Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 */
8
9/*
10 * DOC: Interesting implementation details of the Maple Tree
11 *
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
15 *
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
20 * the same index.
21 *
22 *
23 * The following illustrates the layout of a range64 nodes slots and pivots.
24 *
25 *
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
32 * │ │ │ │ └─ Pivot 11
33 * │ │ │ └─ Pivot 2
34 * │ │ └─ Pivot 1
35 * │ └─ Pivot 0
36 * └─ Implied minimum
37 *
38 * Slot contents:
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
41 *
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
45 *
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
50 *
51 */
52
53
54#include <linux/maple_tree.h>
55#include <linux/xarray.h>
56#include <linux/types.h>
57#include <linux/export.h>
58#include <linux/slab.h>
59#include <linux/limits.h>
60#include <asm/barrier.h>
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/maple_tree.h>
64
65#define MA_ROOT_PARENT 1
66
67/*
68 * Maple state flags
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
72 */
73#define MA_STATE_BULK 1
74#define MA_STATE_REBALANCE 2
75#define MA_STATE_PREALLOC 4
76
77#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78#define ma_mnode_ptr(x) ((struct maple_node *)(x))
79#define ma_enode_ptr(x) ((struct maple_enode *)(x))
80static struct kmem_cache *maple_node_cache;
81
82#ifdef CONFIG_DEBUG_MAPLE_TREE
83static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
88};
89#define mt_node_max(x) mt_max[mte_node_type(x)]
90#endif
91
92static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
97};
98#define mt_slot_count(x) mt_slots[mte_node_type(x)]
99
100static const unsigned char mt_pivots[] = {
101 [maple_dense] = 0,
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
105};
106#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107
108static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
113};
114#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115
116#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
118
119struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 union {
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 struct {
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 };
128 };
129 unsigned char b_end;
130 enum maple_type type;
131};
132
133/*
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
137 */
138struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
147};
148
149#ifdef CONFIG_KASAN_STACK
150/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151#define noinline_for_kasan noinline_for_stack
152#else
153#define noinline_for_kasan inline
154#endif
155
156/* Functions */
157static inline struct maple_node *mt_alloc_one(gfp_t gfp)
158{
159 return kmem_cache_alloc(maple_node_cache, gfp);
160}
161
162static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
163{
164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
165}
166
167static inline void mt_free_bulk(size_t size, void __rcu **nodes)
168{
169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
170}
171
172static void mt_free_rcu(struct rcu_head *head)
173{
174 struct maple_node *node = container_of(head, struct maple_node, rcu);
175
176 kmem_cache_free(maple_node_cache, node);
177}
178
179/*
180 * ma_free_rcu() - Use rcu callback to free a maple node
181 * @node: The node to free
182 *
183 * The maple tree uses the parent pointer to indicate this node is no longer in
184 * use and will be freed.
185 */
186static void ma_free_rcu(struct maple_node *node)
187{
188 WARN_ON(node->parent != ma_parent_ptr(node));
189 call_rcu(&node->rcu, mt_free_rcu);
190}
191
192static void mas_set_height(struct ma_state *mas)
193{
194 unsigned int new_flags = mas->tree->ma_flags;
195
196 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
197 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 mas->tree->ma_flags = new_flags;
200}
201
202static unsigned int mas_mt_height(struct ma_state *mas)
203{
204 return mt_height(mas->tree);
205}
206
207static inline enum maple_type mte_node_type(const struct maple_enode *entry)
208{
209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 MAPLE_NODE_TYPE_MASK;
211}
212
213static inline bool ma_is_dense(const enum maple_type type)
214{
215 return type < maple_leaf_64;
216}
217
218static inline bool ma_is_leaf(const enum maple_type type)
219{
220 return type < maple_range_64;
221}
222
223static inline bool mte_is_leaf(const struct maple_enode *entry)
224{
225 return ma_is_leaf(mte_node_type(entry));
226}
227
228/*
229 * We also reserve values with the bottom two bits set to '10' which are
230 * below 4096
231 */
232static inline bool mt_is_reserved(const void *entry)
233{
234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 xa_is_internal(entry);
236}
237
238static inline void mas_set_err(struct ma_state *mas, long err)
239{
240 mas->node = MA_ERROR(err);
241}
242
243static inline bool mas_is_ptr(const struct ma_state *mas)
244{
245 return mas->node == MAS_ROOT;
246}
247
248static inline bool mas_is_start(const struct ma_state *mas)
249{
250 return mas->node == MAS_START;
251}
252
253bool mas_is_err(struct ma_state *mas)
254{
255 return xa_is_err(mas->node);
256}
257
258static inline bool mas_searchable(struct ma_state *mas)
259{
260 if (mas_is_none(mas))
261 return false;
262
263 if (mas_is_ptr(mas))
264 return false;
265
266 return true;
267}
268
269static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
270{
271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
272}
273
274/*
275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276 * @entry: The maple encoded node
277 *
278 * Return: a maple topiary pointer
279 */
280static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
281{
282 return (struct maple_topiary *)
283 ((unsigned long)entry & ~MAPLE_NODE_MASK);
284}
285
286/*
287 * mas_mn() - Get the maple state node.
288 * @mas: The maple state
289 *
290 * Return: the maple node (not encoded - bare pointer).
291 */
292static inline struct maple_node *mas_mn(const struct ma_state *mas)
293{
294 return mte_to_node(mas->node);
295}
296
297/*
298 * mte_set_node_dead() - Set a maple encoded node as dead.
299 * @mn: The maple encoded node.
300 */
301static inline void mte_set_node_dead(struct maple_enode *mn)
302{
303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 smp_wmb(); /* Needed for RCU */
305}
306
307/* Bit 1 indicates the root is a node */
308#define MAPLE_ROOT_NODE 0x02
309/* maple_type stored bit 3-6 */
310#define MAPLE_ENODE_TYPE_SHIFT 0x03
311/* Bit 2 means a NULL somewhere below */
312#define MAPLE_ENODE_NULL 0x04
313
314static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 enum maple_type type)
316{
317 return (void *)((unsigned long)node |
318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
319}
320
321static inline void *mte_mk_root(const struct maple_enode *node)
322{
323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
324}
325
326static inline void *mte_safe_root(const struct maple_enode *node)
327{
328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
329}
330
331static inline void *mte_set_full(const struct maple_enode *node)
332{
333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
334}
335
336static inline void *mte_clear_full(const struct maple_enode *node)
337{
338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
339}
340
341static inline bool mte_has_null(const struct maple_enode *node)
342{
343 return (unsigned long)node & MAPLE_ENODE_NULL;
344}
345
346static inline bool ma_is_root(struct maple_node *node)
347{
348 return ((unsigned long)node->parent & MA_ROOT_PARENT);
349}
350
351static inline bool mte_is_root(const struct maple_enode *node)
352{
353 return ma_is_root(mte_to_node(node));
354}
355
356static inline bool mas_is_root_limits(const struct ma_state *mas)
357{
358 return !mas->min && mas->max == ULONG_MAX;
359}
360
361static inline bool mt_is_alloc(struct maple_tree *mt)
362{
363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
364}
365
366/*
367 * The Parent Pointer
368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
370 * bit values need an extra bit to store the offset. This extra bit comes from
371 * a reuse of the last bit in the node type. This is possible by using bit 1 to
372 * indicate if bit 2 is part of the type or the slot.
373 *
374 * Note types:
375 * 0x??1 = Root
376 * 0x?00 = 16 bit nodes
377 * 0x010 = 32 bit nodes
378 * 0x110 = 64 bit nodes
379 *
380 * Slot size and alignment
381 * 0b??1 : Root
382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
385 */
386
387#define MAPLE_PARENT_ROOT 0x01
388
389#define MAPLE_PARENT_SLOT_SHIFT 0x03
390#define MAPLE_PARENT_SLOT_MASK 0xF8
391
392#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
393#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
394
395#define MAPLE_PARENT_RANGE64 0x06
396#define MAPLE_PARENT_RANGE32 0x04
397#define MAPLE_PARENT_NOT_RANGE16 0x02
398
399/*
400 * mte_parent_shift() - Get the parent shift for the slot storage.
401 * @parent: The parent pointer cast as an unsigned long
402 * Return: The shift into that pointer to the star to of the slot
403 */
404static inline unsigned long mte_parent_shift(unsigned long parent)
405{
406 /* Note bit 1 == 0 means 16B */
407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 return MAPLE_PARENT_SLOT_SHIFT;
409
410 return MAPLE_PARENT_16B_SLOT_SHIFT;
411}
412
413/*
414 * mte_parent_slot_mask() - Get the slot mask for the parent.
415 * @parent: The parent pointer cast as an unsigned long.
416 * Return: The slot mask for that parent.
417 */
418static inline unsigned long mte_parent_slot_mask(unsigned long parent)
419{
420 /* Note bit 1 == 0 means 16B */
421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 return MAPLE_PARENT_SLOT_MASK;
423
424 return MAPLE_PARENT_16B_SLOT_MASK;
425}
426
427/*
428 * mas_parent_type() - Return the maple_type of the parent from the stored
429 * parent type.
430 * @mas: The maple state
431 * @enode: The maple_enode to extract the parent's enum
432 * Return: The node->parent maple_type
433 */
434static inline
435enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
436{
437 unsigned long p_type;
438
439 p_type = (unsigned long)mte_to_node(enode)->parent;
440 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
441 return 0;
442
443 p_type &= MAPLE_NODE_MASK;
444 p_type &= ~mte_parent_slot_mask(p_type);
445 switch (p_type) {
446 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
447 if (mt_is_alloc(mas->tree))
448 return maple_arange_64;
449 return maple_range_64;
450 }
451
452 return 0;
453}
454
455/*
456 * mas_set_parent() - Set the parent node and encode the slot
457 * @enode: The encoded maple node.
458 * @parent: The encoded maple node that is the parent of @enode.
459 * @slot: The slot that @enode resides in @parent.
460 *
461 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
462 * parent type.
463 */
464static inline
465void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
466 const struct maple_enode *parent, unsigned char slot)
467{
468 unsigned long val = (unsigned long)parent;
469 unsigned long shift;
470 unsigned long type;
471 enum maple_type p_type = mte_node_type(parent);
472
473 MAS_BUG_ON(mas, p_type == maple_dense);
474 MAS_BUG_ON(mas, p_type == maple_leaf_64);
475
476 switch (p_type) {
477 case maple_range_64:
478 case maple_arange_64:
479 shift = MAPLE_PARENT_SLOT_SHIFT;
480 type = MAPLE_PARENT_RANGE64;
481 break;
482 default:
483 case maple_dense:
484 case maple_leaf_64:
485 shift = type = 0;
486 break;
487 }
488
489 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
490 val |= (slot << shift) | type;
491 mte_to_node(enode)->parent = ma_parent_ptr(val);
492}
493
494/*
495 * mte_parent_slot() - get the parent slot of @enode.
496 * @enode: The encoded maple node.
497 *
498 * Return: The slot in the parent node where @enode resides.
499 */
500static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
501{
502 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
503
504 if (val & MA_ROOT_PARENT)
505 return 0;
506
507 /*
508 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
509 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
510 */
511 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
512}
513
514/*
515 * mte_parent() - Get the parent of @node.
516 * @node: The encoded maple node.
517 *
518 * Return: The parent maple node.
519 */
520static inline struct maple_node *mte_parent(const struct maple_enode *enode)
521{
522 return (void *)((unsigned long)
523 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
524}
525
526/*
527 * ma_dead_node() - check if the @enode is dead.
528 * @enode: The encoded maple node
529 *
530 * Return: true if dead, false otherwise.
531 */
532static inline bool ma_dead_node(const struct maple_node *node)
533{
534 struct maple_node *parent;
535
536 /* Do not reorder reads from the node prior to the parent check */
537 smp_rmb();
538 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
539 return (parent == node);
540}
541
542/*
543 * mte_dead_node() - check if the @enode is dead.
544 * @enode: The encoded maple node
545 *
546 * Return: true if dead, false otherwise.
547 */
548static inline bool mte_dead_node(const struct maple_enode *enode)
549{
550 struct maple_node *parent, *node;
551
552 node = mte_to_node(enode);
553 /* Do not reorder reads from the node prior to the parent check */
554 smp_rmb();
555 parent = mte_parent(enode);
556 return (parent == node);
557}
558
559/*
560 * mas_allocated() - Get the number of nodes allocated in a maple state.
561 * @mas: The maple state
562 *
563 * The ma_state alloc member is overloaded to hold a pointer to the first
564 * allocated node or to the number of requested nodes to allocate. If bit 0 is
565 * set, then the alloc contains the number of requested nodes. If there is an
566 * allocated node, then the total allocated nodes is in that node.
567 *
568 * Return: The total number of nodes allocated
569 */
570static inline unsigned long mas_allocated(const struct ma_state *mas)
571{
572 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
573 return 0;
574
575 return mas->alloc->total;
576}
577
578/*
579 * mas_set_alloc_req() - Set the requested number of allocations.
580 * @mas: the maple state
581 * @count: the number of allocations.
582 *
583 * The requested number of allocations is either in the first allocated node,
584 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
585 * no allocated node. Set the request either in the node or do the necessary
586 * encoding to store in @mas->alloc directly.
587 */
588static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
589{
590 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
591 if (!count)
592 mas->alloc = NULL;
593 else
594 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
595 return;
596 }
597
598 mas->alloc->request_count = count;
599}
600
601/*
602 * mas_alloc_req() - get the requested number of allocations.
603 * @mas: The maple state
604 *
605 * The alloc count is either stored directly in @mas, or in
606 * @mas->alloc->request_count if there is at least one node allocated. Decode
607 * the request count if it's stored directly in @mas->alloc.
608 *
609 * Return: The allocation request count.
610 */
611static inline unsigned int mas_alloc_req(const struct ma_state *mas)
612{
613 if ((unsigned long)mas->alloc & 0x1)
614 return (unsigned long)(mas->alloc) >> 1;
615 else if (mas->alloc)
616 return mas->alloc->request_count;
617 return 0;
618}
619
620/*
621 * ma_pivots() - Get a pointer to the maple node pivots.
622 * @node - the maple node
623 * @type - the node type
624 *
625 * In the event of a dead node, this array may be %NULL
626 *
627 * Return: A pointer to the maple node pivots
628 */
629static inline unsigned long *ma_pivots(struct maple_node *node,
630 enum maple_type type)
631{
632 switch (type) {
633 case maple_arange_64:
634 return node->ma64.pivot;
635 case maple_range_64:
636 case maple_leaf_64:
637 return node->mr64.pivot;
638 case maple_dense:
639 return NULL;
640 }
641 return NULL;
642}
643
644/*
645 * ma_gaps() - Get a pointer to the maple node gaps.
646 * @node - the maple node
647 * @type - the node type
648 *
649 * Return: A pointer to the maple node gaps
650 */
651static inline unsigned long *ma_gaps(struct maple_node *node,
652 enum maple_type type)
653{
654 switch (type) {
655 case maple_arange_64:
656 return node->ma64.gap;
657 case maple_range_64:
658 case maple_leaf_64:
659 case maple_dense:
660 return NULL;
661 }
662 return NULL;
663}
664
665/*
666 * mas_pivot() - Get the pivot at @piv of the maple encoded node.
667 * @mas: The maple state.
668 * @piv: The pivot.
669 *
670 * Return: the pivot at @piv of @mn.
671 */
672static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv)
673{
674 struct maple_node *node = mas_mn(mas);
675 enum maple_type type = mte_node_type(mas->node);
676
677 if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) {
678 mas_set_err(mas, -EIO);
679 return 0;
680 }
681
682 switch (type) {
683 case maple_arange_64:
684 return node->ma64.pivot[piv];
685 case maple_range_64:
686 case maple_leaf_64:
687 return node->mr64.pivot[piv];
688 case maple_dense:
689 return 0;
690 }
691 return 0;
692}
693
694/*
695 * mas_safe_pivot() - get the pivot at @piv or mas->max.
696 * @mas: The maple state
697 * @pivots: The pointer to the maple node pivots
698 * @piv: The pivot to fetch
699 * @type: The maple node type
700 *
701 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
702 * otherwise.
703 */
704static inline unsigned long
705mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
706 unsigned char piv, enum maple_type type)
707{
708 if (piv >= mt_pivots[type])
709 return mas->max;
710
711 return pivots[piv];
712}
713
714/*
715 * mas_safe_min() - Return the minimum for a given offset.
716 * @mas: The maple state
717 * @pivots: The pointer to the maple node pivots
718 * @offset: The offset into the pivot array
719 *
720 * Return: The minimum range value that is contained in @offset.
721 */
722static inline unsigned long
723mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
724{
725 if (likely(offset))
726 return pivots[offset - 1] + 1;
727
728 return mas->min;
729}
730
731/*
732 * mas_logical_pivot() - Get the logical pivot of a given offset.
733 * @mas: The maple state
734 * @pivots: The pointer to the maple node pivots
735 * @offset: The offset into the pivot array
736 * @type: The maple node type
737 *
738 * When there is no value at a pivot (beyond the end of the data), then the
739 * pivot is actually @mas->max.
740 *
741 * Return: the logical pivot of a given @offset.
742 */
743static inline unsigned long
744mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
745 unsigned char offset, enum maple_type type)
746{
747 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
748
749 if (likely(lpiv))
750 return lpiv;
751
752 if (likely(offset))
753 return mas->max;
754
755 return lpiv;
756}
757
758/*
759 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
760 * @mn: The encoded maple node
761 * @piv: The pivot offset
762 * @val: The value of the pivot
763 */
764static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
765 unsigned long val)
766{
767 struct maple_node *node = mte_to_node(mn);
768 enum maple_type type = mte_node_type(mn);
769
770 BUG_ON(piv >= mt_pivots[type]);
771 switch (type) {
772 default:
773 case maple_range_64:
774 case maple_leaf_64:
775 node->mr64.pivot[piv] = val;
776 break;
777 case maple_arange_64:
778 node->ma64.pivot[piv] = val;
779 break;
780 case maple_dense:
781 break;
782 }
783
784}
785
786/*
787 * ma_slots() - Get a pointer to the maple node slots.
788 * @mn: The maple node
789 * @mt: The maple node type
790 *
791 * Return: A pointer to the maple node slots
792 */
793static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
794{
795 switch (mt) {
796 default:
797 case maple_arange_64:
798 return mn->ma64.slot;
799 case maple_range_64:
800 case maple_leaf_64:
801 return mn->mr64.slot;
802 case maple_dense:
803 return mn->slot;
804 }
805}
806
807static inline bool mt_locked(const struct maple_tree *mt)
808{
809 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
810 lockdep_is_held(&mt->ma_lock);
811}
812
813static inline void *mt_slot(const struct maple_tree *mt,
814 void __rcu **slots, unsigned char offset)
815{
816 return rcu_dereference_check(slots[offset], mt_locked(mt));
817}
818
819static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
820 unsigned char offset)
821{
822 return rcu_dereference_protected(slots[offset], mt_locked(mt));
823}
824/*
825 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
826 * @mas: The maple state
827 * @slots: The pointer to the slots
828 * @offset: The offset into the slots array to fetch
829 *
830 * Return: The entry stored in @slots at the @offset.
831 */
832static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
833 unsigned char offset)
834{
835 return mt_slot_locked(mas->tree, slots, offset);
836}
837
838/*
839 * mas_slot() - Get the slot value when not holding the maple tree lock.
840 * @mas: The maple state
841 * @slots: The pointer to the slots
842 * @offset: The offset into the slots array to fetch
843 *
844 * Return: The entry stored in @slots at the @offset
845 */
846static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
847 unsigned char offset)
848{
849 return mt_slot(mas->tree, slots, offset);
850}
851
852/*
853 * mas_root() - Get the maple tree root.
854 * @mas: The maple state.
855 *
856 * Return: The pointer to the root of the tree
857 */
858static inline void *mas_root(struct ma_state *mas)
859{
860 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
861}
862
863static inline void *mt_root_locked(struct maple_tree *mt)
864{
865 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
866}
867
868/*
869 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
870 * @mas: The maple state.
871 *
872 * Return: The pointer to the root of the tree
873 */
874static inline void *mas_root_locked(struct ma_state *mas)
875{
876 return mt_root_locked(mas->tree);
877}
878
879static inline struct maple_metadata *ma_meta(struct maple_node *mn,
880 enum maple_type mt)
881{
882 switch (mt) {
883 case maple_arange_64:
884 return &mn->ma64.meta;
885 default:
886 return &mn->mr64.meta;
887 }
888}
889
890/*
891 * ma_set_meta() - Set the metadata information of a node.
892 * @mn: The maple node
893 * @mt: The maple node type
894 * @offset: The offset of the highest sub-gap in this node.
895 * @end: The end of the data in this node.
896 */
897static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
898 unsigned char offset, unsigned char end)
899{
900 struct maple_metadata *meta = ma_meta(mn, mt);
901
902 meta->gap = offset;
903 meta->end = end;
904}
905
906/*
907 * mt_clear_meta() - clear the metadata information of a node, if it exists
908 * @mt: The maple tree
909 * @mn: The maple node
910 * @type: The maple node type
911 * @offset: The offset of the highest sub-gap in this node.
912 * @end: The end of the data in this node.
913 */
914static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
915 enum maple_type type)
916{
917 struct maple_metadata *meta;
918 unsigned long *pivots;
919 void __rcu **slots;
920 void *next;
921
922 switch (type) {
923 case maple_range_64:
924 pivots = mn->mr64.pivot;
925 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
926 slots = mn->mr64.slot;
927 next = mt_slot_locked(mt, slots,
928 MAPLE_RANGE64_SLOTS - 1);
929 if (unlikely((mte_to_node(next) &&
930 mte_node_type(next))))
931 return; /* no metadata, could be node */
932 }
933 fallthrough;
934 case maple_arange_64:
935 meta = ma_meta(mn, type);
936 break;
937 default:
938 return;
939 }
940
941 meta->gap = 0;
942 meta->end = 0;
943}
944
945/*
946 * ma_meta_end() - Get the data end of a node from the metadata
947 * @mn: The maple node
948 * @mt: The maple node type
949 */
950static inline unsigned char ma_meta_end(struct maple_node *mn,
951 enum maple_type mt)
952{
953 struct maple_metadata *meta = ma_meta(mn, mt);
954
955 return meta->end;
956}
957
958/*
959 * ma_meta_gap() - Get the largest gap location of a node from the metadata
960 * @mn: The maple node
961 * @mt: The maple node type
962 */
963static inline unsigned char ma_meta_gap(struct maple_node *mn,
964 enum maple_type mt)
965{
966 return mn->ma64.meta.gap;
967}
968
969/*
970 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
971 * @mn: The maple node
972 * @mn: The maple node type
973 * @offset: The location of the largest gap.
974 */
975static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
976 unsigned char offset)
977{
978
979 struct maple_metadata *meta = ma_meta(mn, mt);
980
981 meta->gap = offset;
982}
983
984/*
985 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
986 * @mat - the ma_topiary, a linked list of dead nodes.
987 * @dead_enode - the node to be marked as dead and added to the tail of the list
988 *
989 * Add the @dead_enode to the linked list in @mat.
990 */
991static inline void mat_add(struct ma_topiary *mat,
992 struct maple_enode *dead_enode)
993{
994 mte_set_node_dead(dead_enode);
995 mte_to_mat(dead_enode)->next = NULL;
996 if (!mat->tail) {
997 mat->tail = mat->head = dead_enode;
998 return;
999 }
1000
1001 mte_to_mat(mat->tail)->next = dead_enode;
1002 mat->tail = dead_enode;
1003}
1004
1005static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
1006static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
1007
1008/*
1009 * mas_mat_free() - Free all nodes in a dead list.
1010 * @mas - the maple state
1011 * @mat - the ma_topiary linked list of dead nodes to free.
1012 *
1013 * Free walk a dead list.
1014 */
1015static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
1016{
1017 struct maple_enode *next;
1018
1019 while (mat->head) {
1020 next = mte_to_mat(mat->head)->next;
1021 mas_free(mas, mat->head);
1022 mat->head = next;
1023 }
1024}
1025
1026/*
1027 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1028 * @mas - the maple state
1029 * @mat - the ma_topiary linked list of dead nodes to free.
1030 *
1031 * Destroy walk a dead list.
1032 */
1033static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1034{
1035 struct maple_enode *next;
1036
1037 while (mat->head) {
1038 next = mte_to_mat(mat->head)->next;
1039 mte_destroy_walk(mat->head, mat->mtree);
1040 mat->head = next;
1041 }
1042}
1043/*
1044 * mas_descend() - Descend into the slot stored in the ma_state.
1045 * @mas - the maple state.
1046 *
1047 * Note: Not RCU safe, only use in write side or debug code.
1048 */
1049static inline void mas_descend(struct ma_state *mas)
1050{
1051 enum maple_type type;
1052 unsigned long *pivots;
1053 struct maple_node *node;
1054 void __rcu **slots;
1055
1056 node = mas_mn(mas);
1057 type = mte_node_type(mas->node);
1058 pivots = ma_pivots(node, type);
1059 slots = ma_slots(node, type);
1060
1061 if (mas->offset)
1062 mas->min = pivots[mas->offset - 1] + 1;
1063 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1064 mas->node = mas_slot(mas, slots, mas->offset);
1065}
1066
1067/*
1068 * mte_set_gap() - Set a maple node gap.
1069 * @mn: The encoded maple node
1070 * @gap: The offset of the gap to set
1071 * @val: The gap value
1072 */
1073static inline void mte_set_gap(const struct maple_enode *mn,
1074 unsigned char gap, unsigned long val)
1075{
1076 switch (mte_node_type(mn)) {
1077 default:
1078 break;
1079 case maple_arange_64:
1080 mte_to_node(mn)->ma64.gap[gap] = val;
1081 break;
1082 }
1083}
1084
1085/*
1086 * mas_ascend() - Walk up a level of the tree.
1087 * @mas: The maple state
1088 *
1089 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1090 * may cause several levels of walking up to find the correct min and max.
1091 * May find a dead node which will cause a premature return.
1092 * Return: 1 on dead node, 0 otherwise
1093 */
1094static int mas_ascend(struct ma_state *mas)
1095{
1096 struct maple_enode *p_enode; /* parent enode. */
1097 struct maple_enode *a_enode; /* ancestor enode. */
1098 struct maple_node *a_node; /* ancestor node. */
1099 struct maple_node *p_node; /* parent node. */
1100 unsigned char a_slot;
1101 enum maple_type a_type;
1102 unsigned long min, max;
1103 unsigned long *pivots;
1104 bool set_max = false, set_min = false;
1105
1106 a_node = mas_mn(mas);
1107 if (ma_is_root(a_node)) {
1108 mas->offset = 0;
1109 return 0;
1110 }
1111
1112 p_node = mte_parent(mas->node);
1113 if (unlikely(a_node == p_node))
1114 return 1;
1115
1116 a_type = mas_parent_type(mas, mas->node);
1117 mas->offset = mte_parent_slot(mas->node);
1118 a_enode = mt_mk_node(p_node, a_type);
1119
1120 /* Check to make sure all parent information is still accurate */
1121 if (p_node != mte_parent(mas->node))
1122 return 1;
1123
1124 mas->node = a_enode;
1125
1126 if (mte_is_root(a_enode)) {
1127 mas->max = ULONG_MAX;
1128 mas->min = 0;
1129 return 0;
1130 }
1131
1132 if (!mas->min)
1133 set_min = true;
1134
1135 if (mas->max == ULONG_MAX)
1136 set_max = true;
1137
1138 min = 0;
1139 max = ULONG_MAX;
1140 do {
1141 p_enode = a_enode;
1142 a_type = mas_parent_type(mas, p_enode);
1143 a_node = mte_parent(p_enode);
1144 a_slot = mte_parent_slot(p_enode);
1145 a_enode = mt_mk_node(a_node, a_type);
1146 pivots = ma_pivots(a_node, a_type);
1147
1148 if (unlikely(ma_dead_node(a_node)))
1149 return 1;
1150
1151 if (!set_min && a_slot) {
1152 set_min = true;
1153 min = pivots[a_slot - 1] + 1;
1154 }
1155
1156 if (!set_max && a_slot < mt_pivots[a_type]) {
1157 set_max = true;
1158 max = pivots[a_slot];
1159 }
1160
1161 if (unlikely(ma_dead_node(a_node)))
1162 return 1;
1163
1164 if (unlikely(ma_is_root(a_node)))
1165 break;
1166
1167 } while (!set_min || !set_max);
1168
1169 mas->max = max;
1170 mas->min = min;
1171 return 0;
1172}
1173
1174/*
1175 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1176 * @mas: The maple state
1177 *
1178 * Return: A pointer to a maple node.
1179 */
1180static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1181{
1182 struct maple_alloc *ret, *node = mas->alloc;
1183 unsigned long total = mas_allocated(mas);
1184 unsigned int req = mas_alloc_req(mas);
1185
1186 /* nothing or a request pending. */
1187 if (WARN_ON(!total))
1188 return NULL;
1189
1190 if (total == 1) {
1191 /* single allocation in this ma_state */
1192 mas->alloc = NULL;
1193 ret = node;
1194 goto single_node;
1195 }
1196
1197 if (node->node_count == 1) {
1198 /* Single allocation in this node. */
1199 mas->alloc = node->slot[0];
1200 mas->alloc->total = node->total - 1;
1201 ret = node;
1202 goto new_head;
1203 }
1204 node->total--;
1205 ret = node->slot[--node->node_count];
1206 node->slot[node->node_count] = NULL;
1207
1208single_node:
1209new_head:
1210 if (req) {
1211 req++;
1212 mas_set_alloc_req(mas, req);
1213 }
1214
1215 memset(ret, 0, sizeof(*ret));
1216 return (struct maple_node *)ret;
1217}
1218
1219/*
1220 * mas_push_node() - Push a node back on the maple state allocation.
1221 * @mas: The maple state
1222 * @used: The used maple node
1223 *
1224 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1225 * requested node count as necessary.
1226 */
1227static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1228{
1229 struct maple_alloc *reuse = (struct maple_alloc *)used;
1230 struct maple_alloc *head = mas->alloc;
1231 unsigned long count;
1232 unsigned int requested = mas_alloc_req(mas);
1233
1234 count = mas_allocated(mas);
1235
1236 reuse->request_count = 0;
1237 reuse->node_count = 0;
1238 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1239 head->slot[head->node_count++] = reuse;
1240 head->total++;
1241 goto done;
1242 }
1243
1244 reuse->total = 1;
1245 if ((head) && !((unsigned long)head & 0x1)) {
1246 reuse->slot[0] = head;
1247 reuse->node_count = 1;
1248 reuse->total += head->total;
1249 }
1250
1251 mas->alloc = reuse;
1252done:
1253 if (requested > 1)
1254 mas_set_alloc_req(mas, requested - 1);
1255}
1256
1257/*
1258 * mas_alloc_nodes() - Allocate nodes into a maple state
1259 * @mas: The maple state
1260 * @gfp: The GFP Flags
1261 */
1262static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1263{
1264 struct maple_alloc *node;
1265 unsigned long allocated = mas_allocated(mas);
1266 unsigned int requested = mas_alloc_req(mas);
1267 unsigned int count;
1268 void **slots = NULL;
1269 unsigned int max_req = 0;
1270
1271 if (!requested)
1272 return;
1273
1274 mas_set_alloc_req(mas, 0);
1275 if (mas->mas_flags & MA_STATE_PREALLOC) {
1276 if (allocated)
1277 return;
1278 WARN_ON(!allocated);
1279 }
1280
1281 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1282 node = (struct maple_alloc *)mt_alloc_one(gfp);
1283 if (!node)
1284 goto nomem_one;
1285
1286 if (allocated) {
1287 node->slot[0] = mas->alloc;
1288 node->node_count = 1;
1289 } else {
1290 node->node_count = 0;
1291 }
1292
1293 mas->alloc = node;
1294 node->total = ++allocated;
1295 requested--;
1296 }
1297
1298 node = mas->alloc;
1299 node->request_count = 0;
1300 while (requested) {
1301 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1302 slots = (void **)&node->slot[node->node_count];
1303 max_req = min(requested, max_req);
1304 count = mt_alloc_bulk(gfp, max_req, slots);
1305 if (!count)
1306 goto nomem_bulk;
1307
1308 if (node->node_count == 0) {
1309 node->slot[0]->node_count = 0;
1310 node->slot[0]->request_count = 0;
1311 }
1312
1313 node->node_count += count;
1314 allocated += count;
1315 node = node->slot[0];
1316 requested -= count;
1317 }
1318 mas->alloc->total = allocated;
1319 return;
1320
1321nomem_bulk:
1322 /* Clean up potential freed allocations on bulk failure */
1323 memset(slots, 0, max_req * sizeof(unsigned long));
1324nomem_one:
1325 mas_set_alloc_req(mas, requested);
1326 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1327 mas->alloc->total = allocated;
1328 mas_set_err(mas, -ENOMEM);
1329}
1330
1331/*
1332 * mas_free() - Free an encoded maple node
1333 * @mas: The maple state
1334 * @used: The encoded maple node to free.
1335 *
1336 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1337 * otherwise.
1338 */
1339static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1340{
1341 struct maple_node *tmp = mte_to_node(used);
1342
1343 if (mt_in_rcu(mas->tree))
1344 ma_free_rcu(tmp);
1345 else
1346 mas_push_node(mas, tmp);
1347}
1348
1349/*
1350 * mas_node_count() - Check if enough nodes are allocated and request more if
1351 * there is not enough nodes.
1352 * @mas: The maple state
1353 * @count: The number of nodes needed
1354 * @gfp: the gfp flags
1355 */
1356static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1357{
1358 unsigned long allocated = mas_allocated(mas);
1359
1360 if (allocated < count) {
1361 mas_set_alloc_req(mas, count - allocated);
1362 mas_alloc_nodes(mas, gfp);
1363 }
1364}
1365
1366/*
1367 * mas_node_count() - Check if enough nodes are allocated and request more if
1368 * there is not enough nodes.
1369 * @mas: The maple state
1370 * @count: The number of nodes needed
1371 *
1372 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1373 */
1374static void mas_node_count(struct ma_state *mas, int count)
1375{
1376 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1377}
1378
1379/*
1380 * mas_start() - Sets up maple state for operations.
1381 * @mas: The maple state.
1382 *
1383 * If mas->node == MAS_START, then set the min, max and depth to
1384 * defaults.
1385 *
1386 * Return:
1387 * - If mas->node is an error or not MAS_START, return NULL.
1388 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1389 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1390 * - If it's a tree: NULL & mas->node == safe root node.
1391 */
1392static inline struct maple_enode *mas_start(struct ma_state *mas)
1393{
1394 if (likely(mas_is_start(mas))) {
1395 struct maple_enode *root;
1396
1397 mas->min = 0;
1398 mas->max = ULONG_MAX;
1399
1400retry:
1401 mas->depth = 0;
1402 root = mas_root(mas);
1403 /* Tree with nodes */
1404 if (likely(xa_is_node(root))) {
1405 mas->depth = 1;
1406 mas->node = mte_safe_root(root);
1407 mas->offset = 0;
1408 if (mte_dead_node(mas->node))
1409 goto retry;
1410
1411 return NULL;
1412 }
1413
1414 /* empty tree */
1415 if (unlikely(!root)) {
1416 mas->node = MAS_NONE;
1417 mas->offset = MAPLE_NODE_SLOTS;
1418 return NULL;
1419 }
1420
1421 /* Single entry tree */
1422 mas->node = MAS_ROOT;
1423 mas->offset = MAPLE_NODE_SLOTS;
1424
1425 /* Single entry tree. */
1426 if (mas->index > 0)
1427 return NULL;
1428
1429 return root;
1430 }
1431
1432 return NULL;
1433}
1434
1435/*
1436 * ma_data_end() - Find the end of the data in a node.
1437 * @node: The maple node
1438 * @type: The maple node type
1439 * @pivots: The array of pivots in the node
1440 * @max: The maximum value in the node
1441 *
1442 * Uses metadata to find the end of the data when possible.
1443 * Return: The zero indexed last slot with data (may be null).
1444 */
1445static inline unsigned char ma_data_end(struct maple_node *node,
1446 enum maple_type type,
1447 unsigned long *pivots,
1448 unsigned long max)
1449{
1450 unsigned char offset;
1451
1452 if (!pivots)
1453 return 0;
1454
1455 if (type == maple_arange_64)
1456 return ma_meta_end(node, type);
1457
1458 offset = mt_pivots[type] - 1;
1459 if (likely(!pivots[offset]))
1460 return ma_meta_end(node, type);
1461
1462 if (likely(pivots[offset] == max))
1463 return offset;
1464
1465 return mt_pivots[type];
1466}
1467
1468/*
1469 * mas_data_end() - Find the end of the data (slot).
1470 * @mas: the maple state
1471 *
1472 * This method is optimized to check the metadata of a node if the node type
1473 * supports data end metadata.
1474 *
1475 * Return: The zero indexed last slot with data (may be null).
1476 */
1477static inline unsigned char mas_data_end(struct ma_state *mas)
1478{
1479 enum maple_type type;
1480 struct maple_node *node;
1481 unsigned char offset;
1482 unsigned long *pivots;
1483
1484 type = mte_node_type(mas->node);
1485 node = mas_mn(mas);
1486 if (type == maple_arange_64)
1487 return ma_meta_end(node, type);
1488
1489 pivots = ma_pivots(node, type);
1490 if (unlikely(ma_dead_node(node)))
1491 return 0;
1492
1493 offset = mt_pivots[type] - 1;
1494 if (likely(!pivots[offset]))
1495 return ma_meta_end(node, type);
1496
1497 if (likely(pivots[offset] == mas->max))
1498 return offset;
1499
1500 return mt_pivots[type];
1501}
1502
1503/*
1504 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1505 * @mas - the maple state
1506 *
1507 * Return: The maximum gap in the leaf.
1508 */
1509static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1510{
1511 enum maple_type mt;
1512 unsigned long pstart, gap, max_gap;
1513 struct maple_node *mn;
1514 unsigned long *pivots;
1515 void __rcu **slots;
1516 unsigned char i;
1517 unsigned char max_piv;
1518
1519 mt = mte_node_type(mas->node);
1520 mn = mas_mn(mas);
1521 slots = ma_slots(mn, mt);
1522 max_gap = 0;
1523 if (unlikely(ma_is_dense(mt))) {
1524 gap = 0;
1525 for (i = 0; i < mt_slots[mt]; i++) {
1526 if (slots[i]) {
1527 if (gap > max_gap)
1528 max_gap = gap;
1529 gap = 0;
1530 } else {
1531 gap++;
1532 }
1533 }
1534 if (gap > max_gap)
1535 max_gap = gap;
1536 return max_gap;
1537 }
1538
1539 /*
1540 * Check the first implied pivot optimizes the loop below and slot 1 may
1541 * be skipped if there is a gap in slot 0.
1542 */
1543 pivots = ma_pivots(mn, mt);
1544 if (likely(!slots[0])) {
1545 max_gap = pivots[0] - mas->min + 1;
1546 i = 2;
1547 } else {
1548 i = 1;
1549 }
1550
1551 /* reduce max_piv as the special case is checked before the loop */
1552 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1553 /*
1554 * Check end implied pivot which can only be a gap on the right most
1555 * node.
1556 */
1557 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1558 gap = ULONG_MAX - pivots[max_piv];
1559 if (gap > max_gap)
1560 max_gap = gap;
1561 }
1562
1563 for (; i <= max_piv; i++) {
1564 /* data == no gap. */
1565 if (likely(slots[i]))
1566 continue;
1567
1568 pstart = pivots[i - 1];
1569 gap = pivots[i] - pstart;
1570 if (gap > max_gap)
1571 max_gap = gap;
1572
1573 /* There cannot be two gaps in a row. */
1574 i++;
1575 }
1576 return max_gap;
1577}
1578
1579/*
1580 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1581 * @node: The maple node
1582 * @gaps: The pointer to the gaps
1583 * @mt: The maple node type
1584 * @*off: Pointer to store the offset location of the gap.
1585 *
1586 * Uses the metadata data end to scan backwards across set gaps.
1587 *
1588 * Return: The maximum gap value
1589 */
1590static inline unsigned long
1591ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1592 unsigned char *off)
1593{
1594 unsigned char offset, i;
1595 unsigned long max_gap = 0;
1596
1597 i = offset = ma_meta_end(node, mt);
1598 do {
1599 if (gaps[i] > max_gap) {
1600 max_gap = gaps[i];
1601 offset = i;
1602 }
1603 } while (i--);
1604
1605 *off = offset;
1606 return max_gap;
1607}
1608
1609/*
1610 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1611 * @mas: The maple state.
1612 *
1613 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1614 *
1615 * Return: The gap value.
1616 */
1617static inline unsigned long mas_max_gap(struct ma_state *mas)
1618{
1619 unsigned long *gaps;
1620 unsigned char offset;
1621 enum maple_type mt;
1622 struct maple_node *node;
1623
1624 mt = mte_node_type(mas->node);
1625 if (ma_is_leaf(mt))
1626 return mas_leaf_max_gap(mas);
1627
1628 node = mas_mn(mas);
1629 MAS_BUG_ON(mas, mt != maple_arange_64);
1630 offset = ma_meta_gap(node, mt);
1631 if (offset == MAPLE_ARANGE64_META_MAX)
1632 return 0;
1633
1634 gaps = ma_gaps(node, mt);
1635 return gaps[offset];
1636}
1637
1638/*
1639 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1640 * @mas: The maple state
1641 * @offset: The gap offset in the parent to set
1642 * @new: The new gap value.
1643 *
1644 * Set the parent gap then continue to set the gap upwards, using the metadata
1645 * of the parent to see if it is necessary to check the node above.
1646 */
1647static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1648 unsigned long new)
1649{
1650 unsigned long meta_gap = 0;
1651 struct maple_node *pnode;
1652 struct maple_enode *penode;
1653 unsigned long *pgaps;
1654 unsigned char meta_offset;
1655 enum maple_type pmt;
1656
1657 pnode = mte_parent(mas->node);
1658 pmt = mas_parent_type(mas, mas->node);
1659 penode = mt_mk_node(pnode, pmt);
1660 pgaps = ma_gaps(pnode, pmt);
1661
1662ascend:
1663 MAS_BUG_ON(mas, pmt != maple_arange_64);
1664 meta_offset = ma_meta_gap(pnode, pmt);
1665 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1666 meta_gap = 0;
1667 else
1668 meta_gap = pgaps[meta_offset];
1669
1670 pgaps[offset] = new;
1671
1672 if (meta_gap == new)
1673 return;
1674
1675 if (offset != meta_offset) {
1676 if (meta_gap > new)
1677 return;
1678
1679 ma_set_meta_gap(pnode, pmt, offset);
1680 } else if (new < meta_gap) {
1681 meta_offset = 15;
1682 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1683 ma_set_meta_gap(pnode, pmt, meta_offset);
1684 }
1685
1686 if (ma_is_root(pnode))
1687 return;
1688
1689 /* Go to the parent node. */
1690 pnode = mte_parent(penode);
1691 pmt = mas_parent_type(mas, penode);
1692 pgaps = ma_gaps(pnode, pmt);
1693 offset = mte_parent_slot(penode);
1694 penode = mt_mk_node(pnode, pmt);
1695 goto ascend;
1696}
1697
1698/*
1699 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1700 * @mas - the maple state.
1701 */
1702static inline void mas_update_gap(struct ma_state *mas)
1703{
1704 unsigned char pslot;
1705 unsigned long p_gap;
1706 unsigned long max_gap;
1707
1708 if (!mt_is_alloc(mas->tree))
1709 return;
1710
1711 if (mte_is_root(mas->node))
1712 return;
1713
1714 max_gap = mas_max_gap(mas);
1715
1716 pslot = mte_parent_slot(mas->node);
1717 p_gap = ma_gaps(mte_parent(mas->node),
1718 mas_parent_type(mas, mas->node))[pslot];
1719
1720 if (p_gap != max_gap)
1721 mas_parent_gap(mas, pslot, max_gap);
1722}
1723
1724/*
1725 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1726 * @parent with the slot encoded.
1727 * @mas - the maple state (for the tree)
1728 * @parent - the maple encoded node containing the children.
1729 */
1730static inline void mas_adopt_children(struct ma_state *mas,
1731 struct maple_enode *parent)
1732{
1733 enum maple_type type = mte_node_type(parent);
1734 struct maple_node *node = mas_mn(mas);
1735 void __rcu **slots = ma_slots(node, type);
1736 unsigned long *pivots = ma_pivots(node, type);
1737 struct maple_enode *child;
1738 unsigned char offset;
1739
1740 offset = ma_data_end(node, type, pivots, mas->max);
1741 do {
1742 child = mas_slot_locked(mas, slots, offset);
1743 mas_set_parent(mas, child, parent, offset);
1744 } while (offset--);
1745}
1746
1747/*
1748 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1749 * parent encoding to locate the maple node in the tree.
1750 * @mas - the ma_state to use for operations.
1751 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1752 * leave the node (true) and handle the adoption and free elsewhere.
1753 */
1754static inline void mas_replace(struct ma_state *mas, bool advanced)
1755 __must_hold(mas->tree->ma_lock)
1756{
1757 struct maple_node *mn = mas_mn(mas);
1758 struct maple_enode *old_enode;
1759 unsigned char offset = 0;
1760 void __rcu **slots = NULL;
1761
1762 if (ma_is_root(mn)) {
1763 old_enode = mas_root_locked(mas);
1764 } else {
1765 offset = mte_parent_slot(mas->node);
1766 slots = ma_slots(mte_parent(mas->node),
1767 mas_parent_type(mas, mas->node));
1768 old_enode = mas_slot_locked(mas, slots, offset);
1769 }
1770
1771 if (!advanced && !mte_is_leaf(mas->node))
1772 mas_adopt_children(mas, mas->node);
1773
1774 if (mte_is_root(mas->node)) {
1775 mn->parent = ma_parent_ptr(
1776 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1777 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1778 mas_set_height(mas);
1779 } else {
1780 rcu_assign_pointer(slots[offset], mas->node);
1781 }
1782
1783 if (!advanced) {
1784 mte_set_node_dead(old_enode);
1785 mas_free(mas, old_enode);
1786 }
1787}
1788
1789/*
1790 * mas_new_child() - Find the new child of a node.
1791 * @mas: the maple state
1792 * @child: the maple state to store the child.
1793 */
1794static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1795 __must_hold(mas->tree->ma_lock)
1796{
1797 enum maple_type mt;
1798 unsigned char offset;
1799 unsigned char end;
1800 unsigned long *pivots;
1801 struct maple_enode *entry;
1802 struct maple_node *node;
1803 void __rcu **slots;
1804
1805 mt = mte_node_type(mas->node);
1806 node = mas_mn(mas);
1807 slots = ma_slots(node, mt);
1808 pivots = ma_pivots(node, mt);
1809 end = ma_data_end(node, mt, pivots, mas->max);
1810 for (offset = mas->offset; offset <= end; offset++) {
1811 entry = mas_slot_locked(mas, slots, offset);
1812 if (mte_parent(entry) == node) {
1813 *child = *mas;
1814 mas->offset = offset + 1;
1815 child->offset = offset;
1816 mas_descend(child);
1817 child->offset = 0;
1818 return true;
1819 }
1820 }
1821 return false;
1822}
1823
1824/*
1825 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1826 * old data or set b_node->b_end.
1827 * @b_node: the maple_big_node
1828 * @shift: the shift count
1829 */
1830static inline void mab_shift_right(struct maple_big_node *b_node,
1831 unsigned char shift)
1832{
1833 unsigned long size = b_node->b_end * sizeof(unsigned long);
1834
1835 memmove(b_node->pivot + shift, b_node->pivot, size);
1836 memmove(b_node->slot + shift, b_node->slot, size);
1837 if (b_node->type == maple_arange_64)
1838 memmove(b_node->gap + shift, b_node->gap, size);
1839}
1840
1841/*
1842 * mab_middle_node() - Check if a middle node is needed (unlikely)
1843 * @b_node: the maple_big_node that contains the data.
1844 * @size: the amount of data in the b_node
1845 * @split: the potential split location
1846 * @slot_count: the size that can be stored in a single node being considered.
1847 *
1848 * Return: true if a middle node is required.
1849 */
1850static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1851 unsigned char slot_count)
1852{
1853 unsigned char size = b_node->b_end;
1854
1855 if (size >= 2 * slot_count)
1856 return true;
1857
1858 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1859 return true;
1860
1861 return false;
1862}
1863
1864/*
1865 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1866 * @b_node: the maple_big_node with the data
1867 * @split: the suggested split location
1868 * @slot_count: the number of slots in the node being considered.
1869 *
1870 * Return: the split location.
1871 */
1872static inline int mab_no_null_split(struct maple_big_node *b_node,
1873 unsigned char split, unsigned char slot_count)
1874{
1875 if (!b_node->slot[split]) {
1876 /*
1877 * If the split is less than the max slot && the right side will
1878 * still be sufficient, then increment the split on NULL.
1879 */
1880 if ((split < slot_count - 1) &&
1881 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1882 split++;
1883 else
1884 split--;
1885 }
1886 return split;
1887}
1888
1889/*
1890 * mab_calc_split() - Calculate the split location and if there needs to be two
1891 * splits.
1892 * @bn: The maple_big_node with the data
1893 * @mid_split: The second split, if required. 0 otherwise.
1894 *
1895 * Return: The first split location. The middle split is set in @mid_split.
1896 */
1897static inline int mab_calc_split(struct ma_state *mas,
1898 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1899{
1900 unsigned char b_end = bn->b_end;
1901 int split = b_end / 2; /* Assume equal split. */
1902 unsigned char slot_min, slot_count = mt_slots[bn->type];
1903
1904 /*
1905 * To support gap tracking, all NULL entries are kept together and a node cannot
1906 * end on a NULL entry, with the exception of the left-most leaf. The
1907 * limitation means that the split of a node must be checked for this condition
1908 * and be able to put more data in one direction or the other.
1909 */
1910 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1911 *mid_split = 0;
1912 split = b_end - mt_min_slots[bn->type];
1913
1914 if (!ma_is_leaf(bn->type))
1915 return split;
1916
1917 mas->mas_flags |= MA_STATE_REBALANCE;
1918 if (!bn->slot[split])
1919 split--;
1920 return split;
1921 }
1922
1923 /*
1924 * Although extremely rare, it is possible to enter what is known as the 3-way
1925 * split scenario. The 3-way split comes about by means of a store of a range
1926 * that overwrites the end and beginning of two full nodes. The result is a set
1927 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1928 * also be located in different parent nodes which are also full. This can
1929 * carry upwards all the way to the root in the worst case.
1930 */
1931 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1932 split = b_end / 3;
1933 *mid_split = split * 2;
1934 } else {
1935 slot_min = mt_min_slots[bn->type];
1936
1937 *mid_split = 0;
1938 /*
1939 * Avoid having a range less than the slot count unless it
1940 * causes one node to be deficient.
1941 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1942 */
1943 while ((split < slot_count - 1) &&
1944 ((bn->pivot[split] - min) < slot_count - 1) &&
1945 (b_end - split > slot_min))
1946 split++;
1947 }
1948
1949 /* Avoid ending a node on a NULL entry */
1950 split = mab_no_null_split(bn, split, slot_count);
1951
1952 if (unlikely(*mid_split))
1953 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1954
1955 return split;
1956}
1957
1958/*
1959 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1960 * and set @b_node->b_end to the next free slot.
1961 * @mas: The maple state
1962 * @mas_start: The starting slot to copy
1963 * @mas_end: The end slot to copy (inclusively)
1964 * @b_node: The maple_big_node to place the data
1965 * @mab_start: The starting location in maple_big_node to store the data.
1966 */
1967static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1968 unsigned char mas_end, struct maple_big_node *b_node,
1969 unsigned char mab_start)
1970{
1971 enum maple_type mt;
1972 struct maple_node *node;
1973 void __rcu **slots;
1974 unsigned long *pivots, *gaps;
1975 int i = mas_start, j = mab_start;
1976 unsigned char piv_end;
1977
1978 node = mas_mn(mas);
1979 mt = mte_node_type(mas->node);
1980 pivots = ma_pivots(node, mt);
1981 if (!i) {
1982 b_node->pivot[j] = pivots[i++];
1983 if (unlikely(i > mas_end))
1984 goto complete;
1985 j++;
1986 }
1987
1988 piv_end = min(mas_end, mt_pivots[mt]);
1989 for (; i < piv_end; i++, j++) {
1990 b_node->pivot[j] = pivots[i];
1991 if (unlikely(!b_node->pivot[j]))
1992 break;
1993
1994 if (unlikely(mas->max == b_node->pivot[j]))
1995 goto complete;
1996 }
1997
1998 if (likely(i <= mas_end))
1999 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
2000
2001complete:
2002 b_node->b_end = ++j;
2003 j -= mab_start;
2004 slots = ma_slots(node, mt);
2005 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
2006 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
2007 gaps = ma_gaps(node, mt);
2008 memcpy(b_node->gap + mab_start, gaps + mas_start,
2009 sizeof(unsigned long) * j);
2010 }
2011}
2012
2013/*
2014 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
2015 * @mas: The maple state
2016 * @node: The maple node
2017 * @pivots: pointer to the maple node pivots
2018 * @mt: The maple type
2019 * @end: The assumed end
2020 *
2021 * Note, end may be incremented within this function but not modified at the
2022 * source. This is fine since the metadata is the last thing to be stored in a
2023 * node during a write.
2024 */
2025static inline void mas_leaf_set_meta(struct ma_state *mas,
2026 struct maple_node *node, unsigned long *pivots,
2027 enum maple_type mt, unsigned char end)
2028{
2029 /* There is no room for metadata already */
2030 if (mt_pivots[mt] <= end)
2031 return;
2032
2033 if (pivots[end] && pivots[end] < mas->max)
2034 end++;
2035
2036 if (end < mt_slots[mt] - 1)
2037 ma_set_meta(node, mt, 0, end);
2038}
2039
2040/*
2041 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2042 * @b_node: the maple_big_node that has the data
2043 * @mab_start: the start location in @b_node.
2044 * @mab_end: The end location in @b_node (inclusively)
2045 * @mas: The maple state with the maple encoded node.
2046 */
2047static inline void mab_mas_cp(struct maple_big_node *b_node,
2048 unsigned char mab_start, unsigned char mab_end,
2049 struct ma_state *mas, bool new_max)
2050{
2051 int i, j = 0;
2052 enum maple_type mt = mte_node_type(mas->node);
2053 struct maple_node *node = mte_to_node(mas->node);
2054 void __rcu **slots = ma_slots(node, mt);
2055 unsigned long *pivots = ma_pivots(node, mt);
2056 unsigned long *gaps = NULL;
2057 unsigned char end;
2058
2059 if (mab_end - mab_start > mt_pivots[mt])
2060 mab_end--;
2061
2062 if (!pivots[mt_pivots[mt] - 1])
2063 slots[mt_pivots[mt]] = NULL;
2064
2065 i = mab_start;
2066 do {
2067 pivots[j++] = b_node->pivot[i++];
2068 } while (i <= mab_end && likely(b_node->pivot[i]));
2069
2070 memcpy(slots, b_node->slot + mab_start,
2071 sizeof(void *) * (i - mab_start));
2072
2073 if (new_max)
2074 mas->max = b_node->pivot[i - 1];
2075
2076 end = j - 1;
2077 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2078 unsigned long max_gap = 0;
2079 unsigned char offset = 15;
2080
2081 gaps = ma_gaps(node, mt);
2082 do {
2083 gaps[--j] = b_node->gap[--i];
2084 if (gaps[j] > max_gap) {
2085 offset = j;
2086 max_gap = gaps[j];
2087 }
2088 } while (j);
2089
2090 ma_set_meta(node, mt, offset, end);
2091 } else {
2092 mas_leaf_set_meta(mas, node, pivots, mt, end);
2093 }
2094}
2095
2096/*
2097 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2098 * @mas: the maple state with the maple encoded node of the sub-tree.
2099 *
2100 * Descend through a sub-tree and adopt children who do not have the correct
2101 * parents set. Follow the parents which have the correct parents as they are
2102 * the new entries which need to be followed to find other incorrectly set
2103 * parents.
2104 */
2105static inline void mas_descend_adopt(struct ma_state *mas)
2106{
2107 struct ma_state list[3], next[3];
2108 int i, n;
2109
2110 /*
2111 * At each level there may be up to 3 correct parent pointers which indicates
2112 * the new nodes which need to be walked to find any new nodes at a lower level.
2113 */
2114
2115 for (i = 0; i < 3; i++) {
2116 list[i] = *mas;
2117 list[i].offset = 0;
2118 next[i].offset = 0;
2119 }
2120 next[0] = *mas;
2121
2122 while (!mte_is_leaf(list[0].node)) {
2123 n = 0;
2124 for (i = 0; i < 3; i++) {
2125 if (mas_is_none(&list[i]))
2126 continue;
2127
2128 if (i && list[i-1].node == list[i].node)
2129 continue;
2130
2131 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2132 n++;
2133
2134 mas_adopt_children(&list[i], list[i].node);
2135 }
2136
2137 while (n < 3)
2138 next[n++].node = MAS_NONE;
2139
2140 /* descend by setting the list to the children */
2141 for (i = 0; i < 3; i++)
2142 list[i] = next[i];
2143 }
2144}
2145
2146/*
2147 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2148 * @mas: The maple state
2149 * @end: The maple node end
2150 * @mt: The maple node type
2151 */
2152static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2153 enum maple_type mt)
2154{
2155 if (!(mas->mas_flags & MA_STATE_BULK))
2156 return;
2157
2158 if (mte_is_root(mas->node))
2159 return;
2160
2161 if (end > mt_min_slots[mt]) {
2162 mas->mas_flags &= ~MA_STATE_REBALANCE;
2163 return;
2164 }
2165}
2166
2167/*
2168 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2169 * data from a maple encoded node.
2170 * @wr_mas: the maple write state
2171 * @b_node: the maple_big_node to fill with data
2172 * @offset_end: the offset to end copying
2173 *
2174 * Return: The actual end of the data stored in @b_node
2175 */
2176static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2177 struct maple_big_node *b_node, unsigned char offset_end)
2178{
2179 unsigned char slot;
2180 unsigned char b_end;
2181 /* Possible underflow of piv will wrap back to 0 before use. */
2182 unsigned long piv;
2183 struct ma_state *mas = wr_mas->mas;
2184
2185 b_node->type = wr_mas->type;
2186 b_end = 0;
2187 slot = mas->offset;
2188 if (slot) {
2189 /* Copy start data up to insert. */
2190 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2191 b_end = b_node->b_end;
2192 piv = b_node->pivot[b_end - 1];
2193 } else
2194 piv = mas->min - 1;
2195
2196 if (piv + 1 < mas->index) {
2197 /* Handle range starting after old range */
2198 b_node->slot[b_end] = wr_mas->content;
2199 if (!wr_mas->content)
2200 b_node->gap[b_end] = mas->index - 1 - piv;
2201 b_node->pivot[b_end++] = mas->index - 1;
2202 }
2203
2204 /* Store the new entry. */
2205 mas->offset = b_end;
2206 b_node->slot[b_end] = wr_mas->entry;
2207 b_node->pivot[b_end] = mas->last;
2208
2209 /* Appended. */
2210 if (mas->last >= mas->max)
2211 goto b_end;
2212
2213 /* Handle new range ending before old range ends */
2214 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2215 if (piv > mas->last) {
2216 if (piv == ULONG_MAX)
2217 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2218
2219 if (offset_end != slot)
2220 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2221 offset_end);
2222
2223 b_node->slot[++b_end] = wr_mas->content;
2224 if (!wr_mas->content)
2225 b_node->gap[b_end] = piv - mas->last + 1;
2226 b_node->pivot[b_end] = piv;
2227 }
2228
2229 slot = offset_end + 1;
2230 if (slot > wr_mas->node_end)
2231 goto b_end;
2232
2233 /* Copy end data to the end of the node. */
2234 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2235 b_node->b_end--;
2236 return;
2237
2238b_end:
2239 b_node->b_end = b_end;
2240}
2241
2242/*
2243 * mas_prev_sibling() - Find the previous node with the same parent.
2244 * @mas: the maple state
2245 *
2246 * Return: True if there is a previous sibling, false otherwise.
2247 */
2248static inline bool mas_prev_sibling(struct ma_state *mas)
2249{
2250 unsigned int p_slot = mte_parent_slot(mas->node);
2251
2252 if (mte_is_root(mas->node))
2253 return false;
2254
2255 if (!p_slot)
2256 return false;
2257
2258 mas_ascend(mas);
2259 mas->offset = p_slot - 1;
2260 mas_descend(mas);
2261 return true;
2262}
2263
2264/*
2265 * mas_next_sibling() - Find the next node with the same parent.
2266 * @mas: the maple state
2267 *
2268 * Return: true if there is a next sibling, false otherwise.
2269 */
2270static inline bool mas_next_sibling(struct ma_state *mas)
2271{
2272 MA_STATE(parent, mas->tree, mas->index, mas->last);
2273
2274 if (mte_is_root(mas->node))
2275 return false;
2276
2277 parent = *mas;
2278 mas_ascend(&parent);
2279 parent.offset = mte_parent_slot(mas->node) + 1;
2280 if (parent.offset > mas_data_end(&parent))
2281 return false;
2282
2283 *mas = parent;
2284 mas_descend(mas);
2285 return true;
2286}
2287
2288/*
2289 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2290 * @enode: The encoded maple node.
2291 *
2292 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2293 *
2294 * Return: @enode or MAS_NONE
2295 */
2296static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2297{
2298 if (enode)
2299 return enode;
2300
2301 return ma_enode_ptr(MAS_NONE);
2302}
2303
2304/*
2305 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2306 * @wr_mas: The maple write state
2307 *
2308 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2309 */
2310static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2311{
2312 struct ma_state *mas = wr_mas->mas;
2313 unsigned char count, offset;
2314
2315 if (unlikely(ma_is_dense(wr_mas->type))) {
2316 wr_mas->r_max = wr_mas->r_min = mas->index;
2317 mas->offset = mas->index = mas->min;
2318 return;
2319 }
2320
2321 wr_mas->node = mas_mn(wr_mas->mas);
2322 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2323 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2324 wr_mas->pivots, mas->max);
2325 offset = mas->offset;
2326
2327 while (offset < count && mas->index > wr_mas->pivots[offset])
2328 offset++;
2329
2330 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2331 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2332 wr_mas->offset_end = mas->offset = offset;
2333}
2334
2335/*
2336 * mas_topiary_range() - Add a range of slots to the topiary.
2337 * @mas: The maple state
2338 * @destroy: The topiary to add the slots (usually destroy)
2339 * @start: The starting slot inclusively
2340 * @end: The end slot inclusively
2341 */
2342static inline void mas_topiary_range(struct ma_state *mas,
2343 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2344{
2345 void __rcu **slots;
2346 unsigned char offset;
2347
2348 MAS_BUG_ON(mas, mte_is_leaf(mas->node));
2349
2350 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2351 for (offset = start; offset <= end; offset++) {
2352 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2353
2354 if (mte_dead_node(enode))
2355 continue;
2356
2357 mat_add(destroy, enode);
2358 }
2359}
2360
2361/*
2362 * mast_topiary() - Add the portions of the tree to the removal list; either to
2363 * be freed or discarded (destroy walk).
2364 * @mast: The maple_subtree_state.
2365 */
2366static inline void mast_topiary(struct maple_subtree_state *mast)
2367{
2368 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2369 unsigned char r_start, r_end;
2370 unsigned char l_start, l_end;
2371 void __rcu **l_slots, **r_slots;
2372
2373 wr_mas.type = mte_node_type(mast->orig_l->node);
2374 mast->orig_l->index = mast->orig_l->last;
2375 mas_wr_node_walk(&wr_mas);
2376 l_start = mast->orig_l->offset + 1;
2377 l_end = mas_data_end(mast->orig_l);
2378 r_start = 0;
2379 r_end = mast->orig_r->offset;
2380
2381 if (r_end)
2382 r_end--;
2383
2384 l_slots = ma_slots(mas_mn(mast->orig_l),
2385 mte_node_type(mast->orig_l->node));
2386
2387 r_slots = ma_slots(mas_mn(mast->orig_r),
2388 mte_node_type(mast->orig_r->node));
2389
2390 if ((l_start < l_end) &&
2391 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2392 l_start++;
2393 }
2394
2395 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2396 if (r_end)
2397 r_end--;
2398 }
2399
2400 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2401 return;
2402
2403 /* At the node where left and right sides meet, add the parts between */
2404 if (mast->orig_l->node == mast->orig_r->node) {
2405 return mas_topiary_range(mast->orig_l, mast->destroy,
2406 l_start, r_end);
2407 }
2408
2409 /* mast->orig_r is different and consumed. */
2410 if (mte_is_leaf(mast->orig_r->node))
2411 return;
2412
2413 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2414 l_end--;
2415
2416
2417 if (l_start <= l_end)
2418 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2419
2420 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2421 r_start++;
2422
2423 if (r_start <= r_end)
2424 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2425}
2426
2427/*
2428 * mast_rebalance_next() - Rebalance against the next node
2429 * @mast: The maple subtree state
2430 * @old_r: The encoded maple node to the right (next node).
2431 */
2432static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2433{
2434 unsigned char b_end = mast->bn->b_end;
2435
2436 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2437 mast->bn, b_end);
2438 mast->orig_r->last = mast->orig_r->max;
2439}
2440
2441/*
2442 * mast_rebalance_prev() - Rebalance against the previous node
2443 * @mast: The maple subtree state
2444 * @old_l: The encoded maple node to the left (previous node)
2445 */
2446static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2447{
2448 unsigned char end = mas_data_end(mast->orig_l) + 1;
2449 unsigned char b_end = mast->bn->b_end;
2450
2451 mab_shift_right(mast->bn, end);
2452 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2453 mast->l->min = mast->orig_l->min;
2454 mast->orig_l->index = mast->orig_l->min;
2455 mast->bn->b_end = end + b_end;
2456 mast->l->offset += end;
2457}
2458
2459/*
2460 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2461 * the node to the right. Checking the nodes to the right then the left at each
2462 * level upwards until root is reached. Free and destroy as needed.
2463 * Data is copied into the @mast->bn.
2464 * @mast: The maple_subtree_state.
2465 */
2466static inline
2467bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2468{
2469 struct ma_state r_tmp = *mast->orig_r;
2470 struct ma_state l_tmp = *mast->orig_l;
2471 struct maple_enode *ancestor = NULL;
2472 unsigned char start, end;
2473 unsigned char depth = 0;
2474
2475 r_tmp = *mast->orig_r;
2476 l_tmp = *mast->orig_l;
2477 do {
2478 mas_ascend(mast->orig_r);
2479 mas_ascend(mast->orig_l);
2480 depth++;
2481 if (!ancestor &&
2482 (mast->orig_r->node == mast->orig_l->node)) {
2483 ancestor = mast->orig_r->node;
2484 end = mast->orig_r->offset - 1;
2485 start = mast->orig_l->offset + 1;
2486 }
2487
2488 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2489 if (!ancestor) {
2490 ancestor = mast->orig_r->node;
2491 start = 0;
2492 }
2493
2494 mast->orig_r->offset++;
2495 do {
2496 mas_descend(mast->orig_r);
2497 mast->orig_r->offset = 0;
2498 depth--;
2499 } while (depth);
2500
2501 mast_rebalance_next(mast);
2502 do {
2503 unsigned char l_off = 0;
2504 struct maple_enode *child = r_tmp.node;
2505
2506 mas_ascend(&r_tmp);
2507 if (ancestor == r_tmp.node)
2508 l_off = start;
2509
2510 if (r_tmp.offset)
2511 r_tmp.offset--;
2512
2513 if (l_off < r_tmp.offset)
2514 mas_topiary_range(&r_tmp, mast->destroy,
2515 l_off, r_tmp.offset);
2516
2517 if (l_tmp.node != child)
2518 mat_add(mast->free, child);
2519
2520 } while (r_tmp.node != ancestor);
2521
2522 *mast->orig_l = l_tmp;
2523 return true;
2524
2525 } else if (mast->orig_l->offset != 0) {
2526 if (!ancestor) {
2527 ancestor = mast->orig_l->node;
2528 end = mas_data_end(mast->orig_l);
2529 }
2530
2531 mast->orig_l->offset--;
2532 do {
2533 mas_descend(mast->orig_l);
2534 mast->orig_l->offset =
2535 mas_data_end(mast->orig_l);
2536 depth--;
2537 } while (depth);
2538
2539 mast_rebalance_prev(mast);
2540 do {
2541 unsigned char r_off;
2542 struct maple_enode *child = l_tmp.node;
2543
2544 mas_ascend(&l_tmp);
2545 if (ancestor == l_tmp.node)
2546 r_off = end;
2547 else
2548 r_off = mas_data_end(&l_tmp);
2549
2550 if (l_tmp.offset < r_off)
2551 l_tmp.offset++;
2552
2553 if (l_tmp.offset < r_off)
2554 mas_topiary_range(&l_tmp, mast->destroy,
2555 l_tmp.offset, r_off);
2556
2557 if (r_tmp.node != child)
2558 mat_add(mast->free, child);
2559
2560 } while (l_tmp.node != ancestor);
2561
2562 *mast->orig_r = r_tmp;
2563 return true;
2564 }
2565 } while (!mte_is_root(mast->orig_r->node));
2566
2567 *mast->orig_r = r_tmp;
2568 *mast->orig_l = l_tmp;
2569 return false;
2570}
2571
2572/*
2573 * mast_ascend_free() - Add current original maple state nodes to the free list
2574 * and ascend.
2575 * @mast: the maple subtree state.
2576 *
2577 * Ascend the original left and right sides and add the previous nodes to the
2578 * free list. Set the slots to point to the correct location in the new nodes.
2579 */
2580static inline void
2581mast_ascend_free(struct maple_subtree_state *mast)
2582{
2583 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2584 struct maple_enode *left = mast->orig_l->node;
2585 struct maple_enode *right = mast->orig_r->node;
2586
2587 mas_ascend(mast->orig_l);
2588 mas_ascend(mast->orig_r);
2589 mat_add(mast->free, left);
2590
2591 if (left != right)
2592 mat_add(mast->free, right);
2593
2594 mast->orig_r->offset = 0;
2595 mast->orig_r->index = mast->r->max;
2596 /* last should be larger than or equal to index */
2597 if (mast->orig_r->last < mast->orig_r->index)
2598 mast->orig_r->last = mast->orig_r->index;
2599 /*
2600 * The node may not contain the value so set slot to ensure all
2601 * of the nodes contents are freed or destroyed.
2602 */
2603 wr_mas.type = mte_node_type(mast->orig_r->node);
2604 mas_wr_node_walk(&wr_mas);
2605 /* Set up the left side of things */
2606 mast->orig_l->offset = 0;
2607 mast->orig_l->index = mast->l->min;
2608 wr_mas.mas = mast->orig_l;
2609 wr_mas.type = mte_node_type(mast->orig_l->node);
2610 mas_wr_node_walk(&wr_mas);
2611
2612 mast->bn->type = wr_mas.type;
2613}
2614
2615/*
2616 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2617 * @mas: the maple state with the allocations.
2618 * @b_node: the maple_big_node with the type encoding.
2619 *
2620 * Use the node type from the maple_big_node to allocate a new node from the
2621 * ma_state. This function exists mainly for code readability.
2622 *
2623 * Return: A new maple encoded node
2624 */
2625static inline struct maple_enode
2626*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2627{
2628 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2629}
2630
2631/*
2632 * mas_mab_to_node() - Set up right and middle nodes
2633 *
2634 * @mas: the maple state that contains the allocations.
2635 * @b_node: the node which contains the data.
2636 * @left: The pointer which will have the left node
2637 * @right: The pointer which may have the right node
2638 * @middle: the pointer which may have the middle node (rare)
2639 * @mid_split: the split location for the middle node
2640 *
2641 * Return: the split of left.
2642 */
2643static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2644 struct maple_big_node *b_node, struct maple_enode **left,
2645 struct maple_enode **right, struct maple_enode **middle,
2646 unsigned char *mid_split, unsigned long min)
2647{
2648 unsigned char split = 0;
2649 unsigned char slot_count = mt_slots[b_node->type];
2650
2651 *left = mas_new_ma_node(mas, b_node);
2652 *right = NULL;
2653 *middle = NULL;
2654 *mid_split = 0;
2655
2656 if (b_node->b_end < slot_count) {
2657 split = b_node->b_end;
2658 } else {
2659 split = mab_calc_split(mas, b_node, mid_split, min);
2660 *right = mas_new_ma_node(mas, b_node);
2661 }
2662
2663 if (*mid_split)
2664 *middle = mas_new_ma_node(mas, b_node);
2665
2666 return split;
2667
2668}
2669
2670/*
2671 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2672 * pointer.
2673 * @b_node - the big node to add the entry
2674 * @mas - the maple state to get the pivot (mas->max)
2675 * @entry - the entry to add, if NULL nothing happens.
2676 */
2677static inline void mab_set_b_end(struct maple_big_node *b_node,
2678 struct ma_state *mas,
2679 void *entry)
2680{
2681 if (!entry)
2682 return;
2683
2684 b_node->slot[b_node->b_end] = entry;
2685 if (mt_is_alloc(mas->tree))
2686 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2687 b_node->pivot[b_node->b_end++] = mas->max;
2688}
2689
2690/*
2691 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2692 * of @mas->node to either @left or @right, depending on @slot and @split
2693 *
2694 * @mas - the maple state with the node that needs a parent
2695 * @left - possible parent 1
2696 * @right - possible parent 2
2697 * @slot - the slot the mas->node was placed
2698 * @split - the split location between @left and @right
2699 */
2700static inline void mas_set_split_parent(struct ma_state *mas,
2701 struct maple_enode *left,
2702 struct maple_enode *right,
2703 unsigned char *slot, unsigned char split)
2704{
2705 if (mas_is_none(mas))
2706 return;
2707
2708 if ((*slot) <= split)
2709 mas_set_parent(mas, mas->node, left, *slot);
2710 else if (right)
2711 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2712
2713 (*slot)++;
2714}
2715
2716/*
2717 * mte_mid_split_check() - Check if the next node passes the mid-split
2718 * @**l: Pointer to left encoded maple node.
2719 * @**m: Pointer to middle encoded maple node.
2720 * @**r: Pointer to right encoded maple node.
2721 * @slot: The offset
2722 * @*split: The split location.
2723 * @mid_split: The middle split.
2724 */
2725static inline void mte_mid_split_check(struct maple_enode **l,
2726 struct maple_enode **r,
2727 struct maple_enode *right,
2728 unsigned char slot,
2729 unsigned char *split,
2730 unsigned char mid_split)
2731{
2732 if (*r == right)
2733 return;
2734
2735 if (slot < mid_split)
2736 return;
2737
2738 *l = *r;
2739 *r = right;
2740 *split = mid_split;
2741}
2742
2743/*
2744 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2745 * is taken from @mast->l.
2746 * @mast - the maple subtree state
2747 * @left - the left node
2748 * @right - the right node
2749 * @split - the split location.
2750 */
2751static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2752 struct maple_enode *left,
2753 struct maple_enode *middle,
2754 struct maple_enode *right,
2755 unsigned char split,
2756 unsigned char mid_split)
2757{
2758 unsigned char slot;
2759 struct maple_enode *l = left;
2760 struct maple_enode *r = right;
2761
2762 if (mas_is_none(mast->l))
2763 return;
2764
2765 if (middle)
2766 r = middle;
2767
2768 slot = mast->l->offset;
2769
2770 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2771 mas_set_split_parent(mast->l, l, r, &slot, split);
2772
2773 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2774 mas_set_split_parent(mast->m, l, r, &slot, split);
2775
2776 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2777 mas_set_split_parent(mast->r, l, r, &slot, split);
2778}
2779
2780/*
2781 * mas_wmb_replace() - Write memory barrier and replace
2782 * @mas: The maple state
2783 * @free: the maple topiary list of nodes to free
2784 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2785 *
2786 * Updates gap as necessary.
2787 */
2788static inline void mas_wmb_replace(struct ma_state *mas,
2789 struct ma_topiary *free,
2790 struct ma_topiary *destroy)
2791{
2792 /* All nodes must see old data as dead prior to replacing that data */
2793 smp_wmb(); /* Needed for RCU */
2794
2795 /* Insert the new data in the tree */
2796 mas_replace(mas, true);
2797
2798 if (!mte_is_leaf(mas->node))
2799 mas_descend_adopt(mas);
2800
2801 mas_mat_free(mas, free);
2802
2803 if (destroy)
2804 mas_mat_destroy(mas, destroy);
2805
2806 if (mte_is_leaf(mas->node))
2807 return;
2808
2809 mas_update_gap(mas);
2810}
2811
2812/*
2813 * mast_new_root() - Set a new tree root during subtree creation
2814 * @mast: The maple subtree state
2815 * @mas: The maple state
2816 */
2817static inline void mast_new_root(struct maple_subtree_state *mast,
2818 struct ma_state *mas)
2819{
2820 mas_mn(mast->l)->parent =
2821 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2822 if (!mte_dead_node(mast->orig_l->node) &&
2823 !mte_is_root(mast->orig_l->node)) {
2824 do {
2825 mast_ascend_free(mast);
2826 mast_topiary(mast);
2827 } while (!mte_is_root(mast->orig_l->node));
2828 }
2829 if ((mast->orig_l->node != mas->node) &&
2830 (mast->l->depth > mas_mt_height(mas))) {
2831 mat_add(mast->free, mas->node);
2832 }
2833}
2834
2835/*
2836 * mast_cp_to_nodes() - Copy data out to nodes.
2837 * @mast: The maple subtree state
2838 * @left: The left encoded maple node
2839 * @middle: The middle encoded maple node
2840 * @right: The right encoded maple node
2841 * @split: The location to split between left and (middle ? middle : right)
2842 * @mid_split: The location to split between middle and right.
2843 */
2844static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2845 struct maple_enode *left, struct maple_enode *middle,
2846 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2847{
2848 bool new_lmax = true;
2849
2850 mast->l->node = mte_node_or_none(left);
2851 mast->m->node = mte_node_or_none(middle);
2852 mast->r->node = mte_node_or_none(right);
2853
2854 mast->l->min = mast->orig_l->min;
2855 if (split == mast->bn->b_end) {
2856 mast->l->max = mast->orig_r->max;
2857 new_lmax = false;
2858 }
2859
2860 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2861
2862 if (middle) {
2863 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2864 mast->m->min = mast->bn->pivot[split] + 1;
2865 split = mid_split;
2866 }
2867
2868 mast->r->max = mast->orig_r->max;
2869 if (right) {
2870 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2871 mast->r->min = mast->bn->pivot[split] + 1;
2872 }
2873}
2874
2875/*
2876 * mast_combine_cp_left - Copy in the original left side of the tree into the
2877 * combined data set in the maple subtree state big node.
2878 * @mast: The maple subtree state
2879 */
2880static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2881{
2882 unsigned char l_slot = mast->orig_l->offset;
2883
2884 if (!l_slot)
2885 return;
2886
2887 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2888}
2889
2890/*
2891 * mast_combine_cp_right: Copy in the original right side of the tree into the
2892 * combined data set in the maple subtree state big node.
2893 * @mast: The maple subtree state
2894 */
2895static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2896{
2897 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2898 return;
2899
2900 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2901 mt_slot_count(mast->orig_r->node), mast->bn,
2902 mast->bn->b_end);
2903 mast->orig_r->last = mast->orig_r->max;
2904}
2905
2906/*
2907 * mast_sufficient: Check if the maple subtree state has enough data in the big
2908 * node to create at least one sufficient node
2909 * @mast: the maple subtree state
2910 */
2911static inline bool mast_sufficient(struct maple_subtree_state *mast)
2912{
2913 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2914 return true;
2915
2916 return false;
2917}
2918
2919/*
2920 * mast_overflow: Check if there is too much data in the subtree state for a
2921 * single node.
2922 * @mast: The maple subtree state
2923 */
2924static inline bool mast_overflow(struct maple_subtree_state *mast)
2925{
2926 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2927 return true;
2928
2929 return false;
2930}
2931
2932static inline void *mtree_range_walk(struct ma_state *mas)
2933{
2934 unsigned long *pivots;
2935 unsigned char offset;
2936 struct maple_node *node;
2937 struct maple_enode *next, *last;
2938 enum maple_type type;
2939 void __rcu **slots;
2940 unsigned char end;
2941 unsigned long max, min;
2942 unsigned long prev_max, prev_min;
2943
2944 next = mas->node;
2945 min = mas->min;
2946 max = mas->max;
2947 do {
2948 offset = 0;
2949 last = next;
2950 node = mte_to_node(next);
2951 type = mte_node_type(next);
2952 pivots = ma_pivots(node, type);
2953 end = ma_data_end(node, type, pivots, max);
2954 if (unlikely(ma_dead_node(node)))
2955 goto dead_node;
2956
2957 if (pivots[offset] >= mas->index) {
2958 prev_max = max;
2959 prev_min = min;
2960 max = pivots[offset];
2961 goto next;
2962 }
2963
2964 do {
2965 offset++;
2966 } while ((offset < end) && (pivots[offset] < mas->index));
2967
2968 prev_min = min;
2969 min = pivots[offset - 1] + 1;
2970 prev_max = max;
2971 if (likely(offset < end && pivots[offset]))
2972 max = pivots[offset];
2973
2974next:
2975 slots = ma_slots(node, type);
2976 next = mt_slot(mas->tree, slots, offset);
2977 if (unlikely(ma_dead_node(node)))
2978 goto dead_node;
2979 } while (!ma_is_leaf(type));
2980
2981 mas->offset = offset;
2982 mas->index = min;
2983 mas->last = max;
2984 mas->min = prev_min;
2985 mas->max = prev_max;
2986 mas->node = last;
2987 return (void *)next;
2988
2989dead_node:
2990 mas_reset(mas);
2991 return NULL;
2992}
2993
2994/*
2995 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2996 * @mas: The starting maple state
2997 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2998 * @count: The estimated count of iterations needed.
2999 *
3000 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
3001 * is hit. First @b_node is split into two entries which are inserted into the
3002 * next iteration of the loop. @b_node is returned populated with the final
3003 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
3004 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
3005 * to account of what has been copied into the new sub-tree. The update of
3006 * orig_l_mas->last is used in mas_consume to find the slots that will need to
3007 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
3008 * the new sub-tree in case the sub-tree becomes the full tree.
3009 *
3010 * Return: the number of elements in b_node during the last loop.
3011 */
3012static int mas_spanning_rebalance(struct ma_state *mas,
3013 struct maple_subtree_state *mast, unsigned char count)
3014{
3015 unsigned char split, mid_split;
3016 unsigned char slot = 0;
3017 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
3018
3019 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
3020 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3021 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
3022 MA_TOPIARY(free, mas->tree);
3023 MA_TOPIARY(destroy, mas->tree);
3024
3025 /*
3026 * The tree needs to be rebalanced and leaves need to be kept at the same level.
3027 * Rebalancing is done by use of the ``struct maple_topiary``.
3028 */
3029 mast->l = &l_mas;
3030 mast->m = &m_mas;
3031 mast->r = &r_mas;
3032 mast->free = &free;
3033 mast->destroy = &destroy;
3034 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
3035
3036 /* Check if this is not root and has sufficient data. */
3037 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
3038 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3039 mast_spanning_rebalance(mast);
3040
3041 mast->orig_l->depth = 0;
3042
3043 /*
3044 * Each level of the tree is examined and balanced, pushing data to the left or
3045 * right, or rebalancing against left or right nodes is employed to avoid
3046 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3047 * the tree is created, there may be a mix of new and old nodes. The old nodes
3048 * will have the incorrect parent pointers and currently be in two trees: the
3049 * original tree and the partially new tree. To remedy the parent pointers in
3050 * the old tree, the new data is swapped into the active tree and a walk down
3051 * the tree is performed and the parent pointers are updated.
3052 * See mas_descend_adopt() for more information..
3053 */
3054 while (count--) {
3055 mast->bn->b_end--;
3056 mast->bn->type = mte_node_type(mast->orig_l->node);
3057 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3058 &mid_split, mast->orig_l->min);
3059 mast_set_split_parents(mast, left, middle, right, split,
3060 mid_split);
3061 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3062
3063 /*
3064 * Copy data from next level in the tree to mast->bn from next
3065 * iteration
3066 */
3067 memset(mast->bn, 0, sizeof(struct maple_big_node));
3068 mast->bn->type = mte_node_type(left);
3069 mast->orig_l->depth++;
3070
3071 /* Root already stored in l->node. */
3072 if (mas_is_root_limits(mast->l))
3073 goto new_root;
3074
3075 mast_ascend_free(mast);
3076 mast_combine_cp_left(mast);
3077 l_mas.offset = mast->bn->b_end;
3078 mab_set_b_end(mast->bn, &l_mas, left);
3079 mab_set_b_end(mast->bn, &m_mas, middle);
3080 mab_set_b_end(mast->bn, &r_mas, right);
3081
3082 /* Copy anything necessary out of the right node. */
3083 mast_combine_cp_right(mast);
3084 mast_topiary(mast);
3085 mast->orig_l->last = mast->orig_l->max;
3086
3087 if (mast_sufficient(mast))
3088 continue;
3089
3090 if (mast_overflow(mast))
3091 continue;
3092
3093 /* May be a new root stored in mast->bn */
3094 if (mas_is_root_limits(mast->orig_l))
3095 break;
3096
3097 mast_spanning_rebalance(mast);
3098
3099 /* rebalancing from other nodes may require another loop. */
3100 if (!count)
3101 count++;
3102 }
3103
3104 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3105 mte_node_type(mast->orig_l->node));
3106 mast->orig_l->depth++;
3107 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3108 mas_set_parent(mas, left, l_mas.node, slot);
3109 if (middle)
3110 mas_set_parent(mas, middle, l_mas.node, ++slot);
3111
3112 if (right)
3113 mas_set_parent(mas, right, l_mas.node, ++slot);
3114
3115 if (mas_is_root_limits(mast->l)) {
3116new_root:
3117 mast_new_root(mast, mas);
3118 } else {
3119 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3120 }
3121
3122 if (!mte_dead_node(mast->orig_l->node))
3123 mat_add(&free, mast->orig_l->node);
3124
3125 mas->depth = mast->orig_l->depth;
3126 *mast->orig_l = l_mas;
3127 mte_set_node_dead(mas->node);
3128
3129 /* Set up mas for insertion. */
3130 mast->orig_l->depth = mas->depth;
3131 mast->orig_l->alloc = mas->alloc;
3132 *mas = *mast->orig_l;
3133 mas_wmb_replace(mas, &free, &destroy);
3134 mtree_range_walk(mas);
3135 return mast->bn->b_end;
3136}
3137
3138/*
3139 * mas_rebalance() - Rebalance a given node.
3140 * @mas: The maple state
3141 * @b_node: The big maple node.
3142 *
3143 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3144 * Continue upwards until tree is sufficient.
3145 *
3146 * Return: the number of elements in b_node during the last loop.
3147 */
3148static inline int mas_rebalance(struct ma_state *mas,
3149 struct maple_big_node *b_node)
3150{
3151 char empty_count = mas_mt_height(mas);
3152 struct maple_subtree_state mast;
3153 unsigned char shift, b_end = ++b_node->b_end;
3154
3155 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3156 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3157
3158 trace_ma_op(__func__, mas);
3159
3160 /*
3161 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3162 * against the node to the right if it exists, otherwise the node to the
3163 * left of this node is rebalanced against this node. If rebalancing
3164 * causes just one node to be produced instead of two, then the parent
3165 * is also examined and rebalanced if it is insufficient. Every level
3166 * tries to combine the data in the same way. If one node contains the
3167 * entire range of the tree, then that node is used as a new root node.
3168 */
3169 mas_node_count(mas, 1 + empty_count * 3);
3170 if (mas_is_err(mas))
3171 return 0;
3172
3173 mast.orig_l = &l_mas;
3174 mast.orig_r = &r_mas;
3175 mast.bn = b_node;
3176 mast.bn->type = mte_node_type(mas->node);
3177
3178 l_mas = r_mas = *mas;
3179
3180 if (mas_next_sibling(&r_mas)) {
3181 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3182 r_mas.last = r_mas.index = r_mas.max;
3183 } else {
3184 mas_prev_sibling(&l_mas);
3185 shift = mas_data_end(&l_mas) + 1;
3186 mab_shift_right(b_node, shift);
3187 mas->offset += shift;
3188 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3189 b_node->b_end = shift + b_end;
3190 l_mas.index = l_mas.last = l_mas.min;
3191 }
3192
3193 return mas_spanning_rebalance(mas, &mast, empty_count);
3194}
3195
3196/*
3197 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3198 * state.
3199 * @mas: The maple state
3200 * @end: The end of the left-most node.
3201 *
3202 * During a mass-insert event (such as forking), it may be necessary to
3203 * rebalance the left-most node when it is not sufficient.
3204 */
3205static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3206{
3207 enum maple_type mt = mte_node_type(mas->node);
3208 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3209 struct maple_enode *eparent;
3210 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3211 void __rcu **l_slots, **slots;
3212 unsigned long *l_pivs, *pivs, gap;
3213 bool in_rcu = mt_in_rcu(mas->tree);
3214
3215 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3216
3217 l_mas = *mas;
3218 mas_prev_sibling(&l_mas);
3219
3220 /* set up node. */
3221 if (in_rcu) {
3222 /* Allocate for both left and right as well as parent. */
3223 mas_node_count(mas, 3);
3224 if (mas_is_err(mas))
3225 return;
3226
3227 newnode = mas_pop_node(mas);
3228 } else {
3229 newnode = &reuse;
3230 }
3231
3232 node = mas_mn(mas);
3233 newnode->parent = node->parent;
3234 slots = ma_slots(newnode, mt);
3235 pivs = ma_pivots(newnode, mt);
3236 left = mas_mn(&l_mas);
3237 l_slots = ma_slots(left, mt);
3238 l_pivs = ma_pivots(left, mt);
3239 if (!l_slots[split])
3240 split++;
3241 tmp = mas_data_end(&l_mas) - split;
3242
3243 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3244 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3245 pivs[tmp] = l_mas.max;
3246 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3247 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3248
3249 l_mas.max = l_pivs[split];
3250 mas->min = l_mas.max + 1;
3251 eparent = mt_mk_node(mte_parent(l_mas.node),
3252 mas_parent_type(&l_mas, l_mas.node));
3253 tmp += end;
3254 if (!in_rcu) {
3255 unsigned char max_p = mt_pivots[mt];
3256 unsigned char max_s = mt_slots[mt];
3257
3258 if (tmp < max_p)
3259 memset(pivs + tmp, 0,
3260 sizeof(unsigned long) * (max_p - tmp));
3261
3262 if (tmp < mt_slots[mt])
3263 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3264
3265 memcpy(node, newnode, sizeof(struct maple_node));
3266 ma_set_meta(node, mt, 0, tmp - 1);
3267 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3268 l_pivs[split]);
3269
3270 /* Remove data from l_pivs. */
3271 tmp = split + 1;
3272 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3273 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3274 ma_set_meta(left, mt, 0, split);
3275
3276 goto done;
3277 }
3278
3279 /* RCU requires replacing both l_mas, mas, and parent. */
3280 mas->node = mt_mk_node(newnode, mt);
3281 ma_set_meta(newnode, mt, 0, tmp);
3282
3283 new_left = mas_pop_node(mas);
3284 new_left->parent = left->parent;
3285 mt = mte_node_type(l_mas.node);
3286 slots = ma_slots(new_left, mt);
3287 pivs = ma_pivots(new_left, mt);
3288 memcpy(slots, l_slots, sizeof(void *) * split);
3289 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3290 ma_set_meta(new_left, mt, 0, split);
3291 l_mas.node = mt_mk_node(new_left, mt);
3292
3293 /* replace parent. */
3294 offset = mte_parent_slot(mas->node);
3295 mt = mas_parent_type(&l_mas, l_mas.node);
3296 parent = mas_pop_node(mas);
3297 slots = ma_slots(parent, mt);
3298 pivs = ma_pivots(parent, mt);
3299 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3300 rcu_assign_pointer(slots[offset], mas->node);
3301 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3302 pivs[offset - 1] = l_mas.max;
3303 eparent = mt_mk_node(parent, mt);
3304done:
3305 gap = mas_leaf_max_gap(mas);
3306 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3307 gap = mas_leaf_max_gap(&l_mas);
3308 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3309 mas_ascend(mas);
3310
3311 if (in_rcu)
3312 mas_replace(mas, false);
3313
3314 mas_update_gap(mas);
3315}
3316
3317/*
3318 * mas_split_final_node() - Split the final node in a subtree operation.
3319 * @mast: the maple subtree state
3320 * @mas: The maple state
3321 * @height: The height of the tree in case it's a new root.
3322 */
3323static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3324 struct ma_state *mas, int height)
3325{
3326 struct maple_enode *ancestor;
3327
3328 if (mte_is_root(mas->node)) {
3329 if (mt_is_alloc(mas->tree))
3330 mast->bn->type = maple_arange_64;
3331 else
3332 mast->bn->type = maple_range_64;
3333 mas->depth = height;
3334 }
3335 /*
3336 * Only a single node is used here, could be root.
3337 * The Big_node data should just fit in a single node.
3338 */
3339 ancestor = mas_new_ma_node(mas, mast->bn);
3340 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3341 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3342 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3343
3344 mast->l->node = ancestor;
3345 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3346 mas->offset = mast->bn->b_end - 1;
3347 return true;
3348}
3349
3350/*
3351 * mast_fill_bnode() - Copy data into the big node in the subtree state
3352 * @mast: The maple subtree state
3353 * @mas: the maple state
3354 * @skip: The number of entries to skip for new nodes insertion.
3355 */
3356static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3357 struct ma_state *mas,
3358 unsigned char skip)
3359{
3360 bool cp = true;
3361 struct maple_enode *old = mas->node;
3362 unsigned char split;
3363
3364 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3365 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3366 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3367 mast->bn->b_end = 0;
3368
3369 if (mte_is_root(mas->node)) {
3370 cp = false;
3371 } else {
3372 mas_ascend(mas);
3373 mat_add(mast->free, old);
3374 mas->offset = mte_parent_slot(mas->node);
3375 }
3376
3377 if (cp && mast->l->offset)
3378 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3379
3380 split = mast->bn->b_end;
3381 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3382 mast->r->offset = mast->bn->b_end;
3383 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3384 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3385 cp = false;
3386
3387 if (cp)
3388 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3389 mast->bn, mast->bn->b_end);
3390
3391 mast->bn->b_end--;
3392 mast->bn->type = mte_node_type(mas->node);
3393}
3394
3395/*
3396 * mast_split_data() - Split the data in the subtree state big node into regular
3397 * nodes.
3398 * @mast: The maple subtree state
3399 * @mas: The maple state
3400 * @split: The location to split the big node
3401 */
3402static inline void mast_split_data(struct maple_subtree_state *mast,
3403 struct ma_state *mas, unsigned char split)
3404{
3405 unsigned char p_slot;
3406
3407 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3408 mte_set_pivot(mast->r->node, 0, mast->r->max);
3409 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3410 mast->l->offset = mte_parent_slot(mas->node);
3411 mast->l->max = mast->bn->pivot[split];
3412 mast->r->min = mast->l->max + 1;
3413 if (mte_is_leaf(mas->node))
3414 return;
3415
3416 p_slot = mast->orig_l->offset;
3417 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3418 &p_slot, split);
3419 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3420 &p_slot, split);
3421}
3422
3423/*
3424 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3425 * data to the right or left node if there is room.
3426 * @mas: The maple state
3427 * @height: The current height of the maple state
3428 * @mast: The maple subtree state
3429 * @left: Push left or not.
3430 *
3431 * Keeping the height of the tree low means faster lookups.
3432 *
3433 * Return: True if pushed, false otherwise.
3434 */
3435static inline bool mas_push_data(struct ma_state *mas, int height,
3436 struct maple_subtree_state *mast, bool left)
3437{
3438 unsigned char slot_total = mast->bn->b_end;
3439 unsigned char end, space, split;
3440
3441 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3442 tmp_mas = *mas;
3443 tmp_mas.depth = mast->l->depth;
3444
3445 if (left && !mas_prev_sibling(&tmp_mas))
3446 return false;
3447 else if (!left && !mas_next_sibling(&tmp_mas))
3448 return false;
3449
3450 end = mas_data_end(&tmp_mas);
3451 slot_total += end;
3452 space = 2 * mt_slot_count(mas->node) - 2;
3453 /* -2 instead of -1 to ensure there isn't a triple split */
3454 if (ma_is_leaf(mast->bn->type))
3455 space--;
3456
3457 if (mas->max == ULONG_MAX)
3458 space--;
3459
3460 if (slot_total >= space)
3461 return false;
3462
3463 /* Get the data; Fill mast->bn */
3464 mast->bn->b_end++;
3465 if (left) {
3466 mab_shift_right(mast->bn, end + 1);
3467 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3468 mast->bn->b_end = slot_total + 1;
3469 } else {
3470 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3471 }
3472
3473 /* Configure mast for splitting of mast->bn */
3474 split = mt_slots[mast->bn->type] - 2;
3475 if (left) {
3476 /* Switch mas to prev node */
3477 mat_add(mast->free, mas->node);
3478 *mas = tmp_mas;
3479 /* Start using mast->l for the left side. */
3480 tmp_mas.node = mast->l->node;
3481 *mast->l = tmp_mas;
3482 } else {
3483 mat_add(mast->free, tmp_mas.node);
3484 tmp_mas.node = mast->r->node;
3485 *mast->r = tmp_mas;
3486 split = slot_total - split;
3487 }
3488 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3489 /* Update parent slot for split calculation. */
3490 if (left)
3491 mast->orig_l->offset += end + 1;
3492
3493 mast_split_data(mast, mas, split);
3494 mast_fill_bnode(mast, mas, 2);
3495 mas_split_final_node(mast, mas, height + 1);
3496 return true;
3497}
3498
3499/*
3500 * mas_split() - Split data that is too big for one node into two.
3501 * @mas: The maple state
3502 * @b_node: The maple big node
3503 * Return: 1 on success, 0 on failure.
3504 */
3505static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3506{
3507 struct maple_subtree_state mast;
3508 int height = 0;
3509 unsigned char mid_split, split = 0;
3510
3511 /*
3512 * Splitting is handled differently from any other B-tree; the Maple
3513 * Tree splits upwards. Splitting up means that the split operation
3514 * occurs when the walk of the tree hits the leaves and not on the way
3515 * down. The reason for splitting up is that it is impossible to know
3516 * how much space will be needed until the leaf is (or leaves are)
3517 * reached. Since overwriting data is allowed and a range could
3518 * overwrite more than one range or result in changing one entry into 3
3519 * entries, it is impossible to know if a split is required until the
3520 * data is examined.
3521 *
3522 * Splitting is a balancing act between keeping allocations to a minimum
3523 * and avoiding a 'jitter' event where a tree is expanded to make room
3524 * for an entry followed by a contraction when the entry is removed. To
3525 * accomplish the balance, there are empty slots remaining in both left
3526 * and right nodes after a split.
3527 */
3528 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3529 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3530 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3531 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3532 MA_TOPIARY(mat, mas->tree);
3533
3534 trace_ma_op(__func__, mas);
3535 mas->depth = mas_mt_height(mas);
3536 /* Allocation failures will happen early. */
3537 mas_node_count(mas, 1 + mas->depth * 2);
3538 if (mas_is_err(mas))
3539 return 0;
3540
3541 mast.l = &l_mas;
3542 mast.r = &r_mas;
3543 mast.orig_l = &prev_l_mas;
3544 mast.orig_r = &prev_r_mas;
3545 mast.free = &mat;
3546 mast.bn = b_node;
3547
3548 while (height++ <= mas->depth) {
3549 if (mt_slots[b_node->type] > b_node->b_end) {
3550 mas_split_final_node(&mast, mas, height);
3551 break;
3552 }
3553
3554 l_mas = r_mas = *mas;
3555 l_mas.node = mas_new_ma_node(mas, b_node);
3556 r_mas.node = mas_new_ma_node(mas, b_node);
3557 /*
3558 * Another way that 'jitter' is avoided is to terminate a split up early if the
3559 * left or right node has space to spare. This is referred to as "pushing left"
3560 * or "pushing right" and is similar to the B* tree, except the nodes left or
3561 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3562 * is a significant savings.
3563 */
3564 /* Try to push left. */
3565 if (mas_push_data(mas, height, &mast, true))
3566 break;
3567
3568 /* Try to push right. */
3569 if (mas_push_data(mas, height, &mast, false))
3570 break;
3571
3572 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3573 mast_split_data(&mast, mas, split);
3574 /*
3575 * Usually correct, mab_mas_cp in the above call overwrites
3576 * r->max.
3577 */
3578 mast.r->max = mas->max;
3579 mast_fill_bnode(&mast, mas, 1);
3580 prev_l_mas = *mast.l;
3581 prev_r_mas = *mast.r;
3582 }
3583
3584 /* Set the original node as dead */
3585 mat_add(mast.free, mas->node);
3586 mas->node = l_mas.node;
3587 mas_wmb_replace(mas, mast.free, NULL);
3588 mtree_range_walk(mas);
3589 return 1;
3590}
3591
3592/*
3593 * mas_reuse_node() - Reuse the node to store the data.
3594 * @wr_mas: The maple write state
3595 * @bn: The maple big node
3596 * @end: The end of the data.
3597 *
3598 * Will always return false in RCU mode.
3599 *
3600 * Return: True if node was reused, false otherwise.
3601 */
3602static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3603 struct maple_big_node *bn, unsigned char end)
3604{
3605 /* Need to be rcu safe. */
3606 if (mt_in_rcu(wr_mas->mas->tree))
3607 return false;
3608
3609 if (end > bn->b_end) {
3610 int clear = mt_slots[wr_mas->type] - bn->b_end;
3611
3612 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3613 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3614 }
3615 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3616 return true;
3617}
3618
3619/*
3620 * mas_commit_b_node() - Commit the big node into the tree.
3621 * @wr_mas: The maple write state
3622 * @b_node: The maple big node
3623 * @end: The end of the data.
3624 */
3625static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3626 struct maple_big_node *b_node, unsigned char end)
3627{
3628 struct maple_node *node;
3629 unsigned char b_end = b_node->b_end;
3630 enum maple_type b_type = b_node->type;
3631
3632 if ((b_end < mt_min_slots[b_type]) &&
3633 (!mte_is_root(wr_mas->mas->node)) &&
3634 (mas_mt_height(wr_mas->mas) > 1))
3635 return mas_rebalance(wr_mas->mas, b_node);
3636
3637 if (b_end >= mt_slots[b_type])
3638 return mas_split(wr_mas->mas, b_node);
3639
3640 if (mas_reuse_node(wr_mas, b_node, end))
3641 goto reuse_node;
3642
3643 mas_node_count(wr_mas->mas, 1);
3644 if (mas_is_err(wr_mas->mas))
3645 return 0;
3646
3647 node = mas_pop_node(wr_mas->mas);
3648 node->parent = mas_mn(wr_mas->mas)->parent;
3649 wr_mas->mas->node = mt_mk_node(node, b_type);
3650 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3651 mas_replace(wr_mas->mas, false);
3652reuse_node:
3653 mas_update_gap(wr_mas->mas);
3654 return 1;
3655}
3656
3657/*
3658 * mas_root_expand() - Expand a root to a node
3659 * @mas: The maple state
3660 * @entry: The entry to store into the tree
3661 */
3662static inline int mas_root_expand(struct ma_state *mas, void *entry)
3663{
3664 void *contents = mas_root_locked(mas);
3665 enum maple_type type = maple_leaf_64;
3666 struct maple_node *node;
3667 void __rcu **slots;
3668 unsigned long *pivots;
3669 int slot = 0;
3670
3671 mas_node_count(mas, 1);
3672 if (unlikely(mas_is_err(mas)))
3673 return 0;
3674
3675 node = mas_pop_node(mas);
3676 pivots = ma_pivots(node, type);
3677 slots = ma_slots(node, type);
3678 node->parent = ma_parent_ptr(
3679 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3680 mas->node = mt_mk_node(node, type);
3681
3682 if (mas->index) {
3683 if (contents) {
3684 rcu_assign_pointer(slots[slot], contents);
3685 if (likely(mas->index > 1))
3686 slot++;
3687 }
3688 pivots[slot++] = mas->index - 1;
3689 }
3690
3691 rcu_assign_pointer(slots[slot], entry);
3692 mas->offset = slot;
3693 pivots[slot] = mas->last;
3694 if (mas->last != ULONG_MAX)
3695 pivots[++slot] = ULONG_MAX;
3696
3697 mas->depth = 1;
3698 mas_set_height(mas);
3699 ma_set_meta(node, maple_leaf_64, 0, slot);
3700 /* swap the new root into the tree */
3701 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3702 return slot;
3703}
3704
3705static inline void mas_store_root(struct ma_state *mas, void *entry)
3706{
3707 if (likely((mas->last != 0) || (mas->index != 0)))
3708 mas_root_expand(mas, entry);
3709 else if (((unsigned long) (entry) & 3) == 2)
3710 mas_root_expand(mas, entry);
3711 else {
3712 rcu_assign_pointer(mas->tree->ma_root, entry);
3713 mas->node = MAS_START;
3714 }
3715}
3716
3717/*
3718 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3719 * spans the node.
3720 * @mas: The maple state
3721 * @piv: The pivot value being written
3722 * @type: The maple node type
3723 * @entry: The data to write
3724 *
3725 * Spanning writes are writes that start in one node and end in another OR if
3726 * the write of a %NULL will cause the node to end with a %NULL.
3727 *
3728 * Return: True if this is a spanning write, false otherwise.
3729 */
3730static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3731{
3732 unsigned long max = wr_mas->r_max;
3733 unsigned long last = wr_mas->mas->last;
3734 enum maple_type type = wr_mas->type;
3735 void *entry = wr_mas->entry;
3736
3737 /* Contained in this pivot, fast path */
3738 if (last < max)
3739 return false;
3740
3741 if (ma_is_leaf(type)) {
3742 max = wr_mas->mas->max;
3743 if (last < max)
3744 return false;
3745 }
3746
3747 if (last == max) {
3748 /*
3749 * The last entry of leaf node cannot be NULL unless it is the
3750 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3751 */
3752 if (entry || last == ULONG_MAX)
3753 return false;
3754 }
3755
3756 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3757 return true;
3758}
3759
3760static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3761{
3762 wr_mas->type = mte_node_type(wr_mas->mas->node);
3763 mas_wr_node_walk(wr_mas);
3764 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3765}
3766
3767static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3768{
3769 wr_mas->mas->max = wr_mas->r_max;
3770 wr_mas->mas->min = wr_mas->r_min;
3771 wr_mas->mas->node = wr_mas->content;
3772 wr_mas->mas->offset = 0;
3773 wr_mas->mas->depth++;
3774}
3775/*
3776 * mas_wr_walk() - Walk the tree for a write.
3777 * @wr_mas: The maple write state
3778 *
3779 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3780 *
3781 * Return: True if it's contained in a node, false on spanning write.
3782 */
3783static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3784{
3785 struct ma_state *mas = wr_mas->mas;
3786
3787 while (true) {
3788 mas_wr_walk_descend(wr_mas);
3789 if (unlikely(mas_is_span_wr(wr_mas)))
3790 return false;
3791
3792 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3793 mas->offset);
3794 if (ma_is_leaf(wr_mas->type))
3795 return true;
3796
3797 mas_wr_walk_traverse(wr_mas);
3798 }
3799
3800 return true;
3801}
3802
3803static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3804{
3805 struct ma_state *mas = wr_mas->mas;
3806
3807 while (true) {
3808 mas_wr_walk_descend(wr_mas);
3809 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3810 mas->offset);
3811 if (ma_is_leaf(wr_mas->type))
3812 return true;
3813 mas_wr_walk_traverse(wr_mas);
3814
3815 }
3816 return true;
3817}
3818/*
3819 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3820 * @l_wr_mas: The left maple write state
3821 * @r_wr_mas: The right maple write state
3822 */
3823static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3824 struct ma_wr_state *r_wr_mas)
3825{
3826 struct ma_state *r_mas = r_wr_mas->mas;
3827 struct ma_state *l_mas = l_wr_mas->mas;
3828 unsigned char l_slot;
3829
3830 l_slot = l_mas->offset;
3831 if (!l_wr_mas->content)
3832 l_mas->index = l_wr_mas->r_min;
3833
3834 if ((l_mas->index == l_wr_mas->r_min) &&
3835 (l_slot &&
3836 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3837 if (l_slot > 1)
3838 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3839 else
3840 l_mas->index = l_mas->min;
3841
3842 l_mas->offset = l_slot - 1;
3843 }
3844
3845 if (!r_wr_mas->content) {
3846 if (r_mas->last < r_wr_mas->r_max)
3847 r_mas->last = r_wr_mas->r_max;
3848 r_mas->offset++;
3849 } else if ((r_mas->last == r_wr_mas->r_max) &&
3850 (r_mas->last < r_mas->max) &&
3851 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3852 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3853 r_wr_mas->type, r_mas->offset + 1);
3854 r_mas->offset++;
3855 }
3856}
3857
3858static inline void *mas_state_walk(struct ma_state *mas)
3859{
3860 void *entry;
3861
3862 entry = mas_start(mas);
3863 if (mas_is_none(mas))
3864 return NULL;
3865
3866 if (mas_is_ptr(mas))
3867 return entry;
3868
3869 return mtree_range_walk(mas);
3870}
3871
3872/*
3873 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3874 * to date.
3875 *
3876 * @mas: The maple state.
3877 *
3878 * Note: Leaves mas in undesirable state.
3879 * Return: The entry for @mas->index or %NULL on dead node.
3880 */
3881static inline void *mtree_lookup_walk(struct ma_state *mas)
3882{
3883 unsigned long *pivots;
3884 unsigned char offset;
3885 struct maple_node *node;
3886 struct maple_enode *next;
3887 enum maple_type type;
3888 void __rcu **slots;
3889 unsigned char end;
3890 unsigned long max;
3891
3892 next = mas->node;
3893 max = ULONG_MAX;
3894 do {
3895 offset = 0;
3896 node = mte_to_node(next);
3897 type = mte_node_type(next);
3898 pivots = ma_pivots(node, type);
3899 end = ma_data_end(node, type, pivots, max);
3900 if (unlikely(ma_dead_node(node)))
3901 goto dead_node;
3902 do {
3903 if (pivots[offset] >= mas->index) {
3904 max = pivots[offset];
3905 break;
3906 }
3907 } while (++offset < end);
3908
3909 slots = ma_slots(node, type);
3910 next = mt_slot(mas->tree, slots, offset);
3911 if (unlikely(ma_dead_node(node)))
3912 goto dead_node;
3913 } while (!ma_is_leaf(type));
3914
3915 return (void *)next;
3916
3917dead_node:
3918 mas_reset(mas);
3919 return NULL;
3920}
3921
3922/*
3923 * mas_new_root() - Create a new root node that only contains the entry passed
3924 * in.
3925 * @mas: The maple state
3926 * @entry: The entry to store.
3927 *
3928 * Only valid when the index == 0 and the last == ULONG_MAX
3929 *
3930 * Return 0 on error, 1 on success.
3931 */
3932static inline int mas_new_root(struct ma_state *mas, void *entry)
3933{
3934 struct maple_enode *root = mas_root_locked(mas);
3935 enum maple_type type = maple_leaf_64;
3936 struct maple_node *node;
3937 void __rcu **slots;
3938 unsigned long *pivots;
3939
3940 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3941 mas->depth = 0;
3942 mas_set_height(mas);
3943 rcu_assign_pointer(mas->tree->ma_root, entry);
3944 mas->node = MAS_START;
3945 goto done;
3946 }
3947
3948 mas_node_count(mas, 1);
3949 if (mas_is_err(mas))
3950 return 0;
3951
3952 node = mas_pop_node(mas);
3953 pivots = ma_pivots(node, type);
3954 slots = ma_slots(node, type);
3955 node->parent = ma_parent_ptr(
3956 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3957 mas->node = mt_mk_node(node, type);
3958 rcu_assign_pointer(slots[0], entry);
3959 pivots[0] = mas->last;
3960 mas->depth = 1;
3961 mas_set_height(mas);
3962 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3963
3964done:
3965 if (xa_is_node(root))
3966 mte_destroy_walk(root, mas->tree);
3967
3968 return 1;
3969}
3970/*
3971 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3972 * and new nodes where necessary, then place the sub-tree in the actual tree.
3973 * Note that mas is expected to point to the node which caused the store to
3974 * span.
3975 * @wr_mas: The maple write state
3976 *
3977 * Return: 0 on error, positive on success.
3978 */
3979static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3980{
3981 struct maple_subtree_state mast;
3982 struct maple_big_node b_node;
3983 struct ma_state *mas;
3984 unsigned char height;
3985
3986 /* Left and Right side of spanning store */
3987 MA_STATE(l_mas, NULL, 0, 0);
3988 MA_STATE(r_mas, NULL, 0, 0);
3989
3990 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3991 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3992
3993 /*
3994 * A store operation that spans multiple nodes is called a spanning
3995 * store and is handled early in the store call stack by the function
3996 * mas_is_span_wr(). When a spanning store is identified, the maple
3997 * state is duplicated. The first maple state walks the left tree path
3998 * to ``index``, the duplicate walks the right tree path to ``last``.
3999 * The data in the two nodes are combined into a single node, two nodes,
4000 * or possibly three nodes (see the 3-way split above). A ``NULL``
4001 * written to the last entry of a node is considered a spanning store as
4002 * a rebalance is required for the operation to complete and an overflow
4003 * of data may happen.
4004 */
4005 mas = wr_mas->mas;
4006 trace_ma_op(__func__, mas);
4007
4008 if (unlikely(!mas->index && mas->last == ULONG_MAX))
4009 return mas_new_root(mas, wr_mas->entry);
4010 /*
4011 * Node rebalancing may occur due to this store, so there may be three new
4012 * entries per level plus a new root.
4013 */
4014 height = mas_mt_height(mas);
4015 mas_node_count(mas, 1 + height * 3);
4016 if (mas_is_err(mas))
4017 return 0;
4018
4019 /*
4020 * Set up right side. Need to get to the next offset after the spanning
4021 * store to ensure it's not NULL and to combine both the next node and
4022 * the node with the start together.
4023 */
4024 r_mas = *mas;
4025 /* Avoid overflow, walk to next slot in the tree. */
4026 if (r_mas.last + 1)
4027 r_mas.last++;
4028
4029 r_mas.index = r_mas.last;
4030 mas_wr_walk_index(&r_wr_mas);
4031 r_mas.last = r_mas.index = mas->last;
4032
4033 /* Set up left side. */
4034 l_mas = *mas;
4035 mas_wr_walk_index(&l_wr_mas);
4036
4037 if (!wr_mas->entry) {
4038 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4039 mas->offset = l_mas.offset;
4040 mas->index = l_mas.index;
4041 mas->last = l_mas.last = r_mas.last;
4042 }
4043
4044 /* expanding NULLs may make this cover the entire range */
4045 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4046 mas_set_range(mas, 0, ULONG_MAX);
4047 return mas_new_root(mas, wr_mas->entry);
4048 }
4049
4050 memset(&b_node, 0, sizeof(struct maple_big_node));
4051 /* Copy l_mas and store the value in b_node. */
4052 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4053 /* Copy r_mas into b_node. */
4054 if (r_mas.offset <= r_wr_mas.node_end)
4055 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4056 &b_node, b_node.b_end + 1);
4057 else
4058 b_node.b_end++;
4059
4060 /* Stop spanning searches by searching for just index. */
4061 l_mas.index = l_mas.last = mas->index;
4062
4063 mast.bn = &b_node;
4064 mast.orig_l = &l_mas;
4065 mast.orig_r = &r_mas;
4066 /* Combine l_mas and r_mas and split them up evenly again. */
4067 return mas_spanning_rebalance(mas, &mast, height + 1);
4068}
4069
4070/*
4071 * mas_wr_node_store() - Attempt to store the value in a node
4072 * @wr_mas: The maple write state
4073 *
4074 * Attempts to reuse the node, but may allocate.
4075 *
4076 * Return: True if stored, false otherwise
4077 */
4078static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
4079 unsigned char new_end)
4080{
4081 struct ma_state *mas = wr_mas->mas;
4082 void __rcu **dst_slots;
4083 unsigned long *dst_pivots;
4084 unsigned char dst_offset, offset_end = wr_mas->offset_end;
4085 struct maple_node reuse, *newnode;
4086 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
4087 bool in_rcu = mt_in_rcu(mas->tree);
4088
4089 /* Check if there is enough data. The room is enough. */
4090 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4091 !(mas->mas_flags & MA_STATE_BULK))
4092 return false;
4093
4094 if (mas->last == wr_mas->end_piv)
4095 offset_end++; /* don't copy this offset */
4096 else if (unlikely(wr_mas->r_max == ULONG_MAX))
4097 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4098
4099 /* set up node. */
4100 if (in_rcu) {
4101 mas_node_count(mas, 1);
4102 if (mas_is_err(mas))
4103 return false;
4104
4105 newnode = mas_pop_node(mas);
4106 } else {
4107 memset(&reuse, 0, sizeof(struct maple_node));
4108 newnode = &reuse;
4109 }
4110
4111 newnode->parent = mas_mn(mas)->parent;
4112 dst_pivots = ma_pivots(newnode, wr_mas->type);
4113 dst_slots = ma_slots(newnode, wr_mas->type);
4114 /* Copy from start to insert point */
4115 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
4116 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
4117
4118 /* Handle insert of new range starting after old range */
4119 if (wr_mas->r_min < mas->index) {
4120 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
4121 dst_pivots[mas->offset++] = mas->index - 1;
4122 }
4123
4124 /* Store the new entry and range end. */
4125 if (mas->offset < node_pivots)
4126 dst_pivots[mas->offset] = mas->last;
4127 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
4128
4129 /*
4130 * this range wrote to the end of the node or it overwrote the rest of
4131 * the data
4132 */
4133 if (offset_end > wr_mas->node_end)
4134 goto done;
4135
4136 dst_offset = mas->offset + 1;
4137 /* Copy to the end of node if necessary. */
4138 copy_size = wr_mas->node_end - offset_end + 1;
4139 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
4140 sizeof(void *) * copy_size);
4141 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
4142 sizeof(unsigned long) * (copy_size - 1));
4143
4144 if (new_end < node_pivots)
4145 dst_pivots[new_end] = mas->max;
4146
4147done:
4148 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4149 if (in_rcu) {
4150 mte_set_node_dead(mas->node);
4151 mas->node = mt_mk_node(newnode, wr_mas->type);
4152 mas_replace(mas, false);
4153 } else {
4154 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4155 }
4156 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4157 mas_update_gap(mas);
4158 return true;
4159}
4160
4161/*
4162 * mas_wr_slot_store: Attempt to store a value in a slot.
4163 * @wr_mas: the maple write state
4164 *
4165 * Return: True if stored, false otherwise
4166 */
4167static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4168{
4169 struct ma_state *mas = wr_mas->mas;
4170 unsigned char offset = mas->offset;
4171 bool gap = false;
4172
4173 if (wr_mas->offset_end - offset != 1)
4174 return false;
4175
4176 gap |= !mt_slot_locked(mas->tree, wr_mas->slots, offset);
4177 gap |= !mt_slot_locked(mas->tree, wr_mas->slots, offset + 1);
4178
4179 if (mas->index == wr_mas->r_min) {
4180 /* Overwriting the range and over a part of the next range. */
4181 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4182 wr_mas->pivots[offset] = mas->last;
4183 } else {
4184 /* Overwriting a part of the range and over the next range */
4185 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4186 wr_mas->pivots[offset] = mas->index - 1;
4187 mas->offset++; /* Keep mas accurate. */
4188 }
4189
4190 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4191 /*
4192 * Only update gap when the new entry is empty or there is an empty
4193 * entry in the original two ranges.
4194 */
4195 if (!wr_mas->entry || gap)
4196 mas_update_gap(mas);
4197
4198 return true;
4199}
4200
4201static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4202{
4203 while ((wr_mas->offset_end < wr_mas->node_end) &&
4204 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4205 wr_mas->offset_end++;
4206
4207 if (wr_mas->offset_end < wr_mas->node_end)
4208 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4209 else
4210 wr_mas->end_piv = wr_mas->mas->max;
4211}
4212
4213static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4214{
4215 struct ma_state *mas = wr_mas->mas;
4216
4217 if (!wr_mas->slots[wr_mas->offset_end]) {
4218 /* If this one is null, the next and prev are not */
4219 mas->last = wr_mas->end_piv;
4220 } else {
4221 /* Check next slot(s) if we are overwriting the end */
4222 if ((mas->last == wr_mas->end_piv) &&
4223 (wr_mas->node_end != wr_mas->offset_end) &&
4224 !wr_mas->slots[wr_mas->offset_end + 1]) {
4225 wr_mas->offset_end++;
4226 if (wr_mas->offset_end == wr_mas->node_end)
4227 mas->last = mas->max;
4228 else
4229 mas->last = wr_mas->pivots[wr_mas->offset_end];
4230 wr_mas->end_piv = mas->last;
4231 }
4232 }
4233
4234 if (!wr_mas->content) {
4235 /* If this one is null, the next and prev are not */
4236 mas->index = wr_mas->r_min;
4237 } else {
4238 /* Check prev slot if we are overwriting the start */
4239 if (mas->index == wr_mas->r_min && mas->offset &&
4240 !wr_mas->slots[mas->offset - 1]) {
4241 mas->offset--;
4242 wr_mas->r_min = mas->index =
4243 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4244 wr_mas->r_max = wr_mas->pivots[mas->offset];
4245 }
4246 }
4247}
4248
4249static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4250{
4251 struct ma_state *mas = wr_mas->mas;
4252 unsigned char new_end = wr_mas->node_end + 2;
4253
4254 new_end -= wr_mas->offset_end - mas->offset;
4255 if (wr_mas->r_min == mas->index)
4256 new_end--;
4257
4258 if (wr_mas->end_piv == mas->last)
4259 new_end--;
4260
4261 return new_end;
4262}
4263
4264/*
4265 * mas_wr_append: Attempt to append
4266 * @wr_mas: the maple write state
4267 *
4268 * This is currently unsafe in rcu mode since the end of the node may be cached
4269 * by readers while the node contents may be updated which could result in
4270 * inaccurate information.
4271 *
4272 * Return: True if appended, false otherwise
4273 */
4274static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4275{
4276 unsigned char end = wr_mas->node_end;
4277 unsigned char new_end = end + 1;
4278 struct ma_state *mas = wr_mas->mas;
4279 unsigned char node_pivots = mt_pivots[wr_mas->type];
4280
4281 if (mt_in_rcu(mas->tree))
4282 return false;
4283
4284 if (mas->offset != wr_mas->node_end)
4285 return false;
4286
4287 if (new_end < node_pivots) {
4288 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4289 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4290 }
4291
4292 if (mas->last == wr_mas->r_max) {
4293 /* Append to end of range */
4294 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4295 wr_mas->pivots[end] = mas->index - 1;
4296 mas->offset = new_end;
4297 } else {
4298 /* Append to start of range */
4299 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4300 wr_mas->pivots[end] = mas->last;
4301 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4302 }
4303
4304 if (!wr_mas->content || !wr_mas->entry)
4305 mas_update_gap(mas);
4306
4307 return true;
4308}
4309
4310/*
4311 * mas_wr_bnode() - Slow path for a modification.
4312 * @wr_mas: The write maple state
4313 *
4314 * This is where split, rebalance end up.
4315 */
4316static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4317{
4318 struct maple_big_node b_node;
4319
4320 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4321 memset(&b_node, 0, sizeof(struct maple_big_node));
4322 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4323 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4324}
4325
4326static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4327{
4328 struct ma_state *mas = wr_mas->mas;
4329 unsigned char new_end;
4330
4331 /* Direct replacement */
4332 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4333 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4334 if (!!wr_mas->entry ^ !!wr_mas->content)
4335 mas_update_gap(mas);
4336 return;
4337 }
4338
4339 /*
4340 * new_end exceeds the size of the maple node and cannot enter the fast
4341 * path.
4342 */
4343 new_end = mas_wr_new_end(wr_mas);
4344 if (new_end >= mt_slots[wr_mas->type])
4345 goto slow_path;
4346
4347 /* Attempt to append */
4348 if (new_end == wr_mas->node_end + 1 && mas_wr_append(wr_mas))
4349 return;
4350
4351 if (new_end == wr_mas->node_end && mas_wr_slot_store(wr_mas))
4352 return;
4353
4354 if (mas_wr_node_store(wr_mas, new_end))
4355 return;
4356
4357 if (mas_is_err(mas))
4358 return;
4359
4360slow_path:
4361 mas_wr_bnode(wr_mas);
4362}
4363
4364/*
4365 * mas_wr_store_entry() - Internal call to store a value
4366 * @mas: The maple state
4367 * @entry: The entry to store.
4368 *
4369 * Return: The contents that was stored at the index.
4370 */
4371static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4372{
4373 struct ma_state *mas = wr_mas->mas;
4374
4375 wr_mas->content = mas_start(mas);
4376 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4377 mas_store_root(mas, wr_mas->entry);
4378 return wr_mas->content;
4379 }
4380
4381 if (unlikely(!mas_wr_walk(wr_mas))) {
4382 mas_wr_spanning_store(wr_mas);
4383 return wr_mas->content;
4384 }
4385
4386 /* At this point, we are at the leaf node that needs to be altered. */
4387 mas_wr_end_piv(wr_mas);
4388
4389 if (!wr_mas->entry)
4390 mas_wr_extend_null(wr_mas);
4391
4392 /* New root for a single pointer */
4393 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4394 mas_new_root(mas, wr_mas->entry);
4395 return wr_mas->content;
4396 }
4397
4398 mas_wr_modify(wr_mas);
4399 return wr_mas->content;
4400}
4401
4402/**
4403 * mas_insert() - Internal call to insert a value
4404 * @mas: The maple state
4405 * @entry: The entry to store
4406 *
4407 * Return: %NULL or the contents that already exists at the requested index
4408 * otherwise. The maple state needs to be checked for error conditions.
4409 */
4410static inline void *mas_insert(struct ma_state *mas, void *entry)
4411{
4412 MA_WR_STATE(wr_mas, mas, entry);
4413
4414 /*
4415 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4416 * tree. If the insert fits exactly into an existing gap with a value
4417 * of NULL, then the slot only needs to be written with the new value.
4418 * If the range being inserted is adjacent to another range, then only a
4419 * single pivot needs to be inserted (as well as writing the entry). If
4420 * the new range is within a gap but does not touch any other ranges,
4421 * then two pivots need to be inserted: the start - 1, and the end. As
4422 * usual, the entry must be written. Most operations require a new node
4423 * to be allocated and replace an existing node to ensure RCU safety,
4424 * when in RCU mode. The exception to requiring a newly allocated node
4425 * is when inserting at the end of a node (appending). When done
4426 * carefully, appending can reuse the node in place.
4427 */
4428 wr_mas.content = mas_start(mas);
4429 if (wr_mas.content)
4430 goto exists;
4431
4432 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4433 mas_store_root(mas, entry);
4434 return NULL;
4435 }
4436
4437 /* spanning writes always overwrite something */
4438 if (!mas_wr_walk(&wr_mas))
4439 goto exists;
4440
4441 /* At this point, we are at the leaf node that needs to be altered. */
4442 wr_mas.offset_end = mas->offset;
4443 wr_mas.end_piv = wr_mas.r_max;
4444
4445 if (wr_mas.content || (mas->last > wr_mas.r_max))
4446 goto exists;
4447
4448 if (!entry)
4449 return NULL;
4450
4451 mas_wr_modify(&wr_mas);
4452 return wr_mas.content;
4453
4454exists:
4455 mas_set_err(mas, -EEXIST);
4456 return wr_mas.content;
4457
4458}
4459
4460static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4461{
4462retry:
4463 mas_set(mas, index);
4464 mas_state_walk(mas);
4465 if (mas_is_start(mas))
4466 goto retry;
4467}
4468
4469static inline bool mas_rewalk_if_dead(struct ma_state *mas,
4470 struct maple_node *node, const unsigned long index)
4471{
4472 if (unlikely(ma_dead_node(node))) {
4473 mas_rewalk(mas, index);
4474 return true;
4475 }
4476 return false;
4477}
4478
4479/*
4480 * mas_prev_node() - Find the prev non-null entry at the same level in the
4481 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4482 * @mas: The maple state
4483 * @min: The lower limit to search
4484 *
4485 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4486 * Return: 1 if the node is dead, 0 otherwise.
4487 */
4488static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4489{
4490 enum maple_type mt;
4491 int offset, level;
4492 void __rcu **slots;
4493 struct maple_node *node;
4494 unsigned long *pivots;
4495 unsigned long max;
4496
4497 node = mas_mn(mas);
4498 if (!mas->min)
4499 goto no_entry;
4500
4501 max = mas->min - 1;
4502 if (max < min)
4503 goto no_entry;
4504
4505 level = 0;
4506 do {
4507 if (ma_is_root(node))
4508 goto no_entry;
4509
4510 /* Walk up. */
4511 if (unlikely(mas_ascend(mas)))
4512 return 1;
4513 offset = mas->offset;
4514 level++;
4515 node = mas_mn(mas);
4516 } while (!offset);
4517
4518 offset--;
4519 mt = mte_node_type(mas->node);
4520 while (level > 1) {
4521 level--;
4522 slots = ma_slots(node, mt);
4523 mas->node = mas_slot(mas, slots, offset);
4524 if (unlikely(ma_dead_node(node)))
4525 return 1;
4526
4527 mt = mte_node_type(mas->node);
4528 node = mas_mn(mas);
4529 pivots = ma_pivots(node, mt);
4530 offset = ma_data_end(node, mt, pivots, max);
4531 if (unlikely(ma_dead_node(node)))
4532 return 1;
4533 }
4534
4535 slots = ma_slots(node, mt);
4536 mas->node = mas_slot(mas, slots, offset);
4537 pivots = ma_pivots(node, mt);
4538 if (unlikely(ma_dead_node(node)))
4539 return 1;
4540
4541 if (likely(offset))
4542 mas->min = pivots[offset - 1] + 1;
4543 mas->max = max;
4544 mas->offset = mas_data_end(mas);
4545 if (unlikely(mte_dead_node(mas->node)))
4546 return 1;
4547
4548 return 0;
4549
4550no_entry:
4551 if (unlikely(ma_dead_node(node)))
4552 return 1;
4553
4554 mas->node = MAS_NONE;
4555 return 0;
4556}
4557
4558/*
4559 * mas_prev_slot() - Get the entry in the previous slot
4560 *
4561 * @mas: The maple state
4562 * @max: The minimum starting range
4563 *
4564 * Return: The entry in the previous slot which is possibly NULL
4565 */
4566static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4567{
4568 void *entry;
4569 void __rcu **slots;
4570 unsigned long pivot;
4571 enum maple_type type;
4572 unsigned long *pivots;
4573 struct maple_node *node;
4574 unsigned long save_point = mas->index;
4575
4576retry:
4577 node = mas_mn(mas);
4578 type = mte_node_type(mas->node);
4579 pivots = ma_pivots(node, type);
4580 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4581 goto retry;
4582
4583again:
4584 if (mas->min <= min) {
4585 pivot = mas_safe_min(mas, pivots, mas->offset);
4586
4587 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4588 goto retry;
4589
4590 if (pivot <= min)
4591 return NULL;
4592 }
4593
4594 if (likely(mas->offset)) {
4595 mas->offset--;
4596 mas->last = mas->index - 1;
4597 mas->index = mas_safe_min(mas, pivots, mas->offset);
4598 } else {
4599 if (mas_prev_node(mas, min)) {
4600 mas_rewalk(mas, save_point);
4601 goto retry;
4602 }
4603
4604 if (mas_is_none(mas))
4605 return NULL;
4606
4607 mas->last = mas->max;
4608 node = mas_mn(mas);
4609 type = mte_node_type(mas->node);
4610 pivots = ma_pivots(node, type);
4611 mas->index = pivots[mas->offset - 1] + 1;
4612 }
4613
4614 slots = ma_slots(node, type);
4615 entry = mas_slot(mas, slots, mas->offset);
4616 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4617 goto retry;
4618
4619 if (likely(entry))
4620 return entry;
4621
4622 if (!empty)
4623 goto again;
4624
4625 return entry;
4626}
4627
4628/*
4629 * mas_next_node() - Get the next node at the same level in the tree.
4630 * @mas: The maple state
4631 * @max: The maximum pivot value to check.
4632 *
4633 * The next value will be mas->node[mas->offset] or MAS_NONE.
4634 * Return: 1 on dead node, 0 otherwise.
4635 */
4636static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4637 unsigned long max)
4638{
4639 unsigned long min;
4640 unsigned long *pivots;
4641 struct maple_enode *enode;
4642 int level = 0;
4643 unsigned char node_end;
4644 enum maple_type mt;
4645 void __rcu **slots;
4646
4647 if (mas->max >= max)
4648 goto no_entry;
4649
4650 min = mas->max + 1;
4651 level = 0;
4652 do {
4653 if (ma_is_root(node))
4654 goto no_entry;
4655
4656 /* Walk up. */
4657 if (unlikely(mas_ascend(mas)))
4658 return 1;
4659
4660 level++;
4661 node = mas_mn(mas);
4662 mt = mte_node_type(mas->node);
4663 pivots = ma_pivots(node, mt);
4664 node_end = ma_data_end(node, mt, pivots, mas->max);
4665 if (unlikely(ma_dead_node(node)))
4666 return 1;
4667
4668 } while (unlikely(mas->offset == node_end));
4669
4670 slots = ma_slots(node, mt);
4671 mas->offset++;
4672 enode = mas_slot(mas, slots, mas->offset);
4673 if (unlikely(ma_dead_node(node)))
4674 return 1;
4675
4676 if (level > 1)
4677 mas->offset = 0;
4678
4679 while (unlikely(level > 1)) {
4680 level--;
4681 mas->node = enode;
4682 node = mas_mn(mas);
4683 mt = mte_node_type(mas->node);
4684 slots = ma_slots(node, mt);
4685 enode = mas_slot(mas, slots, 0);
4686 if (unlikely(ma_dead_node(node)))
4687 return 1;
4688 }
4689
4690 if (!mas->offset)
4691 pivots = ma_pivots(node, mt);
4692
4693 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4694 if (unlikely(ma_dead_node(node)))
4695 return 1;
4696
4697 mas->node = enode;
4698 mas->min = min;
4699 return 0;
4700
4701no_entry:
4702 if (unlikely(ma_dead_node(node)))
4703 return 1;
4704
4705 mas->node = MAS_NONE;
4706 return 0;
4707}
4708
4709/*
4710 * mas_next_slot() - Get the entry in the next slot
4711 *
4712 * @mas: The maple state
4713 * @max: The maximum starting range
4714 * @empty: Can be empty
4715 *
4716 * Return: The entry in the next slot which is possibly NULL
4717 */
4718static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4719{
4720 void __rcu **slots;
4721 unsigned long *pivots;
4722 unsigned long pivot;
4723 enum maple_type type;
4724 struct maple_node *node;
4725 unsigned char data_end;
4726 unsigned long save_point = mas->last;
4727 void *entry;
4728
4729retry:
4730 node = mas_mn(mas);
4731 type = mte_node_type(mas->node);
4732 pivots = ma_pivots(node, type);
4733 data_end = ma_data_end(node, type, pivots, mas->max);
4734 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4735 goto retry;
4736
4737again:
4738 if (mas->max >= max) {
4739 if (likely(mas->offset < data_end))
4740 pivot = pivots[mas->offset];
4741 else
4742 return NULL; /* must be mas->max */
4743
4744 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4745 goto retry;
4746
4747 if (pivot >= max)
4748 return NULL;
4749 }
4750
4751 if (likely(mas->offset < data_end)) {
4752 mas->index = pivots[mas->offset] + 1;
4753 mas->offset++;
4754 if (likely(mas->offset < data_end))
4755 mas->last = pivots[mas->offset];
4756 else
4757 mas->last = mas->max;
4758 } else {
4759 if (mas_next_node(mas, node, max)) {
4760 mas_rewalk(mas, save_point);
4761 goto retry;
4762 }
4763
4764 if (mas_is_none(mas))
4765 return NULL;
4766
4767 mas->offset = 0;
4768 mas->index = mas->min;
4769 node = mas_mn(mas);
4770 type = mte_node_type(mas->node);
4771 pivots = ma_pivots(node, type);
4772 mas->last = pivots[0];
4773 }
4774
4775 slots = ma_slots(node, type);
4776 entry = mt_slot(mas->tree, slots, mas->offset);
4777 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4778 goto retry;
4779
4780 if (entry)
4781 return entry;
4782
4783 if (!empty) {
4784 if (!mas->offset)
4785 data_end = 2;
4786 goto again;
4787 }
4788
4789 return entry;
4790}
4791
4792/*
4793 * mas_next_entry() - Internal function to get the next entry.
4794 * @mas: The maple state
4795 * @limit: The maximum range start.
4796 *
4797 * Set the @mas->node to the next entry and the range_start to
4798 * the beginning value for the entry. Does not check beyond @limit.
4799 * Sets @mas->index and @mas->last to the limit if it is hit.
4800 * Restarts on dead nodes.
4801 *
4802 * Return: the next entry or %NULL.
4803 */
4804static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4805{
4806 if (mas->last >= limit)
4807 return NULL;
4808
4809 return mas_next_slot(mas, limit, false);
4810}
4811
4812/*
4813 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4814 * highest gap address of a given size in a given node and descend.
4815 * @mas: The maple state
4816 * @size: The needed size.
4817 *
4818 * Return: True if found in a leaf, false otherwise.
4819 *
4820 */
4821static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4822 unsigned long *gap_min, unsigned long *gap_max)
4823{
4824 enum maple_type type = mte_node_type(mas->node);
4825 struct maple_node *node = mas_mn(mas);
4826 unsigned long *pivots, *gaps;
4827 void __rcu **slots;
4828 unsigned long gap = 0;
4829 unsigned long max, min;
4830 unsigned char offset;
4831
4832 if (unlikely(mas_is_err(mas)))
4833 return true;
4834
4835 if (ma_is_dense(type)) {
4836 /* dense nodes. */
4837 mas->offset = (unsigned char)(mas->index - mas->min);
4838 return true;
4839 }
4840
4841 pivots = ma_pivots(node, type);
4842 slots = ma_slots(node, type);
4843 gaps = ma_gaps(node, type);
4844 offset = mas->offset;
4845 min = mas_safe_min(mas, pivots, offset);
4846 /* Skip out of bounds. */
4847 while (mas->last < min)
4848 min = mas_safe_min(mas, pivots, --offset);
4849
4850 max = mas_safe_pivot(mas, pivots, offset, type);
4851 while (mas->index <= max) {
4852 gap = 0;
4853 if (gaps)
4854 gap = gaps[offset];
4855 else if (!mas_slot(mas, slots, offset))
4856 gap = max - min + 1;
4857
4858 if (gap) {
4859 if ((size <= gap) && (size <= mas->last - min + 1))
4860 break;
4861
4862 if (!gaps) {
4863 /* Skip the next slot, it cannot be a gap. */
4864 if (offset < 2)
4865 goto ascend;
4866
4867 offset -= 2;
4868 max = pivots[offset];
4869 min = mas_safe_min(mas, pivots, offset);
4870 continue;
4871 }
4872 }
4873
4874 if (!offset)
4875 goto ascend;
4876
4877 offset--;
4878 max = min - 1;
4879 min = mas_safe_min(mas, pivots, offset);
4880 }
4881
4882 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4883 goto no_space;
4884
4885 if (unlikely(ma_is_leaf(type))) {
4886 mas->offset = offset;
4887 *gap_min = min;
4888 *gap_max = min + gap - 1;
4889 return true;
4890 }
4891
4892 /* descend, only happens under lock. */
4893 mas->node = mas_slot(mas, slots, offset);
4894 mas->min = min;
4895 mas->max = max;
4896 mas->offset = mas_data_end(mas);
4897 return false;
4898
4899ascend:
4900 if (!mte_is_root(mas->node))
4901 return false;
4902
4903no_space:
4904 mas_set_err(mas, -EBUSY);
4905 return false;
4906}
4907
4908static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4909{
4910 enum maple_type type = mte_node_type(mas->node);
4911 unsigned long pivot, min, gap = 0;
4912 unsigned char offset, data_end;
4913 unsigned long *gaps, *pivots;
4914 void __rcu **slots;
4915 struct maple_node *node;
4916 bool found = false;
4917
4918 if (ma_is_dense(type)) {
4919 mas->offset = (unsigned char)(mas->index - mas->min);
4920 return true;
4921 }
4922
4923 node = mas_mn(mas);
4924 pivots = ma_pivots(node, type);
4925 slots = ma_slots(node, type);
4926 gaps = ma_gaps(node, type);
4927 offset = mas->offset;
4928 min = mas_safe_min(mas, pivots, offset);
4929 data_end = ma_data_end(node, type, pivots, mas->max);
4930 for (; offset <= data_end; offset++) {
4931 pivot = mas_logical_pivot(mas, pivots, offset, type);
4932
4933 /* Not within lower bounds */
4934 if (mas->index > pivot)
4935 goto next_slot;
4936
4937 if (gaps)
4938 gap = gaps[offset];
4939 else if (!mas_slot(mas, slots, offset))
4940 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4941 else
4942 goto next_slot;
4943
4944 if (gap >= size) {
4945 if (ma_is_leaf(type)) {
4946 found = true;
4947 goto done;
4948 }
4949 if (mas->index <= pivot) {
4950 mas->node = mas_slot(mas, slots, offset);
4951 mas->min = min;
4952 mas->max = pivot;
4953 offset = 0;
4954 break;
4955 }
4956 }
4957next_slot:
4958 min = pivot + 1;
4959 if (mas->last <= pivot) {
4960 mas_set_err(mas, -EBUSY);
4961 return true;
4962 }
4963 }
4964
4965 if (mte_is_root(mas->node))
4966 found = true;
4967done:
4968 mas->offset = offset;
4969 return found;
4970}
4971
4972/**
4973 * mas_walk() - Search for @mas->index in the tree.
4974 * @mas: The maple state.
4975 *
4976 * mas->index and mas->last will be set to the range if there is a value. If
4977 * mas->node is MAS_NONE, reset to MAS_START.
4978 *
4979 * Return: the entry at the location or %NULL.
4980 */
4981void *mas_walk(struct ma_state *mas)
4982{
4983 void *entry;
4984
4985 if (mas_is_none(mas) || mas_is_paused(mas) || mas_is_ptr(mas))
4986 mas->node = MAS_START;
4987retry:
4988 entry = mas_state_walk(mas);
4989 if (mas_is_start(mas)) {
4990 goto retry;
4991 } else if (mas_is_none(mas)) {
4992 mas->index = 0;
4993 mas->last = ULONG_MAX;
4994 } else if (mas_is_ptr(mas)) {
4995 if (!mas->index) {
4996 mas->last = 0;
4997 return entry;
4998 }
4999
5000 mas->index = 1;
5001 mas->last = ULONG_MAX;
5002 mas->node = MAS_NONE;
5003 return NULL;
5004 }
5005
5006 return entry;
5007}
5008EXPORT_SYMBOL_GPL(mas_walk);
5009
5010static inline bool mas_rewind_node(struct ma_state *mas)
5011{
5012 unsigned char slot;
5013
5014 do {
5015 if (mte_is_root(mas->node)) {
5016 slot = mas->offset;
5017 if (!slot)
5018 return false;
5019 } else {
5020 mas_ascend(mas);
5021 slot = mas->offset;
5022 }
5023 } while (!slot);
5024
5025 mas->offset = --slot;
5026 return true;
5027}
5028
5029/*
5030 * mas_skip_node() - Internal function. Skip over a node.
5031 * @mas: The maple state.
5032 *
5033 * Return: true if there is another node, false otherwise.
5034 */
5035static inline bool mas_skip_node(struct ma_state *mas)
5036{
5037 if (mas_is_err(mas))
5038 return false;
5039
5040 do {
5041 if (mte_is_root(mas->node)) {
5042 if (mas->offset >= mas_data_end(mas)) {
5043 mas_set_err(mas, -EBUSY);
5044 return false;
5045 }
5046 } else {
5047 mas_ascend(mas);
5048 }
5049 } while (mas->offset >= mas_data_end(mas));
5050
5051 mas->offset++;
5052 return true;
5053}
5054
5055/*
5056 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5057 * @size
5058 * @mas: The maple state
5059 * @size: The size of the gap required
5060 *
5061 * Search between @mas->index and @mas->last for a gap of @size.
5062 */
5063static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5064{
5065 struct maple_enode *last = NULL;
5066
5067 /*
5068 * There are 4 options:
5069 * go to child (descend)
5070 * go back to parent (ascend)
5071 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5072 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5073 */
5074 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5075 if (last == mas->node)
5076 mas_skip_node(mas);
5077 else
5078 last = mas->node;
5079 }
5080}
5081
5082/*
5083 * mas_sparse_area() - Internal function. Return upper or lower limit when
5084 * searching for a gap in an empty tree.
5085 * @mas: The maple state
5086 * @min: the minimum range
5087 * @max: The maximum range
5088 * @size: The size of the gap
5089 * @fwd: Searching forward or back
5090 */
5091static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5092 unsigned long max, unsigned long size, bool fwd)
5093{
5094 if (!unlikely(mas_is_none(mas)) && min == 0) {
5095 min++;
5096 /*
5097 * At this time, min is increased, we need to recheck whether
5098 * the size is satisfied.
5099 */
5100 if (min > max || max - min + 1 < size)
5101 return -EBUSY;
5102 }
5103 /* mas_is_ptr */
5104
5105 if (fwd) {
5106 mas->index = min;
5107 mas->last = min + size - 1;
5108 } else {
5109 mas->last = max;
5110 mas->index = max - size + 1;
5111 }
5112 return 0;
5113}
5114
5115/*
5116 * mas_empty_area() - Get the lowest address within the range that is
5117 * sufficient for the size requested.
5118 * @mas: The maple state
5119 * @min: The lowest value of the range
5120 * @max: The highest value of the range
5121 * @size: The size needed
5122 */
5123int mas_empty_area(struct ma_state *mas, unsigned long min,
5124 unsigned long max, unsigned long size)
5125{
5126 unsigned char offset;
5127 unsigned long *pivots;
5128 enum maple_type mt;
5129
5130 if (min > max)
5131 return -EINVAL;
5132
5133 if (size == 0 || max - min < size - 1)
5134 return -EINVAL;
5135
5136 if (mas_is_start(mas))
5137 mas_start(mas);
5138 else if (mas->offset >= 2)
5139 mas->offset -= 2;
5140 else if (!mas_skip_node(mas))
5141 return -EBUSY;
5142
5143 /* Empty set */
5144 if (mas_is_none(mas) || mas_is_ptr(mas))
5145 return mas_sparse_area(mas, min, max, size, true);
5146
5147 /* The start of the window can only be within these values */
5148 mas->index = min;
5149 mas->last = max;
5150 mas_awalk(mas, size);
5151
5152 if (unlikely(mas_is_err(mas)))
5153 return xa_err(mas->node);
5154
5155 offset = mas->offset;
5156 if (unlikely(offset == MAPLE_NODE_SLOTS))
5157 return -EBUSY;
5158
5159 mt = mte_node_type(mas->node);
5160 pivots = ma_pivots(mas_mn(mas), mt);
5161 min = mas_safe_min(mas, pivots, offset);
5162 if (mas->index < min)
5163 mas->index = min;
5164 mas->last = mas->index + size - 1;
5165 return 0;
5166}
5167EXPORT_SYMBOL_GPL(mas_empty_area);
5168
5169/*
5170 * mas_empty_area_rev() - Get the highest address within the range that is
5171 * sufficient for the size requested.
5172 * @mas: The maple state
5173 * @min: The lowest value of the range
5174 * @max: The highest value of the range
5175 * @size: The size needed
5176 */
5177int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5178 unsigned long max, unsigned long size)
5179{
5180 struct maple_enode *last = mas->node;
5181
5182 if (min > max)
5183 return -EINVAL;
5184
5185 if (size == 0 || max - min < size - 1)
5186 return -EINVAL;
5187
5188 if (mas_is_start(mas)) {
5189 mas_start(mas);
5190 mas->offset = mas_data_end(mas);
5191 } else if (mas->offset >= 2) {
5192 mas->offset -= 2;
5193 } else if (!mas_rewind_node(mas)) {
5194 return -EBUSY;
5195 }
5196
5197 /* Empty set. */
5198 if (mas_is_none(mas) || mas_is_ptr(mas))
5199 return mas_sparse_area(mas, min, max, size, false);
5200
5201 /* The start of the window can only be within these values. */
5202 mas->index = min;
5203 mas->last = max;
5204
5205 while (!mas_rev_awalk(mas, size, &min, &max)) {
5206 if (last == mas->node) {
5207 if (!mas_rewind_node(mas))
5208 return -EBUSY;
5209 } else {
5210 last = mas->node;
5211 }
5212 }
5213
5214 if (mas_is_err(mas))
5215 return xa_err(mas->node);
5216
5217 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5218 return -EBUSY;
5219
5220 /* Trim the upper limit to the max. */
5221 if (max < mas->last)
5222 mas->last = max;
5223
5224 mas->index = mas->last - size + 1;
5225 return 0;
5226}
5227EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5228
5229/*
5230 * mte_dead_leaves() - Mark all leaves of a node as dead.
5231 * @mas: The maple state
5232 * @slots: Pointer to the slot array
5233 * @type: The maple node type
5234 *
5235 * Must hold the write lock.
5236 *
5237 * Return: The number of leaves marked as dead.
5238 */
5239static inline
5240unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5241 void __rcu **slots)
5242{
5243 struct maple_node *node;
5244 enum maple_type type;
5245 void *entry;
5246 int offset;
5247
5248 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5249 entry = mt_slot(mt, slots, offset);
5250 type = mte_node_type(entry);
5251 node = mte_to_node(entry);
5252 /* Use both node and type to catch LE & BE metadata */
5253 if (!node || !type)
5254 break;
5255
5256 mte_set_node_dead(entry);
5257 node->type = type;
5258 rcu_assign_pointer(slots[offset], node);
5259 }
5260
5261 return offset;
5262}
5263
5264/**
5265 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5266 * @enode: The maple encoded node
5267 * @offset: The starting offset
5268 *
5269 * Note: This can only be used from the RCU callback context.
5270 */
5271static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5272{
5273 struct maple_node *node, *next;
5274 void __rcu **slots = NULL;
5275
5276 next = mte_to_node(*enode);
5277 do {
5278 *enode = ma_enode_ptr(next);
5279 node = mte_to_node(*enode);
5280 slots = ma_slots(node, node->type);
5281 next = rcu_dereference_protected(slots[offset],
5282 lock_is_held(&rcu_callback_map));
5283 offset = 0;
5284 } while (!ma_is_leaf(next->type));
5285
5286 return slots;
5287}
5288
5289/**
5290 * mt_free_walk() - Walk & free a tree in the RCU callback context
5291 * @head: The RCU head that's within the node.
5292 *
5293 * Note: This can only be used from the RCU callback context.
5294 */
5295static void mt_free_walk(struct rcu_head *head)
5296{
5297 void __rcu **slots;
5298 struct maple_node *node, *start;
5299 struct maple_enode *enode;
5300 unsigned char offset;
5301 enum maple_type type;
5302
5303 node = container_of(head, struct maple_node, rcu);
5304
5305 if (ma_is_leaf(node->type))
5306 goto free_leaf;
5307
5308 start = node;
5309 enode = mt_mk_node(node, node->type);
5310 slots = mte_dead_walk(&enode, 0);
5311 node = mte_to_node(enode);
5312 do {
5313 mt_free_bulk(node->slot_len, slots);
5314 offset = node->parent_slot + 1;
5315 enode = node->piv_parent;
5316 if (mte_to_node(enode) == node)
5317 goto free_leaf;
5318
5319 type = mte_node_type(enode);
5320 slots = ma_slots(mte_to_node(enode), type);
5321 if ((offset < mt_slots[type]) &&
5322 rcu_dereference_protected(slots[offset],
5323 lock_is_held(&rcu_callback_map)))
5324 slots = mte_dead_walk(&enode, offset);
5325 node = mte_to_node(enode);
5326 } while ((node != start) || (node->slot_len < offset));
5327
5328 slots = ma_slots(node, node->type);
5329 mt_free_bulk(node->slot_len, slots);
5330
5331free_leaf:
5332 mt_free_rcu(&node->rcu);
5333}
5334
5335static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5336 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5337{
5338 struct maple_node *node;
5339 struct maple_enode *next = *enode;
5340 void __rcu **slots = NULL;
5341 enum maple_type type;
5342 unsigned char next_offset = 0;
5343
5344 do {
5345 *enode = next;
5346 node = mte_to_node(*enode);
5347 type = mte_node_type(*enode);
5348 slots = ma_slots(node, type);
5349 next = mt_slot_locked(mt, slots, next_offset);
5350 if ((mte_dead_node(next)))
5351 next = mt_slot_locked(mt, slots, ++next_offset);
5352
5353 mte_set_node_dead(*enode);
5354 node->type = type;
5355 node->piv_parent = prev;
5356 node->parent_slot = offset;
5357 offset = next_offset;
5358 next_offset = 0;
5359 prev = *enode;
5360 } while (!mte_is_leaf(next));
5361
5362 return slots;
5363}
5364
5365static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5366 bool free)
5367{
5368 void __rcu **slots;
5369 struct maple_node *node = mte_to_node(enode);
5370 struct maple_enode *start;
5371
5372 if (mte_is_leaf(enode)) {
5373 node->type = mte_node_type(enode);
5374 goto free_leaf;
5375 }
5376
5377 start = enode;
5378 slots = mte_destroy_descend(&enode, mt, start, 0);
5379 node = mte_to_node(enode); // Updated in the above call.
5380 do {
5381 enum maple_type type;
5382 unsigned char offset;
5383 struct maple_enode *parent, *tmp;
5384
5385 node->slot_len = mte_dead_leaves(enode, mt, slots);
5386 if (free)
5387 mt_free_bulk(node->slot_len, slots);
5388 offset = node->parent_slot + 1;
5389 enode = node->piv_parent;
5390 if (mte_to_node(enode) == node)
5391 goto free_leaf;
5392
5393 type = mte_node_type(enode);
5394 slots = ma_slots(mte_to_node(enode), type);
5395 if (offset >= mt_slots[type])
5396 goto next;
5397
5398 tmp = mt_slot_locked(mt, slots, offset);
5399 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5400 parent = enode;
5401 enode = tmp;
5402 slots = mte_destroy_descend(&enode, mt, parent, offset);
5403 }
5404next:
5405 node = mte_to_node(enode);
5406 } while (start != enode);
5407
5408 node = mte_to_node(enode);
5409 node->slot_len = mte_dead_leaves(enode, mt, slots);
5410 if (free)
5411 mt_free_bulk(node->slot_len, slots);
5412
5413free_leaf:
5414 if (free)
5415 mt_free_rcu(&node->rcu);
5416 else
5417 mt_clear_meta(mt, node, node->type);
5418}
5419
5420/*
5421 * mte_destroy_walk() - Free a tree or sub-tree.
5422 * @enode: the encoded maple node (maple_enode) to start
5423 * @mt: the tree to free - needed for node types.
5424 *
5425 * Must hold the write lock.
5426 */
5427static inline void mte_destroy_walk(struct maple_enode *enode,
5428 struct maple_tree *mt)
5429{
5430 struct maple_node *node = mte_to_node(enode);
5431
5432 if (mt_in_rcu(mt)) {
5433 mt_destroy_walk(enode, mt, false);
5434 call_rcu(&node->rcu, mt_free_walk);
5435 } else {
5436 mt_destroy_walk(enode, mt, true);
5437 }
5438}
5439
5440static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5441{
5442 if (unlikely(mas_is_paused(wr_mas->mas)))
5443 mas_reset(wr_mas->mas);
5444
5445 if (!mas_is_start(wr_mas->mas)) {
5446 if (mas_is_none(wr_mas->mas)) {
5447 mas_reset(wr_mas->mas);
5448 } else {
5449 wr_mas->r_max = wr_mas->mas->max;
5450 wr_mas->type = mte_node_type(wr_mas->mas->node);
5451 if (mas_is_span_wr(wr_mas))
5452 mas_reset(wr_mas->mas);
5453 }
5454 }
5455}
5456
5457/* Interface */
5458
5459/**
5460 * mas_store() - Store an @entry.
5461 * @mas: The maple state.
5462 * @entry: The entry to store.
5463 *
5464 * The @mas->index and @mas->last is used to set the range for the @entry.
5465 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5466 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5467 *
5468 * Return: the first entry between mas->index and mas->last or %NULL.
5469 */
5470void *mas_store(struct ma_state *mas, void *entry)
5471{
5472 MA_WR_STATE(wr_mas, mas, entry);
5473
5474 trace_ma_write(__func__, mas, 0, entry);
5475#ifdef CONFIG_DEBUG_MAPLE_TREE
5476 if (MAS_WARN_ON(mas, mas->index > mas->last))
5477 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5478
5479 if (mas->index > mas->last) {
5480 mas_set_err(mas, -EINVAL);
5481 return NULL;
5482 }
5483
5484#endif
5485
5486 /*
5487 * Storing is the same operation as insert with the added caveat that it
5488 * can overwrite entries. Although this seems simple enough, one may
5489 * want to examine what happens if a single store operation was to
5490 * overwrite multiple entries within a self-balancing B-Tree.
5491 */
5492 mas_wr_store_setup(&wr_mas);
5493 mas_wr_store_entry(&wr_mas);
5494 return wr_mas.content;
5495}
5496EXPORT_SYMBOL_GPL(mas_store);
5497
5498/**
5499 * mas_store_gfp() - Store a value into the tree.
5500 * @mas: The maple state
5501 * @entry: The entry to store
5502 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5503 *
5504 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5505 * be allocated.
5506 */
5507int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5508{
5509 MA_WR_STATE(wr_mas, mas, entry);
5510
5511 mas_wr_store_setup(&wr_mas);
5512 trace_ma_write(__func__, mas, 0, entry);
5513retry:
5514 mas_wr_store_entry(&wr_mas);
5515 if (unlikely(mas_nomem(mas, gfp)))
5516 goto retry;
5517
5518 if (unlikely(mas_is_err(mas)))
5519 return xa_err(mas->node);
5520
5521 return 0;
5522}
5523EXPORT_SYMBOL_GPL(mas_store_gfp);
5524
5525/**
5526 * mas_store_prealloc() - Store a value into the tree using memory
5527 * preallocated in the maple state.
5528 * @mas: The maple state
5529 * @entry: The entry to store.
5530 */
5531void mas_store_prealloc(struct ma_state *mas, void *entry)
5532{
5533 MA_WR_STATE(wr_mas, mas, entry);
5534
5535 mas_wr_store_setup(&wr_mas);
5536 trace_ma_write(__func__, mas, 0, entry);
5537 mas_wr_store_entry(&wr_mas);
5538 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5539 mas_destroy(mas);
5540}
5541EXPORT_SYMBOL_GPL(mas_store_prealloc);
5542
5543/**
5544 * mas_preallocate() - Preallocate enough nodes for a store operation
5545 * @mas: The maple state
5546 * @gfp: The GFP_FLAGS to use for allocations.
5547 *
5548 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5549 */
5550int mas_preallocate(struct ma_state *mas, gfp_t gfp)
5551{
5552 int ret;
5553
5554 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5555 mas->mas_flags |= MA_STATE_PREALLOC;
5556 if (likely(!mas_is_err(mas)))
5557 return 0;
5558
5559 mas_set_alloc_req(mas, 0);
5560 ret = xa_err(mas->node);
5561 mas_reset(mas);
5562 mas_destroy(mas);
5563 mas_reset(mas);
5564 return ret;
5565}
5566EXPORT_SYMBOL_GPL(mas_preallocate);
5567
5568/*
5569 * mas_destroy() - destroy a maple state.
5570 * @mas: The maple state
5571 *
5572 * Upon completion, check the left-most node and rebalance against the node to
5573 * the right if necessary. Frees any allocated nodes associated with this maple
5574 * state.
5575 */
5576void mas_destroy(struct ma_state *mas)
5577{
5578 struct maple_alloc *node;
5579 unsigned long total;
5580
5581 /*
5582 * When using mas_for_each() to insert an expected number of elements,
5583 * it is possible that the number inserted is less than the expected
5584 * number. To fix an invalid final node, a check is performed here to
5585 * rebalance the previous node with the final node.
5586 */
5587 if (mas->mas_flags & MA_STATE_REBALANCE) {
5588 unsigned char end;
5589
5590 mas_start(mas);
5591 mtree_range_walk(mas);
5592 end = mas_data_end(mas) + 1;
5593 if (end < mt_min_slot_count(mas->node) - 1)
5594 mas_destroy_rebalance(mas, end);
5595
5596 mas->mas_flags &= ~MA_STATE_REBALANCE;
5597 }
5598 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5599
5600 total = mas_allocated(mas);
5601 while (total) {
5602 node = mas->alloc;
5603 mas->alloc = node->slot[0];
5604 if (node->node_count > 1) {
5605 size_t count = node->node_count - 1;
5606
5607 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5608 total -= count;
5609 }
5610 kmem_cache_free(maple_node_cache, node);
5611 total--;
5612 }
5613
5614 mas->alloc = NULL;
5615}
5616EXPORT_SYMBOL_GPL(mas_destroy);
5617
5618/*
5619 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5620 * @mas: The maple state
5621 * @nr_entries: The number of expected entries.
5622 *
5623 * This will attempt to pre-allocate enough nodes to store the expected number
5624 * of entries. The allocations will occur using the bulk allocator interface
5625 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5626 * to ensure any unused nodes are freed.
5627 *
5628 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5629 */
5630int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5631{
5632 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5633 struct maple_enode *enode = mas->node;
5634 int nr_nodes;
5635 int ret;
5636
5637 /*
5638 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5639 * forking a process and duplicating the VMAs from one tree to a new
5640 * tree. When such a situation arises, it is known that the new tree is
5641 * not going to be used until the entire tree is populated. For
5642 * performance reasons, it is best to use a bulk load with RCU disabled.
5643 * This allows for optimistic splitting that favours the left and reuse
5644 * of nodes during the operation.
5645 */
5646
5647 /* Optimize splitting for bulk insert in-order */
5648 mas->mas_flags |= MA_STATE_BULK;
5649
5650 /*
5651 * Avoid overflow, assume a gap between each entry and a trailing null.
5652 * If this is wrong, it just means allocation can happen during
5653 * insertion of entries.
5654 */
5655 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5656 if (!mt_is_alloc(mas->tree))
5657 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5658
5659 /* Leaves; reduce slots to keep space for expansion */
5660 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5661 /* Internal nodes */
5662 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5663 /* Add working room for split (2 nodes) + new parents */
5664 mas_node_count(mas, nr_nodes + 3);
5665
5666 /* Detect if allocations run out */
5667 mas->mas_flags |= MA_STATE_PREALLOC;
5668
5669 if (!mas_is_err(mas))
5670 return 0;
5671
5672 ret = xa_err(mas->node);
5673 mas->node = enode;
5674 mas_destroy(mas);
5675 return ret;
5676
5677}
5678EXPORT_SYMBOL_GPL(mas_expected_entries);
5679
5680static inline bool mas_next_setup(struct ma_state *mas, unsigned long max,
5681 void **entry)
5682{
5683 bool was_none = mas_is_none(mas);
5684
5685 if (mas_is_none(mas) || mas_is_paused(mas))
5686 mas->node = MAS_START;
5687
5688 if (mas_is_start(mas))
5689 *entry = mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5690
5691 if (mas_is_ptr(mas)) {
5692 *entry = NULL;
5693 if (was_none && mas->index == 0) {
5694 mas->index = mas->last = 0;
5695 return true;
5696 }
5697 mas->index = 1;
5698 mas->last = ULONG_MAX;
5699 mas->node = MAS_NONE;
5700 return true;
5701 }
5702
5703 if (mas_is_none(mas))
5704 return true;
5705 return false;
5706}
5707
5708/**
5709 * mas_next() - Get the next entry.
5710 * @mas: The maple state
5711 * @max: The maximum index to check.
5712 *
5713 * Returns the next entry after @mas->index.
5714 * Must hold rcu_read_lock or the write lock.
5715 * Can return the zero entry.
5716 *
5717 * Return: The next entry or %NULL
5718 */
5719void *mas_next(struct ma_state *mas, unsigned long max)
5720{
5721 void *entry = NULL;
5722
5723 if (mas_next_setup(mas, max, &entry))
5724 return entry;
5725
5726 /* Retries on dead nodes handled by mas_next_slot */
5727 return mas_next_slot(mas, max, false);
5728}
5729EXPORT_SYMBOL_GPL(mas_next);
5730
5731/**
5732 * mas_next_range() - Advance the maple state to the next range
5733 * @mas: The maple state
5734 * @max: The maximum index to check.
5735 *
5736 * Sets @mas->index and @mas->last to the range.
5737 * Must hold rcu_read_lock or the write lock.
5738 * Can return the zero entry.
5739 *
5740 * Return: The next entry or %NULL
5741 */
5742void *mas_next_range(struct ma_state *mas, unsigned long max)
5743{
5744 void *entry = NULL;
5745
5746 if (mas_next_setup(mas, max, &entry))
5747 return entry;
5748
5749 /* Retries on dead nodes handled by mas_next_slot */
5750 return mas_next_slot(mas, max, true);
5751}
5752EXPORT_SYMBOL_GPL(mas_next_range);
5753
5754/**
5755 * mt_next() - get the next value in the maple tree
5756 * @mt: The maple tree
5757 * @index: The start index
5758 * @max: The maximum index to check
5759 *
5760 * Return: The entry at @index or higher, or %NULL if nothing is found.
5761 */
5762void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5763{
5764 void *entry = NULL;
5765 MA_STATE(mas, mt, index, index);
5766
5767 rcu_read_lock();
5768 entry = mas_next(&mas, max);
5769 rcu_read_unlock();
5770 return entry;
5771}
5772EXPORT_SYMBOL_GPL(mt_next);
5773
5774static inline bool mas_prev_setup(struct ma_state *mas, unsigned long min,
5775 void **entry)
5776{
5777 if (mas->index <= min)
5778 goto none;
5779
5780 if (mas_is_none(mas) || mas_is_paused(mas))
5781 mas->node = MAS_START;
5782
5783 if (mas_is_start(mas)) {
5784 mas_walk(mas);
5785 if (!mas->index)
5786 goto none;
5787 }
5788
5789 if (unlikely(mas_is_ptr(mas))) {
5790 if (!mas->index)
5791 goto none;
5792 mas->index = mas->last = 0;
5793 *entry = mas_root(mas);
5794 return true;
5795 }
5796
5797 if (mas_is_none(mas)) {
5798 if (mas->index) {
5799 /* Walked to out-of-range pointer? */
5800 mas->index = mas->last = 0;
5801 mas->node = MAS_ROOT;
5802 *entry = mas_root(mas);
5803 return true;
5804 }
5805 return true;
5806 }
5807
5808 return false;
5809
5810none:
5811 mas->node = MAS_NONE;
5812 return true;
5813}
5814
5815/**
5816 * mas_prev() - Get the previous entry
5817 * @mas: The maple state
5818 * @min: The minimum value to check.
5819 *
5820 * Must hold rcu_read_lock or the write lock.
5821 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5822 * searchable nodes.
5823 *
5824 * Return: the previous value or %NULL.
5825 */
5826void *mas_prev(struct ma_state *mas, unsigned long min)
5827{
5828 void *entry = NULL;
5829
5830 if (mas_prev_setup(mas, min, &entry))
5831 return entry;
5832
5833 return mas_prev_slot(mas, min, false);
5834}
5835EXPORT_SYMBOL_GPL(mas_prev);
5836
5837/**
5838 * mas_prev_range() - Advance to the previous range
5839 * @mas: The maple state
5840 * @min: The minimum value to check.
5841 *
5842 * Sets @mas->index and @mas->last to the range.
5843 * Must hold rcu_read_lock or the write lock.
5844 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5845 * searchable nodes.
5846 *
5847 * Return: the previous value or %NULL.
5848 */
5849void *mas_prev_range(struct ma_state *mas, unsigned long min)
5850{
5851 void *entry = NULL;
5852
5853 if (mas_prev_setup(mas, min, &entry))
5854 return entry;
5855
5856 return mas_prev_slot(mas, min, true);
5857}
5858EXPORT_SYMBOL_GPL(mas_prev_range);
5859
5860/**
5861 * mt_prev() - get the previous value in the maple tree
5862 * @mt: The maple tree
5863 * @index: The start index
5864 * @min: The minimum index to check
5865 *
5866 * Return: The entry at @index or lower, or %NULL if nothing is found.
5867 */
5868void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5869{
5870 void *entry = NULL;
5871 MA_STATE(mas, mt, index, index);
5872
5873 rcu_read_lock();
5874 entry = mas_prev(&mas, min);
5875 rcu_read_unlock();
5876 return entry;
5877}
5878EXPORT_SYMBOL_GPL(mt_prev);
5879
5880/**
5881 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5882 * @mas: The maple state to pause
5883 *
5884 * Some users need to pause a walk and drop the lock they're holding in
5885 * order to yield to a higher priority thread or carry out an operation
5886 * on an entry. Those users should call this function before they drop
5887 * the lock. It resets the @mas to be suitable for the next iteration
5888 * of the loop after the user has reacquired the lock. If most entries
5889 * found during a walk require you to call mas_pause(), the mt_for_each()
5890 * iterator may be more appropriate.
5891 *
5892 */
5893void mas_pause(struct ma_state *mas)
5894{
5895 mas->node = MAS_PAUSE;
5896}
5897EXPORT_SYMBOL_GPL(mas_pause);
5898
5899/**
5900 * mas_find_setup() - Internal function to set up mas_find*().
5901 * @mas: The maple state
5902 * @max: The maximum index
5903 * @entry: Pointer to the entry
5904 *
5905 * Returns: True if entry is the answer, false otherwise.
5906 */
5907static inline bool mas_find_setup(struct ma_state *mas, unsigned long max,
5908 void **entry)
5909{
5910 *entry = NULL;
5911
5912 if (unlikely(mas_is_none(mas))) {
5913 if (unlikely(mas->last >= max))
5914 return true;
5915
5916 mas->index = mas->last;
5917 mas->node = MAS_START;
5918 } else if (unlikely(mas_is_paused(mas))) {
5919 if (unlikely(mas->last >= max))
5920 return true;
5921
5922 mas->node = MAS_START;
5923 mas->index = ++mas->last;
5924 } else if (unlikely(mas_is_ptr(mas)))
5925 goto ptr_out_of_range;
5926
5927 if (unlikely(mas_is_start(mas))) {
5928 /* First run or continue */
5929 if (mas->index > max)
5930 return true;
5931
5932 *entry = mas_walk(mas);
5933 if (*entry)
5934 return true;
5935
5936 }
5937
5938 if (unlikely(!mas_searchable(mas))) {
5939 if (unlikely(mas_is_ptr(mas)))
5940 goto ptr_out_of_range;
5941
5942 return true;
5943 }
5944
5945 if (mas->index == max)
5946 return true;
5947
5948 return false;
5949
5950ptr_out_of_range:
5951 mas->node = MAS_NONE;
5952 mas->index = 1;
5953 mas->last = ULONG_MAX;
5954 return true;
5955}
5956
5957/**
5958 * mas_find() - On the first call, find the entry at or after mas->index up to
5959 * %max. Otherwise, find the entry after mas->index.
5960 * @mas: The maple state
5961 * @max: The maximum value to check.
5962 *
5963 * Must hold rcu_read_lock or the write lock.
5964 * If an entry exists, last and index are updated accordingly.
5965 * May set @mas->node to MAS_NONE.
5966 *
5967 * Return: The entry or %NULL.
5968 */
5969void *mas_find(struct ma_state *mas, unsigned long max)
5970{
5971 void *entry = NULL;
5972
5973 if (mas_find_setup(mas, max, &entry))
5974 return entry;
5975
5976 /* Retries on dead nodes handled by mas_next_slot */
5977 return mas_next_slot(mas, max, false);
5978}
5979EXPORT_SYMBOL_GPL(mas_find);
5980
5981/**
5982 * mas_find_range() - On the first call, find the entry at or after
5983 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
5984 * @mas: The maple state
5985 * @max: The maximum value to check.
5986 *
5987 * Must hold rcu_read_lock or the write lock.
5988 * If an entry exists, last and index are updated accordingly.
5989 * May set @mas->node to MAS_NONE.
5990 *
5991 * Return: The entry or %NULL.
5992 */
5993void *mas_find_range(struct ma_state *mas, unsigned long max)
5994{
5995 void *entry;
5996
5997 if (mas_find_setup(mas, max, &entry))
5998 return entry;
5999
6000 /* Retries on dead nodes handled by mas_next_slot */
6001 return mas_next_slot(mas, max, true);
6002}
6003EXPORT_SYMBOL_GPL(mas_find_range);
6004
6005/**
6006 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6007 * @mas: The maple state
6008 * @min: The minimum index
6009 * @entry: Pointer to the entry
6010 *
6011 * Returns: True if entry is the answer, false otherwise.
6012 */
6013static inline bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6014 void **entry)
6015{
6016 *entry = NULL;
6017
6018 if (unlikely(mas_is_none(mas))) {
6019 if (mas->index <= min)
6020 goto none;
6021
6022 mas->last = mas->index;
6023 mas->node = MAS_START;
6024 }
6025
6026 if (unlikely(mas_is_paused(mas))) {
6027 if (unlikely(mas->index <= min)) {
6028 mas->node = MAS_NONE;
6029 return true;
6030 }
6031 mas->node = MAS_START;
6032 mas->last = --mas->index;
6033 }
6034
6035 if (unlikely(mas_is_start(mas))) {
6036 /* First run or continue */
6037 if (mas->index < min)
6038 return true;
6039
6040 *entry = mas_walk(mas);
6041 if (*entry)
6042 return true;
6043 }
6044
6045 if (unlikely(!mas_searchable(mas))) {
6046 if (mas_is_ptr(mas))
6047 goto none;
6048
6049 if (mas_is_none(mas)) {
6050 /*
6051 * Walked to the location, and there was nothing so the
6052 * previous location is 0.
6053 */
6054 mas->last = mas->index = 0;
6055 mas->node = MAS_ROOT;
6056 *entry = mas_root(mas);
6057 return true;
6058 }
6059 }
6060
6061 if (mas->index < min)
6062 return true;
6063
6064 return false;
6065
6066none:
6067 mas->node = MAS_NONE;
6068 return true;
6069}
6070
6071/**
6072 * mas_find_rev: On the first call, find the first non-null entry at or below
6073 * mas->index down to %min. Otherwise find the first non-null entry below
6074 * mas->index down to %min.
6075 * @mas: The maple state
6076 * @min: The minimum value to check.
6077 *
6078 * Must hold rcu_read_lock or the write lock.
6079 * If an entry exists, last and index are updated accordingly.
6080 * May set @mas->node to MAS_NONE.
6081 *
6082 * Return: The entry or %NULL.
6083 */
6084void *mas_find_rev(struct ma_state *mas, unsigned long min)
6085{
6086 void *entry;
6087
6088 if (mas_find_rev_setup(mas, min, &entry))
6089 return entry;
6090
6091 /* Retries on dead nodes handled by mas_prev_slot */
6092 return mas_prev_slot(mas, min, false);
6093
6094}
6095EXPORT_SYMBOL_GPL(mas_find_rev);
6096
6097/**
6098 * mas_find_range_rev: On the first call, find the first non-null entry at or
6099 * below mas->index down to %min. Otherwise advance to the previous slot after
6100 * mas->index down to %min.
6101 * @mas: The maple state
6102 * @min: The minimum value to check.
6103 *
6104 * Must hold rcu_read_lock or the write lock.
6105 * If an entry exists, last and index are updated accordingly.
6106 * May set @mas->node to MAS_NONE.
6107 *
6108 * Return: The entry or %NULL.
6109 */
6110void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6111{
6112 void *entry;
6113
6114 if (mas_find_rev_setup(mas, min, &entry))
6115 return entry;
6116
6117 /* Retries on dead nodes handled by mas_prev_slot */
6118 return mas_prev_slot(mas, min, true);
6119}
6120EXPORT_SYMBOL_GPL(mas_find_range_rev);
6121
6122/**
6123 * mas_erase() - Find the range in which index resides and erase the entire
6124 * range.
6125 * @mas: The maple state
6126 *
6127 * Must hold the write lock.
6128 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6129 * erases that range.
6130 *
6131 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6132 */
6133void *mas_erase(struct ma_state *mas)
6134{
6135 void *entry;
6136 MA_WR_STATE(wr_mas, mas, NULL);
6137
6138 if (mas_is_none(mas) || mas_is_paused(mas))
6139 mas->node = MAS_START;
6140
6141 /* Retry unnecessary when holding the write lock. */
6142 entry = mas_state_walk(mas);
6143 if (!entry)
6144 return NULL;
6145
6146write_retry:
6147 /* Must reset to ensure spanning writes of last slot are detected */
6148 mas_reset(mas);
6149 mas_wr_store_setup(&wr_mas);
6150 mas_wr_store_entry(&wr_mas);
6151 if (mas_nomem(mas, GFP_KERNEL))
6152 goto write_retry;
6153
6154 return entry;
6155}
6156EXPORT_SYMBOL_GPL(mas_erase);
6157
6158/**
6159 * mas_nomem() - Check if there was an error allocating and do the allocation
6160 * if necessary If there are allocations, then free them.
6161 * @mas: The maple state
6162 * @gfp: The GFP_FLAGS to use for allocations
6163 * Return: true on allocation, false otherwise.
6164 */
6165bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6166 __must_hold(mas->tree->ma_lock)
6167{
6168 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6169 mas_destroy(mas);
6170 return false;
6171 }
6172
6173 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6174 mtree_unlock(mas->tree);
6175 mas_alloc_nodes(mas, gfp);
6176 mtree_lock(mas->tree);
6177 } else {
6178 mas_alloc_nodes(mas, gfp);
6179 }
6180
6181 if (!mas_allocated(mas))
6182 return false;
6183
6184 mas->node = MAS_START;
6185 return true;
6186}
6187
6188void __init maple_tree_init(void)
6189{
6190 maple_node_cache = kmem_cache_create("maple_node",
6191 sizeof(struct maple_node), sizeof(struct maple_node),
6192 SLAB_PANIC, NULL);
6193}
6194
6195/**
6196 * mtree_load() - Load a value stored in a maple tree
6197 * @mt: The maple tree
6198 * @index: The index to load
6199 *
6200 * Return: the entry or %NULL
6201 */
6202void *mtree_load(struct maple_tree *mt, unsigned long index)
6203{
6204 MA_STATE(mas, mt, index, index);
6205 void *entry;
6206
6207 trace_ma_read(__func__, &mas);
6208 rcu_read_lock();
6209retry:
6210 entry = mas_start(&mas);
6211 if (unlikely(mas_is_none(&mas)))
6212 goto unlock;
6213
6214 if (unlikely(mas_is_ptr(&mas))) {
6215 if (index)
6216 entry = NULL;
6217
6218 goto unlock;
6219 }
6220
6221 entry = mtree_lookup_walk(&mas);
6222 if (!entry && unlikely(mas_is_start(&mas)))
6223 goto retry;
6224unlock:
6225 rcu_read_unlock();
6226 if (xa_is_zero(entry))
6227 return NULL;
6228
6229 return entry;
6230}
6231EXPORT_SYMBOL(mtree_load);
6232
6233/**
6234 * mtree_store_range() - Store an entry at a given range.
6235 * @mt: The maple tree
6236 * @index: The start of the range
6237 * @last: The end of the range
6238 * @entry: The entry to store
6239 * @gfp: The GFP_FLAGS to use for allocations
6240 *
6241 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6242 * be allocated.
6243 */
6244int mtree_store_range(struct maple_tree *mt, unsigned long index,
6245 unsigned long last, void *entry, gfp_t gfp)
6246{
6247 MA_STATE(mas, mt, index, last);
6248 MA_WR_STATE(wr_mas, &mas, entry);
6249
6250 trace_ma_write(__func__, &mas, 0, entry);
6251 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6252 return -EINVAL;
6253
6254 if (index > last)
6255 return -EINVAL;
6256
6257 mtree_lock(mt);
6258retry:
6259 mas_wr_store_entry(&wr_mas);
6260 if (mas_nomem(&mas, gfp))
6261 goto retry;
6262
6263 mtree_unlock(mt);
6264 if (mas_is_err(&mas))
6265 return xa_err(mas.node);
6266
6267 return 0;
6268}
6269EXPORT_SYMBOL(mtree_store_range);
6270
6271/**
6272 * mtree_store() - Store an entry at a given index.
6273 * @mt: The maple tree
6274 * @index: The index to store the value
6275 * @entry: The entry to store
6276 * @gfp: The GFP_FLAGS to use for allocations
6277 *
6278 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6279 * be allocated.
6280 */
6281int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6282 gfp_t gfp)
6283{
6284 return mtree_store_range(mt, index, index, entry, gfp);
6285}
6286EXPORT_SYMBOL(mtree_store);
6287
6288/**
6289 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6290 * @mt: The maple tree
6291 * @first: The start of the range
6292 * @last: The end of the range
6293 * @entry: The entry to store
6294 * @gfp: The GFP_FLAGS to use for allocations.
6295 *
6296 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6297 * request, -ENOMEM if memory could not be allocated.
6298 */
6299int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6300 unsigned long last, void *entry, gfp_t gfp)
6301{
6302 MA_STATE(ms, mt, first, last);
6303
6304 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6305 return -EINVAL;
6306
6307 if (first > last)
6308 return -EINVAL;
6309
6310 mtree_lock(mt);
6311retry:
6312 mas_insert(&ms, entry);
6313 if (mas_nomem(&ms, gfp))
6314 goto retry;
6315
6316 mtree_unlock(mt);
6317 if (mas_is_err(&ms))
6318 return xa_err(ms.node);
6319
6320 return 0;
6321}
6322EXPORT_SYMBOL(mtree_insert_range);
6323
6324/**
6325 * mtree_insert() - Insert an entry at a give index if there is no value.
6326 * @mt: The maple tree
6327 * @index : The index to store the value
6328 * @entry: The entry to store
6329 * @gfp: The FGP_FLAGS to use for allocations.
6330 *
6331 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6332 * request, -ENOMEM if memory could not be allocated.
6333 */
6334int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6335 gfp_t gfp)
6336{
6337 return mtree_insert_range(mt, index, index, entry, gfp);
6338}
6339EXPORT_SYMBOL(mtree_insert);
6340
6341int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6342 void *entry, unsigned long size, unsigned long min,
6343 unsigned long max, gfp_t gfp)
6344{
6345 int ret = 0;
6346
6347 MA_STATE(mas, mt, 0, 0);
6348 if (!mt_is_alloc(mt))
6349 return -EINVAL;
6350
6351 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6352 return -EINVAL;
6353
6354 mtree_lock(mt);
6355retry:
6356 ret = mas_empty_area(&mas, min, max, size);
6357 if (ret)
6358 goto unlock;
6359
6360 mas_insert(&mas, entry);
6361 /*
6362 * mas_nomem() may release the lock, causing the allocated area
6363 * to be unavailable, so try to allocate a free area again.
6364 */
6365 if (mas_nomem(&mas, gfp))
6366 goto retry;
6367
6368 if (mas_is_err(&mas))
6369 ret = xa_err(mas.node);
6370 else
6371 *startp = mas.index;
6372
6373unlock:
6374 mtree_unlock(mt);
6375 return ret;
6376}
6377EXPORT_SYMBOL(mtree_alloc_range);
6378
6379int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6380 void *entry, unsigned long size, unsigned long min,
6381 unsigned long max, gfp_t gfp)
6382{
6383 int ret = 0;
6384
6385 MA_STATE(mas, mt, 0, 0);
6386 if (!mt_is_alloc(mt))
6387 return -EINVAL;
6388
6389 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6390 return -EINVAL;
6391
6392 mtree_lock(mt);
6393retry:
6394 ret = mas_empty_area_rev(&mas, min, max, size);
6395 if (ret)
6396 goto unlock;
6397
6398 mas_insert(&mas, entry);
6399 /*
6400 * mas_nomem() may release the lock, causing the allocated area
6401 * to be unavailable, so try to allocate a free area again.
6402 */
6403 if (mas_nomem(&mas, gfp))
6404 goto retry;
6405
6406 if (mas_is_err(&mas))
6407 ret = xa_err(mas.node);
6408 else
6409 *startp = mas.index;
6410
6411unlock:
6412 mtree_unlock(mt);
6413 return ret;
6414}
6415EXPORT_SYMBOL(mtree_alloc_rrange);
6416
6417/**
6418 * mtree_erase() - Find an index and erase the entire range.
6419 * @mt: The maple tree
6420 * @index: The index to erase
6421 *
6422 * Erasing is the same as a walk to an entry then a store of a NULL to that
6423 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6424 *
6425 * Return: The entry stored at the @index or %NULL
6426 */
6427void *mtree_erase(struct maple_tree *mt, unsigned long index)
6428{
6429 void *entry = NULL;
6430
6431 MA_STATE(mas, mt, index, index);
6432 trace_ma_op(__func__, &mas);
6433
6434 mtree_lock(mt);
6435 entry = mas_erase(&mas);
6436 mtree_unlock(mt);
6437
6438 return entry;
6439}
6440EXPORT_SYMBOL(mtree_erase);
6441
6442/**
6443 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6444 * @mt: The maple tree
6445 *
6446 * Note: Does not handle locking.
6447 */
6448void __mt_destroy(struct maple_tree *mt)
6449{
6450 void *root = mt_root_locked(mt);
6451
6452 rcu_assign_pointer(mt->ma_root, NULL);
6453 if (xa_is_node(root))
6454 mte_destroy_walk(root, mt);
6455
6456 mt->ma_flags = 0;
6457}
6458EXPORT_SYMBOL_GPL(__mt_destroy);
6459
6460/**
6461 * mtree_destroy() - Destroy a maple tree
6462 * @mt: The maple tree
6463 *
6464 * Frees all resources used by the tree. Handles locking.
6465 */
6466void mtree_destroy(struct maple_tree *mt)
6467{
6468 mtree_lock(mt);
6469 __mt_destroy(mt);
6470 mtree_unlock(mt);
6471}
6472EXPORT_SYMBOL(mtree_destroy);
6473
6474/**
6475 * mt_find() - Search from the start up until an entry is found.
6476 * @mt: The maple tree
6477 * @index: Pointer which contains the start location of the search
6478 * @max: The maximum value to check
6479 *
6480 * Handles locking. @index will be incremented to one beyond the range.
6481 *
6482 * Return: The entry at or after the @index or %NULL
6483 */
6484void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6485{
6486 MA_STATE(mas, mt, *index, *index);
6487 void *entry;
6488#ifdef CONFIG_DEBUG_MAPLE_TREE
6489 unsigned long copy = *index;
6490#endif
6491
6492 trace_ma_read(__func__, &mas);
6493
6494 if ((*index) > max)
6495 return NULL;
6496
6497 rcu_read_lock();
6498retry:
6499 entry = mas_state_walk(&mas);
6500 if (mas_is_start(&mas))
6501 goto retry;
6502
6503 if (unlikely(xa_is_zero(entry)))
6504 entry = NULL;
6505
6506 if (entry)
6507 goto unlock;
6508
6509 while (mas_searchable(&mas) && (mas.last < max)) {
6510 entry = mas_next_entry(&mas, max);
6511 if (likely(entry && !xa_is_zero(entry)))
6512 break;
6513 }
6514
6515 if (unlikely(xa_is_zero(entry)))
6516 entry = NULL;
6517unlock:
6518 rcu_read_unlock();
6519 if (likely(entry)) {
6520 *index = mas.last + 1;
6521#ifdef CONFIG_DEBUG_MAPLE_TREE
6522 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6523 pr_err("index not increased! %lx <= %lx\n",
6524 *index, copy);
6525#endif
6526 }
6527
6528 return entry;
6529}
6530EXPORT_SYMBOL(mt_find);
6531
6532/**
6533 * mt_find_after() - Search from the start up until an entry is found.
6534 * @mt: The maple tree
6535 * @index: Pointer which contains the start location of the search
6536 * @max: The maximum value to check
6537 *
6538 * Handles locking, detects wrapping on index == 0
6539 *
6540 * Return: The entry at or after the @index or %NULL
6541 */
6542void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6543 unsigned long max)
6544{
6545 if (!(*index))
6546 return NULL;
6547
6548 return mt_find(mt, index, max);
6549}
6550EXPORT_SYMBOL(mt_find_after);
6551
6552#ifdef CONFIG_DEBUG_MAPLE_TREE
6553atomic_t maple_tree_tests_run;
6554EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6555atomic_t maple_tree_tests_passed;
6556EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6557
6558#ifndef __KERNEL__
6559extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6560void mt_set_non_kernel(unsigned int val)
6561{
6562 kmem_cache_set_non_kernel(maple_node_cache, val);
6563}
6564
6565extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6566unsigned long mt_get_alloc_size(void)
6567{
6568 return kmem_cache_get_alloc(maple_node_cache);
6569}
6570
6571extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6572void mt_zero_nr_tallocated(void)
6573{
6574 kmem_cache_zero_nr_tallocated(maple_node_cache);
6575}
6576
6577extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6578unsigned int mt_nr_tallocated(void)
6579{
6580 return kmem_cache_nr_tallocated(maple_node_cache);
6581}
6582
6583extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6584unsigned int mt_nr_allocated(void)
6585{
6586 return kmem_cache_nr_allocated(maple_node_cache);
6587}
6588
6589/*
6590 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6591 * @mas: The maple state
6592 * @index: The index to restore in @mas.
6593 *
6594 * Used in test code.
6595 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6596 */
6597static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6598{
6599 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6600 return 0;
6601
6602 if (likely(!mte_dead_node(mas->node)))
6603 return 0;
6604
6605 mas_rewalk(mas, index);
6606 return 1;
6607}
6608
6609void mt_cache_shrink(void)
6610{
6611}
6612#else
6613/*
6614 * mt_cache_shrink() - For testing, don't use this.
6615 *
6616 * Certain testcases can trigger an OOM when combined with other memory
6617 * debugging configuration options. This function is used to reduce the
6618 * possibility of an out of memory even due to kmem_cache objects remaining
6619 * around for longer than usual.
6620 */
6621void mt_cache_shrink(void)
6622{
6623 kmem_cache_shrink(maple_node_cache);
6624
6625}
6626EXPORT_SYMBOL_GPL(mt_cache_shrink);
6627
6628#endif /* not defined __KERNEL__ */
6629/*
6630 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6631 * @mas: The maple state
6632 * @offset: The offset into the slot array to fetch.
6633 *
6634 * Return: The entry stored at @offset.
6635 */
6636static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6637 unsigned char offset)
6638{
6639 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6640 offset);
6641}
6642
6643
6644/*
6645 * mas_first_entry() - Go the first leaf and find the first entry.
6646 * @mas: the maple state.
6647 * @limit: the maximum index to check.
6648 * @*r_start: Pointer to set to the range start.
6649 *
6650 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6651 *
6652 * Return: The first entry or MAS_NONE.
6653 */
6654static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6655 unsigned long limit, enum maple_type mt)
6656
6657{
6658 unsigned long max;
6659 unsigned long *pivots;
6660 void __rcu **slots;
6661 void *entry = NULL;
6662
6663 mas->index = mas->min;
6664 if (mas->index > limit)
6665 goto none;
6666
6667 max = mas->max;
6668 mas->offset = 0;
6669 while (likely(!ma_is_leaf(mt))) {
6670 MAS_WARN_ON(mas, mte_dead_node(mas->node));
6671 slots = ma_slots(mn, mt);
6672 entry = mas_slot(mas, slots, 0);
6673 pivots = ma_pivots(mn, mt);
6674 if (unlikely(ma_dead_node(mn)))
6675 return NULL;
6676 max = pivots[0];
6677 mas->node = entry;
6678 mn = mas_mn(mas);
6679 mt = mte_node_type(mas->node);
6680 }
6681 MAS_WARN_ON(mas, mte_dead_node(mas->node));
6682
6683 mas->max = max;
6684 slots = ma_slots(mn, mt);
6685 entry = mas_slot(mas, slots, 0);
6686 if (unlikely(ma_dead_node(mn)))
6687 return NULL;
6688
6689 /* Slot 0 or 1 must be set */
6690 if (mas->index > limit)
6691 goto none;
6692
6693 if (likely(entry))
6694 return entry;
6695
6696 mas->offset = 1;
6697 entry = mas_slot(mas, slots, 1);
6698 pivots = ma_pivots(mn, mt);
6699 if (unlikely(ma_dead_node(mn)))
6700 return NULL;
6701
6702 mas->index = pivots[0] + 1;
6703 if (mas->index > limit)
6704 goto none;
6705
6706 if (likely(entry))
6707 return entry;
6708
6709none:
6710 if (likely(!ma_dead_node(mn)))
6711 mas->node = MAS_NONE;
6712 return NULL;
6713}
6714
6715/* Depth first search, post-order */
6716static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6717{
6718
6719 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6720 unsigned long p_min, p_max;
6721
6722 mas_next_node(mas, mas_mn(mas), max);
6723 if (!mas_is_none(mas))
6724 return;
6725
6726 if (mte_is_root(mn))
6727 return;
6728
6729 mas->node = mn;
6730 mas_ascend(mas);
6731 do {
6732 p = mas->node;
6733 p_min = mas->min;
6734 p_max = mas->max;
6735 mas_prev_node(mas, 0);
6736 } while (!mas_is_none(mas));
6737
6738 mas->node = p;
6739 mas->max = p_max;
6740 mas->min = p_min;
6741}
6742
6743/* Tree validations */
6744static void mt_dump_node(const struct maple_tree *mt, void *entry,
6745 unsigned long min, unsigned long max, unsigned int depth,
6746 enum mt_dump_format format);
6747static void mt_dump_range(unsigned long min, unsigned long max,
6748 unsigned int depth, enum mt_dump_format format)
6749{
6750 static const char spaces[] = " ";
6751
6752 switch(format) {
6753 case mt_dump_hex:
6754 if (min == max)
6755 pr_info("%.*s%lx: ", depth * 2, spaces, min);
6756 else
6757 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
6758 break;
6759 default:
6760 case mt_dump_dec:
6761 if (min == max)
6762 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6763 else
6764 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6765 }
6766}
6767
6768static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6769 unsigned int depth, enum mt_dump_format format)
6770{
6771 mt_dump_range(min, max, depth, format);
6772
6773 if (xa_is_value(entry))
6774 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6775 xa_to_value(entry), entry);
6776 else if (xa_is_zero(entry))
6777 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6778 else if (mt_is_reserved(entry))
6779 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6780 else
6781 pr_cont("%p\n", entry);
6782}
6783
6784static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6785 unsigned long min, unsigned long max, unsigned int depth,
6786 enum mt_dump_format format)
6787{
6788 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6789 bool leaf = mte_is_leaf(entry);
6790 unsigned long first = min;
6791 int i;
6792
6793 pr_cont(" contents: ");
6794 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
6795 switch(format) {
6796 case mt_dump_hex:
6797 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
6798 break;
6799 default:
6800 case mt_dump_dec:
6801 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6802 }
6803 }
6804 pr_cont("%p\n", node->slot[i]);
6805 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6806 unsigned long last = max;
6807
6808 if (i < (MAPLE_RANGE64_SLOTS - 1))
6809 last = node->pivot[i];
6810 else if (!node->slot[i] && max != mt_node_max(entry))
6811 break;
6812 if (last == 0 && i > 0)
6813 break;
6814 if (leaf)
6815 mt_dump_entry(mt_slot(mt, node->slot, i),
6816 first, last, depth + 1, format);
6817 else if (node->slot[i])
6818 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6819 first, last, depth + 1, format);
6820
6821 if (last == max)
6822 break;
6823 if (last > max) {
6824 switch(format) {
6825 case mt_dump_hex:
6826 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
6827 node, last, max, i);
6828 break;
6829 default:
6830 case mt_dump_dec:
6831 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6832 node, last, max, i);
6833 }
6834 }
6835 first = last + 1;
6836 }
6837}
6838
6839static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6840 unsigned long min, unsigned long max, unsigned int depth,
6841 enum mt_dump_format format)
6842{
6843 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6844 bool leaf = mte_is_leaf(entry);
6845 unsigned long first = min;
6846 int i;
6847
6848 pr_cont(" contents: ");
6849 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6850 pr_cont("%lu ", node->gap[i]);
6851 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6852 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6853 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6854 pr_cont("%p\n", node->slot[i]);
6855 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6856 unsigned long last = max;
6857
6858 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6859 last = node->pivot[i];
6860 else if (!node->slot[i])
6861 break;
6862 if (last == 0 && i > 0)
6863 break;
6864 if (leaf)
6865 mt_dump_entry(mt_slot(mt, node->slot, i),
6866 first, last, depth + 1, format);
6867 else if (node->slot[i])
6868 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6869 first, last, depth + 1, format);
6870
6871 if (last == max)
6872 break;
6873 if (last > max) {
6874 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6875 node, last, max, i);
6876 break;
6877 }
6878 first = last + 1;
6879 }
6880}
6881
6882static void mt_dump_node(const struct maple_tree *mt, void *entry,
6883 unsigned long min, unsigned long max, unsigned int depth,
6884 enum mt_dump_format format)
6885{
6886 struct maple_node *node = mte_to_node(entry);
6887 unsigned int type = mte_node_type(entry);
6888 unsigned int i;
6889
6890 mt_dump_range(min, max, depth, format);
6891
6892 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6893 node ? node->parent : NULL);
6894 switch (type) {
6895 case maple_dense:
6896 pr_cont("\n");
6897 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6898 if (min + i > max)
6899 pr_cont("OUT OF RANGE: ");
6900 mt_dump_entry(mt_slot(mt, node->slot, i),
6901 min + i, min + i, depth, format);
6902 }
6903 break;
6904 case maple_leaf_64:
6905 case maple_range_64:
6906 mt_dump_range64(mt, entry, min, max, depth, format);
6907 break;
6908 case maple_arange_64:
6909 mt_dump_arange64(mt, entry, min, max, depth, format);
6910 break;
6911
6912 default:
6913 pr_cont(" UNKNOWN TYPE\n");
6914 }
6915}
6916
6917void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
6918{
6919 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6920
6921 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6922 mt, mt->ma_flags, mt_height(mt), entry);
6923 if (!xa_is_node(entry))
6924 mt_dump_entry(entry, 0, 0, 0, format);
6925 else if (entry)
6926 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
6927}
6928EXPORT_SYMBOL_GPL(mt_dump);
6929
6930/*
6931 * Calculate the maximum gap in a node and check if that's what is reported in
6932 * the parent (unless root).
6933 */
6934static void mas_validate_gaps(struct ma_state *mas)
6935{
6936 struct maple_enode *mte = mas->node;
6937 struct maple_node *p_mn;
6938 unsigned long gap = 0, max_gap = 0;
6939 unsigned long p_end, p_start = mas->min;
6940 unsigned char p_slot;
6941 unsigned long *gaps = NULL;
6942 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6943 int i;
6944
6945 if (ma_is_dense(mte_node_type(mte))) {
6946 for (i = 0; i < mt_slot_count(mte); i++) {
6947 if (mas_get_slot(mas, i)) {
6948 if (gap > max_gap)
6949 max_gap = gap;
6950 gap = 0;
6951 continue;
6952 }
6953 gap++;
6954 }
6955 goto counted;
6956 }
6957
6958 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6959 for (i = 0; i < mt_slot_count(mte); i++) {
6960 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6961
6962 if (!gaps) {
6963 if (mas_get_slot(mas, i)) {
6964 gap = 0;
6965 goto not_empty;
6966 }
6967
6968 gap += p_end - p_start + 1;
6969 } else {
6970 void *entry = mas_get_slot(mas, i);
6971
6972 gap = gaps[i];
6973 if (!entry) {
6974 if (gap != p_end - p_start + 1) {
6975 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6976 mas_mn(mas), i,
6977 mas_get_slot(mas, i), gap,
6978 p_end, p_start);
6979 mt_dump(mas->tree, mt_dump_hex);
6980
6981 MT_BUG_ON(mas->tree,
6982 gap != p_end - p_start + 1);
6983 }
6984 } else {
6985 if (gap > p_end - p_start + 1) {
6986 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6987 mas_mn(mas), i, gap, p_end, p_start,
6988 p_end - p_start + 1);
6989 MT_BUG_ON(mas->tree,
6990 gap > p_end - p_start + 1);
6991 }
6992 }
6993 }
6994
6995 if (gap > max_gap)
6996 max_gap = gap;
6997not_empty:
6998 p_start = p_end + 1;
6999 if (p_end >= mas->max)
7000 break;
7001 }
7002
7003counted:
7004 if (mte_is_root(mte))
7005 return;
7006
7007 p_slot = mte_parent_slot(mas->node);
7008 p_mn = mte_parent(mte);
7009 MT_BUG_ON(mas->tree, max_gap > mas->max);
7010 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7011 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7012 mt_dump(mas->tree, mt_dump_hex);
7013 }
7014
7015 MT_BUG_ON(mas->tree,
7016 ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap);
7017}
7018
7019static void mas_validate_parent_slot(struct ma_state *mas)
7020{
7021 struct maple_node *parent;
7022 struct maple_enode *node;
7023 enum maple_type p_type;
7024 unsigned char p_slot;
7025 void __rcu **slots;
7026 int i;
7027
7028 if (mte_is_root(mas->node))
7029 return;
7030
7031 p_slot = mte_parent_slot(mas->node);
7032 p_type = mas_parent_type(mas, mas->node);
7033 parent = mte_parent(mas->node);
7034 slots = ma_slots(parent, p_type);
7035 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7036
7037 /* Check prev/next parent slot for duplicate node entry */
7038
7039 for (i = 0; i < mt_slots[p_type]; i++) {
7040 node = mas_slot(mas, slots, i);
7041 if (i == p_slot) {
7042 if (node != mas->node)
7043 pr_err("parent %p[%u] does not have %p\n",
7044 parent, i, mas_mn(mas));
7045 MT_BUG_ON(mas->tree, node != mas->node);
7046 } else if (node == mas->node) {
7047 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7048 mas_mn(mas), parent, i, p_slot);
7049 MT_BUG_ON(mas->tree, node == mas->node);
7050 }
7051 }
7052}
7053
7054static void mas_validate_child_slot(struct ma_state *mas)
7055{
7056 enum maple_type type = mte_node_type(mas->node);
7057 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7058 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7059 struct maple_enode *child;
7060 unsigned char i;
7061
7062 if (mte_is_leaf(mas->node))
7063 return;
7064
7065 for (i = 0; i < mt_slots[type]; i++) {
7066 child = mas_slot(mas, slots, i);
7067 if (!pivots[i] || pivots[i] == mas->max)
7068 break;
7069
7070 if (!child)
7071 break;
7072
7073 if (mte_parent_slot(child) != i) {
7074 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7075 mas_mn(mas), i, mte_to_node(child),
7076 mte_parent_slot(child));
7077 MT_BUG_ON(mas->tree, 1);
7078 }
7079
7080 if (mte_parent(child) != mte_to_node(mas->node)) {
7081 pr_err("child %p has parent %p not %p\n",
7082 mte_to_node(child), mte_parent(child),
7083 mte_to_node(mas->node));
7084 MT_BUG_ON(mas->tree, 1);
7085 }
7086 }
7087}
7088
7089/*
7090 * Validate all pivots are within mas->min and mas->max.
7091 */
7092static void mas_validate_limits(struct ma_state *mas)
7093{
7094 int i;
7095 unsigned long prev_piv = 0;
7096 enum maple_type type = mte_node_type(mas->node);
7097 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7098 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7099
7100 /* all limits are fine here. */
7101 if (mte_is_root(mas->node))
7102 return;
7103
7104 for (i = 0; i < mt_slots[type]; i++) {
7105 unsigned long piv;
7106
7107 piv = mas_safe_pivot(mas, pivots, i, type);
7108
7109 if (!piv && (i != 0))
7110 break;
7111
7112 if (!mte_is_leaf(mas->node)) {
7113 void *entry = mas_slot(mas, slots, i);
7114
7115 if (!entry)
7116 pr_err("%p[%u] cannot be null\n",
7117 mas_mn(mas), i);
7118
7119 MT_BUG_ON(mas->tree, !entry);
7120 }
7121
7122 if (prev_piv > piv) {
7123 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7124 mas_mn(mas), i, piv, prev_piv);
7125 MAS_WARN_ON(mas, piv < prev_piv);
7126 }
7127
7128 if (piv < mas->min) {
7129 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7130 piv, mas->min);
7131 MAS_WARN_ON(mas, piv < mas->min);
7132 }
7133 if (piv > mas->max) {
7134 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7135 piv, mas->max);
7136 MAS_WARN_ON(mas, piv > mas->max);
7137 }
7138 prev_piv = piv;
7139 if (piv == mas->max)
7140 break;
7141 }
7142 for (i += 1; i < mt_slots[type]; i++) {
7143 void *entry = mas_slot(mas, slots, i);
7144
7145 if (entry && (i != mt_slots[type] - 1)) {
7146 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7147 i, entry);
7148 MT_BUG_ON(mas->tree, entry != NULL);
7149 }
7150
7151 if (i < mt_pivots[type]) {
7152 unsigned long piv = pivots[i];
7153
7154 if (!piv)
7155 continue;
7156
7157 pr_err("%p[%u] should not have piv %lu\n",
7158 mas_mn(mas), i, piv);
7159 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7160 }
7161 }
7162}
7163
7164static void mt_validate_nulls(struct maple_tree *mt)
7165{
7166 void *entry, *last = (void *)1;
7167 unsigned char offset = 0;
7168 void __rcu **slots;
7169 MA_STATE(mas, mt, 0, 0);
7170
7171 mas_start(&mas);
7172 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7173 return;
7174
7175 while (!mte_is_leaf(mas.node))
7176 mas_descend(&mas);
7177
7178 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7179 do {
7180 entry = mas_slot(&mas, slots, offset);
7181 if (!last && !entry) {
7182 pr_err("Sequential nulls end at %p[%u]\n",
7183 mas_mn(&mas), offset);
7184 }
7185 MT_BUG_ON(mt, !last && !entry);
7186 last = entry;
7187 if (offset == mas_data_end(&mas)) {
7188 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7189 if (mas_is_none(&mas))
7190 return;
7191 offset = 0;
7192 slots = ma_slots(mte_to_node(mas.node),
7193 mte_node_type(mas.node));
7194 } else {
7195 offset++;
7196 }
7197
7198 } while (!mas_is_none(&mas));
7199}
7200
7201/*
7202 * validate a maple tree by checking:
7203 * 1. The limits (pivots are within mas->min to mas->max)
7204 * 2. The gap is correctly set in the parents
7205 */
7206void mt_validate(struct maple_tree *mt)
7207{
7208 unsigned char end;
7209
7210 MA_STATE(mas, mt, 0, 0);
7211 rcu_read_lock();
7212 mas_start(&mas);
7213 if (!mas_searchable(&mas))
7214 goto done;
7215
7216 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7217 while (!mas_is_none(&mas)) {
7218 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7219 if (!mte_is_root(mas.node)) {
7220 end = mas_data_end(&mas);
7221 if (MAS_WARN_ON(&mas,
7222 (end < mt_min_slot_count(mas.node)) &&
7223 (mas.max != ULONG_MAX))) {
7224 pr_err("Invalid size %u of %p\n", end,
7225 mas_mn(&mas));
7226 }
7227 }
7228 mas_validate_parent_slot(&mas);
7229 mas_validate_child_slot(&mas);
7230 mas_validate_limits(&mas);
7231 if (mt_is_alloc(mt))
7232 mas_validate_gaps(&mas);
7233 mas_dfs_postorder(&mas, ULONG_MAX);
7234 }
7235 mt_validate_nulls(mt);
7236done:
7237 rcu_read_unlock();
7238
7239}
7240EXPORT_SYMBOL_GPL(mt_validate);
7241
7242void mas_dump(const struct ma_state *mas)
7243{
7244 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7245 if (mas_is_none(mas))
7246 pr_err("(MAS_NONE) ");
7247 else if (mas_is_ptr(mas))
7248 pr_err("(MAS_ROOT) ");
7249 else if (mas_is_start(mas))
7250 pr_err("(MAS_START) ");
7251 else if (mas_is_paused(mas))
7252 pr_err("(MAS_PAUSED) ");
7253
7254 pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last);
7255 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7256 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7257 if (mas->index > mas->last)
7258 pr_err("Check index & last\n");
7259}
7260EXPORT_SYMBOL_GPL(mas_dump);
7261
7262void mas_wr_dump(const struct ma_wr_state *wr_mas)
7263{
7264 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7265 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7266 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7267 wr_mas->type, wr_mas->offset_end, wr_mas->node_end,
7268 wr_mas->end_piv);
7269}
7270EXPORT_SYMBOL_GPL(mas_wr_dump);
7271
7272#endif /* CONFIG_DEBUG_MAPLE_TREE */