Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55#include <linux/bpf-cgroup.h>
56#include <linux/ethtool.h>
57#include <linux/mm.h>
58#include <linux/socket.h>
59#include <linux/file.h>
60#include <linux/splice.h>
61#include <linux/net.h>
62#include <linux/interrupt.h>
63#include <linux/thread_info.h>
64#include <linux/rcupdate.h>
65#include <linux/netdevice.h>
66#include <linux/proc_fs.h>
67#include <linux/seq_file.h>
68#include <linux/mutex.h>
69#include <linux/if_bridge.h>
70#include <linux/if_vlan.h>
71#include <linux/ptp_classify.h>
72#include <linux/init.h>
73#include <linux/poll.h>
74#include <linux/cache.h>
75#include <linux/module.h>
76#include <linux/highmem.h>
77#include <linux/mount.h>
78#include <linux/pseudo_fs.h>
79#include <linux/security.h>
80#include <linux/syscalls.h>
81#include <linux/compat.h>
82#include <linux/kmod.h>
83#include <linux/audit.h>
84#include <linux/wireless.h>
85#include <linux/nsproxy.h>
86#include <linux/magic.h>
87#include <linux/slab.h>
88#include <linux/xattr.h>
89#include <linux/nospec.h>
90#include <linux/indirect_call_wrapper.h>
91
92#include <linux/uaccess.h>
93#include <asm/unistd.h>
94
95#include <net/compat.h>
96#include <net/wext.h>
97#include <net/cls_cgroup.h>
98
99#include <net/sock.h>
100#include <linux/netfilter.h>
101
102#include <linux/if_tun.h>
103#include <linux/ipv6_route.h>
104#include <linux/route.h>
105#include <linux/termios.h>
106#include <linux/sockios.h>
107#include <net/busy_poll.h>
108#include <linux/errqueue.h>
109#include <linux/ptp_clock_kernel.h>
110#include <trace/events/sock.h>
111
112#ifdef CONFIG_NET_RX_BUSY_POLL
113unsigned int sysctl_net_busy_read __read_mostly;
114unsigned int sysctl_net_busy_poll __read_mostly;
115#endif
116
117static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
118static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
119static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120
121static int sock_close(struct inode *inode, struct file *file);
122static __poll_t sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125#ifdef CONFIG_COMPAT
126static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128#endif
129static int sock_fasync(int fd, struct file *filp, int on);
130static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 struct pipe_inode_info *pipe, size_t len,
132 unsigned int flags);
133static void sock_splice_eof(struct file *file);
134
135#ifdef CONFIG_PROC_FS
136static void sock_show_fdinfo(struct seq_file *m, struct file *f)
137{
138 struct socket *sock = f->private_data;
139
140 if (sock->ops->show_fdinfo)
141 sock->ops->show_fdinfo(m, sock);
142}
143#else
144#define sock_show_fdinfo NULL
145#endif
146
147/*
148 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
149 * in the operation structures but are done directly via the socketcall() multiplexor.
150 */
151
152static const struct file_operations socket_file_ops = {
153 .owner = THIS_MODULE,
154 .llseek = no_llseek,
155 .read_iter = sock_read_iter,
156 .write_iter = sock_write_iter,
157 .poll = sock_poll,
158 .unlocked_ioctl = sock_ioctl,
159#ifdef CONFIG_COMPAT
160 .compat_ioctl = compat_sock_ioctl,
161#endif
162 .mmap = sock_mmap,
163 .release = sock_close,
164 .fasync = sock_fasync,
165 .splice_write = splice_to_socket,
166 .splice_read = sock_splice_read,
167 .splice_eof = sock_splice_eof,
168 .show_fdinfo = sock_show_fdinfo,
169};
170
171static const char * const pf_family_names[] = {
172 [PF_UNSPEC] = "PF_UNSPEC",
173 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
174 [PF_INET] = "PF_INET",
175 [PF_AX25] = "PF_AX25",
176 [PF_IPX] = "PF_IPX",
177 [PF_APPLETALK] = "PF_APPLETALK",
178 [PF_NETROM] = "PF_NETROM",
179 [PF_BRIDGE] = "PF_BRIDGE",
180 [PF_ATMPVC] = "PF_ATMPVC",
181 [PF_X25] = "PF_X25",
182 [PF_INET6] = "PF_INET6",
183 [PF_ROSE] = "PF_ROSE",
184 [PF_DECnet] = "PF_DECnet",
185 [PF_NETBEUI] = "PF_NETBEUI",
186 [PF_SECURITY] = "PF_SECURITY",
187 [PF_KEY] = "PF_KEY",
188 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
189 [PF_PACKET] = "PF_PACKET",
190 [PF_ASH] = "PF_ASH",
191 [PF_ECONET] = "PF_ECONET",
192 [PF_ATMSVC] = "PF_ATMSVC",
193 [PF_RDS] = "PF_RDS",
194 [PF_SNA] = "PF_SNA",
195 [PF_IRDA] = "PF_IRDA",
196 [PF_PPPOX] = "PF_PPPOX",
197 [PF_WANPIPE] = "PF_WANPIPE",
198 [PF_LLC] = "PF_LLC",
199 [PF_IB] = "PF_IB",
200 [PF_MPLS] = "PF_MPLS",
201 [PF_CAN] = "PF_CAN",
202 [PF_TIPC] = "PF_TIPC",
203 [PF_BLUETOOTH] = "PF_BLUETOOTH",
204 [PF_IUCV] = "PF_IUCV",
205 [PF_RXRPC] = "PF_RXRPC",
206 [PF_ISDN] = "PF_ISDN",
207 [PF_PHONET] = "PF_PHONET",
208 [PF_IEEE802154] = "PF_IEEE802154",
209 [PF_CAIF] = "PF_CAIF",
210 [PF_ALG] = "PF_ALG",
211 [PF_NFC] = "PF_NFC",
212 [PF_VSOCK] = "PF_VSOCK",
213 [PF_KCM] = "PF_KCM",
214 [PF_QIPCRTR] = "PF_QIPCRTR",
215 [PF_SMC] = "PF_SMC",
216 [PF_XDP] = "PF_XDP",
217 [PF_MCTP] = "PF_MCTP",
218};
219
220/*
221 * The protocol list. Each protocol is registered in here.
222 */
223
224static DEFINE_SPINLOCK(net_family_lock);
225static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
226
227/*
228 * Support routines.
229 * Move socket addresses back and forth across the kernel/user
230 * divide and look after the messy bits.
231 */
232
233/**
234 * move_addr_to_kernel - copy a socket address into kernel space
235 * @uaddr: Address in user space
236 * @kaddr: Address in kernel space
237 * @ulen: Length in user space
238 *
239 * The address is copied into kernel space. If the provided address is
240 * too long an error code of -EINVAL is returned. If the copy gives
241 * invalid addresses -EFAULT is returned. On a success 0 is returned.
242 */
243
244int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
245{
246 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
247 return -EINVAL;
248 if (ulen == 0)
249 return 0;
250 if (copy_from_user(kaddr, uaddr, ulen))
251 return -EFAULT;
252 return audit_sockaddr(ulen, kaddr);
253}
254
255/**
256 * move_addr_to_user - copy an address to user space
257 * @kaddr: kernel space address
258 * @klen: length of address in kernel
259 * @uaddr: user space address
260 * @ulen: pointer to user length field
261 *
262 * The value pointed to by ulen on entry is the buffer length available.
263 * This is overwritten with the buffer space used. -EINVAL is returned
264 * if an overlong buffer is specified or a negative buffer size. -EFAULT
265 * is returned if either the buffer or the length field are not
266 * accessible.
267 * After copying the data up to the limit the user specifies, the true
268 * length of the data is written over the length limit the user
269 * specified. Zero is returned for a success.
270 */
271
272static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
273 void __user *uaddr, int __user *ulen)
274{
275 int err;
276 int len;
277
278 BUG_ON(klen > sizeof(struct sockaddr_storage));
279 err = get_user(len, ulen);
280 if (err)
281 return err;
282 if (len > klen)
283 len = klen;
284 if (len < 0)
285 return -EINVAL;
286 if (len) {
287 if (audit_sockaddr(klen, kaddr))
288 return -ENOMEM;
289 if (copy_to_user(uaddr, kaddr, len))
290 return -EFAULT;
291 }
292 /*
293 * "fromlen shall refer to the value before truncation.."
294 * 1003.1g
295 */
296 return __put_user(klen, ulen);
297}
298
299static struct kmem_cache *sock_inode_cachep __ro_after_init;
300
301static struct inode *sock_alloc_inode(struct super_block *sb)
302{
303 struct socket_alloc *ei;
304
305 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
306 if (!ei)
307 return NULL;
308 init_waitqueue_head(&ei->socket.wq.wait);
309 ei->socket.wq.fasync_list = NULL;
310 ei->socket.wq.flags = 0;
311
312 ei->socket.state = SS_UNCONNECTED;
313 ei->socket.flags = 0;
314 ei->socket.ops = NULL;
315 ei->socket.sk = NULL;
316 ei->socket.file = NULL;
317
318 return &ei->vfs_inode;
319}
320
321static void sock_free_inode(struct inode *inode)
322{
323 struct socket_alloc *ei;
324
325 ei = container_of(inode, struct socket_alloc, vfs_inode);
326 kmem_cache_free(sock_inode_cachep, ei);
327}
328
329static void init_once(void *foo)
330{
331 struct socket_alloc *ei = (struct socket_alloc *)foo;
332
333 inode_init_once(&ei->vfs_inode);
334}
335
336static void init_inodecache(void)
337{
338 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
339 sizeof(struct socket_alloc),
340 0,
341 (SLAB_HWCACHE_ALIGN |
342 SLAB_RECLAIM_ACCOUNT |
343 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
344 init_once);
345 BUG_ON(sock_inode_cachep == NULL);
346}
347
348static const struct super_operations sockfs_ops = {
349 .alloc_inode = sock_alloc_inode,
350 .free_inode = sock_free_inode,
351 .statfs = simple_statfs,
352};
353
354/*
355 * sockfs_dname() is called from d_path().
356 */
357static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
358{
359 return dynamic_dname(buffer, buflen, "socket:[%lu]",
360 d_inode(dentry)->i_ino);
361}
362
363static const struct dentry_operations sockfs_dentry_operations = {
364 .d_dname = sockfs_dname,
365};
366
367static int sockfs_xattr_get(const struct xattr_handler *handler,
368 struct dentry *dentry, struct inode *inode,
369 const char *suffix, void *value, size_t size)
370{
371 if (value) {
372 if (dentry->d_name.len + 1 > size)
373 return -ERANGE;
374 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
375 }
376 return dentry->d_name.len + 1;
377}
378
379#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
380#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
381#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
382
383static const struct xattr_handler sockfs_xattr_handler = {
384 .name = XATTR_NAME_SOCKPROTONAME,
385 .get = sockfs_xattr_get,
386};
387
388static int sockfs_security_xattr_set(const struct xattr_handler *handler,
389 struct mnt_idmap *idmap,
390 struct dentry *dentry, struct inode *inode,
391 const char *suffix, const void *value,
392 size_t size, int flags)
393{
394 /* Handled by LSM. */
395 return -EAGAIN;
396}
397
398static const struct xattr_handler sockfs_security_xattr_handler = {
399 .prefix = XATTR_SECURITY_PREFIX,
400 .set = sockfs_security_xattr_set,
401};
402
403static const struct xattr_handler *sockfs_xattr_handlers[] = {
404 &sockfs_xattr_handler,
405 &sockfs_security_xattr_handler,
406 NULL
407};
408
409static int sockfs_init_fs_context(struct fs_context *fc)
410{
411 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
412 if (!ctx)
413 return -ENOMEM;
414 ctx->ops = &sockfs_ops;
415 ctx->dops = &sockfs_dentry_operations;
416 ctx->xattr = sockfs_xattr_handlers;
417 return 0;
418}
419
420static struct vfsmount *sock_mnt __read_mostly;
421
422static struct file_system_type sock_fs_type = {
423 .name = "sockfs",
424 .init_fs_context = sockfs_init_fs_context,
425 .kill_sb = kill_anon_super,
426};
427
428/*
429 * Obtains the first available file descriptor and sets it up for use.
430 *
431 * These functions create file structures and maps them to fd space
432 * of the current process. On success it returns file descriptor
433 * and file struct implicitly stored in sock->file.
434 * Note that another thread may close file descriptor before we return
435 * from this function. We use the fact that now we do not refer
436 * to socket after mapping. If one day we will need it, this
437 * function will increment ref. count on file by 1.
438 *
439 * In any case returned fd MAY BE not valid!
440 * This race condition is unavoidable
441 * with shared fd spaces, we cannot solve it inside kernel,
442 * but we take care of internal coherence yet.
443 */
444
445/**
446 * sock_alloc_file - Bind a &socket to a &file
447 * @sock: socket
448 * @flags: file status flags
449 * @dname: protocol name
450 *
451 * Returns the &file bound with @sock, implicitly storing it
452 * in sock->file. If dname is %NULL, sets to "".
453 *
454 * On failure @sock is released, and an ERR pointer is returned.
455 *
456 * This function uses GFP_KERNEL internally.
457 */
458
459struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
460{
461 struct file *file;
462
463 if (!dname)
464 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
465
466 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
467 O_RDWR | (flags & O_NONBLOCK),
468 &socket_file_ops);
469 if (IS_ERR(file)) {
470 sock_release(sock);
471 return file;
472 }
473
474 file->f_mode |= FMODE_NOWAIT;
475 sock->file = file;
476 file->private_data = sock;
477 stream_open(SOCK_INODE(sock), file);
478 return file;
479}
480EXPORT_SYMBOL(sock_alloc_file);
481
482static int sock_map_fd(struct socket *sock, int flags)
483{
484 struct file *newfile;
485 int fd = get_unused_fd_flags(flags);
486 if (unlikely(fd < 0)) {
487 sock_release(sock);
488 return fd;
489 }
490
491 newfile = sock_alloc_file(sock, flags, NULL);
492 if (!IS_ERR(newfile)) {
493 fd_install(fd, newfile);
494 return fd;
495 }
496
497 put_unused_fd(fd);
498 return PTR_ERR(newfile);
499}
500
501/**
502 * sock_from_file - Return the &socket bounded to @file.
503 * @file: file
504 *
505 * On failure returns %NULL.
506 */
507
508struct socket *sock_from_file(struct file *file)
509{
510 if (file->f_op == &socket_file_ops)
511 return file->private_data; /* set in sock_alloc_file */
512
513 return NULL;
514}
515EXPORT_SYMBOL(sock_from_file);
516
517/**
518 * sockfd_lookup - Go from a file number to its socket slot
519 * @fd: file handle
520 * @err: pointer to an error code return
521 *
522 * The file handle passed in is locked and the socket it is bound
523 * to is returned. If an error occurs the err pointer is overwritten
524 * with a negative errno code and NULL is returned. The function checks
525 * for both invalid handles and passing a handle which is not a socket.
526 *
527 * On a success the socket object pointer is returned.
528 */
529
530struct socket *sockfd_lookup(int fd, int *err)
531{
532 struct file *file;
533 struct socket *sock;
534
535 file = fget(fd);
536 if (!file) {
537 *err = -EBADF;
538 return NULL;
539 }
540
541 sock = sock_from_file(file);
542 if (!sock) {
543 *err = -ENOTSOCK;
544 fput(file);
545 }
546 return sock;
547}
548EXPORT_SYMBOL(sockfd_lookup);
549
550static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
551{
552 struct fd f = fdget(fd);
553 struct socket *sock;
554
555 *err = -EBADF;
556 if (f.file) {
557 sock = sock_from_file(f.file);
558 if (likely(sock)) {
559 *fput_needed = f.flags & FDPUT_FPUT;
560 return sock;
561 }
562 *err = -ENOTSOCK;
563 fdput(f);
564 }
565 return NULL;
566}
567
568static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
569 size_t size)
570{
571 ssize_t len;
572 ssize_t used = 0;
573
574 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
575 if (len < 0)
576 return len;
577 used += len;
578 if (buffer) {
579 if (size < used)
580 return -ERANGE;
581 buffer += len;
582 }
583
584 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
585 used += len;
586 if (buffer) {
587 if (size < used)
588 return -ERANGE;
589 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
590 buffer += len;
591 }
592
593 return used;
594}
595
596static int sockfs_setattr(struct mnt_idmap *idmap,
597 struct dentry *dentry, struct iattr *iattr)
598{
599 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
600
601 if (!err && (iattr->ia_valid & ATTR_UID)) {
602 struct socket *sock = SOCKET_I(d_inode(dentry));
603
604 if (sock->sk)
605 sock->sk->sk_uid = iattr->ia_uid;
606 else
607 err = -ENOENT;
608 }
609
610 return err;
611}
612
613static const struct inode_operations sockfs_inode_ops = {
614 .listxattr = sockfs_listxattr,
615 .setattr = sockfs_setattr,
616};
617
618/**
619 * sock_alloc - allocate a socket
620 *
621 * Allocate a new inode and socket object. The two are bound together
622 * and initialised. The socket is then returned. If we are out of inodes
623 * NULL is returned. This functions uses GFP_KERNEL internally.
624 */
625
626struct socket *sock_alloc(void)
627{
628 struct inode *inode;
629 struct socket *sock;
630
631 inode = new_inode_pseudo(sock_mnt->mnt_sb);
632 if (!inode)
633 return NULL;
634
635 sock = SOCKET_I(inode);
636
637 inode->i_ino = get_next_ino();
638 inode->i_mode = S_IFSOCK | S_IRWXUGO;
639 inode->i_uid = current_fsuid();
640 inode->i_gid = current_fsgid();
641 inode->i_op = &sockfs_inode_ops;
642
643 return sock;
644}
645EXPORT_SYMBOL(sock_alloc);
646
647static void __sock_release(struct socket *sock, struct inode *inode)
648{
649 if (sock->ops) {
650 struct module *owner = sock->ops->owner;
651
652 if (inode)
653 inode_lock(inode);
654 sock->ops->release(sock);
655 sock->sk = NULL;
656 if (inode)
657 inode_unlock(inode);
658 sock->ops = NULL;
659 module_put(owner);
660 }
661
662 if (sock->wq.fasync_list)
663 pr_err("%s: fasync list not empty!\n", __func__);
664
665 if (!sock->file) {
666 iput(SOCK_INODE(sock));
667 return;
668 }
669 sock->file = NULL;
670}
671
672/**
673 * sock_release - close a socket
674 * @sock: socket to close
675 *
676 * The socket is released from the protocol stack if it has a release
677 * callback, and the inode is then released if the socket is bound to
678 * an inode not a file.
679 */
680void sock_release(struct socket *sock)
681{
682 __sock_release(sock, NULL);
683}
684EXPORT_SYMBOL(sock_release);
685
686void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
687{
688 u8 flags = *tx_flags;
689
690 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
691 flags |= SKBTX_HW_TSTAMP;
692
693 /* PTP hardware clocks can provide a free running cycle counter
694 * as a time base for virtual clocks. Tell driver to use the
695 * free running cycle counter for timestamp if socket is bound
696 * to virtual clock.
697 */
698 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
699 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
700 }
701
702 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
703 flags |= SKBTX_SW_TSTAMP;
704
705 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
706 flags |= SKBTX_SCHED_TSTAMP;
707
708 *tx_flags = flags;
709}
710EXPORT_SYMBOL(__sock_tx_timestamp);
711
712INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
713 size_t));
714INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
715 size_t));
716
717static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
718 int flags)
719{
720 trace_sock_send_length(sk, ret, 0);
721}
722
723static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
724{
725 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
726 inet_sendmsg, sock, msg,
727 msg_data_left(msg));
728 BUG_ON(ret == -EIOCBQUEUED);
729
730 if (trace_sock_send_length_enabled())
731 call_trace_sock_send_length(sock->sk, ret, 0);
732 return ret;
733}
734
735/**
736 * sock_sendmsg - send a message through @sock
737 * @sock: socket
738 * @msg: message to send
739 *
740 * Sends @msg through @sock, passing through LSM.
741 * Returns the number of bytes sent, or an error code.
742 */
743int sock_sendmsg(struct socket *sock, struct msghdr *msg)
744{
745 int err = security_socket_sendmsg(sock, msg,
746 msg_data_left(msg));
747
748 return err ?: sock_sendmsg_nosec(sock, msg);
749}
750EXPORT_SYMBOL(sock_sendmsg);
751
752/**
753 * kernel_sendmsg - send a message through @sock (kernel-space)
754 * @sock: socket
755 * @msg: message header
756 * @vec: kernel vec
757 * @num: vec array length
758 * @size: total message data size
759 *
760 * Builds the message data with @vec and sends it through @sock.
761 * Returns the number of bytes sent, or an error code.
762 */
763
764int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
765 struct kvec *vec, size_t num, size_t size)
766{
767 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
768 return sock_sendmsg(sock, msg);
769}
770EXPORT_SYMBOL(kernel_sendmsg);
771
772/**
773 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
774 * @sk: sock
775 * @msg: message header
776 * @vec: output s/g array
777 * @num: output s/g array length
778 * @size: total message data size
779 *
780 * Builds the message data with @vec and sends it through @sock.
781 * Returns the number of bytes sent, or an error code.
782 * Caller must hold @sk.
783 */
784
785int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
786 struct kvec *vec, size_t num, size_t size)
787{
788 struct socket *sock = sk->sk_socket;
789
790 if (!sock->ops->sendmsg_locked)
791 return sock_no_sendmsg_locked(sk, msg, size);
792
793 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
794
795 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
796}
797EXPORT_SYMBOL(kernel_sendmsg_locked);
798
799static bool skb_is_err_queue(const struct sk_buff *skb)
800{
801 /* pkt_type of skbs enqueued on the error queue are set to
802 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
803 * in recvmsg, since skbs received on a local socket will never
804 * have a pkt_type of PACKET_OUTGOING.
805 */
806 return skb->pkt_type == PACKET_OUTGOING;
807}
808
809/* On transmit, software and hardware timestamps are returned independently.
810 * As the two skb clones share the hardware timestamp, which may be updated
811 * before the software timestamp is received, a hardware TX timestamp may be
812 * returned only if there is no software TX timestamp. Ignore false software
813 * timestamps, which may be made in the __sock_recv_timestamp() call when the
814 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
815 * hardware timestamp.
816 */
817static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
818{
819 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
820}
821
822static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
823{
824 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
825 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
826 struct net_device *orig_dev;
827 ktime_t hwtstamp;
828
829 rcu_read_lock();
830 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
831 if (orig_dev) {
832 *if_index = orig_dev->ifindex;
833 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
834 } else {
835 hwtstamp = shhwtstamps->hwtstamp;
836 }
837 rcu_read_unlock();
838
839 return hwtstamp;
840}
841
842static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
843 int if_index)
844{
845 struct scm_ts_pktinfo ts_pktinfo;
846 struct net_device *orig_dev;
847
848 if (!skb_mac_header_was_set(skb))
849 return;
850
851 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
852
853 if (!if_index) {
854 rcu_read_lock();
855 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
856 if (orig_dev)
857 if_index = orig_dev->ifindex;
858 rcu_read_unlock();
859 }
860 ts_pktinfo.if_index = if_index;
861
862 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
863 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
864 sizeof(ts_pktinfo), &ts_pktinfo);
865}
866
867/*
868 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
869 */
870void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
871 struct sk_buff *skb)
872{
873 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
874 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
875 struct scm_timestamping_internal tss;
876
877 int empty = 1, false_tstamp = 0;
878 struct skb_shared_hwtstamps *shhwtstamps =
879 skb_hwtstamps(skb);
880 int if_index;
881 ktime_t hwtstamp;
882
883 /* Race occurred between timestamp enabling and packet
884 receiving. Fill in the current time for now. */
885 if (need_software_tstamp && skb->tstamp == 0) {
886 __net_timestamp(skb);
887 false_tstamp = 1;
888 }
889
890 if (need_software_tstamp) {
891 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
892 if (new_tstamp) {
893 struct __kernel_sock_timeval tv;
894
895 skb_get_new_timestamp(skb, &tv);
896 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
897 sizeof(tv), &tv);
898 } else {
899 struct __kernel_old_timeval tv;
900
901 skb_get_timestamp(skb, &tv);
902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
903 sizeof(tv), &tv);
904 }
905 } else {
906 if (new_tstamp) {
907 struct __kernel_timespec ts;
908
909 skb_get_new_timestampns(skb, &ts);
910 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
911 sizeof(ts), &ts);
912 } else {
913 struct __kernel_old_timespec ts;
914
915 skb_get_timestampns(skb, &ts);
916 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
917 sizeof(ts), &ts);
918 }
919 }
920 }
921
922 memset(&tss, 0, sizeof(tss));
923 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
924 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
925 empty = 0;
926 if (shhwtstamps &&
927 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
928 !skb_is_swtx_tstamp(skb, false_tstamp)) {
929 if_index = 0;
930 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
931 hwtstamp = get_timestamp(sk, skb, &if_index);
932 else
933 hwtstamp = shhwtstamps->hwtstamp;
934
935 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
936 hwtstamp = ptp_convert_timestamp(&hwtstamp,
937 sk->sk_bind_phc);
938
939 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
940 empty = 0;
941
942 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
943 !skb_is_err_queue(skb))
944 put_ts_pktinfo(msg, skb, if_index);
945 }
946 }
947 if (!empty) {
948 if (sock_flag(sk, SOCK_TSTAMP_NEW))
949 put_cmsg_scm_timestamping64(msg, &tss);
950 else
951 put_cmsg_scm_timestamping(msg, &tss);
952
953 if (skb_is_err_queue(skb) && skb->len &&
954 SKB_EXT_ERR(skb)->opt_stats)
955 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
956 skb->len, skb->data);
957 }
958}
959EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
960
961#ifdef CONFIG_WIRELESS
962void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
963 struct sk_buff *skb)
964{
965 int ack;
966
967 if (!sock_flag(sk, SOCK_WIFI_STATUS))
968 return;
969 if (!skb->wifi_acked_valid)
970 return;
971
972 ack = skb->wifi_acked;
973
974 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
975}
976EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
977#endif
978
979static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
980 struct sk_buff *skb)
981{
982 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
983 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
984 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
985}
986
987static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
988 struct sk_buff *skb)
989{
990 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
991 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
992 __u32 mark = skb->mark;
993
994 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
995 }
996}
997
998void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
999 struct sk_buff *skb)
1000{
1001 sock_recv_timestamp(msg, sk, skb);
1002 sock_recv_drops(msg, sk, skb);
1003 sock_recv_mark(msg, sk, skb);
1004}
1005EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1006
1007INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1008 size_t, int));
1009INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1010 size_t, int));
1011
1012static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1013{
1014 trace_sock_recv_length(sk, ret, flags);
1015}
1016
1017static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1018 int flags)
1019{
1020 int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
1021 inet_recvmsg, sock, msg,
1022 msg_data_left(msg), flags);
1023 if (trace_sock_recv_length_enabled())
1024 call_trace_sock_recv_length(sock->sk, ret, flags);
1025 return ret;
1026}
1027
1028/**
1029 * sock_recvmsg - receive a message from @sock
1030 * @sock: socket
1031 * @msg: message to receive
1032 * @flags: message flags
1033 *
1034 * Receives @msg from @sock, passing through LSM. Returns the total number
1035 * of bytes received, or an error.
1036 */
1037int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1038{
1039 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1040
1041 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1042}
1043EXPORT_SYMBOL(sock_recvmsg);
1044
1045/**
1046 * kernel_recvmsg - Receive a message from a socket (kernel space)
1047 * @sock: The socket to receive the message from
1048 * @msg: Received message
1049 * @vec: Input s/g array for message data
1050 * @num: Size of input s/g array
1051 * @size: Number of bytes to read
1052 * @flags: Message flags (MSG_DONTWAIT, etc...)
1053 *
1054 * On return the msg structure contains the scatter/gather array passed in the
1055 * vec argument. The array is modified so that it consists of the unfilled
1056 * portion of the original array.
1057 *
1058 * The returned value is the total number of bytes received, or an error.
1059 */
1060
1061int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1062 struct kvec *vec, size_t num, size_t size, int flags)
1063{
1064 msg->msg_control_is_user = false;
1065 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1066 return sock_recvmsg(sock, msg, flags);
1067}
1068EXPORT_SYMBOL(kernel_recvmsg);
1069
1070static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1071 struct pipe_inode_info *pipe, size_t len,
1072 unsigned int flags)
1073{
1074 struct socket *sock = file->private_data;
1075
1076 if (unlikely(!sock->ops->splice_read))
1077 return copy_splice_read(file, ppos, pipe, len, flags);
1078
1079 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1080}
1081
1082static void sock_splice_eof(struct file *file)
1083{
1084 struct socket *sock = file->private_data;
1085
1086 if (sock->ops->splice_eof)
1087 sock->ops->splice_eof(sock);
1088}
1089
1090static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1091{
1092 struct file *file = iocb->ki_filp;
1093 struct socket *sock = file->private_data;
1094 struct msghdr msg = {.msg_iter = *to,
1095 .msg_iocb = iocb};
1096 ssize_t res;
1097
1098 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1099 msg.msg_flags = MSG_DONTWAIT;
1100
1101 if (iocb->ki_pos != 0)
1102 return -ESPIPE;
1103
1104 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1105 return 0;
1106
1107 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1108 *to = msg.msg_iter;
1109 return res;
1110}
1111
1112static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1113{
1114 struct file *file = iocb->ki_filp;
1115 struct socket *sock = file->private_data;
1116 struct msghdr msg = {.msg_iter = *from,
1117 .msg_iocb = iocb};
1118 ssize_t res;
1119
1120 if (iocb->ki_pos != 0)
1121 return -ESPIPE;
1122
1123 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1124 msg.msg_flags = MSG_DONTWAIT;
1125
1126 if (sock->type == SOCK_SEQPACKET)
1127 msg.msg_flags |= MSG_EOR;
1128
1129 res = sock_sendmsg(sock, &msg);
1130 *from = msg.msg_iter;
1131 return res;
1132}
1133
1134/*
1135 * Atomic setting of ioctl hooks to avoid race
1136 * with module unload.
1137 */
1138
1139static DEFINE_MUTEX(br_ioctl_mutex);
1140static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1141 unsigned int cmd, struct ifreq *ifr,
1142 void __user *uarg);
1143
1144void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1145 unsigned int cmd, struct ifreq *ifr,
1146 void __user *uarg))
1147{
1148 mutex_lock(&br_ioctl_mutex);
1149 br_ioctl_hook = hook;
1150 mutex_unlock(&br_ioctl_mutex);
1151}
1152EXPORT_SYMBOL(brioctl_set);
1153
1154int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1155 struct ifreq *ifr, void __user *uarg)
1156{
1157 int err = -ENOPKG;
1158
1159 if (!br_ioctl_hook)
1160 request_module("bridge");
1161
1162 mutex_lock(&br_ioctl_mutex);
1163 if (br_ioctl_hook)
1164 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1165 mutex_unlock(&br_ioctl_mutex);
1166
1167 return err;
1168}
1169
1170static DEFINE_MUTEX(vlan_ioctl_mutex);
1171static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1172
1173void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1174{
1175 mutex_lock(&vlan_ioctl_mutex);
1176 vlan_ioctl_hook = hook;
1177 mutex_unlock(&vlan_ioctl_mutex);
1178}
1179EXPORT_SYMBOL(vlan_ioctl_set);
1180
1181static long sock_do_ioctl(struct net *net, struct socket *sock,
1182 unsigned int cmd, unsigned long arg)
1183{
1184 struct ifreq ifr;
1185 bool need_copyout;
1186 int err;
1187 void __user *argp = (void __user *)arg;
1188 void __user *data;
1189
1190 err = sock->ops->ioctl(sock, cmd, arg);
1191
1192 /*
1193 * If this ioctl is unknown try to hand it down
1194 * to the NIC driver.
1195 */
1196 if (err != -ENOIOCTLCMD)
1197 return err;
1198
1199 if (!is_socket_ioctl_cmd(cmd))
1200 return -ENOTTY;
1201
1202 if (get_user_ifreq(&ifr, &data, argp))
1203 return -EFAULT;
1204 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1205 if (!err && need_copyout)
1206 if (put_user_ifreq(&ifr, argp))
1207 return -EFAULT;
1208
1209 return err;
1210}
1211
1212/*
1213 * With an ioctl, arg may well be a user mode pointer, but we don't know
1214 * what to do with it - that's up to the protocol still.
1215 */
1216
1217static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1218{
1219 struct socket *sock;
1220 struct sock *sk;
1221 void __user *argp = (void __user *)arg;
1222 int pid, err;
1223 struct net *net;
1224
1225 sock = file->private_data;
1226 sk = sock->sk;
1227 net = sock_net(sk);
1228 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1229 struct ifreq ifr;
1230 void __user *data;
1231 bool need_copyout;
1232 if (get_user_ifreq(&ifr, &data, argp))
1233 return -EFAULT;
1234 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1235 if (!err && need_copyout)
1236 if (put_user_ifreq(&ifr, argp))
1237 return -EFAULT;
1238 } else
1239#ifdef CONFIG_WEXT_CORE
1240 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1241 err = wext_handle_ioctl(net, cmd, argp);
1242 } else
1243#endif
1244 switch (cmd) {
1245 case FIOSETOWN:
1246 case SIOCSPGRP:
1247 err = -EFAULT;
1248 if (get_user(pid, (int __user *)argp))
1249 break;
1250 err = f_setown(sock->file, pid, 1);
1251 break;
1252 case FIOGETOWN:
1253 case SIOCGPGRP:
1254 err = put_user(f_getown(sock->file),
1255 (int __user *)argp);
1256 break;
1257 case SIOCGIFBR:
1258 case SIOCSIFBR:
1259 case SIOCBRADDBR:
1260 case SIOCBRDELBR:
1261 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1262 break;
1263 case SIOCGIFVLAN:
1264 case SIOCSIFVLAN:
1265 err = -ENOPKG;
1266 if (!vlan_ioctl_hook)
1267 request_module("8021q");
1268
1269 mutex_lock(&vlan_ioctl_mutex);
1270 if (vlan_ioctl_hook)
1271 err = vlan_ioctl_hook(net, argp);
1272 mutex_unlock(&vlan_ioctl_mutex);
1273 break;
1274 case SIOCGSKNS:
1275 err = -EPERM;
1276 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1277 break;
1278
1279 err = open_related_ns(&net->ns, get_net_ns);
1280 break;
1281 case SIOCGSTAMP_OLD:
1282 case SIOCGSTAMPNS_OLD:
1283 if (!sock->ops->gettstamp) {
1284 err = -ENOIOCTLCMD;
1285 break;
1286 }
1287 err = sock->ops->gettstamp(sock, argp,
1288 cmd == SIOCGSTAMP_OLD,
1289 !IS_ENABLED(CONFIG_64BIT));
1290 break;
1291 case SIOCGSTAMP_NEW:
1292 case SIOCGSTAMPNS_NEW:
1293 if (!sock->ops->gettstamp) {
1294 err = -ENOIOCTLCMD;
1295 break;
1296 }
1297 err = sock->ops->gettstamp(sock, argp,
1298 cmd == SIOCGSTAMP_NEW,
1299 false);
1300 break;
1301
1302 case SIOCGIFCONF:
1303 err = dev_ifconf(net, argp);
1304 break;
1305
1306 default:
1307 err = sock_do_ioctl(net, sock, cmd, arg);
1308 break;
1309 }
1310 return err;
1311}
1312
1313/**
1314 * sock_create_lite - creates a socket
1315 * @family: protocol family (AF_INET, ...)
1316 * @type: communication type (SOCK_STREAM, ...)
1317 * @protocol: protocol (0, ...)
1318 * @res: new socket
1319 *
1320 * Creates a new socket and assigns it to @res, passing through LSM.
1321 * The new socket initialization is not complete, see kernel_accept().
1322 * Returns 0 or an error. On failure @res is set to %NULL.
1323 * This function internally uses GFP_KERNEL.
1324 */
1325
1326int sock_create_lite(int family, int type, int protocol, struct socket **res)
1327{
1328 int err;
1329 struct socket *sock = NULL;
1330
1331 err = security_socket_create(family, type, protocol, 1);
1332 if (err)
1333 goto out;
1334
1335 sock = sock_alloc();
1336 if (!sock) {
1337 err = -ENOMEM;
1338 goto out;
1339 }
1340
1341 sock->type = type;
1342 err = security_socket_post_create(sock, family, type, protocol, 1);
1343 if (err)
1344 goto out_release;
1345
1346out:
1347 *res = sock;
1348 return err;
1349out_release:
1350 sock_release(sock);
1351 sock = NULL;
1352 goto out;
1353}
1354EXPORT_SYMBOL(sock_create_lite);
1355
1356/* No kernel lock held - perfect */
1357static __poll_t sock_poll(struct file *file, poll_table *wait)
1358{
1359 struct socket *sock = file->private_data;
1360 __poll_t events = poll_requested_events(wait), flag = 0;
1361
1362 if (!sock->ops->poll)
1363 return 0;
1364
1365 if (sk_can_busy_loop(sock->sk)) {
1366 /* poll once if requested by the syscall */
1367 if (events & POLL_BUSY_LOOP)
1368 sk_busy_loop(sock->sk, 1);
1369
1370 /* if this socket can poll_ll, tell the system call */
1371 flag = POLL_BUSY_LOOP;
1372 }
1373
1374 return sock->ops->poll(file, sock, wait) | flag;
1375}
1376
1377static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1378{
1379 struct socket *sock = file->private_data;
1380
1381 return sock->ops->mmap(file, sock, vma);
1382}
1383
1384static int sock_close(struct inode *inode, struct file *filp)
1385{
1386 __sock_release(SOCKET_I(inode), inode);
1387 return 0;
1388}
1389
1390/*
1391 * Update the socket async list
1392 *
1393 * Fasync_list locking strategy.
1394 *
1395 * 1. fasync_list is modified only under process context socket lock
1396 * i.e. under semaphore.
1397 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1398 * or under socket lock
1399 */
1400
1401static int sock_fasync(int fd, struct file *filp, int on)
1402{
1403 struct socket *sock = filp->private_data;
1404 struct sock *sk = sock->sk;
1405 struct socket_wq *wq = &sock->wq;
1406
1407 if (sk == NULL)
1408 return -EINVAL;
1409
1410 lock_sock(sk);
1411 fasync_helper(fd, filp, on, &wq->fasync_list);
1412
1413 if (!wq->fasync_list)
1414 sock_reset_flag(sk, SOCK_FASYNC);
1415 else
1416 sock_set_flag(sk, SOCK_FASYNC);
1417
1418 release_sock(sk);
1419 return 0;
1420}
1421
1422/* This function may be called only under rcu_lock */
1423
1424int sock_wake_async(struct socket_wq *wq, int how, int band)
1425{
1426 if (!wq || !wq->fasync_list)
1427 return -1;
1428
1429 switch (how) {
1430 case SOCK_WAKE_WAITD:
1431 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1432 break;
1433 goto call_kill;
1434 case SOCK_WAKE_SPACE:
1435 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1436 break;
1437 fallthrough;
1438 case SOCK_WAKE_IO:
1439call_kill:
1440 kill_fasync(&wq->fasync_list, SIGIO, band);
1441 break;
1442 case SOCK_WAKE_URG:
1443 kill_fasync(&wq->fasync_list, SIGURG, band);
1444 }
1445
1446 return 0;
1447}
1448EXPORT_SYMBOL(sock_wake_async);
1449
1450/**
1451 * __sock_create - creates a socket
1452 * @net: net namespace
1453 * @family: protocol family (AF_INET, ...)
1454 * @type: communication type (SOCK_STREAM, ...)
1455 * @protocol: protocol (0, ...)
1456 * @res: new socket
1457 * @kern: boolean for kernel space sockets
1458 *
1459 * Creates a new socket and assigns it to @res, passing through LSM.
1460 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1461 * be set to true if the socket resides in kernel space.
1462 * This function internally uses GFP_KERNEL.
1463 */
1464
1465int __sock_create(struct net *net, int family, int type, int protocol,
1466 struct socket **res, int kern)
1467{
1468 int err;
1469 struct socket *sock;
1470 const struct net_proto_family *pf;
1471
1472 /*
1473 * Check protocol is in range
1474 */
1475 if (family < 0 || family >= NPROTO)
1476 return -EAFNOSUPPORT;
1477 if (type < 0 || type >= SOCK_MAX)
1478 return -EINVAL;
1479
1480 /* Compatibility.
1481
1482 This uglymoron is moved from INET layer to here to avoid
1483 deadlock in module load.
1484 */
1485 if (family == PF_INET && type == SOCK_PACKET) {
1486 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1487 current->comm);
1488 family = PF_PACKET;
1489 }
1490
1491 err = security_socket_create(family, type, protocol, kern);
1492 if (err)
1493 return err;
1494
1495 /*
1496 * Allocate the socket and allow the family to set things up. if
1497 * the protocol is 0, the family is instructed to select an appropriate
1498 * default.
1499 */
1500 sock = sock_alloc();
1501 if (!sock) {
1502 net_warn_ratelimited("socket: no more sockets\n");
1503 return -ENFILE; /* Not exactly a match, but its the
1504 closest posix thing */
1505 }
1506
1507 sock->type = type;
1508
1509#ifdef CONFIG_MODULES
1510 /* Attempt to load a protocol module if the find failed.
1511 *
1512 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1513 * requested real, full-featured networking support upon configuration.
1514 * Otherwise module support will break!
1515 */
1516 if (rcu_access_pointer(net_families[family]) == NULL)
1517 request_module("net-pf-%d", family);
1518#endif
1519
1520 rcu_read_lock();
1521 pf = rcu_dereference(net_families[family]);
1522 err = -EAFNOSUPPORT;
1523 if (!pf)
1524 goto out_release;
1525
1526 /*
1527 * We will call the ->create function, that possibly is in a loadable
1528 * module, so we have to bump that loadable module refcnt first.
1529 */
1530 if (!try_module_get(pf->owner))
1531 goto out_release;
1532
1533 /* Now protected by module ref count */
1534 rcu_read_unlock();
1535
1536 err = pf->create(net, sock, protocol, kern);
1537 if (err < 0)
1538 goto out_module_put;
1539
1540 /*
1541 * Now to bump the refcnt of the [loadable] module that owns this
1542 * socket at sock_release time we decrement its refcnt.
1543 */
1544 if (!try_module_get(sock->ops->owner))
1545 goto out_module_busy;
1546
1547 /*
1548 * Now that we're done with the ->create function, the [loadable]
1549 * module can have its refcnt decremented
1550 */
1551 module_put(pf->owner);
1552 err = security_socket_post_create(sock, family, type, protocol, kern);
1553 if (err)
1554 goto out_sock_release;
1555 *res = sock;
1556
1557 return 0;
1558
1559out_module_busy:
1560 err = -EAFNOSUPPORT;
1561out_module_put:
1562 sock->ops = NULL;
1563 module_put(pf->owner);
1564out_sock_release:
1565 sock_release(sock);
1566 return err;
1567
1568out_release:
1569 rcu_read_unlock();
1570 goto out_sock_release;
1571}
1572EXPORT_SYMBOL(__sock_create);
1573
1574/**
1575 * sock_create - creates a socket
1576 * @family: protocol family (AF_INET, ...)
1577 * @type: communication type (SOCK_STREAM, ...)
1578 * @protocol: protocol (0, ...)
1579 * @res: new socket
1580 *
1581 * A wrapper around __sock_create().
1582 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1583 */
1584
1585int sock_create(int family, int type, int protocol, struct socket **res)
1586{
1587 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1588}
1589EXPORT_SYMBOL(sock_create);
1590
1591/**
1592 * sock_create_kern - creates a socket (kernel space)
1593 * @net: net namespace
1594 * @family: protocol family (AF_INET, ...)
1595 * @type: communication type (SOCK_STREAM, ...)
1596 * @protocol: protocol (0, ...)
1597 * @res: new socket
1598 *
1599 * A wrapper around __sock_create().
1600 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1601 */
1602
1603int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1604{
1605 return __sock_create(net, family, type, protocol, res, 1);
1606}
1607EXPORT_SYMBOL(sock_create_kern);
1608
1609static struct socket *__sys_socket_create(int family, int type, int protocol)
1610{
1611 struct socket *sock;
1612 int retval;
1613
1614 /* Check the SOCK_* constants for consistency. */
1615 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1616 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1617 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1618 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1619
1620 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1621 return ERR_PTR(-EINVAL);
1622 type &= SOCK_TYPE_MASK;
1623
1624 retval = sock_create(family, type, protocol, &sock);
1625 if (retval < 0)
1626 return ERR_PTR(retval);
1627
1628 return sock;
1629}
1630
1631struct file *__sys_socket_file(int family, int type, int protocol)
1632{
1633 struct socket *sock;
1634 int flags;
1635
1636 sock = __sys_socket_create(family, type, protocol);
1637 if (IS_ERR(sock))
1638 return ERR_CAST(sock);
1639
1640 flags = type & ~SOCK_TYPE_MASK;
1641 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1642 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1643
1644 return sock_alloc_file(sock, flags, NULL);
1645}
1646
1647int __sys_socket(int family, int type, int protocol)
1648{
1649 struct socket *sock;
1650 int flags;
1651
1652 sock = __sys_socket_create(family, type, protocol);
1653 if (IS_ERR(sock))
1654 return PTR_ERR(sock);
1655
1656 flags = type & ~SOCK_TYPE_MASK;
1657 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1658 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1659
1660 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1661}
1662
1663SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1664{
1665 return __sys_socket(family, type, protocol);
1666}
1667
1668/*
1669 * Create a pair of connected sockets.
1670 */
1671
1672int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1673{
1674 struct socket *sock1, *sock2;
1675 int fd1, fd2, err;
1676 struct file *newfile1, *newfile2;
1677 int flags;
1678
1679 flags = type & ~SOCK_TYPE_MASK;
1680 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1681 return -EINVAL;
1682 type &= SOCK_TYPE_MASK;
1683
1684 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1685 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1686
1687 /*
1688 * reserve descriptors and make sure we won't fail
1689 * to return them to userland.
1690 */
1691 fd1 = get_unused_fd_flags(flags);
1692 if (unlikely(fd1 < 0))
1693 return fd1;
1694
1695 fd2 = get_unused_fd_flags(flags);
1696 if (unlikely(fd2 < 0)) {
1697 put_unused_fd(fd1);
1698 return fd2;
1699 }
1700
1701 err = put_user(fd1, &usockvec[0]);
1702 if (err)
1703 goto out;
1704
1705 err = put_user(fd2, &usockvec[1]);
1706 if (err)
1707 goto out;
1708
1709 /*
1710 * Obtain the first socket and check if the underlying protocol
1711 * supports the socketpair call.
1712 */
1713
1714 err = sock_create(family, type, protocol, &sock1);
1715 if (unlikely(err < 0))
1716 goto out;
1717
1718 err = sock_create(family, type, protocol, &sock2);
1719 if (unlikely(err < 0)) {
1720 sock_release(sock1);
1721 goto out;
1722 }
1723
1724 err = security_socket_socketpair(sock1, sock2);
1725 if (unlikely(err)) {
1726 sock_release(sock2);
1727 sock_release(sock1);
1728 goto out;
1729 }
1730
1731 err = sock1->ops->socketpair(sock1, sock2);
1732 if (unlikely(err < 0)) {
1733 sock_release(sock2);
1734 sock_release(sock1);
1735 goto out;
1736 }
1737
1738 newfile1 = sock_alloc_file(sock1, flags, NULL);
1739 if (IS_ERR(newfile1)) {
1740 err = PTR_ERR(newfile1);
1741 sock_release(sock2);
1742 goto out;
1743 }
1744
1745 newfile2 = sock_alloc_file(sock2, flags, NULL);
1746 if (IS_ERR(newfile2)) {
1747 err = PTR_ERR(newfile2);
1748 fput(newfile1);
1749 goto out;
1750 }
1751
1752 audit_fd_pair(fd1, fd2);
1753
1754 fd_install(fd1, newfile1);
1755 fd_install(fd2, newfile2);
1756 return 0;
1757
1758out:
1759 put_unused_fd(fd2);
1760 put_unused_fd(fd1);
1761 return err;
1762}
1763
1764SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1765 int __user *, usockvec)
1766{
1767 return __sys_socketpair(family, type, protocol, usockvec);
1768}
1769
1770/*
1771 * Bind a name to a socket. Nothing much to do here since it's
1772 * the protocol's responsibility to handle the local address.
1773 *
1774 * We move the socket address to kernel space before we call
1775 * the protocol layer (having also checked the address is ok).
1776 */
1777
1778int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1779{
1780 struct socket *sock;
1781 struct sockaddr_storage address;
1782 int err, fput_needed;
1783
1784 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1785 if (sock) {
1786 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1787 if (!err) {
1788 err = security_socket_bind(sock,
1789 (struct sockaddr *)&address,
1790 addrlen);
1791 if (!err)
1792 err = sock->ops->bind(sock,
1793 (struct sockaddr *)
1794 &address, addrlen);
1795 }
1796 fput_light(sock->file, fput_needed);
1797 }
1798 return err;
1799}
1800
1801SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1802{
1803 return __sys_bind(fd, umyaddr, addrlen);
1804}
1805
1806/*
1807 * Perform a listen. Basically, we allow the protocol to do anything
1808 * necessary for a listen, and if that works, we mark the socket as
1809 * ready for listening.
1810 */
1811
1812int __sys_listen(int fd, int backlog)
1813{
1814 struct socket *sock;
1815 int err, fput_needed;
1816 int somaxconn;
1817
1818 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1819 if (sock) {
1820 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1821 if ((unsigned int)backlog > somaxconn)
1822 backlog = somaxconn;
1823
1824 err = security_socket_listen(sock, backlog);
1825 if (!err)
1826 err = sock->ops->listen(sock, backlog);
1827
1828 fput_light(sock->file, fput_needed);
1829 }
1830 return err;
1831}
1832
1833SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1834{
1835 return __sys_listen(fd, backlog);
1836}
1837
1838struct file *do_accept(struct file *file, unsigned file_flags,
1839 struct sockaddr __user *upeer_sockaddr,
1840 int __user *upeer_addrlen, int flags)
1841{
1842 struct socket *sock, *newsock;
1843 struct file *newfile;
1844 int err, len;
1845 struct sockaddr_storage address;
1846
1847 sock = sock_from_file(file);
1848 if (!sock)
1849 return ERR_PTR(-ENOTSOCK);
1850
1851 newsock = sock_alloc();
1852 if (!newsock)
1853 return ERR_PTR(-ENFILE);
1854
1855 newsock->type = sock->type;
1856 newsock->ops = sock->ops;
1857
1858 /*
1859 * We don't need try_module_get here, as the listening socket (sock)
1860 * has the protocol module (sock->ops->owner) held.
1861 */
1862 __module_get(newsock->ops->owner);
1863
1864 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1865 if (IS_ERR(newfile))
1866 return newfile;
1867
1868 err = security_socket_accept(sock, newsock);
1869 if (err)
1870 goto out_fd;
1871
1872 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1873 false);
1874 if (err < 0)
1875 goto out_fd;
1876
1877 if (upeer_sockaddr) {
1878 len = newsock->ops->getname(newsock,
1879 (struct sockaddr *)&address, 2);
1880 if (len < 0) {
1881 err = -ECONNABORTED;
1882 goto out_fd;
1883 }
1884 err = move_addr_to_user(&address,
1885 len, upeer_sockaddr, upeer_addrlen);
1886 if (err < 0)
1887 goto out_fd;
1888 }
1889
1890 /* File flags are not inherited via accept() unlike another OSes. */
1891 return newfile;
1892out_fd:
1893 fput(newfile);
1894 return ERR_PTR(err);
1895}
1896
1897static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1898 int __user *upeer_addrlen, int flags)
1899{
1900 struct file *newfile;
1901 int newfd;
1902
1903 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1904 return -EINVAL;
1905
1906 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1907 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1908
1909 newfd = get_unused_fd_flags(flags);
1910 if (unlikely(newfd < 0))
1911 return newfd;
1912
1913 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1914 flags);
1915 if (IS_ERR(newfile)) {
1916 put_unused_fd(newfd);
1917 return PTR_ERR(newfile);
1918 }
1919 fd_install(newfd, newfile);
1920 return newfd;
1921}
1922
1923/*
1924 * For accept, we attempt to create a new socket, set up the link
1925 * with the client, wake up the client, then return the new
1926 * connected fd. We collect the address of the connector in kernel
1927 * space and move it to user at the very end. This is unclean because
1928 * we open the socket then return an error.
1929 *
1930 * 1003.1g adds the ability to recvmsg() to query connection pending
1931 * status to recvmsg. We need to add that support in a way thats
1932 * clean when we restructure accept also.
1933 */
1934
1935int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1936 int __user *upeer_addrlen, int flags)
1937{
1938 int ret = -EBADF;
1939 struct fd f;
1940
1941 f = fdget(fd);
1942 if (f.file) {
1943 ret = __sys_accept4_file(f.file, upeer_sockaddr,
1944 upeer_addrlen, flags);
1945 fdput(f);
1946 }
1947
1948 return ret;
1949}
1950
1951SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1952 int __user *, upeer_addrlen, int, flags)
1953{
1954 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1955}
1956
1957SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1958 int __user *, upeer_addrlen)
1959{
1960 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1961}
1962
1963/*
1964 * Attempt to connect to a socket with the server address. The address
1965 * is in user space so we verify it is OK and move it to kernel space.
1966 *
1967 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1968 * break bindings
1969 *
1970 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1971 * other SEQPACKET protocols that take time to connect() as it doesn't
1972 * include the -EINPROGRESS status for such sockets.
1973 */
1974
1975int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1976 int addrlen, int file_flags)
1977{
1978 struct socket *sock;
1979 int err;
1980
1981 sock = sock_from_file(file);
1982 if (!sock) {
1983 err = -ENOTSOCK;
1984 goto out;
1985 }
1986
1987 err =
1988 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1989 if (err)
1990 goto out;
1991
1992 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1993 sock->file->f_flags | file_flags);
1994out:
1995 return err;
1996}
1997
1998int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1999{
2000 int ret = -EBADF;
2001 struct fd f;
2002
2003 f = fdget(fd);
2004 if (f.file) {
2005 struct sockaddr_storage address;
2006
2007 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2008 if (!ret)
2009 ret = __sys_connect_file(f.file, &address, addrlen, 0);
2010 fdput(f);
2011 }
2012
2013 return ret;
2014}
2015
2016SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2017 int, addrlen)
2018{
2019 return __sys_connect(fd, uservaddr, addrlen);
2020}
2021
2022/*
2023 * Get the local address ('name') of a socket object. Move the obtained
2024 * name to user space.
2025 */
2026
2027int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2028 int __user *usockaddr_len)
2029{
2030 struct socket *sock;
2031 struct sockaddr_storage address;
2032 int err, fput_needed;
2033
2034 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2035 if (!sock)
2036 goto out;
2037
2038 err = security_socket_getsockname(sock);
2039 if (err)
2040 goto out_put;
2041
2042 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2043 if (err < 0)
2044 goto out_put;
2045 /* "err" is actually length in this case */
2046 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2047
2048out_put:
2049 fput_light(sock->file, fput_needed);
2050out:
2051 return err;
2052}
2053
2054SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2055 int __user *, usockaddr_len)
2056{
2057 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2058}
2059
2060/*
2061 * Get the remote address ('name') of a socket object. Move the obtained
2062 * name to user space.
2063 */
2064
2065int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2066 int __user *usockaddr_len)
2067{
2068 struct socket *sock;
2069 struct sockaddr_storage address;
2070 int err, fput_needed;
2071
2072 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2073 if (sock != NULL) {
2074 err = security_socket_getpeername(sock);
2075 if (err) {
2076 fput_light(sock->file, fput_needed);
2077 return err;
2078 }
2079
2080 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2081 if (err >= 0)
2082 /* "err" is actually length in this case */
2083 err = move_addr_to_user(&address, err, usockaddr,
2084 usockaddr_len);
2085 fput_light(sock->file, fput_needed);
2086 }
2087 return err;
2088}
2089
2090SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2091 int __user *, usockaddr_len)
2092{
2093 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2094}
2095
2096/*
2097 * Send a datagram to a given address. We move the address into kernel
2098 * space and check the user space data area is readable before invoking
2099 * the protocol.
2100 */
2101int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2102 struct sockaddr __user *addr, int addr_len)
2103{
2104 struct socket *sock;
2105 struct sockaddr_storage address;
2106 int err;
2107 struct msghdr msg;
2108 struct iovec iov;
2109 int fput_needed;
2110
2111 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2112 if (unlikely(err))
2113 return err;
2114 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2115 if (!sock)
2116 goto out;
2117
2118 msg.msg_name = NULL;
2119 msg.msg_control = NULL;
2120 msg.msg_controllen = 0;
2121 msg.msg_namelen = 0;
2122 msg.msg_ubuf = NULL;
2123 if (addr) {
2124 err = move_addr_to_kernel(addr, addr_len, &address);
2125 if (err < 0)
2126 goto out_put;
2127 msg.msg_name = (struct sockaddr *)&address;
2128 msg.msg_namelen = addr_len;
2129 }
2130 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2131 if (sock->file->f_flags & O_NONBLOCK)
2132 flags |= MSG_DONTWAIT;
2133 msg.msg_flags = flags;
2134 err = sock_sendmsg(sock, &msg);
2135
2136out_put:
2137 fput_light(sock->file, fput_needed);
2138out:
2139 return err;
2140}
2141
2142SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2143 unsigned int, flags, struct sockaddr __user *, addr,
2144 int, addr_len)
2145{
2146 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2147}
2148
2149/*
2150 * Send a datagram down a socket.
2151 */
2152
2153SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2154 unsigned int, flags)
2155{
2156 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2157}
2158
2159/*
2160 * Receive a frame from the socket and optionally record the address of the
2161 * sender. We verify the buffers are writable and if needed move the
2162 * sender address from kernel to user space.
2163 */
2164int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2165 struct sockaddr __user *addr, int __user *addr_len)
2166{
2167 struct sockaddr_storage address;
2168 struct msghdr msg = {
2169 /* Save some cycles and don't copy the address if not needed */
2170 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2171 };
2172 struct socket *sock;
2173 struct iovec iov;
2174 int err, err2;
2175 int fput_needed;
2176
2177 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2178 if (unlikely(err))
2179 return err;
2180 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2181 if (!sock)
2182 goto out;
2183
2184 if (sock->file->f_flags & O_NONBLOCK)
2185 flags |= MSG_DONTWAIT;
2186 err = sock_recvmsg(sock, &msg, flags);
2187
2188 if (err >= 0 && addr != NULL) {
2189 err2 = move_addr_to_user(&address,
2190 msg.msg_namelen, addr, addr_len);
2191 if (err2 < 0)
2192 err = err2;
2193 }
2194
2195 fput_light(sock->file, fput_needed);
2196out:
2197 return err;
2198}
2199
2200SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2201 unsigned int, flags, struct sockaddr __user *, addr,
2202 int __user *, addr_len)
2203{
2204 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2205}
2206
2207/*
2208 * Receive a datagram from a socket.
2209 */
2210
2211SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2212 unsigned int, flags)
2213{
2214 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2215}
2216
2217static bool sock_use_custom_sol_socket(const struct socket *sock)
2218{
2219 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2220}
2221
2222/*
2223 * Set a socket option. Because we don't know the option lengths we have
2224 * to pass the user mode parameter for the protocols to sort out.
2225 */
2226int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2227 int optlen)
2228{
2229 sockptr_t optval = USER_SOCKPTR(user_optval);
2230 char *kernel_optval = NULL;
2231 int err, fput_needed;
2232 struct socket *sock;
2233
2234 if (optlen < 0)
2235 return -EINVAL;
2236
2237 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2238 if (!sock)
2239 return err;
2240
2241 err = security_socket_setsockopt(sock, level, optname);
2242 if (err)
2243 goto out_put;
2244
2245 if (!in_compat_syscall())
2246 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2247 user_optval, &optlen,
2248 &kernel_optval);
2249 if (err < 0)
2250 goto out_put;
2251 if (err > 0) {
2252 err = 0;
2253 goto out_put;
2254 }
2255
2256 if (kernel_optval)
2257 optval = KERNEL_SOCKPTR(kernel_optval);
2258 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2259 err = sock_setsockopt(sock, level, optname, optval, optlen);
2260 else if (unlikely(!sock->ops->setsockopt))
2261 err = -EOPNOTSUPP;
2262 else
2263 err = sock->ops->setsockopt(sock, level, optname, optval,
2264 optlen);
2265 kfree(kernel_optval);
2266out_put:
2267 fput_light(sock->file, fput_needed);
2268 return err;
2269}
2270
2271SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2272 char __user *, optval, int, optlen)
2273{
2274 return __sys_setsockopt(fd, level, optname, optval, optlen);
2275}
2276
2277INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2278 int optname));
2279
2280/*
2281 * Get a socket option. Because we don't know the option lengths we have
2282 * to pass a user mode parameter for the protocols to sort out.
2283 */
2284int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2285 int __user *optlen)
2286{
2287 int max_optlen __maybe_unused;
2288 int err, fput_needed;
2289 struct socket *sock;
2290
2291 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2292 if (!sock)
2293 return err;
2294
2295 err = security_socket_getsockopt(sock, level, optname);
2296 if (err)
2297 goto out_put;
2298
2299 if (!in_compat_syscall())
2300 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2301
2302 if (level == SOL_SOCKET)
2303 err = sock_getsockopt(sock, level, optname, optval, optlen);
2304 else if (unlikely(!sock->ops->getsockopt))
2305 err = -EOPNOTSUPP;
2306 else
2307 err = sock->ops->getsockopt(sock, level, optname, optval,
2308 optlen);
2309
2310 if (!in_compat_syscall())
2311 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2312 optval, optlen, max_optlen,
2313 err);
2314out_put:
2315 fput_light(sock->file, fput_needed);
2316 return err;
2317}
2318
2319SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2320 char __user *, optval, int __user *, optlen)
2321{
2322 return __sys_getsockopt(fd, level, optname, optval, optlen);
2323}
2324
2325/*
2326 * Shutdown a socket.
2327 */
2328
2329int __sys_shutdown_sock(struct socket *sock, int how)
2330{
2331 int err;
2332
2333 err = security_socket_shutdown(sock, how);
2334 if (!err)
2335 err = sock->ops->shutdown(sock, how);
2336
2337 return err;
2338}
2339
2340int __sys_shutdown(int fd, int how)
2341{
2342 int err, fput_needed;
2343 struct socket *sock;
2344
2345 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2346 if (sock != NULL) {
2347 err = __sys_shutdown_sock(sock, how);
2348 fput_light(sock->file, fput_needed);
2349 }
2350 return err;
2351}
2352
2353SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2354{
2355 return __sys_shutdown(fd, how);
2356}
2357
2358/* A couple of helpful macros for getting the address of the 32/64 bit
2359 * fields which are the same type (int / unsigned) on our platforms.
2360 */
2361#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2362#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2363#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2364
2365struct used_address {
2366 struct sockaddr_storage name;
2367 unsigned int name_len;
2368};
2369
2370int __copy_msghdr(struct msghdr *kmsg,
2371 struct user_msghdr *msg,
2372 struct sockaddr __user **save_addr)
2373{
2374 ssize_t err;
2375
2376 kmsg->msg_control_is_user = true;
2377 kmsg->msg_get_inq = 0;
2378 kmsg->msg_control_user = msg->msg_control;
2379 kmsg->msg_controllen = msg->msg_controllen;
2380 kmsg->msg_flags = msg->msg_flags;
2381
2382 kmsg->msg_namelen = msg->msg_namelen;
2383 if (!msg->msg_name)
2384 kmsg->msg_namelen = 0;
2385
2386 if (kmsg->msg_namelen < 0)
2387 return -EINVAL;
2388
2389 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2390 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2391
2392 if (save_addr)
2393 *save_addr = msg->msg_name;
2394
2395 if (msg->msg_name && kmsg->msg_namelen) {
2396 if (!save_addr) {
2397 err = move_addr_to_kernel(msg->msg_name,
2398 kmsg->msg_namelen,
2399 kmsg->msg_name);
2400 if (err < 0)
2401 return err;
2402 }
2403 } else {
2404 kmsg->msg_name = NULL;
2405 kmsg->msg_namelen = 0;
2406 }
2407
2408 if (msg->msg_iovlen > UIO_MAXIOV)
2409 return -EMSGSIZE;
2410
2411 kmsg->msg_iocb = NULL;
2412 kmsg->msg_ubuf = NULL;
2413 return 0;
2414}
2415
2416static int copy_msghdr_from_user(struct msghdr *kmsg,
2417 struct user_msghdr __user *umsg,
2418 struct sockaddr __user **save_addr,
2419 struct iovec **iov)
2420{
2421 struct user_msghdr msg;
2422 ssize_t err;
2423
2424 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2425 return -EFAULT;
2426
2427 err = __copy_msghdr(kmsg, &msg, save_addr);
2428 if (err)
2429 return err;
2430
2431 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2432 msg.msg_iov, msg.msg_iovlen,
2433 UIO_FASTIOV, iov, &kmsg->msg_iter);
2434 return err < 0 ? err : 0;
2435}
2436
2437static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2438 unsigned int flags, struct used_address *used_address,
2439 unsigned int allowed_msghdr_flags)
2440{
2441 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2442 __aligned(sizeof(__kernel_size_t));
2443 /* 20 is size of ipv6_pktinfo */
2444 unsigned char *ctl_buf = ctl;
2445 int ctl_len;
2446 ssize_t err;
2447
2448 err = -ENOBUFS;
2449
2450 if (msg_sys->msg_controllen > INT_MAX)
2451 goto out;
2452 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2453 ctl_len = msg_sys->msg_controllen;
2454 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2455 err =
2456 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2457 sizeof(ctl));
2458 if (err)
2459 goto out;
2460 ctl_buf = msg_sys->msg_control;
2461 ctl_len = msg_sys->msg_controllen;
2462 } else if (ctl_len) {
2463 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2464 CMSG_ALIGN(sizeof(struct cmsghdr)));
2465 if (ctl_len > sizeof(ctl)) {
2466 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2467 if (ctl_buf == NULL)
2468 goto out;
2469 }
2470 err = -EFAULT;
2471 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2472 goto out_freectl;
2473 msg_sys->msg_control = ctl_buf;
2474 msg_sys->msg_control_is_user = false;
2475 }
2476 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2477 msg_sys->msg_flags = flags;
2478
2479 if (sock->file->f_flags & O_NONBLOCK)
2480 msg_sys->msg_flags |= MSG_DONTWAIT;
2481 /*
2482 * If this is sendmmsg() and current destination address is same as
2483 * previously succeeded address, omit asking LSM's decision.
2484 * used_address->name_len is initialized to UINT_MAX so that the first
2485 * destination address never matches.
2486 */
2487 if (used_address && msg_sys->msg_name &&
2488 used_address->name_len == msg_sys->msg_namelen &&
2489 !memcmp(&used_address->name, msg_sys->msg_name,
2490 used_address->name_len)) {
2491 err = sock_sendmsg_nosec(sock, msg_sys);
2492 goto out_freectl;
2493 }
2494 err = sock_sendmsg(sock, msg_sys);
2495 /*
2496 * If this is sendmmsg() and sending to current destination address was
2497 * successful, remember it.
2498 */
2499 if (used_address && err >= 0) {
2500 used_address->name_len = msg_sys->msg_namelen;
2501 if (msg_sys->msg_name)
2502 memcpy(&used_address->name, msg_sys->msg_name,
2503 used_address->name_len);
2504 }
2505
2506out_freectl:
2507 if (ctl_buf != ctl)
2508 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2509out:
2510 return err;
2511}
2512
2513int sendmsg_copy_msghdr(struct msghdr *msg,
2514 struct user_msghdr __user *umsg, unsigned flags,
2515 struct iovec **iov)
2516{
2517 int err;
2518
2519 if (flags & MSG_CMSG_COMPAT) {
2520 struct compat_msghdr __user *msg_compat;
2521
2522 msg_compat = (struct compat_msghdr __user *) umsg;
2523 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2524 } else {
2525 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2526 }
2527 if (err < 0)
2528 return err;
2529
2530 return 0;
2531}
2532
2533static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2534 struct msghdr *msg_sys, unsigned int flags,
2535 struct used_address *used_address,
2536 unsigned int allowed_msghdr_flags)
2537{
2538 struct sockaddr_storage address;
2539 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2540 ssize_t err;
2541
2542 msg_sys->msg_name = &address;
2543
2544 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2545 if (err < 0)
2546 return err;
2547
2548 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2549 allowed_msghdr_flags);
2550 kfree(iov);
2551 return err;
2552}
2553
2554/*
2555 * BSD sendmsg interface
2556 */
2557long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2558 unsigned int flags)
2559{
2560 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2561}
2562
2563long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2564 bool forbid_cmsg_compat)
2565{
2566 int fput_needed, err;
2567 struct msghdr msg_sys;
2568 struct socket *sock;
2569
2570 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2571 return -EINVAL;
2572
2573 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2574 if (!sock)
2575 goto out;
2576
2577 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2578
2579 fput_light(sock->file, fput_needed);
2580out:
2581 return err;
2582}
2583
2584SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2585{
2586 return __sys_sendmsg(fd, msg, flags, true);
2587}
2588
2589/*
2590 * Linux sendmmsg interface
2591 */
2592
2593int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2594 unsigned int flags, bool forbid_cmsg_compat)
2595{
2596 int fput_needed, err, datagrams;
2597 struct socket *sock;
2598 struct mmsghdr __user *entry;
2599 struct compat_mmsghdr __user *compat_entry;
2600 struct msghdr msg_sys;
2601 struct used_address used_address;
2602 unsigned int oflags = flags;
2603
2604 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2605 return -EINVAL;
2606
2607 if (vlen > UIO_MAXIOV)
2608 vlen = UIO_MAXIOV;
2609
2610 datagrams = 0;
2611
2612 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2613 if (!sock)
2614 return err;
2615
2616 used_address.name_len = UINT_MAX;
2617 entry = mmsg;
2618 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2619 err = 0;
2620 flags |= MSG_BATCH;
2621
2622 while (datagrams < vlen) {
2623 if (datagrams == vlen - 1)
2624 flags = oflags;
2625
2626 if (MSG_CMSG_COMPAT & flags) {
2627 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2628 &msg_sys, flags, &used_address, MSG_EOR);
2629 if (err < 0)
2630 break;
2631 err = __put_user(err, &compat_entry->msg_len);
2632 ++compat_entry;
2633 } else {
2634 err = ___sys_sendmsg(sock,
2635 (struct user_msghdr __user *)entry,
2636 &msg_sys, flags, &used_address, MSG_EOR);
2637 if (err < 0)
2638 break;
2639 err = put_user(err, &entry->msg_len);
2640 ++entry;
2641 }
2642
2643 if (err)
2644 break;
2645 ++datagrams;
2646 if (msg_data_left(&msg_sys))
2647 break;
2648 cond_resched();
2649 }
2650
2651 fput_light(sock->file, fput_needed);
2652
2653 /* We only return an error if no datagrams were able to be sent */
2654 if (datagrams != 0)
2655 return datagrams;
2656
2657 return err;
2658}
2659
2660SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2661 unsigned int, vlen, unsigned int, flags)
2662{
2663 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2664}
2665
2666int recvmsg_copy_msghdr(struct msghdr *msg,
2667 struct user_msghdr __user *umsg, unsigned flags,
2668 struct sockaddr __user **uaddr,
2669 struct iovec **iov)
2670{
2671 ssize_t err;
2672
2673 if (MSG_CMSG_COMPAT & flags) {
2674 struct compat_msghdr __user *msg_compat;
2675
2676 msg_compat = (struct compat_msghdr __user *) umsg;
2677 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2678 } else {
2679 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2680 }
2681 if (err < 0)
2682 return err;
2683
2684 return 0;
2685}
2686
2687static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2688 struct user_msghdr __user *msg,
2689 struct sockaddr __user *uaddr,
2690 unsigned int flags, int nosec)
2691{
2692 struct compat_msghdr __user *msg_compat =
2693 (struct compat_msghdr __user *) msg;
2694 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2695 struct sockaddr_storage addr;
2696 unsigned long cmsg_ptr;
2697 int len;
2698 ssize_t err;
2699
2700 msg_sys->msg_name = &addr;
2701 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2702 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2703
2704 /* We assume all kernel code knows the size of sockaddr_storage */
2705 msg_sys->msg_namelen = 0;
2706
2707 if (sock->file->f_flags & O_NONBLOCK)
2708 flags |= MSG_DONTWAIT;
2709
2710 if (unlikely(nosec))
2711 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2712 else
2713 err = sock_recvmsg(sock, msg_sys, flags);
2714
2715 if (err < 0)
2716 goto out;
2717 len = err;
2718
2719 if (uaddr != NULL) {
2720 err = move_addr_to_user(&addr,
2721 msg_sys->msg_namelen, uaddr,
2722 uaddr_len);
2723 if (err < 0)
2724 goto out;
2725 }
2726 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2727 COMPAT_FLAGS(msg));
2728 if (err)
2729 goto out;
2730 if (MSG_CMSG_COMPAT & flags)
2731 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2732 &msg_compat->msg_controllen);
2733 else
2734 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2735 &msg->msg_controllen);
2736 if (err)
2737 goto out;
2738 err = len;
2739out:
2740 return err;
2741}
2742
2743static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2744 struct msghdr *msg_sys, unsigned int flags, int nosec)
2745{
2746 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2747 /* user mode address pointers */
2748 struct sockaddr __user *uaddr;
2749 ssize_t err;
2750
2751 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2752 if (err < 0)
2753 return err;
2754
2755 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2756 kfree(iov);
2757 return err;
2758}
2759
2760/*
2761 * BSD recvmsg interface
2762 */
2763
2764long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2765 struct user_msghdr __user *umsg,
2766 struct sockaddr __user *uaddr, unsigned int flags)
2767{
2768 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2769}
2770
2771long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2772 bool forbid_cmsg_compat)
2773{
2774 int fput_needed, err;
2775 struct msghdr msg_sys;
2776 struct socket *sock;
2777
2778 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2779 return -EINVAL;
2780
2781 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2782 if (!sock)
2783 goto out;
2784
2785 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2786
2787 fput_light(sock->file, fput_needed);
2788out:
2789 return err;
2790}
2791
2792SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2793 unsigned int, flags)
2794{
2795 return __sys_recvmsg(fd, msg, flags, true);
2796}
2797
2798/*
2799 * Linux recvmmsg interface
2800 */
2801
2802static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2803 unsigned int vlen, unsigned int flags,
2804 struct timespec64 *timeout)
2805{
2806 int fput_needed, err, datagrams;
2807 struct socket *sock;
2808 struct mmsghdr __user *entry;
2809 struct compat_mmsghdr __user *compat_entry;
2810 struct msghdr msg_sys;
2811 struct timespec64 end_time;
2812 struct timespec64 timeout64;
2813
2814 if (timeout &&
2815 poll_select_set_timeout(&end_time, timeout->tv_sec,
2816 timeout->tv_nsec))
2817 return -EINVAL;
2818
2819 datagrams = 0;
2820
2821 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2822 if (!sock)
2823 return err;
2824
2825 if (likely(!(flags & MSG_ERRQUEUE))) {
2826 err = sock_error(sock->sk);
2827 if (err) {
2828 datagrams = err;
2829 goto out_put;
2830 }
2831 }
2832
2833 entry = mmsg;
2834 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2835
2836 while (datagrams < vlen) {
2837 /*
2838 * No need to ask LSM for more than the first datagram.
2839 */
2840 if (MSG_CMSG_COMPAT & flags) {
2841 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2842 &msg_sys, flags & ~MSG_WAITFORONE,
2843 datagrams);
2844 if (err < 0)
2845 break;
2846 err = __put_user(err, &compat_entry->msg_len);
2847 ++compat_entry;
2848 } else {
2849 err = ___sys_recvmsg(sock,
2850 (struct user_msghdr __user *)entry,
2851 &msg_sys, flags & ~MSG_WAITFORONE,
2852 datagrams);
2853 if (err < 0)
2854 break;
2855 err = put_user(err, &entry->msg_len);
2856 ++entry;
2857 }
2858
2859 if (err)
2860 break;
2861 ++datagrams;
2862
2863 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2864 if (flags & MSG_WAITFORONE)
2865 flags |= MSG_DONTWAIT;
2866
2867 if (timeout) {
2868 ktime_get_ts64(&timeout64);
2869 *timeout = timespec64_sub(end_time, timeout64);
2870 if (timeout->tv_sec < 0) {
2871 timeout->tv_sec = timeout->tv_nsec = 0;
2872 break;
2873 }
2874
2875 /* Timeout, return less than vlen datagrams */
2876 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2877 break;
2878 }
2879
2880 /* Out of band data, return right away */
2881 if (msg_sys.msg_flags & MSG_OOB)
2882 break;
2883 cond_resched();
2884 }
2885
2886 if (err == 0)
2887 goto out_put;
2888
2889 if (datagrams == 0) {
2890 datagrams = err;
2891 goto out_put;
2892 }
2893
2894 /*
2895 * We may return less entries than requested (vlen) if the
2896 * sock is non block and there aren't enough datagrams...
2897 */
2898 if (err != -EAGAIN) {
2899 /*
2900 * ... or if recvmsg returns an error after we
2901 * received some datagrams, where we record the
2902 * error to return on the next call or if the
2903 * app asks about it using getsockopt(SO_ERROR).
2904 */
2905 WRITE_ONCE(sock->sk->sk_err, -err);
2906 }
2907out_put:
2908 fput_light(sock->file, fput_needed);
2909
2910 return datagrams;
2911}
2912
2913int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2914 unsigned int vlen, unsigned int flags,
2915 struct __kernel_timespec __user *timeout,
2916 struct old_timespec32 __user *timeout32)
2917{
2918 int datagrams;
2919 struct timespec64 timeout_sys;
2920
2921 if (timeout && get_timespec64(&timeout_sys, timeout))
2922 return -EFAULT;
2923
2924 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2925 return -EFAULT;
2926
2927 if (!timeout && !timeout32)
2928 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2929
2930 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2931
2932 if (datagrams <= 0)
2933 return datagrams;
2934
2935 if (timeout && put_timespec64(&timeout_sys, timeout))
2936 datagrams = -EFAULT;
2937
2938 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2939 datagrams = -EFAULT;
2940
2941 return datagrams;
2942}
2943
2944SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2945 unsigned int, vlen, unsigned int, flags,
2946 struct __kernel_timespec __user *, timeout)
2947{
2948 if (flags & MSG_CMSG_COMPAT)
2949 return -EINVAL;
2950
2951 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2952}
2953
2954#ifdef CONFIG_COMPAT_32BIT_TIME
2955SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2956 unsigned int, vlen, unsigned int, flags,
2957 struct old_timespec32 __user *, timeout)
2958{
2959 if (flags & MSG_CMSG_COMPAT)
2960 return -EINVAL;
2961
2962 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2963}
2964#endif
2965
2966#ifdef __ARCH_WANT_SYS_SOCKETCALL
2967/* Argument list sizes for sys_socketcall */
2968#define AL(x) ((x) * sizeof(unsigned long))
2969static const unsigned char nargs[21] = {
2970 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2971 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2972 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2973 AL(4), AL(5), AL(4)
2974};
2975
2976#undef AL
2977
2978/*
2979 * System call vectors.
2980 *
2981 * Argument checking cleaned up. Saved 20% in size.
2982 * This function doesn't need to set the kernel lock because
2983 * it is set by the callees.
2984 */
2985
2986SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2987{
2988 unsigned long a[AUDITSC_ARGS];
2989 unsigned long a0, a1;
2990 int err;
2991 unsigned int len;
2992
2993 if (call < 1 || call > SYS_SENDMMSG)
2994 return -EINVAL;
2995 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2996
2997 len = nargs[call];
2998 if (len > sizeof(a))
2999 return -EINVAL;
3000
3001 /* copy_from_user should be SMP safe. */
3002 if (copy_from_user(a, args, len))
3003 return -EFAULT;
3004
3005 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3006 if (err)
3007 return err;
3008
3009 a0 = a[0];
3010 a1 = a[1];
3011
3012 switch (call) {
3013 case SYS_SOCKET:
3014 err = __sys_socket(a0, a1, a[2]);
3015 break;
3016 case SYS_BIND:
3017 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3018 break;
3019 case SYS_CONNECT:
3020 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3021 break;
3022 case SYS_LISTEN:
3023 err = __sys_listen(a0, a1);
3024 break;
3025 case SYS_ACCEPT:
3026 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3027 (int __user *)a[2], 0);
3028 break;
3029 case SYS_GETSOCKNAME:
3030 err =
3031 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3032 (int __user *)a[2]);
3033 break;
3034 case SYS_GETPEERNAME:
3035 err =
3036 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3037 (int __user *)a[2]);
3038 break;
3039 case SYS_SOCKETPAIR:
3040 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3041 break;
3042 case SYS_SEND:
3043 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3044 NULL, 0);
3045 break;
3046 case SYS_SENDTO:
3047 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3048 (struct sockaddr __user *)a[4], a[5]);
3049 break;
3050 case SYS_RECV:
3051 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3052 NULL, NULL);
3053 break;
3054 case SYS_RECVFROM:
3055 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3056 (struct sockaddr __user *)a[4],
3057 (int __user *)a[5]);
3058 break;
3059 case SYS_SHUTDOWN:
3060 err = __sys_shutdown(a0, a1);
3061 break;
3062 case SYS_SETSOCKOPT:
3063 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3064 a[4]);
3065 break;
3066 case SYS_GETSOCKOPT:
3067 err =
3068 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3069 (int __user *)a[4]);
3070 break;
3071 case SYS_SENDMSG:
3072 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3073 a[2], true);
3074 break;
3075 case SYS_SENDMMSG:
3076 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3077 a[3], true);
3078 break;
3079 case SYS_RECVMSG:
3080 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3081 a[2], true);
3082 break;
3083 case SYS_RECVMMSG:
3084 if (IS_ENABLED(CONFIG_64BIT))
3085 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3086 a[2], a[3],
3087 (struct __kernel_timespec __user *)a[4],
3088 NULL);
3089 else
3090 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3091 a[2], a[3], NULL,
3092 (struct old_timespec32 __user *)a[4]);
3093 break;
3094 case SYS_ACCEPT4:
3095 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3096 (int __user *)a[2], a[3]);
3097 break;
3098 default:
3099 err = -EINVAL;
3100 break;
3101 }
3102 return err;
3103}
3104
3105#endif /* __ARCH_WANT_SYS_SOCKETCALL */
3106
3107/**
3108 * sock_register - add a socket protocol handler
3109 * @ops: description of protocol
3110 *
3111 * This function is called by a protocol handler that wants to
3112 * advertise its address family, and have it linked into the
3113 * socket interface. The value ops->family corresponds to the
3114 * socket system call protocol family.
3115 */
3116int sock_register(const struct net_proto_family *ops)
3117{
3118 int err;
3119
3120 if (ops->family >= NPROTO) {
3121 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3122 return -ENOBUFS;
3123 }
3124
3125 spin_lock(&net_family_lock);
3126 if (rcu_dereference_protected(net_families[ops->family],
3127 lockdep_is_held(&net_family_lock)))
3128 err = -EEXIST;
3129 else {
3130 rcu_assign_pointer(net_families[ops->family], ops);
3131 err = 0;
3132 }
3133 spin_unlock(&net_family_lock);
3134
3135 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3136 return err;
3137}
3138EXPORT_SYMBOL(sock_register);
3139
3140/**
3141 * sock_unregister - remove a protocol handler
3142 * @family: protocol family to remove
3143 *
3144 * This function is called by a protocol handler that wants to
3145 * remove its address family, and have it unlinked from the
3146 * new socket creation.
3147 *
3148 * If protocol handler is a module, then it can use module reference
3149 * counts to protect against new references. If protocol handler is not
3150 * a module then it needs to provide its own protection in
3151 * the ops->create routine.
3152 */
3153void sock_unregister(int family)
3154{
3155 BUG_ON(family < 0 || family >= NPROTO);
3156
3157 spin_lock(&net_family_lock);
3158 RCU_INIT_POINTER(net_families[family], NULL);
3159 spin_unlock(&net_family_lock);
3160
3161 synchronize_rcu();
3162
3163 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3164}
3165EXPORT_SYMBOL(sock_unregister);
3166
3167bool sock_is_registered(int family)
3168{
3169 return family < NPROTO && rcu_access_pointer(net_families[family]);
3170}
3171
3172static int __init sock_init(void)
3173{
3174 int err;
3175 /*
3176 * Initialize the network sysctl infrastructure.
3177 */
3178 err = net_sysctl_init();
3179 if (err)
3180 goto out;
3181
3182 /*
3183 * Initialize skbuff SLAB cache
3184 */
3185 skb_init();
3186
3187 /*
3188 * Initialize the protocols module.
3189 */
3190
3191 init_inodecache();
3192
3193 err = register_filesystem(&sock_fs_type);
3194 if (err)
3195 goto out;
3196 sock_mnt = kern_mount(&sock_fs_type);
3197 if (IS_ERR(sock_mnt)) {
3198 err = PTR_ERR(sock_mnt);
3199 goto out_mount;
3200 }
3201
3202 /* The real protocol initialization is performed in later initcalls.
3203 */
3204
3205#ifdef CONFIG_NETFILTER
3206 err = netfilter_init();
3207 if (err)
3208 goto out;
3209#endif
3210
3211 ptp_classifier_init();
3212
3213out:
3214 return err;
3215
3216out_mount:
3217 unregister_filesystem(&sock_fs_type);
3218 goto out;
3219}
3220
3221core_initcall(sock_init); /* early initcall */
3222
3223#ifdef CONFIG_PROC_FS
3224void socket_seq_show(struct seq_file *seq)
3225{
3226 seq_printf(seq, "sockets: used %d\n",
3227 sock_inuse_get(seq->private));
3228}
3229#endif /* CONFIG_PROC_FS */
3230
3231/* Handle the fact that while struct ifreq has the same *layout* on
3232 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3233 * which are handled elsewhere, it still has different *size* due to
3234 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3235 * resulting in struct ifreq being 32 and 40 bytes respectively).
3236 * As a result, if the struct happens to be at the end of a page and
3237 * the next page isn't readable/writable, we get a fault. To prevent
3238 * that, copy back and forth to the full size.
3239 */
3240int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3241{
3242 if (in_compat_syscall()) {
3243 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3244
3245 memset(ifr, 0, sizeof(*ifr));
3246 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3247 return -EFAULT;
3248
3249 if (ifrdata)
3250 *ifrdata = compat_ptr(ifr32->ifr_data);
3251
3252 return 0;
3253 }
3254
3255 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3256 return -EFAULT;
3257
3258 if (ifrdata)
3259 *ifrdata = ifr->ifr_data;
3260
3261 return 0;
3262}
3263EXPORT_SYMBOL(get_user_ifreq);
3264
3265int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3266{
3267 size_t size = sizeof(*ifr);
3268
3269 if (in_compat_syscall())
3270 size = sizeof(struct compat_ifreq);
3271
3272 if (copy_to_user(arg, ifr, size))
3273 return -EFAULT;
3274
3275 return 0;
3276}
3277EXPORT_SYMBOL(put_user_ifreq);
3278
3279#ifdef CONFIG_COMPAT
3280static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3281{
3282 compat_uptr_t uptr32;
3283 struct ifreq ifr;
3284 void __user *saved;
3285 int err;
3286
3287 if (get_user_ifreq(&ifr, NULL, uifr32))
3288 return -EFAULT;
3289
3290 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3291 return -EFAULT;
3292
3293 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3294 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3295
3296 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3297 if (!err) {
3298 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3299 if (put_user_ifreq(&ifr, uifr32))
3300 err = -EFAULT;
3301 }
3302 return err;
3303}
3304
3305/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3306static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3307 struct compat_ifreq __user *u_ifreq32)
3308{
3309 struct ifreq ifreq;
3310 void __user *data;
3311
3312 if (!is_socket_ioctl_cmd(cmd))
3313 return -ENOTTY;
3314 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3315 return -EFAULT;
3316 ifreq.ifr_data = data;
3317
3318 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3319}
3320
3321static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3322 unsigned int cmd, unsigned long arg)
3323{
3324 void __user *argp = compat_ptr(arg);
3325 struct sock *sk = sock->sk;
3326 struct net *net = sock_net(sk);
3327
3328 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3329 return sock_ioctl(file, cmd, (unsigned long)argp);
3330
3331 switch (cmd) {
3332 case SIOCWANDEV:
3333 return compat_siocwandev(net, argp);
3334 case SIOCGSTAMP_OLD:
3335 case SIOCGSTAMPNS_OLD:
3336 if (!sock->ops->gettstamp)
3337 return -ENOIOCTLCMD;
3338 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3339 !COMPAT_USE_64BIT_TIME);
3340
3341 case SIOCETHTOOL:
3342 case SIOCBONDSLAVEINFOQUERY:
3343 case SIOCBONDINFOQUERY:
3344 case SIOCSHWTSTAMP:
3345 case SIOCGHWTSTAMP:
3346 return compat_ifr_data_ioctl(net, cmd, argp);
3347
3348 case FIOSETOWN:
3349 case SIOCSPGRP:
3350 case FIOGETOWN:
3351 case SIOCGPGRP:
3352 case SIOCBRADDBR:
3353 case SIOCBRDELBR:
3354 case SIOCGIFVLAN:
3355 case SIOCSIFVLAN:
3356 case SIOCGSKNS:
3357 case SIOCGSTAMP_NEW:
3358 case SIOCGSTAMPNS_NEW:
3359 case SIOCGIFCONF:
3360 case SIOCSIFBR:
3361 case SIOCGIFBR:
3362 return sock_ioctl(file, cmd, arg);
3363
3364 case SIOCGIFFLAGS:
3365 case SIOCSIFFLAGS:
3366 case SIOCGIFMAP:
3367 case SIOCSIFMAP:
3368 case SIOCGIFMETRIC:
3369 case SIOCSIFMETRIC:
3370 case SIOCGIFMTU:
3371 case SIOCSIFMTU:
3372 case SIOCGIFMEM:
3373 case SIOCSIFMEM:
3374 case SIOCGIFHWADDR:
3375 case SIOCSIFHWADDR:
3376 case SIOCADDMULTI:
3377 case SIOCDELMULTI:
3378 case SIOCGIFINDEX:
3379 case SIOCGIFADDR:
3380 case SIOCSIFADDR:
3381 case SIOCSIFHWBROADCAST:
3382 case SIOCDIFADDR:
3383 case SIOCGIFBRDADDR:
3384 case SIOCSIFBRDADDR:
3385 case SIOCGIFDSTADDR:
3386 case SIOCSIFDSTADDR:
3387 case SIOCGIFNETMASK:
3388 case SIOCSIFNETMASK:
3389 case SIOCSIFPFLAGS:
3390 case SIOCGIFPFLAGS:
3391 case SIOCGIFTXQLEN:
3392 case SIOCSIFTXQLEN:
3393 case SIOCBRADDIF:
3394 case SIOCBRDELIF:
3395 case SIOCGIFNAME:
3396 case SIOCSIFNAME:
3397 case SIOCGMIIPHY:
3398 case SIOCGMIIREG:
3399 case SIOCSMIIREG:
3400 case SIOCBONDENSLAVE:
3401 case SIOCBONDRELEASE:
3402 case SIOCBONDSETHWADDR:
3403 case SIOCBONDCHANGEACTIVE:
3404 case SIOCSARP:
3405 case SIOCGARP:
3406 case SIOCDARP:
3407 case SIOCOUTQ:
3408 case SIOCOUTQNSD:
3409 case SIOCATMARK:
3410 return sock_do_ioctl(net, sock, cmd, arg);
3411 }
3412
3413 return -ENOIOCTLCMD;
3414}
3415
3416static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3417 unsigned long arg)
3418{
3419 struct socket *sock = file->private_data;
3420 int ret = -ENOIOCTLCMD;
3421 struct sock *sk;
3422 struct net *net;
3423
3424 sk = sock->sk;
3425 net = sock_net(sk);
3426
3427 if (sock->ops->compat_ioctl)
3428 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3429
3430 if (ret == -ENOIOCTLCMD &&
3431 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3432 ret = compat_wext_handle_ioctl(net, cmd, arg);
3433
3434 if (ret == -ENOIOCTLCMD)
3435 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3436
3437 return ret;
3438}
3439#endif
3440
3441/**
3442 * kernel_bind - bind an address to a socket (kernel space)
3443 * @sock: socket
3444 * @addr: address
3445 * @addrlen: length of address
3446 *
3447 * Returns 0 or an error.
3448 */
3449
3450int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3451{
3452 return sock->ops->bind(sock, addr, addrlen);
3453}
3454EXPORT_SYMBOL(kernel_bind);
3455
3456/**
3457 * kernel_listen - move socket to listening state (kernel space)
3458 * @sock: socket
3459 * @backlog: pending connections queue size
3460 *
3461 * Returns 0 or an error.
3462 */
3463
3464int kernel_listen(struct socket *sock, int backlog)
3465{
3466 return sock->ops->listen(sock, backlog);
3467}
3468EXPORT_SYMBOL(kernel_listen);
3469
3470/**
3471 * kernel_accept - accept a connection (kernel space)
3472 * @sock: listening socket
3473 * @newsock: new connected socket
3474 * @flags: flags
3475 *
3476 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3477 * If it fails, @newsock is guaranteed to be %NULL.
3478 * Returns 0 or an error.
3479 */
3480
3481int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3482{
3483 struct sock *sk = sock->sk;
3484 int err;
3485
3486 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3487 newsock);
3488 if (err < 0)
3489 goto done;
3490
3491 err = sock->ops->accept(sock, *newsock, flags, true);
3492 if (err < 0) {
3493 sock_release(*newsock);
3494 *newsock = NULL;
3495 goto done;
3496 }
3497
3498 (*newsock)->ops = sock->ops;
3499 __module_get((*newsock)->ops->owner);
3500
3501done:
3502 return err;
3503}
3504EXPORT_SYMBOL(kernel_accept);
3505
3506/**
3507 * kernel_connect - connect a socket (kernel space)
3508 * @sock: socket
3509 * @addr: address
3510 * @addrlen: address length
3511 * @flags: flags (O_NONBLOCK, ...)
3512 *
3513 * For datagram sockets, @addr is the address to which datagrams are sent
3514 * by default, and the only address from which datagrams are received.
3515 * For stream sockets, attempts to connect to @addr.
3516 * Returns 0 or an error code.
3517 */
3518
3519int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3520 int flags)
3521{
3522 return sock->ops->connect(sock, addr, addrlen, flags);
3523}
3524EXPORT_SYMBOL(kernel_connect);
3525
3526/**
3527 * kernel_getsockname - get the address which the socket is bound (kernel space)
3528 * @sock: socket
3529 * @addr: address holder
3530 *
3531 * Fills the @addr pointer with the address which the socket is bound.
3532 * Returns the length of the address in bytes or an error code.
3533 */
3534
3535int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3536{
3537 return sock->ops->getname(sock, addr, 0);
3538}
3539EXPORT_SYMBOL(kernel_getsockname);
3540
3541/**
3542 * kernel_getpeername - get the address which the socket is connected (kernel space)
3543 * @sock: socket
3544 * @addr: address holder
3545 *
3546 * Fills the @addr pointer with the address which the socket is connected.
3547 * Returns the length of the address in bytes or an error code.
3548 */
3549
3550int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3551{
3552 return sock->ops->getname(sock, addr, 1);
3553}
3554EXPORT_SYMBOL(kernel_getpeername);
3555
3556/**
3557 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3558 * @sock: socket
3559 * @how: connection part
3560 *
3561 * Returns 0 or an error.
3562 */
3563
3564int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3565{
3566 return sock->ops->shutdown(sock, how);
3567}
3568EXPORT_SYMBOL(kernel_sock_shutdown);
3569
3570/**
3571 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3572 * @sk: socket
3573 *
3574 * This routine returns the IP overhead imposed by a socket i.e.
3575 * the length of the underlying IP header, depending on whether
3576 * this is an IPv4 or IPv6 socket and the length from IP options turned
3577 * on at the socket. Assumes that the caller has a lock on the socket.
3578 */
3579
3580u32 kernel_sock_ip_overhead(struct sock *sk)
3581{
3582 struct inet_sock *inet;
3583 struct ip_options_rcu *opt;
3584 u32 overhead = 0;
3585#if IS_ENABLED(CONFIG_IPV6)
3586 struct ipv6_pinfo *np;
3587 struct ipv6_txoptions *optv6 = NULL;
3588#endif /* IS_ENABLED(CONFIG_IPV6) */
3589
3590 if (!sk)
3591 return overhead;
3592
3593 switch (sk->sk_family) {
3594 case AF_INET:
3595 inet = inet_sk(sk);
3596 overhead += sizeof(struct iphdr);
3597 opt = rcu_dereference_protected(inet->inet_opt,
3598 sock_owned_by_user(sk));
3599 if (opt)
3600 overhead += opt->opt.optlen;
3601 return overhead;
3602#if IS_ENABLED(CONFIG_IPV6)
3603 case AF_INET6:
3604 np = inet6_sk(sk);
3605 overhead += sizeof(struct ipv6hdr);
3606 if (np)
3607 optv6 = rcu_dereference_protected(np->opt,
3608 sock_owned_by_user(sk));
3609 if (optv6)
3610 overhead += (optv6->opt_flen + optv6->opt_nflen);
3611 return overhead;
3612#endif /* IS_ENABLED(CONFIG_IPV6) */
3613 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3614 return overhead;
3615 }
3616}
3617EXPORT_SYMBOL(kernel_sock_ip_overhead);