Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9#include <linux/delay.h>
10#include <linux/idr.h>
11#include <linux/module.h>
12#include <linux/nvmem-provider.h>
13#include <linux/pm_runtime.h>
14#include <linux/sched/signal.h>
15#include <linux/sizes.h>
16#include <linux/slab.h>
17#include <linux/string_helpers.h>
18
19#include "tb.h"
20
21/* Switch NVM support */
22
23struct nvm_auth_status {
24 struct list_head list;
25 uuid_t uuid;
26 u32 status;
27};
28
29/*
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
32 * keep it separately.
33 */
34static LIST_HEAD(nvm_auth_status_cache);
35static DEFINE_MUTEX(nvm_auth_status_lock);
36
37static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38{
39 struct nvm_auth_status *st;
40
41 list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 if (uuid_equal(&st->uuid, sw->uuid))
43 return st;
44 }
45
46 return NULL;
47}
48
49static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50{
51 struct nvm_auth_status *st;
52
53 mutex_lock(&nvm_auth_status_lock);
54 st = __nvm_get_auth_status(sw);
55 mutex_unlock(&nvm_auth_status_lock);
56
57 *status = st ? st->status : 0;
58}
59
60static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61{
62 struct nvm_auth_status *st;
63
64 if (WARN_ON(!sw->uuid))
65 return;
66
67 mutex_lock(&nvm_auth_status_lock);
68 st = __nvm_get_auth_status(sw);
69
70 if (!st) {
71 st = kzalloc(sizeof(*st), GFP_KERNEL);
72 if (!st)
73 goto unlock;
74
75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 INIT_LIST_HEAD(&st->list);
77 list_add_tail(&st->list, &nvm_auth_status_cache);
78 }
79
80 st->status = status;
81unlock:
82 mutex_unlock(&nvm_auth_status_lock);
83}
84
85static void nvm_clear_auth_status(const struct tb_switch *sw)
86{
87 struct nvm_auth_status *st;
88
89 mutex_lock(&nvm_auth_status_lock);
90 st = __nvm_get_auth_status(sw);
91 if (st) {
92 list_del(&st->list);
93 kfree(st);
94 }
95 mutex_unlock(&nvm_auth_status_lock);
96}
97
98static int nvm_validate_and_write(struct tb_switch *sw)
99{
100 unsigned int image_size;
101 const u8 *buf;
102 int ret;
103
104 ret = tb_nvm_validate(sw->nvm);
105 if (ret)
106 return ret;
107
108 ret = tb_nvm_write_headers(sw->nvm);
109 if (ret)
110 return ret;
111
112 buf = sw->nvm->buf_data_start;
113 image_size = sw->nvm->buf_data_size;
114
115 if (tb_switch_is_usb4(sw))
116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 else
118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 if (ret)
120 return ret;
121
122 sw->nvm->flushed = true;
123 return 0;
124}
125
126static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127{
128 int ret = 0;
129
130 /*
131 * Root switch NVM upgrade requires that we disconnect the
132 * existing paths first (in case it is not in safe mode
133 * already).
134 */
135 if (!sw->safe_mode) {
136 u32 status;
137
138 ret = tb_domain_disconnect_all_paths(sw->tb);
139 if (ret)
140 return ret;
141 /*
142 * The host controller goes away pretty soon after this if
143 * everything goes well so getting timeout is expected.
144 */
145 ret = dma_port_flash_update_auth(sw->dma_port);
146 if (!ret || ret == -ETIMEDOUT)
147 return 0;
148
149 /*
150 * Any error from update auth operation requires power
151 * cycling of the host router.
152 */
153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 nvm_set_auth_status(sw, status);
156 }
157
158 /*
159 * From safe mode we can get out by just power cycling the
160 * switch.
161 */
162 dma_port_power_cycle(sw->dma_port);
163 return ret;
164}
165
166static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167{
168 int ret, retries = 10;
169
170 ret = dma_port_flash_update_auth(sw->dma_port);
171 switch (ret) {
172 case 0:
173 case -ETIMEDOUT:
174 case -EACCES:
175 case -EINVAL:
176 /* Power cycle is required */
177 break;
178 default:
179 return ret;
180 }
181
182 /*
183 * Poll here for the authentication status. It takes some time
184 * for the device to respond (we get timeout for a while). Once
185 * we get response the device needs to be power cycled in order
186 * to the new NVM to be taken into use.
187 */
188 do {
189 u32 status;
190
191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 if (ret < 0 && ret != -ETIMEDOUT)
193 return ret;
194 if (ret > 0) {
195 if (status) {
196 tb_sw_warn(sw, "failed to authenticate NVM\n");
197 nvm_set_auth_status(sw, status);
198 }
199
200 tb_sw_info(sw, "power cycling the switch now\n");
201 dma_port_power_cycle(sw->dma_port);
202 return 0;
203 }
204
205 msleep(500);
206 } while (--retries);
207
208 return -ETIMEDOUT;
209}
210
211static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212{
213 struct pci_dev *root_port;
214
215 /*
216 * During host router NVM upgrade we should not allow root port to
217 * go into D3cold because some root ports cannot trigger PME
218 * itself. To be on the safe side keep the root port in D0 during
219 * the whole upgrade process.
220 */
221 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 if (root_port)
223 pm_runtime_get_noresume(&root_port->dev);
224}
225
226static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227{
228 struct pci_dev *root_port;
229
230 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 if (root_port)
232 pm_runtime_put(&root_port->dev);
233}
234
235static inline bool nvm_readable(struct tb_switch *sw)
236{
237 if (tb_switch_is_usb4(sw)) {
238 /*
239 * USB4 devices must support NVM operations but it is
240 * optional for hosts. Therefore we query the NVM sector
241 * size here and if it is supported assume NVM
242 * operations are implemented.
243 */
244 return usb4_switch_nvm_sector_size(sw) > 0;
245 }
246
247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 return !!sw->dma_port;
249}
250
251static inline bool nvm_upgradeable(struct tb_switch *sw)
252{
253 if (sw->no_nvm_upgrade)
254 return false;
255 return nvm_readable(sw);
256}
257
258static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259{
260 int ret;
261
262 if (tb_switch_is_usb4(sw)) {
263 if (auth_only) {
264 ret = usb4_switch_nvm_set_offset(sw, 0);
265 if (ret)
266 return ret;
267 }
268 sw->nvm->authenticating = true;
269 return usb4_switch_nvm_authenticate(sw);
270 }
271 if (auth_only)
272 return -EOPNOTSUPP;
273
274 sw->nvm->authenticating = true;
275 if (!tb_route(sw)) {
276 nvm_authenticate_start_dma_port(sw);
277 ret = nvm_authenticate_host_dma_port(sw);
278 } else {
279 ret = nvm_authenticate_device_dma_port(sw);
280 }
281
282 return ret;
283}
284
285/**
286 * tb_switch_nvm_read() - Read router NVM
287 * @sw: Router whose NVM to read
288 * @address: Start address on the NVM
289 * @buf: Buffer where the read data is copied
290 * @size: Size of the buffer in bytes
291 *
292 * Reads from router NVM and returns the requested data in @buf. Locking
293 * is up to the caller. Returns %0 in success and negative errno in case
294 * of failure.
295 */
296int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297 size_t size)
298{
299 if (tb_switch_is_usb4(sw))
300 return usb4_switch_nvm_read(sw, address, buf, size);
301 return dma_port_flash_read(sw->dma_port, address, buf, size);
302}
303
304static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305{
306 struct tb_nvm *nvm = priv;
307 struct tb_switch *sw = tb_to_switch(nvm->dev);
308 int ret;
309
310 pm_runtime_get_sync(&sw->dev);
311
312 if (!mutex_trylock(&sw->tb->lock)) {
313 ret = restart_syscall();
314 goto out;
315 }
316
317 ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 mutex_unlock(&sw->tb->lock);
319
320out:
321 pm_runtime_mark_last_busy(&sw->dev);
322 pm_runtime_put_autosuspend(&sw->dev);
323
324 return ret;
325}
326
327static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328{
329 struct tb_nvm *nvm = priv;
330 struct tb_switch *sw = tb_to_switch(nvm->dev);
331 int ret;
332
333 if (!mutex_trylock(&sw->tb->lock))
334 return restart_syscall();
335
336 /*
337 * Since writing the NVM image might require some special steps,
338 * for example when CSS headers are written, we cache the image
339 * locally here and handle the special cases when the user asks
340 * us to authenticate the image.
341 */
342 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 mutex_unlock(&sw->tb->lock);
344
345 return ret;
346}
347
348static int tb_switch_nvm_add(struct tb_switch *sw)
349{
350 struct tb_nvm *nvm;
351 int ret;
352
353 if (!nvm_readable(sw))
354 return 0;
355
356 nvm = tb_nvm_alloc(&sw->dev);
357 if (IS_ERR(nvm)) {
358 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359 goto err_nvm;
360 }
361
362 ret = tb_nvm_read_version(nvm);
363 if (ret)
364 goto err_nvm;
365
366 /*
367 * If the switch is in safe-mode the only accessible portion of
368 * the NVM is the non-active one where userspace is expected to
369 * write new functional NVM.
370 */
371 if (!sw->safe_mode) {
372 ret = tb_nvm_add_active(nvm, nvm_read);
373 if (ret)
374 goto err_nvm;
375 }
376
377 if (!sw->no_nvm_upgrade) {
378 ret = tb_nvm_add_non_active(nvm, nvm_write);
379 if (ret)
380 goto err_nvm;
381 }
382
383 sw->nvm = nvm;
384 return 0;
385
386err_nvm:
387 tb_sw_dbg(sw, "NVM upgrade disabled\n");
388 sw->no_nvm_upgrade = true;
389 if (!IS_ERR(nvm))
390 tb_nvm_free(nvm);
391
392 return ret;
393}
394
395static void tb_switch_nvm_remove(struct tb_switch *sw)
396{
397 struct tb_nvm *nvm;
398
399 nvm = sw->nvm;
400 sw->nvm = NULL;
401
402 if (!nvm)
403 return;
404
405 /* Remove authentication status in case the switch is unplugged */
406 if (!nvm->authenticating)
407 nvm_clear_auth_status(sw);
408
409 tb_nvm_free(nvm);
410}
411
412/* port utility functions */
413
414static const char *tb_port_type(const struct tb_regs_port_header *port)
415{
416 switch (port->type >> 16) {
417 case 0:
418 switch ((u8) port->type) {
419 case 0:
420 return "Inactive";
421 case 1:
422 return "Port";
423 case 2:
424 return "NHI";
425 default:
426 return "unknown";
427 }
428 case 0x2:
429 return "Ethernet";
430 case 0x8:
431 return "SATA";
432 case 0xe:
433 return "DP/HDMI";
434 case 0x10:
435 return "PCIe";
436 case 0x20:
437 return "USB";
438 default:
439 return "unknown";
440 }
441}
442
443static void tb_dump_port(struct tb *tb, const struct tb_port *port)
444{
445 const struct tb_regs_port_header *regs = &port->config;
446
447 tb_dbg(tb,
448 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
449 regs->port_number, regs->vendor_id, regs->device_id,
450 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
451 regs->type);
452 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
453 regs->max_in_hop_id, regs->max_out_hop_id);
454 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
455 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
456 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
457 port->ctl_credits);
458}
459
460/**
461 * tb_port_state() - get connectedness state of a port
462 * @port: the port to check
463 *
464 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
465 *
466 * Return: Returns an enum tb_port_state on success or an error code on failure.
467 */
468int tb_port_state(struct tb_port *port)
469{
470 struct tb_cap_phy phy;
471 int res;
472 if (port->cap_phy == 0) {
473 tb_port_WARN(port, "does not have a PHY\n");
474 return -EINVAL;
475 }
476 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
477 if (res)
478 return res;
479 return phy.state;
480}
481
482/**
483 * tb_wait_for_port() - wait for a port to become ready
484 * @port: Port to wait
485 * @wait_if_unplugged: Wait also when port is unplugged
486 *
487 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
488 * wait_if_unplugged is set then we also wait if the port is in state
489 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
490 * switch resume). Otherwise we only wait if a device is registered but the link
491 * has not yet been established.
492 *
493 * Return: Returns an error code on failure. Returns 0 if the port is not
494 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
495 * if the port is connected and in state TB_PORT_UP.
496 */
497int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
498{
499 int retries = 10;
500 int state;
501 if (!port->cap_phy) {
502 tb_port_WARN(port, "does not have PHY\n");
503 return -EINVAL;
504 }
505 if (tb_is_upstream_port(port)) {
506 tb_port_WARN(port, "is the upstream port\n");
507 return -EINVAL;
508 }
509
510 while (retries--) {
511 state = tb_port_state(port);
512 switch (state) {
513 case TB_PORT_DISABLED:
514 tb_port_dbg(port, "is disabled (state: 0)\n");
515 return 0;
516
517 case TB_PORT_UNPLUGGED:
518 if (wait_if_unplugged) {
519 /* used during resume */
520 tb_port_dbg(port,
521 "is unplugged (state: 7), retrying...\n");
522 msleep(100);
523 break;
524 }
525 tb_port_dbg(port, "is unplugged (state: 7)\n");
526 return 0;
527
528 case TB_PORT_UP:
529 case TB_PORT_TX_CL0S:
530 case TB_PORT_RX_CL0S:
531 case TB_PORT_CL1:
532 case TB_PORT_CL2:
533 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
534 return 1;
535
536 default:
537 if (state < 0)
538 return state;
539
540 /*
541 * After plug-in the state is TB_PORT_CONNECTING. Give it some
542 * time.
543 */
544 tb_port_dbg(port,
545 "is connected, link is not up (state: %d), retrying...\n",
546 state);
547 msleep(100);
548 }
549
550 }
551 tb_port_warn(port,
552 "failed to reach state TB_PORT_UP. Ignoring port...\n");
553 return 0;
554}
555
556/**
557 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
558 * @port: Port to add/remove NFC credits
559 * @credits: Credits to add/remove
560 *
561 * Change the number of NFC credits allocated to @port by @credits. To remove
562 * NFC credits pass a negative amount of credits.
563 *
564 * Return: Returns 0 on success or an error code on failure.
565 */
566int tb_port_add_nfc_credits(struct tb_port *port, int credits)
567{
568 u32 nfc_credits;
569
570 if (credits == 0 || port->sw->is_unplugged)
571 return 0;
572
573 /*
574 * USB4 restricts programming NFC buffers to lane adapters only
575 * so skip other ports.
576 */
577 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
578 return 0;
579
580 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
581 if (credits < 0)
582 credits = max_t(int, -nfc_credits, credits);
583
584 nfc_credits += credits;
585
586 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
587 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
588
589 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
590 port->config.nfc_credits |= nfc_credits;
591
592 return tb_port_write(port, &port->config.nfc_credits,
593 TB_CFG_PORT, ADP_CS_4, 1);
594}
595
596/**
597 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
598 * @port: Port whose counters to clear
599 * @counter: Counter index to clear
600 *
601 * Return: Returns 0 on success or an error code on failure.
602 */
603int tb_port_clear_counter(struct tb_port *port, int counter)
604{
605 u32 zero[3] = { 0, 0, 0 };
606 tb_port_dbg(port, "clearing counter %d\n", counter);
607 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
608}
609
610/**
611 * tb_port_unlock() - Unlock downstream port
612 * @port: Port to unlock
613 *
614 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
615 * downstream router accessible for CM.
616 */
617int tb_port_unlock(struct tb_port *port)
618{
619 if (tb_switch_is_icm(port->sw))
620 return 0;
621 if (!tb_port_is_null(port))
622 return -EINVAL;
623 if (tb_switch_is_usb4(port->sw))
624 return usb4_port_unlock(port);
625 return 0;
626}
627
628static int __tb_port_enable(struct tb_port *port, bool enable)
629{
630 int ret;
631 u32 phy;
632
633 if (!tb_port_is_null(port))
634 return -EINVAL;
635
636 ret = tb_port_read(port, &phy, TB_CFG_PORT,
637 port->cap_phy + LANE_ADP_CS_1, 1);
638 if (ret)
639 return ret;
640
641 if (enable)
642 phy &= ~LANE_ADP_CS_1_LD;
643 else
644 phy |= LANE_ADP_CS_1_LD;
645
646
647 ret = tb_port_write(port, &phy, TB_CFG_PORT,
648 port->cap_phy + LANE_ADP_CS_1, 1);
649 if (ret)
650 return ret;
651
652 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
653 return 0;
654}
655
656/**
657 * tb_port_enable() - Enable lane adapter
658 * @port: Port to enable (can be %NULL)
659 *
660 * This is used for lane 0 and 1 adapters to enable it.
661 */
662int tb_port_enable(struct tb_port *port)
663{
664 return __tb_port_enable(port, true);
665}
666
667/**
668 * tb_port_disable() - Disable lane adapter
669 * @port: Port to disable (can be %NULL)
670 *
671 * This is used for lane 0 and 1 adapters to disable it.
672 */
673int tb_port_disable(struct tb_port *port)
674{
675 return __tb_port_enable(port, false);
676}
677
678/*
679 * tb_init_port() - initialize a port
680 *
681 * This is a helper method for tb_switch_alloc. Does not check or initialize
682 * any downstream switches.
683 *
684 * Return: Returns 0 on success or an error code on failure.
685 */
686static int tb_init_port(struct tb_port *port)
687{
688 int res;
689 int cap;
690
691 INIT_LIST_HEAD(&port->list);
692
693 /* Control adapter does not have configuration space */
694 if (!port->port)
695 return 0;
696
697 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
698 if (res) {
699 if (res == -ENODEV) {
700 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
701 port->port);
702 port->disabled = true;
703 return 0;
704 }
705 return res;
706 }
707
708 /* Port 0 is the switch itself and has no PHY. */
709 if (port->config.type == TB_TYPE_PORT) {
710 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
711
712 if (cap > 0)
713 port->cap_phy = cap;
714 else
715 tb_port_WARN(port, "non switch port without a PHY\n");
716
717 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
718 if (cap > 0)
719 port->cap_usb4 = cap;
720
721 /*
722 * USB4 ports the buffers allocated for the control path
723 * can be read from the path config space. Legacy
724 * devices we use hard-coded value.
725 */
726 if (port->cap_usb4) {
727 struct tb_regs_hop hop;
728
729 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
730 port->ctl_credits = hop.initial_credits;
731 }
732 if (!port->ctl_credits)
733 port->ctl_credits = 2;
734
735 } else {
736 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
737 if (cap > 0)
738 port->cap_adap = cap;
739 }
740
741 port->total_credits =
742 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
743 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
744
745 tb_dump_port(port->sw->tb, port);
746 return 0;
747}
748
749static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
750 int max_hopid)
751{
752 int port_max_hopid;
753 struct ida *ida;
754
755 if (in) {
756 port_max_hopid = port->config.max_in_hop_id;
757 ida = &port->in_hopids;
758 } else {
759 port_max_hopid = port->config.max_out_hop_id;
760 ida = &port->out_hopids;
761 }
762
763 /*
764 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
765 * reserved.
766 */
767 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
768 min_hopid = TB_PATH_MIN_HOPID;
769
770 if (max_hopid < 0 || max_hopid > port_max_hopid)
771 max_hopid = port_max_hopid;
772
773 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
774}
775
776/**
777 * tb_port_alloc_in_hopid() - Allocate input HopID from port
778 * @port: Port to allocate HopID for
779 * @min_hopid: Minimum acceptable input HopID
780 * @max_hopid: Maximum acceptable input HopID
781 *
782 * Return: HopID between @min_hopid and @max_hopid or negative errno in
783 * case of error.
784 */
785int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
786{
787 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
788}
789
790/**
791 * tb_port_alloc_out_hopid() - Allocate output HopID from port
792 * @port: Port to allocate HopID for
793 * @min_hopid: Minimum acceptable output HopID
794 * @max_hopid: Maximum acceptable output HopID
795 *
796 * Return: HopID between @min_hopid and @max_hopid or negative errno in
797 * case of error.
798 */
799int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
800{
801 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
802}
803
804/**
805 * tb_port_release_in_hopid() - Release allocated input HopID from port
806 * @port: Port whose HopID to release
807 * @hopid: HopID to release
808 */
809void tb_port_release_in_hopid(struct tb_port *port, int hopid)
810{
811 ida_simple_remove(&port->in_hopids, hopid);
812}
813
814/**
815 * tb_port_release_out_hopid() - Release allocated output HopID from port
816 * @port: Port whose HopID to release
817 * @hopid: HopID to release
818 */
819void tb_port_release_out_hopid(struct tb_port *port, int hopid)
820{
821 ida_simple_remove(&port->out_hopids, hopid);
822}
823
824static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
825 const struct tb_switch *sw)
826{
827 u64 mask = (1ULL << parent->config.depth * 8) - 1;
828 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
829}
830
831/**
832 * tb_next_port_on_path() - Return next port for given port on a path
833 * @start: Start port of the walk
834 * @end: End port of the walk
835 * @prev: Previous port (%NULL if this is the first)
836 *
837 * This function can be used to walk from one port to another if they
838 * are connected through zero or more switches. If the @prev is dual
839 * link port, the function follows that link and returns another end on
840 * that same link.
841 *
842 * If the @end port has been reached, return %NULL.
843 *
844 * Domain tb->lock must be held when this function is called.
845 */
846struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
847 struct tb_port *prev)
848{
849 struct tb_port *next;
850
851 if (!prev)
852 return start;
853
854 if (prev->sw == end->sw) {
855 if (prev == end)
856 return NULL;
857 return end;
858 }
859
860 if (tb_switch_is_reachable(prev->sw, end->sw)) {
861 next = tb_port_at(tb_route(end->sw), prev->sw);
862 /* Walk down the topology if next == prev */
863 if (prev->remote &&
864 (next == prev || next->dual_link_port == prev))
865 next = prev->remote;
866 } else {
867 if (tb_is_upstream_port(prev)) {
868 next = prev->remote;
869 } else {
870 next = tb_upstream_port(prev->sw);
871 /*
872 * Keep the same link if prev and next are both
873 * dual link ports.
874 */
875 if (next->dual_link_port &&
876 next->link_nr != prev->link_nr) {
877 next = next->dual_link_port;
878 }
879 }
880 }
881
882 return next != prev ? next : NULL;
883}
884
885/**
886 * tb_port_get_link_speed() - Get current link speed
887 * @port: Port to check (USB4 or CIO)
888 *
889 * Returns link speed in Gb/s or negative errno in case of failure.
890 */
891int tb_port_get_link_speed(struct tb_port *port)
892{
893 u32 val, speed;
894 int ret;
895
896 if (!port->cap_phy)
897 return -EINVAL;
898
899 ret = tb_port_read(port, &val, TB_CFG_PORT,
900 port->cap_phy + LANE_ADP_CS_1, 1);
901 if (ret)
902 return ret;
903
904 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
905 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
906
907 switch (speed) {
908 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
909 return 40;
910 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
911 return 20;
912 default:
913 return 10;
914 }
915}
916
917/**
918 * tb_port_get_link_width() - Get current link width
919 * @port: Port to check (USB4 or CIO)
920 *
921 * Returns link width. Return the link width as encoded in &enum
922 * tb_link_width or negative errno in case of failure.
923 */
924int tb_port_get_link_width(struct tb_port *port)
925{
926 u32 val;
927 int ret;
928
929 if (!port->cap_phy)
930 return -EINVAL;
931
932 ret = tb_port_read(port, &val, TB_CFG_PORT,
933 port->cap_phy + LANE_ADP_CS_1, 1);
934 if (ret)
935 return ret;
936
937 /* Matches the values in enum tb_link_width */
938 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
939 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
940}
941
942static bool tb_port_is_width_supported(struct tb_port *port,
943 unsigned int width_mask)
944{
945 u32 phy, widths;
946 int ret;
947
948 if (!port->cap_phy)
949 return false;
950
951 ret = tb_port_read(port, &phy, TB_CFG_PORT,
952 port->cap_phy + LANE_ADP_CS_0, 1);
953 if (ret)
954 return false;
955
956 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
957 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
958
959 return widths & width_mask;
960}
961
962static bool is_gen4_link(struct tb_port *port)
963{
964 return tb_port_get_link_speed(port) > 20;
965}
966
967/**
968 * tb_port_set_link_width() - Set target link width of the lane adapter
969 * @port: Lane adapter
970 * @width: Target link width
971 *
972 * Sets the target link width of the lane adapter to @width. Does not
973 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
974 *
975 * Return: %0 in case of success and negative errno in case of error
976 */
977int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
978{
979 u32 val;
980 int ret;
981
982 if (!port->cap_phy)
983 return -EINVAL;
984
985 ret = tb_port_read(port, &val, TB_CFG_PORT,
986 port->cap_phy + LANE_ADP_CS_1, 1);
987 if (ret)
988 return ret;
989
990 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
991 switch (width) {
992 case TB_LINK_WIDTH_SINGLE:
993 /* Gen 4 link cannot be single */
994 if (is_gen4_link(port))
995 return -EOPNOTSUPP;
996 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
997 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
998 break;
999 case TB_LINK_WIDTH_DUAL:
1000 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1001 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1002 break;
1003 default:
1004 return -EINVAL;
1005 }
1006
1007 return tb_port_write(port, &val, TB_CFG_PORT,
1008 port->cap_phy + LANE_ADP_CS_1, 1);
1009}
1010
1011/**
1012 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1013 * @port: Lane adapter
1014 * @bonding: enable/disable bonding
1015 *
1016 * Enables or disables lane bonding. This should be called after target
1017 * link width has been set (tb_port_set_link_width()). Note in most
1018 * cases one should use tb_port_lane_bonding_enable() instead to enable
1019 * lane bonding.
1020 *
1021 * Return: %0 in case of success and negative errno in case of error
1022 */
1023static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1024{
1025 u32 val;
1026 int ret;
1027
1028 if (!port->cap_phy)
1029 return -EINVAL;
1030
1031 ret = tb_port_read(port, &val, TB_CFG_PORT,
1032 port->cap_phy + LANE_ADP_CS_1, 1);
1033 if (ret)
1034 return ret;
1035
1036 if (bonding)
1037 val |= LANE_ADP_CS_1_LB;
1038 else
1039 val &= ~LANE_ADP_CS_1_LB;
1040
1041 return tb_port_write(port, &val, TB_CFG_PORT,
1042 port->cap_phy + LANE_ADP_CS_1, 1);
1043}
1044
1045/**
1046 * tb_port_lane_bonding_enable() - Enable bonding on port
1047 * @port: port to enable
1048 *
1049 * Enable bonding by setting the link width of the port and the other
1050 * port in case of dual link port. Does not wait for the link to
1051 * actually reach the bonded state so caller needs to call
1052 * tb_port_wait_for_link_width() before enabling any paths through the
1053 * link to make sure the link is in expected state.
1054 *
1055 * Return: %0 in case of success and negative errno in case of error
1056 */
1057int tb_port_lane_bonding_enable(struct tb_port *port)
1058{
1059 enum tb_link_width width;
1060 int ret;
1061
1062 /*
1063 * Enable lane bonding for both links if not already enabled by
1064 * for example the boot firmware.
1065 */
1066 width = tb_port_get_link_width(port);
1067 if (width == TB_LINK_WIDTH_SINGLE) {
1068 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1069 if (ret)
1070 goto err_lane0;
1071 }
1072
1073 width = tb_port_get_link_width(port->dual_link_port);
1074 if (width == TB_LINK_WIDTH_SINGLE) {
1075 ret = tb_port_set_link_width(port->dual_link_port,
1076 TB_LINK_WIDTH_DUAL);
1077 if (ret)
1078 goto err_lane0;
1079 }
1080
1081 /*
1082 * Only set bonding if the link was not already bonded. This
1083 * avoids the lane adapter to re-enter bonding state.
1084 */
1085 if (width == TB_LINK_WIDTH_SINGLE) {
1086 ret = tb_port_set_lane_bonding(port, true);
1087 if (ret)
1088 goto err_lane1;
1089 }
1090
1091 /*
1092 * When lane 0 bonding is set it will affect lane 1 too so
1093 * update both.
1094 */
1095 port->bonded = true;
1096 port->dual_link_port->bonded = true;
1097
1098 return 0;
1099
1100err_lane1:
1101 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1102err_lane0:
1103 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1104
1105 return ret;
1106}
1107
1108/**
1109 * tb_port_lane_bonding_disable() - Disable bonding on port
1110 * @port: port to disable
1111 *
1112 * Disable bonding by setting the link width of the port and the
1113 * other port in case of dual link port.
1114 */
1115void tb_port_lane_bonding_disable(struct tb_port *port)
1116{
1117 tb_port_set_lane_bonding(port, false);
1118 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1119 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1120 port->dual_link_port->bonded = false;
1121 port->bonded = false;
1122}
1123
1124/**
1125 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1126 * @port: Port to wait for
1127 * @width_mask: Expected link width mask
1128 * @timeout_msec: Timeout in ms how long to wait
1129 *
1130 * Should be used after both ends of the link have been bonded (or
1131 * bonding has been disabled) to wait until the link actually reaches
1132 * the expected state. Returns %-ETIMEDOUT if the width was not reached
1133 * within the given timeout, %0 if it did. Can be passed a mask of
1134 * expected widths and succeeds if any of the widths is reached.
1135 */
1136int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width_mask,
1137 int timeout_msec)
1138{
1139 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1140 int ret;
1141
1142 /* Gen 4 link does not support single lane */
1143 if ((width_mask & TB_LINK_WIDTH_SINGLE) && is_gen4_link(port))
1144 return -EOPNOTSUPP;
1145
1146 do {
1147 ret = tb_port_get_link_width(port);
1148 if (ret < 0) {
1149 /*
1150 * Sometimes we get port locked error when
1151 * polling the lanes so we can ignore it and
1152 * retry.
1153 */
1154 if (ret != -EACCES)
1155 return ret;
1156 } else if (ret & width_mask) {
1157 return 0;
1158 }
1159
1160 usleep_range(1000, 2000);
1161 } while (ktime_before(ktime_get(), timeout));
1162
1163 return -ETIMEDOUT;
1164}
1165
1166static int tb_port_do_update_credits(struct tb_port *port)
1167{
1168 u32 nfc_credits;
1169 int ret;
1170
1171 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1172 if (ret)
1173 return ret;
1174
1175 if (nfc_credits != port->config.nfc_credits) {
1176 u32 total;
1177
1178 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1179 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1180
1181 tb_port_dbg(port, "total credits changed %u -> %u\n",
1182 port->total_credits, total);
1183
1184 port->config.nfc_credits = nfc_credits;
1185 port->total_credits = total;
1186 }
1187
1188 return 0;
1189}
1190
1191/**
1192 * tb_port_update_credits() - Re-read port total credits
1193 * @port: Port to update
1194 *
1195 * After the link is bonded (or bonding was disabled) the port total
1196 * credits may change, so this function needs to be called to re-read
1197 * the credits. Updates also the second lane adapter.
1198 */
1199int tb_port_update_credits(struct tb_port *port)
1200{
1201 int ret;
1202
1203 ret = tb_port_do_update_credits(port);
1204 if (ret)
1205 return ret;
1206 return tb_port_do_update_credits(port->dual_link_port);
1207}
1208
1209static int tb_port_start_lane_initialization(struct tb_port *port)
1210{
1211 int ret;
1212
1213 if (tb_switch_is_usb4(port->sw))
1214 return 0;
1215
1216 ret = tb_lc_start_lane_initialization(port);
1217 return ret == -EINVAL ? 0 : ret;
1218}
1219
1220/*
1221 * Returns true if the port had something (router, XDomain) connected
1222 * before suspend.
1223 */
1224static bool tb_port_resume(struct tb_port *port)
1225{
1226 bool has_remote = tb_port_has_remote(port);
1227
1228 if (port->usb4) {
1229 usb4_port_device_resume(port->usb4);
1230 } else if (!has_remote) {
1231 /*
1232 * For disconnected downstream lane adapters start lane
1233 * initialization now so we detect future connects.
1234 *
1235 * For XDomain start the lane initialzation now so the
1236 * link gets re-established.
1237 *
1238 * This is only needed for non-USB4 ports.
1239 */
1240 if (!tb_is_upstream_port(port) || port->xdomain)
1241 tb_port_start_lane_initialization(port);
1242 }
1243
1244 return has_remote || port->xdomain;
1245}
1246
1247/**
1248 * tb_port_is_enabled() - Is the adapter port enabled
1249 * @port: Port to check
1250 */
1251bool tb_port_is_enabled(struct tb_port *port)
1252{
1253 switch (port->config.type) {
1254 case TB_TYPE_PCIE_UP:
1255 case TB_TYPE_PCIE_DOWN:
1256 return tb_pci_port_is_enabled(port);
1257
1258 case TB_TYPE_DP_HDMI_IN:
1259 case TB_TYPE_DP_HDMI_OUT:
1260 return tb_dp_port_is_enabled(port);
1261
1262 case TB_TYPE_USB3_UP:
1263 case TB_TYPE_USB3_DOWN:
1264 return tb_usb3_port_is_enabled(port);
1265
1266 default:
1267 return false;
1268 }
1269}
1270
1271/**
1272 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1273 * @port: USB3 adapter port to check
1274 */
1275bool tb_usb3_port_is_enabled(struct tb_port *port)
1276{
1277 u32 data;
1278
1279 if (tb_port_read(port, &data, TB_CFG_PORT,
1280 port->cap_adap + ADP_USB3_CS_0, 1))
1281 return false;
1282
1283 return !!(data & ADP_USB3_CS_0_PE);
1284}
1285
1286/**
1287 * tb_usb3_port_enable() - Enable USB3 adapter port
1288 * @port: USB3 adapter port to enable
1289 * @enable: Enable/disable the USB3 adapter
1290 */
1291int tb_usb3_port_enable(struct tb_port *port, bool enable)
1292{
1293 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1294 : ADP_USB3_CS_0_V;
1295
1296 if (!port->cap_adap)
1297 return -ENXIO;
1298 return tb_port_write(port, &word, TB_CFG_PORT,
1299 port->cap_adap + ADP_USB3_CS_0, 1);
1300}
1301
1302/**
1303 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1304 * @port: PCIe port to check
1305 */
1306bool tb_pci_port_is_enabled(struct tb_port *port)
1307{
1308 u32 data;
1309
1310 if (tb_port_read(port, &data, TB_CFG_PORT,
1311 port->cap_adap + ADP_PCIE_CS_0, 1))
1312 return false;
1313
1314 return !!(data & ADP_PCIE_CS_0_PE);
1315}
1316
1317/**
1318 * tb_pci_port_enable() - Enable PCIe adapter port
1319 * @port: PCIe port to enable
1320 * @enable: Enable/disable the PCIe adapter
1321 */
1322int tb_pci_port_enable(struct tb_port *port, bool enable)
1323{
1324 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1325 if (!port->cap_adap)
1326 return -ENXIO;
1327 return tb_port_write(port, &word, TB_CFG_PORT,
1328 port->cap_adap + ADP_PCIE_CS_0, 1);
1329}
1330
1331/**
1332 * tb_dp_port_hpd_is_active() - Is HPD already active
1333 * @port: DP out port to check
1334 *
1335 * Checks if the DP OUT adapter port has HDP bit already set.
1336 */
1337int tb_dp_port_hpd_is_active(struct tb_port *port)
1338{
1339 u32 data;
1340 int ret;
1341
1342 ret = tb_port_read(port, &data, TB_CFG_PORT,
1343 port->cap_adap + ADP_DP_CS_2, 1);
1344 if (ret)
1345 return ret;
1346
1347 return !!(data & ADP_DP_CS_2_HDP);
1348}
1349
1350/**
1351 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1352 * @port: Port to clear HPD
1353 *
1354 * If the DP IN port has HDP set, this function can be used to clear it.
1355 */
1356int tb_dp_port_hpd_clear(struct tb_port *port)
1357{
1358 u32 data;
1359 int ret;
1360
1361 ret = tb_port_read(port, &data, TB_CFG_PORT,
1362 port->cap_adap + ADP_DP_CS_3, 1);
1363 if (ret)
1364 return ret;
1365
1366 data |= ADP_DP_CS_3_HDPC;
1367 return tb_port_write(port, &data, TB_CFG_PORT,
1368 port->cap_adap + ADP_DP_CS_3, 1);
1369}
1370
1371/**
1372 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1373 * @port: DP IN/OUT port to set hops
1374 * @video: Video Hop ID
1375 * @aux_tx: AUX TX Hop ID
1376 * @aux_rx: AUX RX Hop ID
1377 *
1378 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1379 * router DP adapters too but does not program the values as the fields
1380 * are read-only.
1381 */
1382int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1383 unsigned int aux_tx, unsigned int aux_rx)
1384{
1385 u32 data[2];
1386 int ret;
1387
1388 if (tb_switch_is_usb4(port->sw))
1389 return 0;
1390
1391 ret = tb_port_read(port, data, TB_CFG_PORT,
1392 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1393 if (ret)
1394 return ret;
1395
1396 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1397 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1398 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1399
1400 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1401 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1402 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1403 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1404 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1405
1406 return tb_port_write(port, data, TB_CFG_PORT,
1407 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1408}
1409
1410/**
1411 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1412 * @port: DP adapter port to check
1413 */
1414bool tb_dp_port_is_enabled(struct tb_port *port)
1415{
1416 u32 data[2];
1417
1418 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1419 ARRAY_SIZE(data)))
1420 return false;
1421
1422 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1423}
1424
1425/**
1426 * tb_dp_port_enable() - Enables/disables DP paths of a port
1427 * @port: DP IN/OUT port
1428 * @enable: Enable/disable DP path
1429 *
1430 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1431 * calling this function.
1432 */
1433int tb_dp_port_enable(struct tb_port *port, bool enable)
1434{
1435 u32 data[2];
1436 int ret;
1437
1438 ret = tb_port_read(port, data, TB_CFG_PORT,
1439 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1440 if (ret)
1441 return ret;
1442
1443 if (enable)
1444 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1445 else
1446 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1447
1448 return tb_port_write(port, data, TB_CFG_PORT,
1449 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1450}
1451
1452/* switch utility functions */
1453
1454static const char *tb_switch_generation_name(const struct tb_switch *sw)
1455{
1456 switch (sw->generation) {
1457 case 1:
1458 return "Thunderbolt 1";
1459 case 2:
1460 return "Thunderbolt 2";
1461 case 3:
1462 return "Thunderbolt 3";
1463 case 4:
1464 return "USB4";
1465 default:
1466 return "Unknown";
1467 }
1468}
1469
1470static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1471{
1472 const struct tb_regs_switch_header *regs = &sw->config;
1473
1474 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1475 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1476 regs->revision, regs->thunderbolt_version);
1477 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1478 tb_dbg(tb, " Config:\n");
1479 tb_dbg(tb,
1480 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1481 regs->upstream_port_number, regs->depth,
1482 (((u64) regs->route_hi) << 32) | regs->route_lo,
1483 regs->enabled, regs->plug_events_delay);
1484 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1485 regs->__unknown1, regs->__unknown4);
1486}
1487
1488/**
1489 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1490 * @sw: Switch to reset
1491 *
1492 * Return: Returns 0 on success or an error code on failure.
1493 */
1494int tb_switch_reset(struct tb_switch *sw)
1495{
1496 struct tb_cfg_result res;
1497
1498 if (sw->generation > 1)
1499 return 0;
1500
1501 tb_sw_dbg(sw, "resetting switch\n");
1502
1503 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1504 TB_CFG_SWITCH, 2, 2);
1505 if (res.err)
1506 return res.err;
1507 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1508 if (res.err > 0)
1509 return -EIO;
1510 return res.err;
1511}
1512
1513/**
1514 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1515 * @sw: Router to read the offset value from
1516 * @offset: Offset in the router config space to read from
1517 * @bit: Bit mask in the offset to wait for
1518 * @value: Value of the bits to wait for
1519 * @timeout_msec: Timeout in ms how long to wait
1520 *
1521 * Wait till the specified bits in specified offset reach specified value.
1522 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1523 * within the given timeout or a negative errno in case of failure.
1524 */
1525int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1526 u32 value, int timeout_msec)
1527{
1528 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1529
1530 do {
1531 u32 val;
1532 int ret;
1533
1534 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1535 if (ret)
1536 return ret;
1537
1538 if ((val & bit) == value)
1539 return 0;
1540
1541 usleep_range(50, 100);
1542 } while (ktime_before(ktime_get(), timeout));
1543
1544 return -ETIMEDOUT;
1545}
1546
1547/*
1548 * tb_plug_events_active() - enable/disable plug events on a switch
1549 *
1550 * Also configures a sane plug_events_delay of 255ms.
1551 *
1552 * Return: Returns 0 on success or an error code on failure.
1553 */
1554static int tb_plug_events_active(struct tb_switch *sw, bool active)
1555{
1556 u32 data;
1557 int res;
1558
1559 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1560 return 0;
1561
1562 sw->config.plug_events_delay = 0xff;
1563 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1564 if (res)
1565 return res;
1566
1567 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1568 if (res)
1569 return res;
1570
1571 if (active) {
1572 data = data & 0xFFFFFF83;
1573 switch (sw->config.device_id) {
1574 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1575 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1576 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1577 break;
1578 default:
1579 /*
1580 * Skip Alpine Ridge, it needs to have vendor
1581 * specific USB hotplug event enabled for the
1582 * internal xHCI to work.
1583 */
1584 if (!tb_switch_is_alpine_ridge(sw))
1585 data |= TB_PLUG_EVENTS_USB_DISABLE;
1586 }
1587 } else {
1588 data = data | 0x7c;
1589 }
1590 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1591 sw->cap_plug_events + 1, 1);
1592}
1593
1594static ssize_t authorized_show(struct device *dev,
1595 struct device_attribute *attr,
1596 char *buf)
1597{
1598 struct tb_switch *sw = tb_to_switch(dev);
1599
1600 return sysfs_emit(buf, "%u\n", sw->authorized);
1601}
1602
1603static int disapprove_switch(struct device *dev, void *not_used)
1604{
1605 char *envp[] = { "AUTHORIZED=0", NULL };
1606 struct tb_switch *sw;
1607
1608 sw = tb_to_switch(dev);
1609 if (sw && sw->authorized) {
1610 int ret;
1611
1612 /* First children */
1613 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1614 if (ret)
1615 return ret;
1616
1617 ret = tb_domain_disapprove_switch(sw->tb, sw);
1618 if (ret)
1619 return ret;
1620
1621 sw->authorized = 0;
1622 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1623 }
1624
1625 return 0;
1626}
1627
1628static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1629{
1630 char envp_string[13];
1631 int ret = -EINVAL;
1632 char *envp[] = { envp_string, NULL };
1633
1634 if (!mutex_trylock(&sw->tb->lock))
1635 return restart_syscall();
1636
1637 if (!!sw->authorized == !!val)
1638 goto unlock;
1639
1640 switch (val) {
1641 /* Disapprove switch */
1642 case 0:
1643 if (tb_route(sw)) {
1644 ret = disapprove_switch(&sw->dev, NULL);
1645 goto unlock;
1646 }
1647 break;
1648
1649 /* Approve switch */
1650 case 1:
1651 if (sw->key)
1652 ret = tb_domain_approve_switch_key(sw->tb, sw);
1653 else
1654 ret = tb_domain_approve_switch(sw->tb, sw);
1655 break;
1656
1657 /* Challenge switch */
1658 case 2:
1659 if (sw->key)
1660 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1661 break;
1662
1663 default:
1664 break;
1665 }
1666
1667 if (!ret) {
1668 sw->authorized = val;
1669 /*
1670 * Notify status change to the userspace, informing the new
1671 * value of /sys/bus/thunderbolt/devices/.../authorized.
1672 */
1673 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1674 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1675 }
1676
1677unlock:
1678 mutex_unlock(&sw->tb->lock);
1679 return ret;
1680}
1681
1682static ssize_t authorized_store(struct device *dev,
1683 struct device_attribute *attr,
1684 const char *buf, size_t count)
1685{
1686 struct tb_switch *sw = tb_to_switch(dev);
1687 unsigned int val;
1688 ssize_t ret;
1689
1690 ret = kstrtouint(buf, 0, &val);
1691 if (ret)
1692 return ret;
1693 if (val > 2)
1694 return -EINVAL;
1695
1696 pm_runtime_get_sync(&sw->dev);
1697 ret = tb_switch_set_authorized(sw, val);
1698 pm_runtime_mark_last_busy(&sw->dev);
1699 pm_runtime_put_autosuspend(&sw->dev);
1700
1701 return ret ? ret : count;
1702}
1703static DEVICE_ATTR_RW(authorized);
1704
1705static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1706 char *buf)
1707{
1708 struct tb_switch *sw = tb_to_switch(dev);
1709
1710 return sysfs_emit(buf, "%u\n", sw->boot);
1711}
1712static DEVICE_ATTR_RO(boot);
1713
1714static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1715 char *buf)
1716{
1717 struct tb_switch *sw = tb_to_switch(dev);
1718
1719 return sysfs_emit(buf, "%#x\n", sw->device);
1720}
1721static DEVICE_ATTR_RO(device);
1722
1723static ssize_t
1724device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1725{
1726 struct tb_switch *sw = tb_to_switch(dev);
1727
1728 return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1729}
1730static DEVICE_ATTR_RO(device_name);
1731
1732static ssize_t
1733generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1734{
1735 struct tb_switch *sw = tb_to_switch(dev);
1736
1737 return sysfs_emit(buf, "%u\n", sw->generation);
1738}
1739static DEVICE_ATTR_RO(generation);
1740
1741static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1742 char *buf)
1743{
1744 struct tb_switch *sw = tb_to_switch(dev);
1745 ssize_t ret;
1746
1747 if (!mutex_trylock(&sw->tb->lock))
1748 return restart_syscall();
1749
1750 if (sw->key)
1751 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1752 else
1753 ret = sysfs_emit(buf, "\n");
1754
1755 mutex_unlock(&sw->tb->lock);
1756 return ret;
1757}
1758
1759static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1760 const char *buf, size_t count)
1761{
1762 struct tb_switch *sw = tb_to_switch(dev);
1763 u8 key[TB_SWITCH_KEY_SIZE];
1764 ssize_t ret = count;
1765 bool clear = false;
1766
1767 if (!strcmp(buf, "\n"))
1768 clear = true;
1769 else if (hex2bin(key, buf, sizeof(key)))
1770 return -EINVAL;
1771
1772 if (!mutex_trylock(&sw->tb->lock))
1773 return restart_syscall();
1774
1775 if (sw->authorized) {
1776 ret = -EBUSY;
1777 } else {
1778 kfree(sw->key);
1779 if (clear) {
1780 sw->key = NULL;
1781 } else {
1782 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1783 if (!sw->key)
1784 ret = -ENOMEM;
1785 }
1786 }
1787
1788 mutex_unlock(&sw->tb->lock);
1789 return ret;
1790}
1791static DEVICE_ATTR(key, 0600, key_show, key_store);
1792
1793static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1794 char *buf)
1795{
1796 struct tb_switch *sw = tb_to_switch(dev);
1797
1798 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1799}
1800
1801/*
1802 * Currently all lanes must run at the same speed but we expose here
1803 * both directions to allow possible asymmetric links in the future.
1804 */
1805static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1806static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1807
1808static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1809 char *buf)
1810{
1811 struct tb_switch *sw = tb_to_switch(dev);
1812 unsigned int width;
1813
1814 switch (sw->link_width) {
1815 case TB_LINK_WIDTH_SINGLE:
1816 case TB_LINK_WIDTH_ASYM_TX:
1817 width = 1;
1818 break;
1819 case TB_LINK_WIDTH_DUAL:
1820 width = 2;
1821 break;
1822 case TB_LINK_WIDTH_ASYM_RX:
1823 width = 3;
1824 break;
1825 default:
1826 WARN_ON_ONCE(1);
1827 return -EINVAL;
1828 }
1829
1830 return sysfs_emit(buf, "%u\n", width);
1831}
1832static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1833
1834static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1835 char *buf)
1836{
1837 struct tb_switch *sw = tb_to_switch(dev);
1838 unsigned int width;
1839
1840 switch (sw->link_width) {
1841 case TB_LINK_WIDTH_SINGLE:
1842 case TB_LINK_WIDTH_ASYM_RX:
1843 width = 1;
1844 break;
1845 case TB_LINK_WIDTH_DUAL:
1846 width = 2;
1847 break;
1848 case TB_LINK_WIDTH_ASYM_TX:
1849 width = 3;
1850 break;
1851 default:
1852 WARN_ON_ONCE(1);
1853 return -EINVAL;
1854 }
1855
1856 return sysfs_emit(buf, "%u\n", width);
1857}
1858static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
1859
1860static ssize_t nvm_authenticate_show(struct device *dev,
1861 struct device_attribute *attr, char *buf)
1862{
1863 struct tb_switch *sw = tb_to_switch(dev);
1864 u32 status;
1865
1866 nvm_get_auth_status(sw, &status);
1867 return sysfs_emit(buf, "%#x\n", status);
1868}
1869
1870static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1871 bool disconnect)
1872{
1873 struct tb_switch *sw = tb_to_switch(dev);
1874 int val, ret;
1875
1876 pm_runtime_get_sync(&sw->dev);
1877
1878 if (!mutex_trylock(&sw->tb->lock)) {
1879 ret = restart_syscall();
1880 goto exit_rpm;
1881 }
1882
1883 if (sw->no_nvm_upgrade) {
1884 ret = -EOPNOTSUPP;
1885 goto exit_unlock;
1886 }
1887
1888 /* If NVMem devices are not yet added */
1889 if (!sw->nvm) {
1890 ret = -EAGAIN;
1891 goto exit_unlock;
1892 }
1893
1894 ret = kstrtoint(buf, 10, &val);
1895 if (ret)
1896 goto exit_unlock;
1897
1898 /* Always clear the authentication status */
1899 nvm_clear_auth_status(sw);
1900
1901 if (val > 0) {
1902 if (val == AUTHENTICATE_ONLY) {
1903 if (disconnect)
1904 ret = -EINVAL;
1905 else
1906 ret = nvm_authenticate(sw, true);
1907 } else {
1908 if (!sw->nvm->flushed) {
1909 if (!sw->nvm->buf) {
1910 ret = -EINVAL;
1911 goto exit_unlock;
1912 }
1913
1914 ret = nvm_validate_and_write(sw);
1915 if (ret || val == WRITE_ONLY)
1916 goto exit_unlock;
1917 }
1918 if (val == WRITE_AND_AUTHENTICATE) {
1919 if (disconnect)
1920 ret = tb_lc_force_power(sw);
1921 else
1922 ret = nvm_authenticate(sw, false);
1923 }
1924 }
1925 }
1926
1927exit_unlock:
1928 mutex_unlock(&sw->tb->lock);
1929exit_rpm:
1930 pm_runtime_mark_last_busy(&sw->dev);
1931 pm_runtime_put_autosuspend(&sw->dev);
1932
1933 return ret;
1934}
1935
1936static ssize_t nvm_authenticate_store(struct device *dev,
1937 struct device_attribute *attr, const char *buf, size_t count)
1938{
1939 int ret = nvm_authenticate_sysfs(dev, buf, false);
1940 if (ret)
1941 return ret;
1942 return count;
1943}
1944static DEVICE_ATTR_RW(nvm_authenticate);
1945
1946static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1947 struct device_attribute *attr, char *buf)
1948{
1949 return nvm_authenticate_show(dev, attr, buf);
1950}
1951
1952static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1953 struct device_attribute *attr, const char *buf, size_t count)
1954{
1955 int ret;
1956
1957 ret = nvm_authenticate_sysfs(dev, buf, true);
1958 return ret ? ret : count;
1959}
1960static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1961
1962static ssize_t nvm_version_show(struct device *dev,
1963 struct device_attribute *attr, char *buf)
1964{
1965 struct tb_switch *sw = tb_to_switch(dev);
1966 int ret;
1967
1968 if (!mutex_trylock(&sw->tb->lock))
1969 return restart_syscall();
1970
1971 if (sw->safe_mode)
1972 ret = -ENODATA;
1973 else if (!sw->nvm)
1974 ret = -EAGAIN;
1975 else
1976 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1977
1978 mutex_unlock(&sw->tb->lock);
1979
1980 return ret;
1981}
1982static DEVICE_ATTR_RO(nvm_version);
1983
1984static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1985 char *buf)
1986{
1987 struct tb_switch *sw = tb_to_switch(dev);
1988
1989 return sysfs_emit(buf, "%#x\n", sw->vendor);
1990}
1991static DEVICE_ATTR_RO(vendor);
1992
1993static ssize_t
1994vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1995{
1996 struct tb_switch *sw = tb_to_switch(dev);
1997
1998 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
1999}
2000static DEVICE_ATTR_RO(vendor_name);
2001
2002static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2003 char *buf)
2004{
2005 struct tb_switch *sw = tb_to_switch(dev);
2006
2007 return sysfs_emit(buf, "%pUb\n", sw->uuid);
2008}
2009static DEVICE_ATTR_RO(unique_id);
2010
2011static struct attribute *switch_attrs[] = {
2012 &dev_attr_authorized.attr,
2013 &dev_attr_boot.attr,
2014 &dev_attr_device.attr,
2015 &dev_attr_device_name.attr,
2016 &dev_attr_generation.attr,
2017 &dev_attr_key.attr,
2018 &dev_attr_nvm_authenticate.attr,
2019 &dev_attr_nvm_authenticate_on_disconnect.attr,
2020 &dev_attr_nvm_version.attr,
2021 &dev_attr_rx_speed.attr,
2022 &dev_attr_rx_lanes.attr,
2023 &dev_attr_tx_speed.attr,
2024 &dev_attr_tx_lanes.attr,
2025 &dev_attr_vendor.attr,
2026 &dev_attr_vendor_name.attr,
2027 &dev_attr_unique_id.attr,
2028 NULL,
2029};
2030
2031static umode_t switch_attr_is_visible(struct kobject *kobj,
2032 struct attribute *attr, int n)
2033{
2034 struct device *dev = kobj_to_dev(kobj);
2035 struct tb_switch *sw = tb_to_switch(dev);
2036
2037 if (attr == &dev_attr_authorized.attr) {
2038 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2039 sw->tb->security_level == TB_SECURITY_DPONLY)
2040 return 0;
2041 } else if (attr == &dev_attr_device.attr) {
2042 if (!sw->device)
2043 return 0;
2044 } else if (attr == &dev_attr_device_name.attr) {
2045 if (!sw->device_name)
2046 return 0;
2047 } else if (attr == &dev_attr_vendor.attr) {
2048 if (!sw->vendor)
2049 return 0;
2050 } else if (attr == &dev_attr_vendor_name.attr) {
2051 if (!sw->vendor_name)
2052 return 0;
2053 } else if (attr == &dev_attr_key.attr) {
2054 if (tb_route(sw) &&
2055 sw->tb->security_level == TB_SECURITY_SECURE &&
2056 sw->security_level == TB_SECURITY_SECURE)
2057 return attr->mode;
2058 return 0;
2059 } else if (attr == &dev_attr_rx_speed.attr ||
2060 attr == &dev_attr_rx_lanes.attr ||
2061 attr == &dev_attr_tx_speed.attr ||
2062 attr == &dev_attr_tx_lanes.attr) {
2063 if (tb_route(sw))
2064 return attr->mode;
2065 return 0;
2066 } else if (attr == &dev_attr_nvm_authenticate.attr) {
2067 if (nvm_upgradeable(sw))
2068 return attr->mode;
2069 return 0;
2070 } else if (attr == &dev_attr_nvm_version.attr) {
2071 if (nvm_readable(sw))
2072 return attr->mode;
2073 return 0;
2074 } else if (attr == &dev_attr_boot.attr) {
2075 if (tb_route(sw))
2076 return attr->mode;
2077 return 0;
2078 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2079 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2080 return attr->mode;
2081 return 0;
2082 }
2083
2084 return sw->safe_mode ? 0 : attr->mode;
2085}
2086
2087static const struct attribute_group switch_group = {
2088 .is_visible = switch_attr_is_visible,
2089 .attrs = switch_attrs,
2090};
2091
2092static const struct attribute_group *switch_groups[] = {
2093 &switch_group,
2094 NULL,
2095};
2096
2097static void tb_switch_release(struct device *dev)
2098{
2099 struct tb_switch *sw = tb_to_switch(dev);
2100 struct tb_port *port;
2101
2102 dma_port_free(sw->dma_port);
2103
2104 tb_switch_for_each_port(sw, port) {
2105 ida_destroy(&port->in_hopids);
2106 ida_destroy(&port->out_hopids);
2107 }
2108
2109 kfree(sw->uuid);
2110 kfree(sw->device_name);
2111 kfree(sw->vendor_name);
2112 kfree(sw->ports);
2113 kfree(sw->drom);
2114 kfree(sw->key);
2115 kfree(sw);
2116}
2117
2118static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2119{
2120 const struct tb_switch *sw = tb_to_switch(dev);
2121 const char *type;
2122
2123 if (tb_switch_is_usb4(sw)) {
2124 if (add_uevent_var(env, "USB4_VERSION=%u.0",
2125 usb4_switch_version(sw)))
2126 return -ENOMEM;
2127 }
2128
2129 if (!tb_route(sw)) {
2130 type = "host";
2131 } else {
2132 const struct tb_port *port;
2133 bool hub = false;
2134
2135 /* Device is hub if it has any downstream ports */
2136 tb_switch_for_each_port(sw, port) {
2137 if (!port->disabled && !tb_is_upstream_port(port) &&
2138 tb_port_is_null(port)) {
2139 hub = true;
2140 break;
2141 }
2142 }
2143
2144 type = hub ? "hub" : "device";
2145 }
2146
2147 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2148 return -ENOMEM;
2149 return 0;
2150}
2151
2152/*
2153 * Currently only need to provide the callbacks. Everything else is handled
2154 * in the connection manager.
2155 */
2156static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2157{
2158 struct tb_switch *sw = tb_to_switch(dev);
2159 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2160
2161 if (cm_ops->runtime_suspend_switch)
2162 return cm_ops->runtime_suspend_switch(sw);
2163
2164 return 0;
2165}
2166
2167static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2168{
2169 struct tb_switch *sw = tb_to_switch(dev);
2170 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2171
2172 if (cm_ops->runtime_resume_switch)
2173 return cm_ops->runtime_resume_switch(sw);
2174 return 0;
2175}
2176
2177static const struct dev_pm_ops tb_switch_pm_ops = {
2178 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2179 NULL)
2180};
2181
2182struct device_type tb_switch_type = {
2183 .name = "thunderbolt_device",
2184 .release = tb_switch_release,
2185 .uevent = tb_switch_uevent,
2186 .pm = &tb_switch_pm_ops,
2187};
2188
2189static int tb_switch_get_generation(struct tb_switch *sw)
2190{
2191 if (tb_switch_is_usb4(sw))
2192 return 4;
2193
2194 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2195 switch (sw->config.device_id) {
2196 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2197 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2198 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2199 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2200 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2201 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2202 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2203 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2204 return 1;
2205
2206 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2207 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2208 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2209 return 2;
2210
2211 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2212 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2213 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2214 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2215 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2216 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2217 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2218 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2219 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2220 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2221 return 3;
2222 }
2223 }
2224
2225 /*
2226 * For unknown switches assume generation to be 1 to be on the
2227 * safe side.
2228 */
2229 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2230 sw->config.device_id);
2231 return 1;
2232}
2233
2234static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2235{
2236 int max_depth;
2237
2238 if (tb_switch_is_usb4(sw) ||
2239 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2240 max_depth = USB4_SWITCH_MAX_DEPTH;
2241 else
2242 max_depth = TB_SWITCH_MAX_DEPTH;
2243
2244 return depth > max_depth;
2245}
2246
2247/**
2248 * tb_switch_alloc() - allocate a switch
2249 * @tb: Pointer to the owning domain
2250 * @parent: Parent device for this switch
2251 * @route: Route string for this switch
2252 *
2253 * Allocates and initializes a switch. Will not upload configuration to
2254 * the switch. For that you need to call tb_switch_configure()
2255 * separately. The returned switch should be released by calling
2256 * tb_switch_put().
2257 *
2258 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2259 * failure.
2260 */
2261struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2262 u64 route)
2263{
2264 struct tb_switch *sw;
2265 int upstream_port;
2266 int i, ret, depth;
2267
2268 /* Unlock the downstream port so we can access the switch below */
2269 if (route) {
2270 struct tb_switch *parent_sw = tb_to_switch(parent);
2271 struct tb_port *down;
2272
2273 down = tb_port_at(route, parent_sw);
2274 tb_port_unlock(down);
2275 }
2276
2277 depth = tb_route_length(route);
2278
2279 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2280 if (upstream_port < 0)
2281 return ERR_PTR(upstream_port);
2282
2283 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2284 if (!sw)
2285 return ERR_PTR(-ENOMEM);
2286
2287 sw->tb = tb;
2288 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2289 if (ret)
2290 goto err_free_sw_ports;
2291
2292 sw->generation = tb_switch_get_generation(sw);
2293
2294 tb_dbg(tb, "current switch config:\n");
2295 tb_dump_switch(tb, sw);
2296
2297 /* configure switch */
2298 sw->config.upstream_port_number = upstream_port;
2299 sw->config.depth = depth;
2300 sw->config.route_hi = upper_32_bits(route);
2301 sw->config.route_lo = lower_32_bits(route);
2302 sw->config.enabled = 0;
2303
2304 /* Make sure we do not exceed maximum topology limit */
2305 if (tb_switch_exceeds_max_depth(sw, depth)) {
2306 ret = -EADDRNOTAVAIL;
2307 goto err_free_sw_ports;
2308 }
2309
2310 /* initialize ports */
2311 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2312 GFP_KERNEL);
2313 if (!sw->ports) {
2314 ret = -ENOMEM;
2315 goto err_free_sw_ports;
2316 }
2317
2318 for (i = 0; i <= sw->config.max_port_number; i++) {
2319 /* minimum setup for tb_find_cap and tb_drom_read to work */
2320 sw->ports[i].sw = sw;
2321 sw->ports[i].port = i;
2322
2323 /* Control port does not need HopID allocation */
2324 if (i) {
2325 ida_init(&sw->ports[i].in_hopids);
2326 ida_init(&sw->ports[i].out_hopids);
2327 }
2328 }
2329
2330 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2331 if (ret > 0)
2332 sw->cap_plug_events = ret;
2333
2334 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2335 if (ret > 0)
2336 sw->cap_vsec_tmu = ret;
2337
2338 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2339 if (ret > 0)
2340 sw->cap_lc = ret;
2341
2342 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2343 if (ret > 0)
2344 sw->cap_lp = ret;
2345
2346 /* Root switch is always authorized */
2347 if (!route)
2348 sw->authorized = true;
2349
2350 device_initialize(&sw->dev);
2351 sw->dev.parent = parent;
2352 sw->dev.bus = &tb_bus_type;
2353 sw->dev.type = &tb_switch_type;
2354 sw->dev.groups = switch_groups;
2355 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2356
2357 return sw;
2358
2359err_free_sw_ports:
2360 kfree(sw->ports);
2361 kfree(sw);
2362
2363 return ERR_PTR(ret);
2364}
2365
2366/**
2367 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2368 * @tb: Pointer to the owning domain
2369 * @parent: Parent device for this switch
2370 * @route: Route string for this switch
2371 *
2372 * This creates a switch in safe mode. This means the switch pretty much
2373 * lacks all capabilities except DMA configuration port before it is
2374 * flashed with a valid NVM firmware.
2375 *
2376 * The returned switch must be released by calling tb_switch_put().
2377 *
2378 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2379 */
2380struct tb_switch *
2381tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2382{
2383 struct tb_switch *sw;
2384
2385 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2386 if (!sw)
2387 return ERR_PTR(-ENOMEM);
2388
2389 sw->tb = tb;
2390 sw->config.depth = tb_route_length(route);
2391 sw->config.route_hi = upper_32_bits(route);
2392 sw->config.route_lo = lower_32_bits(route);
2393 sw->safe_mode = true;
2394
2395 device_initialize(&sw->dev);
2396 sw->dev.parent = parent;
2397 sw->dev.bus = &tb_bus_type;
2398 sw->dev.type = &tb_switch_type;
2399 sw->dev.groups = switch_groups;
2400 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2401
2402 return sw;
2403}
2404
2405/**
2406 * tb_switch_configure() - Uploads configuration to the switch
2407 * @sw: Switch to configure
2408 *
2409 * Call this function before the switch is added to the system. It will
2410 * upload configuration to the switch and makes it available for the
2411 * connection manager to use. Can be called to the switch again after
2412 * resume from low power states to re-initialize it.
2413 *
2414 * Return: %0 in case of success and negative errno in case of failure
2415 */
2416int tb_switch_configure(struct tb_switch *sw)
2417{
2418 struct tb *tb = sw->tb;
2419 u64 route;
2420 int ret;
2421
2422 route = tb_route(sw);
2423
2424 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2425 sw->config.enabled ? "restoring" : "initializing", route,
2426 tb_route_length(route), sw->config.upstream_port_number);
2427
2428 sw->config.enabled = 1;
2429
2430 if (tb_switch_is_usb4(sw)) {
2431 /*
2432 * For USB4 devices, we need to program the CM version
2433 * accordingly so that it knows to expose all the
2434 * additional capabilities. Program it according to USB4
2435 * version to avoid changing existing (v1) routers behaviour.
2436 */
2437 if (usb4_switch_version(sw) < 2)
2438 sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2439 else
2440 sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2441 sw->config.plug_events_delay = 0xa;
2442
2443 /* Enumerate the switch */
2444 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2445 ROUTER_CS_1, 4);
2446 if (ret)
2447 return ret;
2448
2449 ret = usb4_switch_setup(sw);
2450 } else {
2451 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2452 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2453 sw->config.vendor_id);
2454
2455 if (!sw->cap_plug_events) {
2456 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2457 return -ENODEV;
2458 }
2459
2460 /* Enumerate the switch */
2461 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2462 ROUTER_CS_1, 3);
2463 }
2464 if (ret)
2465 return ret;
2466
2467 return tb_plug_events_active(sw, true);
2468}
2469
2470/**
2471 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2472 * @sw: Router to configure
2473 *
2474 * Needs to be called before any tunnels can be setup through the
2475 * router. Can be called to any router.
2476 *
2477 * Returns %0 in success and negative errno otherwise.
2478 */
2479int tb_switch_configuration_valid(struct tb_switch *sw)
2480{
2481 if (tb_switch_is_usb4(sw))
2482 return usb4_switch_configuration_valid(sw);
2483 return 0;
2484}
2485
2486static int tb_switch_set_uuid(struct tb_switch *sw)
2487{
2488 bool uid = false;
2489 u32 uuid[4];
2490 int ret;
2491
2492 if (sw->uuid)
2493 return 0;
2494
2495 if (tb_switch_is_usb4(sw)) {
2496 ret = usb4_switch_read_uid(sw, &sw->uid);
2497 if (ret)
2498 return ret;
2499 uid = true;
2500 } else {
2501 /*
2502 * The newer controllers include fused UUID as part of
2503 * link controller specific registers
2504 */
2505 ret = tb_lc_read_uuid(sw, uuid);
2506 if (ret) {
2507 if (ret != -EINVAL)
2508 return ret;
2509 uid = true;
2510 }
2511 }
2512
2513 if (uid) {
2514 /*
2515 * ICM generates UUID based on UID and fills the upper
2516 * two words with ones. This is not strictly following
2517 * UUID format but we want to be compatible with it so
2518 * we do the same here.
2519 */
2520 uuid[0] = sw->uid & 0xffffffff;
2521 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2522 uuid[2] = 0xffffffff;
2523 uuid[3] = 0xffffffff;
2524 }
2525
2526 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2527 if (!sw->uuid)
2528 return -ENOMEM;
2529 return 0;
2530}
2531
2532static int tb_switch_add_dma_port(struct tb_switch *sw)
2533{
2534 u32 status;
2535 int ret;
2536
2537 switch (sw->generation) {
2538 case 2:
2539 /* Only root switch can be upgraded */
2540 if (tb_route(sw))
2541 return 0;
2542
2543 fallthrough;
2544 case 3:
2545 case 4:
2546 ret = tb_switch_set_uuid(sw);
2547 if (ret)
2548 return ret;
2549 break;
2550
2551 default:
2552 /*
2553 * DMA port is the only thing available when the switch
2554 * is in safe mode.
2555 */
2556 if (!sw->safe_mode)
2557 return 0;
2558 break;
2559 }
2560
2561 if (sw->no_nvm_upgrade)
2562 return 0;
2563
2564 if (tb_switch_is_usb4(sw)) {
2565 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2566 if (ret)
2567 return ret;
2568
2569 if (status) {
2570 tb_sw_info(sw, "switch flash authentication failed\n");
2571 nvm_set_auth_status(sw, status);
2572 }
2573
2574 return 0;
2575 }
2576
2577 /* Root switch DMA port requires running firmware */
2578 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2579 return 0;
2580
2581 sw->dma_port = dma_port_alloc(sw);
2582 if (!sw->dma_port)
2583 return 0;
2584
2585 /*
2586 * If there is status already set then authentication failed
2587 * when the dma_port_flash_update_auth() returned. Power cycling
2588 * is not needed (it was done already) so only thing we do here
2589 * is to unblock runtime PM of the root port.
2590 */
2591 nvm_get_auth_status(sw, &status);
2592 if (status) {
2593 if (!tb_route(sw))
2594 nvm_authenticate_complete_dma_port(sw);
2595 return 0;
2596 }
2597
2598 /*
2599 * Check status of the previous flash authentication. If there
2600 * is one we need to power cycle the switch in any case to make
2601 * it functional again.
2602 */
2603 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2604 if (ret <= 0)
2605 return ret;
2606
2607 /* Now we can allow root port to suspend again */
2608 if (!tb_route(sw))
2609 nvm_authenticate_complete_dma_port(sw);
2610
2611 if (status) {
2612 tb_sw_info(sw, "switch flash authentication failed\n");
2613 nvm_set_auth_status(sw, status);
2614 }
2615
2616 tb_sw_info(sw, "power cycling the switch now\n");
2617 dma_port_power_cycle(sw->dma_port);
2618
2619 /*
2620 * We return error here which causes the switch adding failure.
2621 * It should appear back after power cycle is complete.
2622 */
2623 return -ESHUTDOWN;
2624}
2625
2626static void tb_switch_default_link_ports(struct tb_switch *sw)
2627{
2628 int i;
2629
2630 for (i = 1; i <= sw->config.max_port_number; i++) {
2631 struct tb_port *port = &sw->ports[i];
2632 struct tb_port *subordinate;
2633
2634 if (!tb_port_is_null(port))
2635 continue;
2636
2637 /* Check for the subordinate port */
2638 if (i == sw->config.max_port_number ||
2639 !tb_port_is_null(&sw->ports[i + 1]))
2640 continue;
2641
2642 /* Link them if not already done so (by DROM) */
2643 subordinate = &sw->ports[i + 1];
2644 if (!port->dual_link_port && !subordinate->dual_link_port) {
2645 port->link_nr = 0;
2646 port->dual_link_port = subordinate;
2647 subordinate->link_nr = 1;
2648 subordinate->dual_link_port = port;
2649
2650 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2651 port->port, subordinate->port);
2652 }
2653 }
2654}
2655
2656static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2657{
2658 const struct tb_port *up = tb_upstream_port(sw);
2659
2660 if (!up->dual_link_port || !up->dual_link_port->remote)
2661 return false;
2662
2663 if (tb_switch_is_usb4(sw))
2664 return usb4_switch_lane_bonding_possible(sw);
2665 return tb_lc_lane_bonding_possible(sw);
2666}
2667
2668static int tb_switch_update_link_attributes(struct tb_switch *sw)
2669{
2670 struct tb_port *up;
2671 bool change = false;
2672 int ret;
2673
2674 if (!tb_route(sw) || tb_switch_is_icm(sw))
2675 return 0;
2676
2677 up = tb_upstream_port(sw);
2678
2679 ret = tb_port_get_link_speed(up);
2680 if (ret < 0)
2681 return ret;
2682 if (sw->link_speed != ret)
2683 change = true;
2684 sw->link_speed = ret;
2685
2686 ret = tb_port_get_link_width(up);
2687 if (ret < 0)
2688 return ret;
2689 if (sw->link_width != ret)
2690 change = true;
2691 sw->link_width = ret;
2692
2693 /* Notify userspace that there is possible link attribute change */
2694 if (device_is_registered(&sw->dev) && change)
2695 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2696
2697 return 0;
2698}
2699
2700/**
2701 * tb_switch_lane_bonding_enable() - Enable lane bonding
2702 * @sw: Switch to enable lane bonding
2703 *
2704 * Connection manager can call this function to enable lane bonding of a
2705 * switch. If conditions are correct and both switches support the feature,
2706 * lanes are bonded. It is safe to call this to any switch.
2707 */
2708int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2709{
2710 struct tb_port *up, *down;
2711 u64 route = tb_route(sw);
2712 unsigned int width_mask;
2713 int ret;
2714
2715 if (!route)
2716 return 0;
2717
2718 if (!tb_switch_lane_bonding_possible(sw))
2719 return 0;
2720
2721 up = tb_upstream_port(sw);
2722 down = tb_switch_downstream_port(sw);
2723
2724 if (!tb_port_is_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2725 !tb_port_is_width_supported(down, TB_LINK_WIDTH_DUAL))
2726 return 0;
2727
2728 ret = tb_port_lane_bonding_enable(up);
2729 if (ret) {
2730 tb_port_warn(up, "failed to enable lane bonding\n");
2731 return ret;
2732 }
2733
2734 ret = tb_port_lane_bonding_enable(down);
2735 if (ret) {
2736 tb_port_warn(down, "failed to enable lane bonding\n");
2737 tb_port_lane_bonding_disable(up);
2738 return ret;
2739 }
2740
2741 /* Any of the widths are all bonded */
2742 width_mask = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2743 TB_LINK_WIDTH_ASYM_RX;
2744
2745 ret = tb_port_wait_for_link_width(down, width_mask, 100);
2746 if (ret) {
2747 tb_port_warn(down, "timeout enabling lane bonding\n");
2748 return ret;
2749 }
2750
2751 tb_port_update_credits(down);
2752 tb_port_update_credits(up);
2753 tb_switch_update_link_attributes(sw);
2754
2755 tb_sw_dbg(sw, "lane bonding enabled\n");
2756 return ret;
2757}
2758
2759/**
2760 * tb_switch_lane_bonding_disable() - Disable lane bonding
2761 * @sw: Switch whose lane bonding to disable
2762 *
2763 * Disables lane bonding between @sw and parent. This can be called even
2764 * if lanes were not bonded originally.
2765 */
2766void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2767{
2768 struct tb_port *up, *down;
2769 int ret;
2770
2771 if (!tb_route(sw))
2772 return;
2773
2774 up = tb_upstream_port(sw);
2775 if (!up->bonded)
2776 return;
2777
2778 down = tb_switch_downstream_port(sw);
2779
2780 tb_port_lane_bonding_disable(up);
2781 tb_port_lane_bonding_disable(down);
2782
2783 /*
2784 * It is fine if we get other errors as the router might have
2785 * been unplugged.
2786 */
2787 ret = tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2788 if (ret == -ETIMEDOUT)
2789 tb_sw_warn(sw, "timeout disabling lane bonding\n");
2790
2791 tb_port_update_credits(down);
2792 tb_port_update_credits(up);
2793 tb_switch_update_link_attributes(sw);
2794
2795 tb_sw_dbg(sw, "lane bonding disabled\n");
2796}
2797
2798/**
2799 * tb_switch_configure_link() - Set link configured
2800 * @sw: Switch whose link is configured
2801 *
2802 * Sets the link upstream from @sw configured (from both ends) so that
2803 * it will not be disconnected when the domain exits sleep. Can be
2804 * called for any switch.
2805 *
2806 * It is recommended that this is called after lane bonding is enabled.
2807 *
2808 * Returns %0 on success and negative errno in case of error.
2809 */
2810int tb_switch_configure_link(struct tb_switch *sw)
2811{
2812 struct tb_port *up, *down;
2813 int ret;
2814
2815 if (!tb_route(sw) || tb_switch_is_icm(sw))
2816 return 0;
2817
2818 up = tb_upstream_port(sw);
2819 if (tb_switch_is_usb4(up->sw))
2820 ret = usb4_port_configure(up);
2821 else
2822 ret = tb_lc_configure_port(up);
2823 if (ret)
2824 return ret;
2825
2826 down = up->remote;
2827 if (tb_switch_is_usb4(down->sw))
2828 return usb4_port_configure(down);
2829 return tb_lc_configure_port(down);
2830}
2831
2832/**
2833 * tb_switch_unconfigure_link() - Unconfigure link
2834 * @sw: Switch whose link is unconfigured
2835 *
2836 * Sets the link unconfigured so the @sw will be disconnected if the
2837 * domain exists sleep.
2838 */
2839void tb_switch_unconfigure_link(struct tb_switch *sw)
2840{
2841 struct tb_port *up, *down;
2842
2843 if (sw->is_unplugged)
2844 return;
2845 if (!tb_route(sw) || tb_switch_is_icm(sw))
2846 return;
2847
2848 up = tb_upstream_port(sw);
2849 if (tb_switch_is_usb4(up->sw))
2850 usb4_port_unconfigure(up);
2851 else
2852 tb_lc_unconfigure_port(up);
2853
2854 down = up->remote;
2855 if (tb_switch_is_usb4(down->sw))
2856 usb4_port_unconfigure(down);
2857 else
2858 tb_lc_unconfigure_port(down);
2859}
2860
2861static void tb_switch_credits_init(struct tb_switch *sw)
2862{
2863 if (tb_switch_is_icm(sw))
2864 return;
2865 if (!tb_switch_is_usb4(sw))
2866 return;
2867 if (usb4_switch_credits_init(sw))
2868 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2869}
2870
2871static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
2872{
2873 struct tb_port *port;
2874
2875 if (tb_switch_is_icm(sw))
2876 return 0;
2877
2878 tb_switch_for_each_port(sw, port) {
2879 int res;
2880
2881 if (!port->cap_usb4)
2882 continue;
2883
2884 res = usb4_port_hotplug_enable(port);
2885 if (res)
2886 return res;
2887 }
2888 return 0;
2889}
2890
2891/**
2892 * tb_switch_add() - Add a switch to the domain
2893 * @sw: Switch to add
2894 *
2895 * This is the last step in adding switch to the domain. It will read
2896 * identification information from DROM and initializes ports so that
2897 * they can be used to connect other switches. The switch will be
2898 * exposed to the userspace when this function successfully returns. To
2899 * remove and release the switch, call tb_switch_remove().
2900 *
2901 * Return: %0 in case of success and negative errno in case of failure
2902 */
2903int tb_switch_add(struct tb_switch *sw)
2904{
2905 int i, ret;
2906
2907 /*
2908 * Initialize DMA control port now before we read DROM. Recent
2909 * host controllers have more complete DROM on NVM that includes
2910 * vendor and model identification strings which we then expose
2911 * to the userspace. NVM can be accessed through DMA
2912 * configuration based mailbox.
2913 */
2914 ret = tb_switch_add_dma_port(sw);
2915 if (ret) {
2916 dev_err(&sw->dev, "failed to add DMA port\n");
2917 return ret;
2918 }
2919
2920 if (!sw->safe_mode) {
2921 tb_switch_credits_init(sw);
2922
2923 /* read drom */
2924 ret = tb_drom_read(sw);
2925 if (ret)
2926 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
2927 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2928
2929 ret = tb_switch_set_uuid(sw);
2930 if (ret) {
2931 dev_err(&sw->dev, "failed to set UUID\n");
2932 return ret;
2933 }
2934
2935 for (i = 0; i <= sw->config.max_port_number; i++) {
2936 if (sw->ports[i].disabled) {
2937 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2938 continue;
2939 }
2940 ret = tb_init_port(&sw->ports[i]);
2941 if (ret) {
2942 dev_err(&sw->dev, "failed to initialize port %d\n", i);
2943 return ret;
2944 }
2945 }
2946
2947 tb_check_quirks(sw);
2948
2949 tb_switch_default_link_ports(sw);
2950
2951 ret = tb_switch_update_link_attributes(sw);
2952 if (ret)
2953 return ret;
2954
2955 ret = tb_switch_clx_init(sw);
2956 if (ret)
2957 return ret;
2958
2959 ret = tb_switch_tmu_init(sw);
2960 if (ret)
2961 return ret;
2962 }
2963
2964 ret = tb_switch_port_hotplug_enable(sw);
2965 if (ret)
2966 return ret;
2967
2968 ret = device_add(&sw->dev);
2969 if (ret) {
2970 dev_err(&sw->dev, "failed to add device: %d\n", ret);
2971 return ret;
2972 }
2973
2974 if (tb_route(sw)) {
2975 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2976 sw->vendor, sw->device);
2977 if (sw->vendor_name && sw->device_name)
2978 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2979 sw->device_name);
2980 }
2981
2982 ret = usb4_switch_add_ports(sw);
2983 if (ret) {
2984 dev_err(&sw->dev, "failed to add USB4 ports\n");
2985 goto err_del;
2986 }
2987
2988 ret = tb_switch_nvm_add(sw);
2989 if (ret) {
2990 dev_err(&sw->dev, "failed to add NVM devices\n");
2991 goto err_ports;
2992 }
2993
2994 /*
2995 * Thunderbolt routers do not generate wakeups themselves but
2996 * they forward wakeups from tunneled protocols, so enable it
2997 * here.
2998 */
2999 device_init_wakeup(&sw->dev, true);
3000
3001 pm_runtime_set_active(&sw->dev);
3002 if (sw->rpm) {
3003 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3004 pm_runtime_use_autosuspend(&sw->dev);
3005 pm_runtime_mark_last_busy(&sw->dev);
3006 pm_runtime_enable(&sw->dev);
3007 pm_request_autosuspend(&sw->dev);
3008 }
3009
3010 tb_switch_debugfs_init(sw);
3011 return 0;
3012
3013err_ports:
3014 usb4_switch_remove_ports(sw);
3015err_del:
3016 device_del(&sw->dev);
3017
3018 return ret;
3019}
3020
3021/**
3022 * tb_switch_remove() - Remove and release a switch
3023 * @sw: Switch to remove
3024 *
3025 * This will remove the switch from the domain and release it after last
3026 * reference count drops to zero. If there are switches connected below
3027 * this switch, they will be removed as well.
3028 */
3029void tb_switch_remove(struct tb_switch *sw)
3030{
3031 struct tb_port *port;
3032
3033 tb_switch_debugfs_remove(sw);
3034
3035 if (sw->rpm) {
3036 pm_runtime_get_sync(&sw->dev);
3037 pm_runtime_disable(&sw->dev);
3038 }
3039
3040 /* port 0 is the switch itself and never has a remote */
3041 tb_switch_for_each_port(sw, port) {
3042 if (tb_port_has_remote(port)) {
3043 tb_switch_remove(port->remote->sw);
3044 port->remote = NULL;
3045 } else if (port->xdomain) {
3046 tb_xdomain_remove(port->xdomain);
3047 port->xdomain = NULL;
3048 }
3049
3050 /* Remove any downstream retimers */
3051 tb_retimer_remove_all(port);
3052 }
3053
3054 if (!sw->is_unplugged)
3055 tb_plug_events_active(sw, false);
3056
3057 tb_switch_nvm_remove(sw);
3058 usb4_switch_remove_ports(sw);
3059
3060 if (tb_route(sw))
3061 dev_info(&sw->dev, "device disconnected\n");
3062 device_unregister(&sw->dev);
3063}
3064
3065/**
3066 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3067 * @sw: Router to mark unplugged
3068 */
3069void tb_sw_set_unplugged(struct tb_switch *sw)
3070{
3071 struct tb_port *port;
3072
3073 if (sw == sw->tb->root_switch) {
3074 tb_sw_WARN(sw, "cannot unplug root switch\n");
3075 return;
3076 }
3077 if (sw->is_unplugged) {
3078 tb_sw_WARN(sw, "is_unplugged already set\n");
3079 return;
3080 }
3081 sw->is_unplugged = true;
3082 tb_switch_for_each_port(sw, port) {
3083 if (tb_port_has_remote(port))
3084 tb_sw_set_unplugged(port->remote->sw);
3085 else if (port->xdomain)
3086 port->xdomain->is_unplugged = true;
3087 }
3088}
3089
3090static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3091{
3092 if (flags)
3093 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3094 else
3095 tb_sw_dbg(sw, "disabling wakeup\n");
3096
3097 if (tb_switch_is_usb4(sw))
3098 return usb4_switch_set_wake(sw, flags);
3099 return tb_lc_set_wake(sw, flags);
3100}
3101
3102int tb_switch_resume(struct tb_switch *sw)
3103{
3104 struct tb_port *port;
3105 int err;
3106
3107 tb_sw_dbg(sw, "resuming switch\n");
3108
3109 /*
3110 * Check for UID of the connected switches except for root
3111 * switch which we assume cannot be removed.
3112 */
3113 if (tb_route(sw)) {
3114 u64 uid;
3115
3116 /*
3117 * Check first that we can still read the switch config
3118 * space. It may be that there is now another domain
3119 * connected.
3120 */
3121 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3122 if (err < 0) {
3123 tb_sw_info(sw, "switch not present anymore\n");
3124 return err;
3125 }
3126
3127 /* We don't have any way to confirm this was the same device */
3128 if (!sw->uid)
3129 return -ENODEV;
3130
3131 if (tb_switch_is_usb4(sw))
3132 err = usb4_switch_read_uid(sw, &uid);
3133 else
3134 err = tb_drom_read_uid_only(sw, &uid);
3135 if (err) {
3136 tb_sw_warn(sw, "uid read failed\n");
3137 return err;
3138 }
3139 if (sw->uid != uid) {
3140 tb_sw_info(sw,
3141 "changed while suspended (uid %#llx -> %#llx)\n",
3142 sw->uid, uid);
3143 return -ENODEV;
3144 }
3145 }
3146
3147 err = tb_switch_configure(sw);
3148 if (err)
3149 return err;
3150
3151 /* Disable wakes */
3152 tb_switch_set_wake(sw, 0);
3153
3154 err = tb_switch_tmu_init(sw);
3155 if (err)
3156 return err;
3157
3158 /* check for surviving downstream switches */
3159 tb_switch_for_each_port(sw, port) {
3160 if (!tb_port_is_null(port))
3161 continue;
3162
3163 if (!tb_port_resume(port))
3164 continue;
3165
3166 if (tb_wait_for_port(port, true) <= 0) {
3167 tb_port_warn(port,
3168 "lost during suspend, disconnecting\n");
3169 if (tb_port_has_remote(port))
3170 tb_sw_set_unplugged(port->remote->sw);
3171 else if (port->xdomain)
3172 port->xdomain->is_unplugged = true;
3173 } else {
3174 /*
3175 * Always unlock the port so the downstream
3176 * switch/domain is accessible.
3177 */
3178 if (tb_port_unlock(port))
3179 tb_port_warn(port, "failed to unlock port\n");
3180 if (port->remote && tb_switch_resume(port->remote->sw)) {
3181 tb_port_warn(port,
3182 "lost during suspend, disconnecting\n");
3183 tb_sw_set_unplugged(port->remote->sw);
3184 }
3185 }
3186 }
3187 return 0;
3188}
3189
3190/**
3191 * tb_switch_suspend() - Put a switch to sleep
3192 * @sw: Switch to suspend
3193 * @runtime: Is this runtime suspend or system sleep
3194 *
3195 * Suspends router and all its children. Enables wakes according to
3196 * value of @runtime and then sets sleep bit for the router. If @sw is
3197 * host router the domain is ready to go to sleep once this function
3198 * returns.
3199 */
3200void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3201{
3202 unsigned int flags = 0;
3203 struct tb_port *port;
3204 int err;
3205
3206 tb_sw_dbg(sw, "suspending switch\n");
3207
3208 /*
3209 * Actually only needed for Titan Ridge but for simplicity can be
3210 * done for USB4 device too as CLx is re-enabled at resume.
3211 */
3212 tb_switch_clx_disable(sw);
3213
3214 err = tb_plug_events_active(sw, false);
3215 if (err)
3216 return;
3217
3218 tb_switch_for_each_port(sw, port) {
3219 if (tb_port_has_remote(port))
3220 tb_switch_suspend(port->remote->sw, runtime);
3221 }
3222
3223 if (runtime) {
3224 /* Trigger wake when something is plugged in/out */
3225 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3226 flags |= TB_WAKE_ON_USB4;
3227 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3228 } else if (device_may_wakeup(&sw->dev)) {
3229 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3230 }
3231
3232 tb_switch_set_wake(sw, flags);
3233
3234 if (tb_switch_is_usb4(sw))
3235 usb4_switch_set_sleep(sw);
3236 else
3237 tb_lc_set_sleep(sw);
3238}
3239
3240/**
3241 * tb_switch_query_dp_resource() - Query availability of DP resource
3242 * @sw: Switch whose DP resource is queried
3243 * @in: DP IN port
3244 *
3245 * Queries availability of DP resource for DP tunneling using switch
3246 * specific means. Returns %true if resource is available.
3247 */
3248bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3249{
3250 if (tb_switch_is_usb4(sw))
3251 return usb4_switch_query_dp_resource(sw, in);
3252 return tb_lc_dp_sink_query(sw, in);
3253}
3254
3255/**
3256 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3257 * @sw: Switch whose DP resource is allocated
3258 * @in: DP IN port
3259 *
3260 * Allocates DP resource for DP tunneling. The resource must be
3261 * available for this to succeed (see tb_switch_query_dp_resource()).
3262 * Returns %0 in success and negative errno otherwise.
3263 */
3264int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3265{
3266 int ret;
3267
3268 if (tb_switch_is_usb4(sw))
3269 ret = usb4_switch_alloc_dp_resource(sw, in);
3270 else
3271 ret = tb_lc_dp_sink_alloc(sw, in);
3272
3273 if (ret)
3274 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3275 in->port);
3276 else
3277 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3278
3279 return ret;
3280}
3281
3282/**
3283 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3284 * @sw: Switch whose DP resource is de-allocated
3285 * @in: DP IN port
3286 *
3287 * De-allocates DP resource that was previously allocated for DP
3288 * tunneling.
3289 */
3290void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3291{
3292 int ret;
3293
3294 if (tb_switch_is_usb4(sw))
3295 ret = usb4_switch_dealloc_dp_resource(sw, in);
3296 else
3297 ret = tb_lc_dp_sink_dealloc(sw, in);
3298
3299 if (ret)
3300 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3301 in->port);
3302 else
3303 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3304}
3305
3306struct tb_sw_lookup {
3307 struct tb *tb;
3308 u8 link;
3309 u8 depth;
3310 const uuid_t *uuid;
3311 u64 route;
3312};
3313
3314static int tb_switch_match(struct device *dev, const void *data)
3315{
3316 struct tb_switch *sw = tb_to_switch(dev);
3317 const struct tb_sw_lookup *lookup = data;
3318
3319 if (!sw)
3320 return 0;
3321 if (sw->tb != lookup->tb)
3322 return 0;
3323
3324 if (lookup->uuid)
3325 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3326
3327 if (lookup->route) {
3328 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3329 sw->config.route_hi == upper_32_bits(lookup->route);
3330 }
3331
3332 /* Root switch is matched only by depth */
3333 if (!lookup->depth)
3334 return !sw->depth;
3335
3336 return sw->link == lookup->link && sw->depth == lookup->depth;
3337}
3338
3339/**
3340 * tb_switch_find_by_link_depth() - Find switch by link and depth
3341 * @tb: Domain the switch belongs
3342 * @link: Link number the switch is connected
3343 * @depth: Depth of the switch in link
3344 *
3345 * Returned switch has reference count increased so the caller needs to
3346 * call tb_switch_put() when done with the switch.
3347 */
3348struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3349{
3350 struct tb_sw_lookup lookup;
3351 struct device *dev;
3352
3353 memset(&lookup, 0, sizeof(lookup));
3354 lookup.tb = tb;
3355 lookup.link = link;
3356 lookup.depth = depth;
3357
3358 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3359 if (dev)
3360 return tb_to_switch(dev);
3361
3362 return NULL;
3363}
3364
3365/**
3366 * tb_switch_find_by_uuid() - Find switch by UUID
3367 * @tb: Domain the switch belongs
3368 * @uuid: UUID to look for
3369 *
3370 * Returned switch has reference count increased so the caller needs to
3371 * call tb_switch_put() when done with the switch.
3372 */
3373struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3374{
3375 struct tb_sw_lookup lookup;
3376 struct device *dev;
3377
3378 memset(&lookup, 0, sizeof(lookup));
3379 lookup.tb = tb;
3380 lookup.uuid = uuid;
3381
3382 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3383 if (dev)
3384 return tb_to_switch(dev);
3385
3386 return NULL;
3387}
3388
3389/**
3390 * tb_switch_find_by_route() - Find switch by route string
3391 * @tb: Domain the switch belongs
3392 * @route: Route string to look for
3393 *
3394 * Returned switch has reference count increased so the caller needs to
3395 * call tb_switch_put() when done with the switch.
3396 */
3397struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3398{
3399 struct tb_sw_lookup lookup;
3400 struct device *dev;
3401
3402 if (!route)
3403 return tb_switch_get(tb->root_switch);
3404
3405 memset(&lookup, 0, sizeof(lookup));
3406 lookup.tb = tb;
3407 lookup.route = route;
3408
3409 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3410 if (dev)
3411 return tb_to_switch(dev);
3412
3413 return NULL;
3414}
3415
3416/**
3417 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3418 * @sw: Switch to find the port from
3419 * @type: Port type to look for
3420 */
3421struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3422 enum tb_port_type type)
3423{
3424 struct tb_port *port;
3425
3426 tb_switch_for_each_port(sw, port) {
3427 if (port->config.type == type)
3428 return port;
3429 }
3430
3431 return NULL;
3432}
3433
3434/*
3435 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3436 * device. For now used only for Titan Ridge.
3437 */
3438static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3439 unsigned int pcie_offset, u32 value)
3440{
3441 u32 offset, command, val;
3442 int ret;
3443
3444 if (sw->generation != 3)
3445 return -EOPNOTSUPP;
3446
3447 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3448 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3449 if (ret)
3450 return ret;
3451
3452 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3453 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3454 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3455 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3456 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3457 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3458
3459 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3460
3461 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3462 if (ret)
3463 return ret;
3464
3465 ret = tb_switch_wait_for_bit(sw, offset,
3466 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3467 if (ret)
3468 return ret;
3469
3470 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3471 if (ret)
3472 return ret;
3473
3474 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3475 return -ETIMEDOUT;
3476
3477 return 0;
3478}
3479
3480/**
3481 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3482 * @sw: Router to enable PCIe L1
3483 *
3484 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3485 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3486 * was configured. Due to Intel platforms limitation, shall be called only
3487 * for first hop switch.
3488 */
3489int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3490{
3491 struct tb_switch *parent = tb_switch_parent(sw);
3492 int ret;
3493
3494 if (!tb_route(sw))
3495 return 0;
3496
3497 if (!tb_switch_is_titan_ridge(sw))
3498 return 0;
3499
3500 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3501 if (tb_route(parent))
3502 return 0;
3503
3504 /* Write to downstream PCIe bridge #5 aka Dn4 */
3505 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3506 if (ret)
3507 return ret;
3508
3509 /* Write to Upstream PCIe bridge #0 aka Up0 */
3510 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3511}
3512
3513/**
3514 * tb_switch_xhci_connect() - Connect internal xHCI
3515 * @sw: Router whose xHCI to connect
3516 *
3517 * Can be called to any router. For Alpine Ridge and Titan Ridge
3518 * performs special flows that bring the xHCI functional for any device
3519 * connected to the type-C port. Call only after PCIe tunnel has been
3520 * established. The function only does the connect if not done already
3521 * so can be called several times for the same router.
3522 */
3523int tb_switch_xhci_connect(struct tb_switch *sw)
3524{
3525 struct tb_port *port1, *port3;
3526 int ret;
3527
3528 if (sw->generation != 3)
3529 return 0;
3530
3531 port1 = &sw->ports[1];
3532 port3 = &sw->ports[3];
3533
3534 if (tb_switch_is_alpine_ridge(sw)) {
3535 bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3536
3537 usb_port1 = tb_lc_is_usb_plugged(port1);
3538 usb_port3 = tb_lc_is_usb_plugged(port3);
3539 xhci_port1 = tb_lc_is_xhci_connected(port1);
3540 xhci_port3 = tb_lc_is_xhci_connected(port3);
3541
3542 /* Figure out correct USB port to connect */
3543 if (usb_port1 && !xhci_port1) {
3544 ret = tb_lc_xhci_connect(port1);
3545 if (ret)
3546 return ret;
3547 }
3548 if (usb_port3 && !xhci_port3)
3549 return tb_lc_xhci_connect(port3);
3550 } else if (tb_switch_is_titan_ridge(sw)) {
3551 ret = tb_lc_xhci_connect(port1);
3552 if (ret)
3553 return ret;
3554 return tb_lc_xhci_connect(port3);
3555 }
3556
3557 return 0;
3558}
3559
3560/**
3561 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3562 * @sw: Router whose xHCI to disconnect
3563 *
3564 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3565 * ports.
3566 */
3567void tb_switch_xhci_disconnect(struct tb_switch *sw)
3568{
3569 if (sw->generation == 3) {
3570 struct tb_port *port1 = &sw->ports[1];
3571 struct tb_port *port3 = &sw->ports[3];
3572
3573 tb_lc_xhci_disconnect(port1);
3574 tb_port_dbg(port1, "disconnected xHCI\n");
3575 tb_lc_xhci_disconnect(port3);
3576 tb_port_dbg(port3, "disconnected xHCI\n");
3577 }
3578}