at v6.5 82 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_USB_H 3#define __LINUX_USB_H 4 5#include <linux/mod_devicetable.h> 6#include <linux/usb/ch9.h> 7 8#define USB_MAJOR 180 9#define USB_DEVICE_MAJOR 189 10 11 12#ifdef __KERNEL__ 13 14#include <linux/errno.h> /* for -ENODEV */ 15#include <linux/delay.h> /* for mdelay() */ 16#include <linux/interrupt.h> /* for in_interrupt() */ 17#include <linux/list.h> /* for struct list_head */ 18#include <linux/kref.h> /* for struct kref */ 19#include <linux/device.h> /* for struct device */ 20#include <linux/fs.h> /* for struct file_operations */ 21#include <linux/completion.h> /* for struct completion */ 22#include <linux/sched.h> /* for current && schedule_timeout */ 23#include <linux/mutex.h> /* for struct mutex */ 24#include <linux/pm_runtime.h> /* for runtime PM */ 25 26struct usb_device; 27struct usb_driver; 28struct wusb_dev; 29 30/*-------------------------------------------------------------------------*/ 31 32/* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48struct ep_device; 49 50/** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79}; 80 81/* host-side wrapper for one interface setting's parsed descriptors */ 82struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94}; 95 96enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101}; 102 103int __must_check 104usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110int __must_check 111usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117static inline int __must_check 118usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120{ 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122} 123 124static inline int __must_check 125usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127{ 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129} 130 131static inline int __must_check 132usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134{ 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136} 137 138static inline int __must_check 139usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141{ 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143} 144 145static inline int __must_check 146usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148{ 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150} 151 152static inline int __must_check 153usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155{ 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157} 158 159static inline int __must_check 160usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162{ 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164} 165 166static inline int __must_check 167usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169{ 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171} 172 173enum usb_wireless_status { 174 USB_WIRELESS_STATUS_NA = 0, 175 USB_WIRELESS_STATUS_DISCONNECTED, 176 USB_WIRELESS_STATUS_CONNECTED, 177}; 178 179/** 180 * struct usb_interface - what usb device drivers talk to 181 * @altsetting: array of interface structures, one for each alternate 182 * setting that may be selected. Each one includes a set of 183 * endpoint configurations. They will be in no particular order. 184 * @cur_altsetting: the current altsetting. 185 * @num_altsetting: number of altsettings defined. 186 * @intf_assoc: interface association descriptor 187 * @minor: the minor number assigned to this interface, if this 188 * interface is bound to a driver that uses the USB major number. 189 * If this interface does not use the USB major, this field should 190 * be unused. The driver should set this value in the probe() 191 * function of the driver, after it has been assigned a minor 192 * number from the USB core by calling usb_register_dev(). 193 * @condition: binding state of the interface: not bound, binding 194 * (in probe()), bound to a driver, or unbinding (in disconnect()) 195 * @sysfs_files_created: sysfs attributes exist 196 * @ep_devs_created: endpoint child pseudo-devices exist 197 * @unregistering: flag set when the interface is being unregistered 198 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 199 * capability during autosuspend. 200 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 201 * has been deferred. 202 * @needs_binding: flag set when the driver should be re-probed or unbound 203 * following a reset or suspend operation it doesn't support. 204 * @authorized: This allows to (de)authorize individual interfaces instead 205 * a whole device in contrast to the device authorization. 206 * @wireless_status: if the USB device uses a receiver/emitter combo, whether 207 * the emitter is connected. 208 * @wireless_status_work: Used for scheduling wireless status changes 209 * from atomic context. 210 * @dev: driver model's view of this device 211 * @usb_dev: if an interface is bound to the USB major, this will point 212 * to the sysfs representation for that device. 213 * @reset_ws: Used for scheduling resets from atomic context. 214 * @resetting_device: USB core reset the device, so use alt setting 0 as 215 * current; needs bandwidth alloc after reset. 216 * 217 * USB device drivers attach to interfaces on a physical device. Each 218 * interface encapsulates a single high level function, such as feeding 219 * an audio stream to a speaker or reporting a change in a volume control. 220 * Many USB devices only have one interface. The protocol used to talk to 221 * an interface's endpoints can be defined in a usb "class" specification, 222 * or by a product's vendor. The (default) control endpoint is part of 223 * every interface, but is never listed among the interface's descriptors. 224 * 225 * The driver that is bound to the interface can use standard driver model 226 * calls such as dev_get_drvdata() on the dev member of this structure. 227 * 228 * Each interface may have alternate settings. The initial configuration 229 * of a device sets altsetting 0, but the device driver can change 230 * that setting using usb_set_interface(). Alternate settings are often 231 * used to control the use of periodic endpoints, such as by having 232 * different endpoints use different amounts of reserved USB bandwidth. 233 * All standards-conformant USB devices that use isochronous endpoints 234 * will use them in non-default settings. 235 * 236 * The USB specification says that alternate setting numbers must run from 237 * 0 to one less than the total number of alternate settings. But some 238 * devices manage to mess this up, and the structures aren't necessarily 239 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 240 * look up an alternate setting in the altsetting array based on its number. 241 */ 242struct usb_interface { 243 /* array of alternate settings for this interface, 244 * stored in no particular order */ 245 struct usb_host_interface *altsetting; 246 247 struct usb_host_interface *cur_altsetting; /* the currently 248 * active alternate setting */ 249 unsigned num_altsetting; /* number of alternate settings */ 250 251 /* If there is an interface association descriptor then it will list 252 * the associated interfaces */ 253 struct usb_interface_assoc_descriptor *intf_assoc; 254 255 int minor; /* minor number this interface is 256 * bound to */ 257 enum usb_interface_condition condition; /* state of binding */ 258 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 259 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 260 unsigned unregistering:1; /* unregistration is in progress */ 261 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 262 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 263 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 264 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 265 unsigned authorized:1; /* used for interface authorization */ 266 enum usb_wireless_status wireless_status; 267 struct work_struct wireless_status_work; 268 269 struct device dev; /* interface specific device info */ 270 struct device *usb_dev; 271 struct work_struct reset_ws; /* for resets in atomic context */ 272}; 273 274#define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev) 275 276static inline void *usb_get_intfdata(struct usb_interface *intf) 277{ 278 return dev_get_drvdata(&intf->dev); 279} 280 281/** 282 * usb_set_intfdata() - associate driver-specific data with an interface 283 * @intf: USB interface 284 * @data: driver data 285 * 286 * Drivers can use this function in their probe() callbacks to associate 287 * driver-specific data with an interface. 288 * 289 * Note that there is generally no need to clear the driver-data pointer even 290 * if some drivers do so for historical or implementation-specific reasons. 291 */ 292static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 293{ 294 dev_set_drvdata(&intf->dev, data); 295} 296 297struct usb_interface *usb_get_intf(struct usb_interface *intf); 298void usb_put_intf(struct usb_interface *intf); 299 300/* Hard limit */ 301#define USB_MAXENDPOINTS 30 302/* this maximum is arbitrary */ 303#define USB_MAXINTERFACES 32 304#define USB_MAXIADS (USB_MAXINTERFACES/2) 305 306bool usb_check_bulk_endpoints( 307 const struct usb_interface *intf, const u8 *ep_addrs); 308bool usb_check_int_endpoints( 309 const struct usb_interface *intf, const u8 *ep_addrs); 310 311/* 312 * USB Resume Timer: Every Host controller driver should drive the resume 313 * signalling on the bus for the amount of time defined by this macro. 314 * 315 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 316 * 317 * Note that the USB Specification states we should drive resume for *at least* 318 * 20 ms, but it doesn't give an upper bound. This creates two possible 319 * situations which we want to avoid: 320 * 321 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 322 * us to fail USB Electrical Tests, thus failing Certification 323 * 324 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 325 * and while we can argue that's against the USB Specification, we don't have 326 * control over which devices a certification laboratory will be using for 327 * certification. If CertLab uses a device which was tested against Windows and 328 * that happens to have relaxed resume signalling rules, we might fall into 329 * situations where we fail interoperability and electrical tests. 330 * 331 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 332 * should cope with both LPJ calibration errors and devices not following every 333 * detail of the USB Specification. 334 */ 335#define USB_RESUME_TIMEOUT 40 /* ms */ 336 337/** 338 * struct usb_interface_cache - long-term representation of a device interface 339 * @num_altsetting: number of altsettings defined. 340 * @ref: reference counter. 341 * @altsetting: variable-length array of interface structures, one for 342 * each alternate setting that may be selected. Each one includes a 343 * set of endpoint configurations. They will be in no particular order. 344 * 345 * These structures persist for the lifetime of a usb_device, unlike 346 * struct usb_interface (which persists only as long as its configuration 347 * is installed). The altsetting arrays can be accessed through these 348 * structures at any time, permitting comparison of configurations and 349 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 350 */ 351struct usb_interface_cache { 352 unsigned num_altsetting; /* number of alternate settings */ 353 struct kref ref; /* reference counter */ 354 355 /* variable-length array of alternate settings for this interface, 356 * stored in no particular order */ 357 struct usb_host_interface altsetting[]; 358}; 359#define ref_to_usb_interface_cache(r) \ 360 container_of(r, struct usb_interface_cache, ref) 361#define altsetting_to_usb_interface_cache(a) \ 362 container_of(a, struct usb_interface_cache, altsetting[0]) 363 364/** 365 * struct usb_host_config - representation of a device's configuration 366 * @desc: the device's configuration descriptor. 367 * @string: pointer to the cached version of the iConfiguration string, if 368 * present for this configuration. 369 * @intf_assoc: list of any interface association descriptors in this config 370 * @interface: array of pointers to usb_interface structures, one for each 371 * interface in the configuration. The number of interfaces is stored 372 * in desc.bNumInterfaces. These pointers are valid only while the 373 * configuration is active. 374 * @intf_cache: array of pointers to usb_interface_cache structures, one 375 * for each interface in the configuration. These structures exist 376 * for the entire life of the device. 377 * @extra: pointer to buffer containing all extra descriptors associated 378 * with this configuration (those preceding the first interface 379 * descriptor). 380 * @extralen: length of the extra descriptors buffer. 381 * 382 * USB devices may have multiple configurations, but only one can be active 383 * at any time. Each encapsulates a different operational environment; 384 * for example, a dual-speed device would have separate configurations for 385 * full-speed and high-speed operation. The number of configurations 386 * available is stored in the device descriptor as bNumConfigurations. 387 * 388 * A configuration can contain multiple interfaces. Each corresponds to 389 * a different function of the USB device, and all are available whenever 390 * the configuration is active. The USB standard says that interfaces 391 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 392 * of devices get this wrong. In addition, the interface array is not 393 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 394 * look up an interface entry based on its number. 395 * 396 * Device drivers should not attempt to activate configurations. The choice 397 * of which configuration to install is a policy decision based on such 398 * considerations as available power, functionality provided, and the user's 399 * desires (expressed through userspace tools). However, drivers can call 400 * usb_reset_configuration() to reinitialize the current configuration and 401 * all its interfaces. 402 */ 403struct usb_host_config { 404 struct usb_config_descriptor desc; 405 406 char *string; /* iConfiguration string, if present */ 407 408 /* List of any Interface Association Descriptors in this 409 * configuration. */ 410 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 411 412 /* the interfaces associated with this configuration, 413 * stored in no particular order */ 414 struct usb_interface *interface[USB_MAXINTERFACES]; 415 416 /* Interface information available even when this is not the 417 * active configuration */ 418 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 419 420 unsigned char *extra; /* Extra descriptors */ 421 int extralen; 422}; 423 424/* USB2.0 and USB3.0 device BOS descriptor set */ 425struct usb_host_bos { 426 struct usb_bos_descriptor *desc; 427 428 /* wireless cap descriptor is handled by wusb */ 429 struct usb_ext_cap_descriptor *ext_cap; 430 struct usb_ss_cap_descriptor *ss_cap; 431 struct usb_ssp_cap_descriptor *ssp_cap; 432 struct usb_ss_container_id_descriptor *ss_id; 433 struct usb_ptm_cap_descriptor *ptm_cap; 434}; 435 436int __usb_get_extra_descriptor(char *buffer, unsigned size, 437 unsigned char type, void **ptr, size_t min); 438#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 439 __usb_get_extra_descriptor((ifpoint)->extra, \ 440 (ifpoint)->extralen, \ 441 type, (void **)ptr, sizeof(**(ptr))) 442 443/* ----------------------------------------------------------------------- */ 444 445/* USB device number allocation bitmap */ 446struct usb_devmap { 447 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 448}; 449 450/* 451 * Allocated per bus (tree of devices) we have: 452 */ 453struct usb_bus { 454 struct device *controller; /* host side hardware */ 455 struct device *sysdev; /* as seen from firmware or bus */ 456 int busnum; /* Bus number (in order of reg) */ 457 const char *bus_name; /* stable id (PCI slot_name etc) */ 458 u8 uses_pio_for_control; /* 459 * Does the host controller use PIO 460 * for control transfers? 461 */ 462 u8 otg_port; /* 0, or number of OTG/HNP port */ 463 unsigned is_b_host:1; /* true during some HNP roleswitches */ 464 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 465 unsigned no_stop_on_short:1; /* 466 * Quirk: some controllers don't stop 467 * the ep queue on a short transfer 468 * with the URB_SHORT_NOT_OK flag set. 469 */ 470 unsigned no_sg_constraint:1; /* no sg constraint */ 471 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 472 473 int devnum_next; /* Next open device number in 474 * round-robin allocation */ 475 struct mutex devnum_next_mutex; /* devnum_next mutex */ 476 477 struct usb_devmap devmap; /* device address allocation map */ 478 struct usb_device *root_hub; /* Root hub */ 479 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 480 481 int bandwidth_allocated; /* on this bus: how much of the time 482 * reserved for periodic (intr/iso) 483 * requests is used, on average? 484 * Units: microseconds/frame. 485 * Limits: Full/low speed reserve 90%, 486 * while high speed reserves 80%. 487 */ 488 int bandwidth_int_reqs; /* number of Interrupt requests */ 489 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 490 491 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 492 493#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 494 struct mon_bus *mon_bus; /* non-null when associated */ 495 int monitored; /* non-zero when monitored */ 496#endif 497}; 498 499struct usb_dev_state; 500 501/* ----------------------------------------------------------------------- */ 502 503struct usb_tt; 504 505enum usb_port_connect_type { 506 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 507 USB_PORT_CONNECT_TYPE_HOT_PLUG, 508 USB_PORT_CONNECT_TYPE_HARD_WIRED, 509 USB_PORT_NOT_USED, 510}; 511 512/* 513 * USB port quirks. 514 */ 515 516/* For the given port, prefer the old (faster) enumeration scheme. */ 517#define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 518 519/* Decrease TRSTRCY to 10ms during device enumeration. */ 520#define USB_PORT_QUIRK_FAST_ENUM BIT(1) 521 522/* 523 * USB 2.0 Link Power Management (LPM) parameters. 524 */ 525struct usb2_lpm_parameters { 526 /* Best effort service latency indicate how long the host will drive 527 * resume on an exit from L1. 528 */ 529 unsigned int besl; 530 531 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 532 * When the timer counts to zero, the parent hub will initiate a LPM 533 * transition to L1. 534 */ 535 int timeout; 536}; 537 538/* 539 * USB 3.0 Link Power Management (LPM) parameters. 540 * 541 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 542 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 543 * All three are stored in nanoseconds. 544 */ 545struct usb3_lpm_parameters { 546 /* 547 * Maximum exit latency (MEL) for the host to send a packet to the 548 * device (either a Ping for isoc endpoints, or a data packet for 549 * interrupt endpoints), the hubs to decode the packet, and for all hubs 550 * in the path to transition the links to U0. 551 */ 552 unsigned int mel; 553 /* 554 * Maximum exit latency for a device-initiated LPM transition to bring 555 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 556 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 557 */ 558 unsigned int pel; 559 560 /* 561 * The System Exit Latency (SEL) includes PEL, and three other 562 * latencies. After a device initiates a U0 transition, it will take 563 * some time from when the device sends the ERDY to when it will finally 564 * receive the data packet. Basically, SEL should be the worse-case 565 * latency from when a device starts initiating a U0 transition to when 566 * it will get data. 567 */ 568 unsigned int sel; 569 /* 570 * The idle timeout value that is currently programmed into the parent 571 * hub for this device. When the timer counts to zero, the parent hub 572 * will initiate an LPM transition to either U1 or U2. 573 */ 574 int timeout; 575}; 576 577/** 578 * struct usb_device - kernel's representation of a USB device 579 * @devnum: device number; address on a USB bus 580 * @devpath: device ID string for use in messages (e.g., /port/...) 581 * @route: tree topology hex string for use with xHCI 582 * @state: device state: configured, not attached, etc. 583 * @speed: device speed: high/full/low (or error) 584 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 585 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 586 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 587 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 588 * @ttport: device port on that tt hub 589 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 590 * @parent: our hub, unless we're the root 591 * @bus: bus we're part of 592 * @ep0: endpoint 0 data (default control pipe) 593 * @dev: generic device interface 594 * @descriptor: USB device descriptor 595 * @bos: USB device BOS descriptor set 596 * @config: all of the device's configs 597 * @actconfig: the active configuration 598 * @ep_in: array of IN endpoints 599 * @ep_out: array of OUT endpoints 600 * @rawdescriptors: raw descriptors for each config 601 * @bus_mA: Current available from the bus 602 * @portnum: parent port number (origin 1) 603 * @level: number of USB hub ancestors 604 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 605 * @can_submit: URBs may be submitted 606 * @persist_enabled: USB_PERSIST enabled for this device 607 * @reset_in_progress: the device is being reset 608 * @have_langid: whether string_langid is valid 609 * @authorized: policy has said we can use it; 610 * (user space) policy determines if we authorize this device to be 611 * used or not. By default, wired USB devices are authorized. 612 * WUSB devices are not, until we authorize them from user space. 613 * FIXME -- complete doc 614 * @authenticated: Crypto authentication passed 615 * @wusb: device is Wireless USB 616 * @lpm_capable: device supports LPM 617 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range 618 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 619 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 620 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 621 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 622 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 623 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 624 * @string_langid: language ID for strings 625 * @product: iProduct string, if present (static) 626 * @manufacturer: iManufacturer string, if present (static) 627 * @serial: iSerialNumber string, if present (static) 628 * @filelist: usbfs files that are open to this device 629 * @maxchild: number of ports if hub 630 * @quirks: quirks of the whole device 631 * @urbnum: number of URBs submitted for the whole device 632 * @active_duration: total time device is not suspended 633 * @connect_time: time device was first connected 634 * @do_remote_wakeup: remote wakeup should be enabled 635 * @reset_resume: needs reset instead of resume 636 * @port_is_suspended: the upstream port is suspended (L2 or U3) 637 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 638 * specific data for the device. 639 * @slot_id: Slot ID assigned by xHCI 640 * @removable: Device can be physically removed from this port 641 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 642 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 643 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 644 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 645 * to keep track of the number of functions that require USB 3.0 Link Power 646 * Management to be disabled for this usb_device. This count should only 647 * be manipulated by those functions, with the bandwidth_mutex is held. 648 * @hub_delay: cached value consisting of: 649 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 650 * Will be used as wValue for SetIsochDelay requests. 651 * @use_generic_driver: ask driver core to reprobe using the generic driver. 652 * 653 * Notes: 654 * Usbcore drivers should not set usbdev->state directly. Instead use 655 * usb_set_device_state(). 656 */ 657struct usb_device { 658 int devnum; 659 char devpath[16]; 660 u32 route; 661 enum usb_device_state state; 662 enum usb_device_speed speed; 663 unsigned int rx_lanes; 664 unsigned int tx_lanes; 665 enum usb_ssp_rate ssp_rate; 666 667 struct usb_tt *tt; 668 int ttport; 669 670 unsigned int toggle[2]; 671 672 struct usb_device *parent; 673 struct usb_bus *bus; 674 struct usb_host_endpoint ep0; 675 676 struct device dev; 677 678 struct usb_device_descriptor descriptor; 679 struct usb_host_bos *bos; 680 struct usb_host_config *config; 681 682 struct usb_host_config *actconfig; 683 struct usb_host_endpoint *ep_in[16]; 684 struct usb_host_endpoint *ep_out[16]; 685 686 char **rawdescriptors; 687 688 unsigned short bus_mA; 689 u8 portnum; 690 u8 level; 691 u8 devaddr; 692 693 unsigned can_submit:1; 694 unsigned persist_enabled:1; 695 unsigned reset_in_progress:1; 696 unsigned have_langid:1; 697 unsigned authorized:1; 698 unsigned authenticated:1; 699 unsigned wusb:1; 700 unsigned lpm_capable:1; 701 unsigned lpm_devinit_allow:1; 702 unsigned usb2_hw_lpm_capable:1; 703 unsigned usb2_hw_lpm_besl_capable:1; 704 unsigned usb2_hw_lpm_enabled:1; 705 unsigned usb2_hw_lpm_allowed:1; 706 unsigned usb3_lpm_u1_enabled:1; 707 unsigned usb3_lpm_u2_enabled:1; 708 int string_langid; 709 710 /* static strings from the device */ 711 char *product; 712 char *manufacturer; 713 char *serial; 714 715 struct list_head filelist; 716 717 int maxchild; 718 719 u32 quirks; 720 atomic_t urbnum; 721 722 unsigned long active_duration; 723 724 unsigned long connect_time; 725 726 unsigned do_remote_wakeup:1; 727 unsigned reset_resume:1; 728 unsigned port_is_suspended:1; 729 730 struct wusb_dev *wusb_dev; 731 int slot_id; 732 struct usb2_lpm_parameters l1_params; 733 struct usb3_lpm_parameters u1_params; 734 struct usb3_lpm_parameters u2_params; 735 unsigned lpm_disable_count; 736 737 u16 hub_delay; 738 unsigned use_generic_driver:1; 739}; 740 741#define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev) 742 743static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf) 744{ 745 return to_usb_device(intf->dev.parent); 746} 747static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf) 748{ 749 return to_usb_device((const struct device *)intf->dev.parent); 750} 751 752#define interface_to_usbdev(intf) \ 753 _Generic((intf), \ 754 const struct usb_interface *: __intf_to_usbdev_const, \ 755 struct usb_interface *: __intf_to_usbdev)(intf) 756 757extern struct usb_device *usb_get_dev(struct usb_device *dev); 758extern void usb_put_dev(struct usb_device *dev); 759extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 760 int port1); 761 762/** 763 * usb_hub_for_each_child - iterate over all child devices on the hub 764 * @hdev: USB device belonging to the usb hub 765 * @port1: portnum associated with child device 766 * @child: child device pointer 767 */ 768#define usb_hub_for_each_child(hdev, port1, child) \ 769 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 770 port1 <= hdev->maxchild; \ 771 child = usb_hub_find_child(hdev, ++port1)) \ 772 if (!child) continue; else 773 774/* USB device locking */ 775#define usb_lock_device(udev) device_lock(&(udev)->dev) 776#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 777#define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 778#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 779extern int usb_lock_device_for_reset(struct usb_device *udev, 780 const struct usb_interface *iface); 781 782/* USB port reset for device reinitialization */ 783extern int usb_reset_device(struct usb_device *dev); 784extern void usb_queue_reset_device(struct usb_interface *dev); 785 786extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 787 788#ifdef CONFIG_ACPI 789extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 790 bool enable); 791extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 792extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index); 793#else 794static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 795 bool enable) { return 0; } 796static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 797 { return true; } 798static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index) 799 { return 0; } 800#endif 801 802/* USB autosuspend and autoresume */ 803#ifdef CONFIG_PM 804extern void usb_enable_autosuspend(struct usb_device *udev); 805extern void usb_disable_autosuspend(struct usb_device *udev); 806 807extern int usb_autopm_get_interface(struct usb_interface *intf); 808extern void usb_autopm_put_interface(struct usb_interface *intf); 809extern int usb_autopm_get_interface_async(struct usb_interface *intf); 810extern void usb_autopm_put_interface_async(struct usb_interface *intf); 811extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 812extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 813 814static inline void usb_mark_last_busy(struct usb_device *udev) 815{ 816 pm_runtime_mark_last_busy(&udev->dev); 817} 818 819#else 820 821static inline int usb_enable_autosuspend(struct usb_device *udev) 822{ return 0; } 823static inline int usb_disable_autosuspend(struct usb_device *udev) 824{ return 0; } 825 826static inline int usb_autopm_get_interface(struct usb_interface *intf) 827{ return 0; } 828static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 829{ return 0; } 830 831static inline void usb_autopm_put_interface(struct usb_interface *intf) 832{ } 833static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 834{ } 835static inline void usb_autopm_get_interface_no_resume( 836 struct usb_interface *intf) 837{ } 838static inline void usb_autopm_put_interface_no_suspend( 839 struct usb_interface *intf) 840{ } 841static inline void usb_mark_last_busy(struct usb_device *udev) 842{ } 843#endif 844 845extern int usb_disable_lpm(struct usb_device *udev); 846extern void usb_enable_lpm(struct usb_device *udev); 847/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 848extern int usb_unlocked_disable_lpm(struct usb_device *udev); 849extern void usb_unlocked_enable_lpm(struct usb_device *udev); 850 851extern int usb_disable_ltm(struct usb_device *udev); 852extern void usb_enable_ltm(struct usb_device *udev); 853 854static inline bool usb_device_supports_ltm(struct usb_device *udev) 855{ 856 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 857 return false; 858 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 859} 860 861static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 862{ 863 return udev && udev->bus && udev->bus->no_sg_constraint; 864} 865 866 867/*-------------------------------------------------------------------------*/ 868 869/* for drivers using iso endpoints */ 870extern int usb_get_current_frame_number(struct usb_device *usb_dev); 871 872/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 873extern int usb_alloc_streams(struct usb_interface *interface, 874 struct usb_host_endpoint **eps, unsigned int num_eps, 875 unsigned int num_streams, gfp_t mem_flags); 876 877/* Reverts a group of bulk endpoints back to not using stream IDs. */ 878extern int usb_free_streams(struct usb_interface *interface, 879 struct usb_host_endpoint **eps, unsigned int num_eps, 880 gfp_t mem_flags); 881 882/* used these for multi-interface device registration */ 883extern int usb_driver_claim_interface(struct usb_driver *driver, 884 struct usb_interface *iface, void *data); 885 886/** 887 * usb_interface_claimed - returns true iff an interface is claimed 888 * @iface: the interface being checked 889 * 890 * Return: %true (nonzero) iff the interface is claimed, else %false 891 * (zero). 892 * 893 * Note: 894 * Callers must own the driver model's usb bus readlock. So driver 895 * probe() entries don't need extra locking, but other call contexts 896 * may need to explicitly claim that lock. 897 * 898 */ 899static inline int usb_interface_claimed(struct usb_interface *iface) 900{ 901 return (iface->dev.driver != NULL); 902} 903 904extern void usb_driver_release_interface(struct usb_driver *driver, 905 struct usb_interface *iface); 906 907int usb_set_wireless_status(struct usb_interface *iface, 908 enum usb_wireless_status status); 909 910const struct usb_device_id *usb_match_id(struct usb_interface *interface, 911 const struct usb_device_id *id); 912extern int usb_match_one_id(struct usb_interface *interface, 913 const struct usb_device_id *id); 914 915extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 916extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 917 int minor); 918extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 919 unsigned ifnum); 920extern struct usb_host_interface *usb_altnum_to_altsetting( 921 const struct usb_interface *intf, unsigned int altnum); 922extern struct usb_host_interface *usb_find_alt_setting( 923 struct usb_host_config *config, 924 unsigned int iface_num, 925 unsigned int alt_num); 926 927/* port claiming functions */ 928int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 929 struct usb_dev_state *owner); 930int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 931 struct usb_dev_state *owner); 932 933/** 934 * usb_make_path - returns stable device path in the usb tree 935 * @dev: the device whose path is being constructed 936 * @buf: where to put the string 937 * @size: how big is "buf"? 938 * 939 * Return: Length of the string (> 0) or negative if size was too small. 940 * 941 * Note: 942 * This identifier is intended to be "stable", reflecting physical paths in 943 * hardware such as physical bus addresses for host controllers or ports on 944 * USB hubs. That makes it stay the same until systems are physically 945 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 946 * controllers. Adding and removing devices, including virtual root hubs 947 * in host controller driver modules, does not change these path identifiers; 948 * neither does rebooting or re-enumerating. These are more useful identifiers 949 * than changeable ("unstable") ones like bus numbers or device addresses. 950 * 951 * With a partial exception for devices connected to USB 2.0 root hubs, these 952 * identifiers are also predictable. So long as the device tree isn't changed, 953 * plugging any USB device into a given hub port always gives it the same path. 954 * Because of the use of "companion" controllers, devices connected to ports on 955 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 956 * high speed, and a different one if they are full or low speed. 957 */ 958static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 959{ 960 int actual; 961 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 962 dev->devpath); 963 return (actual >= (int)size) ? -1 : actual; 964} 965 966/*-------------------------------------------------------------------------*/ 967 968#define USB_DEVICE_ID_MATCH_DEVICE \ 969 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 970#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 971 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 972#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 973 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 974#define USB_DEVICE_ID_MATCH_DEV_INFO \ 975 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 976 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 977 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 978#define USB_DEVICE_ID_MATCH_INT_INFO \ 979 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 980 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 981 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 982 983/** 984 * USB_DEVICE - macro used to describe a specific usb device 985 * @vend: the 16 bit USB Vendor ID 986 * @prod: the 16 bit USB Product ID 987 * 988 * This macro is used to create a struct usb_device_id that matches a 989 * specific device. 990 */ 991#define USB_DEVICE(vend, prod) \ 992 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 993 .idVendor = (vend), \ 994 .idProduct = (prod) 995/** 996 * USB_DEVICE_VER - describe a specific usb device with a version range 997 * @vend: the 16 bit USB Vendor ID 998 * @prod: the 16 bit USB Product ID 999 * @lo: the bcdDevice_lo value 1000 * @hi: the bcdDevice_hi value 1001 * 1002 * This macro is used to create a struct usb_device_id that matches a 1003 * specific device, with a version range. 1004 */ 1005#define USB_DEVICE_VER(vend, prod, lo, hi) \ 1006 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 1007 .idVendor = (vend), \ 1008 .idProduct = (prod), \ 1009 .bcdDevice_lo = (lo), \ 1010 .bcdDevice_hi = (hi) 1011 1012/** 1013 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 1014 * @vend: the 16 bit USB Vendor ID 1015 * @prod: the 16 bit USB Product ID 1016 * @cl: bInterfaceClass value 1017 * 1018 * This macro is used to create a struct usb_device_id that matches a 1019 * specific interface class of devices. 1020 */ 1021#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 1022 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1023 USB_DEVICE_ID_MATCH_INT_CLASS, \ 1024 .idVendor = (vend), \ 1025 .idProduct = (prod), \ 1026 .bInterfaceClass = (cl) 1027 1028/** 1029 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 1030 * @vend: the 16 bit USB Vendor ID 1031 * @prod: the 16 bit USB Product ID 1032 * @pr: bInterfaceProtocol value 1033 * 1034 * This macro is used to create a struct usb_device_id that matches a 1035 * specific interface protocol of devices. 1036 */ 1037#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 1038 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1039 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 1040 .idVendor = (vend), \ 1041 .idProduct = (prod), \ 1042 .bInterfaceProtocol = (pr) 1043 1044/** 1045 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 1046 * @vend: the 16 bit USB Vendor ID 1047 * @prod: the 16 bit USB Product ID 1048 * @num: bInterfaceNumber value 1049 * 1050 * This macro is used to create a struct usb_device_id that matches a 1051 * specific interface number of devices. 1052 */ 1053#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1054 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1055 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1056 .idVendor = (vend), \ 1057 .idProduct = (prod), \ 1058 .bInterfaceNumber = (num) 1059 1060/** 1061 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1062 * @cl: bDeviceClass value 1063 * @sc: bDeviceSubClass value 1064 * @pr: bDeviceProtocol value 1065 * 1066 * This macro is used to create a struct usb_device_id that matches a 1067 * specific class of devices. 1068 */ 1069#define USB_DEVICE_INFO(cl, sc, pr) \ 1070 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1071 .bDeviceClass = (cl), \ 1072 .bDeviceSubClass = (sc), \ 1073 .bDeviceProtocol = (pr) 1074 1075/** 1076 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1077 * @cl: bInterfaceClass value 1078 * @sc: bInterfaceSubClass value 1079 * @pr: bInterfaceProtocol value 1080 * 1081 * This macro is used to create a struct usb_device_id that matches a 1082 * specific class of interfaces. 1083 */ 1084#define USB_INTERFACE_INFO(cl, sc, pr) \ 1085 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1086 .bInterfaceClass = (cl), \ 1087 .bInterfaceSubClass = (sc), \ 1088 .bInterfaceProtocol = (pr) 1089 1090/** 1091 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1092 * @vend: the 16 bit USB Vendor ID 1093 * @prod: the 16 bit USB Product ID 1094 * @cl: bInterfaceClass value 1095 * @sc: bInterfaceSubClass value 1096 * @pr: bInterfaceProtocol value 1097 * 1098 * This macro is used to create a struct usb_device_id that matches a 1099 * specific device with a specific class of interfaces. 1100 * 1101 * This is especially useful when explicitly matching devices that have 1102 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1103 */ 1104#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1105 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1106 | USB_DEVICE_ID_MATCH_DEVICE, \ 1107 .idVendor = (vend), \ 1108 .idProduct = (prod), \ 1109 .bInterfaceClass = (cl), \ 1110 .bInterfaceSubClass = (sc), \ 1111 .bInterfaceProtocol = (pr) 1112 1113/** 1114 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1115 * @vend: the 16 bit USB Vendor ID 1116 * @cl: bInterfaceClass value 1117 * @sc: bInterfaceSubClass value 1118 * @pr: bInterfaceProtocol value 1119 * 1120 * This macro is used to create a struct usb_device_id that matches a 1121 * specific vendor with a specific class of interfaces. 1122 * 1123 * This is especially useful when explicitly matching devices that have 1124 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1125 */ 1126#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1127 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1128 | USB_DEVICE_ID_MATCH_VENDOR, \ 1129 .idVendor = (vend), \ 1130 .bInterfaceClass = (cl), \ 1131 .bInterfaceSubClass = (sc), \ 1132 .bInterfaceProtocol = (pr) 1133 1134/* ----------------------------------------------------------------------- */ 1135 1136/* Stuff for dynamic usb ids */ 1137struct usb_dynids { 1138 spinlock_t lock; 1139 struct list_head list; 1140}; 1141 1142struct usb_dynid { 1143 struct list_head node; 1144 struct usb_device_id id; 1145}; 1146 1147extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1148 const struct usb_device_id *id_table, 1149 struct device_driver *driver, 1150 const char *buf, size_t count); 1151 1152extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1153 1154/** 1155 * struct usbdrv_wrap - wrapper for driver-model structure 1156 * @driver: The driver-model core driver structure. 1157 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1158 */ 1159struct usbdrv_wrap { 1160 struct device_driver driver; 1161 int for_devices; 1162}; 1163 1164/** 1165 * struct usb_driver - identifies USB interface driver to usbcore 1166 * @name: The driver name should be unique among USB drivers, 1167 * and should normally be the same as the module name. 1168 * @probe: Called to see if the driver is willing to manage a particular 1169 * interface on a device. If it is, probe returns zero and uses 1170 * usb_set_intfdata() to associate driver-specific data with the 1171 * interface. It may also use usb_set_interface() to specify the 1172 * appropriate altsetting. If unwilling to manage the interface, 1173 * return -ENODEV, if genuine IO errors occurred, an appropriate 1174 * negative errno value. 1175 * @disconnect: Called when the interface is no longer accessible, usually 1176 * because its device has been (or is being) disconnected or the 1177 * driver module is being unloaded. 1178 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1179 * the "usbfs" filesystem. This lets devices provide ways to 1180 * expose information to user space regardless of where they 1181 * do (or don't) show up otherwise in the filesystem. 1182 * @suspend: Called when the device is going to be suspended by the 1183 * system either from system sleep or runtime suspend context. The 1184 * return value will be ignored in system sleep context, so do NOT 1185 * try to continue using the device if suspend fails in this case. 1186 * Instead, let the resume or reset-resume routine recover from 1187 * the failure. 1188 * @resume: Called when the device is being resumed by the system. 1189 * @reset_resume: Called when the suspended device has been reset instead 1190 * of being resumed. 1191 * @pre_reset: Called by usb_reset_device() when the device is about to be 1192 * reset. This routine must not return until the driver has no active 1193 * URBs for the device, and no more URBs may be submitted until the 1194 * post_reset method is called. 1195 * @post_reset: Called by usb_reset_device() after the device 1196 * has been reset 1197 * @id_table: USB drivers use ID table to support hotplugging. 1198 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1199 * or your driver's probe function will never get called. 1200 * @dev_groups: Attributes attached to the device that will be created once it 1201 * is bound to the driver. 1202 * @dynids: used internally to hold the list of dynamically added device 1203 * ids for this driver. 1204 * @drvwrap: Driver-model core structure wrapper. 1205 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1206 * added to this driver by preventing the sysfs file from being created. 1207 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1208 * for interfaces bound to this driver. 1209 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1210 * endpoints before calling the driver's disconnect method. 1211 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1212 * to initiate lower power link state transitions when an idle timeout 1213 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1214 * 1215 * USB interface drivers must provide a name, probe() and disconnect() 1216 * methods, and an id_table. Other driver fields are optional. 1217 * 1218 * The id_table is used in hotplugging. It holds a set of descriptors, 1219 * and specialized data may be associated with each entry. That table 1220 * is used by both user and kernel mode hotplugging support. 1221 * 1222 * The probe() and disconnect() methods are called in a context where 1223 * they can sleep, but they should avoid abusing the privilege. Most 1224 * work to connect to a device should be done when the device is opened, 1225 * and undone at the last close. The disconnect code needs to address 1226 * concurrency issues with respect to open() and close() methods, as 1227 * well as forcing all pending I/O requests to complete (by unlinking 1228 * them as necessary, and blocking until the unlinks complete). 1229 */ 1230struct usb_driver { 1231 const char *name; 1232 1233 int (*probe) (struct usb_interface *intf, 1234 const struct usb_device_id *id); 1235 1236 void (*disconnect) (struct usb_interface *intf); 1237 1238 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1239 void *buf); 1240 1241 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1242 int (*resume) (struct usb_interface *intf); 1243 int (*reset_resume)(struct usb_interface *intf); 1244 1245 int (*pre_reset)(struct usb_interface *intf); 1246 int (*post_reset)(struct usb_interface *intf); 1247 1248 const struct usb_device_id *id_table; 1249 const struct attribute_group **dev_groups; 1250 1251 struct usb_dynids dynids; 1252 struct usbdrv_wrap drvwrap; 1253 unsigned int no_dynamic_id:1; 1254 unsigned int supports_autosuspend:1; 1255 unsigned int disable_hub_initiated_lpm:1; 1256 unsigned int soft_unbind:1; 1257}; 1258#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1259 1260/** 1261 * struct usb_device_driver - identifies USB device driver to usbcore 1262 * @name: The driver name should be unique among USB drivers, 1263 * and should normally be the same as the module name. 1264 * @match: If set, used for better device/driver matching. 1265 * @probe: Called to see if the driver is willing to manage a particular 1266 * device. If it is, probe returns zero and uses dev_set_drvdata() 1267 * to associate driver-specific data with the device. If unwilling 1268 * to manage the device, return a negative errno value. 1269 * @disconnect: Called when the device is no longer accessible, usually 1270 * because it has been (or is being) disconnected or the driver's 1271 * module is being unloaded. 1272 * @suspend: Called when the device is going to be suspended by the system. 1273 * @resume: Called when the device is being resumed by the system. 1274 * @dev_groups: Attributes attached to the device that will be created once it 1275 * is bound to the driver. 1276 * @drvwrap: Driver-model core structure wrapper. 1277 * @id_table: used with @match() to select better matching driver at 1278 * probe() time. 1279 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1280 * for devices bound to this driver. 1281 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1282 * resume and suspend functions will be called in addition to the driver's 1283 * own, so this part of the setup does not need to be replicated. 1284 * 1285 * USB drivers must provide all the fields listed above except drvwrap, 1286 * match, and id_table. 1287 */ 1288struct usb_device_driver { 1289 const char *name; 1290 1291 bool (*match) (struct usb_device *udev); 1292 int (*probe) (struct usb_device *udev); 1293 void (*disconnect) (struct usb_device *udev); 1294 1295 int (*suspend) (struct usb_device *udev, pm_message_t message); 1296 int (*resume) (struct usb_device *udev, pm_message_t message); 1297 const struct attribute_group **dev_groups; 1298 struct usbdrv_wrap drvwrap; 1299 const struct usb_device_id *id_table; 1300 unsigned int supports_autosuspend:1; 1301 unsigned int generic_subclass:1; 1302}; 1303#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1304 drvwrap.driver) 1305 1306/** 1307 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1308 * @name: the usb class device name for this driver. Will show up in sysfs. 1309 * @devnode: Callback to provide a naming hint for a possible 1310 * device node to create. 1311 * @fops: pointer to the struct file_operations of this driver. 1312 * @minor_base: the start of the minor range for this driver. 1313 * 1314 * This structure is used for the usb_register_dev() and 1315 * usb_deregister_dev() functions, to consolidate a number of the 1316 * parameters used for them. 1317 */ 1318struct usb_class_driver { 1319 char *name; 1320 char *(*devnode)(const struct device *dev, umode_t *mode); 1321 const struct file_operations *fops; 1322 int minor_base; 1323}; 1324 1325/* 1326 * use these in module_init()/module_exit() 1327 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1328 */ 1329extern int usb_register_driver(struct usb_driver *, struct module *, 1330 const char *); 1331 1332/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1333#define usb_register(driver) \ 1334 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1335 1336extern void usb_deregister(struct usb_driver *); 1337 1338/** 1339 * module_usb_driver() - Helper macro for registering a USB driver 1340 * @__usb_driver: usb_driver struct 1341 * 1342 * Helper macro for USB drivers which do not do anything special in module 1343 * init/exit. This eliminates a lot of boilerplate. Each module may only 1344 * use this macro once, and calling it replaces module_init() and module_exit() 1345 */ 1346#define module_usb_driver(__usb_driver) \ 1347 module_driver(__usb_driver, usb_register, \ 1348 usb_deregister) 1349 1350extern int usb_register_device_driver(struct usb_device_driver *, 1351 struct module *); 1352extern void usb_deregister_device_driver(struct usb_device_driver *); 1353 1354extern int usb_register_dev(struct usb_interface *intf, 1355 struct usb_class_driver *class_driver); 1356extern void usb_deregister_dev(struct usb_interface *intf, 1357 struct usb_class_driver *class_driver); 1358 1359extern int usb_disabled(void); 1360 1361/* ----------------------------------------------------------------------- */ 1362 1363/* 1364 * URB support, for asynchronous request completions 1365 */ 1366 1367/* 1368 * urb->transfer_flags: 1369 * 1370 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1371 */ 1372#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1373#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1374 * slot in the schedule */ 1375#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1376#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1377#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1378 * needed */ 1379#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1380 1381/* The following flags are used internally by usbcore and HCDs */ 1382#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1383#define URB_DIR_OUT 0 1384#define URB_DIR_MASK URB_DIR_IN 1385 1386#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1387#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1388#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1389#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1390#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1391#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1392#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1393#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1394 1395struct usb_iso_packet_descriptor { 1396 unsigned int offset; 1397 unsigned int length; /* expected length */ 1398 unsigned int actual_length; 1399 int status; 1400}; 1401 1402struct urb; 1403 1404struct usb_anchor { 1405 struct list_head urb_list; 1406 wait_queue_head_t wait; 1407 spinlock_t lock; 1408 atomic_t suspend_wakeups; 1409 unsigned int poisoned:1; 1410}; 1411 1412static inline void init_usb_anchor(struct usb_anchor *anchor) 1413{ 1414 memset(anchor, 0, sizeof(*anchor)); 1415 INIT_LIST_HEAD(&anchor->urb_list); 1416 init_waitqueue_head(&anchor->wait); 1417 spin_lock_init(&anchor->lock); 1418} 1419 1420typedef void (*usb_complete_t)(struct urb *); 1421 1422/** 1423 * struct urb - USB Request Block 1424 * @urb_list: For use by current owner of the URB. 1425 * @anchor_list: membership in the list of an anchor 1426 * @anchor: to anchor URBs to a common mooring 1427 * @ep: Points to the endpoint's data structure. Will eventually 1428 * replace @pipe. 1429 * @pipe: Holds endpoint number, direction, type, and more. 1430 * Create these values with the eight macros available; 1431 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1432 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1433 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1434 * numbers range from zero to fifteen. Note that "in" endpoint two 1435 * is a different endpoint (and pipe) from "out" endpoint two. 1436 * The current configuration controls the existence, type, and 1437 * maximum packet size of any given endpoint. 1438 * @stream_id: the endpoint's stream ID for bulk streams 1439 * @dev: Identifies the USB device to perform the request. 1440 * @status: This is read in non-iso completion functions to get the 1441 * status of the particular request. ISO requests only use it 1442 * to tell whether the URB was unlinked; detailed status for 1443 * each frame is in the fields of the iso_frame-desc. 1444 * @transfer_flags: A variety of flags may be used to affect how URB 1445 * submission, unlinking, or operation are handled. Different 1446 * kinds of URB can use different flags. 1447 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1448 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1449 * (however, do not leave garbage in transfer_buffer even then). 1450 * This buffer must be suitable for DMA; allocate it with 1451 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1452 * of this buffer will be modified. This buffer is used for the data 1453 * stage of control transfers. 1454 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1455 * the device driver is saying that it provided this DMA address, 1456 * which the host controller driver should use in preference to the 1457 * transfer_buffer. 1458 * @sg: scatter gather buffer list, the buffer size of each element in 1459 * the list (except the last) must be divisible by the endpoint's 1460 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1461 * @num_mapped_sgs: (internal) number of mapped sg entries 1462 * @num_sgs: number of entries in the sg list 1463 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1464 * be broken up into chunks according to the current maximum packet 1465 * size for the endpoint, which is a function of the configuration 1466 * and is encoded in the pipe. When the length is zero, neither 1467 * transfer_buffer nor transfer_dma is used. 1468 * @actual_length: This is read in non-iso completion functions, and 1469 * it tells how many bytes (out of transfer_buffer_length) were 1470 * transferred. It will normally be the same as requested, unless 1471 * either an error was reported or a short read was performed. 1472 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1473 * short reads be reported as errors. 1474 * @setup_packet: Only used for control transfers, this points to eight bytes 1475 * of setup data. Control transfers always start by sending this data 1476 * to the device. Then transfer_buffer is read or written, if needed. 1477 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1478 * this field; setup_packet must point to a valid buffer. 1479 * @start_frame: Returns the initial frame for isochronous transfers. 1480 * @number_of_packets: Lists the number of ISO transfer buffers. 1481 * @interval: Specifies the polling interval for interrupt or isochronous 1482 * transfers. The units are frames (milliseconds) for full and low 1483 * speed devices, and microframes (1/8 millisecond) for highspeed 1484 * and SuperSpeed devices. 1485 * @error_count: Returns the number of ISO transfers that reported errors. 1486 * @context: For use in completion functions. This normally points to 1487 * request-specific driver context. 1488 * @complete: Completion handler. This URB is passed as the parameter to the 1489 * completion function. The completion function may then do what 1490 * it likes with the URB, including resubmitting or freeing it. 1491 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1492 * collect the transfer status for each buffer. 1493 * 1494 * This structure identifies USB transfer requests. URBs must be allocated by 1495 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1496 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1497 * are submitted using usb_submit_urb(), and pending requests may be canceled 1498 * using usb_unlink_urb() or usb_kill_urb(). 1499 * 1500 * Data Transfer Buffers: 1501 * 1502 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1503 * taken from the general page pool. That is provided by transfer_buffer 1504 * (control requests also use setup_packet), and host controller drivers 1505 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1506 * mapping operations can be expensive on some platforms (perhaps using a dma 1507 * bounce buffer or talking to an IOMMU), 1508 * although they're cheap on commodity x86 and ppc hardware. 1509 * 1510 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1511 * which tells the host controller driver that no such mapping is needed for 1512 * the transfer_buffer since 1513 * the device driver is DMA-aware. For example, a device driver might 1514 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1515 * When this transfer flag is provided, host controller drivers will 1516 * attempt to use the dma address found in the transfer_dma 1517 * field rather than determining a dma address themselves. 1518 * 1519 * Note that transfer_buffer must still be set if the controller 1520 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1521 * to root hub. If you have to transfer between highmem zone and the device 1522 * on such controller, create a bounce buffer or bail out with an error. 1523 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1524 * capable, assign NULL to it, so that usbmon knows not to use the value. 1525 * The setup_packet must always be set, so it cannot be located in highmem. 1526 * 1527 * Initialization: 1528 * 1529 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1530 * zero), and complete fields. All URBs must also initialize 1531 * transfer_buffer and transfer_buffer_length. They may provide the 1532 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1533 * to be treated as errors; that flag is invalid for write requests. 1534 * 1535 * Bulk URBs may 1536 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1537 * should always terminate with a short packet, even if it means adding an 1538 * extra zero length packet. 1539 * 1540 * Control URBs must provide a valid pointer in the setup_packet field. 1541 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1542 * beforehand. 1543 * 1544 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1545 * or, for highspeed devices, 125 microsecond units) 1546 * to poll for transfers. After the URB has been submitted, the interval 1547 * field reflects how the transfer was actually scheduled. 1548 * The polling interval may be more frequent than requested. 1549 * For example, some controllers have a maximum interval of 32 milliseconds, 1550 * while others support intervals of up to 1024 milliseconds. 1551 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1552 * endpoints, as well as high speed interrupt endpoints, the encoding of 1553 * the transfer interval in the endpoint descriptor is logarithmic. 1554 * Device drivers must convert that value to linear units themselves.) 1555 * 1556 * If an isochronous endpoint queue isn't already running, the host 1557 * controller will schedule a new URB to start as soon as bandwidth 1558 * utilization allows. If the queue is running then a new URB will be 1559 * scheduled to start in the first transfer slot following the end of the 1560 * preceding URB, if that slot has not already expired. If the slot has 1561 * expired (which can happen when IRQ delivery is delayed for a long time), 1562 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1563 * is clear then the URB will be scheduled to start in the expired slot, 1564 * implying that some of its packets will not be transferred; if the flag 1565 * is set then the URB will be scheduled in the first unexpired slot, 1566 * breaking the queue's synchronization. Upon URB completion, the 1567 * start_frame field will be set to the (micro)frame number in which the 1568 * transfer was scheduled. Ranges for frame counter values are HC-specific 1569 * and can go from as low as 256 to as high as 65536 frames. 1570 * 1571 * Isochronous URBs have a different data transfer model, in part because 1572 * the quality of service is only "best effort". Callers provide specially 1573 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1574 * at the end. Each such packet is an individual ISO transfer. Isochronous 1575 * URBs are normally queued, submitted by drivers to arrange that 1576 * transfers are at least double buffered, and then explicitly resubmitted 1577 * in completion handlers, so 1578 * that data (such as audio or video) streams at as constant a rate as the 1579 * host controller scheduler can support. 1580 * 1581 * Completion Callbacks: 1582 * 1583 * The completion callback is made in_interrupt(), and one of the first 1584 * things that a completion handler should do is check the status field. 1585 * The status field is provided for all URBs. It is used to report 1586 * unlinked URBs, and status for all non-ISO transfers. It should not 1587 * be examined before the URB is returned to the completion handler. 1588 * 1589 * The context field is normally used to link URBs back to the relevant 1590 * driver or request state. 1591 * 1592 * When the completion callback is invoked for non-isochronous URBs, the 1593 * actual_length field tells how many bytes were transferred. This field 1594 * is updated even when the URB terminated with an error or was unlinked. 1595 * 1596 * ISO transfer status is reported in the status and actual_length fields 1597 * of the iso_frame_desc array, and the number of errors is reported in 1598 * error_count. Completion callbacks for ISO transfers will normally 1599 * (re)submit URBs to ensure a constant transfer rate. 1600 * 1601 * Note that even fields marked "public" should not be touched by the driver 1602 * when the urb is owned by the hcd, that is, since the call to 1603 * usb_submit_urb() till the entry into the completion routine. 1604 */ 1605struct urb { 1606 /* private: usb core and host controller only fields in the urb */ 1607 struct kref kref; /* reference count of the URB */ 1608 int unlinked; /* unlink error code */ 1609 void *hcpriv; /* private data for host controller */ 1610 atomic_t use_count; /* concurrent submissions counter */ 1611 atomic_t reject; /* submissions will fail */ 1612 1613 /* public: documented fields in the urb that can be used by drivers */ 1614 struct list_head urb_list; /* list head for use by the urb's 1615 * current owner */ 1616 struct list_head anchor_list; /* the URB may be anchored */ 1617 struct usb_anchor *anchor; 1618 struct usb_device *dev; /* (in) pointer to associated device */ 1619 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1620 unsigned int pipe; /* (in) pipe information */ 1621 unsigned int stream_id; /* (in) stream ID */ 1622 int status; /* (return) non-ISO status */ 1623 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1624 void *transfer_buffer; /* (in) associated data buffer */ 1625 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1626 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1627 int num_mapped_sgs; /* (internal) mapped sg entries */ 1628 int num_sgs; /* (in) number of entries in the sg list */ 1629 u32 transfer_buffer_length; /* (in) data buffer length */ 1630 u32 actual_length; /* (return) actual transfer length */ 1631 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1632 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1633 int start_frame; /* (modify) start frame (ISO) */ 1634 int number_of_packets; /* (in) number of ISO packets */ 1635 int interval; /* (modify) transfer interval 1636 * (INT/ISO) */ 1637 int error_count; /* (return) number of ISO errors */ 1638 void *context; /* (in) context for completion */ 1639 usb_complete_t complete; /* (in) completion routine */ 1640 struct usb_iso_packet_descriptor iso_frame_desc[]; 1641 /* (in) ISO ONLY */ 1642}; 1643 1644/* ----------------------------------------------------------------------- */ 1645 1646/** 1647 * usb_fill_control_urb - initializes a control urb 1648 * @urb: pointer to the urb to initialize. 1649 * @dev: pointer to the struct usb_device for this urb. 1650 * @pipe: the endpoint pipe 1651 * @setup_packet: pointer to the setup_packet buffer. The buffer must be 1652 * suitable for DMA. 1653 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1654 * suitable for DMA. 1655 * @buffer_length: length of the transfer buffer 1656 * @complete_fn: pointer to the usb_complete_t function 1657 * @context: what to set the urb context to. 1658 * 1659 * Initializes a control urb with the proper information needed to submit 1660 * it to a device. 1661 * 1662 * The transfer buffer and the setup_packet buffer will most likely be filled 1663 * or read via DMA. The simplest way to get a buffer that can be DMAed to is 1664 * allocating it via kmalloc() or equivalent, even for very small buffers. 1665 * If the buffers are embedded in a bigger structure, there is a risk that 1666 * the buffer itself, the previous fields and/or the next fields are corrupted 1667 * due to cache incoherencies; or slowed down if they are evicted from the 1668 * cache. For more information, check &struct urb. 1669 * 1670 */ 1671static inline void usb_fill_control_urb(struct urb *urb, 1672 struct usb_device *dev, 1673 unsigned int pipe, 1674 unsigned char *setup_packet, 1675 void *transfer_buffer, 1676 int buffer_length, 1677 usb_complete_t complete_fn, 1678 void *context) 1679{ 1680 urb->dev = dev; 1681 urb->pipe = pipe; 1682 urb->setup_packet = setup_packet; 1683 urb->transfer_buffer = transfer_buffer; 1684 urb->transfer_buffer_length = buffer_length; 1685 urb->complete = complete_fn; 1686 urb->context = context; 1687} 1688 1689/** 1690 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1691 * @urb: pointer to the urb to initialize. 1692 * @dev: pointer to the struct usb_device for this urb. 1693 * @pipe: the endpoint pipe 1694 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1695 * suitable for DMA. 1696 * @buffer_length: length of the transfer buffer 1697 * @complete_fn: pointer to the usb_complete_t function 1698 * @context: what to set the urb context to. 1699 * 1700 * Initializes a bulk urb with the proper information needed to submit it 1701 * to a device. 1702 * 1703 * Refer to usb_fill_control_urb() for a description of the requirements for 1704 * transfer_buffer. 1705 */ 1706static inline void usb_fill_bulk_urb(struct urb *urb, 1707 struct usb_device *dev, 1708 unsigned int pipe, 1709 void *transfer_buffer, 1710 int buffer_length, 1711 usb_complete_t complete_fn, 1712 void *context) 1713{ 1714 urb->dev = dev; 1715 urb->pipe = pipe; 1716 urb->transfer_buffer = transfer_buffer; 1717 urb->transfer_buffer_length = buffer_length; 1718 urb->complete = complete_fn; 1719 urb->context = context; 1720} 1721 1722/** 1723 * usb_fill_int_urb - macro to help initialize a interrupt urb 1724 * @urb: pointer to the urb to initialize. 1725 * @dev: pointer to the struct usb_device for this urb. 1726 * @pipe: the endpoint pipe 1727 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1728 * suitable for DMA. 1729 * @buffer_length: length of the transfer buffer 1730 * @complete_fn: pointer to the usb_complete_t function 1731 * @context: what to set the urb context to. 1732 * @interval: what to set the urb interval to, encoded like 1733 * the endpoint descriptor's bInterval value. 1734 * 1735 * Initializes a interrupt urb with the proper information needed to submit 1736 * it to a device. 1737 * 1738 * Refer to usb_fill_control_urb() for a description of the requirements for 1739 * transfer_buffer. 1740 * 1741 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1742 * encoding of the endpoint interval, and express polling intervals in 1743 * microframes (eight per millisecond) rather than in frames (one per 1744 * millisecond). 1745 * 1746 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1747 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1748 * through to the host controller, rather than being translated into microframe 1749 * units. 1750 */ 1751static inline void usb_fill_int_urb(struct urb *urb, 1752 struct usb_device *dev, 1753 unsigned int pipe, 1754 void *transfer_buffer, 1755 int buffer_length, 1756 usb_complete_t complete_fn, 1757 void *context, 1758 int interval) 1759{ 1760 urb->dev = dev; 1761 urb->pipe = pipe; 1762 urb->transfer_buffer = transfer_buffer; 1763 urb->transfer_buffer_length = buffer_length; 1764 urb->complete = complete_fn; 1765 urb->context = context; 1766 1767 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1768 /* make sure interval is within allowed range */ 1769 interval = clamp(interval, 1, 16); 1770 1771 urb->interval = 1 << (interval - 1); 1772 } else { 1773 urb->interval = interval; 1774 } 1775 1776 urb->start_frame = -1; 1777} 1778 1779extern void usb_init_urb(struct urb *urb); 1780extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1781extern void usb_free_urb(struct urb *urb); 1782#define usb_put_urb usb_free_urb 1783extern struct urb *usb_get_urb(struct urb *urb); 1784extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1785extern int usb_unlink_urb(struct urb *urb); 1786extern void usb_kill_urb(struct urb *urb); 1787extern void usb_poison_urb(struct urb *urb); 1788extern void usb_unpoison_urb(struct urb *urb); 1789extern void usb_block_urb(struct urb *urb); 1790extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1791extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1792extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1793extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1794extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1795extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1796extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1797extern void usb_unanchor_urb(struct urb *urb); 1798extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1799 unsigned int timeout); 1800extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1801extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1802extern int usb_anchor_empty(struct usb_anchor *anchor); 1803 1804#define usb_unblock_urb usb_unpoison_urb 1805 1806/** 1807 * usb_urb_dir_in - check if an URB describes an IN transfer 1808 * @urb: URB to be checked 1809 * 1810 * Return: 1 if @urb describes an IN transfer (device-to-host), 1811 * otherwise 0. 1812 */ 1813static inline int usb_urb_dir_in(struct urb *urb) 1814{ 1815 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1816} 1817 1818/** 1819 * usb_urb_dir_out - check if an URB describes an OUT transfer 1820 * @urb: URB to be checked 1821 * 1822 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1823 * otherwise 0. 1824 */ 1825static inline int usb_urb_dir_out(struct urb *urb) 1826{ 1827 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1828} 1829 1830int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1831int usb_urb_ep_type_check(const struct urb *urb); 1832 1833void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1834 gfp_t mem_flags, dma_addr_t *dma); 1835void usb_free_coherent(struct usb_device *dev, size_t size, 1836 void *addr, dma_addr_t dma); 1837 1838#if 0 1839struct urb *usb_buffer_map(struct urb *urb); 1840void usb_buffer_dmasync(struct urb *urb); 1841void usb_buffer_unmap(struct urb *urb); 1842#endif 1843 1844struct scatterlist; 1845int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1846 struct scatterlist *sg, int nents); 1847#if 0 1848void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1849 struct scatterlist *sg, int n_hw_ents); 1850#endif 1851void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1852 struct scatterlist *sg, int n_hw_ents); 1853 1854/*-------------------------------------------------------------------* 1855 * SYNCHRONOUS CALL SUPPORT * 1856 *-------------------------------------------------------------------*/ 1857 1858extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1859 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1860 void *data, __u16 size, int timeout); 1861extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1862 void *data, int len, int *actual_length, int timeout); 1863extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1864 void *data, int len, int *actual_length, 1865 int timeout); 1866 1867/* wrappers around usb_control_msg() for the most common standard requests */ 1868int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1869 __u8 requesttype, __u16 value, __u16 index, 1870 const void *data, __u16 size, int timeout, 1871 gfp_t memflags); 1872int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1873 __u8 requesttype, __u16 value, __u16 index, 1874 void *data, __u16 size, int timeout, 1875 gfp_t memflags); 1876extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1877 unsigned char descindex, void *buf, int size); 1878extern int usb_get_status(struct usb_device *dev, 1879 int recip, int type, int target, void *data); 1880 1881static inline int usb_get_std_status(struct usb_device *dev, 1882 int recip, int target, void *data) 1883{ 1884 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1885 data); 1886} 1887 1888static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1889{ 1890 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1891 0, data); 1892} 1893 1894extern int usb_string(struct usb_device *dev, int index, 1895 char *buf, size_t size); 1896extern char *usb_cache_string(struct usb_device *udev, int index); 1897 1898/* wrappers that also update important state inside usbcore */ 1899extern int usb_clear_halt(struct usb_device *dev, int pipe); 1900extern int usb_reset_configuration(struct usb_device *dev); 1901extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1902extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1903 1904/* this request isn't really synchronous, but it belongs with the others */ 1905extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1906 1907/* choose and set configuration for device */ 1908extern int usb_choose_configuration(struct usb_device *udev); 1909extern int usb_set_configuration(struct usb_device *dev, int configuration); 1910 1911/* 1912 * timeouts, in milliseconds, used for sending/receiving control messages 1913 * they typically complete within a few frames (msec) after they're issued 1914 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1915 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1916 */ 1917#define USB_CTRL_GET_TIMEOUT 5000 1918#define USB_CTRL_SET_TIMEOUT 5000 1919 1920 1921/** 1922 * struct usb_sg_request - support for scatter/gather I/O 1923 * @status: zero indicates success, else negative errno 1924 * @bytes: counts bytes transferred. 1925 * 1926 * These requests are initialized using usb_sg_init(), and then are used 1927 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1928 * members of the request object aren't for driver access. 1929 * 1930 * The status and bytecount values are valid only after usb_sg_wait() 1931 * returns. If the status is zero, then the bytecount matches the total 1932 * from the request. 1933 * 1934 * After an error completion, drivers may need to clear a halt condition 1935 * on the endpoint. 1936 */ 1937struct usb_sg_request { 1938 int status; 1939 size_t bytes; 1940 1941 /* private: 1942 * members below are private to usbcore, 1943 * and are not provided for driver access! 1944 */ 1945 spinlock_t lock; 1946 1947 struct usb_device *dev; 1948 int pipe; 1949 1950 int entries; 1951 struct urb **urbs; 1952 1953 int count; 1954 struct completion complete; 1955}; 1956 1957int usb_sg_init( 1958 struct usb_sg_request *io, 1959 struct usb_device *dev, 1960 unsigned pipe, 1961 unsigned period, 1962 struct scatterlist *sg, 1963 int nents, 1964 size_t length, 1965 gfp_t mem_flags 1966); 1967void usb_sg_cancel(struct usb_sg_request *io); 1968void usb_sg_wait(struct usb_sg_request *io); 1969 1970 1971/* ----------------------------------------------------------------------- */ 1972 1973/* 1974 * For various legacy reasons, Linux has a small cookie that's paired with 1975 * a struct usb_device to identify an endpoint queue. Queue characteristics 1976 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1977 * an unsigned int encoded as: 1978 * 1979 * - direction: bit 7 (0 = Host-to-Device [Out], 1980 * 1 = Device-to-Host [In] ... 1981 * like endpoint bEndpointAddress) 1982 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1983 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1984 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1985 * 10 = control, 11 = bulk) 1986 * 1987 * Given the device address and endpoint descriptor, pipes are redundant. 1988 */ 1989 1990/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1991/* (yet ... they're the values used by usbfs) */ 1992#define PIPE_ISOCHRONOUS 0 1993#define PIPE_INTERRUPT 1 1994#define PIPE_CONTROL 2 1995#define PIPE_BULK 3 1996 1997#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1998#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1999 2000#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 2001#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 2002 2003#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 2004#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 2005#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 2006#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 2007#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 2008 2009static inline unsigned int __create_pipe(struct usb_device *dev, 2010 unsigned int endpoint) 2011{ 2012 return (dev->devnum << 8) | (endpoint << 15); 2013} 2014 2015/* Create various pipes... */ 2016#define usb_sndctrlpipe(dev, endpoint) \ 2017 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 2018#define usb_rcvctrlpipe(dev, endpoint) \ 2019 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2020#define usb_sndisocpipe(dev, endpoint) \ 2021 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 2022#define usb_rcvisocpipe(dev, endpoint) \ 2023 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2024#define usb_sndbulkpipe(dev, endpoint) \ 2025 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 2026#define usb_rcvbulkpipe(dev, endpoint) \ 2027 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2028#define usb_sndintpipe(dev, endpoint) \ 2029 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 2030#define usb_rcvintpipe(dev, endpoint) \ 2031 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2032 2033static inline struct usb_host_endpoint * 2034usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 2035{ 2036 struct usb_host_endpoint **eps; 2037 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 2038 return eps[usb_pipeendpoint(pipe)]; 2039} 2040 2041static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 2042{ 2043 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 2044 2045 if (!ep) 2046 return 0; 2047 2048 /* NOTE: only 0x07ff bits are for packet size... */ 2049 return usb_endpoint_maxp(&ep->desc); 2050} 2051 2052/* translate USB error codes to codes user space understands */ 2053static inline int usb_translate_errors(int error_code) 2054{ 2055 switch (error_code) { 2056 case 0: 2057 case -ENOMEM: 2058 case -ENODEV: 2059 case -EOPNOTSUPP: 2060 return error_code; 2061 default: 2062 return -EIO; 2063 } 2064} 2065 2066/* Events from the usb core */ 2067#define USB_DEVICE_ADD 0x0001 2068#define USB_DEVICE_REMOVE 0x0002 2069#define USB_BUS_ADD 0x0003 2070#define USB_BUS_REMOVE 0x0004 2071extern void usb_register_notify(struct notifier_block *nb); 2072extern void usb_unregister_notify(struct notifier_block *nb); 2073 2074/* debugfs stuff */ 2075extern struct dentry *usb_debug_root; 2076 2077/* LED triggers */ 2078enum usb_led_event { 2079 USB_LED_EVENT_HOST = 0, 2080 USB_LED_EVENT_GADGET = 1, 2081}; 2082 2083#ifdef CONFIG_USB_LED_TRIG 2084extern void usb_led_activity(enum usb_led_event ev); 2085#else 2086static inline void usb_led_activity(enum usb_led_event ev) {} 2087#endif 2088 2089#endif /* __KERNEL__ */ 2090 2091#endif