then check for presence of this handler when ki_complete 390 * is invoked. The data passed in to this handler must be 391 * assigned to ->private when dio_complete is assigned. 392 */ 393 ssize_t (*dio_complete)(void *data); 394 }; 395}; 396 397static inline bool is_sync_kiocb(struct kiocb *kiocb) 398{ 399 return kiocb->ki_complete == NULL; 400} 401 402struct address_space_operations { 403 int (*writepage)(struct page *page, struct writeback_control *wbc); 404 int (*read_folio)(struct file *, struct folio *); 405 406 /* Write back some dirty pages from this mapping. */ 407 int (*writepages)(struct address_space *, struct writeback_control *); 408 409 /* Mark a folio dirty. Return true if this dirtied it */ 410 bool (*dirty_folio)(struct address_space *, struct folio *); 411 412 void (*readahead)(struct readahead_control *); 413 414 int (*write_begin)(struct file *, struct address_space *mapping, 415 loff_t pos, unsigned len, 416 struct page **pagep, void **fsdata); 417 int (*write_end)(struct file *, struct address_space *mapping, 418 loff_t pos, unsigned len, unsigned copied, 419 struct page *page, void *fsdata); 420 421 /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ 422 sector_t (*bmap)(struct address_space *, sector_t); 423 void (*invalidate_folio) (struct folio *, size_t offset, size_t len); 424 bool (*release_folio)(struct folio *, gfp_t); 425 void (*free_folio)(struct folio *folio); 426 ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); 427 /* 428 * migrate the contents of a folio to the specified target. If 429 * migrate_mode is MIGRATE_ASYNC, it must not block. 430 */ 431 int (*migrate_folio)(struct address_space *, struct folio *dst, 432 struct folio *src, enum migrate_mode); 433 int (*launder_folio)(struct folio *); 434 bool (*is_partially_uptodate) (struct folio *, size_t from, 435 size_t count); 436 void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); 437 int (*error_remove_page)(struct address_space *, struct page *); 438 439 /* swapfile support */ 440 int (*swap_activate)(struct swap_info_struct *sis, struct file *file, 441 sector_t *span); 442 void (*swap_deactivate)(struct file *file); 443 int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); 444}; 445 446extern const struct address_space_operations empty_aops; 447 448/** 449 * struct address_space - Contents of a cacheable, mappable object. 450 * @host: Owner, either the inode or the block_device. 451 * @i_pages: Cached pages. 452 * @invalidate_lock: Guards coherency between page cache contents and 453 * file offset->disk block mappings in the filesystem during invalidates. 454 * It is also used to block modification of page cache contents through 455 * memory mappings. 456 * @gfp_mask: Memory allocation flags to use for allocating pages. 457 * @i_mmap_writable: Number of VM_SHARED mappings. 458 * @nr_thps: Number of THPs in the pagecache (non-shmem only). 459 * @i_mmap: Tree of private and shared mappings. 460 * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. 461 * @nrpages: Number of page entries, protected by the i_pages lock. 462 * @writeback_index: Writeback starts here. 463 * @a_ops: Methods. 464 * @flags: Error bits and flags (AS_*). 465 * @wb_err: The most recent error which has occurred. 466 * @private_lock: For use by the owner of the address_space. 467 * @private_list: For use by the owner of the address_space. 468 * @private_data: For use by the owner of the address_space. 469 */ 470struct address_space { 471 struct inode *host; 472 struct xarray i_pages; 473 struct rw_semaphore invalidate_lock; 474 gfp_t gfp_mask; 475 atomic_t i_mmap_writable; 476#ifdef CONFIG_READ_ONLY_THP_FOR_FS 477 /* number of thp, only for non-shmem files */ 478 atomic_t nr_thps; 479#endif 480 struct rb_root_cached i_mmap; 481 unsigned long nrpages; 482 pgoff_t writeback_index; 483 const struct address_space_operations *a_ops; 484 unsigned long flags; 485 struct rw_semaphore i_mmap_rwsem; 486 errseq_t wb_err; 487 spinlock_t private_lock; 488 struct list_head private_list; 489 void *private_data; 490} __attribute__((aligned(sizeof(long)))) __randomize_layout; 491 /* 492 * On most architectures that alignment is already the case; but 493 * must be enforced here for CRIS, to let the least significant bit 494 * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. 495 */ 496 497/* XArray tags, for tagging dirty and writeback pages in the pagecache. */ 498#define PAGECACHE_TAG_DIRTY XA_MARK_0 499#define PAGECACHE_TAG_WRITEBACK XA_MARK_1 500#define PAGECACHE_TAG_TOWRITE XA_MARK_2 501 502/* 503 * Returns true if any of the pages in the mapping are marked with the tag. 504 */ 505static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) 506{ 507 return xa_marked(&mapping->i_pages, tag); 508} 509 510static inline void i_mmap_lock_write(struct address_space *mapping) 511{ 512 down_write(&mapping->i_mmap_rwsem); 513} 514 515static inline int i_mmap_trylock_write(struct address_space *mapping) 516{ 517 return down_write_trylock(&mapping->i_mmap_rwsem); 518} 519 520static inline void i_mmap_unlock_write(struct address_space *mapping) 521{ 522 up_write(&mapping->i_mmap_rwsem); 523} 524 525static inline int i_mmap_trylock_read(struct address_space *mapping) 526{ 527 return down_read_trylock(&mapping->i_mmap_rwsem); 528} 529 530static inline void i_mmap_lock_read(struct address_space *mapping) 531{ 532 down_read(&mapping->i_mmap_rwsem); 533} 534 535static inline void i_mmap_unlock_read(struct address_space *mapping) 536{ 537 up_read(&mapping->i_mmap_rwsem); 538} 539 540static inline void i_mmap_assert_locked(struct address_space *mapping) 541{ 542 lockdep_assert_held(&mapping->i_mmap_rwsem); 543} 544 545static inline void i_mmap_assert_write_locked(struct address_space *mapping) 546{ 547 lockdep_assert_held_write(&mapping->i_mmap_rwsem); 548} 549 550/* 551 * Might pages of this file be mapped into userspace? 552 */ 553static inline int mapping_mapped(struct address_space *mapping) 554{ 555 return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); 556} 557 558/* 559 * Might pages of this file have been modified in userspace? 560 * Note that i_mmap_writable counts all VM_SHARED vmas: do_mmap 561 * marks vma as VM_SHARED if it is shared, and the file was opened for 562 * writing i.e. vma may be mprotected writable even if now readonly. 563 * 564 * If i_mmap_writable is negative, no new writable mappings are allowed. You 565 * can only deny writable mappings, if none exists right now. 566 */ 567static inline int mapping_writably_mapped(struct address_space *mapping) 568{ 569 return atomic_read(&mapping->i_mmap_writable) > 0; 570} 571 572static inline int mapping_map_writable(struct address_space *mapping) 573{ 574 return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 575 0 : -EPERM; 576} 577 578static inline void mapping_unmap_writable(struct address_space *mapping) 579{ 580 atomic_dec(&mapping->i_mmap_writable); 581} 582 583static inline int mapping_deny_writable(struct address_space *mapping) 584{ 585 return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 586 0 : -EBUSY; 587} 588 589static inline void mapping_allow_writable(struct address_space *mapping) 590{ 591 atomic_inc(&mapping->i_mmap_writable); 592} 593 594/* 595 * Use sequence counter to get consistent i_size on 32-bit processors. 596 */ 597#if BITS_PER_LONG==32 && defined(CONFIG_SMP) 598#include <linux/seqlock.h> 599#define __NEED_I_SIZE_ORDERED 600#define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) 601#else 602#define i_size_ordered_init(inode) do { } while (0) 603#endif 604 605struct posix_acl; 606#define ACL_NOT_CACHED ((void *)(-1)) 607/* 608 * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to 609 * cache the ACL. This also means that ->get_inode_acl() can be called in RCU 610 * mode with the LOOKUP_RCU flag. 611 */ 612#define ACL_DONT_CACHE ((void *)(-3)) 613 614static inline struct posix_acl * 615uncached_acl_sentinel(struct task_struct *task) 616{ 617 return (void *)task + 1; 618} 619 620static inline bool 621is_uncached_acl(struct posix_acl *acl) 622{ 623 return (long)acl & 1; 624} 625 626#define IOP_FASTPERM 0x0001 627#define IOP_LOOKUP 0x0002 628#define IOP_NOFOLLOW 0x0004 629#define IOP_XATTR 0x0008 630#define IOP_DEFAULT_READLINK 0x0010 631 632struct fsnotify_mark_connector; 633 634/* 635 * Keep mostly read-only and often accessed (especially for 636 * the RCU path lookup and 'stat' data) fields at the beginning 637 * of the 'struct inode' 638 */ 639struct inode { 640 umode_t i_mode; 641 unsigned short i_opflags; 642 kuid_t i_uid; 643 kgid_t i_gid; 644 unsigned int i_flags; 645 646#ifdef CONFIG_FS_POSIX_ACL 647 struct posix_acl *i_acl; 648 struct posix_acl *i_default_acl; 649#endif 650 651 const struct inode_operations *i_op; 652 struct super_block *i_sb; 653 struct address_space *i_mapping; 654 655#ifdef CONFIG_SECURITY 656 void *i_security; 657#endif 658 659 /* Stat data, not accessed from path walking */ 660 unsigned long i_ino; 661 /* 662 * Filesystems may only read i_nlink directly. They shall use the 663 * following functions for modification: 664 * 665 * (set|clear|inc|drop)_nlink 666 * inode_(inc|dec)_link_count 667 */ 668 union { 669 const unsigned int i_nlink; 670 unsigned int __i_nlink; 671 }; 672 dev_t i_rdev; 673 loff_t i_size; 674 struct timespec64 i_atime; 675 struct timespec64 i_mtime; 676 struct timespec64 __i_ctime; /* use inode_*_ctime accessors! */ 677 spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ 678 unsigned short i_bytes; 679 u8 i_blkbits; 680 u8 i_write_hint; 681 blkcnt_t i_blocks; 682 683#ifdef __NEED_I_SIZE_ORDERED 684 seqcount_t i_size_seqcount; 685#endif 686 687 /* Misc */ 688 unsigned long i_state; 689 struct rw_semaphore i_rwsem; 690 691 unsigned long dirtied_when; /* jiffies of first dirtying */ 692 unsigned long dirtied_time_when; 693 694 struct hlist_node i_hash; 695 struct list_head i_io_list; /* backing dev IO list */ 696#ifdef CONFIG_CGROUP_WRITEBACK 697 struct bdi_writeback *i_wb; /* the associated cgroup wb */ 698 699 /* foreign inode detection, see wbc_detach_inode() */ 700 int i_wb_frn_winner; 701 u16 i_wb_frn_avg_time; 702 u16 i_wb_frn_history; 703#endif 704 struct list_head i_lru; /* inode LRU list */ 705 struct list_head i_sb_list; 706 struct list_head i_wb_list; /* backing dev writeback list */ 707 union { 708 struct hlist_head i_dentry; 709 struct rcu_head i_rcu; 710 }; 711 atomic64_t i_version; 712 atomic64_t i_sequence; /* see futex */ 713 atomic_t i_count; 714 atomic_t i_dio_count; 715 atomic_t i_writecount; 716#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 717 atomic_t i_readcount; /* struct files open RO */ 718#endif 719 union { 720 const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ 721 void (*free_inode)(struct inode *); 722 }; 723 struct file_lock_context *i_flctx; 724 struct address_space i_data; 725 struct list_head i_devices; 726 union { 727 struct pipe_inode_info *i_pipe; 728 struct cdev *i_cdev; 729 char *i_link; 730 unsigned i_dir_seq; 731 }; 732 733 __u32 i_generation; 734 735#ifdef CONFIG_FSNOTIFY 736 __u32 i_fsnotify_mask; /* all events this inode cares about */ 737 struct fsnotify_mark_connector __rcu *i_fsnotify_marks; 738#endif 739 740#ifdef CONFIG_FS_ENCRYPTION 741 struct fscrypt_info *i_crypt_info; 742#endif 743 744#ifdef CONFIG_FS_VERITY 745 struct fsverity_info *i_verity_info; 746#endif 747 748 void *i_private; /* fs or device private pointer */ 749} __randomize_layout; 750 751struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); 752 753static inline unsigned int i_blocksize(const struct inode *node) 754{ 755 return (1 << node->i_blkbits); 756} 757 758static inline int inode_unhashed(struct inode *inode) 759{ 760 return hlist_unhashed(&inode->i_hash); 761} 762 763/* 764 * __mark_inode_dirty expects inodes to be hashed. Since we don't 765 * want special inodes in the fileset inode space, we make them 766 * appear hashed, but do not put on any lists. hlist_del() 767 * will work fine and require no locking. 768 */ 769static inline void inode_fake_hash(struct inode *inode) 770{ 771 hlist_add_fake(&inode->i_hash); 772} 773 774/* 775 * inode->i_mutex nesting subclasses for the lock validator: 776 * 777 * 0: the object of the current VFS operation 778 * 1: parent 779 * 2: child/target 780 * 3: xattr 781 * 4: second non-directory 782 * 5: second parent (when locking independent directories in rename) 783 * 784 * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two 785 * non-directories at once. 786 * 787 * The locking order between these classes is 788 * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory 789 */ 790enum inode_i_mutex_lock_class 791{ 792 I_MUTEX_NORMAL, 793 I_MUTEX_PARENT, 794 I_MUTEX_CHILD, 795 I_MUTEX_XATTR, 796 I_MUTEX_NONDIR2, 797 I_MUTEX_PARENT2, 798}; 799 800static inline void inode_lock(struct inode *inode) 801{ 802 down_write(&inode->i_rwsem); 803} 804 805static inline void inode_unlock(struct inode *inode) 806{ 807 up_write(&inode->i_rwsem); 808} 809 810static inline void inode_lock_shared(struct inode *inode) 811{ 812 down_read(&inode->i_rwsem); 813} 814 815static inline void inode_unlock_shared(struct inode *inode) 816{ 817 up_read(&inode->i_rwsem); 818} 819 820static inline int inode_trylock(struct inode *inode) 821{ 822 return down_write_trylock(&inode->i_rwsem); 823} 824 825static inline int inode_trylock_shared(struct inode *inode) 826{ 827 return down_read_trylock(&inode->i_rwsem); 828} 829 830static inline int inode_is_locked(struct inode *inode) 831{ 832 return rwsem_is_locked(&inode->i_rwsem); 833} 834 835static inline void inode_lock_nested(struct inode *inode, unsigned subclass) 836{ 837 down_write_nested(&inode->i_rwsem, subclass); 838} 839 840static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) 841{ 842 down_read_nested(&inode->i_rwsem, subclass); 843} 844 845static inline void filemap_invalidate_lock(struct address_space *mapping) 846{ 847 down_write(&mapping->invalidate_lock); 848} 849 850static inline void filemap_invalidate_unlock(struct address_space *mapping) 851{ 852 up_write(&mapping->invalidate_lock); 853} 854 855static inline void filemap_invalidate_lock_shared(struct address_space *mapping) 856{ 857 down_read(&mapping->invalidate_lock); 858} 859 860static inline int filemap_invalidate_trylock_shared( 861 struct address_space *mapping) 862{ 863 return down_read_trylock(&mapping->invalidate_lock); 864} 865 866static inline void filemap_invalidate_unlock_shared( 867 struct address_space *mapping) 868{ 869 up_read(&mapping->invalidate_lock); 870} 871 872void lock_two_nondirectories(struct inode *, struct inode*); 873void unlock_two_nondirectories(struct inode *, struct inode*); 874 875void filemap_invalidate_lock_two(struct address_space *mapping1, 876 struct address_space *mapping2); 877void filemap_invalidate_unlock_two(struct address_space *mapping1, 878 struct address_space *mapping2); 879 880 881/* 882 * NOTE: in a 32bit arch with a preemptable kernel and 883 * an UP compile the i_size_read/write must be atomic 884 * with respect to the local cpu (unlike with preempt disabled), 885 * but they don't need to be atomic with respect to other cpus like in 886 * true SMP (so they need either to either locally disable irq around 887 * the read or for example on x86 they can be still implemented as a 888 * cmpxchg8b without the need of the lock prefix). For SMP compiles 889 * and 64bit archs it makes no difference if preempt is enabled or not. 890 */ 891static inline loff_t i_size_read(const struct inode *inode) 892{ 893#if BITS_PER_LONG==32 && defined(CONFIG_SMP) 894 loff_t i_size; 895 unsigned int seq; 896 897 do { 898 seq = read_seqcount_begin(&inode->i_size_seqcount); 899 i_size = inode->i_size; 900 } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); 901 return i_size; 902#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 903 loff_t i_size; 904 905 preempt_disable(); 906 i_size = inode->i_size; 907 preempt_enable(); 908 return i_size; 909#else 910 return inode->i_size; 911#endif 912} 913 914/* 915 * NOTE: unlike i_size_read(), i_size_write() does need locking around it 916 * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount 917 * can be lost, resulting in subsequent i_size_read() calls spinning forever. 918 */ 919static inline void i_size_write(struct inode *inode, loff_t i_size) 920{ 921#if BITS_PER_LONG==32 && defined(CONFIG_SMP) 922 preempt_disable(); 923 write_seqcount_begin(&inode->i_size_seqcount); 924 inode->i_size = i_size; 925 write_seqcount_end(&inode->i_size_seqcount); 926 preempt_enable(); 927#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 928 preempt_disable(); 929 inode->i_size = i_size; 930 preempt_enable(); 931#else 932 inode->i_size = i_size; 933#endif 934} 935 936static inline unsigned iminor(const struct inode *inode) 937{ 938 return MINOR(inode->i_rdev); 939} 940 941static inline unsigned imajor(const struct inode *inode) 942{ 943 return MAJOR(inode->i_rdev); 944} 945 946struct fown_struct { 947 rwlock_t lock; /* protects pid, uid, euid fields */ 948 struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ 949 enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ 950 kuid_t uid, euid; /* uid/euid of process setting the owner */ 951 int signum; /* posix.1b rt signal to be delivered on IO */ 952}; 953 954/** 955 * struct file_ra_state - Track a file's readahead state. 956 * @start: Where the most recent readahead started. 957 * @size: Number of pages read in the most recent readahead. 958 * @async_size: Numer of pages that were/are not needed immediately 959 * and so were/are genuinely "ahead". Start next readahead when 960 * the first of these pages is accessed. 961 * @ra_pages: Maximum size of a readahead request, copied from the bdi. 962 * @mmap_miss: How many mmap accesses missed in the page cache. 963 * @prev_pos: The last byte in the most recent read request. 964 * 965 * When this structure is passed to ->readahead(), the "most recent" 966 * readahead means the current readahead. 967 */ 968struct file_ra_state { 969 pgoff_t start; 970 unsigned int size; 971 unsigned int async_size; 972 unsigned int ra_pages; 973 unsigned int mmap_miss; 974 loff_t prev_pos; 975}; 976 977/* 978 * Check if @index falls in the readahead windows. 979 */ 980static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) 981{ 982 return (index >= ra->start && 983 index < ra->start + ra->size); 984} 985 986/* 987 * f_{lock,count,pos_lock} members can be highly contended and share 988 * the same cacheline. f_{lock,mode} are very frequently used together 989 * and so share the same cacheline as well. The read-mostly 990 * f_{path,inode,op} are kept on a separate cacheline. 991 */ 992struct file { 993 union { 994 struct llist_node f_llist; 995 struct rcu_head f_rcuhead; 996 unsigned int f_iocb_flags; 997 }; 998 999 /* 1000 * Protects f_ep, f_flags. 1001 * Must not be taken from IRQ context. 1002 */ 1003 spinlock_t f_lock; 1004 fmode_t f_mode; 1005 atomic_long_t f_count; 1006 struct mutex f_pos_lock; 1007 loff_t f_pos; 1008 unsigned int f_flags; 1009 struct fown_struct f_owner; 1010 const struct cred *f_cred; 1011 struct file_ra_state f_ra; 1012 struct path f_path; 1013 struct inode *f_inode; /* cached value */ 1014 const struct file_operations *f_op; 1015 1016 u64 f_version; 1017#ifdef CONFIG_SECURITY 1018 void *f_security; 1019#endif 1020 /* needed for tty driver, and maybe others */ 1021 void *private_data; 1022 1023#ifdef CONFIG_EPOLL 1024 /* Used by fs/eventpoll.c to link all the hooks to this file */ 1025 struct hlist_head *f_ep; 1026#endif /* #ifdef CONFIG_EPOLL */ 1027 struct address_space *f_mapping; 1028 errseq_t f_wb_err; 1029 errseq_t f_sb_err; /* for syncfs */ 1030} __randomize_layout 1031 __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ 1032 1033struct file_handle { 1034 __u32 handle_bytes; 1035 int handle_type; 1036 /* file identifier */ 1037 unsigned char f_handle[]; 1038}; 1039 1040static inline struct file *get_file(struct file *f) 1041{ 1042 atomic_long_inc(&f->f_count); 1043 return f; 1044} 1045#define get_file_rcu(x) atomic_long_inc_not_zero(&(x)->f_count) 1046#define file_count(x) atomic_long_read(&(x)->f_count) 1047 1048#define MAX_NON_LFS ((1UL<<31) - 1) 1049 1050/* Page cache limit. The filesystems should put that into their s_maxbytes 1051 limits, otherwise bad things can happen in VM. */ 1052#if BITS_PER_LONG==32 1053#define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) 1054#elif BITS_PER_LONG==64 1055#define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) 1056#endif 1057 1058/* legacy typedef, should eventually be removed */ 1059typedef void *fl_owner_t; 1060 1061struct file_lock; 1062 1063/* The following constant reflects the upper bound of the file/locking space */ 1064#ifndef OFFSET_MAX 1065#define OFFSET_MAX type_max(loff_t) 1066#define OFFT_OFFSET_MAX type_max(off_t) 1067#endif 1068 1069extern void send_sigio(struct fown_struct *fown, int fd, int band); 1070 1071static inline struct inode *file_inode(const struct file *f) 1072{ 1073 return f->f_inode; 1074} 1075 1076static inline struct dentry *file_dentry(const struct file *file) 1077{ 1078 return d_real(file->f_path.dentry, file_inode(file)); 1079} 1080 1081struct fasync_struct { 1082 rwlock_t fa_lock; 1083 int magic; 1084 int fa_fd; 1085 struct fasync_struct *fa_next; /* singly linked list */ 1086 struct file *fa_file; 1087 struct rcu_head fa_rcu; 1088}; 1089 1090#define FASYNC_MAGIC 0x4601 1091 1092/* SMP safe fasync helpers: */ 1093extern int fasync_helper(int, struct file *, int, struct fasync_struct **); 1094extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); 1095extern int fasync_remove_entry(struct file *, struct fasync_struct **); 1096extern struct fasync_struct *fasync_alloc(void); 1097extern void fasync_free(struct fasync_struct *); 1098 1099/* can be called from interrupts */ 1100extern void kill_fasync(struct fasync_struct **, int, int); 1101 1102extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); 1103extern int f_setown(struct file *filp, int who, int force); 1104extern void f_delown(struct file *filp); 1105extern pid_t f_getown(struct file *filp); 1106extern int send_sigurg(struct fown_struct *fown); 1107 1108/* 1109 * sb->s_flags. Note that these mirror the equivalent MS_* flags where 1110 * represented in both. 1111 */ 1112#define SB_RDONLY BIT(0) /* Mount read-only */ 1113#define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ 1114#define SB_NODEV BIT(2) /* Disallow access to device special files */ 1115#define SB_NOEXEC BIT(3) /* Disallow program execution */ 1116#define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ 1117#define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ 1118#define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ 1119#define SB_NOATIME BIT(10) /* Do not update access times. */ 1120#define SB_NODIRATIME BIT(11) /* Do not update directory access times */ 1121#define SB_SILENT BIT(15) 1122#define SB_POSIXACL BIT(16) /* VFS does not apply the umask */ 1123#define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ 1124#define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ 1125#define SB_I_VERSION BIT(23) /* Update inode I_version field */ 1126#define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ 1127 1128/* These sb flags are internal to the kernel */ 1129#define SB_DEAD BIT(21) 1130#define SB_DYING BIT(24) 1131#define SB_SUBMOUNT BIT(26) 1132#define SB_FORCE BIT(27) 1133#define SB_NOSEC BIT(28) 1134#define SB_BORN BIT(29) 1135#define SB_ACTIVE BIT(30) 1136#define SB_NOUSER BIT(31) 1137 1138/* These flags relate to encoding and casefolding */ 1139#define SB_ENC_STRICT_MODE_FL (1 << 0) 1140 1141#define sb_has_strict_encoding(sb) \ 1142 (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) 1143 1144/* 1145 * Umount options 1146 */ 1147 1148#define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ 1149#define MNT_DETACH 0x00000002 /* Just detach from the tree */ 1150#define MNT_EXPIRE 0x00000004 /* Mark for expiry */ 1151#define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ 1152#define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ 1153 1154/* sb->s_iflags */ 1155#define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ 1156#define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ 1157#define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ 1158#define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ 1159 1160/* sb->s_iflags to limit user namespace mounts */ 1161#define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ 1162#define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 1163#define SB_I_UNTRUSTED_MOUNTER 0x00000040 1164 1165#define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ 1166#define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ 1167#define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ 1168#define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ 1169 1170/* Possible states of 'frozen' field */ 1171enum { 1172 SB_UNFROZEN = 0, /* FS is unfrozen */ 1173 SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ 1174 SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ 1175 SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop 1176 * internal threads if needed) */ 1177 SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ 1178}; 1179 1180#define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) 1181 1182struct sb_writers { 1183 unsigned short frozen; /* Is sb frozen? */ 1184 unsigned short freeze_holders; /* Who froze fs? */ 1185 struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; 1186}; 1187 1188struct super_block { 1189 struct list_head s_list; /* Keep this first */ 1190 dev_t s_dev; /* search index; _not_ kdev_t */ 1191 unsigned char s_blocksize_bits; 1192 unsigned long s_blocksize; 1193 loff_t s_maxbytes; /* Max file size */ 1194 struct file_system_type *s_type; 1195 const struct super_operations *s_op; 1196 const struct dquot_operations *dq_op; 1197 const struct quotactl_ops *s_qcop; 1198 const struct export_operations *s_export_op; 1199 unsigned long s_flags; 1200 unsigned long s_iflags; /* internal SB_I_* flags */ 1201 unsigned long s_magic; 1202 struct dentry *s_root; 1203 struct rw_semaphore s_umount; 1204 int s_count; 1205 atomic_t s_active; 1206#ifdef CONFIG_SECURITY 1207 void *s_security; 1208#endif 1209 const struct xattr_handler **s_xattr; 1210#ifdef CONFIG_FS_ENCRYPTION 1211 const struct fscrypt_operations *s_cop; 1212 struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ 1213#endif 1214#ifdef CONFIG_FS_VERITY 1215 const struct fsverity_operations *s_vop; 1216#endif 1217#if IS_ENABLED(CONFIG_UNICODE) 1218 struct unicode_map *s_encoding; 1219 __u16 s_encoding_flags; 1220#endif 1221 struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ 1222 struct list_head s_mounts; /* list of mounts; _not_ for fs use */ 1223 struct block_device *s_bdev; 1224 struct backing_dev_info *s_bdi; 1225 struct mtd_info *s_mtd; 1226 struct hlist_node s_instances; 1227 unsigned int s_quota_types; /* Bitmask of supported quota types */ 1228 struct quota_info s_dquot; /* Diskquota specific options */ 1229 1230 struct sb_writers s_writers; 1231 1232 /* 1233 * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and 1234 * s_fsnotify_marks together for cache efficiency. They are frequently 1235 * accessed and rarely modified. 1236 */ 1237 void *s_fs_info; /* Filesystem private info */ 1238 1239 /* Granularity of c/m/atime in ns (cannot be worse than a second) */ 1240 u32 s_time_gran; 1241 /* Time limits for c/m/atime in seconds */ 1242 time64_t s_time_min; 1243 time64_t s_time_max; 1244#ifdef CONFIG_FSNOTIFY 1245 __u32 s_fsnotify_mask; 1246 struct fsnotify_mark_connector __rcu *s_fsnotify_marks; 1247#endif 1248 1249 char s_id[32]; /* Informational name */ 1250 uuid_t s_uuid; /* UUID */ 1251 1252 unsigned int s_max_links; 1253 1254 /* 1255 * The next field is for VFS *only*. No filesystems have any business 1256 * even looking at it. You had been warned. 1257 */ 1258 struct mutex s_vfs_rename_mutex; /* Kludge */ 1259 1260 /* 1261 * Filesystem subtype. If non-empty the filesystem type field 1262 * in /proc/mounts will be "type.subtype" 1263 */ 1264 const char *s_subtype; 1265 1266 const struct dentry_operations *s_d_op; /* default d_op for dentries */ 1267 1268 struct shrinker s_shrink; /* per-sb shrinker handle */ 1269 1270 /* Number of inodes with nlink == 0 but still referenced */ 1271 atomic_long_t s_remove_count; 1272 1273 /* 1274 * Number of inode/mount/sb objects that are being watched, note that 1275 * inodes objects are currently double-accounted. 1276 */ 1277 atomic_long_t s_fsnotify_connectors; 1278 1279 /* Read-only state of the superblock is being changed */ 1280 int s_readonly_remount; 1281 1282 /* per-sb errseq_t for reporting writeback errors via syncfs */ 1283 errseq_t s_wb_err; 1284 1285 /* AIO completions deferred from interrupt context */ 1286 struct workqueue_struct *s_dio_done_wq; 1287 struct hlist_head s_pins; 1288 1289 /* 1290 * Owning user namespace and default context in which to 1291 * interpret filesystem uids, gids, quotas, device nodes, 1292 * xattrs and security labels. 1293 */ 1294 struct user_namespace *s_user_ns; 1295 1296 /* 1297 * The list_lru structure is essentially just a pointer to a table 1298 * of per-node lru lists, each of which has its own spinlock. 1299 * There is no need to put them into separate cachelines. 1300 */ 1301 struct list_lru s_dentry_lru; 1302 struct list_lru s_inode_lru; 1303 struct rcu_head rcu; 1304 struct work_struct destroy_work; 1305 1306 struct mutex s_sync_lock; /* sync serialisation lock */ 1307 1308 /* 1309 * Indicates how deep in a filesystem stack this SB is 1310 */ 1311 int s_stack_depth; 1312 1313 /* s_inode_list_lock protects s_inodes */ 1314 spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; 1315 struct list_head s_inodes; /* all inodes */ 1316 1317 spinlock_t s_inode_wblist_lock; 1318 struct list_head s_inodes_wb; /* writeback inodes */ 1319} __randomize_layout; 1320 1321static inline struct user_namespace *i_user_ns(const struct inode *inode) 1322{ 1323 return inode->i_sb->s_user_ns; 1324} 1325 1326/* Helper functions so that in most cases filesystems will 1327 * not need to deal directly with kuid_t and kgid_t and can 1328 * instead deal with the raw numeric values that are stored 1329 * in the filesystem. 1330 */ 1331static inline uid_t i_uid_read(const struct inode *inode) 1332{ 1333 return from_kuid(i_user_ns(inode), inode->i_uid); 1334} 1335 1336static inline gid_t i_gid_read(const struct inode *inode) 1337{ 1338 return from_kgid(i_user_ns(inode), inode->i_gid); 1339} 1340 1341static inline void i_uid_write(struct inode *inode, uid_t uid) 1342{ 1343 inode->i_uid = make_kuid(i_user_ns(inode), uid); 1344} 1345 1346static inline void i_gid_write(struct inode *inode, gid_t gid) 1347{ 1348 inode->i_gid = make_kgid(i_user_ns(inode), gid); 1349} 1350 1351/** 1352 * i_uid_into_vfsuid - map an inode's i_uid down according to an idmapping 1353 * @idmap: idmap of the mount the inode was found from 1354 * @inode: inode to map 1355 * 1356 * Return: whe inode's i_uid mapped down according to @idmap. 1357 * If the inode's i_uid has no mapping INVALID_VFSUID is returned. 1358 */ 1359static inline vfsuid_t i_uid_into_vfsuid(struct mnt_idmap *idmap, 1360 const struct inode *inode) 1361{ 1362 return make_vfsuid(idmap, i_user_ns(inode), inode->i_uid); 1363} 1364 1365/** 1366 * i_uid_needs_update - check whether inode's i_uid needs to be updated 1367 * @idmap: idmap of the mount the inode was found from 1368 * @attr: the new attributes of @inode 1369 * @inode: the inode to update 1370 * 1371 * Check whether the $inode's i_uid field needs to be updated taking idmapped 1372 * mounts into account if the filesystem supports it. 1373 * 1374 * Return: true if @inode's i_uid field needs to be updated, false if not. 1375 */ 1376static inline bool i_uid_needs_update(struct mnt_idmap *idmap, 1377 const struct iattr *attr, 1378 const struct inode *inode) 1379{ 1380 return ((attr->ia_valid & ATTR_UID) && 1381 !vfsuid_eq(attr->ia_vfsuid, 1382 i_uid_into_vfsuid(idmap, inode))); 1383} 1384 1385/** 1386 * i_uid_update - update @inode's i_uid field 1387 * @idmap: idmap of the mount the inode was found from 1388 * @attr: the new attributes of @inode 1389 * @inode: the inode to update 1390 * 1391 * Safely update @inode's i_uid field translating the vfsuid of any idmapped 1392 * mount into the filesystem kuid. 1393 */ 1394static inline void i_uid_update(struct mnt_idmap *idmap, 1395 const struct iattr *attr, 1396 struct inode *inode) 1397{ 1398 if (attr->ia_valid & ATTR_UID) 1399 inode->i_uid = from_vfsuid(idmap, i_user_ns(inode), 1400 attr->ia_vfsuid); 1401} 1402 1403/** 1404 * i_gid_into_vfsgid - map an inode's i_gid down according to an idmapping 1405 * @idmap: idmap of the mount the inode was found from 1406 * @inode: inode to map 1407 * 1408 * Return: the inode's i_gid mapped down according to @idmap. 1409 * If the inode's i_gid has no mapping INVALID_VFSGID is returned. 1410 */ 1411static inline vfsgid_t i_gid_into_vfsgid(struct mnt_idmap *idmap, 1412 const struct inode *inode) 1413{ 1414 return make_vfsgid(idmap, i_user_ns(inode), inode->i_gid); 1415} 1416 1417/** 1418 * i_gid_needs_update - check whether inode's i_gid needs to be updated 1419 * @idmap: idmap of the mount the inode was found from 1420 * @attr: the new attributes of @inode 1421 * @inode: the inode to update 1422 * 1423 * Check whether the $inode's i_gid field needs to be updated taking idmapped 1424 * mounts into account if the filesystem supports it. 1425 * 1426 * Return: true if @inode's i_gid field needs to be updated, false if not. 1427 */ 1428static inline bool i_gid_needs_update(struct mnt_idmap *idmap, 1429 const struct iattr *attr, 1430 const struct inode *inode) 1431{ 1432 return ((attr->ia_valid & ATTR_GID) && 1433 !vfsgid_eq(attr->ia_vfsgid, 1434 i_gid_into_vfsgid(idmap, inode))); 1435} 1436 1437/** 1438 * i_gid_update - update @inode's i_gid field 1439 * @idmap: idmap of the mount the inode was found from 1440 * @attr: the new attributes of @inode 1441 * @inode: the inode to update 1442 * 1443 * Safely update @inode's i_gid field translating the vfsgid of any idmapped 1444 * mount into the filesystem kgid. 1445 */ 1446static inline void i_gid_update(struct mnt_idmap *idmap, 1447 const struct iattr *attr, 1448 struct inode *inode) 1449{ 1450 if (attr->ia_valid & ATTR_GID) 1451 inode->i_gid = from_vfsgid(idmap, i_user_ns(inode), 1452 attr->ia_vfsgid); 1453} 1454 1455/** 1456 * inode_fsuid_set - initialize inode's i_uid field with callers fsuid 1457 * @inode: inode to initialize 1458 * @idmap: idmap of the mount the inode was found from 1459 * 1460 * Initialize the i_uid field of @inode. If the inode was found/created via 1461 * an idmapped mount map the caller's fsuid according to @idmap. 1462 */ 1463static inline void inode_fsuid_set(struct inode *inode, 1464 struct mnt_idmap *idmap) 1465{ 1466 inode->i_uid = mapped_fsuid(idmap, i_user_ns(inode)); 1467} 1468 1469/** 1470 * inode_fsgid_set - initialize inode's i_gid field with callers fsgid 1471 * @inode: inode to initialize 1472 * @idmap: idmap of the mount the inode was found from 1473 * 1474 * Initialize the i_gid field of @inode. If the inode was found/created via 1475 * an idmapped mount map the caller's fsgid according to @idmap. 1476 */ 1477static inline void inode_fsgid_set(struct inode *inode, 1478 struct mnt_idmap *idmap) 1479{ 1480 inode->i_gid = mapped_fsgid(idmap, i_user_ns(inode)); 1481} 1482 1483/** 1484 * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped 1485 * @sb: the superblock we want a mapping in 1486 * @idmap: idmap of the relevant mount 1487 * 1488 * Check whether the caller's fsuid and fsgid have a valid mapping in the 1489 * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map 1490 * the caller's fsuid and fsgid according to the @idmap first. 1491 * 1492 * Return: true if fsuid and fsgid is mapped, false if not. 1493 */ 1494static inline bool fsuidgid_has_mapping(struct super_block *sb, 1495 struct mnt_idmap *idmap) 1496{ 1497 struct user_namespace *fs_userns = sb->s_user_ns; 1498 kuid_t kuid; 1499 kgid_t kgid; 1500 1501 kuid = mapped_fsuid(idmap, fs_userns); 1502 if (!uid_valid(kuid)) 1503 return false; 1504 kgid = mapped_fsgid(idmap, fs_userns); 1505 if (!gid_valid(kgid)) 1506 return false; 1507 return kuid_has_mapping(fs_userns, kuid) && 1508 kgid_has_mapping(fs_userns, kgid); 1509} 1510 1511struct timespec64 current_mgtime(struct inode *inode); 1512struct timespec64 current_time(struct inode *inode); 1513struct timespec64 inode_set_ctime_current(struct inode *inode); 1514 1515/* 1516 * Multigrain timestamps 1517 * 1518 * Conditionally use fine-grained ctime and mtime timestamps when there 1519 * are users actively observing them via getattr. The primary use-case 1520 * for this is NFS clients that use the ctime to distinguish between 1521 * different states of the file, and that are often fooled by multiple 1522 * operations that occur in the same coarse-grained timer tick. 1523 * 1524 * The kernel always keeps normalized struct timespec64 values in the ctime, 1525 * which means that only the first 30 bits of the value are used. Use the 1526 * 31st bit of the ctime's tv_nsec field as a flag to indicate that the value 1527 * has been queried since it was last updated. 1528 */ 1529#define I_CTIME_QUERIED (1L<<30) 1530 1531/** 1532 * inode_get_ctime - fetch the current ctime from the inode 1533 * @inode: inode from which to fetch ctime 1534 * 1535 * Grab the current ctime tv_nsec field from the inode, mask off the 1536 * I_CTIME_QUERIED flag and return it. This is mostly intended for use by 1537 * internal consumers of the ctime that aren't concerned with ensuring a 1538 * fine-grained update on the next change (e.g. when preparing to store 1539 * the value in the backing store for later retrieval). 1540 * 1541 * This is safe to call regardless of whether the underlying filesystem 1542 * is using multigrain timestamps. 1543 */ 1544static inline struct timespec64 inode_get_ctime(const struct inode *inode) 1545{ 1546 struct timespec64 ctime; 1547 1548 ctime.tv_sec = inode->__i_ctime.tv_sec; 1549 ctime.tv_nsec = inode->__i_ctime.tv_nsec & ~I_CTIME_QUERIED; 1550 1551 return ctime; 1552} 1553 1554/** 1555 * inode_set_ctime_to_ts - set the ctime in the inode 1556 * @inode: inode in which to set the ctime 1557 * @ts: value to set in the ctime field 1558 * 1559 * Set the ctime in @inode to @ts 1560 */ 1561static inline struct timespec64 inode_set_ctime_to_ts(struct inode *inode, 1562 struct timespec64 ts) 1563{ 1564 inode->__i_ctime = ts; 1565 return ts; 1566} 1567 1568/** 1569 * inode_set_ctime - set the ctime in the inode 1570 * @inode: inode in which to set the ctime 1571 * @sec: tv_sec value to set 1572 * @nsec: tv_nsec value to set 1573 * 1574 * Set the ctime in @inode to { @sec, @nsec } 1575 */ 1576static inline struct timespec64 inode_set_ctime(struct inode *inode, 1577 time64_t sec, long nsec) 1578{ 1579 struct timespec64 ts = { .tv_sec = sec, 1580 .tv_nsec = nsec }; 1581 1582 return inode_set_ctime_to_ts(inode, ts); 1583} 1584 1585/* 1586 * Snapshotting support. 1587 */ 1588 1589/* 1590 * These are internal functions, please use sb_start_{write,pagefault,intwrite} 1591 * instead. 1592 */ 1593static inline void __sb_end_write(struct super_block *sb, int level) 1594{ 1595 percpu_up_read(sb->s_writers.rw_sem + level-1); 1596} 1597 1598static inline void __sb_start_write(struct super_block *sb, int level) 1599{ 1600 percpu_down_read(sb->s_writers.rw_sem + level - 1); 1601} 1602 1603static inline bool __sb_start_write_trylock(struct super_block *sb, int level) 1604{ 1605 return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); 1606} 1607 1608#define __sb_writers_acquired(sb, lev) \ 1609 percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1610#define __sb_writers_release(sb, lev) \ 1611 percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) 1612 1613static inline bool sb_write_started(const struct super_block *sb) 1614{ 1615 return lockdep_is_held_type(sb->s_writers.rw_sem + SB_FREEZE_WRITE - 1, 1); 1616} 1617 1618/** 1619 * sb_end_write - drop write access to a superblock 1620 * @sb: the super we wrote to 1621 * 1622 * Decrement number of writers to the filesystem. Wake up possible waiters 1623 * wanting to freeze the filesystem. 1624 */ 1625static inline void sb_end_write(struct super_block *sb) 1626{ 1627 __sb_end_write(sb, SB_FREEZE_WRITE); 1628} 1629 1630/** 1631 * sb_end_pagefault - drop write access to a superblock from a page fault 1632 * @sb: the super we wrote to 1633 * 1634 * Decrement number of processes handling write page fault to the filesystem. 1635 * Wake up possible waiters wanting to freeze the filesystem. 1636 */ 1637static inline void sb_end_pagefault(struct super_block *sb) 1638{ 1639 __sb_end_write(sb, SB_FREEZE_PAGEFAULT); 1640} 1641 1642/** 1643 * sb_end_intwrite - drop write access to a superblock for internal fs purposes 1644 * @sb: the super we wrote to 1645 * 1646 * Decrement fs-internal number of writers to the filesystem. Wake up possible 1647 * waiters wanting to freeze the filesystem. 1648 */ 1649static inline void sb_end_intwrite(struct super_block *sb) 1650{ 1651 __sb_end_write(sb, SB_FREEZE_FS); 1652} 1653 1654/** 1655 * sb_start_write - get write access to a superblock 1656 * @sb: the super we write to 1657 * 1658 * When a process wants to write data or metadata to a file system (i.e. dirty 1659 * a page or an inode), it should embed the operation in a sb_start_write() - 1660 * sb_end_write() pair to get exclusion against file system freezing. This 1661 * function increments number of writers preventing freezing. If the file 1662 * system is already frozen, the function waits until the file system is 1663 * thawed. 1664 * 1665 * Since freeze protection behaves as a lock, users have to preserve 1666 * ordering of freeze protection and other filesystem locks. Generally, 1667 * freeze protection should be the outermost lock. In particular, we have: 1668 * 1669 * sb_start_write 1670 * -> i_mutex (write path, truncate, directory ops, ...) 1671 * -> s_umount (freeze_super, thaw_super) 1672 */ 1673static inline void sb_start_write(struct super_block *sb) 1674{ 1675 __sb_start_write(sb, SB_FREEZE_WRITE); 1676} 1677 1678static inline bool sb_start_write_trylock(struct super_block *sb) 1679{ 1680 return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); 1681} 1682 1683/** 1684 * sb_start_pagefault - get write access to a superblock from a page fault 1685 * @sb: the super we write to 1686 * 1687 * When a process starts handling write page fault, it should embed the 1688 * operation into sb_start_pagefault() - sb_end_pagefault() pair to get 1689 * exclusion against file system freezing. This is needed since the page fault 1690 * is going to dirty a page. This function increments number of running page 1691 * faults preventing freezing. If the file system is already frozen, the 1692 * function waits until the file system is thawed. 1693 * 1694 * Since page fault freeze protection behaves as a lock, users have to preserve 1695 * ordering of freeze protection and other filesystem locks. It is advised to 1696 * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault 1697 * handling code implies lock dependency: 1698 * 1699 * mmap_lock 1700 * -> sb_start_pagefault 1701 */ 1702static inline void sb_start_pagefault(struct super_block *sb) 1703{ 1704 __sb_start_write(sb, SB_FREEZE_PAGEFAULT); 1705} 1706 1707/** 1708 * sb_start_intwrite - get write access to a superblock for internal fs purposes 1709 * @sb: the super we write to 1710 * 1711 * This is the third level of protection against filesystem freezing. It is 1712 * free for use by a filesystem. The only requirement is that it must rank 1713 * below sb_start_pagefault. 1714 * 1715 * For example filesystem can call sb_start_intwrite() when starting a 1716 * transaction which somewhat eases handling of freezing for internal sources 1717 * of filesystem changes (internal fs threads, discarding preallocation on file 1718 * close, etc.). 1719 */ 1720static inline void sb_start_intwrite(struct super_block *sb) 1721{ 1722 __sb_start_write(sb, SB_FREEZE_FS); 1723} 1724 1725static inline bool sb_start_intwrite_trylock(struct super_block *sb) 1726{ 1727 return __sb_start_write_trylock(sb, SB_FREEZE_FS); 1728} 1729 1730bool inode_owner_or_capable(struct mnt_idmap *idmap, 1731 const struct inode *inode); 1732 1733/* 1734 * VFS helper functions.. 1735 */ 1736int vfs_create(struct mnt_idmap *, struct inode *, 1737 struct dentry *, umode_t, bool); 1738int vfs_mkdir(struct mnt_idmap *, struct inode *, 1739 struct dentry *, umode_t); 1740int vfs_mknod(struct mnt_idmap *, struct inode *, struct dentry *, 1741 umode_t, dev_t); 1742int vfs_symlink(struct mnt_idmap *, struct inode *, 1743 struct dentry *, const char *); 1744int vfs_link(struct dentry *, struct mnt_idmap *, struct inode *, 1745 struct dentry *, struct inode **); 1746int vfs_rmdir(struct mnt_idmap *, struct inode *, struct dentry *); 1747int vfs_unlink(struct mnt_idmap *, struct inode *, struct dentry *, 1748 struct inode **); 1749 1750/** 1751 * struct renamedata - contains all information required for renaming 1752 * @old_mnt_idmap: idmap of the old mount the inode was found from 1753 * @old_dir: parent of source 1754 * @old_dentry: source 1755 * @new_mnt_idmap: idmap of the new mount the inode was found from 1756 * @new_dir: parent of destination 1757 * @new_dentry: destination 1758 * @delegated_inode: returns an inode needing a delegation break 1759 * @flags: rename flags 1760 */ 1761struct renamedata { 1762 struct mnt_idmap *old_mnt_idmap; 1763 struct inode *old_dir; 1764 struct dentry *old_dentry; 1765 struct mnt_idmap *new_mnt_idmap; 1766 struct inode *new_dir; 1767 struct dentry *new_dentry; 1768 struct inode **delegated_inode; 1769 unsigned int flags; 1770} __randomize_layout; 1771 1772int vfs_rename(struct renamedata *); 1773 1774static inline int vfs_whiteout(struct mnt_idmap *idmap, 1775 struct inode *dir, struct dentry *dentry) 1776{ 1777 return vfs_mknod(idmap, dir, dentry, S_IFCHR | WHITEOUT_MODE, 1778 WHITEOUT_DEV); 1779} 1780 1781struct file *kernel_tmpfile_open(struct mnt_idmap *idmap, 1782 const struct path *parentpath, 1783 umode_t mode, int open_flag, 1784 const struct cred *cred); 1785struct file *kernel_file_open(const struct path *path, int flags, 1786 struct inode *inode, const struct cred *cred); 1787 1788int vfs_mkobj(struct dentry *, umode_t, 1789 int (*f)(struct dentry *, umode_t, void *), 1790 void *); 1791 1792int vfs_fchown(struct file *file, uid_t user, gid_t group); 1793int vfs_fchmod(struct file *file, umode_t mode); 1794int vfs_utimes(const struct path *path, struct timespec64 *times); 1795 1796extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 1797 1798#ifdef CONFIG_COMPAT 1799extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, 1800 unsigned long arg); 1801#else 1802#define compat_ptr_ioctl NULL 1803#endif 1804 1805/* 1806 * VFS file helper functions. 1807 */ 1808void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 1809 const struct inode *dir, umode_t mode); 1810extern bool may_open_dev(const struct path *path); 1811umode_t mode_strip_sgid(struct mnt_idmap *idmap, 1812 const struct inode *dir, umode_t mode); 1813 1814/* 1815 * This is the "filldir" function type, used by readdir() to let 1816 * the kernel specify what kind of dirent layout it wants to have. 1817 * This allows the kernel to read directories into kernel space or 1818 * to have different dirent layouts depending on the binary type. 1819 * Return 'true' to keep going and 'false' if there are no more entries. 1820 */ 1821struct dir_context; 1822typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, 1823 unsigned); 1824 1825struct dir_context { 1826 filldir_t actor; 1827 loff_t pos; 1828}; 1829 1830/* 1831 * These flags let !MMU mmap() govern direct device mapping vs immediate 1832 * copying more easily for MAP_PRIVATE, especially for ROM filesystems. 1833 * 1834 * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) 1835 * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) 1836 * NOMMU_MAP_READ: Can be mapped for reading 1837 * NOMMU_MAP_WRITE: Can be mapped for writing 1838 * NOMMU_MAP_EXEC: Can be mapped for execution 1839 */ 1840#define NOMMU_MAP_COPY 0x00000001 1841#define NOMMU_MAP_DIRECT 0x00000008 1842#define NOMMU_MAP_READ VM_MAYREAD 1843#define NOMMU_MAP_WRITE VM_MAYWRITE 1844#define NOMMU_MAP_EXEC VM_MAYEXEC 1845 1846#define NOMMU_VMFLAGS \ 1847 (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) 1848 1849/* 1850 * These flags control the behavior of the remap_file_range function pointer. 1851 * If it is called with len == 0 that means "remap to end of source file". 1852 * See Documentation/filesystems/vfs.rst for more details about this call. 1853 * 1854 * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) 1855 * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request 1856 */ 1857#define REMAP_FILE_DEDUP (1 << 0) 1858#define REMAP_FILE_CAN_SHORTEN (1 << 1) 1859 1860/* 1861 * These flags signal that the caller is ok with altering various aspects of 1862 * the behavior of the remap operation. The changes must be made by the 1863 * implementation; the vfs remap helper functions can take advantage of them. 1864 * Flags in this category exist to preserve the quirky behavior of the hoisted 1865 * btrfs clone/dedupe ioctls. 1866 */ 1867#define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) 1868 1869/* 1870 * These flags control the behavior of vfs_copy_file_range(). 1871 * They are not available to the user via syscall. 1872 * 1873 * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops 1874 */ 1875#define COPY_FILE_SPLICE (1 << 0) 1876 1877struct iov_iter; 1878struct io_uring_cmd; 1879struct offset_ctx; 1880 1881struct file_operations { 1882 struct module *owner; 1883 loff_t (*llseek) (struct file *, loff_t, int); 1884 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 1885 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 1886 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); 1887 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); 1888 int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, 1889 unsigned int flags); 1890 int (*iterate_shared) (struct file *, struct dir_context *); 1891 __poll_t (*poll) (struct file *, struct poll_table_struct *); 1892 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); 1893 long (*compat_ioctl) (struct file *, unsigned int, unsigned long); 1894 int (*mmap) (struct file *, struct vm_area_struct *); 1895 unsigned long mmap_supported_flags; 1896 int (*open) (struct inode *, struct file *); 1897 int (*flush) (struct file *, fl_owner_t id); 1898 int (*release) (struct inode *, struct file *); 1899 int (*fsync) (struct file *, loff_t, loff_t, int datasync); 1900 int (*fasync) (int, struct file *, int); 1901 int (*lock) (struct file *, int, struct file_lock *); 1902 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1903 int (*check_flags)(int); 1904 int (*flock) (struct file *, int, struct file_lock *); 1905 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); 1906 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); 1907 void (*splice_eof)(struct file *file); 1908 int (*setlease)(struct file *, int, struct file_lock **, void **); 1909 long (*fallocate)(struct file *file, int mode, loff_t offset, 1910 loff_t len); 1911 void (*show_fdinfo)(struct seq_file *m, struct file *f); 1912#ifndef CONFIG_MMU 1913 unsigned (*mmap_capabilities)(struct file *); 1914#endif 1915 ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, 1916 loff_t, size_t, unsigned int); 1917 loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, 1918 struct file *file_out, loff_t pos_out, 1919 loff_t len, unsigned int remap_flags); 1920 int (*fadvise)(struct file *, loff_t, loff_t, int); 1921 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 1922 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, 1923 unsigned int poll_flags); 1924} __randomize_layout; 1925 1926/* Wrap a directory iterator that needs exclusive inode access */ 1927int wrap_directory_iterator(struct file *, struct dir_context *, 1928 int (*) (struct file *, struct dir_context *)); 1929#define WRAP_DIR_ITER(x) \ 1930 static int shared_##x(struct file *file , struct dir_context *ctx) \ 1931 { return wrap_directory_iterator(file, ctx, x); } 1932 1933struct inode_operations { 1934 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); 1935 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); 1936 int (*permission) (struct mnt_idmap *, struct inode *, int); 1937 struct posix_acl * (*get_inode_acl)(struct inode *, int, bool); 1938 1939 int (*readlink) (struct dentry *, char __user *,int); 1940 1941 int (*create) (struct mnt_idmap *, struct inode *,struct dentry *, 1942 umode_t, bool); 1943 int (*link) (struct dentry *,struct inode *,struct dentry *); 1944 int (*unlink) (struct inode *,struct dentry *); 1945 int (*symlink) (struct mnt_idmap *, struct inode *,struct dentry *, 1946 const char *); 1947 int (*mkdir) (struct mnt_idmap *, struct inode *,struct dentry *, 1948 umode_t); 1949 int (*rmdir) (struct inode *,struct dentry *); 1950 int (*mknod) (struct mnt_idmap *, struct inode *,struct dentry *, 1951 umode_t,dev_t); 1952 int (*rename) (struct mnt_idmap *, struct inode *, struct dentry *, 1953 struct inode *, struct dentry *, unsigned int); 1954 int (*setattr) (struct mnt_idmap *, struct dentry *, struct iattr *); 1955 int (*getattr) (struct mnt_idmap *, const struct path *, 1956 struct kstat *, u32, unsigned int); 1957 ssize_t (*listxattr) (struct dentry *, char *, size_t); 1958 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, 1959 u64 len); 1960 int (*update_time)(struct inode *, int); 1961 int (*atomic_open)(struct inode *, struct dentry *, 1962 struct file *, unsigned open_flag, 1963 umode_t create_mode); 1964 int (*tmpfile) (struct mnt_idmap *, struct inode *, 1965 struct file *, umode_t); 1966 struct posix_acl *(*get_acl)(struct mnt_idmap *, struct dentry *, 1967 int); 1968 int (*set_acl)(struct mnt_idmap *, struct dentry *, 1969 struct posix_acl *, int); 1970 int (*fileattr_set)(struct mnt_idmap *idmap, 1971 struct dentry *dentry, struct fileattr *fa); 1972 int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); 1973 struct offset_ctx *(*get_offset_ctx)(struct inode *inode); 1974} ____cacheline_aligned; 1975 1976static inline ssize_t call_read_iter(struct file *file, struct kiocb *kio, 1977 struct iov_iter *iter) 1978{ 1979 return file->f_op->read_iter(kio, iter); 1980} 1981 1982static inline ssize_t call_write_iter(struct file *file, struct kiocb *kio, 1983 struct iov_iter *iter) 1984{ 1985 return file->f_op->write_iter(kio, iter); 1986} 1987 1988static inline int call_mmap(struct file *file, struct vm_area_struct *vma) 1989{ 1990 return file->f_op->mmap(file, vma); 1991} 1992 1993extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); 1994extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); 1995extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, 1996 loff_t, size_t, unsigned int); 1997extern ssize_t generic_copy_file_range(struct file *file_in, loff_t pos_in, 1998 struct file *file_out, loff_t pos_out, 1999 size_t len, unsigned int flags); 2000int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2001 struct file *file_out, loff_t pos_out, 2002 loff_t *len, unsigned int remap_flags, 2003 const struct iomap_ops *dax_read_ops); 2004int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2005 struct file *file_out, loff_t pos_out, 2006 loff_t *count, unsigned int remap_flags); 2007extern loff_t do_clone_file_range(struct file *file_in, loff_t pos_in, 2008 struct file *file_out, loff_t pos_out, 2009 loff_t len, unsigned int remap_flags); 2010extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, 2011 struct file *file_out, loff_t pos_out, 2012 loff_t len, unsigned int remap_flags); 2013extern int vfs_dedupe_file_range(struct file *file, 2014 struct file_dedupe_range *same); 2015extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, 2016 struct file *dst_file, loff_t dst_pos, 2017 loff_t len, unsigned int remap_flags); 2018 2019enum freeze_holder { 2020 FREEZE_HOLDER_KERNEL = (1U << 0), 2021 FREEZE_HOLDER_USERSPACE = (1U << 1), 2022}; 2023 2024struct super_operations { 2025 struct inode *(*alloc_inode)(struct super_block *sb); 2026 void (*destroy_inode)(struct inode *); 2027 void (*free_inode)(struct inode *); 2028 2029 void (*dirty_inode) (struct inode *, int flags); 2030 int (*write_inode) (struct inode *, struct writeback_control *wbc); 2031 int (*drop_inode) (struct inode *); 2032 void (*evict_inode) (struct inode *); 2033 void (*put_super) (struct super_block *); 2034 int (*sync_fs)(struct super_block *sb, int wait); 2035 int (*freeze_super) (struct super_block *, enum freeze_holder who); 2036 int (*freeze_fs) (struct super_block *); 2037 int (*thaw_super) (struct super_block *, enum freeze_holder who); 2038 int (*unfreeze_fs) (struct super_block *); 2039 int (*statfs) (struct dentry *, struct kstatfs *); 2040 int (*remount_fs) (struct super_block *, int *, char *); 2041 void (*umount_begin) (struct super_block *); 2042 2043 int (*show_options)(struct seq_file *, struct dentry *); 2044 int (*show_devname)(struct seq_file *, struct dentry *); 2045 int (*show_path)(struct seq_file *, struct dentry *); 2046 int (*show_stats)(struct seq_file *, struct dentry *); 2047#ifdef CONFIG_QUOTA 2048 ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); 2049 ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); 2050 struct dquot **(*get_dquots)(struct inode *); 2051#endif 2052 long (*nr_cached_objects)(struct super_block *, 2053 struct shrink_control *); 2054 long (*free_cached_objects)(struct super_block *, 2055 struct shrink_control *); 2056 void (*shutdown)(struct super_block *sb); 2057}; 2058 2059/* 2060 * Inode flags - they have no relation to superblock flags now 2061 */ 2062#define S_SYNC (1 << 0) /* Writes are synced at once */ 2063#define S_NOATIME (1 << 1) /* Do not update access times */ 2064#define S_APPEND (1 << 2) /* Append-only file */ 2065#define S_IMMUTABLE (1 << 3) /* Immutable file */ 2066#define S_DEAD (1 << 4) /* removed, but still open directory */ 2067#define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ 2068#define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ 2069#define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ 2070#define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ 2071#define S_PRIVATE (1 << 9) /* Inode is fs-internal */ 2072#define S_IMA (1 << 10) /* Inode has an associated IMA struct */ 2073#define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ 2074#define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ 2075#ifdef CONFIG_FS_DAX 2076#define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ 2077#else 2078#define S_DAX 0 /* Make all the DAX code disappear */ 2079#endif 2080#define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ 2081#define S_CASEFOLD (1 << 15) /* Casefolded file */ 2082#define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ 2083#define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ 2084 2085/* 2086 * Note that nosuid etc flags are inode-specific: setting some file-system 2087 * flags just means all the inodes inherit those flags by default. It might be 2088 * possible to override it selectively if you really wanted to with some 2089 * ioctl() that is not currently implemented. 2090 * 2091 * Exception: SB_RDONLY is always applied to the entire file system. 2092 * 2093 * Unfortunately, it is possible to change a filesystems flags with it mounted 2094 * with files in use. This means that all of the inodes will not have their 2095 * i_flags updated. Hence, i_flags no longer inherit the superblock mount 2096 * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org 2097 */ 2098#define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) 2099 2100static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } 2101#define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) 2102#define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ 2103 ((inode)->i_flags & S_SYNC)) 2104#define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ 2105 ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) 2106#define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) 2107#define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) 2108#define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) 2109 2110#define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) 2111#define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) 2112#define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) 2113#define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) 2114 2115#define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) 2116#define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) 2117#define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) 2118#define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) 2119#define IS_IMA(inode) ((inode)->i_flags & S_IMA) 2120#define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) 2121#define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) 2122#define IS_DAX(inode) ((inode)->i_flags & S_DAX) 2123#define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) 2124#define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) 2125#define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) 2126 2127#define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ 2128 (inode)->i_rdev == WHITEOUT_DEV) 2129 2130static inline bool HAS_UNMAPPED_ID(struct mnt_idmap *idmap, 2131 struct inode *inode) 2132{ 2133 return !vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2134 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)); 2135} 2136 2137static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) 2138{ 2139 *kiocb = (struct kiocb) { 2140 .ki_filp = filp, 2141 .ki_flags = filp->f_iocb_flags, 2142 .ki_ioprio = get_current_ioprio(), 2143 }; 2144} 2145 2146static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, 2147 struct file *filp) 2148{ 2149 *kiocb = (struct kiocb) { 2150 .ki_filp = filp, 2151 .ki_flags = kiocb_src->ki_flags, 2152 .ki_ioprio = kiocb_src->ki_ioprio, 2153 .ki_pos = kiocb_src->ki_pos, 2154 }; 2155} 2156 2157/* 2158 * Inode state bits. Protected by inode->i_lock 2159 * 2160 * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, 2161 * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. 2162 * 2163 * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, 2164 * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at 2165 * various stages of removing an inode. 2166 * 2167 * Two bits are used for locking and completion notification, I_NEW and I_SYNC. 2168 * 2169 * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on 2170 * fdatasync() (unless I_DIRTY_DATASYNC is also set). 2171 * Timestamp updates are the usual cause. 2172 * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of 2173 * these changes separately from I_DIRTY_SYNC so that we 2174 * don't have to write inode on fdatasync() when only 2175 * e.g. the timestamps have changed. 2176 * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. 2177 * I_DIRTY_TIME The inode itself has dirty timestamps, and the 2178 * lazytime mount option is enabled. We keep track of this 2179 * separately from I_DIRTY_SYNC in order to implement 2180 * lazytime. This gets cleared if I_DIRTY_INODE 2181 * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But 2182 * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already 2183 * in place because writeback might already be in progress 2184 * and we don't want to lose the time update 2185 * I_NEW Serves as both a mutex and completion notification. 2186 * New inodes set I_NEW. If two processes both create 2187 * the same inode, one of them will release its inode and 2188 * wait for I_NEW to be released before returning. 2189 * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can 2190 * also cause waiting on I_NEW, without I_NEW actually 2191 * being set. find_inode() uses this to prevent returning 2192 * nearly-dead inodes. 2193 * I_WILL_FREE Must be set when calling write_inode_now() if i_count 2194 * is zero. I_FREEING must be set when I_WILL_FREE is 2195 * cleared. 2196 * I_FREEING Set when inode is about to be freed but still has dirty 2197 * pages or buffers attached or the inode itself is still 2198 * dirty. 2199 * I_CLEAR Added by clear_inode(). In this state the inode is 2200 * clean and can be destroyed. Inode keeps I_FREEING. 2201 * 2202 * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are 2203 * prohibited for many purposes. iget() must wait for 2204 * the inode to be completely released, then create it 2205 * anew. Other functions will just ignore such inodes, 2206 * if appropriate. I_NEW is used for waiting. 2207 * 2208 * I_SYNC Writeback of inode is running. The bit is set during 2209 * data writeback, and cleared with a wakeup on the bit 2210 * address once it is done. The bit is also used to pin 2211 * the inode in memory for flusher thread. 2212 * 2213 * I_REFERENCED Marks the inode as recently references on the LRU list. 2214 * 2215 * I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit(). 2216 * 2217 * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to 2218 * synchronize competing switching instances and to tell 2219 * wb stat updates to grab the i_pages lock. See 2220 * inode_switch_wbs_work_fn() for details. 2221 * 2222 * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper 2223 * and work dirs among overlayfs mounts. 2224 * 2225 * I_CREATING New object's inode in the middle of setting up. 2226 * 2227 * I_DONTCACHE Evict inode as soon as it is not used anymore. 2228 * 2229 * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. 2230 * Used to detect that mark_inode_dirty() should not move 2231 * inode between dirty lists. 2232 * 2233 * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. 2234 * 2235 * Q: What is the difference between I_WILL_FREE and I_FREEING? 2236 */ 2237#define I_DIRTY_SYNC (1 << 0) 2238#define I_DIRTY_DATASYNC (1 << 1) 2239#define I_DIRTY_PAGES (1 << 2) 2240#define __I_NEW 3 2241#define I_NEW (1 << __I_NEW) 2242#define I_WILL_FREE (1 << 4) 2243#define I_FREEING (1 << 5) 2244#define I_CLEAR (1 << 6) 2245#define __I_SYNC 7 2246#define I_SYNC (1 << __I_SYNC) 2247#define I_REFERENCED (1 << 8) 2248#define __I_DIO_WAKEUP 9 2249#define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP) 2250#define I_LINKABLE (1 << 10) 2251#define I_DIRTY_TIME (1 << 11) 2252#define I_WB_SWITCH (1 << 13) 2253#define I_OVL_INUSE (1 << 14) 2254#define I_CREATING (1 << 15) 2255#define I_DONTCACHE (1 << 16) 2256#define I_SYNC_QUEUED (1 << 17) 2257#define I_PINNING_FSCACHE_WB (1 << 18) 2258 2259#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 2260#define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) 2261#define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) 2262 2263extern void __mark_inode_dirty(struct inode *, int); 2264static inline void mark_inode_dirty(struct inode *inode) 2265{ 2266 __mark_inode_dirty(inode, I_DIRTY); 2267} 2268 2269static inline void mark_inode_dirty_sync(struct inode *inode) 2270{ 2271 __mark_inode_dirty(inode, I_DIRTY_SYNC); 2272} 2273 2274/* 2275 * Returns true if the given inode itself only has dirty timestamps (its pages 2276 * may still be dirty) and isn't currently being allocated or freed. 2277 * Filesystems should call this if when writing an inode when lazytime is 2278 * enabled, they want to opportunistically write the timestamps of other inodes 2279 * located very nearby on-disk, e.g. in the same inode block. This returns true 2280 * if the given inode is in need of such an opportunistic update. Requires 2281 * i_lock, or at least later re-checking under i_lock. 2282 */ 2283static inline bool inode_is_dirtytime_only(struct inode *inode) 2284{ 2285 return (inode->i_state & (I_DIRTY_TIME | I_NEW | 2286 I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; 2287} 2288 2289extern void inc_nlink(struct inode *inode); 2290extern void drop_nlink(struct inode *inode); 2291extern void clear_nlink(struct inode *inode); 2292extern void set_nlink(struct inode *inode, unsigned int nlink); 2293 2294static inline void inode_inc_link_count(struct inode *inode) 2295{ 2296 inc_nlink(inode); 2297 mark_inode_dirty(inode); 2298} 2299 2300static inline void inode_dec_link_count(struct inode *inode) 2301{ 2302 drop_nlink(inode); 2303 mark_inode_dirty(inode); 2304} 2305 2306enum file_time_flags { 2307 S_ATIME = 1, 2308 S_MTIME = 2, 2309 S_CTIME = 4, 2310 S_VERSION = 8, 2311}; 2312 2313extern bool atime_needs_update(const struct path *, struct inode *); 2314extern void touch_atime(const struct path *); 2315int inode_update_time(struct inode *inode, int flags); 2316 2317static inline void file_accessed(struct file *file) 2318{ 2319 if (!(file->f_flags & O_NOATIME)) 2320 touch_atime(&file->f_path); 2321} 2322 2323extern int file_modified(struct file *file); 2324int kiocb_modified(struct kiocb *iocb); 2325 2326int sync_inode_metadata(struct inode *inode, int wait); 2327 2328struct file_system_type { 2329 const char *name; 2330 int fs_flags; 2331#define FS_REQUIRES_DEV 1 2332#define FS_BINARY_MOUNTDATA 2 2333#define FS_HAS_SUBTYPE 4 2334#define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ 2335#define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ 2336#define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ 2337#define FS_MGTIME 64 /* FS uses multigrain timestamps */ 2338#define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ 2339 int (*init_fs_context)(struct fs_context *); 2340 const struct fs_parameter_spec *parameters; 2341 struct dentry *(*mount) (struct file_system_type *, int, 2342 const char *, void *); 2343 void (*kill_sb) (struct super_block *); 2344 struct module *owner; 2345 struct file_system_type * next; 2346 struct hlist_head fs_supers; 2347 2348 struct lock_class_key s_lock_key; 2349 struct lock_class_key s_umount_key; 2350 struct lock_class_key s_vfs_rename_key; 2351 struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; 2352 2353 struct lock_class_key i_lock_key; 2354 struct lock_class_key i_mutex_key; 2355 struct lock_class_key invalidate_lock_key; 2356 struct lock_class_key i_mutex_dir_key; 2357}; 2358 2359#define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) 2360 2361/** 2362 * is_mgtime: is this inode using multigrain timestamps 2363 * @inode: inode to test for multigrain timestamps 2364 * 2365 * Return true if the inode uses multigrain timestamps, false otherwise. 2366 */ 2367static inline bool is_mgtime(const struct inode *inode) 2368{ 2369 return inode->i_sb->s_type->fs_flags & FS_MGTIME; 2370} 2371 2372extern struct dentry *mount_bdev(struct file_system_type *fs_type, 2373 int flags, const char *dev_name, void *data, 2374 int (*fill_super)(struct super_block *, void *, int)); 2375extern struct dentry *mount_single(struct file_system_type *fs_type, 2376 int flags, void *data, 2377 int (*fill_super)(struct super_block *, void *, int)); 2378extern struct dentry *mount_nodev(struct file_system_type *fs_type, 2379 int flags, void *data, 2380 int (*fill_super)(struct super_block *, void *, int)); 2381extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); 2382void retire_super(struct super_block *sb); 2383void generic_shutdown_super(struct super_block *sb); 2384void kill_block_super(struct super_block *sb); 2385void kill_anon_super(struct super_block *sb); 2386void kill_litter_super(struct super_block *sb); 2387void deactivate_super(struct super_block *sb); 2388void deactivate_locked_super(struct super_block *sb); 2389int set_anon_super(struct super_block *s, void *data); 2390int set_anon_super_fc(struct super_block *s, struct fs_context *fc); 2391int get_anon_bdev(dev_t *); 2392void free_anon_bdev(dev_t); 2393struct super_block *sget_fc(struct fs_context *fc, 2394 int (*test)(struct super_block *, struct fs_context *), 2395 int (*set)(struct super_block *, struct fs_context *)); 2396struct super_block *sget(struct file_system_type *type, 2397 int (*test)(struct super_block *,void *), 2398 int (*set)(struct super_block *,void *), 2399 int flags, void *data); 2400struct super_block *sget_dev(struct fs_context *fc, dev_t dev); 2401 2402/* Alas, no aliases. Too much hassle with bringing module.h everywhere */ 2403#define fops_get(fops) \ 2404 (((fops) && try_module_get((fops)->owner) ? (fops) : NULL)) 2405#define fops_put(fops) \ 2406 do { if (fops) module_put((fops)->owner); } while(0) 2407/* 2408 * This one is to be used *ONLY* from ->open() instances. 2409 * fops must be non-NULL, pinned down *and* module dependencies 2410 * should be sufficient to pin the caller down as well. 2411 */ 2412#define replace_fops(f, fops) \ 2413 do { \ 2414 struct file *__file = (f); \ 2415 fops_put(__file->f_op); \ 2416 BUG_ON(!(__file->f_op = (fops))); \ 2417 } while(0) 2418 2419extern int register_filesystem(struct file_system_type *); 2420extern int unregister_filesystem(struct file_system_type *); 2421extern int vfs_statfs(const struct path *, struct kstatfs *); 2422extern int user_statfs(const char __user *, struct kstatfs *); 2423extern int fd_statfs(int, struct kstatfs *); 2424int freeze_super(struct super_block *super, enum freeze_holder who); 2425int thaw_super(struct super_block *super, enum freeze_holder who); 2426extern __printf(2, 3) 2427int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); 2428extern int super_setup_bdi(struct super_block *sb); 2429 2430extern int current_umask(void); 2431 2432extern void ihold(struct inode * inode); 2433extern void iput(struct inode *); 2434int inode_update_timestamps(struct inode *inode, int flags); 2435int generic_update_time(struct inode *, int); 2436 2437/* /sys/fs */ 2438extern struct kobject *fs_kobj; 2439 2440#define MAX_RW_COUNT (INT_MAX & PAGE_MASK) 2441 2442/* fs/open.c */ 2443struct audit_names; 2444struct filename { 2445 const char *name; /* pointer to actual string */ 2446 const __user char *uptr; /* original userland pointer */ 2447 int refcnt; 2448 struct audit_names *aname; 2449 const char iname[]; 2450}; 2451static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); 2452 2453static inline struct mnt_idmap *file_mnt_idmap(struct file *file) 2454{ 2455 return mnt_idmap(file->f_path.mnt); 2456} 2457 2458/** 2459 * is_idmapped_mnt - check whether a mount is mapped 2460 * @mnt: the mount to check 2461 * 2462 * If @mnt has an non @nop_mnt_idmap attached to it then @mnt is mapped. 2463 * 2464 * Return: true if mount is mapped, false if not. 2465 */ 2466static inline bool is_idmapped_mnt(const struct vfsmount *mnt) 2467{ 2468 return mnt_idmap(mnt) != &nop_mnt_idmap; 2469} 2470 2471extern long vfs_truncate(const struct path *, loff_t); 2472int do_truncate(struct mnt_idmap *, struct dentry *, loff_t start, 2473 unsigned int time_attrs, struct file *filp); 2474extern int vfs_fallocate(struct file *file, int mode, loff_t offset, 2475 loff_t len); 2476extern long do_sys_open(int dfd, const char __user *filename, int flags, 2477 umode_t mode); 2478extern struct file *file_open_name(struct filename *, int, umode_t); 2479extern struct file *filp_open(const char *, int, umode_t); 2480extern struct file *file_open_root(const struct path *, 2481 const char *, int, umode_t); 2482static inline struct file *file_open_root_mnt(struct vfsmount *mnt, 2483 const char *name, int flags, umode_t mode) 2484{ 2485 return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, 2486 name, flags, mode); 2487} 2488struct file *dentry_open(const struct path *path, int flags, 2489 const struct cred *creds); 2490struct file *dentry_create(const struct path *path, int flags, umode_t mode, 2491 const struct cred *cred); 2492struct file *backing_file_open(const struct path *path, int flags, 2493 const struct path *real_path, 2494 const struct cred *cred); 2495struct path *backing_file_real_path(struct file *f); 2496 2497/* 2498 * file_real_path - get the path corresponding to f_inode 2499 * 2500 * When opening a backing file for a stackable filesystem (e.g., 2501 * overlayfs) f_path may be on the stackable filesystem and f_inode on 2502 * the underlying filesystem. When the path associated with f_inode is 2503 * needed, this helper should be used instead of accessing f_path 2504 * directly. 2505*/ 2506static inline const struct path *file_real_path(struct file *f) 2507{ 2508 if (unlikely(f->f_mode & FMODE_BACKING)) 2509 return backing_file_real_path(f); 2510 return &f->f_path; 2511} 2512 2513static inline struct file *file_clone_open(struct file *file) 2514{ 2515 return dentry_open(&file->f_path, file->f_flags, file->f_cred); 2516} 2517extern int filp_close(struct file *, fl_owner_t id); 2518 2519extern struct filename *getname_flags(const char __user *, int, int *); 2520extern struct filename *getname_uflags(const char __user *, int); 2521extern struct filename *getname(const char __user *); 2522extern struct filename *getname_kernel(const char *); 2523extern void putname(struct filename *name); 2524 2525extern int finish_open(struct file *file, struct dentry *dentry, 2526 int (*open)(struct inode *, struct file *)); 2527extern int finish_no_open(struct file *file, struct dentry *dentry); 2528 2529/* Helper for the simple case when original dentry is used */ 2530static inline int finish_open_simple(struct file *file, int error) 2531{ 2532 if (error) 2533 return error; 2534 2535 return finish_open(file, file->f_path.dentry, NULL); 2536} 2537 2538/* fs/dcache.c */ 2539extern void __init vfs_caches_init_early(void); 2540extern void __init vfs_caches_init(void); 2541 2542extern struct kmem_cache *names_cachep; 2543 2544#define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) 2545#define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) 2546 2547extern struct super_block *blockdev_superblock; 2548static inline bool sb_is_blkdev_sb(struct super_block *sb) 2549{ 2550 return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; 2551} 2552 2553void emergency_thaw_all(void); 2554extern int sync_filesystem(struct super_block *); 2555extern const struct file_operations def_blk_fops; 2556extern const struct file_operations def_chr_fops; 2557 2558/* fs/char_dev.c */ 2559#define CHRDEV_MAJOR_MAX 512 2560/* Marks the bottom of the first segment of free char majors */ 2561#define CHRDEV_MAJOR_DYN_END 234 2562/* Marks the top and bottom of the second segment of free char majors */ 2563#define CHRDEV_MAJOR_DYN_EXT_START 511 2564#define CHRDEV_MAJOR_DYN_EXT_END 384 2565 2566extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); 2567extern int register_chrdev_region(dev_t, unsigned, const char *); 2568extern int __register_chrdev(unsigned int major, unsigned int baseminor, 2569 unsigned int count, const char *name, 2570 const struct file_operations *fops); 2571extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, 2572 unsigned int count, const char *name); 2573extern void unregister_chrdev_region(dev_t, unsigned); 2574extern void chrdev_show(struct seq_file *,off_t); 2575 2576static inline int register_chrdev(unsigned int major, const char *name, 2577 const struct file_operations *fops) 2578{ 2579 return __register_chrdev(major, 0, 256, name, fops); 2580} 2581 2582static inline void unregister_chrdev(unsigned int major, const char *name) 2583{ 2584 __unregister_chrdev(major, 0, 256, name); 2585} 2586 2587extern void init_special_inode(struct inode *, umode_t, dev_t); 2588 2589/* Invalid inode operations -- fs/bad_inode.c */ 2590extern void make_bad_inode(struct inode *); 2591extern bool is_bad_inode(struct inode *); 2592 2593extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, 2594 loff_t lend); 2595extern int __must_check file_check_and_advance_wb_err(struct file *file); 2596extern int __must_check file_write_and_wait_range(struct file *file, 2597 loff_t start, loff_t end); 2598 2599static inline int file_write_and_wait(struct file *file) 2600{ 2601 return file_write_and_wait_range(file, 0, LLONG_MAX); 2602} 2603 2604extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, 2605 int datasync); 2606extern int vfs_fsync(struct file *file, int datasync); 2607 2608extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, 2609 unsigned int flags); 2610 2611static inline bool iocb_is_dsync(const struct kiocb *iocb) 2612{ 2613 return (iocb->ki_flags & IOCB_DSYNC) || 2614 IS_SYNC(iocb->ki_filp->f_mapping->host); 2615} 2616 2617/* 2618 * Sync the bytes written if this was a synchronous write. Expect ki_pos 2619 * to already be updated for the write, and will return either the amount 2620 * of bytes passed in, or an error if syncing the file failed. 2621 */ 2622static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) 2623{ 2624 if (iocb_is_dsync(iocb)) { 2625 int ret = vfs_fsync_range(iocb->ki_filp, 2626 iocb->ki_pos - count, iocb->ki_pos - 1, 2627 (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); 2628 if (ret) 2629 return ret; 2630 } 2631 2632 return count; 2633} 2634 2635extern void emergency_sync(void); 2636extern void emergency_remount(void); 2637 2638#ifdef CONFIG_BLOCK 2639extern int bmap(struct inode *inode, sector_t *block); 2640#else 2641static inline int bmap(struct inode *inode, sector_t *block) 2642{ 2643 return -EINVAL; 2644} 2645#endif 2646 2647int notify_change(struct mnt_idmap *, struct dentry *, 2648 struct iattr *, struct inode **); 2649int inode_permission(struct mnt_idmap *, struct inode *, int); 2650int generic_permission(struct mnt_idmap *, struct inode *, int); 2651static inline int file_permission(struct file *file, int mask) 2652{ 2653 return inode_permission(file_mnt_idmap(file), 2654 file_inode(file), mask); 2655} 2656static inline int path_permission(const struct path *path, int mask) 2657{ 2658 return inode_permission(mnt_idmap(path->mnt), 2659 d_inode(path->dentry), mask); 2660} 2661int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2662 struct inode *inode); 2663 2664static inline bool execute_ok(struct inode *inode) 2665{ 2666 return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); 2667} 2668 2669static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) 2670{ 2671 return (inode->i_mode ^ mode) & S_IFMT; 2672} 2673 2674/** 2675 * file_start_write - get write access to a superblock for regular file io 2676 * @file: the file we want to write to 2677 * 2678 * This is a variant of sb_start_write() which is a noop on non-regualr file. 2679 * Should be matched with a call to file_end_write(). 2680 */ 2681static inline void file_start_write(struct file *file) 2682{ 2683 if (!S_ISREG(file_inode(file)->i_mode)) 2684 return; 2685 sb_start_write(file_inode(file)->i_sb); 2686} 2687 2688static inline bool file_start_write_trylock(struct file *file) 2689{ 2690 if (!S_ISREG(file_inode(file)->i_mode)) 2691 return true; 2692 return sb_start_write_trylock(file_inode(file)->i_sb); 2693} 2694 2695/** 2696 * file_end_write - drop write access to a superblock of a regular file 2697 * @file: the file we wrote to 2698 * 2699 * Should be matched with a call to file_start_write(). 2700 */ 2701static inline void file_end_write(struct file *file) 2702{ 2703 if (!S_ISREG(file_inode(file)->i_mode)) 2704 return; 2705 sb_end_write(file_inode(file)->i_sb); 2706} 2707 2708/** 2709 * kiocb_start_write - get write access to a superblock for async file io 2710 * @iocb: the io context we want to submit the write with 2711 * 2712 * This is a variant of sb_start_write() for async io submission. 2713 * Should be matched with a call to kiocb_end_write(). 2714 */ 2715static inline void kiocb_start_write(struct kiocb *iocb) 2716{ 2717 struct inode *inode = file_inode(iocb->ki_filp); 2718 2719 sb_start_write(inode->i_sb); 2720 /* 2721 * Fool lockdep by telling it the lock got released so that it 2722 * doesn't complain about the held lock when we return to userspace. 2723 */ 2724 __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); 2725} 2726 2727/** 2728 * kiocb_end_write - drop write access to a superblock after async file io 2729 * @iocb: the io context we sumbitted the write with 2730 * 2731 * Should be matched with a call to kiocb_start_write(). 2732 */ 2733static inline void kiocb_end_write(struct kiocb *iocb) 2734{ 2735 struct inode *inode = file_inode(iocb->ki_filp); 2736 2737 /* 2738 * Tell lockdep we inherited freeze protection from submission thread. 2739 */ 2740 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 2741 sb_end_write(inode->i_sb); 2742} 2743 2744/* 2745 * This is used for regular files where some users -- especially the 2746 * currently executed binary in a process, previously handled via 2747 * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap 2748 * read-write shared) accesses. 2749 * 2750 * get_write_access() gets write permission for a file. 2751 * put_write_access() releases this write permission. 2752 * deny_write_access() denies write access to a file. 2753 * allow_write_access() re-enables write access to a file. 2754 * 2755 * The i_writecount field of an inode can have the following values: 2756 * 0: no write access, no denied write access 2757 * < 0: (-i_writecount) users that denied write access to the file. 2758 * > 0: (i_writecount) users that have write access to the file. 2759 * 2760 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 2761 * except for the cases where we don't hold i_writecount yet. Then we need to 2762 * use {get,deny}_write_access() - these functions check the sign and refuse 2763 * to do the change if sign is wrong. 2764 */ 2765static inline int get_write_access(struct inode *inode) 2766{ 2767 return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; 2768} 2769static inline int deny_write_access(struct file *file) 2770{ 2771 struct inode *inode = file_inode(file); 2772 return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; 2773} 2774static inline void put_write_access(struct inode * inode) 2775{ 2776 atomic_dec(&inode->i_writecount); 2777} 2778static inline void allow_write_access(struct file *file) 2779{ 2780 if (file) 2781 atomic_inc(&file_inode(file)->i_writecount); 2782} 2783static inline bool inode_is_open_for_write(const struct inode *inode) 2784{ 2785 return atomic_read(&inode->i_writecount) > 0; 2786} 2787 2788#if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) 2789static inline void i_readcount_dec(struct inode *inode) 2790{ 2791 BUG_ON(atomic_dec_return(&inode->i_readcount) < 0); 2792} 2793static inline void i_readcount_inc(struct inode *inode) 2794{ 2795 atomic_inc(&inode->i_readcount); 2796} 2797#else 2798static inline void i_readcount_dec(struct inode *inode) 2799{ 2800 return; 2801} 2802static inline void i_readcount_inc(struct inode *inode) 2803{ 2804 return; 2805} 2806#endif 2807extern int do_pipe_flags(int *, int); 2808 2809extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); 2810ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); 2811extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); 2812extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); 2813extern struct file * open_exec(const char *); 2814 2815/* fs/dcache.c -- generic fs support functions */ 2816extern bool is_subdir(struct dentry *, struct dentry *); 2817extern bool path_is_under(const struct path *, const struct path *); 2818 2819extern char *file_path(struct file *, char *, int); 2820 2821#include <linux/err.h> 2822 2823/* needed for stackable file system support */ 2824extern loff_t default_llseek(struct file *file, loff_t offset, int whence); 2825 2826extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); 2827 2828extern int inode_init_always(struct super_block *, struct inode *); 2829extern void inode_init_once(struct inode *); 2830extern void address_space_init_once(struct address_space *mapping); 2831extern struct inode * igrab(struct inode *); 2832extern ino_t iunique(struct super_block *, ino_t); 2833extern int inode_needs_sync(struct inode *inode); 2834extern int generic_delete_inode(struct inode *inode); 2835static inline int generic_drop_inode(struct inode *inode) 2836{ 2837 return !inode->i_nlink || inode_unhashed(inode); 2838} 2839extern void d_mark_dontcache(struct inode *inode); 2840 2841extern struct inode *ilookup5_nowait(struct super_block *sb, 2842 unsigned long hashval, int (*test)(struct inode *, void *), 2843 void *data); 2844extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 2845 int (*test)(struct inode *, void *), void *data); 2846extern struct inode *ilookup(struct super_block *sb, unsigned long ino); 2847 2848extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 2849 int (*test)(struct inode *, void *), 2850 int (*set)(struct inode *, void *), 2851 void *data); 2852extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *); 2853extern struct inode * iget_locked(struct super_block *, unsigned long); 2854extern struct inode *find_inode_nowait(struct super_block *, 2855 unsigned long, 2856 int (*match)(struct inode *, 2857 unsigned long, void *), 2858 void *data); 2859extern struct inode *find_inode_rcu(struct super_block *, unsigned long, 2860 int (*)(struct inode *, void *), void *); 2861extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); 2862extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); 2863extern int insert_inode_locked(struct inode *); 2864#ifdef CONFIG_DEBUG_LOCK_ALLOC 2865extern void lockdep_annotate_inode_mutex_key(struct inode *inode); 2866#else 2867static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; 2868#endif 2869extern void unlock_new_inode(struct inode *); 2870extern void discard_new_inode(struct inode *); 2871extern unsigned int get_next_ino(void); 2872extern void evict_inodes(struct super_block *sb); 2873void dump_mapping(const struct address_space *); 2874 2875/* 2876 * Userspace may rely on the inode number being non-zero. For example, glibc 2877 * simply ignores files with zero i_ino in unlink() and other places. 2878 * 2879 * As an additional complication, if userspace was compiled with 2880 * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the 2881 * lower 32 bits, so we need to check that those aren't zero explicitly. With 2882 * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but 2883 * better safe than sorry. 2884 */ 2885static inline bool is_zero_ino(ino_t ino) 2886{ 2887 return (u32)ino == 0; 2888} 2889 2890extern void __iget(struct inode * inode); 2891extern void iget_failed(struct inode *); 2892extern void clear_inode(struct inode *); 2893extern void __destroy_inode(struct inode *); 2894extern struct inode *new_inode_pseudo(struct super_block *sb); 2895extern struct inode *new_inode(struct super_block *sb); 2896extern void free_inode_nonrcu(struct inode *inode); 2897extern int setattr_should_drop_suidgid(struct mnt_idmap *, struct inode *); 2898extern int file_remove_privs(struct file *); 2899int setattr_should_drop_sgid(struct mnt_idmap *idmap, 2900 const struct inode *inode); 2901 2902/* 2903 * This must be used for allocating filesystems specific inodes to set 2904 * up the inode reclaim context correctly. 2905 */ 2906static inline void * 2907alloc_inode_sb(struct super_block *sb, struct kmem_cache *cache, gfp_t gfp) 2908{ 2909 return kmem_cache_alloc_lru(cache, &sb->s_inode_lru, gfp); 2910} 2911 2912extern void __insert_inode_hash(struct inode *, unsigned long hashval); 2913static inline void insert_inode_hash(struct inode *inode) 2914{ 2915 __insert_inode_hash(inode, inode->i_ino); 2916} 2917 2918extern void __remove_inode_hash(struct inode *); 2919static inline void remove_inode_hash(struct inode *inode) 2920{ 2921 if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) 2922 __remove_inode_hash(inode); 2923} 2924 2925extern void inode_sb_list_add(struct inode *inode); 2926extern void inode_add_lru(struct inode *inode); 2927 2928extern int sb_set_blocksize(struct super_block *, int); 2929extern int sb_min_blocksize(struct super_block *, int); 2930 2931extern int generic_file_mmap(struct file *, struct vm_area_struct *); 2932extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); 2933extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); 2934int generic_write_checks_count(struct kiocb *iocb, loff_t *count); 2935extern int generic_write_check_limits(struct file *file, loff_t pos, 2936 loff_t *count); 2937extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); 2938ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, 2939 ssize_t already_read); 2940extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); 2941extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); 2942extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); 2943extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); 2944ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); 2945ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 2946 ssize_t direct_written, ssize_t buffered_written); 2947 2948ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, 2949 rwf_t flags); 2950ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, 2951 rwf_t flags); 2952ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, 2953 struct iov_iter *iter); 2954ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, 2955 struct iov_iter *iter); 2956 2957/* fs/splice.c */ 2958ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2959 struct pipe_inode_info *pipe, 2960 size_t len, unsigned int flags); 2961ssize_t copy_splice_read(struct file *in, loff_t *ppos, 2962 struct pipe_inode_info *pipe, 2963 size_t len, unsigned int flags); 2964extern ssize_t iter_file_splice_write(struct pipe_inode_info *, 2965 struct file *, loff_t *, size_t, unsigned int); 2966extern long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 2967 loff_t *opos, size_t len, unsigned int flags); 2968 2969 2970extern void 2971file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); 2972extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); 2973#define no_llseek NULL 2974extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); 2975extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); 2976extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, 2977 int whence, loff_t maxsize, loff_t eof); 2978extern loff_t fixed_size_llseek(struct file *file, loff_t offset, 2979 int whence, loff_t size); 2980extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); 2981extern loff_t no_seek_end_llseek(struct file *, loff_t, int); 2982int rw_verify_area(int, struct file *, const loff_t *, size_t); 2983extern int generic_file_open(struct inode * inode, struct file * filp); 2984extern int nonseekable_open(struct inode * inode, struct file * filp); 2985extern int stream_open(struct inode * inode, struct file * filp); 2986 2987#ifdef CONFIG_BLOCK 2988typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, 2989 loff_t file_offset); 2990 2991enum { 2992 /* need locking between buffered and direct access */ 2993 DIO_LOCKING = 0x01, 2994 2995 /* filesystem does not support filling holes */ 2996 DIO_SKIP_HOLES = 0x02, 2997}; 2998 2999ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 3000 struct block_device *bdev, struct iov_iter *iter, 3001 get_block_t get_block, 3002 dio_iodone_t end_io, 3003 int flags); 3004 3005static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, 3006 struct inode *inode, 3007 struct iov_iter *iter, 3008 get_block_t get_block) 3009{ 3010 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, 3011 get_block, NULL, DIO_LOCKING | DIO_SKIP_HOLES); 3012} 3013#endif 3014 3015void inode_dio_wait(struct inode *inode); 3016 3017/** 3018 * inode_dio_begin - signal start of a direct I/O requests 3019 * @inode: inode the direct I/O happens on 3020 * 3021 * This is called once we've finished processing a direct I/O request, 3022 * and is used to wake up callers waiting for direct I/O to be quiesced. 3023 */ 3024static inline void inode_dio_begin(struct inode *inode) 3025{ 3026 atomic_inc(&inode->i_dio_count); 3027} 3028 3029/** 3030 * inode_dio_end - signal finish of a direct I/O requests 3031 * @inode: inode the direct I/O happens on 3032 * 3033 * This is called once we've finished processing a direct I/O request, 3034 * and is used to wake up callers waiting for direct I/O to be quiesced. 3035 */ 3036static inline void inode_dio_end(struct inode *inode) 3037{ 3038 if (atomic_dec_and_test(&inode->i_dio_count)) 3039 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); 3040} 3041 3042extern void inode_set_flags(struct inode *inode, unsigned int flags, 3043 unsigned int mask); 3044 3045extern const struct file_operations generic_ro_fops; 3046 3047#define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) 3048 3049extern int readlink_copy(char __user *, int, const char *); 3050extern int page_readlink(struct dentry *, char __user *, int); 3051extern const char *page_get_link(struct dentry *, struct inode *, 3052 struct delayed_call *); 3053extern void page_put_link(void *); 3054extern int page_symlink(struct inode *inode, const char *symname, int len); 3055extern const struct inode_operations page_symlink_inode_operations; 3056extern void kfree_link(void *); 3057void fill_mg_cmtime(struct kstat *stat, u32 request_mask, struct inode *inode); 3058void generic_fillattr(struct mnt_idmap *, u32, struct inode *, struct kstat *); 3059void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); 3060extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); 3061extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); 3062void __inode_add_bytes(struct inode *inode, loff_t bytes); 3063void inode_add_bytes(struct inode *inode, loff_t bytes); 3064void __inode_sub_bytes(struct inode *inode, loff_t bytes); 3065void inode_sub_bytes(struct inode *inode, loff_t bytes); 3066static inline loff_t __inode_get_bytes(struct inode *inode) 3067{ 3068 return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; 3069} 3070loff_t inode_get_bytes(struct inode *inode); 3071void inode_set_bytes(struct inode *inode, loff_t bytes); 3072const char *simple_get_link(struct dentry *, struct inode *, 3073 struct delayed_call *); 3074extern const struct inode_operations simple_symlink_inode_operations; 3075 3076extern int iterate_dir(struct file *, struct dir_context *); 3077 3078int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, 3079 int flags); 3080int vfs_fstat(int fd, struct kstat *stat); 3081 3082static inline int vfs_stat(const char __user *filename, struct kstat *stat) 3083{ 3084 return vfs_fstatat(AT_FDCWD, filename, stat, 0); 3085} 3086static inline int vfs_lstat(const char __user *name, struct kstat *stat) 3087{ 3088 return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); 3089} 3090 3091extern const char *vfs_get_link(struct dentry *, struct delayed_call *); 3092extern int vfs_readlink(struct dentry *, char __user *, int); 3093 3094extern struct file_system_type *get_filesystem(struct file_system_type *fs); 3095extern void put_filesystem(struct file_system_type *fs); 3096extern struct file_system_type *get_fs_type(const char *name); 3097extern struct super_block *get_active_super(struct block_device *bdev); 3098extern void drop_super(struct super_block *sb); 3099extern void drop_super_exclusive(struct super_block *sb); 3100extern void iterate_supers(void (*)(struct super_block *, void *), void *); 3101extern void iterate_supers_type(struct file_system_type *, 3102 void (*)(struct super_block *, void *), void *); 3103 3104extern int dcache_dir_open(struct inode *, struct file *); 3105extern int dcache_dir_close(struct inode *, struct file *); 3106extern loff_t dcache_dir_lseek(struct file *, loff_t, int); 3107extern int dcache_readdir(struct file *, struct dir_context *); 3108extern int simple_setattr(struct mnt_idmap *, struct dentry *, 3109 struct iattr *); 3110extern int simple_getattr(struct mnt_idmap *, const struct path *, 3111 struct kstat *, u32, unsigned int); 3112extern int simple_statfs(struct dentry *, struct kstatfs *); 3113extern int simple_open(struct inode *inode, struct file *file); 3114extern int simple_link(struct dentry *, struct inode *, struct dentry *); 3115extern int simple_unlink(struct inode *, struct dentry *); 3116extern int simple_rmdir(struct inode *, struct dentry *); 3117void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 3118 struct inode *new_dir, struct dentry *new_dentry); 3119extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 3120 struct inode *new_dir, struct dentry *new_dentry); 3121extern int simple_rename(struct mnt_idmap *, struct inode *, 3122 struct dentry *, struct inode *, struct dentry *, 3123 unsigned int); 3124extern void simple_recursive_removal(struct dentry *, 3125 void (*callback)(struct dentry *)); 3126extern int noop_fsync(struct file *, loff_t, loff_t, int); 3127extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 3128extern int simple_empty(struct dentry *); 3129extern int simple_write_begin(struct file *file, struct address_space *mapping, 3130 loff_t pos, unsigned len, 3131 struct page **pagep, void **fsdata); 3132extern const struct address_space_operations ram_aops; 3133extern int always_delete_dentry(const struct dentry *); 3134extern struct inode *alloc_anon_inode(struct super_block *); 3135extern int simple_nosetlease(struct file *, int, struct file_lock **, void **); 3136extern const struct dentry_operations simple_dentry_operations; 3137 3138extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); 3139extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); 3140extern const struct file_operations simple_dir_operations; 3141extern const struct inode_operations simple_dir_inode_operations; 3142extern void make_empty_dir_inode(struct inode *inode); 3143extern bool is_empty_dir_inode(struct inode *inode); 3144struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; 3145struct dentry *d_alloc_name(struct dentry *, const char *); 3146extern int simple_fill_super(struct super_block *, unsigned long, 3147 const struct tree_descr *); 3148extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); 3149extern void simple_release_fs(struct vfsmount **mount, int *count); 3150 3151extern ssize_t simple_read_from_buffer(void __user *to, size_t count, 3152 loff_t *ppos, const void *from, size_t available); 3153extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 3154 const void __user *from, size_t count); 3155 3156struct offset_ctx { 3157 struct xarray xa; 3158 u32 next_offset; 3159}; 3160 3161void simple_offset_init(struct offset_ctx *octx); 3162int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry); 3163void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry); 3164int simple_offset_rename_exchange(struct inode *old_dir, 3165 struct dentry *old_dentry, 3166 struct inode *new_dir, 3167 struct dentry *new_dentry); 3168void simple_offset_destroy(struct offset_ctx *octx); 3169 3170extern const struct file_operations simple_offset_dir_operations; 3171 3172extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); 3173extern int generic_file_fsync(struct file *, loff_t, loff_t, int); 3174 3175extern int generic_check_addressable(unsigned, u64); 3176 3177extern void generic_set_encrypted_ci_d_ops(struct dentry *dentry); 3178 3179int may_setattr(struct mnt_idmap *idmap, struct inode *inode, 3180 unsigned int ia_valid); 3181int setattr_prepare(struct mnt_idmap *, struct dentry *, struct iattr *); 3182extern int inode_newsize_ok(const struct inode *, loff_t offset); 3183void setattr_copy(struct mnt_idmap *, struct inode *inode, 3184 const struct iattr *attr); 3185 3186extern int file_update_time(struct file *file); 3187 3188static inline bool vma_is_dax(const struct vm_area_struct *vma) 3189{ 3190 return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); 3191} 3192 3193static inline bool vma_is_fsdax(struct vm_area_struct *vma) 3194{ 3195 struct inode *inode; 3196 3197 if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) 3198 return false; 3199 if (!vma_is_dax(vma)) 3200 return false; 3201 inode = file_inode(vma->vm_file); 3202 if (S_ISCHR(inode->i_mode)) 3203 return false; /* device-dax */ 3204 return true; 3205} 3206 3207static inline int iocb_flags(struct file *file) 3208{ 3209 int res = 0; 3210 if (file->f_flags & O_APPEND) 3211 res |= IOCB_APPEND; 3212 if (file->f_flags & O_DIRECT) 3213 res |= IOCB_DIRECT; 3214 if (file->f_flags & O_DSYNC) 3215 res |= IOCB_DSYNC; 3216 if (file->f_flags & __O_SYNC) 3217 res |= IOCB_SYNC; 3218 return res; 3219} 3220 3221static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags) 3222{ 3223 int kiocb_flags = 0; 3224 3225 /* make sure there's no overlap between RWF and private IOCB flags */ 3226 BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); 3227 3228 if (!flags) 3229 return 0; 3230 if (unlikely(flags & ~RWF_SUPPORTED)) 3231 return -EOPNOTSUPP; 3232 3233 if (flags & RWF_NOWAIT) { 3234 if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) 3235 return -EOPNOTSUPP; 3236 kiocb_flags |= IOCB_NOIO; 3237 } 3238 kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); 3239 if (flags & RWF_SYNC) 3240 kiocb_flags |= IOCB_DSYNC; 3241 3242 ki->ki_flags |= kiocb_flags; 3243 return 0; 3244} 3245 3246static inline ino_t parent_ino(struct dentry *dentry) 3247{ 3248 ino_t res; 3249 3250 /* 3251 * Don't strictly need d_lock here? If the parent ino could change 3252 * then surely we'd have a deeper race in the caller? 3253 */ 3254 spin_lock(&dentry->d_lock); 3255 res = dentry->d_parent->d_inode->i_ino; 3256 spin_unlock(&dentry->d_lock); 3257 return res; 3258} 3259 3260/* Transaction based IO helpers */ 3261 3262/* 3263 * An argresp is stored in an allocated page and holds the 3264 * size of the argument or response, along with its content 3265 */ 3266struct simple_transaction_argresp { 3267 ssize_t size; 3268 char data[]; 3269}; 3270 3271#define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) 3272 3273char *simple_transaction_get(struct file *file, const char __user *buf, 3274 size_t size); 3275ssize_t simple_transaction_read(struct file *file, char __user *buf, 3276 size_t size, loff_t *pos); 3277int simple_transaction_release(struct inode *inode, struct file *file); 3278 3279void simple_transaction_set(struct file *file, size_t n); 3280 3281/* 3282 * simple attribute files 3283 * 3284 * These attributes behave similar to those in sysfs: 3285 * 3286 * Writing to an attribute immediately sets a value, an open file can be 3287 * written to multiple times. 3288 * 3289 * Reading from an attribute creates a buffer from the value that might get 3290 * read with multiple read calls. When the attribute has been read 3291 * completely, no further read calls are possible until the file is opened 3292 * again. 3293 * 3294 * All attributes contain a text representation of a numeric value 3295 * that are accessed with the get() and set() functions. 3296 */ 3297#define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ 3298static int __fops ## _open(struct inode *inode, struct file *file) \ 3299{ \ 3300 __simple_attr_check_format(__fmt, 0ull); \ 3301 return simple_attr_open(inode, file, __get, __set, __fmt); \ 3302} \ 3303static const struct file_operations __fops = { \ 3304 .owner = THIS_MODULE, \ 3305 .open = __fops ## _open, \ 3306 .release = simple_attr_release, \ 3307 .read = simple_attr_read, \ 3308 .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ 3309 .llseek = generic_file_llseek, \ 3310} 3311 3312#define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ 3313 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) 3314 3315#define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ 3316 DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) 3317 3318static inline __printf(1, 2) 3319void __simple_attr_check_format(const char *fmt, ...) 3320{ 3321 /* don't do anything, just let the compiler check the arguments; */ 3322} 3323 3324int simple_attr_open(struct inode *inode, struct file *file, 3325 int (*get)(void *, u64 *), int (*set)(void *, u64), 3326 const char *fmt); 3327int simple_attr_release(struct inode *inode, struct file *file); 3328ssize_t simple_attr_read(struct file *file, char __user *buf, 3329 size_t len, loff_t *ppos); 3330ssize_t simple_attr_write(struct file *file, const char __user *buf, 3331 size_t len, loff_t *ppos); 3332ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 3333 size_t len, loff_t *ppos); 3334 3335struct ctl_table; 3336int __init list_bdev_fs_names(char *buf, size_t size); 3337 3338#define __FMODE_EXEC ((__force int) FMODE_EXEC) 3339#define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) 3340 3341#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 3342#define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ 3343 (flag & __FMODE_NONOTIFY))) 3344 3345static inline bool is_sxid(umode_t mode) 3346{ 3347 return mode & (S_ISUID | S_ISGID); 3348} 3349 3350static inline int check_sticky(struct mnt_idmap *idmap, 3351 struct inode *dir, struct inode *inode) 3352{ 3353 if (!(dir->i_mode & S_ISVTX)) 3354 return 0; 3355 3356 return __check_sticky(idmap, dir, inode); 3357} 3358 3359static inline void inode_has_no_xattr(struct inode *inode) 3360{ 3361 if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) 3362 inode->i_flags |= S_NOSEC; 3363} 3364 3365static inline bool is_root_inode(struct inode *inode) 3366{ 3367 return inode == inode->i_sb->s_root->d_inode; 3368} 3369 3370static inline bool dir_emit(struct dir_context *ctx, 3371 const char *name, int namelen, 3372 u64 ino, unsigned type) 3373{ 3374 return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); 3375} 3376static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) 3377{ 3378 return ctx->actor(ctx, ".", 1, ctx->pos, 3379 file->f_path.dentry->d_inode->i_ino, DT_DIR); 3380} 3381static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) 3382{ 3383 return ctx->actor(ctx, "..", 2, ctx->pos, 3384 parent_ino(file->f_path.dentry), DT_DIR); 3385} 3386static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) 3387{ 3388 if (ctx->pos == 0) { 3389 if (!dir_emit_dot(file, ctx)) 3390 return false; 3391 ctx->pos = 1; 3392 } 3393 if (ctx->pos == 1) { 3394 if (!dir_emit_dotdot(file, ctx)) 3395 return false; 3396 ctx->pos = 2; 3397 } 3398 return true; 3399} 3400static inline bool dir_relax(struct inode *inode) 3401{ 3402 inode_unlock(inode); 3403 inode_lock(inode); 3404 return !IS_DEADDIR(inode); 3405} 3406 3407static inline bool dir_relax_shared(struct inode *inode) 3408{ 3409 inode_unlock_shared(inode); 3410 inode_lock_shared(inode); 3411 return !IS_DEADDIR(inode); 3412} 3413 3414extern bool path_noexec(const struct path *path); 3415extern void inode_nohighmem(struct inode *inode); 3416 3417/* mm/fadvise.c */ 3418extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, 3419 int advice); 3420extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, 3421 int advice); 3422 3423#endif /* _LINUX_FS_H */