Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38*/
39
40#include <linux/sched/mm.h>
41#include <linux/sched/signal.h>
42#include <linux/kthread.h>
43#include <linux/blkdev.h>
44#include <linux/blk-integrity.h>
45#include <linux/badblocks.h>
46#include <linux/sysctl.h>
47#include <linux/seq_file.h>
48#include <linux/fs.h>
49#include <linux/poll.h>
50#include <linux/ctype.h>
51#include <linux/string.h>
52#include <linux/hdreg.h>
53#include <linux/proc_fs.h>
54#include <linux/random.h>
55#include <linux/major.h>
56#include <linux/module.h>
57#include <linux/reboot.h>
58#include <linux/file.h>
59#include <linux/compat.h>
60#include <linux/delay.h>
61#include <linux/raid/md_p.h>
62#include <linux/raid/md_u.h>
63#include <linux/raid/detect.h>
64#include <linux/slab.h>
65#include <linux/percpu-refcount.h>
66#include <linux/part_stat.h>
67
68#include <trace/events/block.h>
69#include "md.h"
70#include "md-bitmap.h"
71#include "md-cluster.h"
72
73/* pers_list is a list of registered personalities protected by pers_lock. */
74static LIST_HEAD(pers_list);
75static DEFINE_SPINLOCK(pers_lock);
76
77static const struct kobj_type md_ktype;
78
79struct md_cluster_operations *md_cluster_ops;
80EXPORT_SYMBOL(md_cluster_ops);
81static struct module *md_cluster_mod;
82
83static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
84static struct workqueue_struct *md_wq;
85static struct workqueue_struct *md_misc_wq;
86struct workqueue_struct *md_bitmap_wq;
87
88static int remove_and_add_spares(struct mddev *mddev,
89 struct md_rdev *this);
90static void mddev_detach(struct mddev *mddev);
91static void export_rdev(struct md_rdev *rdev, struct mddev *mddev);
92static void md_wakeup_thread_directly(struct md_thread __rcu *thread);
93
94/*
95 * Default number of read corrections we'll attempt on an rdev
96 * before ejecting it from the array. We divide the read error
97 * count by 2 for every hour elapsed between read errors.
98 */
99#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100/* Default safemode delay: 200 msec */
101#define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102/*
103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104 * is 1000 KB/sec, so the extra system load does not show up that much.
105 * Increase it if you want to have more _guaranteed_ speed. Note that
106 * the RAID driver will use the maximum available bandwidth if the IO
107 * subsystem is idle. There is also an 'absolute maximum' reconstruction
108 * speed limit - in case reconstruction slows down your system despite
109 * idle IO detection.
110 *
111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112 * or /sys/block/mdX/md/sync_speed_{min,max}
113 */
114
115static int sysctl_speed_limit_min = 1000;
116static int sysctl_speed_limit_max = 200000;
117static inline int speed_min(struct mddev *mddev)
118{
119 return mddev->sync_speed_min ?
120 mddev->sync_speed_min : sysctl_speed_limit_min;
121}
122
123static inline int speed_max(struct mddev *mddev)
124{
125 return mddev->sync_speed_max ?
126 mddev->sync_speed_max : sysctl_speed_limit_max;
127}
128
129static void rdev_uninit_serial(struct md_rdev *rdev)
130{
131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 return;
133
134 kvfree(rdev->serial);
135 rdev->serial = NULL;
136}
137
138static void rdevs_uninit_serial(struct mddev *mddev)
139{
140 struct md_rdev *rdev;
141
142 rdev_for_each(rdev, mddev)
143 rdev_uninit_serial(rdev);
144}
145
146static int rdev_init_serial(struct md_rdev *rdev)
147{
148 /* serial_nums equals with BARRIER_BUCKETS_NR */
149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 struct serial_in_rdev *serial = NULL;
151
152 if (test_bit(CollisionCheck, &rdev->flags))
153 return 0;
154
155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 GFP_KERNEL);
157 if (!serial)
158 return -ENOMEM;
159
160 for (i = 0; i < serial_nums; i++) {
161 struct serial_in_rdev *serial_tmp = &serial[i];
162
163 spin_lock_init(&serial_tmp->serial_lock);
164 serial_tmp->serial_rb = RB_ROOT_CACHED;
165 init_waitqueue_head(&serial_tmp->serial_io_wait);
166 }
167
168 rdev->serial = serial;
169 set_bit(CollisionCheck, &rdev->flags);
170
171 return 0;
172}
173
174static int rdevs_init_serial(struct mddev *mddev)
175{
176 struct md_rdev *rdev;
177 int ret = 0;
178
179 rdev_for_each(rdev, mddev) {
180 ret = rdev_init_serial(rdev);
181 if (ret)
182 break;
183 }
184
185 /* Free all resources if pool is not existed */
186 if (ret && !mddev->serial_info_pool)
187 rdevs_uninit_serial(mddev);
188
189 return ret;
190}
191
192/*
193 * rdev needs to enable serial stuffs if it meets the conditions:
194 * 1. it is multi-queue device flaged with writemostly.
195 * 2. the write-behind mode is enabled.
196 */
197static int rdev_need_serial(struct md_rdev *rdev)
198{
199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 test_bit(WriteMostly, &rdev->flags));
202}
203
204/*
205 * Init resource for rdev(s), then create serial_info_pool if:
206 * 1. rdev is the first device which return true from rdev_enable_serial.
207 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208 */
209void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 bool is_suspend)
211{
212 int ret = 0;
213
214 if (rdev && !rdev_need_serial(rdev) &&
215 !test_bit(CollisionCheck, &rdev->flags))
216 return;
217
218 if (!is_suspend)
219 mddev_suspend(mddev);
220
221 if (!rdev)
222 ret = rdevs_init_serial(mddev);
223 else
224 ret = rdev_init_serial(rdev);
225 if (ret)
226 goto abort;
227
228 if (mddev->serial_info_pool == NULL) {
229 /*
230 * already in memalloc noio context by
231 * mddev_suspend()
232 */
233 mddev->serial_info_pool =
234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 sizeof(struct serial_info));
236 if (!mddev->serial_info_pool) {
237 rdevs_uninit_serial(mddev);
238 pr_err("can't alloc memory pool for serialization\n");
239 }
240 }
241
242abort:
243 if (!is_suspend)
244 mddev_resume(mddev);
245}
246
247/*
248 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249 * 1. rdev is the last device flaged with CollisionCheck.
250 * 2. when bitmap is destroyed while policy is not enabled.
251 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252 */
253void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 bool is_suspend)
255{
256 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 return;
258
259 if (mddev->serial_info_pool) {
260 struct md_rdev *temp;
261 int num = 0; /* used to track if other rdevs need the pool */
262
263 if (!is_suspend)
264 mddev_suspend(mddev);
265 rdev_for_each(temp, mddev) {
266 if (!rdev) {
267 if (!mddev->serialize_policy ||
268 !rdev_need_serial(temp))
269 rdev_uninit_serial(temp);
270 else
271 num++;
272 } else if (temp != rdev &&
273 test_bit(CollisionCheck, &temp->flags))
274 num++;
275 }
276
277 if (rdev)
278 rdev_uninit_serial(rdev);
279
280 if (num)
281 pr_info("The mempool could be used by other devices\n");
282 else {
283 mempool_destroy(mddev->serial_info_pool);
284 mddev->serial_info_pool = NULL;
285 }
286 if (!is_suspend)
287 mddev_resume(mddev);
288 }
289}
290
291static struct ctl_table_header *raid_table_header;
292
293static struct ctl_table raid_table[] = {
294 {
295 .procname = "speed_limit_min",
296 .data = &sysctl_speed_limit_min,
297 .maxlen = sizeof(int),
298 .mode = S_IRUGO|S_IWUSR,
299 .proc_handler = proc_dointvec,
300 },
301 {
302 .procname = "speed_limit_max",
303 .data = &sysctl_speed_limit_max,
304 .maxlen = sizeof(int),
305 .mode = S_IRUGO|S_IWUSR,
306 .proc_handler = proc_dointvec,
307 },
308 { }
309};
310
311static int start_readonly;
312
313/*
314 * The original mechanism for creating an md device is to create
315 * a device node in /dev and to open it. This causes races with device-close.
316 * The preferred method is to write to the "new_array" module parameter.
317 * This can avoid races.
318 * Setting create_on_open to false disables the original mechanism
319 * so all the races disappear.
320 */
321static bool create_on_open = true;
322
323/*
324 * We have a system wide 'event count' that is incremented
325 * on any 'interesting' event, and readers of /proc/mdstat
326 * can use 'poll' or 'select' to find out when the event
327 * count increases.
328 *
329 * Events are:
330 * start array, stop array, error, add device, remove device,
331 * start build, activate spare
332 */
333static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
334static atomic_t md_event_count;
335void md_new_event(void)
336{
337 atomic_inc(&md_event_count);
338 wake_up(&md_event_waiters);
339}
340EXPORT_SYMBOL_GPL(md_new_event);
341
342/*
343 * Enables to iterate over all existing md arrays
344 * all_mddevs_lock protects this list.
345 */
346static LIST_HEAD(all_mddevs);
347static DEFINE_SPINLOCK(all_mddevs_lock);
348
349/* Rather than calling directly into the personality make_request function,
350 * IO requests come here first so that we can check if the device is
351 * being suspended pending a reconfiguration.
352 * We hold a refcount over the call to ->make_request. By the time that
353 * call has finished, the bio has been linked into some internal structure
354 * and so is visible to ->quiesce(), so we don't need the refcount any more.
355 */
356static bool is_suspended(struct mddev *mddev, struct bio *bio)
357{
358 if (is_md_suspended(mddev))
359 return true;
360 if (bio_data_dir(bio) != WRITE)
361 return false;
362 if (mddev->suspend_lo >= mddev->suspend_hi)
363 return false;
364 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
365 return false;
366 if (bio_end_sector(bio) < mddev->suspend_lo)
367 return false;
368 return true;
369}
370
371void md_handle_request(struct mddev *mddev, struct bio *bio)
372{
373check_suspended:
374 if (is_suspended(mddev, bio)) {
375 DEFINE_WAIT(__wait);
376 /* Bail out if REQ_NOWAIT is set for the bio */
377 if (bio->bi_opf & REQ_NOWAIT) {
378 bio_wouldblock_error(bio);
379 return;
380 }
381 for (;;) {
382 prepare_to_wait(&mddev->sb_wait, &__wait,
383 TASK_UNINTERRUPTIBLE);
384 if (!is_suspended(mddev, bio))
385 break;
386 schedule();
387 }
388 finish_wait(&mddev->sb_wait, &__wait);
389 }
390 if (!percpu_ref_tryget_live(&mddev->active_io))
391 goto check_suspended;
392
393 if (!mddev->pers->make_request(mddev, bio)) {
394 percpu_ref_put(&mddev->active_io);
395 goto check_suspended;
396 }
397
398 percpu_ref_put(&mddev->active_io);
399}
400EXPORT_SYMBOL(md_handle_request);
401
402static void md_submit_bio(struct bio *bio)
403{
404 const int rw = bio_data_dir(bio);
405 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
406
407 if (mddev == NULL || mddev->pers == NULL) {
408 bio_io_error(bio);
409 return;
410 }
411
412 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
413 bio_io_error(bio);
414 return;
415 }
416
417 bio = bio_split_to_limits(bio);
418 if (!bio)
419 return;
420
421 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) {
422 if (bio_sectors(bio) != 0)
423 bio->bi_status = BLK_STS_IOERR;
424 bio_endio(bio);
425 return;
426 }
427
428 /* bio could be mergeable after passing to underlayer */
429 bio->bi_opf &= ~REQ_NOMERGE;
430
431 md_handle_request(mddev, bio);
432}
433
434/* mddev_suspend makes sure no new requests are submitted
435 * to the device, and that any requests that have been submitted
436 * are completely handled.
437 * Once mddev_detach() is called and completes, the module will be
438 * completely unused.
439 */
440void mddev_suspend(struct mddev *mddev)
441{
442 struct md_thread *thread = rcu_dereference_protected(mddev->thread,
443 lockdep_is_held(&mddev->reconfig_mutex));
444
445 WARN_ON_ONCE(thread && current == thread->tsk);
446 if (mddev->suspended++)
447 return;
448 wake_up(&mddev->sb_wait);
449 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
450 percpu_ref_kill(&mddev->active_io);
451
452 if (mddev->pers->prepare_suspend)
453 mddev->pers->prepare_suspend(mddev);
454
455 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io));
456 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
457 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
458
459 del_timer_sync(&mddev->safemode_timer);
460 /* restrict memory reclaim I/O during raid array is suspend */
461 mddev->noio_flag = memalloc_noio_save();
462}
463EXPORT_SYMBOL_GPL(mddev_suspend);
464
465void mddev_resume(struct mddev *mddev)
466{
467 lockdep_assert_held(&mddev->reconfig_mutex);
468 if (--mddev->suspended)
469 return;
470
471 /* entred the memalloc scope from mddev_suspend() */
472 memalloc_noio_restore(mddev->noio_flag);
473
474 percpu_ref_resurrect(&mddev->active_io);
475 wake_up(&mddev->sb_wait);
476
477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
478 md_wakeup_thread(mddev->thread);
479 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
480}
481EXPORT_SYMBOL_GPL(mddev_resume);
482
483/*
484 * Generic flush handling for md
485 */
486
487static void md_end_flush(struct bio *bio)
488{
489 struct md_rdev *rdev = bio->bi_private;
490 struct mddev *mddev = rdev->mddev;
491
492 bio_put(bio);
493
494 rdev_dec_pending(rdev, mddev);
495
496 if (atomic_dec_and_test(&mddev->flush_pending)) {
497 /* The pre-request flush has finished */
498 queue_work(md_wq, &mddev->flush_work);
499 }
500}
501
502static void md_submit_flush_data(struct work_struct *ws);
503
504static void submit_flushes(struct work_struct *ws)
505{
506 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
507 struct md_rdev *rdev;
508
509 mddev->start_flush = ktime_get_boottime();
510 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
511 atomic_set(&mddev->flush_pending, 1);
512 rcu_read_lock();
513 rdev_for_each_rcu(rdev, mddev)
514 if (rdev->raid_disk >= 0 &&
515 !test_bit(Faulty, &rdev->flags)) {
516 /* Take two references, one is dropped
517 * when request finishes, one after
518 * we reclaim rcu_read_lock
519 */
520 struct bio *bi;
521 atomic_inc(&rdev->nr_pending);
522 atomic_inc(&rdev->nr_pending);
523 rcu_read_unlock();
524 bi = bio_alloc_bioset(rdev->bdev, 0,
525 REQ_OP_WRITE | REQ_PREFLUSH,
526 GFP_NOIO, &mddev->bio_set);
527 bi->bi_end_io = md_end_flush;
528 bi->bi_private = rdev;
529 atomic_inc(&mddev->flush_pending);
530 submit_bio(bi);
531 rcu_read_lock();
532 rdev_dec_pending(rdev, mddev);
533 }
534 rcu_read_unlock();
535 if (atomic_dec_and_test(&mddev->flush_pending))
536 queue_work(md_wq, &mddev->flush_work);
537}
538
539static void md_submit_flush_data(struct work_struct *ws)
540{
541 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
542 struct bio *bio = mddev->flush_bio;
543
544 /*
545 * must reset flush_bio before calling into md_handle_request to avoid a
546 * deadlock, because other bios passed md_handle_request suspend check
547 * could wait for this and below md_handle_request could wait for those
548 * bios because of suspend check
549 */
550 spin_lock_irq(&mddev->lock);
551 mddev->prev_flush_start = mddev->start_flush;
552 mddev->flush_bio = NULL;
553 spin_unlock_irq(&mddev->lock);
554 wake_up(&mddev->sb_wait);
555
556 if (bio->bi_iter.bi_size == 0) {
557 /* an empty barrier - all done */
558 bio_endio(bio);
559 } else {
560 bio->bi_opf &= ~REQ_PREFLUSH;
561 md_handle_request(mddev, bio);
562 }
563}
564
565/*
566 * Manages consolidation of flushes and submitting any flushes needed for
567 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
568 * being finished in another context. Returns false if the flushing is
569 * complete but still needs the I/O portion of the bio to be processed.
570 */
571bool md_flush_request(struct mddev *mddev, struct bio *bio)
572{
573 ktime_t req_start = ktime_get_boottime();
574 spin_lock_irq(&mddev->lock);
575 /* flush requests wait until ongoing flush completes,
576 * hence coalescing all the pending requests.
577 */
578 wait_event_lock_irq(mddev->sb_wait,
579 !mddev->flush_bio ||
580 ktime_before(req_start, mddev->prev_flush_start),
581 mddev->lock);
582 /* new request after previous flush is completed */
583 if (ktime_after(req_start, mddev->prev_flush_start)) {
584 WARN_ON(mddev->flush_bio);
585 mddev->flush_bio = bio;
586 bio = NULL;
587 }
588 spin_unlock_irq(&mddev->lock);
589
590 if (!bio) {
591 INIT_WORK(&mddev->flush_work, submit_flushes);
592 queue_work(md_wq, &mddev->flush_work);
593 } else {
594 /* flush was performed for some other bio while we waited. */
595 if (bio->bi_iter.bi_size == 0)
596 /* an empty barrier - all done */
597 bio_endio(bio);
598 else {
599 bio->bi_opf &= ~REQ_PREFLUSH;
600 return false;
601 }
602 }
603 return true;
604}
605EXPORT_SYMBOL(md_flush_request);
606
607static inline struct mddev *mddev_get(struct mddev *mddev)
608{
609 lockdep_assert_held(&all_mddevs_lock);
610
611 if (test_bit(MD_DELETED, &mddev->flags))
612 return NULL;
613 atomic_inc(&mddev->active);
614 return mddev;
615}
616
617static void mddev_delayed_delete(struct work_struct *ws);
618
619void mddev_put(struct mddev *mddev)
620{
621 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
622 return;
623 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
624 mddev->ctime == 0 && !mddev->hold_active) {
625 /* Array is not configured at all, and not held active,
626 * so destroy it */
627 set_bit(MD_DELETED, &mddev->flags);
628
629 /*
630 * Call queue_work inside the spinlock so that
631 * flush_workqueue() after mddev_find will succeed in waiting
632 * for the work to be done.
633 */
634 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
635 queue_work(md_misc_wq, &mddev->del_work);
636 }
637 spin_unlock(&all_mddevs_lock);
638}
639
640static void md_safemode_timeout(struct timer_list *t);
641
642void mddev_init(struct mddev *mddev)
643{
644 mutex_init(&mddev->open_mutex);
645 mutex_init(&mddev->reconfig_mutex);
646 mutex_init(&mddev->sync_mutex);
647 mutex_init(&mddev->bitmap_info.mutex);
648 INIT_LIST_HEAD(&mddev->disks);
649 INIT_LIST_HEAD(&mddev->all_mddevs);
650 INIT_LIST_HEAD(&mddev->deleting);
651 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
652 atomic_set(&mddev->active, 1);
653 atomic_set(&mddev->openers, 0);
654 atomic_set(&mddev->sync_seq, 0);
655 spin_lock_init(&mddev->lock);
656 atomic_set(&mddev->flush_pending, 0);
657 init_waitqueue_head(&mddev->sb_wait);
658 init_waitqueue_head(&mddev->recovery_wait);
659 mddev->reshape_position = MaxSector;
660 mddev->reshape_backwards = 0;
661 mddev->last_sync_action = "none";
662 mddev->resync_min = 0;
663 mddev->resync_max = MaxSector;
664 mddev->level = LEVEL_NONE;
665}
666EXPORT_SYMBOL_GPL(mddev_init);
667
668static struct mddev *mddev_find_locked(dev_t unit)
669{
670 struct mddev *mddev;
671
672 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
673 if (mddev->unit == unit)
674 return mddev;
675
676 return NULL;
677}
678
679/* find an unused unit number */
680static dev_t mddev_alloc_unit(void)
681{
682 static int next_minor = 512;
683 int start = next_minor;
684 bool is_free = 0;
685 dev_t dev = 0;
686
687 while (!is_free) {
688 dev = MKDEV(MD_MAJOR, next_minor);
689 next_minor++;
690 if (next_minor > MINORMASK)
691 next_minor = 0;
692 if (next_minor == start)
693 return 0; /* Oh dear, all in use. */
694 is_free = !mddev_find_locked(dev);
695 }
696
697 return dev;
698}
699
700static struct mddev *mddev_alloc(dev_t unit)
701{
702 struct mddev *new;
703 int error;
704
705 if (unit && MAJOR(unit) != MD_MAJOR)
706 unit &= ~((1 << MdpMinorShift) - 1);
707
708 new = kzalloc(sizeof(*new), GFP_KERNEL);
709 if (!new)
710 return ERR_PTR(-ENOMEM);
711 mddev_init(new);
712
713 spin_lock(&all_mddevs_lock);
714 if (unit) {
715 error = -EEXIST;
716 if (mddev_find_locked(unit))
717 goto out_free_new;
718 new->unit = unit;
719 if (MAJOR(unit) == MD_MAJOR)
720 new->md_minor = MINOR(unit);
721 else
722 new->md_minor = MINOR(unit) >> MdpMinorShift;
723 new->hold_active = UNTIL_IOCTL;
724 } else {
725 error = -ENODEV;
726 new->unit = mddev_alloc_unit();
727 if (!new->unit)
728 goto out_free_new;
729 new->md_minor = MINOR(new->unit);
730 new->hold_active = UNTIL_STOP;
731 }
732
733 list_add(&new->all_mddevs, &all_mddevs);
734 spin_unlock(&all_mddevs_lock);
735 return new;
736out_free_new:
737 spin_unlock(&all_mddevs_lock);
738 kfree(new);
739 return ERR_PTR(error);
740}
741
742static void mddev_free(struct mddev *mddev)
743{
744 spin_lock(&all_mddevs_lock);
745 list_del(&mddev->all_mddevs);
746 spin_unlock(&all_mddevs_lock);
747
748 kfree(mddev);
749}
750
751static const struct attribute_group md_redundancy_group;
752
753void mddev_unlock(struct mddev *mddev)
754{
755 struct md_rdev *rdev;
756 struct md_rdev *tmp;
757 LIST_HEAD(delete);
758
759 if (!list_empty(&mddev->deleting))
760 list_splice_init(&mddev->deleting, &delete);
761
762 if (mddev->to_remove) {
763 /* These cannot be removed under reconfig_mutex as
764 * an access to the files will try to take reconfig_mutex
765 * while holding the file unremovable, which leads to
766 * a deadlock.
767 * So hold set sysfs_active while the remove in happeing,
768 * and anything else which might set ->to_remove or my
769 * otherwise change the sysfs namespace will fail with
770 * -EBUSY if sysfs_active is still set.
771 * We set sysfs_active under reconfig_mutex and elsewhere
772 * test it under the same mutex to ensure its correct value
773 * is seen.
774 */
775 const struct attribute_group *to_remove = mddev->to_remove;
776 mddev->to_remove = NULL;
777 mddev->sysfs_active = 1;
778 mutex_unlock(&mddev->reconfig_mutex);
779
780 if (mddev->kobj.sd) {
781 if (to_remove != &md_redundancy_group)
782 sysfs_remove_group(&mddev->kobj, to_remove);
783 if (mddev->pers == NULL ||
784 mddev->pers->sync_request == NULL) {
785 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
786 if (mddev->sysfs_action)
787 sysfs_put(mddev->sysfs_action);
788 if (mddev->sysfs_completed)
789 sysfs_put(mddev->sysfs_completed);
790 if (mddev->sysfs_degraded)
791 sysfs_put(mddev->sysfs_degraded);
792 mddev->sysfs_action = NULL;
793 mddev->sysfs_completed = NULL;
794 mddev->sysfs_degraded = NULL;
795 }
796 }
797 mddev->sysfs_active = 0;
798 } else
799 mutex_unlock(&mddev->reconfig_mutex);
800
801 list_for_each_entry_safe(rdev, tmp, &delete, same_set) {
802 list_del_init(&rdev->same_set);
803 kobject_del(&rdev->kobj);
804 export_rdev(rdev, mddev);
805 }
806
807 md_wakeup_thread(mddev->thread);
808 wake_up(&mddev->sb_wait);
809}
810EXPORT_SYMBOL_GPL(mddev_unlock);
811
812struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
813{
814 struct md_rdev *rdev;
815
816 rdev_for_each_rcu(rdev, mddev)
817 if (rdev->desc_nr == nr)
818 return rdev;
819
820 return NULL;
821}
822EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
823
824static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
825{
826 struct md_rdev *rdev;
827
828 rdev_for_each(rdev, mddev)
829 if (rdev->bdev->bd_dev == dev)
830 return rdev;
831
832 return NULL;
833}
834
835struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
836{
837 struct md_rdev *rdev;
838
839 rdev_for_each_rcu(rdev, mddev)
840 if (rdev->bdev->bd_dev == dev)
841 return rdev;
842
843 return NULL;
844}
845EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
846
847static struct md_personality *find_pers(int level, char *clevel)
848{
849 struct md_personality *pers;
850 list_for_each_entry(pers, &pers_list, list) {
851 if (level != LEVEL_NONE && pers->level == level)
852 return pers;
853 if (strcmp(pers->name, clevel)==0)
854 return pers;
855 }
856 return NULL;
857}
858
859/* return the offset of the super block in 512byte sectors */
860static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
861{
862 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
863}
864
865static int alloc_disk_sb(struct md_rdev *rdev)
866{
867 rdev->sb_page = alloc_page(GFP_KERNEL);
868 if (!rdev->sb_page)
869 return -ENOMEM;
870 return 0;
871}
872
873void md_rdev_clear(struct md_rdev *rdev)
874{
875 if (rdev->sb_page) {
876 put_page(rdev->sb_page);
877 rdev->sb_loaded = 0;
878 rdev->sb_page = NULL;
879 rdev->sb_start = 0;
880 rdev->sectors = 0;
881 }
882 if (rdev->bb_page) {
883 put_page(rdev->bb_page);
884 rdev->bb_page = NULL;
885 }
886 badblocks_exit(&rdev->badblocks);
887}
888EXPORT_SYMBOL_GPL(md_rdev_clear);
889
890static void super_written(struct bio *bio)
891{
892 struct md_rdev *rdev = bio->bi_private;
893 struct mddev *mddev = rdev->mddev;
894
895 if (bio->bi_status) {
896 pr_err("md: %s gets error=%d\n", __func__,
897 blk_status_to_errno(bio->bi_status));
898 md_error(mddev, rdev);
899 if (!test_bit(Faulty, &rdev->flags)
900 && (bio->bi_opf & MD_FAILFAST)) {
901 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
902 set_bit(LastDev, &rdev->flags);
903 }
904 } else
905 clear_bit(LastDev, &rdev->flags);
906
907 bio_put(bio);
908
909 rdev_dec_pending(rdev, mddev);
910
911 if (atomic_dec_and_test(&mddev->pending_writes))
912 wake_up(&mddev->sb_wait);
913}
914
915void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
916 sector_t sector, int size, struct page *page)
917{
918 /* write first size bytes of page to sector of rdev
919 * Increment mddev->pending_writes before returning
920 * and decrement it on completion, waking up sb_wait
921 * if zero is reached.
922 * If an error occurred, call md_error
923 */
924 struct bio *bio;
925
926 if (!page)
927 return;
928
929 if (test_bit(Faulty, &rdev->flags))
930 return;
931
932 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev,
933 1,
934 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA,
935 GFP_NOIO, &mddev->sync_set);
936
937 atomic_inc(&rdev->nr_pending);
938
939 bio->bi_iter.bi_sector = sector;
940 __bio_add_page(bio, page, size, 0);
941 bio->bi_private = rdev;
942 bio->bi_end_io = super_written;
943
944 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
945 test_bit(FailFast, &rdev->flags) &&
946 !test_bit(LastDev, &rdev->flags))
947 bio->bi_opf |= MD_FAILFAST;
948
949 atomic_inc(&mddev->pending_writes);
950 submit_bio(bio);
951}
952
953int md_super_wait(struct mddev *mddev)
954{
955 /* wait for all superblock writes that were scheduled to complete */
956 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
957 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
958 return -EAGAIN;
959 return 0;
960}
961
962int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
963 struct page *page, blk_opf_t opf, bool metadata_op)
964{
965 struct bio bio;
966 struct bio_vec bvec;
967
968 if (metadata_op && rdev->meta_bdev)
969 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf);
970 else
971 bio_init(&bio, rdev->bdev, &bvec, 1, opf);
972
973 if (metadata_op)
974 bio.bi_iter.bi_sector = sector + rdev->sb_start;
975 else if (rdev->mddev->reshape_position != MaxSector &&
976 (rdev->mddev->reshape_backwards ==
977 (sector >= rdev->mddev->reshape_position)))
978 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
979 else
980 bio.bi_iter.bi_sector = sector + rdev->data_offset;
981 __bio_add_page(&bio, page, size, 0);
982
983 submit_bio_wait(&bio);
984
985 return !bio.bi_status;
986}
987EXPORT_SYMBOL_GPL(sync_page_io);
988
989static int read_disk_sb(struct md_rdev *rdev, int size)
990{
991 if (rdev->sb_loaded)
992 return 0;
993
994 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true))
995 goto fail;
996 rdev->sb_loaded = 1;
997 return 0;
998
999fail:
1000 pr_err("md: disabled device %pg, could not read superblock.\n",
1001 rdev->bdev);
1002 return -EINVAL;
1003}
1004
1005static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1006{
1007 return sb1->set_uuid0 == sb2->set_uuid0 &&
1008 sb1->set_uuid1 == sb2->set_uuid1 &&
1009 sb1->set_uuid2 == sb2->set_uuid2 &&
1010 sb1->set_uuid3 == sb2->set_uuid3;
1011}
1012
1013static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1014{
1015 int ret;
1016 mdp_super_t *tmp1, *tmp2;
1017
1018 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1019 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1020
1021 if (!tmp1 || !tmp2) {
1022 ret = 0;
1023 goto abort;
1024 }
1025
1026 *tmp1 = *sb1;
1027 *tmp2 = *sb2;
1028
1029 /*
1030 * nr_disks is not constant
1031 */
1032 tmp1->nr_disks = 0;
1033 tmp2->nr_disks = 0;
1034
1035 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1036abort:
1037 kfree(tmp1);
1038 kfree(tmp2);
1039 return ret;
1040}
1041
1042static u32 md_csum_fold(u32 csum)
1043{
1044 csum = (csum & 0xffff) + (csum >> 16);
1045 return (csum & 0xffff) + (csum >> 16);
1046}
1047
1048static unsigned int calc_sb_csum(mdp_super_t *sb)
1049{
1050 u64 newcsum = 0;
1051 u32 *sb32 = (u32*)sb;
1052 int i;
1053 unsigned int disk_csum, csum;
1054
1055 disk_csum = sb->sb_csum;
1056 sb->sb_csum = 0;
1057
1058 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1059 newcsum += sb32[i];
1060 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1061
1062#ifdef CONFIG_ALPHA
1063 /* This used to use csum_partial, which was wrong for several
1064 * reasons including that different results are returned on
1065 * different architectures. It isn't critical that we get exactly
1066 * the same return value as before (we always csum_fold before
1067 * testing, and that removes any differences). However as we
1068 * know that csum_partial always returned a 16bit value on
1069 * alphas, do a fold to maximise conformity to previous behaviour.
1070 */
1071 sb->sb_csum = md_csum_fold(disk_csum);
1072#else
1073 sb->sb_csum = disk_csum;
1074#endif
1075 return csum;
1076}
1077
1078/*
1079 * Handle superblock details.
1080 * We want to be able to handle multiple superblock formats
1081 * so we have a common interface to them all, and an array of
1082 * different handlers.
1083 * We rely on user-space to write the initial superblock, and support
1084 * reading and updating of superblocks.
1085 * Interface methods are:
1086 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1087 * loads and validates a superblock on dev.
1088 * if refdev != NULL, compare superblocks on both devices
1089 * Return:
1090 * 0 - dev has a superblock that is compatible with refdev
1091 * 1 - dev has a superblock that is compatible and newer than refdev
1092 * so dev should be used as the refdev in future
1093 * -EINVAL superblock incompatible or invalid
1094 * -othererror e.g. -EIO
1095 *
1096 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1097 * Verify that dev is acceptable into mddev.
1098 * The first time, mddev->raid_disks will be 0, and data from
1099 * dev should be merged in. Subsequent calls check that dev
1100 * is new enough. Return 0 or -EINVAL
1101 *
1102 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1103 * Update the superblock for rdev with data in mddev
1104 * This does not write to disc.
1105 *
1106 */
1107
1108struct super_type {
1109 char *name;
1110 struct module *owner;
1111 int (*load_super)(struct md_rdev *rdev,
1112 struct md_rdev *refdev,
1113 int minor_version);
1114 int (*validate_super)(struct mddev *mddev,
1115 struct md_rdev *rdev);
1116 void (*sync_super)(struct mddev *mddev,
1117 struct md_rdev *rdev);
1118 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1119 sector_t num_sectors);
1120 int (*allow_new_offset)(struct md_rdev *rdev,
1121 unsigned long long new_offset);
1122};
1123
1124/*
1125 * Check that the given mddev has no bitmap.
1126 *
1127 * This function is called from the run method of all personalities that do not
1128 * support bitmaps. It prints an error message and returns non-zero if mddev
1129 * has a bitmap. Otherwise, it returns 0.
1130 *
1131 */
1132int md_check_no_bitmap(struct mddev *mddev)
1133{
1134 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1135 return 0;
1136 pr_warn("%s: bitmaps are not supported for %s\n",
1137 mdname(mddev), mddev->pers->name);
1138 return 1;
1139}
1140EXPORT_SYMBOL(md_check_no_bitmap);
1141
1142/*
1143 * load_super for 0.90.0
1144 */
1145static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1146{
1147 mdp_super_t *sb;
1148 int ret;
1149 bool spare_disk = true;
1150
1151 /*
1152 * Calculate the position of the superblock (512byte sectors),
1153 * it's at the end of the disk.
1154 *
1155 * It also happens to be a multiple of 4Kb.
1156 */
1157 rdev->sb_start = calc_dev_sboffset(rdev);
1158
1159 ret = read_disk_sb(rdev, MD_SB_BYTES);
1160 if (ret)
1161 return ret;
1162
1163 ret = -EINVAL;
1164
1165 sb = page_address(rdev->sb_page);
1166
1167 if (sb->md_magic != MD_SB_MAGIC) {
1168 pr_warn("md: invalid raid superblock magic on %pg\n",
1169 rdev->bdev);
1170 goto abort;
1171 }
1172
1173 if (sb->major_version != 0 ||
1174 sb->minor_version < 90 ||
1175 sb->minor_version > 91) {
1176 pr_warn("Bad version number %d.%d on %pg\n",
1177 sb->major_version, sb->minor_version, rdev->bdev);
1178 goto abort;
1179 }
1180
1181 if (sb->raid_disks <= 0)
1182 goto abort;
1183
1184 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1185 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev);
1186 goto abort;
1187 }
1188
1189 rdev->preferred_minor = sb->md_minor;
1190 rdev->data_offset = 0;
1191 rdev->new_data_offset = 0;
1192 rdev->sb_size = MD_SB_BYTES;
1193 rdev->badblocks.shift = -1;
1194
1195 if (sb->level == LEVEL_MULTIPATH)
1196 rdev->desc_nr = -1;
1197 else
1198 rdev->desc_nr = sb->this_disk.number;
1199
1200 /* not spare disk, or LEVEL_MULTIPATH */
1201 if (sb->level == LEVEL_MULTIPATH ||
1202 (rdev->desc_nr >= 0 &&
1203 rdev->desc_nr < MD_SB_DISKS &&
1204 sb->disks[rdev->desc_nr].state &
1205 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1206 spare_disk = false;
1207
1208 if (!refdev) {
1209 if (!spare_disk)
1210 ret = 1;
1211 else
1212 ret = 0;
1213 } else {
1214 __u64 ev1, ev2;
1215 mdp_super_t *refsb = page_address(refdev->sb_page);
1216 if (!md_uuid_equal(refsb, sb)) {
1217 pr_warn("md: %pg has different UUID to %pg\n",
1218 rdev->bdev, refdev->bdev);
1219 goto abort;
1220 }
1221 if (!md_sb_equal(refsb, sb)) {
1222 pr_warn("md: %pg has same UUID but different superblock to %pg\n",
1223 rdev->bdev, refdev->bdev);
1224 goto abort;
1225 }
1226 ev1 = md_event(sb);
1227 ev2 = md_event(refsb);
1228
1229 if (!spare_disk && ev1 > ev2)
1230 ret = 1;
1231 else
1232 ret = 0;
1233 }
1234 rdev->sectors = rdev->sb_start;
1235 /* Limit to 4TB as metadata cannot record more than that.
1236 * (not needed for Linear and RAID0 as metadata doesn't
1237 * record this size)
1238 */
1239 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1240 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1241
1242 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1243 /* "this cannot possibly happen" ... */
1244 ret = -EINVAL;
1245
1246 abort:
1247 return ret;
1248}
1249
1250/*
1251 * validate_super for 0.90.0
1252 */
1253static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1254{
1255 mdp_disk_t *desc;
1256 mdp_super_t *sb = page_address(rdev->sb_page);
1257 __u64 ev1 = md_event(sb);
1258
1259 rdev->raid_disk = -1;
1260 clear_bit(Faulty, &rdev->flags);
1261 clear_bit(In_sync, &rdev->flags);
1262 clear_bit(Bitmap_sync, &rdev->flags);
1263 clear_bit(WriteMostly, &rdev->flags);
1264
1265 if (mddev->raid_disks == 0) {
1266 mddev->major_version = 0;
1267 mddev->minor_version = sb->minor_version;
1268 mddev->patch_version = sb->patch_version;
1269 mddev->external = 0;
1270 mddev->chunk_sectors = sb->chunk_size >> 9;
1271 mddev->ctime = sb->ctime;
1272 mddev->utime = sb->utime;
1273 mddev->level = sb->level;
1274 mddev->clevel[0] = 0;
1275 mddev->layout = sb->layout;
1276 mddev->raid_disks = sb->raid_disks;
1277 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1278 mddev->events = ev1;
1279 mddev->bitmap_info.offset = 0;
1280 mddev->bitmap_info.space = 0;
1281 /* bitmap can use 60 K after the 4K superblocks */
1282 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1283 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1284 mddev->reshape_backwards = 0;
1285
1286 if (mddev->minor_version >= 91) {
1287 mddev->reshape_position = sb->reshape_position;
1288 mddev->delta_disks = sb->delta_disks;
1289 mddev->new_level = sb->new_level;
1290 mddev->new_layout = sb->new_layout;
1291 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1292 if (mddev->delta_disks < 0)
1293 mddev->reshape_backwards = 1;
1294 } else {
1295 mddev->reshape_position = MaxSector;
1296 mddev->delta_disks = 0;
1297 mddev->new_level = mddev->level;
1298 mddev->new_layout = mddev->layout;
1299 mddev->new_chunk_sectors = mddev->chunk_sectors;
1300 }
1301 if (mddev->level == 0)
1302 mddev->layout = -1;
1303
1304 if (sb->state & (1<<MD_SB_CLEAN))
1305 mddev->recovery_cp = MaxSector;
1306 else {
1307 if (sb->events_hi == sb->cp_events_hi &&
1308 sb->events_lo == sb->cp_events_lo) {
1309 mddev->recovery_cp = sb->recovery_cp;
1310 } else
1311 mddev->recovery_cp = 0;
1312 }
1313
1314 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1315 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1316 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1317 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1318
1319 mddev->max_disks = MD_SB_DISKS;
1320
1321 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1322 mddev->bitmap_info.file == NULL) {
1323 mddev->bitmap_info.offset =
1324 mddev->bitmap_info.default_offset;
1325 mddev->bitmap_info.space =
1326 mddev->bitmap_info.default_space;
1327 }
1328
1329 } else if (mddev->pers == NULL) {
1330 /* Insist on good event counter while assembling, except
1331 * for spares (which don't need an event count) */
1332 ++ev1;
1333 if (sb->disks[rdev->desc_nr].state & (
1334 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1335 if (ev1 < mddev->events)
1336 return -EINVAL;
1337 } else if (mddev->bitmap) {
1338 /* if adding to array with a bitmap, then we can accept an
1339 * older device ... but not too old.
1340 */
1341 if (ev1 < mddev->bitmap->events_cleared)
1342 return 0;
1343 if (ev1 < mddev->events)
1344 set_bit(Bitmap_sync, &rdev->flags);
1345 } else {
1346 if (ev1 < mddev->events)
1347 /* just a hot-add of a new device, leave raid_disk at -1 */
1348 return 0;
1349 }
1350
1351 if (mddev->level != LEVEL_MULTIPATH) {
1352 desc = sb->disks + rdev->desc_nr;
1353
1354 if (desc->state & (1<<MD_DISK_FAULTY))
1355 set_bit(Faulty, &rdev->flags);
1356 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1357 desc->raid_disk < mddev->raid_disks */) {
1358 set_bit(In_sync, &rdev->flags);
1359 rdev->raid_disk = desc->raid_disk;
1360 rdev->saved_raid_disk = desc->raid_disk;
1361 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1362 /* active but not in sync implies recovery up to
1363 * reshape position. We don't know exactly where
1364 * that is, so set to zero for now */
1365 if (mddev->minor_version >= 91) {
1366 rdev->recovery_offset = 0;
1367 rdev->raid_disk = desc->raid_disk;
1368 }
1369 }
1370 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1371 set_bit(WriteMostly, &rdev->flags);
1372 if (desc->state & (1<<MD_DISK_FAILFAST))
1373 set_bit(FailFast, &rdev->flags);
1374 } else /* MULTIPATH are always insync */
1375 set_bit(In_sync, &rdev->flags);
1376 return 0;
1377}
1378
1379/*
1380 * sync_super for 0.90.0
1381 */
1382static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1383{
1384 mdp_super_t *sb;
1385 struct md_rdev *rdev2;
1386 int next_spare = mddev->raid_disks;
1387
1388 /* make rdev->sb match mddev data..
1389 *
1390 * 1/ zero out disks
1391 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1392 * 3/ any empty disks < next_spare become removed
1393 *
1394 * disks[0] gets initialised to REMOVED because
1395 * we cannot be sure from other fields if it has
1396 * been initialised or not.
1397 */
1398 int i;
1399 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1400
1401 rdev->sb_size = MD_SB_BYTES;
1402
1403 sb = page_address(rdev->sb_page);
1404
1405 memset(sb, 0, sizeof(*sb));
1406
1407 sb->md_magic = MD_SB_MAGIC;
1408 sb->major_version = mddev->major_version;
1409 sb->patch_version = mddev->patch_version;
1410 sb->gvalid_words = 0; /* ignored */
1411 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1412 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1413 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1414 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1415
1416 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1417 sb->level = mddev->level;
1418 sb->size = mddev->dev_sectors / 2;
1419 sb->raid_disks = mddev->raid_disks;
1420 sb->md_minor = mddev->md_minor;
1421 sb->not_persistent = 0;
1422 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1423 sb->state = 0;
1424 sb->events_hi = (mddev->events>>32);
1425 sb->events_lo = (u32)mddev->events;
1426
1427 if (mddev->reshape_position == MaxSector)
1428 sb->minor_version = 90;
1429 else {
1430 sb->minor_version = 91;
1431 sb->reshape_position = mddev->reshape_position;
1432 sb->new_level = mddev->new_level;
1433 sb->delta_disks = mddev->delta_disks;
1434 sb->new_layout = mddev->new_layout;
1435 sb->new_chunk = mddev->new_chunk_sectors << 9;
1436 }
1437 mddev->minor_version = sb->minor_version;
1438 if (mddev->in_sync)
1439 {
1440 sb->recovery_cp = mddev->recovery_cp;
1441 sb->cp_events_hi = (mddev->events>>32);
1442 sb->cp_events_lo = (u32)mddev->events;
1443 if (mddev->recovery_cp == MaxSector)
1444 sb->state = (1<< MD_SB_CLEAN);
1445 } else
1446 sb->recovery_cp = 0;
1447
1448 sb->layout = mddev->layout;
1449 sb->chunk_size = mddev->chunk_sectors << 9;
1450
1451 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1452 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1453
1454 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1455 rdev_for_each(rdev2, mddev) {
1456 mdp_disk_t *d;
1457 int desc_nr;
1458 int is_active = test_bit(In_sync, &rdev2->flags);
1459
1460 if (rdev2->raid_disk >= 0 &&
1461 sb->minor_version >= 91)
1462 /* we have nowhere to store the recovery_offset,
1463 * but if it is not below the reshape_position,
1464 * we can piggy-back on that.
1465 */
1466 is_active = 1;
1467 if (rdev2->raid_disk < 0 ||
1468 test_bit(Faulty, &rdev2->flags))
1469 is_active = 0;
1470 if (is_active)
1471 desc_nr = rdev2->raid_disk;
1472 else
1473 desc_nr = next_spare++;
1474 rdev2->desc_nr = desc_nr;
1475 d = &sb->disks[rdev2->desc_nr];
1476 nr_disks++;
1477 d->number = rdev2->desc_nr;
1478 d->major = MAJOR(rdev2->bdev->bd_dev);
1479 d->minor = MINOR(rdev2->bdev->bd_dev);
1480 if (is_active)
1481 d->raid_disk = rdev2->raid_disk;
1482 else
1483 d->raid_disk = rdev2->desc_nr; /* compatibility */
1484 if (test_bit(Faulty, &rdev2->flags))
1485 d->state = (1<<MD_DISK_FAULTY);
1486 else if (is_active) {
1487 d->state = (1<<MD_DISK_ACTIVE);
1488 if (test_bit(In_sync, &rdev2->flags))
1489 d->state |= (1<<MD_DISK_SYNC);
1490 active++;
1491 working++;
1492 } else {
1493 d->state = 0;
1494 spare++;
1495 working++;
1496 }
1497 if (test_bit(WriteMostly, &rdev2->flags))
1498 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1499 if (test_bit(FailFast, &rdev2->flags))
1500 d->state |= (1<<MD_DISK_FAILFAST);
1501 }
1502 /* now set the "removed" and "faulty" bits on any missing devices */
1503 for (i=0 ; i < mddev->raid_disks ; i++) {
1504 mdp_disk_t *d = &sb->disks[i];
1505 if (d->state == 0 && d->number == 0) {
1506 d->number = i;
1507 d->raid_disk = i;
1508 d->state = (1<<MD_DISK_REMOVED);
1509 d->state |= (1<<MD_DISK_FAULTY);
1510 failed++;
1511 }
1512 }
1513 sb->nr_disks = nr_disks;
1514 sb->active_disks = active;
1515 sb->working_disks = working;
1516 sb->failed_disks = failed;
1517 sb->spare_disks = spare;
1518
1519 sb->this_disk = sb->disks[rdev->desc_nr];
1520 sb->sb_csum = calc_sb_csum(sb);
1521}
1522
1523/*
1524 * rdev_size_change for 0.90.0
1525 */
1526static unsigned long long
1527super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1528{
1529 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1530 return 0; /* component must fit device */
1531 if (rdev->mddev->bitmap_info.offset)
1532 return 0; /* can't move bitmap */
1533 rdev->sb_start = calc_dev_sboffset(rdev);
1534 if (!num_sectors || num_sectors > rdev->sb_start)
1535 num_sectors = rdev->sb_start;
1536 /* Limit to 4TB as metadata cannot record more than that.
1537 * 4TB == 2^32 KB, or 2*2^32 sectors.
1538 */
1539 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1540 num_sectors = (sector_t)(2ULL << 32) - 2;
1541 do {
1542 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1543 rdev->sb_page);
1544 } while (md_super_wait(rdev->mddev) < 0);
1545 return num_sectors;
1546}
1547
1548static int
1549super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1550{
1551 /* non-zero offset changes not possible with v0.90 */
1552 return new_offset == 0;
1553}
1554
1555/*
1556 * version 1 superblock
1557 */
1558
1559static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1560{
1561 __le32 disk_csum;
1562 u32 csum;
1563 unsigned long long newcsum;
1564 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1565 __le32 *isuper = (__le32*)sb;
1566
1567 disk_csum = sb->sb_csum;
1568 sb->sb_csum = 0;
1569 newcsum = 0;
1570 for (; size >= 4; size -= 4)
1571 newcsum += le32_to_cpu(*isuper++);
1572
1573 if (size == 2)
1574 newcsum += le16_to_cpu(*(__le16*) isuper);
1575
1576 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1577 sb->sb_csum = disk_csum;
1578 return cpu_to_le32(csum);
1579}
1580
1581static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1582{
1583 struct mdp_superblock_1 *sb;
1584 int ret;
1585 sector_t sb_start;
1586 sector_t sectors;
1587 int bmask;
1588 bool spare_disk = true;
1589
1590 /*
1591 * Calculate the position of the superblock in 512byte sectors.
1592 * It is always aligned to a 4K boundary and
1593 * depeding on minor_version, it can be:
1594 * 0: At least 8K, but less than 12K, from end of device
1595 * 1: At start of device
1596 * 2: 4K from start of device.
1597 */
1598 switch(minor_version) {
1599 case 0:
1600 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
1601 sb_start &= ~(sector_t)(4*2-1);
1602 break;
1603 case 1:
1604 sb_start = 0;
1605 break;
1606 case 2:
1607 sb_start = 8;
1608 break;
1609 default:
1610 return -EINVAL;
1611 }
1612 rdev->sb_start = sb_start;
1613
1614 /* superblock is rarely larger than 1K, but it can be larger,
1615 * and it is safe to read 4k, so we do that
1616 */
1617 ret = read_disk_sb(rdev, 4096);
1618 if (ret) return ret;
1619
1620 sb = page_address(rdev->sb_page);
1621
1622 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1623 sb->major_version != cpu_to_le32(1) ||
1624 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1625 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1626 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1627 return -EINVAL;
1628
1629 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1630 pr_warn("md: invalid superblock checksum on %pg\n",
1631 rdev->bdev);
1632 return -EINVAL;
1633 }
1634 if (le64_to_cpu(sb->data_size) < 10) {
1635 pr_warn("md: data_size too small on %pg\n",
1636 rdev->bdev);
1637 return -EINVAL;
1638 }
1639 if (sb->pad0 ||
1640 sb->pad3[0] ||
1641 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1642 /* Some padding is non-zero, might be a new feature */
1643 return -EINVAL;
1644
1645 rdev->preferred_minor = 0xffff;
1646 rdev->data_offset = le64_to_cpu(sb->data_offset);
1647 rdev->new_data_offset = rdev->data_offset;
1648 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1649 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1650 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1651 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1652
1653 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1654 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1655 if (rdev->sb_size & bmask)
1656 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1657
1658 if (minor_version
1659 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1660 return -EINVAL;
1661 if (minor_version
1662 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1663 return -EINVAL;
1664
1665 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1666 rdev->desc_nr = -1;
1667 else
1668 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1669
1670 if (!rdev->bb_page) {
1671 rdev->bb_page = alloc_page(GFP_KERNEL);
1672 if (!rdev->bb_page)
1673 return -ENOMEM;
1674 }
1675 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1676 rdev->badblocks.count == 0) {
1677 /* need to load the bad block list.
1678 * Currently we limit it to one page.
1679 */
1680 s32 offset;
1681 sector_t bb_sector;
1682 __le64 *bbp;
1683 int i;
1684 int sectors = le16_to_cpu(sb->bblog_size);
1685 if (sectors > (PAGE_SIZE / 512))
1686 return -EINVAL;
1687 offset = le32_to_cpu(sb->bblog_offset);
1688 if (offset == 0)
1689 return -EINVAL;
1690 bb_sector = (long long)offset;
1691 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1692 rdev->bb_page, REQ_OP_READ, true))
1693 return -EIO;
1694 bbp = (__le64 *)page_address(rdev->bb_page);
1695 rdev->badblocks.shift = sb->bblog_shift;
1696 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1697 u64 bb = le64_to_cpu(*bbp);
1698 int count = bb & (0x3ff);
1699 u64 sector = bb >> 10;
1700 sector <<= sb->bblog_shift;
1701 count <<= sb->bblog_shift;
1702 if (bb + 1 == 0)
1703 break;
1704 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1705 return -EINVAL;
1706 }
1707 } else if (sb->bblog_offset != 0)
1708 rdev->badblocks.shift = 0;
1709
1710 if ((le32_to_cpu(sb->feature_map) &
1711 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1712 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1713 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1714 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1715 }
1716
1717 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1718 sb->level != 0)
1719 return -EINVAL;
1720
1721 /* not spare disk, or LEVEL_MULTIPATH */
1722 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1723 (rdev->desc_nr >= 0 &&
1724 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1725 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1726 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1727 spare_disk = false;
1728
1729 if (!refdev) {
1730 if (!spare_disk)
1731 ret = 1;
1732 else
1733 ret = 0;
1734 } else {
1735 __u64 ev1, ev2;
1736 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1737
1738 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1739 sb->level != refsb->level ||
1740 sb->layout != refsb->layout ||
1741 sb->chunksize != refsb->chunksize) {
1742 pr_warn("md: %pg has strangely different superblock to %pg\n",
1743 rdev->bdev,
1744 refdev->bdev);
1745 return -EINVAL;
1746 }
1747 ev1 = le64_to_cpu(sb->events);
1748 ev2 = le64_to_cpu(refsb->events);
1749
1750 if (!spare_disk && ev1 > ev2)
1751 ret = 1;
1752 else
1753 ret = 0;
1754 }
1755 if (minor_version)
1756 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
1757 else
1758 sectors = rdev->sb_start;
1759 if (sectors < le64_to_cpu(sb->data_size))
1760 return -EINVAL;
1761 rdev->sectors = le64_to_cpu(sb->data_size);
1762 return ret;
1763}
1764
1765static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1766{
1767 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1768 __u64 ev1 = le64_to_cpu(sb->events);
1769
1770 rdev->raid_disk = -1;
1771 clear_bit(Faulty, &rdev->flags);
1772 clear_bit(In_sync, &rdev->flags);
1773 clear_bit(Bitmap_sync, &rdev->flags);
1774 clear_bit(WriteMostly, &rdev->flags);
1775
1776 if (mddev->raid_disks == 0) {
1777 mddev->major_version = 1;
1778 mddev->patch_version = 0;
1779 mddev->external = 0;
1780 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1781 mddev->ctime = le64_to_cpu(sb->ctime);
1782 mddev->utime = le64_to_cpu(sb->utime);
1783 mddev->level = le32_to_cpu(sb->level);
1784 mddev->clevel[0] = 0;
1785 mddev->layout = le32_to_cpu(sb->layout);
1786 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1787 mddev->dev_sectors = le64_to_cpu(sb->size);
1788 mddev->events = ev1;
1789 mddev->bitmap_info.offset = 0;
1790 mddev->bitmap_info.space = 0;
1791 /* Default location for bitmap is 1K after superblock
1792 * using 3K - total of 4K
1793 */
1794 mddev->bitmap_info.default_offset = 1024 >> 9;
1795 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1796 mddev->reshape_backwards = 0;
1797
1798 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1799 memcpy(mddev->uuid, sb->set_uuid, 16);
1800
1801 mddev->max_disks = (4096-256)/2;
1802
1803 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1804 mddev->bitmap_info.file == NULL) {
1805 mddev->bitmap_info.offset =
1806 (__s32)le32_to_cpu(sb->bitmap_offset);
1807 /* Metadata doesn't record how much space is available.
1808 * For 1.0, we assume we can use up to the superblock
1809 * if before, else to 4K beyond superblock.
1810 * For others, assume no change is possible.
1811 */
1812 if (mddev->minor_version > 0)
1813 mddev->bitmap_info.space = 0;
1814 else if (mddev->bitmap_info.offset > 0)
1815 mddev->bitmap_info.space =
1816 8 - mddev->bitmap_info.offset;
1817 else
1818 mddev->bitmap_info.space =
1819 -mddev->bitmap_info.offset;
1820 }
1821
1822 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1823 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1824 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1825 mddev->new_level = le32_to_cpu(sb->new_level);
1826 mddev->new_layout = le32_to_cpu(sb->new_layout);
1827 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1828 if (mddev->delta_disks < 0 ||
1829 (mddev->delta_disks == 0 &&
1830 (le32_to_cpu(sb->feature_map)
1831 & MD_FEATURE_RESHAPE_BACKWARDS)))
1832 mddev->reshape_backwards = 1;
1833 } else {
1834 mddev->reshape_position = MaxSector;
1835 mddev->delta_disks = 0;
1836 mddev->new_level = mddev->level;
1837 mddev->new_layout = mddev->layout;
1838 mddev->new_chunk_sectors = mddev->chunk_sectors;
1839 }
1840
1841 if (mddev->level == 0 &&
1842 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1843 mddev->layout = -1;
1844
1845 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1846 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1847
1848 if (le32_to_cpu(sb->feature_map) &
1849 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1850 if (le32_to_cpu(sb->feature_map) &
1851 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1852 return -EINVAL;
1853 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1854 (le32_to_cpu(sb->feature_map) &
1855 MD_FEATURE_MULTIPLE_PPLS))
1856 return -EINVAL;
1857 set_bit(MD_HAS_PPL, &mddev->flags);
1858 }
1859 } else if (mddev->pers == NULL) {
1860 /* Insist of good event counter while assembling, except for
1861 * spares (which don't need an event count) */
1862 ++ev1;
1863 if (rdev->desc_nr >= 0 &&
1864 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1865 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1866 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1867 if (ev1 < mddev->events)
1868 return -EINVAL;
1869 } else if (mddev->bitmap) {
1870 /* If adding to array with a bitmap, then we can accept an
1871 * older device, but not too old.
1872 */
1873 if (ev1 < mddev->bitmap->events_cleared)
1874 return 0;
1875 if (ev1 < mddev->events)
1876 set_bit(Bitmap_sync, &rdev->flags);
1877 } else {
1878 if (ev1 < mddev->events)
1879 /* just a hot-add of a new device, leave raid_disk at -1 */
1880 return 0;
1881 }
1882 if (mddev->level != LEVEL_MULTIPATH) {
1883 int role;
1884 if (rdev->desc_nr < 0 ||
1885 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1886 role = MD_DISK_ROLE_SPARE;
1887 rdev->desc_nr = -1;
1888 } else
1889 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1890 switch(role) {
1891 case MD_DISK_ROLE_SPARE: /* spare */
1892 break;
1893 case MD_DISK_ROLE_FAULTY: /* faulty */
1894 set_bit(Faulty, &rdev->flags);
1895 break;
1896 case MD_DISK_ROLE_JOURNAL: /* journal device */
1897 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1898 /* journal device without journal feature */
1899 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1900 return -EINVAL;
1901 }
1902 set_bit(Journal, &rdev->flags);
1903 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1904 rdev->raid_disk = 0;
1905 break;
1906 default:
1907 rdev->saved_raid_disk = role;
1908 if ((le32_to_cpu(sb->feature_map) &
1909 MD_FEATURE_RECOVERY_OFFSET)) {
1910 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1911 if (!(le32_to_cpu(sb->feature_map) &
1912 MD_FEATURE_RECOVERY_BITMAP))
1913 rdev->saved_raid_disk = -1;
1914 } else {
1915 /*
1916 * If the array is FROZEN, then the device can't
1917 * be in_sync with rest of array.
1918 */
1919 if (!test_bit(MD_RECOVERY_FROZEN,
1920 &mddev->recovery))
1921 set_bit(In_sync, &rdev->flags);
1922 }
1923 rdev->raid_disk = role;
1924 break;
1925 }
1926 if (sb->devflags & WriteMostly1)
1927 set_bit(WriteMostly, &rdev->flags);
1928 if (sb->devflags & FailFast1)
1929 set_bit(FailFast, &rdev->flags);
1930 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1931 set_bit(Replacement, &rdev->flags);
1932 } else /* MULTIPATH are always insync */
1933 set_bit(In_sync, &rdev->flags);
1934
1935 return 0;
1936}
1937
1938static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1939{
1940 struct mdp_superblock_1 *sb;
1941 struct md_rdev *rdev2;
1942 int max_dev, i;
1943 /* make rdev->sb match mddev and rdev data. */
1944
1945 sb = page_address(rdev->sb_page);
1946
1947 sb->feature_map = 0;
1948 sb->pad0 = 0;
1949 sb->recovery_offset = cpu_to_le64(0);
1950 memset(sb->pad3, 0, sizeof(sb->pad3));
1951
1952 sb->utime = cpu_to_le64((__u64)mddev->utime);
1953 sb->events = cpu_to_le64(mddev->events);
1954 if (mddev->in_sync)
1955 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1956 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1957 sb->resync_offset = cpu_to_le64(MaxSector);
1958 else
1959 sb->resync_offset = cpu_to_le64(0);
1960
1961 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1962
1963 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1964 sb->size = cpu_to_le64(mddev->dev_sectors);
1965 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1966 sb->level = cpu_to_le32(mddev->level);
1967 sb->layout = cpu_to_le32(mddev->layout);
1968 if (test_bit(FailFast, &rdev->flags))
1969 sb->devflags |= FailFast1;
1970 else
1971 sb->devflags &= ~FailFast1;
1972
1973 if (test_bit(WriteMostly, &rdev->flags))
1974 sb->devflags |= WriteMostly1;
1975 else
1976 sb->devflags &= ~WriteMostly1;
1977 sb->data_offset = cpu_to_le64(rdev->data_offset);
1978 sb->data_size = cpu_to_le64(rdev->sectors);
1979
1980 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1981 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1982 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1983 }
1984
1985 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1986 !test_bit(In_sync, &rdev->flags)) {
1987 sb->feature_map |=
1988 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1989 sb->recovery_offset =
1990 cpu_to_le64(rdev->recovery_offset);
1991 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1992 sb->feature_map |=
1993 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1994 }
1995 /* Note: recovery_offset and journal_tail share space */
1996 if (test_bit(Journal, &rdev->flags))
1997 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1998 if (test_bit(Replacement, &rdev->flags))
1999 sb->feature_map |=
2000 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2001
2002 if (mddev->reshape_position != MaxSector) {
2003 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2004 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2005 sb->new_layout = cpu_to_le32(mddev->new_layout);
2006 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2007 sb->new_level = cpu_to_le32(mddev->new_level);
2008 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2009 if (mddev->delta_disks == 0 &&
2010 mddev->reshape_backwards)
2011 sb->feature_map
2012 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2013 if (rdev->new_data_offset != rdev->data_offset) {
2014 sb->feature_map
2015 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2016 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2017 - rdev->data_offset));
2018 }
2019 }
2020
2021 if (mddev_is_clustered(mddev))
2022 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2023
2024 if (rdev->badblocks.count == 0)
2025 /* Nothing to do for bad blocks*/ ;
2026 else if (sb->bblog_offset == 0)
2027 /* Cannot record bad blocks on this device */
2028 md_error(mddev, rdev);
2029 else {
2030 struct badblocks *bb = &rdev->badblocks;
2031 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2032 u64 *p = bb->page;
2033 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2034 if (bb->changed) {
2035 unsigned seq;
2036
2037retry:
2038 seq = read_seqbegin(&bb->lock);
2039
2040 memset(bbp, 0xff, PAGE_SIZE);
2041
2042 for (i = 0 ; i < bb->count ; i++) {
2043 u64 internal_bb = p[i];
2044 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2045 | BB_LEN(internal_bb));
2046 bbp[i] = cpu_to_le64(store_bb);
2047 }
2048 bb->changed = 0;
2049 if (read_seqretry(&bb->lock, seq))
2050 goto retry;
2051
2052 bb->sector = (rdev->sb_start +
2053 (int)le32_to_cpu(sb->bblog_offset));
2054 bb->size = le16_to_cpu(sb->bblog_size);
2055 }
2056 }
2057
2058 max_dev = 0;
2059 rdev_for_each(rdev2, mddev)
2060 if (rdev2->desc_nr+1 > max_dev)
2061 max_dev = rdev2->desc_nr+1;
2062
2063 if (max_dev > le32_to_cpu(sb->max_dev)) {
2064 int bmask;
2065 sb->max_dev = cpu_to_le32(max_dev);
2066 rdev->sb_size = max_dev * 2 + 256;
2067 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2068 if (rdev->sb_size & bmask)
2069 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2070 } else
2071 max_dev = le32_to_cpu(sb->max_dev);
2072
2073 for (i=0; i<max_dev;i++)
2074 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2075
2076 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2077 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2078
2079 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2080 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2081 sb->feature_map |=
2082 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2083 else
2084 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2085 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2086 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2087 }
2088
2089 rdev_for_each(rdev2, mddev) {
2090 i = rdev2->desc_nr;
2091 if (test_bit(Faulty, &rdev2->flags))
2092 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2093 else if (test_bit(In_sync, &rdev2->flags))
2094 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2095 else if (test_bit(Journal, &rdev2->flags))
2096 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2097 else if (rdev2->raid_disk >= 0)
2098 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2099 else
2100 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2101 }
2102
2103 sb->sb_csum = calc_sb_1_csum(sb);
2104}
2105
2106static sector_t super_1_choose_bm_space(sector_t dev_size)
2107{
2108 sector_t bm_space;
2109
2110 /* if the device is bigger than 8Gig, save 64k for bitmap
2111 * usage, if bigger than 200Gig, save 128k
2112 */
2113 if (dev_size < 64*2)
2114 bm_space = 0;
2115 else if (dev_size - 64*2 >= 200*1024*1024*2)
2116 bm_space = 128*2;
2117 else if (dev_size - 4*2 > 8*1024*1024*2)
2118 bm_space = 64*2;
2119 else
2120 bm_space = 4*2;
2121 return bm_space;
2122}
2123
2124static unsigned long long
2125super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2126{
2127 struct mdp_superblock_1 *sb;
2128 sector_t max_sectors;
2129 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2130 return 0; /* component must fit device */
2131 if (rdev->data_offset != rdev->new_data_offset)
2132 return 0; /* too confusing */
2133 if (rdev->sb_start < rdev->data_offset) {
2134 /* minor versions 1 and 2; superblock before data */
2135 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
2136 if (!num_sectors || num_sectors > max_sectors)
2137 num_sectors = max_sectors;
2138 } else if (rdev->mddev->bitmap_info.offset) {
2139 /* minor version 0 with bitmap we can't move */
2140 return 0;
2141 } else {
2142 /* minor version 0; superblock after data */
2143 sector_t sb_start, bm_space;
2144 sector_t dev_size = bdev_nr_sectors(rdev->bdev);
2145
2146 /* 8K is for superblock */
2147 sb_start = dev_size - 8*2;
2148 sb_start &= ~(sector_t)(4*2 - 1);
2149
2150 bm_space = super_1_choose_bm_space(dev_size);
2151
2152 /* Space that can be used to store date needs to decrease
2153 * superblock bitmap space and bad block space(4K)
2154 */
2155 max_sectors = sb_start - bm_space - 4*2;
2156
2157 if (!num_sectors || num_sectors > max_sectors)
2158 num_sectors = max_sectors;
2159 rdev->sb_start = sb_start;
2160 }
2161 sb = page_address(rdev->sb_page);
2162 sb->data_size = cpu_to_le64(num_sectors);
2163 sb->super_offset = cpu_to_le64(rdev->sb_start);
2164 sb->sb_csum = calc_sb_1_csum(sb);
2165 do {
2166 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2167 rdev->sb_page);
2168 } while (md_super_wait(rdev->mddev) < 0);
2169 return num_sectors;
2170
2171}
2172
2173static int
2174super_1_allow_new_offset(struct md_rdev *rdev,
2175 unsigned long long new_offset)
2176{
2177 /* All necessary checks on new >= old have been done */
2178 struct bitmap *bitmap;
2179 if (new_offset >= rdev->data_offset)
2180 return 1;
2181
2182 /* with 1.0 metadata, there is no metadata to tread on
2183 * so we can always move back */
2184 if (rdev->mddev->minor_version == 0)
2185 return 1;
2186
2187 /* otherwise we must be sure not to step on
2188 * any metadata, so stay:
2189 * 36K beyond start of superblock
2190 * beyond end of badblocks
2191 * beyond write-intent bitmap
2192 */
2193 if (rdev->sb_start + (32+4)*2 > new_offset)
2194 return 0;
2195 bitmap = rdev->mddev->bitmap;
2196 if (bitmap && !rdev->mddev->bitmap_info.file &&
2197 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2198 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2199 return 0;
2200 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2201 return 0;
2202
2203 return 1;
2204}
2205
2206static struct super_type super_types[] = {
2207 [0] = {
2208 .name = "0.90.0",
2209 .owner = THIS_MODULE,
2210 .load_super = super_90_load,
2211 .validate_super = super_90_validate,
2212 .sync_super = super_90_sync,
2213 .rdev_size_change = super_90_rdev_size_change,
2214 .allow_new_offset = super_90_allow_new_offset,
2215 },
2216 [1] = {
2217 .name = "md-1",
2218 .owner = THIS_MODULE,
2219 .load_super = super_1_load,
2220 .validate_super = super_1_validate,
2221 .sync_super = super_1_sync,
2222 .rdev_size_change = super_1_rdev_size_change,
2223 .allow_new_offset = super_1_allow_new_offset,
2224 },
2225};
2226
2227static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2228{
2229 if (mddev->sync_super) {
2230 mddev->sync_super(mddev, rdev);
2231 return;
2232 }
2233
2234 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2235
2236 super_types[mddev->major_version].sync_super(mddev, rdev);
2237}
2238
2239static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2240{
2241 struct md_rdev *rdev, *rdev2;
2242
2243 rcu_read_lock();
2244 rdev_for_each_rcu(rdev, mddev1) {
2245 if (test_bit(Faulty, &rdev->flags) ||
2246 test_bit(Journal, &rdev->flags) ||
2247 rdev->raid_disk == -1)
2248 continue;
2249 rdev_for_each_rcu(rdev2, mddev2) {
2250 if (test_bit(Faulty, &rdev2->flags) ||
2251 test_bit(Journal, &rdev2->flags) ||
2252 rdev2->raid_disk == -1)
2253 continue;
2254 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2255 rcu_read_unlock();
2256 return 1;
2257 }
2258 }
2259 }
2260 rcu_read_unlock();
2261 return 0;
2262}
2263
2264static LIST_HEAD(pending_raid_disks);
2265
2266/*
2267 * Try to register data integrity profile for an mddev
2268 *
2269 * This is called when an array is started and after a disk has been kicked
2270 * from the array. It only succeeds if all working and active component devices
2271 * are integrity capable with matching profiles.
2272 */
2273int md_integrity_register(struct mddev *mddev)
2274{
2275 struct md_rdev *rdev, *reference = NULL;
2276
2277 if (list_empty(&mddev->disks))
2278 return 0; /* nothing to do */
2279 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2280 return 0; /* shouldn't register, or already is */
2281 rdev_for_each(rdev, mddev) {
2282 /* skip spares and non-functional disks */
2283 if (test_bit(Faulty, &rdev->flags))
2284 continue;
2285 if (rdev->raid_disk < 0)
2286 continue;
2287 if (!reference) {
2288 /* Use the first rdev as the reference */
2289 reference = rdev;
2290 continue;
2291 }
2292 /* does this rdev's profile match the reference profile? */
2293 if (blk_integrity_compare(reference->bdev->bd_disk,
2294 rdev->bdev->bd_disk) < 0)
2295 return -EINVAL;
2296 }
2297 if (!reference || !bdev_get_integrity(reference->bdev))
2298 return 0;
2299 /*
2300 * All component devices are integrity capable and have matching
2301 * profiles, register the common profile for the md device.
2302 */
2303 blk_integrity_register(mddev->gendisk,
2304 bdev_get_integrity(reference->bdev));
2305
2306 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2307 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2308 (mddev->level != 1 && mddev->level != 10 &&
2309 bioset_integrity_create(&mddev->io_clone_set, BIO_POOL_SIZE))) {
2310 /*
2311 * No need to handle the failure of bioset_integrity_create,
2312 * because the function is called by md_run() -> pers->run(),
2313 * md_run calls bioset_exit -> bioset_integrity_free in case
2314 * of failure case.
2315 */
2316 pr_err("md: failed to create integrity pool for %s\n",
2317 mdname(mddev));
2318 return -EINVAL;
2319 }
2320 return 0;
2321}
2322EXPORT_SYMBOL(md_integrity_register);
2323
2324/*
2325 * Attempt to add an rdev, but only if it is consistent with the current
2326 * integrity profile
2327 */
2328int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2329{
2330 struct blk_integrity *bi_mddev;
2331
2332 if (!mddev->gendisk)
2333 return 0;
2334
2335 bi_mddev = blk_get_integrity(mddev->gendisk);
2336
2337 if (!bi_mddev) /* nothing to do */
2338 return 0;
2339
2340 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2341 pr_err("%s: incompatible integrity profile for %pg\n",
2342 mdname(mddev), rdev->bdev);
2343 return -ENXIO;
2344 }
2345
2346 return 0;
2347}
2348EXPORT_SYMBOL(md_integrity_add_rdev);
2349
2350static bool rdev_read_only(struct md_rdev *rdev)
2351{
2352 return bdev_read_only(rdev->bdev) ||
2353 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2354}
2355
2356static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2357{
2358 char b[BDEVNAME_SIZE];
2359 int err;
2360
2361 /* prevent duplicates */
2362 if (find_rdev(mddev, rdev->bdev->bd_dev))
2363 return -EEXIST;
2364
2365 if (rdev_read_only(rdev) && mddev->pers)
2366 return -EROFS;
2367
2368 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2369 if (!test_bit(Journal, &rdev->flags) &&
2370 rdev->sectors &&
2371 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2372 if (mddev->pers) {
2373 /* Cannot change size, so fail
2374 * If mddev->level <= 0, then we don't care
2375 * about aligning sizes (e.g. linear)
2376 */
2377 if (mddev->level > 0)
2378 return -ENOSPC;
2379 } else
2380 mddev->dev_sectors = rdev->sectors;
2381 }
2382
2383 /* Verify rdev->desc_nr is unique.
2384 * If it is -1, assign a free number, else
2385 * check number is not in use
2386 */
2387 rcu_read_lock();
2388 if (rdev->desc_nr < 0) {
2389 int choice = 0;
2390 if (mddev->pers)
2391 choice = mddev->raid_disks;
2392 while (md_find_rdev_nr_rcu(mddev, choice))
2393 choice++;
2394 rdev->desc_nr = choice;
2395 } else {
2396 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2397 rcu_read_unlock();
2398 return -EBUSY;
2399 }
2400 }
2401 rcu_read_unlock();
2402 if (!test_bit(Journal, &rdev->flags) &&
2403 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2404 pr_warn("md: %s: array is limited to %d devices\n",
2405 mdname(mddev), mddev->max_disks);
2406 return -EBUSY;
2407 }
2408 snprintf(b, sizeof(b), "%pg", rdev->bdev);
2409 strreplace(b, '/', '!');
2410
2411 rdev->mddev = mddev;
2412 pr_debug("md: bind<%s>\n", b);
2413
2414 if (mddev->raid_disks)
2415 mddev_create_serial_pool(mddev, rdev, false);
2416
2417 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2418 goto fail;
2419
2420 /* failure here is OK */
2421 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2422 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2423 rdev->sysfs_unack_badblocks =
2424 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2425 rdev->sysfs_badblocks =
2426 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2427
2428 list_add_rcu(&rdev->same_set, &mddev->disks);
2429 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2430
2431 /* May as well allow recovery to be retried once */
2432 mddev->recovery_disabled++;
2433
2434 return 0;
2435
2436 fail:
2437 pr_warn("md: failed to register dev-%s for %s\n",
2438 b, mdname(mddev));
2439 return err;
2440}
2441
2442void md_autodetect_dev(dev_t dev);
2443
2444/* just for claiming the bdev */
2445static struct md_rdev claim_rdev;
2446
2447static void export_rdev(struct md_rdev *rdev, struct mddev *mddev)
2448{
2449 pr_debug("md: export_rdev(%pg)\n", rdev->bdev);
2450 md_rdev_clear(rdev);
2451#ifndef MODULE
2452 if (test_bit(AutoDetected, &rdev->flags))
2453 md_autodetect_dev(rdev->bdev->bd_dev);
2454#endif
2455 blkdev_put(rdev->bdev, mddev->external ? &claim_rdev : rdev);
2456 rdev->bdev = NULL;
2457 kobject_put(&rdev->kobj);
2458}
2459
2460static void md_kick_rdev_from_array(struct md_rdev *rdev)
2461{
2462 struct mddev *mddev = rdev->mddev;
2463
2464 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2465 list_del_rcu(&rdev->same_set);
2466 pr_debug("md: unbind<%pg>\n", rdev->bdev);
2467 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2468 rdev->mddev = NULL;
2469 sysfs_remove_link(&rdev->kobj, "block");
2470 sysfs_put(rdev->sysfs_state);
2471 sysfs_put(rdev->sysfs_unack_badblocks);
2472 sysfs_put(rdev->sysfs_badblocks);
2473 rdev->sysfs_state = NULL;
2474 rdev->sysfs_unack_badblocks = NULL;
2475 rdev->sysfs_badblocks = NULL;
2476 rdev->badblocks.count = 0;
2477
2478 synchronize_rcu();
2479
2480 /*
2481 * kobject_del() will wait for all in progress writers to be done, where
2482 * reconfig_mutex is held, hence it can't be called under
2483 * reconfig_mutex and it's delayed to mddev_unlock().
2484 */
2485 list_add(&rdev->same_set, &mddev->deleting);
2486}
2487
2488static void export_array(struct mddev *mddev)
2489{
2490 struct md_rdev *rdev;
2491
2492 while (!list_empty(&mddev->disks)) {
2493 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2494 same_set);
2495 md_kick_rdev_from_array(rdev);
2496 }
2497 mddev->raid_disks = 0;
2498 mddev->major_version = 0;
2499}
2500
2501static bool set_in_sync(struct mddev *mddev)
2502{
2503 lockdep_assert_held(&mddev->lock);
2504 if (!mddev->in_sync) {
2505 mddev->sync_checkers++;
2506 spin_unlock(&mddev->lock);
2507 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2508 spin_lock(&mddev->lock);
2509 if (!mddev->in_sync &&
2510 percpu_ref_is_zero(&mddev->writes_pending)) {
2511 mddev->in_sync = 1;
2512 /*
2513 * Ensure ->in_sync is visible before we clear
2514 * ->sync_checkers.
2515 */
2516 smp_mb();
2517 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2518 sysfs_notify_dirent_safe(mddev->sysfs_state);
2519 }
2520 if (--mddev->sync_checkers == 0)
2521 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2522 }
2523 if (mddev->safemode == 1)
2524 mddev->safemode = 0;
2525 return mddev->in_sync;
2526}
2527
2528static void sync_sbs(struct mddev *mddev, int nospares)
2529{
2530 /* Update each superblock (in-memory image), but
2531 * if we are allowed to, skip spares which already
2532 * have the right event counter, or have one earlier
2533 * (which would mean they aren't being marked as dirty
2534 * with the rest of the array)
2535 */
2536 struct md_rdev *rdev;
2537 rdev_for_each(rdev, mddev) {
2538 if (rdev->sb_events == mddev->events ||
2539 (nospares &&
2540 rdev->raid_disk < 0 &&
2541 rdev->sb_events+1 == mddev->events)) {
2542 /* Don't update this superblock */
2543 rdev->sb_loaded = 2;
2544 } else {
2545 sync_super(mddev, rdev);
2546 rdev->sb_loaded = 1;
2547 }
2548 }
2549}
2550
2551static bool does_sb_need_changing(struct mddev *mddev)
2552{
2553 struct md_rdev *rdev = NULL, *iter;
2554 struct mdp_superblock_1 *sb;
2555 int role;
2556
2557 /* Find a good rdev */
2558 rdev_for_each(iter, mddev)
2559 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2560 rdev = iter;
2561 break;
2562 }
2563
2564 /* No good device found. */
2565 if (!rdev)
2566 return false;
2567
2568 sb = page_address(rdev->sb_page);
2569 /* Check if a device has become faulty or a spare become active */
2570 rdev_for_each(rdev, mddev) {
2571 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2572 /* Device activated? */
2573 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 &&
2574 !test_bit(Faulty, &rdev->flags))
2575 return true;
2576 /* Device turned faulty? */
2577 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX))
2578 return true;
2579 }
2580
2581 /* Check if any mddev parameters have changed */
2582 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2583 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2584 (mddev->layout != le32_to_cpu(sb->layout)) ||
2585 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2586 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2587 return true;
2588
2589 return false;
2590}
2591
2592void md_update_sb(struct mddev *mddev, int force_change)
2593{
2594 struct md_rdev *rdev;
2595 int sync_req;
2596 int nospares = 0;
2597 int any_badblocks_changed = 0;
2598 int ret = -1;
2599
2600 if (!md_is_rdwr(mddev)) {
2601 if (force_change)
2602 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2603 return;
2604 }
2605
2606repeat:
2607 if (mddev_is_clustered(mddev)) {
2608 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2609 force_change = 1;
2610 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2611 nospares = 1;
2612 ret = md_cluster_ops->metadata_update_start(mddev);
2613 /* Has someone else has updated the sb */
2614 if (!does_sb_need_changing(mddev)) {
2615 if (ret == 0)
2616 md_cluster_ops->metadata_update_cancel(mddev);
2617 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2618 BIT(MD_SB_CHANGE_DEVS) |
2619 BIT(MD_SB_CHANGE_CLEAN));
2620 return;
2621 }
2622 }
2623
2624 /*
2625 * First make sure individual recovery_offsets are correct
2626 * curr_resync_completed can only be used during recovery.
2627 * During reshape/resync it might use array-addresses rather
2628 * that device addresses.
2629 */
2630 rdev_for_each(rdev, mddev) {
2631 if (rdev->raid_disk >= 0 &&
2632 mddev->delta_disks >= 0 &&
2633 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2634 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2635 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2636 !test_bit(Journal, &rdev->flags) &&
2637 !test_bit(In_sync, &rdev->flags) &&
2638 mddev->curr_resync_completed > rdev->recovery_offset)
2639 rdev->recovery_offset = mddev->curr_resync_completed;
2640
2641 }
2642 if (!mddev->persistent) {
2643 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2644 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2645 if (!mddev->external) {
2646 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2647 rdev_for_each(rdev, mddev) {
2648 if (rdev->badblocks.changed) {
2649 rdev->badblocks.changed = 0;
2650 ack_all_badblocks(&rdev->badblocks);
2651 md_error(mddev, rdev);
2652 }
2653 clear_bit(Blocked, &rdev->flags);
2654 clear_bit(BlockedBadBlocks, &rdev->flags);
2655 wake_up(&rdev->blocked_wait);
2656 }
2657 }
2658 wake_up(&mddev->sb_wait);
2659 return;
2660 }
2661
2662 spin_lock(&mddev->lock);
2663
2664 mddev->utime = ktime_get_real_seconds();
2665
2666 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2667 force_change = 1;
2668 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2669 /* just a clean<-> dirty transition, possibly leave spares alone,
2670 * though if events isn't the right even/odd, we will have to do
2671 * spares after all
2672 */
2673 nospares = 1;
2674 if (force_change)
2675 nospares = 0;
2676 if (mddev->degraded)
2677 /* If the array is degraded, then skipping spares is both
2678 * dangerous and fairly pointless.
2679 * Dangerous because a device that was removed from the array
2680 * might have a event_count that still looks up-to-date,
2681 * so it can be re-added without a resync.
2682 * Pointless because if there are any spares to skip,
2683 * then a recovery will happen and soon that array won't
2684 * be degraded any more and the spare can go back to sleep then.
2685 */
2686 nospares = 0;
2687
2688 sync_req = mddev->in_sync;
2689
2690 /* If this is just a dirty<->clean transition, and the array is clean
2691 * and 'events' is odd, we can roll back to the previous clean state */
2692 if (nospares
2693 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2694 && mddev->can_decrease_events
2695 && mddev->events != 1) {
2696 mddev->events--;
2697 mddev->can_decrease_events = 0;
2698 } else {
2699 /* otherwise we have to go forward and ... */
2700 mddev->events ++;
2701 mddev->can_decrease_events = nospares;
2702 }
2703
2704 /*
2705 * This 64-bit counter should never wrap.
2706 * Either we are in around ~1 trillion A.C., assuming
2707 * 1 reboot per second, or we have a bug...
2708 */
2709 WARN_ON(mddev->events == 0);
2710
2711 rdev_for_each(rdev, mddev) {
2712 if (rdev->badblocks.changed)
2713 any_badblocks_changed++;
2714 if (test_bit(Faulty, &rdev->flags))
2715 set_bit(FaultRecorded, &rdev->flags);
2716 }
2717
2718 sync_sbs(mddev, nospares);
2719 spin_unlock(&mddev->lock);
2720
2721 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2722 mdname(mddev), mddev->in_sync);
2723
2724 if (mddev->queue)
2725 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2726rewrite:
2727 md_bitmap_update_sb(mddev->bitmap);
2728 rdev_for_each(rdev, mddev) {
2729 if (rdev->sb_loaded != 1)
2730 continue; /* no noise on spare devices */
2731
2732 if (!test_bit(Faulty, &rdev->flags)) {
2733 md_super_write(mddev,rdev,
2734 rdev->sb_start, rdev->sb_size,
2735 rdev->sb_page);
2736 pr_debug("md: (write) %pg's sb offset: %llu\n",
2737 rdev->bdev,
2738 (unsigned long long)rdev->sb_start);
2739 rdev->sb_events = mddev->events;
2740 if (rdev->badblocks.size) {
2741 md_super_write(mddev, rdev,
2742 rdev->badblocks.sector,
2743 rdev->badblocks.size << 9,
2744 rdev->bb_page);
2745 rdev->badblocks.size = 0;
2746 }
2747
2748 } else
2749 pr_debug("md: %pg (skipping faulty)\n",
2750 rdev->bdev);
2751
2752 if (mddev->level == LEVEL_MULTIPATH)
2753 /* only need to write one superblock... */
2754 break;
2755 }
2756 if (md_super_wait(mddev) < 0)
2757 goto rewrite;
2758 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2759
2760 if (mddev_is_clustered(mddev) && ret == 0)
2761 md_cluster_ops->metadata_update_finish(mddev);
2762
2763 if (mddev->in_sync != sync_req ||
2764 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2765 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2766 /* have to write it out again */
2767 goto repeat;
2768 wake_up(&mddev->sb_wait);
2769 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2770 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2771
2772 rdev_for_each(rdev, mddev) {
2773 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2774 clear_bit(Blocked, &rdev->flags);
2775
2776 if (any_badblocks_changed)
2777 ack_all_badblocks(&rdev->badblocks);
2778 clear_bit(BlockedBadBlocks, &rdev->flags);
2779 wake_up(&rdev->blocked_wait);
2780 }
2781}
2782EXPORT_SYMBOL(md_update_sb);
2783
2784static int add_bound_rdev(struct md_rdev *rdev)
2785{
2786 struct mddev *mddev = rdev->mddev;
2787 int err = 0;
2788 bool add_journal = test_bit(Journal, &rdev->flags);
2789
2790 if (!mddev->pers->hot_remove_disk || add_journal) {
2791 /* If there is hot_add_disk but no hot_remove_disk
2792 * then added disks for geometry changes,
2793 * and should be added immediately.
2794 */
2795 super_types[mddev->major_version].
2796 validate_super(mddev, rdev);
2797 if (add_journal)
2798 mddev_suspend(mddev);
2799 err = mddev->pers->hot_add_disk(mddev, rdev);
2800 if (add_journal)
2801 mddev_resume(mddev);
2802 if (err) {
2803 md_kick_rdev_from_array(rdev);
2804 return err;
2805 }
2806 }
2807 sysfs_notify_dirent_safe(rdev->sysfs_state);
2808
2809 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2810 if (mddev->degraded)
2811 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2812 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2813 md_new_event();
2814 md_wakeup_thread(mddev->thread);
2815 return 0;
2816}
2817
2818/* words written to sysfs files may, or may not, be \n terminated.
2819 * We want to accept with case. For this we use cmd_match.
2820 */
2821static int cmd_match(const char *cmd, const char *str)
2822{
2823 /* See if cmd, written into a sysfs file, matches
2824 * str. They must either be the same, or cmd can
2825 * have a trailing newline
2826 */
2827 while (*cmd && *str && *cmd == *str) {
2828 cmd++;
2829 str++;
2830 }
2831 if (*cmd == '\n')
2832 cmd++;
2833 if (*str || *cmd)
2834 return 0;
2835 return 1;
2836}
2837
2838struct rdev_sysfs_entry {
2839 struct attribute attr;
2840 ssize_t (*show)(struct md_rdev *, char *);
2841 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2842};
2843
2844static ssize_t
2845state_show(struct md_rdev *rdev, char *page)
2846{
2847 char *sep = ",";
2848 size_t len = 0;
2849 unsigned long flags = READ_ONCE(rdev->flags);
2850
2851 if (test_bit(Faulty, &flags) ||
2852 (!test_bit(ExternalBbl, &flags) &&
2853 rdev->badblocks.unacked_exist))
2854 len += sprintf(page+len, "faulty%s", sep);
2855 if (test_bit(In_sync, &flags))
2856 len += sprintf(page+len, "in_sync%s", sep);
2857 if (test_bit(Journal, &flags))
2858 len += sprintf(page+len, "journal%s", sep);
2859 if (test_bit(WriteMostly, &flags))
2860 len += sprintf(page+len, "write_mostly%s", sep);
2861 if (test_bit(Blocked, &flags) ||
2862 (rdev->badblocks.unacked_exist
2863 && !test_bit(Faulty, &flags)))
2864 len += sprintf(page+len, "blocked%s", sep);
2865 if (!test_bit(Faulty, &flags) &&
2866 !test_bit(Journal, &flags) &&
2867 !test_bit(In_sync, &flags))
2868 len += sprintf(page+len, "spare%s", sep);
2869 if (test_bit(WriteErrorSeen, &flags))
2870 len += sprintf(page+len, "write_error%s", sep);
2871 if (test_bit(WantReplacement, &flags))
2872 len += sprintf(page+len, "want_replacement%s", sep);
2873 if (test_bit(Replacement, &flags))
2874 len += sprintf(page+len, "replacement%s", sep);
2875 if (test_bit(ExternalBbl, &flags))
2876 len += sprintf(page+len, "external_bbl%s", sep);
2877 if (test_bit(FailFast, &flags))
2878 len += sprintf(page+len, "failfast%s", sep);
2879
2880 if (len)
2881 len -= strlen(sep);
2882
2883 return len+sprintf(page+len, "\n");
2884}
2885
2886static ssize_t
2887state_store(struct md_rdev *rdev, const char *buf, size_t len)
2888{
2889 /* can write
2890 * faulty - simulates an error
2891 * remove - disconnects the device
2892 * writemostly - sets write_mostly
2893 * -writemostly - clears write_mostly
2894 * blocked - sets the Blocked flags
2895 * -blocked - clears the Blocked and possibly simulates an error
2896 * insync - sets Insync providing device isn't active
2897 * -insync - clear Insync for a device with a slot assigned,
2898 * so that it gets rebuilt based on bitmap
2899 * write_error - sets WriteErrorSeen
2900 * -write_error - clears WriteErrorSeen
2901 * {,-}failfast - set/clear FailFast
2902 */
2903
2904 struct mddev *mddev = rdev->mddev;
2905 int err = -EINVAL;
2906 bool need_update_sb = false;
2907
2908 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2909 md_error(rdev->mddev, rdev);
2910
2911 if (test_bit(MD_BROKEN, &rdev->mddev->flags))
2912 err = -EBUSY;
2913 else
2914 err = 0;
2915 } else if (cmd_match(buf, "remove")) {
2916 if (rdev->mddev->pers) {
2917 clear_bit(Blocked, &rdev->flags);
2918 remove_and_add_spares(rdev->mddev, rdev);
2919 }
2920 if (rdev->raid_disk >= 0)
2921 err = -EBUSY;
2922 else {
2923 err = 0;
2924 if (mddev_is_clustered(mddev))
2925 err = md_cluster_ops->remove_disk(mddev, rdev);
2926
2927 if (err == 0) {
2928 md_kick_rdev_from_array(rdev);
2929 if (mddev->pers) {
2930 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2931 md_wakeup_thread(mddev->thread);
2932 }
2933 md_new_event();
2934 }
2935 }
2936 } else if (cmd_match(buf, "writemostly")) {
2937 set_bit(WriteMostly, &rdev->flags);
2938 mddev_create_serial_pool(rdev->mddev, rdev, false);
2939 need_update_sb = true;
2940 err = 0;
2941 } else if (cmd_match(buf, "-writemostly")) {
2942 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2943 clear_bit(WriteMostly, &rdev->flags);
2944 need_update_sb = true;
2945 err = 0;
2946 } else if (cmd_match(buf, "blocked")) {
2947 set_bit(Blocked, &rdev->flags);
2948 err = 0;
2949 } else if (cmd_match(buf, "-blocked")) {
2950 if (!test_bit(Faulty, &rdev->flags) &&
2951 !test_bit(ExternalBbl, &rdev->flags) &&
2952 rdev->badblocks.unacked_exist) {
2953 /* metadata handler doesn't understand badblocks,
2954 * so we need to fail the device
2955 */
2956 md_error(rdev->mddev, rdev);
2957 }
2958 clear_bit(Blocked, &rdev->flags);
2959 clear_bit(BlockedBadBlocks, &rdev->flags);
2960 wake_up(&rdev->blocked_wait);
2961 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2962 md_wakeup_thread(rdev->mddev->thread);
2963
2964 err = 0;
2965 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2966 set_bit(In_sync, &rdev->flags);
2967 err = 0;
2968 } else if (cmd_match(buf, "failfast")) {
2969 set_bit(FailFast, &rdev->flags);
2970 need_update_sb = true;
2971 err = 0;
2972 } else if (cmd_match(buf, "-failfast")) {
2973 clear_bit(FailFast, &rdev->flags);
2974 need_update_sb = true;
2975 err = 0;
2976 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2977 !test_bit(Journal, &rdev->flags)) {
2978 if (rdev->mddev->pers == NULL) {
2979 clear_bit(In_sync, &rdev->flags);
2980 rdev->saved_raid_disk = rdev->raid_disk;
2981 rdev->raid_disk = -1;
2982 err = 0;
2983 }
2984 } else if (cmd_match(buf, "write_error")) {
2985 set_bit(WriteErrorSeen, &rdev->flags);
2986 err = 0;
2987 } else if (cmd_match(buf, "-write_error")) {
2988 clear_bit(WriteErrorSeen, &rdev->flags);
2989 err = 0;
2990 } else if (cmd_match(buf, "want_replacement")) {
2991 /* Any non-spare device that is not a replacement can
2992 * become want_replacement at any time, but we then need to
2993 * check if recovery is needed.
2994 */
2995 if (rdev->raid_disk >= 0 &&
2996 !test_bit(Journal, &rdev->flags) &&
2997 !test_bit(Replacement, &rdev->flags))
2998 set_bit(WantReplacement, &rdev->flags);
2999 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3000 md_wakeup_thread(rdev->mddev->thread);
3001 err = 0;
3002 } else if (cmd_match(buf, "-want_replacement")) {
3003 /* Clearing 'want_replacement' is always allowed.
3004 * Once replacements starts it is too late though.
3005 */
3006 err = 0;
3007 clear_bit(WantReplacement, &rdev->flags);
3008 } else if (cmd_match(buf, "replacement")) {
3009 /* Can only set a device as a replacement when array has not
3010 * yet been started. Once running, replacement is automatic
3011 * from spares, or by assigning 'slot'.
3012 */
3013 if (rdev->mddev->pers)
3014 err = -EBUSY;
3015 else {
3016 set_bit(Replacement, &rdev->flags);
3017 err = 0;
3018 }
3019 } else if (cmd_match(buf, "-replacement")) {
3020 /* Similarly, can only clear Replacement before start */
3021 if (rdev->mddev->pers)
3022 err = -EBUSY;
3023 else {
3024 clear_bit(Replacement, &rdev->flags);
3025 err = 0;
3026 }
3027 } else if (cmd_match(buf, "re-add")) {
3028 if (!rdev->mddev->pers)
3029 err = -EINVAL;
3030 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3031 rdev->saved_raid_disk >= 0) {
3032 /* clear_bit is performed _after_ all the devices
3033 * have their local Faulty bit cleared. If any writes
3034 * happen in the meantime in the local node, they
3035 * will land in the local bitmap, which will be synced
3036 * by this node eventually
3037 */
3038 if (!mddev_is_clustered(rdev->mddev) ||
3039 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3040 clear_bit(Faulty, &rdev->flags);
3041 err = add_bound_rdev(rdev);
3042 }
3043 } else
3044 err = -EBUSY;
3045 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3046 set_bit(ExternalBbl, &rdev->flags);
3047 rdev->badblocks.shift = 0;
3048 err = 0;
3049 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3050 clear_bit(ExternalBbl, &rdev->flags);
3051 err = 0;
3052 }
3053 if (need_update_sb)
3054 md_update_sb(mddev, 1);
3055 if (!err)
3056 sysfs_notify_dirent_safe(rdev->sysfs_state);
3057 return err ? err : len;
3058}
3059static struct rdev_sysfs_entry rdev_state =
3060__ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3061
3062static ssize_t
3063errors_show(struct md_rdev *rdev, char *page)
3064{
3065 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3066}
3067
3068static ssize_t
3069errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3070{
3071 unsigned int n;
3072 int rv;
3073
3074 rv = kstrtouint(buf, 10, &n);
3075 if (rv < 0)
3076 return rv;
3077 atomic_set(&rdev->corrected_errors, n);
3078 return len;
3079}
3080static struct rdev_sysfs_entry rdev_errors =
3081__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3082
3083static ssize_t
3084slot_show(struct md_rdev *rdev, char *page)
3085{
3086 if (test_bit(Journal, &rdev->flags))
3087 return sprintf(page, "journal\n");
3088 else if (rdev->raid_disk < 0)
3089 return sprintf(page, "none\n");
3090 else
3091 return sprintf(page, "%d\n", rdev->raid_disk);
3092}
3093
3094static ssize_t
3095slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3096{
3097 int slot;
3098 int err;
3099
3100 if (test_bit(Journal, &rdev->flags))
3101 return -EBUSY;
3102 if (strncmp(buf, "none", 4)==0)
3103 slot = -1;
3104 else {
3105 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3106 if (err < 0)
3107 return err;
3108 if (slot < 0)
3109 /* overflow */
3110 return -ENOSPC;
3111 }
3112 if (rdev->mddev->pers && slot == -1) {
3113 /* Setting 'slot' on an active array requires also
3114 * updating the 'rd%d' link, and communicating
3115 * with the personality with ->hot_*_disk.
3116 * For now we only support removing
3117 * failed/spare devices. This normally happens automatically,
3118 * but not when the metadata is externally managed.
3119 */
3120 if (rdev->raid_disk == -1)
3121 return -EEXIST;
3122 /* personality does all needed checks */
3123 if (rdev->mddev->pers->hot_remove_disk == NULL)
3124 return -EINVAL;
3125 clear_bit(Blocked, &rdev->flags);
3126 remove_and_add_spares(rdev->mddev, rdev);
3127 if (rdev->raid_disk >= 0)
3128 return -EBUSY;
3129 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3130 md_wakeup_thread(rdev->mddev->thread);
3131 } else if (rdev->mddev->pers) {
3132 /* Activating a spare .. or possibly reactivating
3133 * if we ever get bitmaps working here.
3134 */
3135 int err;
3136
3137 if (rdev->raid_disk != -1)
3138 return -EBUSY;
3139
3140 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3141 return -EBUSY;
3142
3143 if (rdev->mddev->pers->hot_add_disk == NULL)
3144 return -EINVAL;
3145
3146 if (slot >= rdev->mddev->raid_disks &&
3147 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3148 return -ENOSPC;
3149
3150 rdev->raid_disk = slot;
3151 if (test_bit(In_sync, &rdev->flags))
3152 rdev->saved_raid_disk = slot;
3153 else
3154 rdev->saved_raid_disk = -1;
3155 clear_bit(In_sync, &rdev->flags);
3156 clear_bit(Bitmap_sync, &rdev->flags);
3157 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3158 if (err) {
3159 rdev->raid_disk = -1;
3160 return err;
3161 } else
3162 sysfs_notify_dirent_safe(rdev->sysfs_state);
3163 /* failure here is OK */;
3164 sysfs_link_rdev(rdev->mddev, rdev);
3165 /* don't wakeup anyone, leave that to userspace. */
3166 } else {
3167 if (slot >= rdev->mddev->raid_disks &&
3168 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3169 return -ENOSPC;
3170 rdev->raid_disk = slot;
3171 /* assume it is working */
3172 clear_bit(Faulty, &rdev->flags);
3173 clear_bit(WriteMostly, &rdev->flags);
3174 set_bit(In_sync, &rdev->flags);
3175 sysfs_notify_dirent_safe(rdev->sysfs_state);
3176 }
3177 return len;
3178}
3179
3180static struct rdev_sysfs_entry rdev_slot =
3181__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3182
3183static ssize_t
3184offset_show(struct md_rdev *rdev, char *page)
3185{
3186 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3187}
3188
3189static ssize_t
3190offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3191{
3192 unsigned long long offset;
3193 if (kstrtoull(buf, 10, &offset) < 0)
3194 return -EINVAL;
3195 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3196 return -EBUSY;
3197 if (rdev->sectors && rdev->mddev->external)
3198 /* Must set offset before size, so overlap checks
3199 * can be sane */
3200 return -EBUSY;
3201 rdev->data_offset = offset;
3202 rdev->new_data_offset = offset;
3203 return len;
3204}
3205
3206static struct rdev_sysfs_entry rdev_offset =
3207__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3208
3209static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3210{
3211 return sprintf(page, "%llu\n",
3212 (unsigned long long)rdev->new_data_offset);
3213}
3214
3215static ssize_t new_offset_store(struct md_rdev *rdev,
3216 const char *buf, size_t len)
3217{
3218 unsigned long long new_offset;
3219 struct mddev *mddev = rdev->mddev;
3220
3221 if (kstrtoull(buf, 10, &new_offset) < 0)
3222 return -EINVAL;
3223
3224 if (mddev->sync_thread ||
3225 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3226 return -EBUSY;
3227 if (new_offset == rdev->data_offset)
3228 /* reset is always permitted */
3229 ;
3230 else if (new_offset > rdev->data_offset) {
3231 /* must not push array size beyond rdev_sectors */
3232 if (new_offset - rdev->data_offset
3233 + mddev->dev_sectors > rdev->sectors)
3234 return -E2BIG;
3235 }
3236 /* Metadata worries about other space details. */
3237
3238 /* decreasing the offset is inconsistent with a backwards
3239 * reshape.
3240 */
3241 if (new_offset < rdev->data_offset &&
3242 mddev->reshape_backwards)
3243 return -EINVAL;
3244 /* Increasing offset is inconsistent with forwards
3245 * reshape. reshape_direction should be set to
3246 * 'backwards' first.
3247 */
3248 if (new_offset > rdev->data_offset &&
3249 !mddev->reshape_backwards)
3250 return -EINVAL;
3251
3252 if (mddev->pers && mddev->persistent &&
3253 !super_types[mddev->major_version]
3254 .allow_new_offset(rdev, new_offset))
3255 return -E2BIG;
3256 rdev->new_data_offset = new_offset;
3257 if (new_offset > rdev->data_offset)
3258 mddev->reshape_backwards = 1;
3259 else if (new_offset < rdev->data_offset)
3260 mddev->reshape_backwards = 0;
3261
3262 return len;
3263}
3264static struct rdev_sysfs_entry rdev_new_offset =
3265__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3266
3267static ssize_t
3268rdev_size_show(struct md_rdev *rdev, char *page)
3269{
3270 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3271}
3272
3273static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b)
3274{
3275 /* check if two start/length pairs overlap */
3276 if (a->data_offset + a->sectors <= b->data_offset)
3277 return false;
3278 if (b->data_offset + b->sectors <= a->data_offset)
3279 return false;
3280 return true;
3281}
3282
3283static bool md_rdev_overlaps(struct md_rdev *rdev)
3284{
3285 struct mddev *mddev;
3286 struct md_rdev *rdev2;
3287
3288 spin_lock(&all_mddevs_lock);
3289 list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
3290 if (test_bit(MD_DELETED, &mddev->flags))
3291 continue;
3292 rdev_for_each(rdev2, mddev) {
3293 if (rdev != rdev2 && rdev->bdev == rdev2->bdev &&
3294 md_rdevs_overlap(rdev, rdev2)) {
3295 spin_unlock(&all_mddevs_lock);
3296 return true;
3297 }
3298 }
3299 }
3300 spin_unlock(&all_mddevs_lock);
3301 return false;
3302}
3303
3304static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3305{
3306 unsigned long long blocks;
3307 sector_t new;
3308
3309 if (kstrtoull(buf, 10, &blocks) < 0)
3310 return -EINVAL;
3311
3312 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3313 return -EINVAL; /* sector conversion overflow */
3314
3315 new = blocks * 2;
3316 if (new != blocks * 2)
3317 return -EINVAL; /* unsigned long long to sector_t overflow */
3318
3319 *sectors = new;
3320 return 0;
3321}
3322
3323static ssize_t
3324rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3325{
3326 struct mddev *my_mddev = rdev->mddev;
3327 sector_t oldsectors = rdev->sectors;
3328 sector_t sectors;
3329
3330 if (test_bit(Journal, &rdev->flags))
3331 return -EBUSY;
3332 if (strict_blocks_to_sectors(buf, §ors) < 0)
3333 return -EINVAL;
3334 if (rdev->data_offset != rdev->new_data_offset)
3335 return -EINVAL; /* too confusing */
3336 if (my_mddev->pers && rdev->raid_disk >= 0) {
3337 if (my_mddev->persistent) {
3338 sectors = super_types[my_mddev->major_version].
3339 rdev_size_change(rdev, sectors);
3340 if (!sectors)
3341 return -EBUSY;
3342 } else if (!sectors)
3343 sectors = bdev_nr_sectors(rdev->bdev) -
3344 rdev->data_offset;
3345 if (!my_mddev->pers->resize)
3346 /* Cannot change size for RAID0 or Linear etc */
3347 return -EINVAL;
3348 }
3349 if (sectors < my_mddev->dev_sectors)
3350 return -EINVAL; /* component must fit device */
3351
3352 rdev->sectors = sectors;
3353
3354 /*
3355 * Check that all other rdevs with the same bdev do not overlap. This
3356 * check does not provide a hard guarantee, it just helps avoid
3357 * dangerous mistakes.
3358 */
3359 if (sectors > oldsectors && my_mddev->external &&
3360 md_rdev_overlaps(rdev)) {
3361 /*
3362 * Someone else could have slipped in a size change here, but
3363 * doing so is just silly. We put oldsectors back because we
3364 * know it is safe, and trust userspace not to race with itself.
3365 */
3366 rdev->sectors = oldsectors;
3367 return -EBUSY;
3368 }
3369 return len;
3370}
3371
3372static struct rdev_sysfs_entry rdev_size =
3373__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3374
3375static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3376{
3377 unsigned long long recovery_start = rdev->recovery_offset;
3378
3379 if (test_bit(In_sync, &rdev->flags) ||
3380 recovery_start == MaxSector)
3381 return sprintf(page, "none\n");
3382
3383 return sprintf(page, "%llu\n", recovery_start);
3384}
3385
3386static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3387{
3388 unsigned long long recovery_start;
3389
3390 if (cmd_match(buf, "none"))
3391 recovery_start = MaxSector;
3392 else if (kstrtoull(buf, 10, &recovery_start))
3393 return -EINVAL;
3394
3395 if (rdev->mddev->pers &&
3396 rdev->raid_disk >= 0)
3397 return -EBUSY;
3398
3399 rdev->recovery_offset = recovery_start;
3400 if (recovery_start == MaxSector)
3401 set_bit(In_sync, &rdev->flags);
3402 else
3403 clear_bit(In_sync, &rdev->flags);
3404 return len;
3405}
3406
3407static struct rdev_sysfs_entry rdev_recovery_start =
3408__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3409
3410/* sysfs access to bad-blocks list.
3411 * We present two files.
3412 * 'bad-blocks' lists sector numbers and lengths of ranges that
3413 * are recorded as bad. The list is truncated to fit within
3414 * the one-page limit of sysfs.
3415 * Writing "sector length" to this file adds an acknowledged
3416 * bad block list.
3417 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3418 * been acknowledged. Writing to this file adds bad blocks
3419 * without acknowledging them. This is largely for testing.
3420 */
3421static ssize_t bb_show(struct md_rdev *rdev, char *page)
3422{
3423 return badblocks_show(&rdev->badblocks, page, 0);
3424}
3425static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3426{
3427 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3428 /* Maybe that ack was all we needed */
3429 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3430 wake_up(&rdev->blocked_wait);
3431 return rv;
3432}
3433static struct rdev_sysfs_entry rdev_bad_blocks =
3434__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3435
3436static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3437{
3438 return badblocks_show(&rdev->badblocks, page, 1);
3439}
3440static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3441{
3442 return badblocks_store(&rdev->badblocks, page, len, 1);
3443}
3444static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3445__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3446
3447static ssize_t
3448ppl_sector_show(struct md_rdev *rdev, char *page)
3449{
3450 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3451}
3452
3453static ssize_t
3454ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3455{
3456 unsigned long long sector;
3457
3458 if (kstrtoull(buf, 10, §or) < 0)
3459 return -EINVAL;
3460 if (sector != (sector_t)sector)
3461 return -EINVAL;
3462
3463 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3464 rdev->raid_disk >= 0)
3465 return -EBUSY;
3466
3467 if (rdev->mddev->persistent) {
3468 if (rdev->mddev->major_version == 0)
3469 return -EINVAL;
3470 if ((sector > rdev->sb_start &&
3471 sector - rdev->sb_start > S16_MAX) ||
3472 (sector < rdev->sb_start &&
3473 rdev->sb_start - sector > -S16_MIN))
3474 return -EINVAL;
3475 rdev->ppl.offset = sector - rdev->sb_start;
3476 } else if (!rdev->mddev->external) {
3477 return -EBUSY;
3478 }
3479 rdev->ppl.sector = sector;
3480 return len;
3481}
3482
3483static struct rdev_sysfs_entry rdev_ppl_sector =
3484__ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3485
3486static ssize_t
3487ppl_size_show(struct md_rdev *rdev, char *page)
3488{
3489 return sprintf(page, "%u\n", rdev->ppl.size);
3490}
3491
3492static ssize_t
3493ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3494{
3495 unsigned int size;
3496
3497 if (kstrtouint(buf, 10, &size) < 0)
3498 return -EINVAL;
3499
3500 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3501 rdev->raid_disk >= 0)
3502 return -EBUSY;
3503
3504 if (rdev->mddev->persistent) {
3505 if (rdev->mddev->major_version == 0)
3506 return -EINVAL;
3507 if (size > U16_MAX)
3508 return -EINVAL;
3509 } else if (!rdev->mddev->external) {
3510 return -EBUSY;
3511 }
3512 rdev->ppl.size = size;
3513 return len;
3514}
3515
3516static struct rdev_sysfs_entry rdev_ppl_size =
3517__ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3518
3519static struct attribute *rdev_default_attrs[] = {
3520 &rdev_state.attr,
3521 &rdev_errors.attr,
3522 &rdev_slot.attr,
3523 &rdev_offset.attr,
3524 &rdev_new_offset.attr,
3525 &rdev_size.attr,
3526 &rdev_recovery_start.attr,
3527 &rdev_bad_blocks.attr,
3528 &rdev_unack_bad_blocks.attr,
3529 &rdev_ppl_sector.attr,
3530 &rdev_ppl_size.attr,
3531 NULL,
3532};
3533ATTRIBUTE_GROUPS(rdev_default);
3534static ssize_t
3535rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3536{
3537 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3538 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3539
3540 if (!entry->show)
3541 return -EIO;
3542 if (!rdev->mddev)
3543 return -ENODEV;
3544 return entry->show(rdev, page);
3545}
3546
3547static ssize_t
3548rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3549 const char *page, size_t length)
3550{
3551 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3552 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3553 struct kernfs_node *kn = NULL;
3554 ssize_t rv;
3555 struct mddev *mddev = rdev->mddev;
3556
3557 if (!entry->store)
3558 return -EIO;
3559 if (!capable(CAP_SYS_ADMIN))
3560 return -EACCES;
3561
3562 if (entry->store == state_store && cmd_match(page, "remove"))
3563 kn = sysfs_break_active_protection(kobj, attr);
3564
3565 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3566 if (!rv) {
3567 if (rdev->mddev == NULL)
3568 rv = -ENODEV;
3569 else
3570 rv = entry->store(rdev, page, length);
3571 mddev_unlock(mddev);
3572 }
3573
3574 if (kn)
3575 sysfs_unbreak_active_protection(kn);
3576
3577 return rv;
3578}
3579
3580static void rdev_free(struct kobject *ko)
3581{
3582 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3583 kfree(rdev);
3584}
3585static const struct sysfs_ops rdev_sysfs_ops = {
3586 .show = rdev_attr_show,
3587 .store = rdev_attr_store,
3588};
3589static const struct kobj_type rdev_ktype = {
3590 .release = rdev_free,
3591 .sysfs_ops = &rdev_sysfs_ops,
3592 .default_groups = rdev_default_groups,
3593};
3594
3595int md_rdev_init(struct md_rdev *rdev)
3596{
3597 rdev->desc_nr = -1;
3598 rdev->saved_raid_disk = -1;
3599 rdev->raid_disk = -1;
3600 rdev->flags = 0;
3601 rdev->data_offset = 0;
3602 rdev->new_data_offset = 0;
3603 rdev->sb_events = 0;
3604 rdev->last_read_error = 0;
3605 rdev->sb_loaded = 0;
3606 rdev->bb_page = NULL;
3607 atomic_set(&rdev->nr_pending, 0);
3608 atomic_set(&rdev->read_errors, 0);
3609 atomic_set(&rdev->corrected_errors, 0);
3610
3611 INIT_LIST_HEAD(&rdev->same_set);
3612 init_waitqueue_head(&rdev->blocked_wait);
3613
3614 /* Add space to store bad block list.
3615 * This reserves the space even on arrays where it cannot
3616 * be used - I wonder if that matters
3617 */
3618 return badblocks_init(&rdev->badblocks, 0);
3619}
3620EXPORT_SYMBOL_GPL(md_rdev_init);
3621
3622/*
3623 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3624 *
3625 * mark the device faulty if:
3626 *
3627 * - the device is nonexistent (zero size)
3628 * - the device has no valid superblock
3629 *
3630 * a faulty rdev _never_ has rdev->sb set.
3631 */
3632static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3633{
3634 struct md_rdev *rdev;
3635 sector_t size;
3636 int err;
3637
3638 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3639 if (!rdev)
3640 return ERR_PTR(-ENOMEM);
3641
3642 err = md_rdev_init(rdev);
3643 if (err)
3644 goto out_free_rdev;
3645 err = alloc_disk_sb(rdev);
3646 if (err)
3647 goto out_clear_rdev;
3648
3649 rdev->bdev = blkdev_get_by_dev(newdev, BLK_OPEN_READ | BLK_OPEN_WRITE,
3650 super_format == -2 ? &claim_rdev : rdev, NULL);
3651 if (IS_ERR(rdev->bdev)) {
3652 pr_warn("md: could not open device unknown-block(%u,%u).\n",
3653 MAJOR(newdev), MINOR(newdev));
3654 err = PTR_ERR(rdev->bdev);
3655 goto out_clear_rdev;
3656 }
3657
3658 kobject_init(&rdev->kobj, &rdev_ktype);
3659
3660 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
3661 if (!size) {
3662 pr_warn("md: %pg has zero or unknown size, marking faulty!\n",
3663 rdev->bdev);
3664 err = -EINVAL;
3665 goto out_blkdev_put;
3666 }
3667
3668 if (super_format >= 0) {
3669 err = super_types[super_format].
3670 load_super(rdev, NULL, super_minor);
3671 if (err == -EINVAL) {
3672 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n",
3673 rdev->bdev,
3674 super_format, super_minor);
3675 goto out_blkdev_put;
3676 }
3677 if (err < 0) {
3678 pr_warn("md: could not read %pg's sb, not importing!\n",
3679 rdev->bdev);
3680 goto out_blkdev_put;
3681 }
3682 }
3683
3684 return rdev;
3685
3686out_blkdev_put:
3687 blkdev_put(rdev->bdev, super_format == -2 ? &claim_rdev : rdev);
3688out_clear_rdev:
3689 md_rdev_clear(rdev);
3690out_free_rdev:
3691 kfree(rdev);
3692 return ERR_PTR(err);
3693}
3694
3695/*
3696 * Check a full RAID array for plausibility
3697 */
3698
3699static int analyze_sbs(struct mddev *mddev)
3700{
3701 int i;
3702 struct md_rdev *rdev, *freshest, *tmp;
3703
3704 freshest = NULL;
3705 rdev_for_each_safe(rdev, tmp, mddev)
3706 switch (super_types[mddev->major_version].
3707 load_super(rdev, freshest, mddev->minor_version)) {
3708 case 1:
3709 freshest = rdev;
3710 break;
3711 case 0:
3712 break;
3713 default:
3714 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n",
3715 rdev->bdev);
3716 md_kick_rdev_from_array(rdev);
3717 }
3718
3719 /* Cannot find a valid fresh disk */
3720 if (!freshest) {
3721 pr_warn("md: cannot find a valid disk\n");
3722 return -EINVAL;
3723 }
3724
3725 super_types[mddev->major_version].
3726 validate_super(mddev, freshest);
3727
3728 i = 0;
3729 rdev_for_each_safe(rdev, tmp, mddev) {
3730 if (mddev->max_disks &&
3731 (rdev->desc_nr >= mddev->max_disks ||
3732 i > mddev->max_disks)) {
3733 pr_warn("md: %s: %pg: only %d devices permitted\n",
3734 mdname(mddev), rdev->bdev,
3735 mddev->max_disks);
3736 md_kick_rdev_from_array(rdev);
3737 continue;
3738 }
3739 if (rdev != freshest) {
3740 if (super_types[mddev->major_version].
3741 validate_super(mddev, rdev)) {
3742 pr_warn("md: kicking non-fresh %pg from array!\n",
3743 rdev->bdev);
3744 md_kick_rdev_from_array(rdev);
3745 continue;
3746 }
3747 }
3748 if (mddev->level == LEVEL_MULTIPATH) {
3749 rdev->desc_nr = i++;
3750 rdev->raid_disk = rdev->desc_nr;
3751 set_bit(In_sync, &rdev->flags);
3752 } else if (rdev->raid_disk >=
3753 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3754 !test_bit(Journal, &rdev->flags)) {
3755 rdev->raid_disk = -1;
3756 clear_bit(In_sync, &rdev->flags);
3757 }
3758 }
3759
3760 return 0;
3761}
3762
3763/* Read a fixed-point number.
3764 * Numbers in sysfs attributes should be in "standard" units where
3765 * possible, so time should be in seconds.
3766 * However we internally use a a much smaller unit such as
3767 * milliseconds or jiffies.
3768 * This function takes a decimal number with a possible fractional
3769 * component, and produces an integer which is the result of
3770 * multiplying that number by 10^'scale'.
3771 * all without any floating-point arithmetic.
3772 */
3773int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3774{
3775 unsigned long result = 0;
3776 long decimals = -1;
3777 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3778 if (*cp == '.')
3779 decimals = 0;
3780 else if (decimals < scale) {
3781 unsigned int value;
3782 value = *cp - '0';
3783 result = result * 10 + value;
3784 if (decimals >= 0)
3785 decimals++;
3786 }
3787 cp++;
3788 }
3789 if (*cp == '\n')
3790 cp++;
3791 if (*cp)
3792 return -EINVAL;
3793 if (decimals < 0)
3794 decimals = 0;
3795 *res = result * int_pow(10, scale - decimals);
3796 return 0;
3797}
3798
3799static ssize_t
3800safe_delay_show(struct mddev *mddev, char *page)
3801{
3802 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ;
3803
3804 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000);
3805}
3806static ssize_t
3807safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3808{
3809 unsigned long msec;
3810
3811 if (mddev_is_clustered(mddev)) {
3812 pr_warn("md: Safemode is disabled for clustered mode\n");
3813 return -EINVAL;
3814 }
3815
3816 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ)
3817 return -EINVAL;
3818 if (msec == 0)
3819 mddev->safemode_delay = 0;
3820 else {
3821 unsigned long old_delay = mddev->safemode_delay;
3822 unsigned long new_delay = (msec*HZ)/1000;
3823
3824 if (new_delay == 0)
3825 new_delay = 1;
3826 mddev->safemode_delay = new_delay;
3827 if (new_delay < old_delay || old_delay == 0)
3828 mod_timer(&mddev->safemode_timer, jiffies+1);
3829 }
3830 return len;
3831}
3832static struct md_sysfs_entry md_safe_delay =
3833__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3834
3835static ssize_t
3836level_show(struct mddev *mddev, char *page)
3837{
3838 struct md_personality *p;
3839 int ret;
3840 spin_lock(&mddev->lock);
3841 p = mddev->pers;
3842 if (p)
3843 ret = sprintf(page, "%s\n", p->name);
3844 else if (mddev->clevel[0])
3845 ret = sprintf(page, "%s\n", mddev->clevel);
3846 else if (mddev->level != LEVEL_NONE)
3847 ret = sprintf(page, "%d\n", mddev->level);
3848 else
3849 ret = 0;
3850 spin_unlock(&mddev->lock);
3851 return ret;
3852}
3853
3854static ssize_t
3855level_store(struct mddev *mddev, const char *buf, size_t len)
3856{
3857 char clevel[16];
3858 ssize_t rv;
3859 size_t slen = len;
3860 struct md_personality *pers, *oldpers;
3861 long level;
3862 void *priv, *oldpriv;
3863 struct md_rdev *rdev;
3864
3865 if (slen == 0 || slen >= sizeof(clevel))
3866 return -EINVAL;
3867
3868 rv = mddev_lock(mddev);
3869 if (rv)
3870 return rv;
3871
3872 if (mddev->pers == NULL) {
3873 strncpy(mddev->clevel, buf, slen);
3874 if (mddev->clevel[slen-1] == '\n')
3875 slen--;
3876 mddev->clevel[slen] = 0;
3877 mddev->level = LEVEL_NONE;
3878 rv = len;
3879 goto out_unlock;
3880 }
3881 rv = -EROFS;
3882 if (!md_is_rdwr(mddev))
3883 goto out_unlock;
3884
3885 /* request to change the personality. Need to ensure:
3886 * - array is not engaged in resync/recovery/reshape
3887 * - old personality can be suspended
3888 * - new personality will access other array.
3889 */
3890
3891 rv = -EBUSY;
3892 if (mddev->sync_thread ||
3893 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3894 mddev->reshape_position != MaxSector ||
3895 mddev->sysfs_active)
3896 goto out_unlock;
3897
3898 rv = -EINVAL;
3899 if (!mddev->pers->quiesce) {
3900 pr_warn("md: %s: %s does not support online personality change\n",
3901 mdname(mddev), mddev->pers->name);
3902 goto out_unlock;
3903 }
3904
3905 /* Now find the new personality */
3906 strncpy(clevel, buf, slen);
3907 if (clevel[slen-1] == '\n')
3908 slen--;
3909 clevel[slen] = 0;
3910 if (kstrtol(clevel, 10, &level))
3911 level = LEVEL_NONE;
3912
3913 if (request_module("md-%s", clevel) != 0)
3914 request_module("md-level-%s", clevel);
3915 spin_lock(&pers_lock);
3916 pers = find_pers(level, clevel);
3917 if (!pers || !try_module_get(pers->owner)) {
3918 spin_unlock(&pers_lock);
3919 pr_warn("md: personality %s not loaded\n", clevel);
3920 rv = -EINVAL;
3921 goto out_unlock;
3922 }
3923 spin_unlock(&pers_lock);
3924
3925 if (pers == mddev->pers) {
3926 /* Nothing to do! */
3927 module_put(pers->owner);
3928 rv = len;
3929 goto out_unlock;
3930 }
3931 if (!pers->takeover) {
3932 module_put(pers->owner);
3933 pr_warn("md: %s: %s does not support personality takeover\n",
3934 mdname(mddev), clevel);
3935 rv = -EINVAL;
3936 goto out_unlock;
3937 }
3938
3939 rdev_for_each(rdev, mddev)
3940 rdev->new_raid_disk = rdev->raid_disk;
3941
3942 /* ->takeover must set new_* and/or delta_disks
3943 * if it succeeds, and may set them when it fails.
3944 */
3945 priv = pers->takeover(mddev);
3946 if (IS_ERR(priv)) {
3947 mddev->new_level = mddev->level;
3948 mddev->new_layout = mddev->layout;
3949 mddev->new_chunk_sectors = mddev->chunk_sectors;
3950 mddev->raid_disks -= mddev->delta_disks;
3951 mddev->delta_disks = 0;
3952 mddev->reshape_backwards = 0;
3953 module_put(pers->owner);
3954 pr_warn("md: %s: %s would not accept array\n",
3955 mdname(mddev), clevel);
3956 rv = PTR_ERR(priv);
3957 goto out_unlock;
3958 }
3959
3960 /* Looks like we have a winner */
3961 mddev_suspend(mddev);
3962 mddev_detach(mddev);
3963
3964 spin_lock(&mddev->lock);
3965 oldpers = mddev->pers;
3966 oldpriv = mddev->private;
3967 mddev->pers = pers;
3968 mddev->private = priv;
3969 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3970 mddev->level = mddev->new_level;
3971 mddev->layout = mddev->new_layout;
3972 mddev->chunk_sectors = mddev->new_chunk_sectors;
3973 mddev->delta_disks = 0;
3974 mddev->reshape_backwards = 0;
3975 mddev->degraded = 0;
3976 spin_unlock(&mddev->lock);
3977
3978 if (oldpers->sync_request == NULL &&
3979 mddev->external) {
3980 /* We are converting from a no-redundancy array
3981 * to a redundancy array and metadata is managed
3982 * externally so we need to be sure that writes
3983 * won't block due to a need to transition
3984 * clean->dirty
3985 * until external management is started.
3986 */
3987 mddev->in_sync = 0;
3988 mddev->safemode_delay = 0;
3989 mddev->safemode = 0;
3990 }
3991
3992 oldpers->free(mddev, oldpriv);
3993
3994 if (oldpers->sync_request == NULL &&
3995 pers->sync_request != NULL) {
3996 /* need to add the md_redundancy_group */
3997 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3998 pr_warn("md: cannot register extra attributes for %s\n",
3999 mdname(mddev));
4000 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4001 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4002 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4003 }
4004 if (oldpers->sync_request != NULL &&
4005 pers->sync_request == NULL) {
4006 /* need to remove the md_redundancy_group */
4007 if (mddev->to_remove == NULL)
4008 mddev->to_remove = &md_redundancy_group;
4009 }
4010
4011 module_put(oldpers->owner);
4012
4013 rdev_for_each(rdev, mddev) {
4014 if (rdev->raid_disk < 0)
4015 continue;
4016 if (rdev->new_raid_disk >= mddev->raid_disks)
4017 rdev->new_raid_disk = -1;
4018 if (rdev->new_raid_disk == rdev->raid_disk)
4019 continue;
4020 sysfs_unlink_rdev(mddev, rdev);
4021 }
4022 rdev_for_each(rdev, mddev) {
4023 if (rdev->raid_disk < 0)
4024 continue;
4025 if (rdev->new_raid_disk == rdev->raid_disk)
4026 continue;
4027 rdev->raid_disk = rdev->new_raid_disk;
4028 if (rdev->raid_disk < 0)
4029 clear_bit(In_sync, &rdev->flags);
4030 else {
4031 if (sysfs_link_rdev(mddev, rdev))
4032 pr_warn("md: cannot register rd%d for %s after level change\n",
4033 rdev->raid_disk, mdname(mddev));
4034 }
4035 }
4036
4037 if (pers->sync_request == NULL) {
4038 /* this is now an array without redundancy, so
4039 * it must always be in_sync
4040 */
4041 mddev->in_sync = 1;
4042 del_timer_sync(&mddev->safemode_timer);
4043 }
4044 blk_set_stacking_limits(&mddev->queue->limits);
4045 pers->run(mddev);
4046 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4047 mddev_resume(mddev);
4048 if (!mddev->thread)
4049 md_update_sb(mddev, 1);
4050 sysfs_notify_dirent_safe(mddev->sysfs_level);
4051 md_new_event();
4052 rv = len;
4053out_unlock:
4054 mddev_unlock(mddev);
4055 return rv;
4056}
4057
4058static struct md_sysfs_entry md_level =
4059__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4060
4061static ssize_t
4062layout_show(struct mddev *mddev, char *page)
4063{
4064 /* just a number, not meaningful for all levels */
4065 if (mddev->reshape_position != MaxSector &&
4066 mddev->layout != mddev->new_layout)
4067 return sprintf(page, "%d (%d)\n",
4068 mddev->new_layout, mddev->layout);
4069 return sprintf(page, "%d\n", mddev->layout);
4070}
4071
4072static ssize_t
4073layout_store(struct mddev *mddev, const char *buf, size_t len)
4074{
4075 unsigned int n;
4076 int err;
4077
4078 err = kstrtouint(buf, 10, &n);
4079 if (err < 0)
4080 return err;
4081 err = mddev_lock(mddev);
4082 if (err)
4083 return err;
4084
4085 if (mddev->pers) {
4086 if (mddev->pers->check_reshape == NULL)
4087 err = -EBUSY;
4088 else if (!md_is_rdwr(mddev))
4089 err = -EROFS;
4090 else {
4091 mddev->new_layout = n;
4092 err = mddev->pers->check_reshape(mddev);
4093 if (err)
4094 mddev->new_layout = mddev->layout;
4095 }
4096 } else {
4097 mddev->new_layout = n;
4098 if (mddev->reshape_position == MaxSector)
4099 mddev->layout = n;
4100 }
4101 mddev_unlock(mddev);
4102 return err ?: len;
4103}
4104static struct md_sysfs_entry md_layout =
4105__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4106
4107static ssize_t
4108raid_disks_show(struct mddev *mddev, char *page)
4109{
4110 if (mddev->raid_disks == 0)
4111 return 0;
4112 if (mddev->reshape_position != MaxSector &&
4113 mddev->delta_disks != 0)
4114 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4115 mddev->raid_disks - mddev->delta_disks);
4116 return sprintf(page, "%d\n", mddev->raid_disks);
4117}
4118
4119static int update_raid_disks(struct mddev *mddev, int raid_disks);
4120
4121static ssize_t
4122raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4123{
4124 unsigned int n;
4125 int err;
4126
4127 err = kstrtouint(buf, 10, &n);
4128 if (err < 0)
4129 return err;
4130
4131 err = mddev_lock(mddev);
4132 if (err)
4133 return err;
4134 if (mddev->pers)
4135 err = update_raid_disks(mddev, n);
4136 else if (mddev->reshape_position != MaxSector) {
4137 struct md_rdev *rdev;
4138 int olddisks = mddev->raid_disks - mddev->delta_disks;
4139
4140 err = -EINVAL;
4141 rdev_for_each(rdev, mddev) {
4142 if (olddisks < n &&
4143 rdev->data_offset < rdev->new_data_offset)
4144 goto out_unlock;
4145 if (olddisks > n &&
4146 rdev->data_offset > rdev->new_data_offset)
4147 goto out_unlock;
4148 }
4149 err = 0;
4150 mddev->delta_disks = n - olddisks;
4151 mddev->raid_disks = n;
4152 mddev->reshape_backwards = (mddev->delta_disks < 0);
4153 } else
4154 mddev->raid_disks = n;
4155out_unlock:
4156 mddev_unlock(mddev);
4157 return err ? err : len;
4158}
4159static struct md_sysfs_entry md_raid_disks =
4160__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4161
4162static ssize_t
4163uuid_show(struct mddev *mddev, char *page)
4164{
4165 return sprintf(page, "%pU\n", mddev->uuid);
4166}
4167static struct md_sysfs_entry md_uuid =
4168__ATTR(uuid, S_IRUGO, uuid_show, NULL);
4169
4170static ssize_t
4171chunk_size_show(struct mddev *mddev, char *page)
4172{
4173 if (mddev->reshape_position != MaxSector &&
4174 mddev->chunk_sectors != mddev->new_chunk_sectors)
4175 return sprintf(page, "%d (%d)\n",
4176 mddev->new_chunk_sectors << 9,
4177 mddev->chunk_sectors << 9);
4178 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4179}
4180
4181static ssize_t
4182chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4183{
4184 unsigned long n;
4185 int err;
4186
4187 err = kstrtoul(buf, 10, &n);
4188 if (err < 0)
4189 return err;
4190
4191 err = mddev_lock(mddev);
4192 if (err)
4193 return err;
4194 if (mddev->pers) {
4195 if (mddev->pers->check_reshape == NULL)
4196 err = -EBUSY;
4197 else if (!md_is_rdwr(mddev))
4198 err = -EROFS;
4199 else {
4200 mddev->new_chunk_sectors = n >> 9;
4201 err = mddev->pers->check_reshape(mddev);
4202 if (err)
4203 mddev->new_chunk_sectors = mddev->chunk_sectors;
4204 }
4205 } else {
4206 mddev->new_chunk_sectors = n >> 9;
4207 if (mddev->reshape_position == MaxSector)
4208 mddev->chunk_sectors = n >> 9;
4209 }
4210 mddev_unlock(mddev);
4211 return err ?: len;
4212}
4213static struct md_sysfs_entry md_chunk_size =
4214__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4215
4216static ssize_t
4217resync_start_show(struct mddev *mddev, char *page)
4218{
4219 if (mddev->recovery_cp == MaxSector)
4220 return sprintf(page, "none\n");
4221 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4222}
4223
4224static ssize_t
4225resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4226{
4227 unsigned long long n;
4228 int err;
4229
4230 if (cmd_match(buf, "none"))
4231 n = MaxSector;
4232 else {
4233 err = kstrtoull(buf, 10, &n);
4234 if (err < 0)
4235 return err;
4236 if (n != (sector_t)n)
4237 return -EINVAL;
4238 }
4239
4240 err = mddev_lock(mddev);
4241 if (err)
4242 return err;
4243 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4244 err = -EBUSY;
4245
4246 if (!err) {
4247 mddev->recovery_cp = n;
4248 if (mddev->pers)
4249 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4250 }
4251 mddev_unlock(mddev);
4252 return err ?: len;
4253}
4254static struct md_sysfs_entry md_resync_start =
4255__ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4256 resync_start_show, resync_start_store);
4257
4258/*
4259 * The array state can be:
4260 *
4261 * clear
4262 * No devices, no size, no level
4263 * Equivalent to STOP_ARRAY ioctl
4264 * inactive
4265 * May have some settings, but array is not active
4266 * all IO results in error
4267 * When written, doesn't tear down array, but just stops it
4268 * suspended (not supported yet)
4269 * All IO requests will block. The array can be reconfigured.
4270 * Writing this, if accepted, will block until array is quiescent
4271 * readonly
4272 * no resync can happen. no superblocks get written.
4273 * write requests fail
4274 * read-auto
4275 * like readonly, but behaves like 'clean' on a write request.
4276 *
4277 * clean - no pending writes, but otherwise active.
4278 * When written to inactive array, starts without resync
4279 * If a write request arrives then
4280 * if metadata is known, mark 'dirty' and switch to 'active'.
4281 * if not known, block and switch to write-pending
4282 * If written to an active array that has pending writes, then fails.
4283 * active
4284 * fully active: IO and resync can be happening.
4285 * When written to inactive array, starts with resync
4286 *
4287 * write-pending
4288 * clean, but writes are blocked waiting for 'active' to be written.
4289 *
4290 * active-idle
4291 * like active, but no writes have been seen for a while (100msec).
4292 *
4293 * broken
4294* Array is failed. It's useful because mounted-arrays aren't stopped
4295* when array is failed, so this state will at least alert the user that
4296* something is wrong.
4297 */
4298enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4299 write_pending, active_idle, broken, bad_word};
4300static char *array_states[] = {
4301 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4302 "write-pending", "active-idle", "broken", NULL };
4303
4304static int match_word(const char *word, char **list)
4305{
4306 int n;
4307 for (n=0; list[n]; n++)
4308 if (cmd_match(word, list[n]))
4309 break;
4310 return n;
4311}
4312
4313static ssize_t
4314array_state_show(struct mddev *mddev, char *page)
4315{
4316 enum array_state st = inactive;
4317
4318 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4319 switch(mddev->ro) {
4320 case MD_RDONLY:
4321 st = readonly;
4322 break;
4323 case MD_AUTO_READ:
4324 st = read_auto;
4325 break;
4326 case MD_RDWR:
4327 spin_lock(&mddev->lock);
4328 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4329 st = write_pending;
4330 else if (mddev->in_sync)
4331 st = clean;
4332 else if (mddev->safemode)
4333 st = active_idle;
4334 else
4335 st = active;
4336 spin_unlock(&mddev->lock);
4337 }
4338
4339 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4340 st = broken;
4341 } else {
4342 if (list_empty(&mddev->disks) &&
4343 mddev->raid_disks == 0 &&
4344 mddev->dev_sectors == 0)
4345 st = clear;
4346 else
4347 st = inactive;
4348 }
4349 return sprintf(page, "%s\n", array_states[st]);
4350}
4351
4352static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4353static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4354static int restart_array(struct mddev *mddev);
4355
4356static ssize_t
4357array_state_store(struct mddev *mddev, const char *buf, size_t len)
4358{
4359 int err = 0;
4360 enum array_state st = match_word(buf, array_states);
4361
4362 if (mddev->pers && (st == active || st == clean) &&
4363 mddev->ro != MD_RDONLY) {
4364 /* don't take reconfig_mutex when toggling between
4365 * clean and active
4366 */
4367 spin_lock(&mddev->lock);
4368 if (st == active) {
4369 restart_array(mddev);
4370 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4371 md_wakeup_thread(mddev->thread);
4372 wake_up(&mddev->sb_wait);
4373 } else /* st == clean */ {
4374 restart_array(mddev);
4375 if (!set_in_sync(mddev))
4376 err = -EBUSY;
4377 }
4378 if (!err)
4379 sysfs_notify_dirent_safe(mddev->sysfs_state);
4380 spin_unlock(&mddev->lock);
4381 return err ?: len;
4382 }
4383 err = mddev_lock(mddev);
4384 if (err)
4385 return err;
4386 err = -EINVAL;
4387 switch(st) {
4388 case bad_word:
4389 break;
4390 case clear:
4391 /* stopping an active array */
4392 err = do_md_stop(mddev, 0, NULL);
4393 break;
4394 case inactive:
4395 /* stopping an active array */
4396 if (mddev->pers)
4397 err = do_md_stop(mddev, 2, NULL);
4398 else
4399 err = 0; /* already inactive */
4400 break;
4401 case suspended:
4402 break; /* not supported yet */
4403 case readonly:
4404 if (mddev->pers)
4405 err = md_set_readonly(mddev, NULL);
4406 else {
4407 mddev->ro = MD_RDONLY;
4408 set_disk_ro(mddev->gendisk, 1);
4409 err = do_md_run(mddev);
4410 }
4411 break;
4412 case read_auto:
4413 if (mddev->pers) {
4414 if (md_is_rdwr(mddev))
4415 err = md_set_readonly(mddev, NULL);
4416 else if (mddev->ro == MD_RDONLY)
4417 err = restart_array(mddev);
4418 if (err == 0) {
4419 mddev->ro = MD_AUTO_READ;
4420 set_disk_ro(mddev->gendisk, 0);
4421 }
4422 } else {
4423 mddev->ro = MD_AUTO_READ;
4424 err = do_md_run(mddev);
4425 }
4426 break;
4427 case clean:
4428 if (mddev->pers) {
4429 err = restart_array(mddev);
4430 if (err)
4431 break;
4432 spin_lock(&mddev->lock);
4433 if (!set_in_sync(mddev))
4434 err = -EBUSY;
4435 spin_unlock(&mddev->lock);
4436 } else
4437 err = -EINVAL;
4438 break;
4439 case active:
4440 if (mddev->pers) {
4441 err = restart_array(mddev);
4442 if (err)
4443 break;
4444 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4445 wake_up(&mddev->sb_wait);
4446 err = 0;
4447 } else {
4448 mddev->ro = MD_RDWR;
4449 set_disk_ro(mddev->gendisk, 0);
4450 err = do_md_run(mddev);
4451 }
4452 break;
4453 case write_pending:
4454 case active_idle:
4455 case broken:
4456 /* these cannot be set */
4457 break;
4458 }
4459
4460 if (!err) {
4461 if (mddev->hold_active == UNTIL_IOCTL)
4462 mddev->hold_active = 0;
4463 sysfs_notify_dirent_safe(mddev->sysfs_state);
4464 }
4465 mddev_unlock(mddev);
4466 return err ?: len;
4467}
4468static struct md_sysfs_entry md_array_state =
4469__ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4470
4471static ssize_t
4472max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4473 return sprintf(page, "%d\n",
4474 atomic_read(&mddev->max_corr_read_errors));
4475}
4476
4477static ssize_t
4478max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4479{
4480 unsigned int n;
4481 int rv;
4482
4483 rv = kstrtouint(buf, 10, &n);
4484 if (rv < 0)
4485 return rv;
4486 if (n > INT_MAX)
4487 return -EINVAL;
4488 atomic_set(&mddev->max_corr_read_errors, n);
4489 return len;
4490}
4491
4492static struct md_sysfs_entry max_corr_read_errors =
4493__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4494 max_corrected_read_errors_store);
4495
4496static ssize_t
4497null_show(struct mddev *mddev, char *page)
4498{
4499 return -EINVAL;
4500}
4501
4502static ssize_t
4503new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4504{
4505 /* buf must be %d:%d\n? giving major and minor numbers */
4506 /* The new device is added to the array.
4507 * If the array has a persistent superblock, we read the
4508 * superblock to initialise info and check validity.
4509 * Otherwise, only checking done is that in bind_rdev_to_array,
4510 * which mainly checks size.
4511 */
4512 char *e;
4513 int major = simple_strtoul(buf, &e, 10);
4514 int minor;
4515 dev_t dev;
4516 struct md_rdev *rdev;
4517 int err;
4518
4519 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4520 return -EINVAL;
4521 minor = simple_strtoul(e+1, &e, 10);
4522 if (*e && *e != '\n')
4523 return -EINVAL;
4524 dev = MKDEV(major, minor);
4525 if (major != MAJOR(dev) ||
4526 minor != MINOR(dev))
4527 return -EOVERFLOW;
4528
4529 err = mddev_lock(mddev);
4530 if (err)
4531 return err;
4532 if (mddev->persistent) {
4533 rdev = md_import_device(dev, mddev->major_version,
4534 mddev->minor_version);
4535 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4536 struct md_rdev *rdev0
4537 = list_entry(mddev->disks.next,
4538 struct md_rdev, same_set);
4539 err = super_types[mddev->major_version]
4540 .load_super(rdev, rdev0, mddev->minor_version);
4541 if (err < 0)
4542 goto out;
4543 }
4544 } else if (mddev->external)
4545 rdev = md_import_device(dev, -2, -1);
4546 else
4547 rdev = md_import_device(dev, -1, -1);
4548
4549 if (IS_ERR(rdev)) {
4550 mddev_unlock(mddev);
4551 return PTR_ERR(rdev);
4552 }
4553 err = bind_rdev_to_array(rdev, mddev);
4554 out:
4555 if (err)
4556 export_rdev(rdev, mddev);
4557 mddev_unlock(mddev);
4558 if (!err)
4559 md_new_event();
4560 return err ? err : len;
4561}
4562
4563static struct md_sysfs_entry md_new_device =
4564__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4565
4566static ssize_t
4567bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4568{
4569 char *end;
4570 unsigned long chunk, end_chunk;
4571 int err;
4572
4573 err = mddev_lock(mddev);
4574 if (err)
4575 return err;
4576 if (!mddev->bitmap)
4577 goto out;
4578 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4579 while (*buf) {
4580 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4581 if (buf == end) break;
4582 if (*end == '-') { /* range */
4583 buf = end + 1;
4584 end_chunk = simple_strtoul(buf, &end, 0);
4585 if (buf == end) break;
4586 }
4587 if (*end && !isspace(*end)) break;
4588 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4589 buf = skip_spaces(end);
4590 }
4591 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4592out:
4593 mddev_unlock(mddev);
4594 return len;
4595}
4596
4597static struct md_sysfs_entry md_bitmap =
4598__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4599
4600static ssize_t
4601size_show(struct mddev *mddev, char *page)
4602{
4603 return sprintf(page, "%llu\n",
4604 (unsigned long long)mddev->dev_sectors / 2);
4605}
4606
4607static int update_size(struct mddev *mddev, sector_t num_sectors);
4608
4609static ssize_t
4610size_store(struct mddev *mddev, const char *buf, size_t len)
4611{
4612 /* If array is inactive, we can reduce the component size, but
4613 * not increase it (except from 0).
4614 * If array is active, we can try an on-line resize
4615 */
4616 sector_t sectors;
4617 int err = strict_blocks_to_sectors(buf, §ors);
4618
4619 if (err < 0)
4620 return err;
4621 err = mddev_lock(mddev);
4622 if (err)
4623 return err;
4624 if (mddev->pers) {
4625 err = update_size(mddev, sectors);
4626 if (err == 0)
4627 md_update_sb(mddev, 1);
4628 } else {
4629 if (mddev->dev_sectors == 0 ||
4630 mddev->dev_sectors > sectors)
4631 mddev->dev_sectors = sectors;
4632 else
4633 err = -ENOSPC;
4634 }
4635 mddev_unlock(mddev);
4636 return err ? err : len;
4637}
4638
4639static struct md_sysfs_entry md_size =
4640__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4641
4642/* Metadata version.
4643 * This is one of
4644 * 'none' for arrays with no metadata (good luck...)
4645 * 'external' for arrays with externally managed metadata,
4646 * or N.M for internally known formats
4647 */
4648static ssize_t
4649metadata_show(struct mddev *mddev, char *page)
4650{
4651 if (mddev->persistent)
4652 return sprintf(page, "%d.%d\n",
4653 mddev->major_version, mddev->minor_version);
4654 else if (mddev->external)
4655 return sprintf(page, "external:%s\n", mddev->metadata_type);
4656 else
4657 return sprintf(page, "none\n");
4658}
4659
4660static ssize_t
4661metadata_store(struct mddev *mddev, const char *buf, size_t len)
4662{
4663 int major, minor;
4664 char *e;
4665 int err;
4666 /* Changing the details of 'external' metadata is
4667 * always permitted. Otherwise there must be
4668 * no devices attached to the array.
4669 */
4670
4671 err = mddev_lock(mddev);
4672 if (err)
4673 return err;
4674 err = -EBUSY;
4675 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4676 ;
4677 else if (!list_empty(&mddev->disks))
4678 goto out_unlock;
4679
4680 err = 0;
4681 if (cmd_match(buf, "none")) {
4682 mddev->persistent = 0;
4683 mddev->external = 0;
4684 mddev->major_version = 0;
4685 mddev->minor_version = 90;
4686 goto out_unlock;
4687 }
4688 if (strncmp(buf, "external:", 9) == 0) {
4689 size_t namelen = len-9;
4690 if (namelen >= sizeof(mddev->metadata_type))
4691 namelen = sizeof(mddev->metadata_type)-1;
4692 strncpy(mddev->metadata_type, buf+9, namelen);
4693 mddev->metadata_type[namelen] = 0;
4694 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4695 mddev->metadata_type[--namelen] = 0;
4696 mddev->persistent = 0;
4697 mddev->external = 1;
4698 mddev->major_version = 0;
4699 mddev->minor_version = 90;
4700 goto out_unlock;
4701 }
4702 major = simple_strtoul(buf, &e, 10);
4703 err = -EINVAL;
4704 if (e==buf || *e != '.')
4705 goto out_unlock;
4706 buf = e+1;
4707 minor = simple_strtoul(buf, &e, 10);
4708 if (e==buf || (*e && *e != '\n') )
4709 goto out_unlock;
4710 err = -ENOENT;
4711 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4712 goto out_unlock;
4713 mddev->major_version = major;
4714 mddev->minor_version = minor;
4715 mddev->persistent = 1;
4716 mddev->external = 0;
4717 err = 0;
4718out_unlock:
4719 mddev_unlock(mddev);
4720 return err ?: len;
4721}
4722
4723static struct md_sysfs_entry md_metadata =
4724__ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4725
4726static ssize_t
4727action_show(struct mddev *mddev, char *page)
4728{
4729 char *type = "idle";
4730 unsigned long recovery = mddev->recovery;
4731 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4732 type = "frozen";
4733 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4734 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4735 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4736 type = "reshape";
4737 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4738 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4739 type = "resync";
4740 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4741 type = "check";
4742 else
4743 type = "repair";
4744 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4745 type = "recover";
4746 else if (mddev->reshape_position != MaxSector)
4747 type = "reshape";
4748 }
4749 return sprintf(page, "%s\n", type);
4750}
4751
4752static void stop_sync_thread(struct mddev *mddev)
4753{
4754 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4755 return;
4756
4757 if (mddev_lock(mddev))
4758 return;
4759
4760 /*
4761 * Check again in case MD_RECOVERY_RUNNING is cleared before lock is
4762 * held.
4763 */
4764 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
4765 mddev_unlock(mddev);
4766 return;
4767 }
4768
4769 if (work_pending(&mddev->del_work))
4770 flush_workqueue(md_misc_wq);
4771
4772 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4773 /*
4774 * Thread might be blocked waiting for metadata update which will now
4775 * never happen
4776 */
4777 md_wakeup_thread_directly(mddev->sync_thread);
4778
4779 mddev_unlock(mddev);
4780}
4781
4782static void idle_sync_thread(struct mddev *mddev)
4783{
4784 int sync_seq = atomic_read(&mddev->sync_seq);
4785
4786 mutex_lock(&mddev->sync_mutex);
4787 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4788 stop_sync_thread(mddev);
4789
4790 wait_event(resync_wait, sync_seq != atomic_read(&mddev->sync_seq) ||
4791 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery));
4792
4793 mutex_unlock(&mddev->sync_mutex);
4794}
4795
4796static void frozen_sync_thread(struct mddev *mddev)
4797{
4798 mutex_lock(&mddev->sync_mutex);
4799 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4800 stop_sync_thread(mddev);
4801
4802 wait_event(resync_wait, mddev->sync_thread == NULL &&
4803 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery));
4804
4805 mutex_unlock(&mddev->sync_mutex);
4806}
4807
4808static ssize_t
4809action_store(struct mddev *mddev, const char *page, size_t len)
4810{
4811 if (!mddev->pers || !mddev->pers->sync_request)
4812 return -EINVAL;
4813
4814
4815 if (cmd_match(page, "idle"))
4816 idle_sync_thread(mddev);
4817 else if (cmd_match(page, "frozen"))
4818 frozen_sync_thread(mddev);
4819 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4820 return -EBUSY;
4821 else if (cmd_match(page, "resync"))
4822 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4823 else if (cmd_match(page, "recover")) {
4824 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4825 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4826 } else if (cmd_match(page, "reshape")) {
4827 int err;
4828 if (mddev->pers->start_reshape == NULL)
4829 return -EINVAL;
4830 err = mddev_lock(mddev);
4831 if (!err) {
4832 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
4833 err = -EBUSY;
4834 } else if (mddev->reshape_position == MaxSector ||
4835 mddev->pers->check_reshape == NULL ||
4836 mddev->pers->check_reshape(mddev)) {
4837 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4838 err = mddev->pers->start_reshape(mddev);
4839 } else {
4840 /*
4841 * If reshape is still in progress, and
4842 * md_check_recovery() can continue to reshape,
4843 * don't restart reshape because data can be
4844 * corrupted for raid456.
4845 */
4846 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4847 }
4848 mddev_unlock(mddev);
4849 }
4850 if (err)
4851 return err;
4852 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4853 } else {
4854 if (cmd_match(page, "check"))
4855 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4856 else if (!cmd_match(page, "repair"))
4857 return -EINVAL;
4858 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4859 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4860 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4861 }
4862 if (mddev->ro == MD_AUTO_READ) {
4863 /* A write to sync_action is enough to justify
4864 * canceling read-auto mode
4865 */
4866 mddev->ro = MD_RDWR;
4867 md_wakeup_thread(mddev->sync_thread);
4868 }
4869 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4870 md_wakeup_thread(mddev->thread);
4871 sysfs_notify_dirent_safe(mddev->sysfs_action);
4872 return len;
4873}
4874
4875static struct md_sysfs_entry md_scan_mode =
4876__ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4877
4878static ssize_t
4879last_sync_action_show(struct mddev *mddev, char *page)
4880{
4881 return sprintf(page, "%s\n", mddev->last_sync_action);
4882}
4883
4884static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4885
4886static ssize_t
4887mismatch_cnt_show(struct mddev *mddev, char *page)
4888{
4889 return sprintf(page, "%llu\n",
4890 (unsigned long long)
4891 atomic64_read(&mddev->resync_mismatches));
4892}
4893
4894static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4895
4896static ssize_t
4897sync_min_show(struct mddev *mddev, char *page)
4898{
4899 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4900 mddev->sync_speed_min ? "local": "system");
4901}
4902
4903static ssize_t
4904sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4905{
4906 unsigned int min;
4907 int rv;
4908
4909 if (strncmp(buf, "system", 6)==0) {
4910 min = 0;
4911 } else {
4912 rv = kstrtouint(buf, 10, &min);
4913 if (rv < 0)
4914 return rv;
4915 if (min == 0)
4916 return -EINVAL;
4917 }
4918 mddev->sync_speed_min = min;
4919 return len;
4920}
4921
4922static struct md_sysfs_entry md_sync_min =
4923__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4924
4925static ssize_t
4926sync_max_show(struct mddev *mddev, char *page)
4927{
4928 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4929 mddev->sync_speed_max ? "local": "system");
4930}
4931
4932static ssize_t
4933sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4934{
4935 unsigned int max;
4936 int rv;
4937
4938 if (strncmp(buf, "system", 6)==0) {
4939 max = 0;
4940 } else {
4941 rv = kstrtouint(buf, 10, &max);
4942 if (rv < 0)
4943 return rv;
4944 if (max == 0)
4945 return -EINVAL;
4946 }
4947 mddev->sync_speed_max = max;
4948 return len;
4949}
4950
4951static struct md_sysfs_entry md_sync_max =
4952__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4953
4954static ssize_t
4955degraded_show(struct mddev *mddev, char *page)
4956{
4957 return sprintf(page, "%d\n", mddev->degraded);
4958}
4959static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4960
4961static ssize_t
4962sync_force_parallel_show(struct mddev *mddev, char *page)
4963{
4964 return sprintf(page, "%d\n", mddev->parallel_resync);
4965}
4966
4967static ssize_t
4968sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4969{
4970 long n;
4971
4972 if (kstrtol(buf, 10, &n))
4973 return -EINVAL;
4974
4975 if (n != 0 && n != 1)
4976 return -EINVAL;
4977
4978 mddev->parallel_resync = n;
4979
4980 if (mddev->sync_thread)
4981 wake_up(&resync_wait);
4982
4983 return len;
4984}
4985
4986/* force parallel resync, even with shared block devices */
4987static struct md_sysfs_entry md_sync_force_parallel =
4988__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4989 sync_force_parallel_show, sync_force_parallel_store);
4990
4991static ssize_t
4992sync_speed_show(struct mddev *mddev, char *page)
4993{
4994 unsigned long resync, dt, db;
4995 if (mddev->curr_resync == MD_RESYNC_NONE)
4996 return sprintf(page, "none\n");
4997 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4998 dt = (jiffies - mddev->resync_mark) / HZ;
4999 if (!dt) dt++;
5000 db = resync - mddev->resync_mark_cnt;
5001 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5002}
5003
5004static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5005
5006static ssize_t
5007sync_completed_show(struct mddev *mddev, char *page)
5008{
5009 unsigned long long max_sectors, resync;
5010
5011 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5012 return sprintf(page, "none\n");
5013
5014 if (mddev->curr_resync == MD_RESYNC_YIELDED ||
5015 mddev->curr_resync == MD_RESYNC_DELAYED)
5016 return sprintf(page, "delayed\n");
5017
5018 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5019 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5020 max_sectors = mddev->resync_max_sectors;
5021 else
5022 max_sectors = mddev->dev_sectors;
5023
5024 resync = mddev->curr_resync_completed;
5025 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5026}
5027
5028static struct md_sysfs_entry md_sync_completed =
5029 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5030
5031static ssize_t
5032min_sync_show(struct mddev *mddev, char *page)
5033{
5034 return sprintf(page, "%llu\n",
5035 (unsigned long long)mddev->resync_min);
5036}
5037static ssize_t
5038min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5039{
5040 unsigned long long min;
5041 int err;
5042
5043 if (kstrtoull(buf, 10, &min))
5044 return -EINVAL;
5045
5046 spin_lock(&mddev->lock);
5047 err = -EINVAL;
5048 if (min > mddev->resync_max)
5049 goto out_unlock;
5050
5051 err = -EBUSY;
5052 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5053 goto out_unlock;
5054
5055 /* Round down to multiple of 4K for safety */
5056 mddev->resync_min = round_down(min, 8);
5057 err = 0;
5058
5059out_unlock:
5060 spin_unlock(&mddev->lock);
5061 return err ?: len;
5062}
5063
5064static struct md_sysfs_entry md_min_sync =
5065__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5066
5067static ssize_t
5068max_sync_show(struct mddev *mddev, char *page)
5069{
5070 if (mddev->resync_max == MaxSector)
5071 return sprintf(page, "max\n");
5072 else
5073 return sprintf(page, "%llu\n",
5074 (unsigned long long)mddev->resync_max);
5075}
5076static ssize_t
5077max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5078{
5079 int err;
5080 spin_lock(&mddev->lock);
5081 if (strncmp(buf, "max", 3) == 0)
5082 mddev->resync_max = MaxSector;
5083 else {
5084 unsigned long long max;
5085 int chunk;
5086
5087 err = -EINVAL;
5088 if (kstrtoull(buf, 10, &max))
5089 goto out_unlock;
5090 if (max < mddev->resync_min)
5091 goto out_unlock;
5092
5093 err = -EBUSY;
5094 if (max < mddev->resync_max && md_is_rdwr(mddev) &&
5095 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5096 goto out_unlock;
5097
5098 /* Must be a multiple of chunk_size */
5099 chunk = mddev->chunk_sectors;
5100 if (chunk) {
5101 sector_t temp = max;
5102
5103 err = -EINVAL;
5104 if (sector_div(temp, chunk))
5105 goto out_unlock;
5106 }
5107 mddev->resync_max = max;
5108 }
5109 wake_up(&mddev->recovery_wait);
5110 err = 0;
5111out_unlock:
5112 spin_unlock(&mddev->lock);
5113 return err ?: len;
5114}
5115
5116static struct md_sysfs_entry md_max_sync =
5117__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5118
5119static ssize_t
5120suspend_lo_show(struct mddev *mddev, char *page)
5121{
5122 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5123}
5124
5125static ssize_t
5126suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5127{
5128 unsigned long long new;
5129 int err;
5130
5131 err = kstrtoull(buf, 10, &new);
5132 if (err < 0)
5133 return err;
5134 if (new != (sector_t)new)
5135 return -EINVAL;
5136
5137 err = mddev_lock(mddev);
5138 if (err)
5139 return err;
5140 err = -EINVAL;
5141 if (mddev->pers == NULL ||
5142 mddev->pers->quiesce == NULL)
5143 goto unlock;
5144 mddev_suspend(mddev);
5145 mddev->suspend_lo = new;
5146 mddev_resume(mddev);
5147
5148 err = 0;
5149unlock:
5150 mddev_unlock(mddev);
5151 return err ?: len;
5152}
5153static struct md_sysfs_entry md_suspend_lo =
5154__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5155
5156static ssize_t
5157suspend_hi_show(struct mddev *mddev, char *page)
5158{
5159 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5160}
5161
5162static ssize_t
5163suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5164{
5165 unsigned long long new;
5166 int err;
5167
5168 err = kstrtoull(buf, 10, &new);
5169 if (err < 0)
5170 return err;
5171 if (new != (sector_t)new)
5172 return -EINVAL;
5173
5174 err = mddev_lock(mddev);
5175 if (err)
5176 return err;
5177 err = -EINVAL;
5178 if (mddev->pers == NULL)
5179 goto unlock;
5180
5181 mddev_suspend(mddev);
5182 mddev->suspend_hi = new;
5183 mddev_resume(mddev);
5184
5185 err = 0;
5186unlock:
5187 mddev_unlock(mddev);
5188 return err ?: len;
5189}
5190static struct md_sysfs_entry md_suspend_hi =
5191__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5192
5193static ssize_t
5194reshape_position_show(struct mddev *mddev, char *page)
5195{
5196 if (mddev->reshape_position != MaxSector)
5197 return sprintf(page, "%llu\n",
5198 (unsigned long long)mddev->reshape_position);
5199 strcpy(page, "none\n");
5200 return 5;
5201}
5202
5203static ssize_t
5204reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5205{
5206 struct md_rdev *rdev;
5207 unsigned long long new;
5208 int err;
5209
5210 err = kstrtoull(buf, 10, &new);
5211 if (err < 0)
5212 return err;
5213 if (new != (sector_t)new)
5214 return -EINVAL;
5215 err = mddev_lock(mddev);
5216 if (err)
5217 return err;
5218 err = -EBUSY;
5219 if (mddev->pers)
5220 goto unlock;
5221 mddev->reshape_position = new;
5222 mddev->delta_disks = 0;
5223 mddev->reshape_backwards = 0;
5224 mddev->new_level = mddev->level;
5225 mddev->new_layout = mddev->layout;
5226 mddev->new_chunk_sectors = mddev->chunk_sectors;
5227 rdev_for_each(rdev, mddev)
5228 rdev->new_data_offset = rdev->data_offset;
5229 err = 0;
5230unlock:
5231 mddev_unlock(mddev);
5232 return err ?: len;
5233}
5234
5235static struct md_sysfs_entry md_reshape_position =
5236__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5237 reshape_position_store);
5238
5239static ssize_t
5240reshape_direction_show(struct mddev *mddev, char *page)
5241{
5242 return sprintf(page, "%s\n",
5243 mddev->reshape_backwards ? "backwards" : "forwards");
5244}
5245
5246static ssize_t
5247reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5248{
5249 int backwards = 0;
5250 int err;
5251
5252 if (cmd_match(buf, "forwards"))
5253 backwards = 0;
5254 else if (cmd_match(buf, "backwards"))
5255 backwards = 1;
5256 else
5257 return -EINVAL;
5258 if (mddev->reshape_backwards == backwards)
5259 return len;
5260
5261 err = mddev_lock(mddev);
5262 if (err)
5263 return err;
5264 /* check if we are allowed to change */
5265 if (mddev->delta_disks)
5266 err = -EBUSY;
5267 else if (mddev->persistent &&
5268 mddev->major_version == 0)
5269 err = -EINVAL;
5270 else
5271 mddev->reshape_backwards = backwards;
5272 mddev_unlock(mddev);
5273 return err ?: len;
5274}
5275
5276static struct md_sysfs_entry md_reshape_direction =
5277__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5278 reshape_direction_store);
5279
5280static ssize_t
5281array_size_show(struct mddev *mddev, char *page)
5282{
5283 if (mddev->external_size)
5284 return sprintf(page, "%llu\n",
5285 (unsigned long long)mddev->array_sectors/2);
5286 else
5287 return sprintf(page, "default\n");
5288}
5289
5290static ssize_t
5291array_size_store(struct mddev *mddev, const char *buf, size_t len)
5292{
5293 sector_t sectors;
5294 int err;
5295
5296 err = mddev_lock(mddev);
5297 if (err)
5298 return err;
5299
5300 /* cluster raid doesn't support change array_sectors */
5301 if (mddev_is_clustered(mddev)) {
5302 mddev_unlock(mddev);
5303 return -EINVAL;
5304 }
5305
5306 if (strncmp(buf, "default", 7) == 0) {
5307 if (mddev->pers)
5308 sectors = mddev->pers->size(mddev, 0, 0);
5309 else
5310 sectors = mddev->array_sectors;
5311
5312 mddev->external_size = 0;
5313 } else {
5314 if (strict_blocks_to_sectors(buf, §ors) < 0)
5315 err = -EINVAL;
5316 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5317 err = -E2BIG;
5318 else
5319 mddev->external_size = 1;
5320 }
5321
5322 if (!err) {
5323 mddev->array_sectors = sectors;
5324 if (mddev->pers)
5325 set_capacity_and_notify(mddev->gendisk,
5326 mddev->array_sectors);
5327 }
5328 mddev_unlock(mddev);
5329 return err ?: len;
5330}
5331
5332static struct md_sysfs_entry md_array_size =
5333__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5334 array_size_store);
5335
5336static ssize_t
5337consistency_policy_show(struct mddev *mddev, char *page)
5338{
5339 int ret;
5340
5341 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5342 ret = sprintf(page, "journal\n");
5343 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5344 ret = sprintf(page, "ppl\n");
5345 } else if (mddev->bitmap) {
5346 ret = sprintf(page, "bitmap\n");
5347 } else if (mddev->pers) {
5348 if (mddev->pers->sync_request)
5349 ret = sprintf(page, "resync\n");
5350 else
5351 ret = sprintf(page, "none\n");
5352 } else {
5353 ret = sprintf(page, "unknown\n");
5354 }
5355
5356 return ret;
5357}
5358
5359static ssize_t
5360consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5361{
5362 int err = 0;
5363
5364 if (mddev->pers) {
5365 if (mddev->pers->change_consistency_policy)
5366 err = mddev->pers->change_consistency_policy(mddev, buf);
5367 else
5368 err = -EBUSY;
5369 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5370 set_bit(MD_HAS_PPL, &mddev->flags);
5371 } else {
5372 err = -EINVAL;
5373 }
5374
5375 return err ? err : len;
5376}
5377
5378static struct md_sysfs_entry md_consistency_policy =
5379__ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5380 consistency_policy_store);
5381
5382static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5383{
5384 return sprintf(page, "%d\n", mddev->fail_last_dev);
5385}
5386
5387/*
5388 * Setting fail_last_dev to true to allow last device to be forcibly removed
5389 * from RAID1/RAID10.
5390 */
5391static ssize_t
5392fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5393{
5394 int ret;
5395 bool value;
5396
5397 ret = kstrtobool(buf, &value);
5398 if (ret)
5399 return ret;
5400
5401 if (value != mddev->fail_last_dev)
5402 mddev->fail_last_dev = value;
5403
5404 return len;
5405}
5406static struct md_sysfs_entry md_fail_last_dev =
5407__ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5408 fail_last_dev_store);
5409
5410static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5411{
5412 if (mddev->pers == NULL || (mddev->pers->level != 1))
5413 return sprintf(page, "n/a\n");
5414 else
5415 return sprintf(page, "%d\n", mddev->serialize_policy);
5416}
5417
5418/*
5419 * Setting serialize_policy to true to enforce write IO is not reordered
5420 * for raid1.
5421 */
5422static ssize_t
5423serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5424{
5425 int err;
5426 bool value;
5427
5428 err = kstrtobool(buf, &value);
5429 if (err)
5430 return err;
5431
5432 if (value == mddev->serialize_policy)
5433 return len;
5434
5435 err = mddev_lock(mddev);
5436 if (err)
5437 return err;
5438 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5439 pr_err("md: serialize_policy is only effective for raid1\n");
5440 err = -EINVAL;
5441 goto unlock;
5442 }
5443
5444 mddev_suspend(mddev);
5445 if (value)
5446 mddev_create_serial_pool(mddev, NULL, true);
5447 else
5448 mddev_destroy_serial_pool(mddev, NULL, true);
5449 mddev->serialize_policy = value;
5450 mddev_resume(mddev);
5451unlock:
5452 mddev_unlock(mddev);
5453 return err ?: len;
5454}
5455
5456static struct md_sysfs_entry md_serialize_policy =
5457__ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5458 serialize_policy_store);
5459
5460
5461static struct attribute *md_default_attrs[] = {
5462 &md_level.attr,
5463 &md_layout.attr,
5464 &md_raid_disks.attr,
5465 &md_uuid.attr,
5466 &md_chunk_size.attr,
5467 &md_size.attr,
5468 &md_resync_start.attr,
5469 &md_metadata.attr,
5470 &md_new_device.attr,
5471 &md_safe_delay.attr,
5472 &md_array_state.attr,
5473 &md_reshape_position.attr,
5474 &md_reshape_direction.attr,
5475 &md_array_size.attr,
5476 &max_corr_read_errors.attr,
5477 &md_consistency_policy.attr,
5478 &md_fail_last_dev.attr,
5479 &md_serialize_policy.attr,
5480 NULL,
5481};
5482
5483static const struct attribute_group md_default_group = {
5484 .attrs = md_default_attrs,
5485};
5486
5487static struct attribute *md_redundancy_attrs[] = {
5488 &md_scan_mode.attr,
5489 &md_last_scan_mode.attr,
5490 &md_mismatches.attr,
5491 &md_sync_min.attr,
5492 &md_sync_max.attr,
5493 &md_sync_speed.attr,
5494 &md_sync_force_parallel.attr,
5495 &md_sync_completed.attr,
5496 &md_min_sync.attr,
5497 &md_max_sync.attr,
5498 &md_suspend_lo.attr,
5499 &md_suspend_hi.attr,
5500 &md_bitmap.attr,
5501 &md_degraded.attr,
5502 NULL,
5503};
5504static const struct attribute_group md_redundancy_group = {
5505 .name = NULL,
5506 .attrs = md_redundancy_attrs,
5507};
5508
5509static const struct attribute_group *md_attr_groups[] = {
5510 &md_default_group,
5511 &md_bitmap_group,
5512 NULL,
5513};
5514
5515static ssize_t
5516md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5517{
5518 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5519 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5520 ssize_t rv;
5521
5522 if (!entry->show)
5523 return -EIO;
5524 spin_lock(&all_mddevs_lock);
5525 if (!mddev_get(mddev)) {
5526 spin_unlock(&all_mddevs_lock);
5527 return -EBUSY;
5528 }
5529 spin_unlock(&all_mddevs_lock);
5530
5531 rv = entry->show(mddev, page);
5532 mddev_put(mddev);
5533 return rv;
5534}
5535
5536static ssize_t
5537md_attr_store(struct kobject *kobj, struct attribute *attr,
5538 const char *page, size_t length)
5539{
5540 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5541 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5542 ssize_t rv;
5543
5544 if (!entry->store)
5545 return -EIO;
5546 if (!capable(CAP_SYS_ADMIN))
5547 return -EACCES;
5548 spin_lock(&all_mddevs_lock);
5549 if (!mddev_get(mddev)) {
5550 spin_unlock(&all_mddevs_lock);
5551 return -EBUSY;
5552 }
5553 spin_unlock(&all_mddevs_lock);
5554 rv = entry->store(mddev, page, length);
5555 mddev_put(mddev);
5556 return rv;
5557}
5558
5559static void md_kobj_release(struct kobject *ko)
5560{
5561 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5562
5563 if (mddev->sysfs_state)
5564 sysfs_put(mddev->sysfs_state);
5565 if (mddev->sysfs_level)
5566 sysfs_put(mddev->sysfs_level);
5567
5568 del_gendisk(mddev->gendisk);
5569 put_disk(mddev->gendisk);
5570}
5571
5572static const struct sysfs_ops md_sysfs_ops = {
5573 .show = md_attr_show,
5574 .store = md_attr_store,
5575};
5576static const struct kobj_type md_ktype = {
5577 .release = md_kobj_release,
5578 .sysfs_ops = &md_sysfs_ops,
5579 .default_groups = md_attr_groups,
5580};
5581
5582int mdp_major = 0;
5583
5584static void mddev_delayed_delete(struct work_struct *ws)
5585{
5586 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5587
5588 kobject_put(&mddev->kobj);
5589}
5590
5591static void no_op(struct percpu_ref *r) {}
5592
5593int mddev_init_writes_pending(struct mddev *mddev)
5594{
5595 if (mddev->writes_pending.percpu_count_ptr)
5596 return 0;
5597 if (percpu_ref_init(&mddev->writes_pending, no_op,
5598 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5599 return -ENOMEM;
5600 /* We want to start with the refcount at zero */
5601 percpu_ref_put(&mddev->writes_pending);
5602 return 0;
5603}
5604EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5605
5606struct mddev *md_alloc(dev_t dev, char *name)
5607{
5608 /*
5609 * If dev is zero, name is the name of a device to allocate with
5610 * an arbitrary minor number. It will be "md_???"
5611 * If dev is non-zero it must be a device number with a MAJOR of
5612 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5613 * the device is being created by opening a node in /dev.
5614 * If "name" is not NULL, the device is being created by
5615 * writing to /sys/module/md_mod/parameters/new_array.
5616 */
5617 static DEFINE_MUTEX(disks_mutex);
5618 struct mddev *mddev;
5619 struct gendisk *disk;
5620 int partitioned;
5621 int shift;
5622 int unit;
5623 int error ;
5624
5625 /*
5626 * Wait for any previous instance of this device to be completely
5627 * removed (mddev_delayed_delete).
5628 */
5629 flush_workqueue(md_misc_wq);
5630
5631 mutex_lock(&disks_mutex);
5632 mddev = mddev_alloc(dev);
5633 if (IS_ERR(mddev)) {
5634 error = PTR_ERR(mddev);
5635 goto out_unlock;
5636 }
5637
5638 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5639 shift = partitioned ? MdpMinorShift : 0;
5640 unit = MINOR(mddev->unit) >> shift;
5641
5642 if (name && !dev) {
5643 /* Need to ensure that 'name' is not a duplicate.
5644 */
5645 struct mddev *mddev2;
5646 spin_lock(&all_mddevs_lock);
5647
5648 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5649 if (mddev2->gendisk &&
5650 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5651 spin_unlock(&all_mddevs_lock);
5652 error = -EEXIST;
5653 goto out_free_mddev;
5654 }
5655 spin_unlock(&all_mddevs_lock);
5656 }
5657 if (name && dev)
5658 /*
5659 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5660 */
5661 mddev->hold_active = UNTIL_STOP;
5662
5663 error = -ENOMEM;
5664 disk = blk_alloc_disk(NUMA_NO_NODE);
5665 if (!disk)
5666 goto out_free_mddev;
5667
5668 disk->major = MAJOR(mddev->unit);
5669 disk->first_minor = unit << shift;
5670 disk->minors = 1 << shift;
5671 if (name)
5672 strcpy(disk->disk_name, name);
5673 else if (partitioned)
5674 sprintf(disk->disk_name, "md_d%d", unit);
5675 else
5676 sprintf(disk->disk_name, "md%d", unit);
5677 disk->fops = &md_fops;
5678 disk->private_data = mddev;
5679
5680 mddev->queue = disk->queue;
5681 blk_set_stacking_limits(&mddev->queue->limits);
5682 blk_queue_write_cache(mddev->queue, true, true);
5683 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5684 mddev->gendisk = disk;
5685 error = add_disk(disk);
5686 if (error)
5687 goto out_put_disk;
5688
5689 kobject_init(&mddev->kobj, &md_ktype);
5690 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5691 if (error) {
5692 /*
5693 * The disk is already live at this point. Clear the hold flag
5694 * and let mddev_put take care of the deletion, as it isn't any
5695 * different from a normal close on last release now.
5696 */
5697 mddev->hold_active = 0;
5698 mutex_unlock(&disks_mutex);
5699 mddev_put(mddev);
5700 return ERR_PTR(error);
5701 }
5702
5703 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5704 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5705 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5706 mutex_unlock(&disks_mutex);
5707 return mddev;
5708
5709out_put_disk:
5710 put_disk(disk);
5711out_free_mddev:
5712 mddev_free(mddev);
5713out_unlock:
5714 mutex_unlock(&disks_mutex);
5715 return ERR_PTR(error);
5716}
5717
5718static int md_alloc_and_put(dev_t dev, char *name)
5719{
5720 struct mddev *mddev = md_alloc(dev, name);
5721
5722 if (IS_ERR(mddev))
5723 return PTR_ERR(mddev);
5724 mddev_put(mddev);
5725 return 0;
5726}
5727
5728static void md_probe(dev_t dev)
5729{
5730 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5731 return;
5732 if (create_on_open)
5733 md_alloc_and_put(dev, NULL);
5734}
5735
5736static int add_named_array(const char *val, const struct kernel_param *kp)
5737{
5738 /*
5739 * val must be "md_*" or "mdNNN".
5740 * For "md_*" we allocate an array with a large free minor number, and
5741 * set the name to val. val must not already be an active name.
5742 * For "mdNNN" we allocate an array with the minor number NNN
5743 * which must not already be in use.
5744 */
5745 int len = strlen(val);
5746 char buf[DISK_NAME_LEN];
5747 unsigned long devnum;
5748
5749 while (len && val[len-1] == '\n')
5750 len--;
5751 if (len >= DISK_NAME_LEN)
5752 return -E2BIG;
5753 strscpy(buf, val, len+1);
5754 if (strncmp(buf, "md_", 3) == 0)
5755 return md_alloc_and_put(0, buf);
5756 if (strncmp(buf, "md", 2) == 0 &&
5757 isdigit(buf[2]) &&
5758 kstrtoul(buf+2, 10, &devnum) == 0 &&
5759 devnum <= MINORMASK)
5760 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL);
5761
5762 return -EINVAL;
5763}
5764
5765static void md_safemode_timeout(struct timer_list *t)
5766{
5767 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5768
5769 mddev->safemode = 1;
5770 if (mddev->external)
5771 sysfs_notify_dirent_safe(mddev->sysfs_state);
5772
5773 md_wakeup_thread(mddev->thread);
5774}
5775
5776static int start_dirty_degraded;
5777static void active_io_release(struct percpu_ref *ref)
5778{
5779 struct mddev *mddev = container_of(ref, struct mddev, active_io);
5780
5781 wake_up(&mddev->sb_wait);
5782}
5783
5784int md_run(struct mddev *mddev)
5785{
5786 int err;
5787 struct md_rdev *rdev;
5788 struct md_personality *pers;
5789 bool nowait = true;
5790
5791 if (list_empty(&mddev->disks))
5792 /* cannot run an array with no devices.. */
5793 return -EINVAL;
5794
5795 if (mddev->pers)
5796 return -EBUSY;
5797 /* Cannot run until previous stop completes properly */
5798 if (mddev->sysfs_active)
5799 return -EBUSY;
5800
5801 /*
5802 * Analyze all RAID superblock(s)
5803 */
5804 if (!mddev->raid_disks) {
5805 if (!mddev->persistent)
5806 return -EINVAL;
5807 err = analyze_sbs(mddev);
5808 if (err)
5809 return -EINVAL;
5810 }
5811
5812 if (mddev->level != LEVEL_NONE)
5813 request_module("md-level-%d", mddev->level);
5814 else if (mddev->clevel[0])
5815 request_module("md-%s", mddev->clevel);
5816
5817 /*
5818 * Drop all container device buffers, from now on
5819 * the only valid external interface is through the md
5820 * device.
5821 */
5822 mddev->has_superblocks = false;
5823 rdev_for_each(rdev, mddev) {
5824 if (test_bit(Faulty, &rdev->flags))
5825 continue;
5826 sync_blockdev(rdev->bdev);
5827 invalidate_bdev(rdev->bdev);
5828 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) {
5829 mddev->ro = MD_RDONLY;
5830 if (mddev->gendisk)
5831 set_disk_ro(mddev->gendisk, 1);
5832 }
5833
5834 if (rdev->sb_page)
5835 mddev->has_superblocks = true;
5836
5837 /* perform some consistency tests on the device.
5838 * We don't want the data to overlap the metadata,
5839 * Internal Bitmap issues have been handled elsewhere.
5840 */
5841 if (rdev->meta_bdev) {
5842 /* Nothing to check */;
5843 } else if (rdev->data_offset < rdev->sb_start) {
5844 if (mddev->dev_sectors &&
5845 rdev->data_offset + mddev->dev_sectors
5846 > rdev->sb_start) {
5847 pr_warn("md: %s: data overlaps metadata\n",
5848 mdname(mddev));
5849 return -EINVAL;
5850 }
5851 } else {
5852 if (rdev->sb_start + rdev->sb_size/512
5853 > rdev->data_offset) {
5854 pr_warn("md: %s: metadata overlaps data\n",
5855 mdname(mddev));
5856 return -EINVAL;
5857 }
5858 }
5859 sysfs_notify_dirent_safe(rdev->sysfs_state);
5860 nowait = nowait && bdev_nowait(rdev->bdev);
5861 }
5862
5863 err = percpu_ref_init(&mddev->active_io, active_io_release,
5864 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
5865 if (err)
5866 return err;
5867
5868 if (!bioset_initialized(&mddev->bio_set)) {
5869 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5870 if (err)
5871 goto exit_active_io;
5872 }
5873 if (!bioset_initialized(&mddev->sync_set)) {
5874 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5875 if (err)
5876 goto exit_bio_set;
5877 }
5878
5879 if (!bioset_initialized(&mddev->io_clone_set)) {
5880 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE,
5881 offsetof(struct md_io_clone, bio_clone), 0);
5882 if (err)
5883 goto exit_sync_set;
5884 }
5885
5886 spin_lock(&pers_lock);
5887 pers = find_pers(mddev->level, mddev->clevel);
5888 if (!pers || !try_module_get(pers->owner)) {
5889 spin_unlock(&pers_lock);
5890 if (mddev->level != LEVEL_NONE)
5891 pr_warn("md: personality for level %d is not loaded!\n",
5892 mddev->level);
5893 else
5894 pr_warn("md: personality for level %s is not loaded!\n",
5895 mddev->clevel);
5896 err = -EINVAL;
5897 goto abort;
5898 }
5899 spin_unlock(&pers_lock);
5900 if (mddev->level != pers->level) {
5901 mddev->level = pers->level;
5902 mddev->new_level = pers->level;
5903 }
5904 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5905
5906 if (mddev->reshape_position != MaxSector &&
5907 pers->start_reshape == NULL) {
5908 /* This personality cannot handle reshaping... */
5909 module_put(pers->owner);
5910 err = -EINVAL;
5911 goto abort;
5912 }
5913
5914 if (pers->sync_request) {
5915 /* Warn if this is a potentially silly
5916 * configuration.
5917 */
5918 struct md_rdev *rdev2;
5919 int warned = 0;
5920
5921 rdev_for_each(rdev, mddev)
5922 rdev_for_each(rdev2, mddev) {
5923 if (rdev < rdev2 &&
5924 rdev->bdev->bd_disk ==
5925 rdev2->bdev->bd_disk) {
5926 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n",
5927 mdname(mddev),
5928 rdev->bdev,
5929 rdev2->bdev);
5930 warned = 1;
5931 }
5932 }
5933
5934 if (warned)
5935 pr_warn("True protection against single-disk failure might be compromised.\n");
5936 }
5937
5938 mddev->recovery = 0;
5939 /* may be over-ridden by personality */
5940 mddev->resync_max_sectors = mddev->dev_sectors;
5941
5942 mddev->ok_start_degraded = start_dirty_degraded;
5943
5944 if (start_readonly && md_is_rdwr(mddev))
5945 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */
5946
5947 err = pers->run(mddev);
5948 if (err)
5949 pr_warn("md: pers->run() failed ...\n");
5950 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5951 WARN_ONCE(!mddev->external_size,
5952 "%s: default size too small, but 'external_size' not in effect?\n",
5953 __func__);
5954 pr_warn("md: invalid array_size %llu > default size %llu\n",
5955 (unsigned long long)mddev->array_sectors / 2,
5956 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5957 err = -EINVAL;
5958 }
5959 if (err == 0 && pers->sync_request &&
5960 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5961 struct bitmap *bitmap;
5962
5963 bitmap = md_bitmap_create(mddev, -1);
5964 if (IS_ERR(bitmap)) {
5965 err = PTR_ERR(bitmap);
5966 pr_warn("%s: failed to create bitmap (%d)\n",
5967 mdname(mddev), err);
5968 } else
5969 mddev->bitmap = bitmap;
5970
5971 }
5972 if (err)
5973 goto bitmap_abort;
5974
5975 if (mddev->bitmap_info.max_write_behind > 0) {
5976 bool create_pool = false;
5977
5978 rdev_for_each(rdev, mddev) {
5979 if (test_bit(WriteMostly, &rdev->flags) &&
5980 rdev_init_serial(rdev))
5981 create_pool = true;
5982 }
5983 if (create_pool && mddev->serial_info_pool == NULL) {
5984 mddev->serial_info_pool =
5985 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
5986 sizeof(struct serial_info));
5987 if (!mddev->serial_info_pool) {
5988 err = -ENOMEM;
5989 goto bitmap_abort;
5990 }
5991 }
5992 }
5993
5994 if (mddev->queue) {
5995 bool nonrot = true;
5996
5997 rdev_for_each(rdev, mddev) {
5998 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) {
5999 nonrot = false;
6000 break;
6001 }
6002 }
6003 if (mddev->degraded)
6004 nonrot = false;
6005 if (nonrot)
6006 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6007 else
6008 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6009 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6010
6011 /* Set the NOWAIT flags if all underlying devices support it */
6012 if (nowait)
6013 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
6014 }
6015 if (pers->sync_request) {
6016 if (mddev->kobj.sd &&
6017 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6018 pr_warn("md: cannot register extra attributes for %s\n",
6019 mdname(mddev));
6020 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6021 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6022 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6023 } else if (mddev->ro == MD_AUTO_READ)
6024 mddev->ro = MD_RDWR;
6025
6026 atomic_set(&mddev->max_corr_read_errors,
6027 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6028 mddev->safemode = 0;
6029 if (mddev_is_clustered(mddev))
6030 mddev->safemode_delay = 0;
6031 else
6032 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6033 mddev->in_sync = 1;
6034 smp_wmb();
6035 spin_lock(&mddev->lock);
6036 mddev->pers = pers;
6037 spin_unlock(&mddev->lock);
6038 rdev_for_each(rdev, mddev)
6039 if (rdev->raid_disk >= 0)
6040 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6041
6042 if (mddev->degraded && md_is_rdwr(mddev))
6043 /* This ensures that recovering status is reported immediately
6044 * via sysfs - until a lack of spares is confirmed.
6045 */
6046 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6047 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6048
6049 if (mddev->sb_flags)
6050 md_update_sb(mddev, 0);
6051
6052 md_new_event();
6053 return 0;
6054
6055bitmap_abort:
6056 mddev_detach(mddev);
6057 if (mddev->private)
6058 pers->free(mddev, mddev->private);
6059 mddev->private = NULL;
6060 module_put(pers->owner);
6061 md_bitmap_destroy(mddev);
6062abort:
6063 bioset_exit(&mddev->io_clone_set);
6064exit_sync_set:
6065 bioset_exit(&mddev->sync_set);
6066exit_bio_set:
6067 bioset_exit(&mddev->bio_set);
6068exit_active_io:
6069 percpu_ref_exit(&mddev->active_io);
6070 return err;
6071}
6072EXPORT_SYMBOL_GPL(md_run);
6073
6074int do_md_run(struct mddev *mddev)
6075{
6076 int err;
6077
6078 set_bit(MD_NOT_READY, &mddev->flags);
6079 err = md_run(mddev);
6080 if (err)
6081 goto out;
6082 err = md_bitmap_load(mddev);
6083 if (err) {
6084 md_bitmap_destroy(mddev);
6085 goto out;
6086 }
6087
6088 if (mddev_is_clustered(mddev))
6089 md_allow_write(mddev);
6090
6091 /* run start up tasks that require md_thread */
6092 md_start(mddev);
6093
6094 md_wakeup_thread(mddev->thread);
6095 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6096
6097 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6098 clear_bit(MD_NOT_READY, &mddev->flags);
6099 mddev->changed = 1;
6100 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6101 sysfs_notify_dirent_safe(mddev->sysfs_state);
6102 sysfs_notify_dirent_safe(mddev->sysfs_action);
6103 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6104out:
6105 clear_bit(MD_NOT_READY, &mddev->flags);
6106 return err;
6107}
6108
6109int md_start(struct mddev *mddev)
6110{
6111 int ret = 0;
6112
6113 if (mddev->pers->start) {
6114 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6115 md_wakeup_thread(mddev->thread);
6116 ret = mddev->pers->start(mddev);
6117 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6118 md_wakeup_thread(mddev->sync_thread);
6119 }
6120 return ret;
6121}
6122EXPORT_SYMBOL_GPL(md_start);
6123
6124static int restart_array(struct mddev *mddev)
6125{
6126 struct gendisk *disk = mddev->gendisk;
6127 struct md_rdev *rdev;
6128 bool has_journal = false;
6129 bool has_readonly = false;
6130
6131 /* Complain if it has no devices */
6132 if (list_empty(&mddev->disks))
6133 return -ENXIO;
6134 if (!mddev->pers)
6135 return -EINVAL;
6136 if (md_is_rdwr(mddev))
6137 return -EBUSY;
6138
6139 rcu_read_lock();
6140 rdev_for_each_rcu(rdev, mddev) {
6141 if (test_bit(Journal, &rdev->flags) &&
6142 !test_bit(Faulty, &rdev->flags))
6143 has_journal = true;
6144 if (rdev_read_only(rdev))
6145 has_readonly = true;
6146 }
6147 rcu_read_unlock();
6148 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6149 /* Don't restart rw with journal missing/faulty */
6150 return -EINVAL;
6151 if (has_readonly)
6152 return -EROFS;
6153
6154 mddev->safemode = 0;
6155 mddev->ro = MD_RDWR;
6156 set_disk_ro(disk, 0);
6157 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6158 /* Kick recovery or resync if necessary */
6159 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6160 md_wakeup_thread(mddev->thread);
6161 md_wakeup_thread(mddev->sync_thread);
6162 sysfs_notify_dirent_safe(mddev->sysfs_state);
6163 return 0;
6164}
6165
6166static void md_clean(struct mddev *mddev)
6167{
6168 mddev->array_sectors = 0;
6169 mddev->external_size = 0;
6170 mddev->dev_sectors = 0;
6171 mddev->raid_disks = 0;
6172 mddev->recovery_cp = 0;
6173 mddev->resync_min = 0;
6174 mddev->resync_max = MaxSector;
6175 mddev->reshape_position = MaxSector;
6176 /* we still need mddev->external in export_rdev, do not clear it yet */
6177 mddev->persistent = 0;
6178 mddev->level = LEVEL_NONE;
6179 mddev->clevel[0] = 0;
6180 mddev->flags = 0;
6181 mddev->sb_flags = 0;
6182 mddev->ro = MD_RDWR;
6183 mddev->metadata_type[0] = 0;
6184 mddev->chunk_sectors = 0;
6185 mddev->ctime = mddev->utime = 0;
6186 mddev->layout = 0;
6187 mddev->max_disks = 0;
6188 mddev->events = 0;
6189 mddev->can_decrease_events = 0;
6190 mddev->delta_disks = 0;
6191 mddev->reshape_backwards = 0;
6192 mddev->new_level = LEVEL_NONE;
6193 mddev->new_layout = 0;
6194 mddev->new_chunk_sectors = 0;
6195 mddev->curr_resync = MD_RESYNC_NONE;
6196 atomic64_set(&mddev->resync_mismatches, 0);
6197 mddev->suspend_lo = mddev->suspend_hi = 0;
6198 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6199 mddev->recovery = 0;
6200 mddev->in_sync = 0;
6201 mddev->changed = 0;
6202 mddev->degraded = 0;
6203 mddev->safemode = 0;
6204 mddev->private = NULL;
6205 mddev->cluster_info = NULL;
6206 mddev->bitmap_info.offset = 0;
6207 mddev->bitmap_info.default_offset = 0;
6208 mddev->bitmap_info.default_space = 0;
6209 mddev->bitmap_info.chunksize = 0;
6210 mddev->bitmap_info.daemon_sleep = 0;
6211 mddev->bitmap_info.max_write_behind = 0;
6212 mddev->bitmap_info.nodes = 0;
6213}
6214
6215static void __md_stop_writes(struct mddev *mddev)
6216{
6217 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6218 if (work_pending(&mddev->del_work))
6219 flush_workqueue(md_misc_wq);
6220 if (mddev->sync_thread) {
6221 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6222 md_reap_sync_thread(mddev);
6223 }
6224
6225 del_timer_sync(&mddev->safemode_timer);
6226
6227 if (mddev->pers && mddev->pers->quiesce) {
6228 mddev->pers->quiesce(mddev, 1);
6229 mddev->pers->quiesce(mddev, 0);
6230 }
6231 md_bitmap_flush(mddev);
6232
6233 if (md_is_rdwr(mddev) &&
6234 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6235 mddev->sb_flags)) {
6236 /* mark array as shutdown cleanly */
6237 if (!mddev_is_clustered(mddev))
6238 mddev->in_sync = 1;
6239 md_update_sb(mddev, 1);
6240 }
6241 /* disable policy to guarantee rdevs free resources for serialization */
6242 mddev->serialize_policy = 0;
6243 mddev_destroy_serial_pool(mddev, NULL, true);
6244}
6245
6246void md_stop_writes(struct mddev *mddev)
6247{
6248 mddev_lock_nointr(mddev);
6249 __md_stop_writes(mddev);
6250 mddev_unlock(mddev);
6251}
6252EXPORT_SYMBOL_GPL(md_stop_writes);
6253
6254static void mddev_detach(struct mddev *mddev)
6255{
6256 md_bitmap_wait_behind_writes(mddev);
6257 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) {
6258 mddev->pers->quiesce(mddev, 1);
6259 mddev->pers->quiesce(mddev, 0);
6260 }
6261 md_unregister_thread(mddev, &mddev->thread);
6262 if (mddev->queue)
6263 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6264}
6265
6266static void __md_stop(struct mddev *mddev)
6267{
6268 struct md_personality *pers = mddev->pers;
6269 md_bitmap_destroy(mddev);
6270 mddev_detach(mddev);
6271 /* Ensure ->event_work is done */
6272 if (mddev->event_work.func)
6273 flush_workqueue(md_misc_wq);
6274 spin_lock(&mddev->lock);
6275 mddev->pers = NULL;
6276 spin_unlock(&mddev->lock);
6277 if (mddev->private)
6278 pers->free(mddev, mddev->private);
6279 mddev->private = NULL;
6280 if (pers->sync_request && mddev->to_remove == NULL)
6281 mddev->to_remove = &md_redundancy_group;
6282 module_put(pers->owner);
6283 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6284
6285 percpu_ref_exit(&mddev->active_io);
6286 bioset_exit(&mddev->bio_set);
6287 bioset_exit(&mddev->sync_set);
6288 bioset_exit(&mddev->io_clone_set);
6289}
6290
6291void md_stop(struct mddev *mddev)
6292{
6293 lockdep_assert_held(&mddev->reconfig_mutex);
6294
6295 /* stop the array and free an attached data structures.
6296 * This is called from dm-raid
6297 */
6298 __md_stop_writes(mddev);
6299 __md_stop(mddev);
6300 percpu_ref_exit(&mddev->writes_pending);
6301}
6302
6303EXPORT_SYMBOL_GPL(md_stop);
6304
6305static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6306{
6307 int err = 0;
6308 int did_freeze = 0;
6309
6310 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6311 did_freeze = 1;
6312 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6313 md_wakeup_thread(mddev->thread);
6314 }
6315 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6316 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6317
6318 /*
6319 * Thread might be blocked waiting for metadata update which will now
6320 * never happen
6321 */
6322 md_wakeup_thread_directly(mddev->sync_thread);
6323
6324 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6325 return -EBUSY;
6326 mddev_unlock(mddev);
6327 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6328 &mddev->recovery));
6329 wait_event(mddev->sb_wait,
6330 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6331 mddev_lock_nointr(mddev);
6332
6333 mutex_lock(&mddev->open_mutex);
6334 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6335 mddev->sync_thread ||
6336 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6337 pr_warn("md: %s still in use.\n",mdname(mddev));
6338 if (did_freeze) {
6339 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6340 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6341 md_wakeup_thread(mddev->thread);
6342 }
6343 err = -EBUSY;
6344 goto out;
6345 }
6346 if (mddev->pers) {
6347 __md_stop_writes(mddev);
6348
6349 err = -ENXIO;
6350 if (mddev->ro == MD_RDONLY)
6351 goto out;
6352 mddev->ro = MD_RDONLY;
6353 set_disk_ro(mddev->gendisk, 1);
6354 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6355 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6356 md_wakeup_thread(mddev->thread);
6357 sysfs_notify_dirent_safe(mddev->sysfs_state);
6358 err = 0;
6359 }
6360out:
6361 mutex_unlock(&mddev->open_mutex);
6362 return err;
6363}
6364
6365/* mode:
6366 * 0 - completely stop and dis-assemble array
6367 * 2 - stop but do not disassemble array
6368 */
6369static int do_md_stop(struct mddev *mddev, int mode,
6370 struct block_device *bdev)
6371{
6372 struct gendisk *disk = mddev->gendisk;
6373 struct md_rdev *rdev;
6374 int did_freeze = 0;
6375
6376 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6377 did_freeze = 1;
6378 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6379 md_wakeup_thread(mddev->thread);
6380 }
6381 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6382 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6383
6384 /*
6385 * Thread might be blocked waiting for metadata update which will now
6386 * never happen
6387 */
6388 md_wakeup_thread_directly(mddev->sync_thread);
6389
6390 mddev_unlock(mddev);
6391 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6392 !test_bit(MD_RECOVERY_RUNNING,
6393 &mddev->recovery)));
6394 mddev_lock_nointr(mddev);
6395
6396 mutex_lock(&mddev->open_mutex);
6397 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6398 mddev->sysfs_active ||
6399 mddev->sync_thread ||
6400 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6401 pr_warn("md: %s still in use.\n",mdname(mddev));
6402 mutex_unlock(&mddev->open_mutex);
6403 if (did_freeze) {
6404 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6405 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6406 md_wakeup_thread(mddev->thread);
6407 }
6408 return -EBUSY;
6409 }
6410 if (mddev->pers) {
6411 if (!md_is_rdwr(mddev))
6412 set_disk_ro(disk, 0);
6413
6414 __md_stop_writes(mddev);
6415 __md_stop(mddev);
6416
6417 /* tell userspace to handle 'inactive' */
6418 sysfs_notify_dirent_safe(mddev->sysfs_state);
6419
6420 rdev_for_each(rdev, mddev)
6421 if (rdev->raid_disk >= 0)
6422 sysfs_unlink_rdev(mddev, rdev);
6423
6424 set_capacity_and_notify(disk, 0);
6425 mutex_unlock(&mddev->open_mutex);
6426 mddev->changed = 1;
6427
6428 if (!md_is_rdwr(mddev))
6429 mddev->ro = MD_RDWR;
6430 } else
6431 mutex_unlock(&mddev->open_mutex);
6432 /*
6433 * Free resources if final stop
6434 */
6435 if (mode == 0) {
6436 pr_info("md: %s stopped.\n", mdname(mddev));
6437
6438 if (mddev->bitmap_info.file) {
6439 struct file *f = mddev->bitmap_info.file;
6440 spin_lock(&mddev->lock);
6441 mddev->bitmap_info.file = NULL;
6442 spin_unlock(&mddev->lock);
6443 fput(f);
6444 }
6445 mddev->bitmap_info.offset = 0;
6446
6447 export_array(mddev);
6448
6449 md_clean(mddev);
6450 if (mddev->hold_active == UNTIL_STOP)
6451 mddev->hold_active = 0;
6452 }
6453 md_new_event();
6454 sysfs_notify_dirent_safe(mddev->sysfs_state);
6455 return 0;
6456}
6457
6458#ifndef MODULE
6459static void autorun_array(struct mddev *mddev)
6460{
6461 struct md_rdev *rdev;
6462 int err;
6463
6464 if (list_empty(&mddev->disks))
6465 return;
6466
6467 pr_info("md: running: ");
6468
6469 rdev_for_each(rdev, mddev) {
6470 pr_cont("<%pg>", rdev->bdev);
6471 }
6472 pr_cont("\n");
6473
6474 err = do_md_run(mddev);
6475 if (err) {
6476 pr_warn("md: do_md_run() returned %d\n", err);
6477 do_md_stop(mddev, 0, NULL);
6478 }
6479}
6480
6481/*
6482 * lets try to run arrays based on all disks that have arrived
6483 * until now. (those are in pending_raid_disks)
6484 *
6485 * the method: pick the first pending disk, collect all disks with
6486 * the same UUID, remove all from the pending list and put them into
6487 * the 'same_array' list. Then order this list based on superblock
6488 * update time (freshest comes first), kick out 'old' disks and
6489 * compare superblocks. If everything's fine then run it.
6490 *
6491 * If "unit" is allocated, then bump its reference count
6492 */
6493static void autorun_devices(int part)
6494{
6495 struct md_rdev *rdev0, *rdev, *tmp;
6496 struct mddev *mddev;
6497
6498 pr_info("md: autorun ...\n");
6499 while (!list_empty(&pending_raid_disks)) {
6500 int unit;
6501 dev_t dev;
6502 LIST_HEAD(candidates);
6503 rdev0 = list_entry(pending_raid_disks.next,
6504 struct md_rdev, same_set);
6505
6506 pr_debug("md: considering %pg ...\n", rdev0->bdev);
6507 INIT_LIST_HEAD(&candidates);
6508 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6509 if (super_90_load(rdev, rdev0, 0) >= 0) {
6510 pr_debug("md: adding %pg ...\n",
6511 rdev->bdev);
6512 list_move(&rdev->same_set, &candidates);
6513 }
6514 /*
6515 * now we have a set of devices, with all of them having
6516 * mostly sane superblocks. It's time to allocate the
6517 * mddev.
6518 */
6519 if (part) {
6520 dev = MKDEV(mdp_major,
6521 rdev0->preferred_minor << MdpMinorShift);
6522 unit = MINOR(dev) >> MdpMinorShift;
6523 } else {
6524 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6525 unit = MINOR(dev);
6526 }
6527 if (rdev0->preferred_minor != unit) {
6528 pr_warn("md: unit number in %pg is bad: %d\n",
6529 rdev0->bdev, rdev0->preferred_minor);
6530 break;
6531 }
6532
6533 mddev = md_alloc(dev, NULL);
6534 if (IS_ERR(mddev))
6535 break;
6536
6537 if (mddev_lock(mddev))
6538 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6539 else if (mddev->raid_disks || mddev->major_version
6540 || !list_empty(&mddev->disks)) {
6541 pr_warn("md: %s already running, cannot run %pg\n",
6542 mdname(mddev), rdev0->bdev);
6543 mddev_unlock(mddev);
6544 } else {
6545 pr_debug("md: created %s\n", mdname(mddev));
6546 mddev->persistent = 1;
6547 rdev_for_each_list(rdev, tmp, &candidates) {
6548 list_del_init(&rdev->same_set);
6549 if (bind_rdev_to_array(rdev, mddev))
6550 export_rdev(rdev, mddev);
6551 }
6552 autorun_array(mddev);
6553 mddev_unlock(mddev);
6554 }
6555 /* on success, candidates will be empty, on error
6556 * it won't...
6557 */
6558 rdev_for_each_list(rdev, tmp, &candidates) {
6559 list_del_init(&rdev->same_set);
6560 export_rdev(rdev, mddev);
6561 }
6562 mddev_put(mddev);
6563 }
6564 pr_info("md: ... autorun DONE.\n");
6565}
6566#endif /* !MODULE */
6567
6568static int get_version(void __user *arg)
6569{
6570 mdu_version_t ver;
6571
6572 ver.major = MD_MAJOR_VERSION;
6573 ver.minor = MD_MINOR_VERSION;
6574 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6575
6576 if (copy_to_user(arg, &ver, sizeof(ver)))
6577 return -EFAULT;
6578
6579 return 0;
6580}
6581
6582static int get_array_info(struct mddev *mddev, void __user *arg)
6583{
6584 mdu_array_info_t info;
6585 int nr,working,insync,failed,spare;
6586 struct md_rdev *rdev;
6587
6588 nr = working = insync = failed = spare = 0;
6589 rcu_read_lock();
6590 rdev_for_each_rcu(rdev, mddev) {
6591 nr++;
6592 if (test_bit(Faulty, &rdev->flags))
6593 failed++;
6594 else {
6595 working++;
6596 if (test_bit(In_sync, &rdev->flags))
6597 insync++;
6598 else if (test_bit(Journal, &rdev->flags))
6599 /* TODO: add journal count to md_u.h */
6600 ;
6601 else
6602 spare++;
6603 }
6604 }
6605 rcu_read_unlock();
6606
6607 info.major_version = mddev->major_version;
6608 info.minor_version = mddev->minor_version;
6609 info.patch_version = MD_PATCHLEVEL_VERSION;
6610 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6611 info.level = mddev->level;
6612 info.size = mddev->dev_sectors / 2;
6613 if (info.size != mddev->dev_sectors / 2) /* overflow */
6614 info.size = -1;
6615 info.nr_disks = nr;
6616 info.raid_disks = mddev->raid_disks;
6617 info.md_minor = mddev->md_minor;
6618 info.not_persistent= !mddev->persistent;
6619
6620 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6621 info.state = 0;
6622 if (mddev->in_sync)
6623 info.state = (1<<MD_SB_CLEAN);
6624 if (mddev->bitmap && mddev->bitmap_info.offset)
6625 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6626 if (mddev_is_clustered(mddev))
6627 info.state |= (1<<MD_SB_CLUSTERED);
6628 info.active_disks = insync;
6629 info.working_disks = working;
6630 info.failed_disks = failed;
6631 info.spare_disks = spare;
6632
6633 info.layout = mddev->layout;
6634 info.chunk_size = mddev->chunk_sectors << 9;
6635
6636 if (copy_to_user(arg, &info, sizeof(info)))
6637 return -EFAULT;
6638
6639 return 0;
6640}
6641
6642static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6643{
6644 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6645 char *ptr;
6646 int err;
6647
6648 file = kzalloc(sizeof(*file), GFP_NOIO);
6649 if (!file)
6650 return -ENOMEM;
6651
6652 err = 0;
6653 spin_lock(&mddev->lock);
6654 /* bitmap enabled */
6655 if (mddev->bitmap_info.file) {
6656 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6657 sizeof(file->pathname));
6658 if (IS_ERR(ptr))
6659 err = PTR_ERR(ptr);
6660 else
6661 memmove(file->pathname, ptr,
6662 sizeof(file->pathname)-(ptr-file->pathname));
6663 }
6664 spin_unlock(&mddev->lock);
6665
6666 if (err == 0 &&
6667 copy_to_user(arg, file, sizeof(*file)))
6668 err = -EFAULT;
6669
6670 kfree(file);
6671 return err;
6672}
6673
6674static int get_disk_info(struct mddev *mddev, void __user * arg)
6675{
6676 mdu_disk_info_t info;
6677 struct md_rdev *rdev;
6678
6679 if (copy_from_user(&info, arg, sizeof(info)))
6680 return -EFAULT;
6681
6682 rcu_read_lock();
6683 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6684 if (rdev) {
6685 info.major = MAJOR(rdev->bdev->bd_dev);
6686 info.minor = MINOR(rdev->bdev->bd_dev);
6687 info.raid_disk = rdev->raid_disk;
6688 info.state = 0;
6689 if (test_bit(Faulty, &rdev->flags))
6690 info.state |= (1<<MD_DISK_FAULTY);
6691 else if (test_bit(In_sync, &rdev->flags)) {
6692 info.state |= (1<<MD_DISK_ACTIVE);
6693 info.state |= (1<<MD_DISK_SYNC);
6694 }
6695 if (test_bit(Journal, &rdev->flags))
6696 info.state |= (1<<MD_DISK_JOURNAL);
6697 if (test_bit(WriteMostly, &rdev->flags))
6698 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6699 if (test_bit(FailFast, &rdev->flags))
6700 info.state |= (1<<MD_DISK_FAILFAST);
6701 } else {
6702 info.major = info.minor = 0;
6703 info.raid_disk = -1;
6704 info.state = (1<<MD_DISK_REMOVED);
6705 }
6706 rcu_read_unlock();
6707
6708 if (copy_to_user(arg, &info, sizeof(info)))
6709 return -EFAULT;
6710
6711 return 0;
6712}
6713
6714int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6715{
6716 struct md_rdev *rdev;
6717 dev_t dev = MKDEV(info->major,info->minor);
6718
6719 if (mddev_is_clustered(mddev) &&
6720 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6721 pr_warn("%s: Cannot add to clustered mddev.\n",
6722 mdname(mddev));
6723 return -EINVAL;
6724 }
6725
6726 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6727 return -EOVERFLOW;
6728
6729 if (!mddev->raid_disks) {
6730 int err;
6731 /* expecting a device which has a superblock */
6732 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6733 if (IS_ERR(rdev)) {
6734 pr_warn("md: md_import_device returned %ld\n",
6735 PTR_ERR(rdev));
6736 return PTR_ERR(rdev);
6737 }
6738 if (!list_empty(&mddev->disks)) {
6739 struct md_rdev *rdev0
6740 = list_entry(mddev->disks.next,
6741 struct md_rdev, same_set);
6742 err = super_types[mddev->major_version]
6743 .load_super(rdev, rdev0, mddev->minor_version);
6744 if (err < 0) {
6745 pr_warn("md: %pg has different UUID to %pg\n",
6746 rdev->bdev,
6747 rdev0->bdev);
6748 export_rdev(rdev, mddev);
6749 return -EINVAL;
6750 }
6751 }
6752 err = bind_rdev_to_array(rdev, mddev);
6753 if (err)
6754 export_rdev(rdev, mddev);
6755 return err;
6756 }
6757
6758 /*
6759 * md_add_new_disk can be used once the array is assembled
6760 * to add "hot spares". They must already have a superblock
6761 * written
6762 */
6763 if (mddev->pers) {
6764 int err;
6765 if (!mddev->pers->hot_add_disk) {
6766 pr_warn("%s: personality does not support diskops!\n",
6767 mdname(mddev));
6768 return -EINVAL;
6769 }
6770 if (mddev->persistent)
6771 rdev = md_import_device(dev, mddev->major_version,
6772 mddev->minor_version);
6773 else
6774 rdev = md_import_device(dev, -1, -1);
6775 if (IS_ERR(rdev)) {
6776 pr_warn("md: md_import_device returned %ld\n",
6777 PTR_ERR(rdev));
6778 return PTR_ERR(rdev);
6779 }
6780 /* set saved_raid_disk if appropriate */
6781 if (!mddev->persistent) {
6782 if (info->state & (1<<MD_DISK_SYNC) &&
6783 info->raid_disk < mddev->raid_disks) {
6784 rdev->raid_disk = info->raid_disk;
6785 clear_bit(Bitmap_sync, &rdev->flags);
6786 } else
6787 rdev->raid_disk = -1;
6788 rdev->saved_raid_disk = rdev->raid_disk;
6789 } else
6790 super_types[mddev->major_version].
6791 validate_super(mddev, rdev);
6792 if ((info->state & (1<<MD_DISK_SYNC)) &&
6793 rdev->raid_disk != info->raid_disk) {
6794 /* This was a hot-add request, but events doesn't
6795 * match, so reject it.
6796 */
6797 export_rdev(rdev, mddev);
6798 return -EINVAL;
6799 }
6800
6801 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6802 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6803 set_bit(WriteMostly, &rdev->flags);
6804 else
6805 clear_bit(WriteMostly, &rdev->flags);
6806 if (info->state & (1<<MD_DISK_FAILFAST))
6807 set_bit(FailFast, &rdev->flags);
6808 else
6809 clear_bit(FailFast, &rdev->flags);
6810
6811 if (info->state & (1<<MD_DISK_JOURNAL)) {
6812 struct md_rdev *rdev2;
6813 bool has_journal = false;
6814
6815 /* make sure no existing journal disk */
6816 rdev_for_each(rdev2, mddev) {
6817 if (test_bit(Journal, &rdev2->flags)) {
6818 has_journal = true;
6819 break;
6820 }
6821 }
6822 if (has_journal || mddev->bitmap) {
6823 export_rdev(rdev, mddev);
6824 return -EBUSY;
6825 }
6826 set_bit(Journal, &rdev->flags);
6827 }
6828 /*
6829 * check whether the device shows up in other nodes
6830 */
6831 if (mddev_is_clustered(mddev)) {
6832 if (info->state & (1 << MD_DISK_CANDIDATE))
6833 set_bit(Candidate, &rdev->flags);
6834 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6835 /* --add initiated by this node */
6836 err = md_cluster_ops->add_new_disk(mddev, rdev);
6837 if (err) {
6838 export_rdev(rdev, mddev);
6839 return err;
6840 }
6841 }
6842 }
6843
6844 rdev->raid_disk = -1;
6845 err = bind_rdev_to_array(rdev, mddev);
6846
6847 if (err)
6848 export_rdev(rdev, mddev);
6849
6850 if (mddev_is_clustered(mddev)) {
6851 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6852 if (!err) {
6853 err = md_cluster_ops->new_disk_ack(mddev,
6854 err == 0);
6855 if (err)
6856 md_kick_rdev_from_array(rdev);
6857 }
6858 } else {
6859 if (err)
6860 md_cluster_ops->add_new_disk_cancel(mddev);
6861 else
6862 err = add_bound_rdev(rdev);
6863 }
6864
6865 } else if (!err)
6866 err = add_bound_rdev(rdev);
6867
6868 return err;
6869 }
6870
6871 /* otherwise, md_add_new_disk is only allowed
6872 * for major_version==0 superblocks
6873 */
6874 if (mddev->major_version != 0) {
6875 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6876 return -EINVAL;
6877 }
6878
6879 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6880 int err;
6881 rdev = md_import_device(dev, -1, 0);
6882 if (IS_ERR(rdev)) {
6883 pr_warn("md: error, md_import_device() returned %ld\n",
6884 PTR_ERR(rdev));
6885 return PTR_ERR(rdev);
6886 }
6887 rdev->desc_nr = info->number;
6888 if (info->raid_disk < mddev->raid_disks)
6889 rdev->raid_disk = info->raid_disk;
6890 else
6891 rdev->raid_disk = -1;
6892
6893 if (rdev->raid_disk < mddev->raid_disks)
6894 if (info->state & (1<<MD_DISK_SYNC))
6895 set_bit(In_sync, &rdev->flags);
6896
6897 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6898 set_bit(WriteMostly, &rdev->flags);
6899 if (info->state & (1<<MD_DISK_FAILFAST))
6900 set_bit(FailFast, &rdev->flags);
6901
6902 if (!mddev->persistent) {
6903 pr_debug("md: nonpersistent superblock ...\n");
6904 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6905 } else
6906 rdev->sb_start = calc_dev_sboffset(rdev);
6907 rdev->sectors = rdev->sb_start;
6908
6909 err = bind_rdev_to_array(rdev, mddev);
6910 if (err) {
6911 export_rdev(rdev, mddev);
6912 return err;
6913 }
6914 }
6915
6916 return 0;
6917}
6918
6919static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6920{
6921 struct md_rdev *rdev;
6922
6923 if (!mddev->pers)
6924 return -ENODEV;
6925
6926 rdev = find_rdev(mddev, dev);
6927 if (!rdev)
6928 return -ENXIO;
6929
6930 if (rdev->raid_disk < 0)
6931 goto kick_rdev;
6932
6933 clear_bit(Blocked, &rdev->flags);
6934 remove_and_add_spares(mddev, rdev);
6935
6936 if (rdev->raid_disk >= 0)
6937 goto busy;
6938
6939kick_rdev:
6940 if (mddev_is_clustered(mddev)) {
6941 if (md_cluster_ops->remove_disk(mddev, rdev))
6942 goto busy;
6943 }
6944
6945 md_kick_rdev_from_array(rdev);
6946 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6947 if (mddev->thread)
6948 md_wakeup_thread(mddev->thread);
6949 else
6950 md_update_sb(mddev, 1);
6951 md_new_event();
6952
6953 return 0;
6954busy:
6955 pr_debug("md: cannot remove active disk %pg from %s ...\n",
6956 rdev->bdev, mdname(mddev));
6957 return -EBUSY;
6958}
6959
6960static int hot_add_disk(struct mddev *mddev, dev_t dev)
6961{
6962 int err;
6963 struct md_rdev *rdev;
6964
6965 if (!mddev->pers)
6966 return -ENODEV;
6967
6968 if (mddev->major_version != 0) {
6969 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6970 mdname(mddev));
6971 return -EINVAL;
6972 }
6973 if (!mddev->pers->hot_add_disk) {
6974 pr_warn("%s: personality does not support diskops!\n",
6975 mdname(mddev));
6976 return -EINVAL;
6977 }
6978
6979 rdev = md_import_device(dev, -1, 0);
6980 if (IS_ERR(rdev)) {
6981 pr_warn("md: error, md_import_device() returned %ld\n",
6982 PTR_ERR(rdev));
6983 return -EINVAL;
6984 }
6985
6986 if (mddev->persistent)
6987 rdev->sb_start = calc_dev_sboffset(rdev);
6988 else
6989 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6990
6991 rdev->sectors = rdev->sb_start;
6992
6993 if (test_bit(Faulty, &rdev->flags)) {
6994 pr_warn("md: can not hot-add faulty %pg disk to %s!\n",
6995 rdev->bdev, mdname(mddev));
6996 err = -EINVAL;
6997 goto abort_export;
6998 }
6999
7000 clear_bit(In_sync, &rdev->flags);
7001 rdev->desc_nr = -1;
7002 rdev->saved_raid_disk = -1;
7003 err = bind_rdev_to_array(rdev, mddev);
7004 if (err)
7005 goto abort_export;
7006
7007 /*
7008 * The rest should better be atomic, we can have disk failures
7009 * noticed in interrupt contexts ...
7010 */
7011
7012 rdev->raid_disk = -1;
7013
7014 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7015 if (!mddev->thread)
7016 md_update_sb(mddev, 1);
7017 /*
7018 * If the new disk does not support REQ_NOWAIT,
7019 * disable on the whole MD.
7020 */
7021 if (!bdev_nowait(rdev->bdev)) {
7022 pr_info("%s: Disabling nowait because %pg does not support nowait\n",
7023 mdname(mddev), rdev->bdev);
7024 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
7025 }
7026 /*
7027 * Kick recovery, maybe this spare has to be added to the
7028 * array immediately.
7029 */
7030 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7031 md_wakeup_thread(mddev->thread);
7032 md_new_event();
7033 return 0;
7034
7035abort_export:
7036 export_rdev(rdev, mddev);
7037 return err;
7038}
7039
7040static int set_bitmap_file(struct mddev *mddev, int fd)
7041{
7042 int err = 0;
7043
7044 if (mddev->pers) {
7045 if (!mddev->pers->quiesce || !mddev->thread)
7046 return -EBUSY;
7047 if (mddev->recovery || mddev->sync_thread)
7048 return -EBUSY;
7049 /* we should be able to change the bitmap.. */
7050 }
7051
7052 if (fd >= 0) {
7053 struct inode *inode;
7054 struct file *f;
7055
7056 if (mddev->bitmap || mddev->bitmap_info.file)
7057 return -EEXIST; /* cannot add when bitmap is present */
7058
7059 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) {
7060 pr_warn("%s: bitmap files not supported by this kernel\n",
7061 mdname(mddev));
7062 return -EINVAL;
7063 }
7064 pr_warn("%s: using deprecated bitmap file support\n",
7065 mdname(mddev));
7066
7067 f = fget(fd);
7068
7069 if (f == NULL) {
7070 pr_warn("%s: error: failed to get bitmap file\n",
7071 mdname(mddev));
7072 return -EBADF;
7073 }
7074
7075 inode = f->f_mapping->host;
7076 if (!S_ISREG(inode->i_mode)) {
7077 pr_warn("%s: error: bitmap file must be a regular file\n",
7078 mdname(mddev));
7079 err = -EBADF;
7080 } else if (!(f->f_mode & FMODE_WRITE)) {
7081 pr_warn("%s: error: bitmap file must open for write\n",
7082 mdname(mddev));
7083 err = -EBADF;
7084 } else if (atomic_read(&inode->i_writecount) != 1) {
7085 pr_warn("%s: error: bitmap file is already in use\n",
7086 mdname(mddev));
7087 err = -EBUSY;
7088 }
7089 if (err) {
7090 fput(f);
7091 return err;
7092 }
7093 mddev->bitmap_info.file = f;
7094 mddev->bitmap_info.offset = 0; /* file overrides offset */
7095 } else if (mddev->bitmap == NULL)
7096 return -ENOENT; /* cannot remove what isn't there */
7097 err = 0;
7098 if (mddev->pers) {
7099 if (fd >= 0) {
7100 struct bitmap *bitmap;
7101
7102 bitmap = md_bitmap_create(mddev, -1);
7103 mddev_suspend(mddev);
7104 if (!IS_ERR(bitmap)) {
7105 mddev->bitmap = bitmap;
7106 err = md_bitmap_load(mddev);
7107 } else
7108 err = PTR_ERR(bitmap);
7109 if (err) {
7110 md_bitmap_destroy(mddev);
7111 fd = -1;
7112 }
7113 mddev_resume(mddev);
7114 } else if (fd < 0) {
7115 mddev_suspend(mddev);
7116 md_bitmap_destroy(mddev);
7117 mddev_resume(mddev);
7118 }
7119 }
7120 if (fd < 0) {
7121 struct file *f = mddev->bitmap_info.file;
7122 if (f) {
7123 spin_lock(&mddev->lock);
7124 mddev->bitmap_info.file = NULL;
7125 spin_unlock(&mddev->lock);
7126 fput(f);
7127 }
7128 }
7129
7130 return err;
7131}
7132
7133/*
7134 * md_set_array_info is used two different ways
7135 * The original usage is when creating a new array.
7136 * In this usage, raid_disks is > 0 and it together with
7137 * level, size, not_persistent,layout,chunksize determine the
7138 * shape of the array.
7139 * This will always create an array with a type-0.90.0 superblock.
7140 * The newer usage is when assembling an array.
7141 * In this case raid_disks will be 0, and the major_version field is
7142 * use to determine which style super-blocks are to be found on the devices.
7143 * The minor and patch _version numbers are also kept incase the
7144 * super_block handler wishes to interpret them.
7145 */
7146int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7147{
7148 if (info->raid_disks == 0) {
7149 /* just setting version number for superblock loading */
7150 if (info->major_version < 0 ||
7151 info->major_version >= ARRAY_SIZE(super_types) ||
7152 super_types[info->major_version].name == NULL) {
7153 /* maybe try to auto-load a module? */
7154 pr_warn("md: superblock version %d not known\n",
7155 info->major_version);
7156 return -EINVAL;
7157 }
7158 mddev->major_version = info->major_version;
7159 mddev->minor_version = info->minor_version;
7160 mddev->patch_version = info->patch_version;
7161 mddev->persistent = !info->not_persistent;
7162 /* ensure mddev_put doesn't delete this now that there
7163 * is some minimal configuration.
7164 */
7165 mddev->ctime = ktime_get_real_seconds();
7166 return 0;
7167 }
7168 mddev->major_version = MD_MAJOR_VERSION;
7169 mddev->minor_version = MD_MINOR_VERSION;
7170 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7171 mddev->ctime = ktime_get_real_seconds();
7172
7173 mddev->level = info->level;
7174 mddev->clevel[0] = 0;
7175 mddev->dev_sectors = 2 * (sector_t)info->size;
7176 mddev->raid_disks = info->raid_disks;
7177 /* don't set md_minor, it is determined by which /dev/md* was
7178 * openned
7179 */
7180 if (info->state & (1<<MD_SB_CLEAN))
7181 mddev->recovery_cp = MaxSector;
7182 else
7183 mddev->recovery_cp = 0;
7184 mddev->persistent = ! info->not_persistent;
7185 mddev->external = 0;
7186
7187 mddev->layout = info->layout;
7188 if (mddev->level == 0)
7189 /* Cannot trust RAID0 layout info here */
7190 mddev->layout = -1;
7191 mddev->chunk_sectors = info->chunk_size >> 9;
7192
7193 if (mddev->persistent) {
7194 mddev->max_disks = MD_SB_DISKS;
7195 mddev->flags = 0;
7196 mddev->sb_flags = 0;
7197 }
7198 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7199
7200 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7201 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7202 mddev->bitmap_info.offset = 0;
7203
7204 mddev->reshape_position = MaxSector;
7205
7206 /*
7207 * Generate a 128 bit UUID
7208 */
7209 get_random_bytes(mddev->uuid, 16);
7210
7211 mddev->new_level = mddev->level;
7212 mddev->new_chunk_sectors = mddev->chunk_sectors;
7213 mddev->new_layout = mddev->layout;
7214 mddev->delta_disks = 0;
7215 mddev->reshape_backwards = 0;
7216
7217 return 0;
7218}
7219
7220void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7221{
7222 lockdep_assert_held(&mddev->reconfig_mutex);
7223
7224 if (mddev->external_size)
7225 return;
7226
7227 mddev->array_sectors = array_sectors;
7228}
7229EXPORT_SYMBOL(md_set_array_sectors);
7230
7231static int update_size(struct mddev *mddev, sector_t num_sectors)
7232{
7233 struct md_rdev *rdev;
7234 int rv;
7235 int fit = (num_sectors == 0);
7236 sector_t old_dev_sectors = mddev->dev_sectors;
7237
7238 if (mddev->pers->resize == NULL)
7239 return -EINVAL;
7240 /* The "num_sectors" is the number of sectors of each device that
7241 * is used. This can only make sense for arrays with redundancy.
7242 * linear and raid0 always use whatever space is available. We can only
7243 * consider changing this number if no resync or reconstruction is
7244 * happening, and if the new size is acceptable. It must fit before the
7245 * sb_start or, if that is <data_offset, it must fit before the size
7246 * of each device. If num_sectors is zero, we find the largest size
7247 * that fits.
7248 */
7249 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7250 mddev->sync_thread)
7251 return -EBUSY;
7252 if (!md_is_rdwr(mddev))
7253 return -EROFS;
7254
7255 rdev_for_each(rdev, mddev) {
7256 sector_t avail = rdev->sectors;
7257
7258 if (fit && (num_sectors == 0 || num_sectors > avail))
7259 num_sectors = avail;
7260 if (avail < num_sectors)
7261 return -ENOSPC;
7262 }
7263 rv = mddev->pers->resize(mddev, num_sectors);
7264 if (!rv) {
7265 if (mddev_is_clustered(mddev))
7266 md_cluster_ops->update_size(mddev, old_dev_sectors);
7267 else if (mddev->queue) {
7268 set_capacity_and_notify(mddev->gendisk,
7269 mddev->array_sectors);
7270 }
7271 }
7272 return rv;
7273}
7274
7275static int update_raid_disks(struct mddev *mddev, int raid_disks)
7276{
7277 int rv;
7278 struct md_rdev *rdev;
7279 /* change the number of raid disks */
7280 if (mddev->pers->check_reshape == NULL)
7281 return -EINVAL;
7282 if (!md_is_rdwr(mddev))
7283 return -EROFS;
7284 if (raid_disks <= 0 ||
7285 (mddev->max_disks && raid_disks >= mddev->max_disks))
7286 return -EINVAL;
7287 if (mddev->sync_thread ||
7288 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7289 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7290 mddev->reshape_position != MaxSector)
7291 return -EBUSY;
7292
7293 rdev_for_each(rdev, mddev) {
7294 if (mddev->raid_disks < raid_disks &&
7295 rdev->data_offset < rdev->new_data_offset)
7296 return -EINVAL;
7297 if (mddev->raid_disks > raid_disks &&
7298 rdev->data_offset > rdev->new_data_offset)
7299 return -EINVAL;
7300 }
7301
7302 mddev->delta_disks = raid_disks - mddev->raid_disks;
7303 if (mddev->delta_disks < 0)
7304 mddev->reshape_backwards = 1;
7305 else if (mddev->delta_disks > 0)
7306 mddev->reshape_backwards = 0;
7307
7308 rv = mddev->pers->check_reshape(mddev);
7309 if (rv < 0) {
7310 mddev->delta_disks = 0;
7311 mddev->reshape_backwards = 0;
7312 }
7313 return rv;
7314}
7315
7316/*
7317 * update_array_info is used to change the configuration of an
7318 * on-line array.
7319 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7320 * fields in the info are checked against the array.
7321 * Any differences that cannot be handled will cause an error.
7322 * Normally, only one change can be managed at a time.
7323 */
7324static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7325{
7326 int rv = 0;
7327 int cnt = 0;
7328 int state = 0;
7329
7330 /* calculate expected state,ignoring low bits */
7331 if (mddev->bitmap && mddev->bitmap_info.offset)
7332 state |= (1 << MD_SB_BITMAP_PRESENT);
7333
7334 if (mddev->major_version != info->major_version ||
7335 mddev->minor_version != info->minor_version ||
7336/* mddev->patch_version != info->patch_version || */
7337 mddev->ctime != info->ctime ||
7338 mddev->level != info->level ||
7339/* mddev->layout != info->layout || */
7340 mddev->persistent != !info->not_persistent ||
7341 mddev->chunk_sectors != info->chunk_size >> 9 ||
7342 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7343 ((state^info->state) & 0xfffffe00)
7344 )
7345 return -EINVAL;
7346 /* Check there is only one change */
7347 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7348 cnt++;
7349 if (mddev->raid_disks != info->raid_disks)
7350 cnt++;
7351 if (mddev->layout != info->layout)
7352 cnt++;
7353 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7354 cnt++;
7355 if (cnt == 0)
7356 return 0;
7357 if (cnt > 1)
7358 return -EINVAL;
7359
7360 if (mddev->layout != info->layout) {
7361 /* Change layout
7362 * we don't need to do anything at the md level, the
7363 * personality will take care of it all.
7364 */
7365 if (mddev->pers->check_reshape == NULL)
7366 return -EINVAL;
7367 else {
7368 mddev->new_layout = info->layout;
7369 rv = mddev->pers->check_reshape(mddev);
7370 if (rv)
7371 mddev->new_layout = mddev->layout;
7372 return rv;
7373 }
7374 }
7375 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7376 rv = update_size(mddev, (sector_t)info->size * 2);
7377
7378 if (mddev->raid_disks != info->raid_disks)
7379 rv = update_raid_disks(mddev, info->raid_disks);
7380
7381 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7382 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7383 rv = -EINVAL;
7384 goto err;
7385 }
7386 if (mddev->recovery || mddev->sync_thread) {
7387 rv = -EBUSY;
7388 goto err;
7389 }
7390 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7391 struct bitmap *bitmap;
7392 /* add the bitmap */
7393 if (mddev->bitmap) {
7394 rv = -EEXIST;
7395 goto err;
7396 }
7397 if (mddev->bitmap_info.default_offset == 0) {
7398 rv = -EINVAL;
7399 goto err;
7400 }
7401 mddev->bitmap_info.offset =
7402 mddev->bitmap_info.default_offset;
7403 mddev->bitmap_info.space =
7404 mddev->bitmap_info.default_space;
7405 bitmap = md_bitmap_create(mddev, -1);
7406 mddev_suspend(mddev);
7407 if (!IS_ERR(bitmap)) {
7408 mddev->bitmap = bitmap;
7409 rv = md_bitmap_load(mddev);
7410 } else
7411 rv = PTR_ERR(bitmap);
7412 if (rv)
7413 md_bitmap_destroy(mddev);
7414 mddev_resume(mddev);
7415 } else {
7416 /* remove the bitmap */
7417 if (!mddev->bitmap) {
7418 rv = -ENOENT;
7419 goto err;
7420 }
7421 if (mddev->bitmap->storage.file) {
7422 rv = -EINVAL;
7423 goto err;
7424 }
7425 if (mddev->bitmap_info.nodes) {
7426 /* hold PW on all the bitmap lock */
7427 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7428 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7429 rv = -EPERM;
7430 md_cluster_ops->unlock_all_bitmaps(mddev);
7431 goto err;
7432 }
7433
7434 mddev->bitmap_info.nodes = 0;
7435 md_cluster_ops->leave(mddev);
7436 module_put(md_cluster_mod);
7437 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7438 }
7439 mddev_suspend(mddev);
7440 md_bitmap_destroy(mddev);
7441 mddev_resume(mddev);
7442 mddev->bitmap_info.offset = 0;
7443 }
7444 }
7445 md_update_sb(mddev, 1);
7446 return rv;
7447err:
7448 return rv;
7449}
7450
7451static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7452{
7453 struct md_rdev *rdev;
7454 int err = 0;
7455
7456 if (mddev->pers == NULL)
7457 return -ENODEV;
7458
7459 rcu_read_lock();
7460 rdev = md_find_rdev_rcu(mddev, dev);
7461 if (!rdev)
7462 err = -ENODEV;
7463 else {
7464 md_error(mddev, rdev);
7465 if (test_bit(MD_BROKEN, &mddev->flags))
7466 err = -EBUSY;
7467 }
7468 rcu_read_unlock();
7469 return err;
7470}
7471
7472/*
7473 * We have a problem here : there is no easy way to give a CHS
7474 * virtual geometry. We currently pretend that we have a 2 heads
7475 * 4 sectors (with a BIG number of cylinders...). This drives
7476 * dosfs just mad... ;-)
7477 */
7478static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7479{
7480 struct mddev *mddev = bdev->bd_disk->private_data;
7481
7482 geo->heads = 2;
7483 geo->sectors = 4;
7484 geo->cylinders = mddev->array_sectors / 8;
7485 return 0;
7486}
7487
7488static inline bool md_ioctl_valid(unsigned int cmd)
7489{
7490 switch (cmd) {
7491 case ADD_NEW_DISK:
7492 case GET_ARRAY_INFO:
7493 case GET_BITMAP_FILE:
7494 case GET_DISK_INFO:
7495 case HOT_ADD_DISK:
7496 case HOT_REMOVE_DISK:
7497 case RAID_VERSION:
7498 case RESTART_ARRAY_RW:
7499 case RUN_ARRAY:
7500 case SET_ARRAY_INFO:
7501 case SET_BITMAP_FILE:
7502 case SET_DISK_FAULTY:
7503 case STOP_ARRAY:
7504 case STOP_ARRAY_RO:
7505 case CLUSTERED_DISK_NACK:
7506 return true;
7507 default:
7508 return false;
7509 }
7510}
7511
7512static int __md_set_array_info(struct mddev *mddev, void __user *argp)
7513{
7514 mdu_array_info_t info;
7515 int err;
7516
7517 if (!argp)
7518 memset(&info, 0, sizeof(info));
7519 else if (copy_from_user(&info, argp, sizeof(info)))
7520 return -EFAULT;
7521
7522 if (mddev->pers) {
7523 err = update_array_info(mddev, &info);
7524 if (err)
7525 pr_warn("md: couldn't update array info. %d\n", err);
7526 return err;
7527 }
7528
7529 if (!list_empty(&mddev->disks)) {
7530 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7531 return -EBUSY;
7532 }
7533
7534 if (mddev->raid_disks) {
7535 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7536 return -EBUSY;
7537 }
7538
7539 err = md_set_array_info(mddev, &info);
7540 if (err)
7541 pr_warn("md: couldn't set array info. %d\n", err);
7542
7543 return err;
7544}
7545
7546static int md_ioctl(struct block_device *bdev, blk_mode_t mode,
7547 unsigned int cmd, unsigned long arg)
7548{
7549 int err = 0;
7550 void __user *argp = (void __user *)arg;
7551 struct mddev *mddev = NULL;
7552 bool did_set_md_closing = false;
7553
7554 if (!md_ioctl_valid(cmd))
7555 return -ENOTTY;
7556
7557 switch (cmd) {
7558 case RAID_VERSION:
7559 case GET_ARRAY_INFO:
7560 case GET_DISK_INFO:
7561 break;
7562 default:
7563 if (!capable(CAP_SYS_ADMIN))
7564 return -EACCES;
7565 }
7566
7567 /*
7568 * Commands dealing with the RAID driver but not any
7569 * particular array:
7570 */
7571 switch (cmd) {
7572 case RAID_VERSION:
7573 err = get_version(argp);
7574 goto out;
7575 default:;
7576 }
7577
7578 /*
7579 * Commands creating/starting a new array:
7580 */
7581
7582 mddev = bdev->bd_disk->private_data;
7583
7584 if (!mddev) {
7585 BUG();
7586 goto out;
7587 }
7588
7589 /* Some actions do not requires the mutex */
7590 switch (cmd) {
7591 case GET_ARRAY_INFO:
7592 if (!mddev->raid_disks && !mddev->external)
7593 err = -ENODEV;
7594 else
7595 err = get_array_info(mddev, argp);
7596 goto out;
7597
7598 case GET_DISK_INFO:
7599 if (!mddev->raid_disks && !mddev->external)
7600 err = -ENODEV;
7601 else
7602 err = get_disk_info(mddev, argp);
7603 goto out;
7604
7605 case SET_DISK_FAULTY:
7606 err = set_disk_faulty(mddev, new_decode_dev(arg));
7607 goto out;
7608
7609 case GET_BITMAP_FILE:
7610 err = get_bitmap_file(mddev, argp);
7611 goto out;
7612
7613 }
7614
7615 if (cmd == HOT_REMOVE_DISK)
7616 /* need to ensure recovery thread has run */
7617 wait_event_interruptible_timeout(mddev->sb_wait,
7618 !test_bit(MD_RECOVERY_NEEDED,
7619 &mddev->recovery),
7620 msecs_to_jiffies(5000));
7621 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7622 /* Need to flush page cache, and ensure no-one else opens
7623 * and writes
7624 */
7625 mutex_lock(&mddev->open_mutex);
7626 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7627 mutex_unlock(&mddev->open_mutex);
7628 err = -EBUSY;
7629 goto out;
7630 }
7631 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7632 mutex_unlock(&mddev->open_mutex);
7633 err = -EBUSY;
7634 goto out;
7635 }
7636 did_set_md_closing = true;
7637 mutex_unlock(&mddev->open_mutex);
7638 sync_blockdev(bdev);
7639 }
7640 err = mddev_lock(mddev);
7641 if (err) {
7642 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7643 err, cmd);
7644 goto out;
7645 }
7646
7647 if (cmd == SET_ARRAY_INFO) {
7648 err = __md_set_array_info(mddev, argp);
7649 goto unlock;
7650 }
7651
7652 /*
7653 * Commands querying/configuring an existing array:
7654 */
7655 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7656 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7657 if ((!mddev->raid_disks && !mddev->external)
7658 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7659 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7660 && cmd != GET_BITMAP_FILE) {
7661 err = -ENODEV;
7662 goto unlock;
7663 }
7664
7665 /*
7666 * Commands even a read-only array can execute:
7667 */
7668 switch (cmd) {
7669 case RESTART_ARRAY_RW:
7670 err = restart_array(mddev);
7671 goto unlock;
7672
7673 case STOP_ARRAY:
7674 err = do_md_stop(mddev, 0, bdev);
7675 goto unlock;
7676
7677 case STOP_ARRAY_RO:
7678 err = md_set_readonly(mddev, bdev);
7679 goto unlock;
7680
7681 case HOT_REMOVE_DISK:
7682 err = hot_remove_disk(mddev, new_decode_dev(arg));
7683 goto unlock;
7684
7685 case ADD_NEW_DISK:
7686 /* We can support ADD_NEW_DISK on read-only arrays
7687 * only if we are re-adding a preexisting device.
7688 * So require mddev->pers and MD_DISK_SYNC.
7689 */
7690 if (mddev->pers) {
7691 mdu_disk_info_t info;
7692 if (copy_from_user(&info, argp, sizeof(info)))
7693 err = -EFAULT;
7694 else if (!(info.state & (1<<MD_DISK_SYNC)))
7695 /* Need to clear read-only for this */
7696 break;
7697 else
7698 err = md_add_new_disk(mddev, &info);
7699 goto unlock;
7700 }
7701 break;
7702 }
7703
7704 /*
7705 * The remaining ioctls are changing the state of the
7706 * superblock, so we do not allow them on read-only arrays.
7707 */
7708 if (!md_is_rdwr(mddev) && mddev->pers) {
7709 if (mddev->ro != MD_AUTO_READ) {
7710 err = -EROFS;
7711 goto unlock;
7712 }
7713 mddev->ro = MD_RDWR;
7714 sysfs_notify_dirent_safe(mddev->sysfs_state);
7715 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7716 /* mddev_unlock will wake thread */
7717 /* If a device failed while we were read-only, we
7718 * need to make sure the metadata is updated now.
7719 */
7720 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7721 mddev_unlock(mddev);
7722 wait_event(mddev->sb_wait,
7723 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7724 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7725 mddev_lock_nointr(mddev);
7726 }
7727 }
7728
7729 switch (cmd) {
7730 case ADD_NEW_DISK:
7731 {
7732 mdu_disk_info_t info;
7733 if (copy_from_user(&info, argp, sizeof(info)))
7734 err = -EFAULT;
7735 else
7736 err = md_add_new_disk(mddev, &info);
7737 goto unlock;
7738 }
7739
7740 case CLUSTERED_DISK_NACK:
7741 if (mddev_is_clustered(mddev))
7742 md_cluster_ops->new_disk_ack(mddev, false);
7743 else
7744 err = -EINVAL;
7745 goto unlock;
7746
7747 case HOT_ADD_DISK:
7748 err = hot_add_disk(mddev, new_decode_dev(arg));
7749 goto unlock;
7750
7751 case RUN_ARRAY:
7752 err = do_md_run(mddev);
7753 goto unlock;
7754
7755 case SET_BITMAP_FILE:
7756 err = set_bitmap_file(mddev, (int)arg);
7757 goto unlock;
7758
7759 default:
7760 err = -EINVAL;
7761 goto unlock;
7762 }
7763
7764unlock:
7765 if (mddev->hold_active == UNTIL_IOCTL &&
7766 err != -EINVAL)
7767 mddev->hold_active = 0;
7768 mddev_unlock(mddev);
7769out:
7770 if(did_set_md_closing)
7771 clear_bit(MD_CLOSING, &mddev->flags);
7772 return err;
7773}
7774#ifdef CONFIG_COMPAT
7775static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
7776 unsigned int cmd, unsigned long arg)
7777{
7778 switch (cmd) {
7779 case HOT_REMOVE_DISK:
7780 case HOT_ADD_DISK:
7781 case SET_DISK_FAULTY:
7782 case SET_BITMAP_FILE:
7783 /* These take in integer arg, do not convert */
7784 break;
7785 default:
7786 arg = (unsigned long)compat_ptr(arg);
7787 break;
7788 }
7789
7790 return md_ioctl(bdev, mode, cmd, arg);
7791}
7792#endif /* CONFIG_COMPAT */
7793
7794static int md_set_read_only(struct block_device *bdev, bool ro)
7795{
7796 struct mddev *mddev = bdev->bd_disk->private_data;
7797 int err;
7798
7799 err = mddev_lock(mddev);
7800 if (err)
7801 return err;
7802
7803 if (!mddev->raid_disks && !mddev->external) {
7804 err = -ENODEV;
7805 goto out_unlock;
7806 }
7807
7808 /*
7809 * Transitioning to read-auto need only happen for arrays that call
7810 * md_write_start and which are not ready for writes yet.
7811 */
7812 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) {
7813 err = restart_array(mddev);
7814 if (err)
7815 goto out_unlock;
7816 mddev->ro = MD_AUTO_READ;
7817 }
7818
7819out_unlock:
7820 mddev_unlock(mddev);
7821 return err;
7822}
7823
7824static int md_open(struct gendisk *disk, blk_mode_t mode)
7825{
7826 struct mddev *mddev;
7827 int err;
7828
7829 spin_lock(&all_mddevs_lock);
7830 mddev = mddev_get(disk->private_data);
7831 spin_unlock(&all_mddevs_lock);
7832 if (!mddev)
7833 return -ENODEV;
7834
7835 err = mutex_lock_interruptible(&mddev->open_mutex);
7836 if (err)
7837 goto out;
7838
7839 err = -ENODEV;
7840 if (test_bit(MD_CLOSING, &mddev->flags))
7841 goto out_unlock;
7842
7843 atomic_inc(&mddev->openers);
7844 mutex_unlock(&mddev->open_mutex);
7845
7846 disk_check_media_change(disk);
7847 return 0;
7848
7849out_unlock:
7850 mutex_unlock(&mddev->open_mutex);
7851out:
7852 mddev_put(mddev);
7853 return err;
7854}
7855
7856static void md_release(struct gendisk *disk)
7857{
7858 struct mddev *mddev = disk->private_data;
7859
7860 BUG_ON(!mddev);
7861 atomic_dec(&mddev->openers);
7862 mddev_put(mddev);
7863}
7864
7865static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7866{
7867 struct mddev *mddev = disk->private_data;
7868 unsigned int ret = 0;
7869
7870 if (mddev->changed)
7871 ret = DISK_EVENT_MEDIA_CHANGE;
7872 mddev->changed = 0;
7873 return ret;
7874}
7875
7876static void md_free_disk(struct gendisk *disk)
7877{
7878 struct mddev *mddev = disk->private_data;
7879
7880 percpu_ref_exit(&mddev->writes_pending);
7881 mddev_free(mddev);
7882}
7883
7884const struct block_device_operations md_fops =
7885{
7886 .owner = THIS_MODULE,
7887 .submit_bio = md_submit_bio,
7888 .open = md_open,
7889 .release = md_release,
7890 .ioctl = md_ioctl,
7891#ifdef CONFIG_COMPAT
7892 .compat_ioctl = md_compat_ioctl,
7893#endif
7894 .getgeo = md_getgeo,
7895 .check_events = md_check_events,
7896 .set_read_only = md_set_read_only,
7897 .free_disk = md_free_disk,
7898};
7899
7900static int md_thread(void *arg)
7901{
7902 struct md_thread *thread = arg;
7903
7904 /*
7905 * md_thread is a 'system-thread', it's priority should be very
7906 * high. We avoid resource deadlocks individually in each
7907 * raid personality. (RAID5 does preallocation) We also use RR and
7908 * the very same RT priority as kswapd, thus we will never get
7909 * into a priority inversion deadlock.
7910 *
7911 * we definitely have to have equal or higher priority than
7912 * bdflush, otherwise bdflush will deadlock if there are too
7913 * many dirty RAID5 blocks.
7914 */
7915
7916 allow_signal(SIGKILL);
7917 while (!kthread_should_stop()) {
7918
7919 /* We need to wait INTERRUPTIBLE so that
7920 * we don't add to the load-average.
7921 * That means we need to be sure no signals are
7922 * pending
7923 */
7924 if (signal_pending(current))
7925 flush_signals(current);
7926
7927 wait_event_interruptible_timeout
7928 (thread->wqueue,
7929 test_bit(THREAD_WAKEUP, &thread->flags)
7930 || kthread_should_stop() || kthread_should_park(),
7931 thread->timeout);
7932
7933 clear_bit(THREAD_WAKEUP, &thread->flags);
7934 if (kthread_should_park())
7935 kthread_parkme();
7936 if (!kthread_should_stop())
7937 thread->run(thread);
7938 }
7939
7940 return 0;
7941}
7942
7943static void md_wakeup_thread_directly(struct md_thread __rcu *thread)
7944{
7945 struct md_thread *t;
7946
7947 rcu_read_lock();
7948 t = rcu_dereference(thread);
7949 if (t)
7950 wake_up_process(t->tsk);
7951 rcu_read_unlock();
7952}
7953
7954void md_wakeup_thread(struct md_thread __rcu *thread)
7955{
7956 struct md_thread *t;
7957
7958 rcu_read_lock();
7959 t = rcu_dereference(thread);
7960 if (t) {
7961 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm);
7962 set_bit(THREAD_WAKEUP, &t->flags);
7963 wake_up(&t->wqueue);
7964 }
7965 rcu_read_unlock();
7966}
7967EXPORT_SYMBOL(md_wakeup_thread);
7968
7969struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7970 struct mddev *mddev, const char *name)
7971{
7972 struct md_thread *thread;
7973
7974 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7975 if (!thread)
7976 return NULL;
7977
7978 init_waitqueue_head(&thread->wqueue);
7979
7980 thread->run = run;
7981 thread->mddev = mddev;
7982 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7983 thread->tsk = kthread_run(md_thread, thread,
7984 "%s_%s",
7985 mdname(thread->mddev),
7986 name);
7987 if (IS_ERR(thread->tsk)) {
7988 kfree(thread);
7989 return NULL;
7990 }
7991 return thread;
7992}
7993EXPORT_SYMBOL(md_register_thread);
7994
7995void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp)
7996{
7997 struct md_thread *thread = rcu_dereference_protected(*threadp,
7998 lockdep_is_held(&mddev->reconfig_mutex));
7999
8000 if (!thread)
8001 return;
8002
8003 rcu_assign_pointer(*threadp, NULL);
8004 synchronize_rcu();
8005
8006 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
8007 kthread_stop(thread->tsk);
8008 kfree(thread);
8009}
8010EXPORT_SYMBOL(md_unregister_thread);
8011
8012void md_error(struct mddev *mddev, struct md_rdev *rdev)
8013{
8014 if (!rdev || test_bit(Faulty, &rdev->flags))
8015 return;
8016
8017 if (!mddev->pers || !mddev->pers->error_handler)
8018 return;
8019 mddev->pers->error_handler(mddev, rdev);
8020
8021 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR)
8022 return;
8023
8024 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
8025 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8026 sysfs_notify_dirent_safe(rdev->sysfs_state);
8027 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8028 if (!test_bit(MD_BROKEN, &mddev->flags)) {
8029 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8030 md_wakeup_thread(mddev->thread);
8031 }
8032 if (mddev->event_work.func)
8033 queue_work(md_misc_wq, &mddev->event_work);
8034 md_new_event();
8035}
8036EXPORT_SYMBOL(md_error);
8037
8038/* seq_file implementation /proc/mdstat */
8039
8040static void status_unused(struct seq_file *seq)
8041{
8042 int i = 0;
8043 struct md_rdev *rdev;
8044
8045 seq_printf(seq, "unused devices: ");
8046
8047 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8048 i++;
8049 seq_printf(seq, "%pg ", rdev->bdev);
8050 }
8051 if (!i)
8052 seq_printf(seq, "<none>");
8053
8054 seq_printf(seq, "\n");
8055}
8056
8057static int status_resync(struct seq_file *seq, struct mddev *mddev)
8058{
8059 sector_t max_sectors, resync, res;
8060 unsigned long dt, db = 0;
8061 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8062 int scale, recovery_active;
8063 unsigned int per_milli;
8064
8065 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8066 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8067 max_sectors = mddev->resync_max_sectors;
8068 else
8069 max_sectors = mddev->dev_sectors;
8070
8071 resync = mddev->curr_resync;
8072 if (resync < MD_RESYNC_ACTIVE) {
8073 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8074 /* Still cleaning up */
8075 resync = max_sectors;
8076 } else if (resync > max_sectors) {
8077 resync = max_sectors;
8078 } else {
8079 res = atomic_read(&mddev->recovery_active);
8080 /*
8081 * Resync has started, but the subtraction has overflowed or
8082 * yielded one of the special values. Force it to active to
8083 * ensure the status reports an active resync.
8084 */
8085 if (resync < res || resync - res < MD_RESYNC_ACTIVE)
8086 resync = MD_RESYNC_ACTIVE;
8087 else
8088 resync -= res;
8089 }
8090
8091 if (resync == MD_RESYNC_NONE) {
8092 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8093 struct md_rdev *rdev;
8094
8095 rdev_for_each(rdev, mddev)
8096 if (rdev->raid_disk >= 0 &&
8097 !test_bit(Faulty, &rdev->flags) &&
8098 rdev->recovery_offset != MaxSector &&
8099 rdev->recovery_offset) {
8100 seq_printf(seq, "\trecover=REMOTE");
8101 return 1;
8102 }
8103 if (mddev->reshape_position != MaxSector)
8104 seq_printf(seq, "\treshape=REMOTE");
8105 else
8106 seq_printf(seq, "\tresync=REMOTE");
8107 return 1;
8108 }
8109 if (mddev->recovery_cp < MaxSector) {
8110 seq_printf(seq, "\tresync=PENDING");
8111 return 1;
8112 }
8113 return 0;
8114 }
8115 if (resync < MD_RESYNC_ACTIVE) {
8116 seq_printf(seq, "\tresync=DELAYED");
8117 return 1;
8118 }
8119
8120 WARN_ON(max_sectors == 0);
8121 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8122 * in a sector_t, and (max_sectors>>scale) will fit in a
8123 * u32, as those are the requirements for sector_div.
8124 * Thus 'scale' must be at least 10
8125 */
8126 scale = 10;
8127 if (sizeof(sector_t) > sizeof(unsigned long)) {
8128 while ( max_sectors/2 > (1ULL<<(scale+32)))
8129 scale++;
8130 }
8131 res = (resync>>scale)*1000;
8132 sector_div(res, (u32)((max_sectors>>scale)+1));
8133
8134 per_milli = res;
8135 {
8136 int i, x = per_milli/50, y = 20-x;
8137 seq_printf(seq, "[");
8138 for (i = 0; i < x; i++)
8139 seq_printf(seq, "=");
8140 seq_printf(seq, ">");
8141 for (i = 0; i < y; i++)
8142 seq_printf(seq, ".");
8143 seq_printf(seq, "] ");
8144 }
8145 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8146 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8147 "reshape" :
8148 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8149 "check" :
8150 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8151 "resync" : "recovery"))),
8152 per_milli/10, per_milli % 10,
8153 (unsigned long long) resync/2,
8154 (unsigned long long) max_sectors/2);
8155
8156 /*
8157 * dt: time from mark until now
8158 * db: blocks written from mark until now
8159 * rt: remaining time
8160 *
8161 * rt is a sector_t, which is always 64bit now. We are keeping
8162 * the original algorithm, but it is not really necessary.
8163 *
8164 * Original algorithm:
8165 * So we divide before multiply in case it is 32bit and close
8166 * to the limit.
8167 * We scale the divisor (db) by 32 to avoid losing precision
8168 * near the end of resync when the number of remaining sectors
8169 * is close to 'db'.
8170 * We then divide rt by 32 after multiplying by db to compensate.
8171 * The '+1' avoids division by zero if db is very small.
8172 */
8173 dt = ((jiffies - mddev->resync_mark) / HZ);
8174 if (!dt) dt++;
8175
8176 curr_mark_cnt = mddev->curr_mark_cnt;
8177 recovery_active = atomic_read(&mddev->recovery_active);
8178 resync_mark_cnt = mddev->resync_mark_cnt;
8179
8180 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8181 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8182
8183 rt = max_sectors - resync; /* number of remaining sectors */
8184 rt = div64_u64(rt, db/32+1);
8185 rt *= dt;
8186 rt >>= 5;
8187
8188 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8189 ((unsigned long)rt % 60)/6);
8190
8191 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8192 return 1;
8193}
8194
8195static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8196{
8197 struct list_head *tmp;
8198 loff_t l = *pos;
8199 struct mddev *mddev;
8200
8201 if (l == 0x10000) {
8202 ++*pos;
8203 return (void *)2;
8204 }
8205 if (l > 0x10000)
8206 return NULL;
8207 if (!l--)
8208 /* header */
8209 return (void*)1;
8210
8211 spin_lock(&all_mddevs_lock);
8212 list_for_each(tmp,&all_mddevs)
8213 if (!l--) {
8214 mddev = list_entry(tmp, struct mddev, all_mddevs);
8215 if (!mddev_get(mddev))
8216 continue;
8217 spin_unlock(&all_mddevs_lock);
8218 return mddev;
8219 }
8220 spin_unlock(&all_mddevs_lock);
8221 if (!l--)
8222 return (void*)2;/* tail */
8223 return NULL;
8224}
8225
8226static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8227{
8228 struct list_head *tmp;
8229 struct mddev *next_mddev, *mddev = v;
8230 struct mddev *to_put = NULL;
8231
8232 ++*pos;
8233 if (v == (void*)2)
8234 return NULL;
8235
8236 spin_lock(&all_mddevs_lock);
8237 if (v == (void*)1) {
8238 tmp = all_mddevs.next;
8239 } else {
8240 to_put = mddev;
8241 tmp = mddev->all_mddevs.next;
8242 }
8243
8244 for (;;) {
8245 if (tmp == &all_mddevs) {
8246 next_mddev = (void*)2;
8247 *pos = 0x10000;
8248 break;
8249 }
8250 next_mddev = list_entry(tmp, struct mddev, all_mddevs);
8251 if (mddev_get(next_mddev))
8252 break;
8253 mddev = next_mddev;
8254 tmp = mddev->all_mddevs.next;
8255 }
8256 spin_unlock(&all_mddevs_lock);
8257
8258 if (to_put)
8259 mddev_put(mddev);
8260 return next_mddev;
8261
8262}
8263
8264static void md_seq_stop(struct seq_file *seq, void *v)
8265{
8266 struct mddev *mddev = v;
8267
8268 if (mddev && v != (void*)1 && v != (void*)2)
8269 mddev_put(mddev);
8270}
8271
8272static int md_seq_show(struct seq_file *seq, void *v)
8273{
8274 struct mddev *mddev = v;
8275 sector_t sectors;
8276 struct md_rdev *rdev;
8277
8278 if (v == (void*)1) {
8279 struct md_personality *pers;
8280 seq_printf(seq, "Personalities : ");
8281 spin_lock(&pers_lock);
8282 list_for_each_entry(pers, &pers_list, list)
8283 seq_printf(seq, "[%s] ", pers->name);
8284
8285 spin_unlock(&pers_lock);
8286 seq_printf(seq, "\n");
8287 seq->poll_event = atomic_read(&md_event_count);
8288 return 0;
8289 }
8290 if (v == (void*)2) {
8291 status_unused(seq);
8292 return 0;
8293 }
8294
8295 spin_lock(&mddev->lock);
8296 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8297 seq_printf(seq, "%s : %sactive", mdname(mddev),
8298 mddev->pers ? "" : "in");
8299 if (mddev->pers) {
8300 if (mddev->ro == MD_RDONLY)
8301 seq_printf(seq, " (read-only)");
8302 if (mddev->ro == MD_AUTO_READ)
8303 seq_printf(seq, " (auto-read-only)");
8304 seq_printf(seq, " %s", mddev->pers->name);
8305 }
8306
8307 sectors = 0;
8308 rcu_read_lock();
8309 rdev_for_each_rcu(rdev, mddev) {
8310 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr);
8311
8312 if (test_bit(WriteMostly, &rdev->flags))
8313 seq_printf(seq, "(W)");
8314 if (test_bit(Journal, &rdev->flags))
8315 seq_printf(seq, "(J)");
8316 if (test_bit(Faulty, &rdev->flags)) {
8317 seq_printf(seq, "(F)");
8318 continue;
8319 }
8320 if (rdev->raid_disk < 0)
8321 seq_printf(seq, "(S)"); /* spare */
8322 if (test_bit(Replacement, &rdev->flags))
8323 seq_printf(seq, "(R)");
8324 sectors += rdev->sectors;
8325 }
8326 rcu_read_unlock();
8327
8328 if (!list_empty(&mddev->disks)) {
8329 if (mddev->pers)
8330 seq_printf(seq, "\n %llu blocks",
8331 (unsigned long long)
8332 mddev->array_sectors / 2);
8333 else
8334 seq_printf(seq, "\n %llu blocks",
8335 (unsigned long long)sectors / 2);
8336 }
8337 if (mddev->persistent) {
8338 if (mddev->major_version != 0 ||
8339 mddev->minor_version != 90) {
8340 seq_printf(seq," super %d.%d",
8341 mddev->major_version,
8342 mddev->minor_version);
8343 }
8344 } else if (mddev->external)
8345 seq_printf(seq, " super external:%s",
8346 mddev->metadata_type);
8347 else
8348 seq_printf(seq, " super non-persistent");
8349
8350 if (mddev->pers) {
8351 mddev->pers->status(seq, mddev);
8352 seq_printf(seq, "\n ");
8353 if (mddev->pers->sync_request) {
8354 if (status_resync(seq, mddev))
8355 seq_printf(seq, "\n ");
8356 }
8357 } else
8358 seq_printf(seq, "\n ");
8359
8360 md_bitmap_status(seq, mddev->bitmap);
8361
8362 seq_printf(seq, "\n");
8363 }
8364 spin_unlock(&mddev->lock);
8365
8366 return 0;
8367}
8368
8369static const struct seq_operations md_seq_ops = {
8370 .start = md_seq_start,
8371 .next = md_seq_next,
8372 .stop = md_seq_stop,
8373 .show = md_seq_show,
8374};
8375
8376static int md_seq_open(struct inode *inode, struct file *file)
8377{
8378 struct seq_file *seq;
8379 int error;
8380
8381 error = seq_open(file, &md_seq_ops);
8382 if (error)
8383 return error;
8384
8385 seq = file->private_data;
8386 seq->poll_event = atomic_read(&md_event_count);
8387 return error;
8388}
8389
8390static int md_unloading;
8391static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8392{
8393 struct seq_file *seq = filp->private_data;
8394 __poll_t mask;
8395
8396 if (md_unloading)
8397 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8398 poll_wait(filp, &md_event_waiters, wait);
8399
8400 /* always allow read */
8401 mask = EPOLLIN | EPOLLRDNORM;
8402
8403 if (seq->poll_event != atomic_read(&md_event_count))
8404 mask |= EPOLLERR | EPOLLPRI;
8405 return mask;
8406}
8407
8408static const struct proc_ops mdstat_proc_ops = {
8409 .proc_open = md_seq_open,
8410 .proc_read = seq_read,
8411 .proc_lseek = seq_lseek,
8412 .proc_release = seq_release,
8413 .proc_poll = mdstat_poll,
8414};
8415
8416int register_md_personality(struct md_personality *p)
8417{
8418 pr_debug("md: %s personality registered for level %d\n",
8419 p->name, p->level);
8420 spin_lock(&pers_lock);
8421 list_add_tail(&p->list, &pers_list);
8422 spin_unlock(&pers_lock);
8423 return 0;
8424}
8425EXPORT_SYMBOL(register_md_personality);
8426
8427int unregister_md_personality(struct md_personality *p)
8428{
8429 pr_debug("md: %s personality unregistered\n", p->name);
8430 spin_lock(&pers_lock);
8431 list_del_init(&p->list);
8432 spin_unlock(&pers_lock);
8433 return 0;
8434}
8435EXPORT_SYMBOL(unregister_md_personality);
8436
8437int register_md_cluster_operations(struct md_cluster_operations *ops,
8438 struct module *module)
8439{
8440 int ret = 0;
8441 spin_lock(&pers_lock);
8442 if (md_cluster_ops != NULL)
8443 ret = -EALREADY;
8444 else {
8445 md_cluster_ops = ops;
8446 md_cluster_mod = module;
8447 }
8448 spin_unlock(&pers_lock);
8449 return ret;
8450}
8451EXPORT_SYMBOL(register_md_cluster_operations);
8452
8453int unregister_md_cluster_operations(void)
8454{
8455 spin_lock(&pers_lock);
8456 md_cluster_ops = NULL;
8457 spin_unlock(&pers_lock);
8458 return 0;
8459}
8460EXPORT_SYMBOL(unregister_md_cluster_operations);
8461
8462int md_setup_cluster(struct mddev *mddev, int nodes)
8463{
8464 int ret;
8465 if (!md_cluster_ops)
8466 request_module("md-cluster");
8467 spin_lock(&pers_lock);
8468 /* ensure module won't be unloaded */
8469 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8470 pr_warn("can't find md-cluster module or get its reference.\n");
8471 spin_unlock(&pers_lock);
8472 return -ENOENT;
8473 }
8474 spin_unlock(&pers_lock);
8475
8476 ret = md_cluster_ops->join(mddev, nodes);
8477 if (!ret)
8478 mddev->safemode_delay = 0;
8479 return ret;
8480}
8481
8482void md_cluster_stop(struct mddev *mddev)
8483{
8484 if (!md_cluster_ops)
8485 return;
8486 md_cluster_ops->leave(mddev);
8487 module_put(md_cluster_mod);
8488}
8489
8490static int is_mddev_idle(struct mddev *mddev, int init)
8491{
8492 struct md_rdev *rdev;
8493 int idle;
8494 int curr_events;
8495
8496 idle = 1;
8497 rcu_read_lock();
8498 rdev_for_each_rcu(rdev, mddev) {
8499 struct gendisk *disk = rdev->bdev->bd_disk;
8500 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8501 atomic_read(&disk->sync_io);
8502 /* sync IO will cause sync_io to increase before the disk_stats
8503 * as sync_io is counted when a request starts, and
8504 * disk_stats is counted when it completes.
8505 * So resync activity will cause curr_events to be smaller than
8506 * when there was no such activity.
8507 * non-sync IO will cause disk_stat to increase without
8508 * increasing sync_io so curr_events will (eventually)
8509 * be larger than it was before. Once it becomes
8510 * substantially larger, the test below will cause
8511 * the array to appear non-idle, and resync will slow
8512 * down.
8513 * If there is a lot of outstanding resync activity when
8514 * we set last_event to curr_events, then all that activity
8515 * completing might cause the array to appear non-idle
8516 * and resync will be slowed down even though there might
8517 * not have been non-resync activity. This will only
8518 * happen once though. 'last_events' will soon reflect
8519 * the state where there is little or no outstanding
8520 * resync requests, and further resync activity will
8521 * always make curr_events less than last_events.
8522 *
8523 */
8524 if (init || curr_events - rdev->last_events > 64) {
8525 rdev->last_events = curr_events;
8526 idle = 0;
8527 }
8528 }
8529 rcu_read_unlock();
8530 return idle;
8531}
8532
8533void md_done_sync(struct mddev *mddev, int blocks, int ok)
8534{
8535 /* another "blocks" (512byte) blocks have been synced */
8536 atomic_sub(blocks, &mddev->recovery_active);
8537 wake_up(&mddev->recovery_wait);
8538 if (!ok) {
8539 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8540 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8541 md_wakeup_thread(mddev->thread);
8542 // stop recovery, signal do_sync ....
8543 }
8544}
8545EXPORT_SYMBOL(md_done_sync);
8546
8547/* md_write_start(mddev, bi)
8548 * If we need to update some array metadata (e.g. 'active' flag
8549 * in superblock) before writing, schedule a superblock update
8550 * and wait for it to complete.
8551 * A return value of 'false' means that the write wasn't recorded
8552 * and cannot proceed as the array is being suspend.
8553 */
8554bool md_write_start(struct mddev *mddev, struct bio *bi)
8555{
8556 int did_change = 0;
8557
8558 if (bio_data_dir(bi) != WRITE)
8559 return true;
8560
8561 BUG_ON(mddev->ro == MD_RDONLY);
8562 if (mddev->ro == MD_AUTO_READ) {
8563 /* need to switch to read/write */
8564 mddev->ro = MD_RDWR;
8565 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8566 md_wakeup_thread(mddev->thread);
8567 md_wakeup_thread(mddev->sync_thread);
8568 did_change = 1;
8569 }
8570 rcu_read_lock();
8571 percpu_ref_get(&mddev->writes_pending);
8572 smp_mb(); /* Match smp_mb in set_in_sync() */
8573 if (mddev->safemode == 1)
8574 mddev->safemode = 0;
8575 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8576 if (mddev->in_sync || mddev->sync_checkers) {
8577 spin_lock(&mddev->lock);
8578 if (mddev->in_sync) {
8579 mddev->in_sync = 0;
8580 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8581 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8582 md_wakeup_thread(mddev->thread);
8583 did_change = 1;
8584 }
8585 spin_unlock(&mddev->lock);
8586 }
8587 rcu_read_unlock();
8588 if (did_change)
8589 sysfs_notify_dirent_safe(mddev->sysfs_state);
8590 if (!mddev->has_superblocks)
8591 return true;
8592 wait_event(mddev->sb_wait,
8593 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8594 is_md_suspended(mddev));
8595 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8596 percpu_ref_put(&mddev->writes_pending);
8597 return false;
8598 }
8599 return true;
8600}
8601EXPORT_SYMBOL(md_write_start);
8602
8603/* md_write_inc can only be called when md_write_start() has
8604 * already been called at least once of the current request.
8605 * It increments the counter and is useful when a single request
8606 * is split into several parts. Each part causes an increment and
8607 * so needs a matching md_write_end().
8608 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8609 * a spinlocked region.
8610 */
8611void md_write_inc(struct mddev *mddev, struct bio *bi)
8612{
8613 if (bio_data_dir(bi) != WRITE)
8614 return;
8615 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev));
8616 percpu_ref_get(&mddev->writes_pending);
8617}
8618EXPORT_SYMBOL(md_write_inc);
8619
8620void md_write_end(struct mddev *mddev)
8621{
8622 percpu_ref_put(&mddev->writes_pending);
8623
8624 if (mddev->safemode == 2)
8625 md_wakeup_thread(mddev->thread);
8626 else if (mddev->safemode_delay)
8627 /* The roundup() ensures this only performs locking once
8628 * every ->safemode_delay jiffies
8629 */
8630 mod_timer(&mddev->safemode_timer,
8631 roundup(jiffies, mddev->safemode_delay) +
8632 mddev->safemode_delay);
8633}
8634
8635EXPORT_SYMBOL(md_write_end);
8636
8637/* This is used by raid0 and raid10 */
8638void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8639 struct bio *bio, sector_t start, sector_t size)
8640{
8641 struct bio *discard_bio = NULL;
8642
8643 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO,
8644 &discard_bio) || !discard_bio)
8645 return;
8646
8647 bio_chain(discard_bio, bio);
8648 bio_clone_blkg_association(discard_bio, bio);
8649 if (mddev->gendisk)
8650 trace_block_bio_remap(discard_bio,
8651 disk_devt(mddev->gendisk),
8652 bio->bi_iter.bi_sector);
8653 submit_bio_noacct(discard_bio);
8654}
8655EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8656
8657static void md_end_clone_io(struct bio *bio)
8658{
8659 struct md_io_clone *md_io_clone = bio->bi_private;
8660 struct bio *orig_bio = md_io_clone->orig_bio;
8661 struct mddev *mddev = md_io_clone->mddev;
8662
8663 orig_bio->bi_status = bio->bi_status;
8664
8665 if (md_io_clone->start_time)
8666 bio_end_io_acct(orig_bio, md_io_clone->start_time);
8667
8668 bio_put(bio);
8669 bio_endio(orig_bio);
8670 percpu_ref_put(&mddev->active_io);
8671}
8672
8673static void md_clone_bio(struct mddev *mddev, struct bio **bio)
8674{
8675 struct block_device *bdev = (*bio)->bi_bdev;
8676 struct md_io_clone *md_io_clone;
8677 struct bio *clone =
8678 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set);
8679
8680 md_io_clone = container_of(clone, struct md_io_clone, bio_clone);
8681 md_io_clone->orig_bio = *bio;
8682 md_io_clone->mddev = mddev;
8683 if (blk_queue_io_stat(bdev->bd_disk->queue))
8684 md_io_clone->start_time = bio_start_io_acct(*bio);
8685
8686 clone->bi_end_io = md_end_clone_io;
8687 clone->bi_private = md_io_clone;
8688 *bio = clone;
8689}
8690
8691void md_account_bio(struct mddev *mddev, struct bio **bio)
8692{
8693 percpu_ref_get(&mddev->active_io);
8694 md_clone_bio(mddev, bio);
8695}
8696EXPORT_SYMBOL_GPL(md_account_bio);
8697
8698/* md_allow_write(mddev)
8699 * Calling this ensures that the array is marked 'active' so that writes
8700 * may proceed without blocking. It is important to call this before
8701 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8702 * Must be called with mddev_lock held.
8703 */
8704void md_allow_write(struct mddev *mddev)
8705{
8706 if (!mddev->pers)
8707 return;
8708 if (!md_is_rdwr(mddev))
8709 return;
8710 if (!mddev->pers->sync_request)
8711 return;
8712
8713 spin_lock(&mddev->lock);
8714 if (mddev->in_sync) {
8715 mddev->in_sync = 0;
8716 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8717 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8718 if (mddev->safemode_delay &&
8719 mddev->safemode == 0)
8720 mddev->safemode = 1;
8721 spin_unlock(&mddev->lock);
8722 md_update_sb(mddev, 0);
8723 sysfs_notify_dirent_safe(mddev->sysfs_state);
8724 /* wait for the dirty state to be recorded in the metadata */
8725 wait_event(mddev->sb_wait,
8726 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8727 } else
8728 spin_unlock(&mddev->lock);
8729}
8730EXPORT_SYMBOL_GPL(md_allow_write);
8731
8732#define SYNC_MARKS 10
8733#define SYNC_MARK_STEP (3*HZ)
8734#define UPDATE_FREQUENCY (5*60*HZ)
8735void md_do_sync(struct md_thread *thread)
8736{
8737 struct mddev *mddev = thread->mddev;
8738 struct mddev *mddev2;
8739 unsigned int currspeed = 0, window;
8740 sector_t max_sectors,j, io_sectors, recovery_done;
8741 unsigned long mark[SYNC_MARKS];
8742 unsigned long update_time;
8743 sector_t mark_cnt[SYNC_MARKS];
8744 int last_mark,m;
8745 sector_t last_check;
8746 int skipped = 0;
8747 struct md_rdev *rdev;
8748 char *desc, *action = NULL;
8749 struct blk_plug plug;
8750 int ret;
8751
8752 /* just incase thread restarts... */
8753 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8754 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8755 return;
8756 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */
8757 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8758 return;
8759 }
8760
8761 if (mddev_is_clustered(mddev)) {
8762 ret = md_cluster_ops->resync_start(mddev);
8763 if (ret)
8764 goto skip;
8765
8766 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8767 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8768 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8769 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8770 && ((unsigned long long)mddev->curr_resync_completed
8771 < (unsigned long long)mddev->resync_max_sectors))
8772 goto skip;
8773 }
8774
8775 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8776 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8777 desc = "data-check";
8778 action = "check";
8779 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8780 desc = "requested-resync";
8781 action = "repair";
8782 } else
8783 desc = "resync";
8784 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8785 desc = "reshape";
8786 else
8787 desc = "recovery";
8788
8789 mddev->last_sync_action = action ?: desc;
8790
8791 /*
8792 * Before starting a resync we must have set curr_resync to
8793 * 2, and then checked that every "conflicting" array has curr_resync
8794 * less than ours. When we find one that is the same or higher
8795 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8796 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8797 * This will mean we have to start checking from the beginning again.
8798 *
8799 */
8800
8801 do {
8802 int mddev2_minor = -1;
8803 mddev->curr_resync = MD_RESYNC_DELAYED;
8804
8805 try_again:
8806 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8807 goto skip;
8808 spin_lock(&all_mddevs_lock);
8809 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) {
8810 if (test_bit(MD_DELETED, &mddev2->flags))
8811 continue;
8812 if (mddev2 == mddev)
8813 continue;
8814 if (!mddev->parallel_resync
8815 && mddev2->curr_resync
8816 && match_mddev_units(mddev, mddev2)) {
8817 DEFINE_WAIT(wq);
8818 if (mddev < mddev2 &&
8819 mddev->curr_resync == MD_RESYNC_DELAYED) {
8820 /* arbitrarily yield */
8821 mddev->curr_resync = MD_RESYNC_YIELDED;
8822 wake_up(&resync_wait);
8823 }
8824 if (mddev > mddev2 &&
8825 mddev->curr_resync == MD_RESYNC_YIELDED)
8826 /* no need to wait here, we can wait the next
8827 * time 'round when curr_resync == 2
8828 */
8829 continue;
8830 /* We need to wait 'interruptible' so as not to
8831 * contribute to the load average, and not to
8832 * be caught by 'softlockup'
8833 */
8834 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8835 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8836 mddev2->curr_resync >= mddev->curr_resync) {
8837 if (mddev2_minor != mddev2->md_minor) {
8838 mddev2_minor = mddev2->md_minor;
8839 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8840 desc, mdname(mddev),
8841 mdname(mddev2));
8842 }
8843 spin_unlock(&all_mddevs_lock);
8844
8845 if (signal_pending(current))
8846 flush_signals(current);
8847 schedule();
8848 finish_wait(&resync_wait, &wq);
8849 goto try_again;
8850 }
8851 finish_wait(&resync_wait, &wq);
8852 }
8853 }
8854 spin_unlock(&all_mddevs_lock);
8855 } while (mddev->curr_resync < MD_RESYNC_DELAYED);
8856
8857 j = 0;
8858 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8859 /* resync follows the size requested by the personality,
8860 * which defaults to physical size, but can be virtual size
8861 */
8862 max_sectors = mddev->resync_max_sectors;
8863 atomic64_set(&mddev->resync_mismatches, 0);
8864 /* we don't use the checkpoint if there's a bitmap */
8865 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8866 j = mddev->resync_min;
8867 else if (!mddev->bitmap)
8868 j = mddev->recovery_cp;
8869
8870 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8871 max_sectors = mddev->resync_max_sectors;
8872 /*
8873 * If the original node aborts reshaping then we continue the
8874 * reshaping, so set j again to avoid restart reshape from the
8875 * first beginning
8876 */
8877 if (mddev_is_clustered(mddev) &&
8878 mddev->reshape_position != MaxSector)
8879 j = mddev->reshape_position;
8880 } else {
8881 /* recovery follows the physical size of devices */
8882 max_sectors = mddev->dev_sectors;
8883 j = MaxSector;
8884 rcu_read_lock();
8885 rdev_for_each_rcu(rdev, mddev)
8886 if (rdev->raid_disk >= 0 &&
8887 !test_bit(Journal, &rdev->flags) &&
8888 !test_bit(Faulty, &rdev->flags) &&
8889 !test_bit(In_sync, &rdev->flags) &&
8890 rdev->recovery_offset < j)
8891 j = rdev->recovery_offset;
8892 rcu_read_unlock();
8893
8894 /* If there is a bitmap, we need to make sure all
8895 * writes that started before we added a spare
8896 * complete before we start doing a recovery.
8897 * Otherwise the write might complete and (via
8898 * bitmap_endwrite) set a bit in the bitmap after the
8899 * recovery has checked that bit and skipped that
8900 * region.
8901 */
8902 if (mddev->bitmap) {
8903 mddev->pers->quiesce(mddev, 1);
8904 mddev->pers->quiesce(mddev, 0);
8905 }
8906 }
8907
8908 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8909 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8910 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8911 speed_max(mddev), desc);
8912
8913 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8914
8915 io_sectors = 0;
8916 for (m = 0; m < SYNC_MARKS; m++) {
8917 mark[m] = jiffies;
8918 mark_cnt[m] = io_sectors;
8919 }
8920 last_mark = 0;
8921 mddev->resync_mark = mark[last_mark];
8922 mddev->resync_mark_cnt = mark_cnt[last_mark];
8923
8924 /*
8925 * Tune reconstruction:
8926 */
8927 window = 32 * (PAGE_SIZE / 512);
8928 pr_debug("md: using %dk window, over a total of %lluk.\n",
8929 window/2, (unsigned long long)max_sectors/2);
8930
8931 atomic_set(&mddev->recovery_active, 0);
8932 last_check = 0;
8933
8934 if (j >= MD_RESYNC_ACTIVE) {
8935 pr_debug("md: resuming %s of %s from checkpoint.\n",
8936 desc, mdname(mddev));
8937 mddev->curr_resync = j;
8938 } else
8939 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */
8940 mddev->curr_resync_completed = j;
8941 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8942 md_new_event();
8943 update_time = jiffies;
8944
8945 blk_start_plug(&plug);
8946 while (j < max_sectors) {
8947 sector_t sectors;
8948
8949 skipped = 0;
8950
8951 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8952 ((mddev->curr_resync > mddev->curr_resync_completed &&
8953 (mddev->curr_resync - mddev->curr_resync_completed)
8954 > (max_sectors >> 4)) ||
8955 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8956 (j - mddev->curr_resync_completed)*2
8957 >= mddev->resync_max - mddev->curr_resync_completed ||
8958 mddev->curr_resync_completed > mddev->resync_max
8959 )) {
8960 /* time to update curr_resync_completed */
8961 wait_event(mddev->recovery_wait,
8962 atomic_read(&mddev->recovery_active) == 0);
8963 mddev->curr_resync_completed = j;
8964 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8965 j > mddev->recovery_cp)
8966 mddev->recovery_cp = j;
8967 update_time = jiffies;
8968 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8969 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8970 }
8971
8972 while (j >= mddev->resync_max &&
8973 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8974 /* As this condition is controlled by user-space,
8975 * we can block indefinitely, so use '_interruptible'
8976 * to avoid triggering warnings.
8977 */
8978 flush_signals(current); /* just in case */
8979 wait_event_interruptible(mddev->recovery_wait,
8980 mddev->resync_max > j
8981 || test_bit(MD_RECOVERY_INTR,
8982 &mddev->recovery));
8983 }
8984
8985 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8986 break;
8987
8988 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8989 if (sectors == 0) {
8990 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8991 break;
8992 }
8993
8994 if (!skipped) { /* actual IO requested */
8995 io_sectors += sectors;
8996 atomic_add(sectors, &mddev->recovery_active);
8997 }
8998
8999 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9000 break;
9001
9002 j += sectors;
9003 if (j > max_sectors)
9004 /* when skipping, extra large numbers can be returned. */
9005 j = max_sectors;
9006 if (j >= MD_RESYNC_ACTIVE)
9007 mddev->curr_resync = j;
9008 mddev->curr_mark_cnt = io_sectors;
9009 if (last_check == 0)
9010 /* this is the earliest that rebuild will be
9011 * visible in /proc/mdstat
9012 */
9013 md_new_event();
9014
9015 if (last_check + window > io_sectors || j == max_sectors)
9016 continue;
9017
9018 last_check = io_sectors;
9019 repeat:
9020 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
9021 /* step marks */
9022 int next = (last_mark+1) % SYNC_MARKS;
9023
9024 mddev->resync_mark = mark[next];
9025 mddev->resync_mark_cnt = mark_cnt[next];
9026 mark[next] = jiffies;
9027 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
9028 last_mark = next;
9029 }
9030
9031 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9032 break;
9033
9034 /*
9035 * this loop exits only if either when we are slower than
9036 * the 'hard' speed limit, or the system was IO-idle for
9037 * a jiffy.
9038 * the system might be non-idle CPU-wise, but we only care
9039 * about not overloading the IO subsystem. (things like an
9040 * e2fsck being done on the RAID array should execute fast)
9041 */
9042 cond_resched();
9043
9044 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
9045 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
9046 /((jiffies-mddev->resync_mark)/HZ +1) +1;
9047
9048 if (currspeed > speed_min(mddev)) {
9049 if (currspeed > speed_max(mddev)) {
9050 msleep(500);
9051 goto repeat;
9052 }
9053 if (!is_mddev_idle(mddev, 0)) {
9054 /*
9055 * Give other IO more of a chance.
9056 * The faster the devices, the less we wait.
9057 */
9058 wait_event(mddev->recovery_wait,
9059 !atomic_read(&mddev->recovery_active));
9060 }
9061 }
9062 }
9063 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9064 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9065 ? "interrupted" : "done");
9066 /*
9067 * this also signals 'finished resyncing' to md_stop
9068 */
9069 blk_finish_plug(&plug);
9070 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9071
9072 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9073 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9074 mddev->curr_resync >= MD_RESYNC_ACTIVE) {
9075 mddev->curr_resync_completed = mddev->curr_resync;
9076 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9077 }
9078 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9079
9080 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9081 mddev->curr_resync > MD_RESYNC_ACTIVE) {
9082 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9083 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9084 if (mddev->curr_resync >= mddev->recovery_cp) {
9085 pr_debug("md: checkpointing %s of %s.\n",
9086 desc, mdname(mddev));
9087 if (test_bit(MD_RECOVERY_ERROR,
9088 &mddev->recovery))
9089 mddev->recovery_cp =
9090 mddev->curr_resync_completed;
9091 else
9092 mddev->recovery_cp =
9093 mddev->curr_resync;
9094 }
9095 } else
9096 mddev->recovery_cp = MaxSector;
9097 } else {
9098 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9099 mddev->curr_resync = MaxSector;
9100 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9101 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9102 rcu_read_lock();
9103 rdev_for_each_rcu(rdev, mddev)
9104 if (rdev->raid_disk >= 0 &&
9105 mddev->delta_disks >= 0 &&
9106 !test_bit(Journal, &rdev->flags) &&
9107 !test_bit(Faulty, &rdev->flags) &&
9108 !test_bit(In_sync, &rdev->flags) &&
9109 rdev->recovery_offset < mddev->curr_resync)
9110 rdev->recovery_offset = mddev->curr_resync;
9111 rcu_read_unlock();
9112 }
9113 }
9114 }
9115 skip:
9116 /* set CHANGE_PENDING here since maybe another update is needed,
9117 * so other nodes are informed. It should be harmless for normal
9118 * raid */
9119 set_mask_bits(&mddev->sb_flags, 0,
9120 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9121
9122 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9123 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9124 mddev->delta_disks > 0 &&
9125 mddev->pers->finish_reshape &&
9126 mddev->pers->size &&
9127 mddev->queue) {
9128 mddev_lock_nointr(mddev);
9129 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9130 mddev_unlock(mddev);
9131 if (!mddev_is_clustered(mddev))
9132 set_capacity_and_notify(mddev->gendisk,
9133 mddev->array_sectors);
9134 }
9135
9136 spin_lock(&mddev->lock);
9137 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9138 /* We completed so min/max setting can be forgotten if used. */
9139 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9140 mddev->resync_min = 0;
9141 mddev->resync_max = MaxSector;
9142 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9143 mddev->resync_min = mddev->curr_resync_completed;
9144 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9145 mddev->curr_resync = MD_RESYNC_NONE;
9146 spin_unlock(&mddev->lock);
9147
9148 wake_up(&resync_wait);
9149 wake_up(&mddev->sb_wait);
9150 md_wakeup_thread(mddev->thread);
9151 return;
9152}
9153EXPORT_SYMBOL_GPL(md_do_sync);
9154
9155static int remove_and_add_spares(struct mddev *mddev,
9156 struct md_rdev *this)
9157{
9158 struct md_rdev *rdev;
9159 int spares = 0;
9160 int removed = 0;
9161 bool remove_some = false;
9162
9163 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9164 /* Mustn't remove devices when resync thread is running */
9165 return 0;
9166
9167 rdev_for_each(rdev, mddev) {
9168 if ((this == NULL || rdev == this) &&
9169 rdev->raid_disk >= 0 &&
9170 !test_bit(Blocked, &rdev->flags) &&
9171 test_bit(Faulty, &rdev->flags) &&
9172 atomic_read(&rdev->nr_pending)==0) {
9173 /* Faulty non-Blocked devices with nr_pending == 0
9174 * never get nr_pending incremented,
9175 * never get Faulty cleared, and never get Blocked set.
9176 * So we can synchronize_rcu now rather than once per device
9177 */
9178 remove_some = true;
9179 set_bit(RemoveSynchronized, &rdev->flags);
9180 }
9181 }
9182
9183 if (remove_some)
9184 synchronize_rcu();
9185 rdev_for_each(rdev, mddev) {
9186 if ((this == NULL || rdev == this) &&
9187 rdev->raid_disk >= 0 &&
9188 !test_bit(Blocked, &rdev->flags) &&
9189 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9190 (!test_bit(In_sync, &rdev->flags) &&
9191 !test_bit(Journal, &rdev->flags))) &&
9192 atomic_read(&rdev->nr_pending)==0)) {
9193 if (mddev->pers->hot_remove_disk(
9194 mddev, rdev) == 0) {
9195 sysfs_unlink_rdev(mddev, rdev);
9196 rdev->saved_raid_disk = rdev->raid_disk;
9197 rdev->raid_disk = -1;
9198 removed++;
9199 }
9200 }
9201 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9202 clear_bit(RemoveSynchronized, &rdev->flags);
9203 }
9204
9205 if (removed && mddev->kobj.sd)
9206 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9207
9208 if (this && removed)
9209 goto no_add;
9210
9211 rdev_for_each(rdev, mddev) {
9212 if (this && this != rdev)
9213 continue;
9214 if (test_bit(Candidate, &rdev->flags))
9215 continue;
9216 if (rdev->raid_disk >= 0 &&
9217 !test_bit(In_sync, &rdev->flags) &&
9218 !test_bit(Journal, &rdev->flags) &&
9219 !test_bit(Faulty, &rdev->flags))
9220 spares++;
9221 if (rdev->raid_disk >= 0)
9222 continue;
9223 if (test_bit(Faulty, &rdev->flags))
9224 continue;
9225 if (!test_bit(Journal, &rdev->flags)) {
9226 if (!md_is_rdwr(mddev) &&
9227 !(rdev->saved_raid_disk >= 0 &&
9228 !test_bit(Bitmap_sync, &rdev->flags)))
9229 continue;
9230
9231 rdev->recovery_offset = 0;
9232 }
9233 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9234 /* failure here is OK */
9235 sysfs_link_rdev(mddev, rdev);
9236 if (!test_bit(Journal, &rdev->flags))
9237 spares++;
9238 md_new_event();
9239 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9240 }
9241 }
9242no_add:
9243 if (removed)
9244 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9245 return spares;
9246}
9247
9248static void md_start_sync(struct work_struct *ws)
9249{
9250 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9251
9252 rcu_assign_pointer(mddev->sync_thread,
9253 md_register_thread(md_do_sync, mddev, "resync"));
9254 if (!mddev->sync_thread) {
9255 pr_warn("%s: could not start resync thread...\n",
9256 mdname(mddev));
9257 /* leave the spares where they are, it shouldn't hurt */
9258 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9259 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9260 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9261 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9262 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9263 wake_up(&resync_wait);
9264 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9265 &mddev->recovery))
9266 if (mddev->sysfs_action)
9267 sysfs_notify_dirent_safe(mddev->sysfs_action);
9268 } else
9269 md_wakeup_thread(mddev->sync_thread);
9270 sysfs_notify_dirent_safe(mddev->sysfs_action);
9271 md_new_event();
9272}
9273
9274/*
9275 * This routine is regularly called by all per-raid-array threads to
9276 * deal with generic issues like resync and super-block update.
9277 * Raid personalities that don't have a thread (linear/raid0) do not
9278 * need this as they never do any recovery or update the superblock.
9279 *
9280 * It does not do any resync itself, but rather "forks" off other threads
9281 * to do that as needed.
9282 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9283 * "->recovery" and create a thread at ->sync_thread.
9284 * When the thread finishes it sets MD_RECOVERY_DONE
9285 * and wakeups up this thread which will reap the thread and finish up.
9286 * This thread also removes any faulty devices (with nr_pending == 0).
9287 *
9288 * The overall approach is:
9289 * 1/ if the superblock needs updating, update it.
9290 * 2/ If a recovery thread is running, don't do anything else.
9291 * 3/ If recovery has finished, clean up, possibly marking spares active.
9292 * 4/ If there are any faulty devices, remove them.
9293 * 5/ If array is degraded, try to add spares devices
9294 * 6/ If array has spares or is not in-sync, start a resync thread.
9295 */
9296void md_check_recovery(struct mddev *mddev)
9297{
9298 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9299 /* Write superblock - thread that called mddev_suspend()
9300 * holds reconfig_mutex for us.
9301 */
9302 set_bit(MD_UPDATING_SB, &mddev->flags);
9303 smp_mb__after_atomic();
9304 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9305 md_update_sb(mddev, 0);
9306 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9307 wake_up(&mddev->sb_wait);
9308 }
9309
9310 if (is_md_suspended(mddev))
9311 return;
9312
9313 if (mddev->bitmap)
9314 md_bitmap_daemon_work(mddev);
9315
9316 if (signal_pending(current)) {
9317 if (mddev->pers->sync_request && !mddev->external) {
9318 pr_debug("md: %s in immediate safe mode\n",
9319 mdname(mddev));
9320 mddev->safemode = 2;
9321 }
9322 flush_signals(current);
9323 }
9324
9325 if (!md_is_rdwr(mddev) &&
9326 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9327 return;
9328 if ( ! (
9329 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9330 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9331 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9332 (mddev->external == 0 && mddev->safemode == 1) ||
9333 (mddev->safemode == 2
9334 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9335 ))
9336 return;
9337
9338 if (mddev_trylock(mddev)) {
9339 int spares = 0;
9340 bool try_set_sync = mddev->safemode != 0;
9341
9342 if (!mddev->external && mddev->safemode == 1)
9343 mddev->safemode = 0;
9344
9345 if (!md_is_rdwr(mddev)) {
9346 struct md_rdev *rdev;
9347 if (!mddev->external && mddev->in_sync)
9348 /* 'Blocked' flag not needed as failed devices
9349 * will be recorded if array switched to read/write.
9350 * Leaving it set will prevent the device
9351 * from being removed.
9352 */
9353 rdev_for_each(rdev, mddev)
9354 clear_bit(Blocked, &rdev->flags);
9355 /* On a read-only array we can:
9356 * - remove failed devices
9357 * - add already-in_sync devices if the array itself
9358 * is in-sync.
9359 * As we only add devices that are already in-sync,
9360 * we can activate the spares immediately.
9361 */
9362 remove_and_add_spares(mddev, NULL);
9363 /* There is no thread, but we need to call
9364 * ->spare_active and clear saved_raid_disk
9365 */
9366 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9367 md_reap_sync_thread(mddev);
9368 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9369 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9370 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9371 goto unlock;
9372 }
9373
9374 if (mddev_is_clustered(mddev)) {
9375 struct md_rdev *rdev, *tmp;
9376 /* kick the device if another node issued a
9377 * remove disk.
9378 */
9379 rdev_for_each_safe(rdev, tmp, mddev) {
9380 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9381 rdev->raid_disk < 0)
9382 md_kick_rdev_from_array(rdev);
9383 }
9384 }
9385
9386 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9387 spin_lock(&mddev->lock);
9388 set_in_sync(mddev);
9389 spin_unlock(&mddev->lock);
9390 }
9391
9392 if (mddev->sb_flags)
9393 md_update_sb(mddev, 0);
9394
9395 /*
9396 * Never start a new sync thread if MD_RECOVERY_RUNNING is
9397 * still set.
9398 */
9399 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
9400 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9401 /* resync/recovery still happening */
9402 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9403 goto unlock;
9404 }
9405
9406 if (WARN_ON_ONCE(!mddev->sync_thread))
9407 goto unlock;
9408
9409 md_reap_sync_thread(mddev);
9410 goto unlock;
9411 }
9412
9413 /* Set RUNNING before clearing NEEDED to avoid
9414 * any transients in the value of "sync_action".
9415 */
9416 mddev->curr_resync_completed = 0;
9417 spin_lock(&mddev->lock);
9418 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9419 spin_unlock(&mddev->lock);
9420 /* Clear some bits that don't mean anything, but
9421 * might be left set
9422 */
9423 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9424 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9425
9426 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9427 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9428 goto not_running;
9429 /* no recovery is running.
9430 * remove any failed drives, then
9431 * add spares if possible.
9432 * Spares are also removed and re-added, to allow
9433 * the personality to fail the re-add.
9434 */
9435
9436 if (mddev->reshape_position != MaxSector) {
9437 if (mddev->pers->check_reshape == NULL ||
9438 mddev->pers->check_reshape(mddev) != 0)
9439 /* Cannot proceed */
9440 goto not_running;
9441 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9442 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9443 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9444 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9445 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9446 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9447 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9448 } else if (mddev->recovery_cp < MaxSector) {
9449 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9450 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9451 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9452 /* nothing to be done ... */
9453 goto not_running;
9454
9455 if (mddev->pers->sync_request) {
9456 if (spares) {
9457 /* We are adding a device or devices to an array
9458 * which has the bitmap stored on all devices.
9459 * So make sure all bitmap pages get written
9460 */
9461 md_bitmap_write_all(mddev->bitmap);
9462 }
9463 INIT_WORK(&mddev->del_work, md_start_sync);
9464 queue_work(md_misc_wq, &mddev->del_work);
9465 goto unlock;
9466 }
9467 not_running:
9468 if (!mddev->sync_thread) {
9469 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9470 wake_up(&resync_wait);
9471 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9472 &mddev->recovery))
9473 if (mddev->sysfs_action)
9474 sysfs_notify_dirent_safe(mddev->sysfs_action);
9475 }
9476 unlock:
9477 wake_up(&mddev->sb_wait);
9478 mddev_unlock(mddev);
9479 }
9480}
9481EXPORT_SYMBOL(md_check_recovery);
9482
9483void md_reap_sync_thread(struct mddev *mddev)
9484{
9485 struct md_rdev *rdev;
9486 sector_t old_dev_sectors = mddev->dev_sectors;
9487 bool is_reshaped = false;
9488
9489 /* resync has finished, collect result */
9490 md_unregister_thread(mddev, &mddev->sync_thread);
9491 atomic_inc(&mddev->sync_seq);
9492
9493 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9494 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9495 mddev->degraded != mddev->raid_disks) {
9496 /* success...*/
9497 /* activate any spares */
9498 if (mddev->pers->spare_active(mddev)) {
9499 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9500 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9501 }
9502 }
9503 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9504 mddev->pers->finish_reshape) {
9505 mddev->pers->finish_reshape(mddev);
9506 if (mddev_is_clustered(mddev))
9507 is_reshaped = true;
9508 }
9509
9510 /* If array is no-longer degraded, then any saved_raid_disk
9511 * information must be scrapped.
9512 */
9513 if (!mddev->degraded)
9514 rdev_for_each(rdev, mddev)
9515 rdev->saved_raid_disk = -1;
9516
9517 md_update_sb(mddev, 1);
9518 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9519 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9520 * clustered raid */
9521 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9522 md_cluster_ops->resync_finish(mddev);
9523 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9524 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9525 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9526 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9527 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9528 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9529 /*
9530 * We call md_cluster_ops->update_size here because sync_size could
9531 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9532 * so it is time to update size across cluster.
9533 */
9534 if (mddev_is_clustered(mddev) && is_reshaped
9535 && !test_bit(MD_CLOSING, &mddev->flags))
9536 md_cluster_ops->update_size(mddev, old_dev_sectors);
9537 /* flag recovery needed just to double check */
9538 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9539 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9540 sysfs_notify_dirent_safe(mddev->sysfs_action);
9541 md_new_event();
9542 if (mddev->event_work.func)
9543 queue_work(md_misc_wq, &mddev->event_work);
9544 wake_up(&resync_wait);
9545}
9546EXPORT_SYMBOL(md_reap_sync_thread);
9547
9548void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9549{
9550 sysfs_notify_dirent_safe(rdev->sysfs_state);
9551 wait_event_timeout(rdev->blocked_wait,
9552 !test_bit(Blocked, &rdev->flags) &&
9553 !test_bit(BlockedBadBlocks, &rdev->flags),
9554 msecs_to_jiffies(5000));
9555 rdev_dec_pending(rdev, mddev);
9556}
9557EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9558
9559void md_finish_reshape(struct mddev *mddev)
9560{
9561 /* called be personality module when reshape completes. */
9562 struct md_rdev *rdev;
9563
9564 rdev_for_each(rdev, mddev) {
9565 if (rdev->data_offset > rdev->new_data_offset)
9566 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9567 else
9568 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9569 rdev->data_offset = rdev->new_data_offset;
9570 }
9571}
9572EXPORT_SYMBOL(md_finish_reshape);
9573
9574/* Bad block management */
9575
9576/* Returns 1 on success, 0 on failure */
9577int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9578 int is_new)
9579{
9580 struct mddev *mddev = rdev->mddev;
9581 int rv;
9582 if (is_new)
9583 s += rdev->new_data_offset;
9584 else
9585 s += rdev->data_offset;
9586 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9587 if (rv == 0) {
9588 /* Make sure they get written out promptly */
9589 if (test_bit(ExternalBbl, &rdev->flags))
9590 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9591 sysfs_notify_dirent_safe(rdev->sysfs_state);
9592 set_mask_bits(&mddev->sb_flags, 0,
9593 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9594 md_wakeup_thread(rdev->mddev->thread);
9595 return 1;
9596 } else
9597 return 0;
9598}
9599EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9600
9601int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9602 int is_new)
9603{
9604 int rv;
9605 if (is_new)
9606 s += rdev->new_data_offset;
9607 else
9608 s += rdev->data_offset;
9609 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9610 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9611 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9612 return rv;
9613}
9614EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9615
9616static int md_notify_reboot(struct notifier_block *this,
9617 unsigned long code, void *x)
9618{
9619 struct mddev *mddev, *n;
9620 int need_delay = 0;
9621
9622 spin_lock(&all_mddevs_lock);
9623 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
9624 if (!mddev_get(mddev))
9625 continue;
9626 spin_unlock(&all_mddevs_lock);
9627 if (mddev_trylock(mddev)) {
9628 if (mddev->pers)
9629 __md_stop_writes(mddev);
9630 if (mddev->persistent)
9631 mddev->safemode = 2;
9632 mddev_unlock(mddev);
9633 }
9634 need_delay = 1;
9635 mddev_put(mddev);
9636 spin_lock(&all_mddevs_lock);
9637 }
9638 spin_unlock(&all_mddevs_lock);
9639
9640 /*
9641 * certain more exotic SCSI devices are known to be
9642 * volatile wrt too early system reboots. While the
9643 * right place to handle this issue is the given
9644 * driver, we do want to have a safe RAID driver ...
9645 */
9646 if (need_delay)
9647 msleep(1000);
9648
9649 return NOTIFY_DONE;
9650}
9651
9652static struct notifier_block md_notifier = {
9653 .notifier_call = md_notify_reboot,
9654 .next = NULL,
9655 .priority = INT_MAX, /* before any real devices */
9656};
9657
9658static void md_geninit(void)
9659{
9660 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9661
9662 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9663}
9664
9665static int __init md_init(void)
9666{
9667 int ret = -ENOMEM;
9668
9669 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9670 if (!md_wq)
9671 goto err_wq;
9672
9673 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9674 if (!md_misc_wq)
9675 goto err_misc_wq;
9676
9677 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND,
9678 0);
9679 if (!md_bitmap_wq)
9680 goto err_bitmap_wq;
9681
9682 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9683 if (ret < 0)
9684 goto err_md;
9685
9686 ret = __register_blkdev(0, "mdp", md_probe);
9687 if (ret < 0)
9688 goto err_mdp;
9689 mdp_major = ret;
9690
9691 register_reboot_notifier(&md_notifier);
9692 raid_table_header = register_sysctl("dev/raid", raid_table);
9693
9694 md_geninit();
9695 return 0;
9696
9697err_mdp:
9698 unregister_blkdev(MD_MAJOR, "md");
9699err_md:
9700 destroy_workqueue(md_bitmap_wq);
9701err_bitmap_wq:
9702 destroy_workqueue(md_misc_wq);
9703err_misc_wq:
9704 destroy_workqueue(md_wq);
9705err_wq:
9706 return ret;
9707}
9708
9709static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9710{
9711 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9712 struct md_rdev *rdev2, *tmp;
9713 int role, ret;
9714
9715 /*
9716 * If size is changed in another node then we need to
9717 * do resize as well.
9718 */
9719 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9720 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9721 if (ret)
9722 pr_info("md-cluster: resize failed\n");
9723 else
9724 md_bitmap_update_sb(mddev->bitmap);
9725 }
9726
9727 /* Check for change of roles in the active devices */
9728 rdev_for_each_safe(rdev2, tmp, mddev) {
9729 if (test_bit(Faulty, &rdev2->flags))
9730 continue;
9731
9732 /* Check if the roles changed */
9733 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9734
9735 if (test_bit(Candidate, &rdev2->flags)) {
9736 if (role == MD_DISK_ROLE_FAULTY) {
9737 pr_info("md: Removing Candidate device %pg because add failed\n",
9738 rdev2->bdev);
9739 md_kick_rdev_from_array(rdev2);
9740 continue;
9741 }
9742 else
9743 clear_bit(Candidate, &rdev2->flags);
9744 }
9745
9746 if (role != rdev2->raid_disk) {
9747 /*
9748 * got activated except reshape is happening.
9749 */
9750 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE &&
9751 !(le32_to_cpu(sb->feature_map) &
9752 MD_FEATURE_RESHAPE_ACTIVE)) {
9753 rdev2->saved_raid_disk = role;
9754 ret = remove_and_add_spares(mddev, rdev2);
9755 pr_info("Activated spare: %pg\n",
9756 rdev2->bdev);
9757 /* wakeup mddev->thread here, so array could
9758 * perform resync with the new activated disk */
9759 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9760 md_wakeup_thread(mddev->thread);
9761 }
9762 /* device faulty
9763 * We just want to do the minimum to mark the disk
9764 * as faulty. The recovery is performed by the
9765 * one who initiated the error.
9766 */
9767 if (role == MD_DISK_ROLE_FAULTY ||
9768 role == MD_DISK_ROLE_JOURNAL) {
9769 md_error(mddev, rdev2);
9770 clear_bit(Blocked, &rdev2->flags);
9771 }
9772 }
9773 }
9774
9775 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9776 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9777 if (ret)
9778 pr_warn("md: updating array disks failed. %d\n", ret);
9779 }
9780
9781 /*
9782 * Since mddev->delta_disks has already updated in update_raid_disks,
9783 * so it is time to check reshape.
9784 */
9785 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9786 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9787 /*
9788 * reshape is happening in the remote node, we need to
9789 * update reshape_position and call start_reshape.
9790 */
9791 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9792 if (mddev->pers->update_reshape_pos)
9793 mddev->pers->update_reshape_pos(mddev);
9794 if (mddev->pers->start_reshape)
9795 mddev->pers->start_reshape(mddev);
9796 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9797 mddev->reshape_position != MaxSector &&
9798 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9799 /* reshape is just done in another node. */
9800 mddev->reshape_position = MaxSector;
9801 if (mddev->pers->update_reshape_pos)
9802 mddev->pers->update_reshape_pos(mddev);
9803 }
9804
9805 /* Finally set the event to be up to date */
9806 mddev->events = le64_to_cpu(sb->events);
9807}
9808
9809static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9810{
9811 int err;
9812 struct page *swapout = rdev->sb_page;
9813 struct mdp_superblock_1 *sb;
9814
9815 /* Store the sb page of the rdev in the swapout temporary
9816 * variable in case we err in the future
9817 */
9818 rdev->sb_page = NULL;
9819 err = alloc_disk_sb(rdev);
9820 if (err == 0) {
9821 ClearPageUptodate(rdev->sb_page);
9822 rdev->sb_loaded = 0;
9823 err = super_types[mddev->major_version].
9824 load_super(rdev, NULL, mddev->minor_version);
9825 }
9826 if (err < 0) {
9827 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9828 __func__, __LINE__, rdev->desc_nr, err);
9829 if (rdev->sb_page)
9830 put_page(rdev->sb_page);
9831 rdev->sb_page = swapout;
9832 rdev->sb_loaded = 1;
9833 return err;
9834 }
9835
9836 sb = page_address(rdev->sb_page);
9837 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9838 * is not set
9839 */
9840
9841 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9842 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9843
9844 /* The other node finished recovery, call spare_active to set
9845 * device In_sync and mddev->degraded
9846 */
9847 if (rdev->recovery_offset == MaxSector &&
9848 !test_bit(In_sync, &rdev->flags) &&
9849 mddev->pers->spare_active(mddev))
9850 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9851
9852 put_page(swapout);
9853 return 0;
9854}
9855
9856void md_reload_sb(struct mddev *mddev, int nr)
9857{
9858 struct md_rdev *rdev = NULL, *iter;
9859 int err;
9860
9861 /* Find the rdev */
9862 rdev_for_each_rcu(iter, mddev) {
9863 if (iter->desc_nr == nr) {
9864 rdev = iter;
9865 break;
9866 }
9867 }
9868
9869 if (!rdev) {
9870 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9871 return;
9872 }
9873
9874 err = read_rdev(mddev, rdev);
9875 if (err < 0)
9876 return;
9877
9878 check_sb_changes(mddev, rdev);
9879
9880 /* Read all rdev's to update recovery_offset */
9881 rdev_for_each_rcu(rdev, mddev) {
9882 if (!test_bit(Faulty, &rdev->flags))
9883 read_rdev(mddev, rdev);
9884 }
9885}
9886EXPORT_SYMBOL(md_reload_sb);
9887
9888#ifndef MODULE
9889
9890/*
9891 * Searches all registered partitions for autorun RAID arrays
9892 * at boot time.
9893 */
9894
9895static DEFINE_MUTEX(detected_devices_mutex);
9896static LIST_HEAD(all_detected_devices);
9897struct detected_devices_node {
9898 struct list_head list;
9899 dev_t dev;
9900};
9901
9902void md_autodetect_dev(dev_t dev)
9903{
9904 struct detected_devices_node *node_detected_dev;
9905
9906 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9907 if (node_detected_dev) {
9908 node_detected_dev->dev = dev;
9909 mutex_lock(&detected_devices_mutex);
9910 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9911 mutex_unlock(&detected_devices_mutex);
9912 }
9913}
9914
9915void md_autostart_arrays(int part)
9916{
9917 struct md_rdev *rdev;
9918 struct detected_devices_node *node_detected_dev;
9919 dev_t dev;
9920 int i_scanned, i_passed;
9921
9922 i_scanned = 0;
9923 i_passed = 0;
9924
9925 pr_info("md: Autodetecting RAID arrays.\n");
9926
9927 mutex_lock(&detected_devices_mutex);
9928 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9929 i_scanned++;
9930 node_detected_dev = list_entry(all_detected_devices.next,
9931 struct detected_devices_node, list);
9932 list_del(&node_detected_dev->list);
9933 dev = node_detected_dev->dev;
9934 kfree(node_detected_dev);
9935 mutex_unlock(&detected_devices_mutex);
9936 rdev = md_import_device(dev,0, 90);
9937 mutex_lock(&detected_devices_mutex);
9938 if (IS_ERR(rdev))
9939 continue;
9940
9941 if (test_bit(Faulty, &rdev->flags))
9942 continue;
9943
9944 set_bit(AutoDetected, &rdev->flags);
9945 list_add(&rdev->same_set, &pending_raid_disks);
9946 i_passed++;
9947 }
9948 mutex_unlock(&detected_devices_mutex);
9949
9950 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9951
9952 autorun_devices(part);
9953}
9954
9955#endif /* !MODULE */
9956
9957static __exit void md_exit(void)
9958{
9959 struct mddev *mddev, *n;
9960 int delay = 1;
9961
9962 unregister_blkdev(MD_MAJOR,"md");
9963 unregister_blkdev(mdp_major, "mdp");
9964 unregister_reboot_notifier(&md_notifier);
9965 unregister_sysctl_table(raid_table_header);
9966
9967 /* We cannot unload the modules while some process is
9968 * waiting for us in select() or poll() - wake them up
9969 */
9970 md_unloading = 1;
9971 while (waitqueue_active(&md_event_waiters)) {
9972 /* not safe to leave yet */
9973 wake_up(&md_event_waiters);
9974 msleep(delay);
9975 delay += delay;
9976 }
9977 remove_proc_entry("mdstat", NULL);
9978
9979 spin_lock(&all_mddevs_lock);
9980 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
9981 if (!mddev_get(mddev))
9982 continue;
9983 spin_unlock(&all_mddevs_lock);
9984 export_array(mddev);
9985 mddev->ctime = 0;
9986 mddev->hold_active = 0;
9987 /*
9988 * As the mddev is now fully clear, mddev_put will schedule
9989 * the mddev for destruction by a workqueue, and the
9990 * destroy_workqueue() below will wait for that to complete.
9991 */
9992 mddev_put(mddev);
9993 spin_lock(&all_mddevs_lock);
9994 }
9995 spin_unlock(&all_mddevs_lock);
9996
9997 destroy_workqueue(md_misc_wq);
9998 destroy_workqueue(md_bitmap_wq);
9999 destroy_workqueue(md_wq);
10000}
10001
10002subsys_initcall(md_init);
10003module_exit(md_exit)
10004
10005static int get_ro(char *buffer, const struct kernel_param *kp)
10006{
10007 return sprintf(buffer, "%d\n", start_readonly);
10008}
10009static int set_ro(const char *val, const struct kernel_param *kp)
10010{
10011 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
10012}
10013
10014module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
10015module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
10016module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
10017module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
10018
10019MODULE_LICENSE("GPL");
10020MODULE_DESCRIPTION("MD RAID framework");
10021MODULE_ALIAS("md");
10022MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);