Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13
14#include <linux/pid.h>
15#include <linux/sem.h>
16#include <linux/shm.h>
17#include <linux/kmsan_types.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
21#include <linux/irqflags.h>
22#include <linux/seccomp.h>
23#include <linux/nodemask.h>
24#include <linux/rcupdate.h>
25#include <linux/refcount.h>
26#include <linux/resource.h>
27#include <linux/latencytop.h>
28#include <linux/sched/prio.h>
29#include <linux/sched/types.h>
30#include <linux/signal_types.h>
31#include <linux/syscall_user_dispatch.h>
32#include <linux/mm_types_task.h>
33#include <linux/task_io_accounting.h>
34#include <linux/posix-timers.h>
35#include <linux/rseq.h>
36#include <linux/seqlock.h>
37#include <linux/kcsan.h>
38#include <linux/rv.h>
39#include <linux/livepatch_sched.h>
40#include <asm/kmap_size.h>
41
42/* task_struct member predeclarations (sorted alphabetically): */
43struct audit_context;
44struct bio_list;
45struct blk_plug;
46struct bpf_local_storage;
47struct bpf_run_ctx;
48struct capture_control;
49struct cfs_rq;
50struct fs_struct;
51struct futex_pi_state;
52struct io_context;
53struct io_uring_task;
54struct mempolicy;
55struct nameidata;
56struct nsproxy;
57struct perf_event_context;
58struct pid_namespace;
59struct pipe_inode_info;
60struct rcu_node;
61struct reclaim_state;
62struct robust_list_head;
63struct root_domain;
64struct rq;
65struct sched_attr;
66struct sched_param;
67struct seq_file;
68struct sighand_struct;
69struct signal_struct;
70struct task_delay_info;
71struct task_group;
72struct user_event_mm;
73
74/*
75 * Task state bitmask. NOTE! These bits are also
76 * encoded in fs/proc/array.c: get_task_state().
77 *
78 * We have two separate sets of flags: task->state
79 * is about runnability, while task->exit_state are
80 * about the task exiting. Confusing, but this way
81 * modifying one set can't modify the other one by
82 * mistake.
83 */
84
85/* Used in tsk->state: */
86#define TASK_RUNNING 0x00000000
87#define TASK_INTERRUPTIBLE 0x00000001
88#define TASK_UNINTERRUPTIBLE 0x00000002
89#define __TASK_STOPPED 0x00000004
90#define __TASK_TRACED 0x00000008
91/* Used in tsk->exit_state: */
92#define EXIT_DEAD 0x00000010
93#define EXIT_ZOMBIE 0x00000020
94#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
95/* Used in tsk->state again: */
96#define TASK_PARKED 0x00000040
97#define TASK_DEAD 0x00000080
98#define TASK_WAKEKILL 0x00000100
99#define TASK_WAKING 0x00000200
100#define TASK_NOLOAD 0x00000400
101#define TASK_NEW 0x00000800
102#define TASK_RTLOCK_WAIT 0x00001000
103#define TASK_FREEZABLE 0x00002000
104#define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
105#define TASK_FROZEN 0x00008000
106#define TASK_STATE_MAX 0x00010000
107
108#define TASK_ANY (TASK_STATE_MAX-1)
109
110/*
111 * DO NOT ADD ANY NEW USERS !
112 */
113#define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
114
115/* Convenience macros for the sake of set_current_state: */
116#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
117#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
118#define TASK_TRACED __TASK_TRACED
119
120#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
121
122/* Convenience macros for the sake of wake_up(): */
123#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
124
125/* get_task_state(): */
126#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
127 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
128 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
129 TASK_PARKED)
130
131#define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
132
133#define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
134#define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
135#define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
136
137/*
138 * Special states are those that do not use the normal wait-loop pattern. See
139 * the comment with set_special_state().
140 */
141#define is_special_task_state(state) \
142 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
143
144#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
145# define debug_normal_state_change(state_value) \
146 do { \
147 WARN_ON_ONCE(is_special_task_state(state_value)); \
148 current->task_state_change = _THIS_IP_; \
149 } while (0)
150
151# define debug_special_state_change(state_value) \
152 do { \
153 WARN_ON_ONCE(!is_special_task_state(state_value)); \
154 current->task_state_change = _THIS_IP_; \
155 } while (0)
156
157# define debug_rtlock_wait_set_state() \
158 do { \
159 current->saved_state_change = current->task_state_change;\
160 current->task_state_change = _THIS_IP_; \
161 } while (0)
162
163# define debug_rtlock_wait_restore_state() \
164 do { \
165 current->task_state_change = current->saved_state_change;\
166 } while (0)
167
168#else
169# define debug_normal_state_change(cond) do { } while (0)
170# define debug_special_state_change(cond) do { } while (0)
171# define debug_rtlock_wait_set_state() do { } while (0)
172# define debug_rtlock_wait_restore_state() do { } while (0)
173#endif
174
175/*
176 * set_current_state() includes a barrier so that the write of current->state
177 * is correctly serialised wrt the caller's subsequent test of whether to
178 * actually sleep:
179 *
180 * for (;;) {
181 * set_current_state(TASK_UNINTERRUPTIBLE);
182 * if (CONDITION)
183 * break;
184 *
185 * schedule();
186 * }
187 * __set_current_state(TASK_RUNNING);
188 *
189 * If the caller does not need such serialisation (because, for instance, the
190 * CONDITION test and condition change and wakeup are under the same lock) then
191 * use __set_current_state().
192 *
193 * The above is typically ordered against the wakeup, which does:
194 *
195 * CONDITION = 1;
196 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
197 *
198 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
199 * accessing p->state.
200 *
201 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
202 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
203 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
204 *
205 * However, with slightly different timing the wakeup TASK_RUNNING store can
206 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
207 * a problem either because that will result in one extra go around the loop
208 * and our @cond test will save the day.
209 *
210 * Also see the comments of try_to_wake_up().
211 */
212#define __set_current_state(state_value) \
213 do { \
214 debug_normal_state_change((state_value)); \
215 WRITE_ONCE(current->__state, (state_value)); \
216 } while (0)
217
218#define set_current_state(state_value) \
219 do { \
220 debug_normal_state_change((state_value)); \
221 smp_store_mb(current->__state, (state_value)); \
222 } while (0)
223
224/*
225 * set_special_state() should be used for those states when the blocking task
226 * can not use the regular condition based wait-loop. In that case we must
227 * serialize against wakeups such that any possible in-flight TASK_RUNNING
228 * stores will not collide with our state change.
229 */
230#define set_special_state(state_value) \
231 do { \
232 unsigned long flags; /* may shadow */ \
233 \
234 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
235 debug_special_state_change((state_value)); \
236 WRITE_ONCE(current->__state, (state_value)); \
237 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
238 } while (0)
239
240/*
241 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
242 *
243 * RT's spin/rwlock substitutions are state preserving. The state of the
244 * task when blocking on the lock is saved in task_struct::saved_state and
245 * restored after the lock has been acquired. These operations are
246 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
247 * lock related wakeups while the task is blocked on the lock are
248 * redirected to operate on task_struct::saved_state to ensure that these
249 * are not dropped. On restore task_struct::saved_state is set to
250 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
251 *
252 * The lock operation looks like this:
253 *
254 * current_save_and_set_rtlock_wait_state();
255 * for (;;) {
256 * if (try_lock())
257 * break;
258 * raw_spin_unlock_irq(&lock->wait_lock);
259 * schedule_rtlock();
260 * raw_spin_lock_irq(&lock->wait_lock);
261 * set_current_state(TASK_RTLOCK_WAIT);
262 * }
263 * current_restore_rtlock_saved_state();
264 */
265#define current_save_and_set_rtlock_wait_state() \
266 do { \
267 lockdep_assert_irqs_disabled(); \
268 raw_spin_lock(¤t->pi_lock); \
269 current->saved_state = current->__state; \
270 debug_rtlock_wait_set_state(); \
271 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
272 raw_spin_unlock(¤t->pi_lock); \
273 } while (0);
274
275#define current_restore_rtlock_saved_state() \
276 do { \
277 lockdep_assert_irqs_disabled(); \
278 raw_spin_lock(¤t->pi_lock); \
279 debug_rtlock_wait_restore_state(); \
280 WRITE_ONCE(current->__state, current->saved_state); \
281 current->saved_state = TASK_RUNNING; \
282 raw_spin_unlock(¤t->pi_lock); \
283 } while (0);
284
285#define get_current_state() READ_ONCE(current->__state)
286
287/*
288 * Define the task command name length as enum, then it can be visible to
289 * BPF programs.
290 */
291enum {
292 TASK_COMM_LEN = 16,
293};
294
295extern void scheduler_tick(void);
296
297#define MAX_SCHEDULE_TIMEOUT LONG_MAX
298
299extern long schedule_timeout(long timeout);
300extern long schedule_timeout_interruptible(long timeout);
301extern long schedule_timeout_killable(long timeout);
302extern long schedule_timeout_uninterruptible(long timeout);
303extern long schedule_timeout_idle(long timeout);
304asmlinkage void schedule(void);
305extern void schedule_preempt_disabled(void);
306asmlinkage void preempt_schedule_irq(void);
307#ifdef CONFIG_PREEMPT_RT
308 extern void schedule_rtlock(void);
309#endif
310
311extern int __must_check io_schedule_prepare(void);
312extern void io_schedule_finish(int token);
313extern long io_schedule_timeout(long timeout);
314extern void io_schedule(void);
315
316/**
317 * struct prev_cputime - snapshot of system and user cputime
318 * @utime: time spent in user mode
319 * @stime: time spent in system mode
320 * @lock: protects the above two fields
321 *
322 * Stores previous user/system time values such that we can guarantee
323 * monotonicity.
324 */
325struct prev_cputime {
326#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
327 u64 utime;
328 u64 stime;
329 raw_spinlock_t lock;
330#endif
331};
332
333enum vtime_state {
334 /* Task is sleeping or running in a CPU with VTIME inactive: */
335 VTIME_INACTIVE = 0,
336 /* Task is idle */
337 VTIME_IDLE,
338 /* Task runs in kernelspace in a CPU with VTIME active: */
339 VTIME_SYS,
340 /* Task runs in userspace in a CPU with VTIME active: */
341 VTIME_USER,
342 /* Task runs as guests in a CPU with VTIME active: */
343 VTIME_GUEST,
344};
345
346struct vtime {
347 seqcount_t seqcount;
348 unsigned long long starttime;
349 enum vtime_state state;
350 unsigned int cpu;
351 u64 utime;
352 u64 stime;
353 u64 gtime;
354};
355
356/*
357 * Utilization clamp constraints.
358 * @UCLAMP_MIN: Minimum utilization
359 * @UCLAMP_MAX: Maximum utilization
360 * @UCLAMP_CNT: Utilization clamp constraints count
361 */
362enum uclamp_id {
363 UCLAMP_MIN = 0,
364 UCLAMP_MAX,
365 UCLAMP_CNT
366};
367
368#ifdef CONFIG_SMP
369extern struct root_domain def_root_domain;
370extern struct mutex sched_domains_mutex;
371#endif
372
373struct sched_info {
374#ifdef CONFIG_SCHED_INFO
375 /* Cumulative counters: */
376
377 /* # of times we have run on this CPU: */
378 unsigned long pcount;
379
380 /* Time spent waiting on a runqueue: */
381 unsigned long long run_delay;
382
383 /* Timestamps: */
384
385 /* When did we last run on a CPU? */
386 unsigned long long last_arrival;
387
388 /* When were we last queued to run? */
389 unsigned long long last_queued;
390
391#endif /* CONFIG_SCHED_INFO */
392};
393
394/*
395 * Integer metrics need fixed point arithmetic, e.g., sched/fair
396 * has a few: load, load_avg, util_avg, freq, and capacity.
397 *
398 * We define a basic fixed point arithmetic range, and then formalize
399 * all these metrics based on that basic range.
400 */
401# define SCHED_FIXEDPOINT_SHIFT 10
402# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
403
404/* Increase resolution of cpu_capacity calculations */
405# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
406# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
407
408struct load_weight {
409 unsigned long weight;
410 u32 inv_weight;
411};
412
413/**
414 * struct util_est - Estimation utilization of FAIR tasks
415 * @enqueued: instantaneous estimated utilization of a task/cpu
416 * @ewma: the Exponential Weighted Moving Average (EWMA)
417 * utilization of a task
418 *
419 * Support data structure to track an Exponential Weighted Moving Average
420 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
421 * average each time a task completes an activation. Sample's weight is chosen
422 * so that the EWMA will be relatively insensitive to transient changes to the
423 * task's workload.
424 *
425 * The enqueued attribute has a slightly different meaning for tasks and cpus:
426 * - task: the task's util_avg at last task dequeue time
427 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
428 * Thus, the util_est.enqueued of a task represents the contribution on the
429 * estimated utilization of the CPU where that task is currently enqueued.
430 *
431 * Only for tasks we track a moving average of the past instantaneous
432 * estimated utilization. This allows to absorb sporadic drops in utilization
433 * of an otherwise almost periodic task.
434 *
435 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
436 * updates. When a task is dequeued, its util_est should not be updated if its
437 * util_avg has not been updated in the meantime.
438 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
439 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
440 * for a task) it is safe to use MSB.
441 */
442struct util_est {
443 unsigned int enqueued;
444 unsigned int ewma;
445#define UTIL_EST_WEIGHT_SHIFT 2
446#define UTIL_AVG_UNCHANGED 0x80000000
447} __attribute__((__aligned__(sizeof(u64))));
448
449/*
450 * The load/runnable/util_avg accumulates an infinite geometric series
451 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
452 *
453 * [load_avg definition]
454 *
455 * load_avg = runnable% * scale_load_down(load)
456 *
457 * [runnable_avg definition]
458 *
459 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
460 *
461 * [util_avg definition]
462 *
463 * util_avg = running% * SCHED_CAPACITY_SCALE
464 *
465 * where runnable% is the time ratio that a sched_entity is runnable and
466 * running% the time ratio that a sched_entity is running.
467 *
468 * For cfs_rq, they are the aggregated values of all runnable and blocked
469 * sched_entities.
470 *
471 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
472 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
473 * for computing those signals (see update_rq_clock_pelt())
474 *
475 * N.B., the above ratios (runnable% and running%) themselves are in the
476 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
477 * to as large a range as necessary. This is for example reflected by
478 * util_avg's SCHED_CAPACITY_SCALE.
479 *
480 * [Overflow issue]
481 *
482 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
483 * with the highest load (=88761), always runnable on a single cfs_rq,
484 * and should not overflow as the number already hits PID_MAX_LIMIT.
485 *
486 * For all other cases (including 32-bit kernels), struct load_weight's
487 * weight will overflow first before we do, because:
488 *
489 * Max(load_avg) <= Max(load.weight)
490 *
491 * Then it is the load_weight's responsibility to consider overflow
492 * issues.
493 */
494struct sched_avg {
495 u64 last_update_time;
496 u64 load_sum;
497 u64 runnable_sum;
498 u32 util_sum;
499 u32 period_contrib;
500 unsigned long load_avg;
501 unsigned long runnable_avg;
502 unsigned long util_avg;
503 struct util_est util_est;
504} ____cacheline_aligned;
505
506struct sched_statistics {
507#ifdef CONFIG_SCHEDSTATS
508 u64 wait_start;
509 u64 wait_max;
510 u64 wait_count;
511 u64 wait_sum;
512 u64 iowait_count;
513 u64 iowait_sum;
514
515 u64 sleep_start;
516 u64 sleep_max;
517 s64 sum_sleep_runtime;
518
519 u64 block_start;
520 u64 block_max;
521 s64 sum_block_runtime;
522
523 u64 exec_max;
524 u64 slice_max;
525
526 u64 nr_migrations_cold;
527 u64 nr_failed_migrations_affine;
528 u64 nr_failed_migrations_running;
529 u64 nr_failed_migrations_hot;
530 u64 nr_forced_migrations;
531
532 u64 nr_wakeups;
533 u64 nr_wakeups_sync;
534 u64 nr_wakeups_migrate;
535 u64 nr_wakeups_local;
536 u64 nr_wakeups_remote;
537 u64 nr_wakeups_affine;
538 u64 nr_wakeups_affine_attempts;
539 u64 nr_wakeups_passive;
540 u64 nr_wakeups_idle;
541
542#ifdef CONFIG_SCHED_CORE
543 u64 core_forceidle_sum;
544#endif
545#endif /* CONFIG_SCHEDSTATS */
546} ____cacheline_aligned;
547
548struct sched_entity {
549 /* For load-balancing: */
550 struct load_weight load;
551 struct rb_node run_node;
552 struct list_head group_node;
553 unsigned int on_rq;
554
555 u64 exec_start;
556 u64 sum_exec_runtime;
557 u64 vruntime;
558 u64 prev_sum_exec_runtime;
559
560 u64 nr_migrations;
561
562#ifdef CONFIG_FAIR_GROUP_SCHED
563 int depth;
564 struct sched_entity *parent;
565 /* rq on which this entity is (to be) queued: */
566 struct cfs_rq *cfs_rq;
567 /* rq "owned" by this entity/group: */
568 struct cfs_rq *my_q;
569 /* cached value of my_q->h_nr_running */
570 unsigned long runnable_weight;
571#endif
572
573#ifdef CONFIG_SMP
574 /*
575 * Per entity load average tracking.
576 *
577 * Put into separate cache line so it does not
578 * collide with read-mostly values above.
579 */
580 struct sched_avg avg;
581#endif
582};
583
584struct sched_rt_entity {
585 struct list_head run_list;
586 unsigned long timeout;
587 unsigned long watchdog_stamp;
588 unsigned int time_slice;
589 unsigned short on_rq;
590 unsigned short on_list;
591
592 struct sched_rt_entity *back;
593#ifdef CONFIG_RT_GROUP_SCHED
594 struct sched_rt_entity *parent;
595 /* rq on which this entity is (to be) queued: */
596 struct rt_rq *rt_rq;
597 /* rq "owned" by this entity/group: */
598 struct rt_rq *my_q;
599#endif
600} __randomize_layout;
601
602struct sched_dl_entity {
603 struct rb_node rb_node;
604
605 /*
606 * Original scheduling parameters. Copied here from sched_attr
607 * during sched_setattr(), they will remain the same until
608 * the next sched_setattr().
609 */
610 u64 dl_runtime; /* Maximum runtime for each instance */
611 u64 dl_deadline; /* Relative deadline of each instance */
612 u64 dl_period; /* Separation of two instances (period) */
613 u64 dl_bw; /* dl_runtime / dl_period */
614 u64 dl_density; /* dl_runtime / dl_deadline */
615
616 /*
617 * Actual scheduling parameters. Initialized with the values above,
618 * they are continuously updated during task execution. Note that
619 * the remaining runtime could be < 0 in case we are in overrun.
620 */
621 s64 runtime; /* Remaining runtime for this instance */
622 u64 deadline; /* Absolute deadline for this instance */
623 unsigned int flags; /* Specifying the scheduler behaviour */
624
625 /*
626 * Some bool flags:
627 *
628 * @dl_throttled tells if we exhausted the runtime. If so, the
629 * task has to wait for a replenishment to be performed at the
630 * next firing of dl_timer.
631 *
632 * @dl_yielded tells if task gave up the CPU before consuming
633 * all its available runtime during the last job.
634 *
635 * @dl_non_contending tells if the task is inactive while still
636 * contributing to the active utilization. In other words, it
637 * indicates if the inactive timer has been armed and its handler
638 * has not been executed yet. This flag is useful to avoid race
639 * conditions between the inactive timer handler and the wakeup
640 * code.
641 *
642 * @dl_overrun tells if the task asked to be informed about runtime
643 * overruns.
644 */
645 unsigned int dl_throttled : 1;
646 unsigned int dl_yielded : 1;
647 unsigned int dl_non_contending : 1;
648 unsigned int dl_overrun : 1;
649
650 /*
651 * Bandwidth enforcement timer. Each -deadline task has its
652 * own bandwidth to be enforced, thus we need one timer per task.
653 */
654 struct hrtimer dl_timer;
655
656 /*
657 * Inactive timer, responsible for decreasing the active utilization
658 * at the "0-lag time". When a -deadline task blocks, it contributes
659 * to GRUB's active utilization until the "0-lag time", hence a
660 * timer is needed to decrease the active utilization at the correct
661 * time.
662 */
663 struct hrtimer inactive_timer;
664
665#ifdef CONFIG_RT_MUTEXES
666 /*
667 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
668 * pi_se points to the donor, otherwise points to the dl_se it belongs
669 * to (the original one/itself).
670 */
671 struct sched_dl_entity *pi_se;
672#endif
673};
674
675#ifdef CONFIG_UCLAMP_TASK
676/* Number of utilization clamp buckets (shorter alias) */
677#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
678
679/*
680 * Utilization clamp for a scheduling entity
681 * @value: clamp value "assigned" to a se
682 * @bucket_id: bucket index corresponding to the "assigned" value
683 * @active: the se is currently refcounted in a rq's bucket
684 * @user_defined: the requested clamp value comes from user-space
685 *
686 * The bucket_id is the index of the clamp bucket matching the clamp value
687 * which is pre-computed and stored to avoid expensive integer divisions from
688 * the fast path.
689 *
690 * The active bit is set whenever a task has got an "effective" value assigned,
691 * which can be different from the clamp value "requested" from user-space.
692 * This allows to know a task is refcounted in the rq's bucket corresponding
693 * to the "effective" bucket_id.
694 *
695 * The user_defined bit is set whenever a task has got a task-specific clamp
696 * value requested from userspace, i.e. the system defaults apply to this task
697 * just as a restriction. This allows to relax default clamps when a less
698 * restrictive task-specific value has been requested, thus allowing to
699 * implement a "nice" semantic. For example, a task running with a 20%
700 * default boost can still drop its own boosting to 0%.
701 */
702struct uclamp_se {
703 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
704 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
705 unsigned int active : 1;
706 unsigned int user_defined : 1;
707};
708#endif /* CONFIG_UCLAMP_TASK */
709
710union rcu_special {
711 struct {
712 u8 blocked;
713 u8 need_qs;
714 u8 exp_hint; /* Hint for performance. */
715 u8 need_mb; /* Readers need smp_mb(). */
716 } b; /* Bits. */
717 u32 s; /* Set of bits. */
718};
719
720enum perf_event_task_context {
721 perf_invalid_context = -1,
722 perf_hw_context = 0,
723 perf_sw_context,
724 perf_nr_task_contexts,
725};
726
727struct wake_q_node {
728 struct wake_q_node *next;
729};
730
731struct kmap_ctrl {
732#ifdef CONFIG_KMAP_LOCAL
733 int idx;
734 pte_t pteval[KM_MAX_IDX];
735#endif
736};
737
738struct task_struct {
739#ifdef CONFIG_THREAD_INFO_IN_TASK
740 /*
741 * For reasons of header soup (see current_thread_info()), this
742 * must be the first element of task_struct.
743 */
744 struct thread_info thread_info;
745#endif
746 unsigned int __state;
747
748#ifdef CONFIG_PREEMPT_RT
749 /* saved state for "spinlock sleepers" */
750 unsigned int saved_state;
751#endif
752
753 /*
754 * This begins the randomizable portion of task_struct. Only
755 * scheduling-critical items should be added above here.
756 */
757 randomized_struct_fields_start
758
759 void *stack;
760 refcount_t usage;
761 /* Per task flags (PF_*), defined further below: */
762 unsigned int flags;
763 unsigned int ptrace;
764
765#ifdef CONFIG_SMP
766 int on_cpu;
767 struct __call_single_node wake_entry;
768 unsigned int wakee_flips;
769 unsigned long wakee_flip_decay_ts;
770 struct task_struct *last_wakee;
771
772 /*
773 * recent_used_cpu is initially set as the last CPU used by a task
774 * that wakes affine another task. Waker/wakee relationships can
775 * push tasks around a CPU where each wakeup moves to the next one.
776 * Tracking a recently used CPU allows a quick search for a recently
777 * used CPU that may be idle.
778 */
779 int recent_used_cpu;
780 int wake_cpu;
781#endif
782 int on_rq;
783
784 int prio;
785 int static_prio;
786 int normal_prio;
787 unsigned int rt_priority;
788
789 struct sched_entity se;
790 struct sched_rt_entity rt;
791 struct sched_dl_entity dl;
792 const struct sched_class *sched_class;
793
794#ifdef CONFIG_SCHED_CORE
795 struct rb_node core_node;
796 unsigned long core_cookie;
797 unsigned int core_occupation;
798#endif
799
800#ifdef CONFIG_CGROUP_SCHED
801 struct task_group *sched_task_group;
802#endif
803
804#ifdef CONFIG_UCLAMP_TASK
805 /*
806 * Clamp values requested for a scheduling entity.
807 * Must be updated with task_rq_lock() held.
808 */
809 struct uclamp_se uclamp_req[UCLAMP_CNT];
810 /*
811 * Effective clamp values used for a scheduling entity.
812 * Must be updated with task_rq_lock() held.
813 */
814 struct uclamp_se uclamp[UCLAMP_CNT];
815#endif
816
817 struct sched_statistics stats;
818
819#ifdef CONFIG_PREEMPT_NOTIFIERS
820 /* List of struct preempt_notifier: */
821 struct hlist_head preempt_notifiers;
822#endif
823
824#ifdef CONFIG_BLK_DEV_IO_TRACE
825 unsigned int btrace_seq;
826#endif
827
828 unsigned int policy;
829 int nr_cpus_allowed;
830 const cpumask_t *cpus_ptr;
831 cpumask_t *user_cpus_ptr;
832 cpumask_t cpus_mask;
833 void *migration_pending;
834#ifdef CONFIG_SMP
835 unsigned short migration_disabled;
836#endif
837 unsigned short migration_flags;
838
839#ifdef CONFIG_PREEMPT_RCU
840 int rcu_read_lock_nesting;
841 union rcu_special rcu_read_unlock_special;
842 struct list_head rcu_node_entry;
843 struct rcu_node *rcu_blocked_node;
844#endif /* #ifdef CONFIG_PREEMPT_RCU */
845
846#ifdef CONFIG_TASKS_RCU
847 unsigned long rcu_tasks_nvcsw;
848 u8 rcu_tasks_holdout;
849 u8 rcu_tasks_idx;
850 int rcu_tasks_idle_cpu;
851 struct list_head rcu_tasks_holdout_list;
852#endif /* #ifdef CONFIG_TASKS_RCU */
853
854#ifdef CONFIG_TASKS_TRACE_RCU
855 int trc_reader_nesting;
856 int trc_ipi_to_cpu;
857 union rcu_special trc_reader_special;
858 struct list_head trc_holdout_list;
859 struct list_head trc_blkd_node;
860 int trc_blkd_cpu;
861#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
862
863 struct sched_info sched_info;
864
865 struct list_head tasks;
866#ifdef CONFIG_SMP
867 struct plist_node pushable_tasks;
868 struct rb_node pushable_dl_tasks;
869#endif
870
871 struct mm_struct *mm;
872 struct mm_struct *active_mm;
873
874 int exit_state;
875 int exit_code;
876 int exit_signal;
877 /* The signal sent when the parent dies: */
878 int pdeath_signal;
879 /* JOBCTL_*, siglock protected: */
880 unsigned long jobctl;
881
882 /* Used for emulating ABI behavior of previous Linux versions: */
883 unsigned int personality;
884
885 /* Scheduler bits, serialized by scheduler locks: */
886 unsigned sched_reset_on_fork:1;
887 unsigned sched_contributes_to_load:1;
888 unsigned sched_migrated:1;
889
890 /* Force alignment to the next boundary: */
891 unsigned :0;
892
893 /* Unserialized, strictly 'current' */
894
895 /*
896 * This field must not be in the scheduler word above due to wakelist
897 * queueing no longer being serialized by p->on_cpu. However:
898 *
899 * p->XXX = X; ttwu()
900 * schedule() if (p->on_rq && ..) // false
901 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
902 * deactivate_task() ttwu_queue_wakelist())
903 * p->on_rq = 0; p->sched_remote_wakeup = Y;
904 *
905 * guarantees all stores of 'current' are visible before
906 * ->sched_remote_wakeup gets used, so it can be in this word.
907 */
908 unsigned sched_remote_wakeup:1;
909
910 /* Bit to tell LSMs we're in execve(): */
911 unsigned in_execve:1;
912 unsigned in_iowait:1;
913#ifndef TIF_RESTORE_SIGMASK
914 unsigned restore_sigmask:1;
915#endif
916#ifdef CONFIG_MEMCG
917 unsigned in_user_fault:1;
918#endif
919#ifdef CONFIG_LRU_GEN
920 /* whether the LRU algorithm may apply to this access */
921 unsigned in_lru_fault:1;
922#endif
923#ifdef CONFIG_COMPAT_BRK
924 unsigned brk_randomized:1;
925#endif
926#ifdef CONFIG_CGROUPS
927 /* disallow userland-initiated cgroup migration */
928 unsigned no_cgroup_migration:1;
929 /* task is frozen/stopped (used by the cgroup freezer) */
930 unsigned frozen:1;
931#endif
932#ifdef CONFIG_BLK_CGROUP
933 unsigned use_memdelay:1;
934#endif
935#ifdef CONFIG_PSI
936 /* Stalled due to lack of memory */
937 unsigned in_memstall:1;
938#endif
939#ifdef CONFIG_PAGE_OWNER
940 /* Used by page_owner=on to detect recursion in page tracking. */
941 unsigned in_page_owner:1;
942#endif
943#ifdef CONFIG_EVENTFD
944 /* Recursion prevention for eventfd_signal() */
945 unsigned in_eventfd:1;
946#endif
947#ifdef CONFIG_IOMMU_SVA
948 unsigned pasid_activated:1;
949#endif
950#ifdef CONFIG_CPU_SUP_INTEL
951 unsigned reported_split_lock:1;
952#endif
953#ifdef CONFIG_TASK_DELAY_ACCT
954 /* delay due to memory thrashing */
955 unsigned in_thrashing:1;
956#endif
957
958 unsigned long atomic_flags; /* Flags requiring atomic access. */
959
960 struct restart_block restart_block;
961
962 pid_t pid;
963 pid_t tgid;
964
965#ifdef CONFIG_STACKPROTECTOR
966 /* Canary value for the -fstack-protector GCC feature: */
967 unsigned long stack_canary;
968#endif
969 /*
970 * Pointers to the (original) parent process, youngest child, younger sibling,
971 * older sibling, respectively. (p->father can be replaced with
972 * p->real_parent->pid)
973 */
974
975 /* Real parent process: */
976 struct task_struct __rcu *real_parent;
977
978 /* Recipient of SIGCHLD, wait4() reports: */
979 struct task_struct __rcu *parent;
980
981 /*
982 * Children/sibling form the list of natural children:
983 */
984 struct list_head children;
985 struct list_head sibling;
986 struct task_struct *group_leader;
987
988 /*
989 * 'ptraced' is the list of tasks this task is using ptrace() on.
990 *
991 * This includes both natural children and PTRACE_ATTACH targets.
992 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
993 */
994 struct list_head ptraced;
995 struct list_head ptrace_entry;
996
997 /* PID/PID hash table linkage. */
998 struct pid *thread_pid;
999 struct hlist_node pid_links[PIDTYPE_MAX];
1000 struct list_head thread_group;
1001 struct list_head thread_node;
1002
1003 struct completion *vfork_done;
1004
1005 /* CLONE_CHILD_SETTID: */
1006 int __user *set_child_tid;
1007
1008 /* CLONE_CHILD_CLEARTID: */
1009 int __user *clear_child_tid;
1010
1011 /* PF_KTHREAD | PF_IO_WORKER */
1012 void *worker_private;
1013
1014 u64 utime;
1015 u64 stime;
1016#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1017 u64 utimescaled;
1018 u64 stimescaled;
1019#endif
1020 u64 gtime;
1021 struct prev_cputime prev_cputime;
1022#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1023 struct vtime vtime;
1024#endif
1025
1026#ifdef CONFIG_NO_HZ_FULL
1027 atomic_t tick_dep_mask;
1028#endif
1029 /* Context switch counts: */
1030 unsigned long nvcsw;
1031 unsigned long nivcsw;
1032
1033 /* Monotonic time in nsecs: */
1034 u64 start_time;
1035
1036 /* Boot based time in nsecs: */
1037 u64 start_boottime;
1038
1039 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1040 unsigned long min_flt;
1041 unsigned long maj_flt;
1042
1043 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1044 struct posix_cputimers posix_cputimers;
1045
1046#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1047 struct posix_cputimers_work posix_cputimers_work;
1048#endif
1049
1050 /* Process credentials: */
1051
1052 /* Tracer's credentials at attach: */
1053 const struct cred __rcu *ptracer_cred;
1054
1055 /* Objective and real subjective task credentials (COW): */
1056 const struct cred __rcu *real_cred;
1057
1058 /* Effective (overridable) subjective task credentials (COW): */
1059 const struct cred __rcu *cred;
1060
1061#ifdef CONFIG_KEYS
1062 /* Cached requested key. */
1063 struct key *cached_requested_key;
1064#endif
1065
1066 /*
1067 * executable name, excluding path.
1068 *
1069 * - normally initialized setup_new_exec()
1070 * - access it with [gs]et_task_comm()
1071 * - lock it with task_lock()
1072 */
1073 char comm[TASK_COMM_LEN];
1074
1075 struct nameidata *nameidata;
1076
1077#ifdef CONFIG_SYSVIPC
1078 struct sysv_sem sysvsem;
1079 struct sysv_shm sysvshm;
1080#endif
1081#ifdef CONFIG_DETECT_HUNG_TASK
1082 unsigned long last_switch_count;
1083 unsigned long last_switch_time;
1084#endif
1085 /* Filesystem information: */
1086 struct fs_struct *fs;
1087
1088 /* Open file information: */
1089 struct files_struct *files;
1090
1091#ifdef CONFIG_IO_URING
1092 struct io_uring_task *io_uring;
1093#endif
1094
1095 /* Namespaces: */
1096 struct nsproxy *nsproxy;
1097
1098 /* Signal handlers: */
1099 struct signal_struct *signal;
1100 struct sighand_struct __rcu *sighand;
1101 sigset_t blocked;
1102 sigset_t real_blocked;
1103 /* Restored if set_restore_sigmask() was used: */
1104 sigset_t saved_sigmask;
1105 struct sigpending pending;
1106 unsigned long sas_ss_sp;
1107 size_t sas_ss_size;
1108 unsigned int sas_ss_flags;
1109
1110 struct callback_head *task_works;
1111
1112#ifdef CONFIG_AUDIT
1113#ifdef CONFIG_AUDITSYSCALL
1114 struct audit_context *audit_context;
1115#endif
1116 kuid_t loginuid;
1117 unsigned int sessionid;
1118#endif
1119 struct seccomp seccomp;
1120 struct syscall_user_dispatch syscall_dispatch;
1121
1122 /* Thread group tracking: */
1123 u64 parent_exec_id;
1124 u64 self_exec_id;
1125
1126 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1127 spinlock_t alloc_lock;
1128
1129 /* Protection of the PI data structures: */
1130 raw_spinlock_t pi_lock;
1131
1132 struct wake_q_node wake_q;
1133
1134#ifdef CONFIG_RT_MUTEXES
1135 /* PI waiters blocked on a rt_mutex held by this task: */
1136 struct rb_root_cached pi_waiters;
1137 /* Updated under owner's pi_lock and rq lock */
1138 struct task_struct *pi_top_task;
1139 /* Deadlock detection and priority inheritance handling: */
1140 struct rt_mutex_waiter *pi_blocked_on;
1141#endif
1142
1143#ifdef CONFIG_DEBUG_MUTEXES
1144 /* Mutex deadlock detection: */
1145 struct mutex_waiter *blocked_on;
1146#endif
1147
1148#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1149 int non_block_count;
1150#endif
1151
1152#ifdef CONFIG_TRACE_IRQFLAGS
1153 struct irqtrace_events irqtrace;
1154 unsigned int hardirq_threaded;
1155 u64 hardirq_chain_key;
1156 int softirqs_enabled;
1157 int softirq_context;
1158 int irq_config;
1159#endif
1160#ifdef CONFIG_PREEMPT_RT
1161 int softirq_disable_cnt;
1162#endif
1163
1164#ifdef CONFIG_LOCKDEP
1165# define MAX_LOCK_DEPTH 48UL
1166 u64 curr_chain_key;
1167 int lockdep_depth;
1168 unsigned int lockdep_recursion;
1169 struct held_lock held_locks[MAX_LOCK_DEPTH];
1170#endif
1171
1172#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1173 unsigned int in_ubsan;
1174#endif
1175
1176 /* Journalling filesystem info: */
1177 void *journal_info;
1178
1179 /* Stacked block device info: */
1180 struct bio_list *bio_list;
1181
1182 /* Stack plugging: */
1183 struct blk_plug *plug;
1184
1185 /* VM state: */
1186 struct reclaim_state *reclaim_state;
1187
1188 struct io_context *io_context;
1189
1190#ifdef CONFIG_COMPACTION
1191 struct capture_control *capture_control;
1192#endif
1193 /* Ptrace state: */
1194 unsigned long ptrace_message;
1195 kernel_siginfo_t *last_siginfo;
1196
1197 struct task_io_accounting ioac;
1198#ifdef CONFIG_PSI
1199 /* Pressure stall state */
1200 unsigned int psi_flags;
1201#endif
1202#ifdef CONFIG_TASK_XACCT
1203 /* Accumulated RSS usage: */
1204 u64 acct_rss_mem1;
1205 /* Accumulated virtual memory usage: */
1206 u64 acct_vm_mem1;
1207 /* stime + utime since last update: */
1208 u64 acct_timexpd;
1209#endif
1210#ifdef CONFIG_CPUSETS
1211 /* Protected by ->alloc_lock: */
1212 nodemask_t mems_allowed;
1213 /* Sequence number to catch updates: */
1214 seqcount_spinlock_t mems_allowed_seq;
1215 int cpuset_mem_spread_rotor;
1216 int cpuset_slab_spread_rotor;
1217#endif
1218#ifdef CONFIG_CGROUPS
1219 /* Control Group info protected by css_set_lock: */
1220 struct css_set __rcu *cgroups;
1221 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1222 struct list_head cg_list;
1223#endif
1224#ifdef CONFIG_X86_CPU_RESCTRL
1225 u32 closid;
1226 u32 rmid;
1227#endif
1228#ifdef CONFIG_FUTEX
1229 struct robust_list_head __user *robust_list;
1230#ifdef CONFIG_COMPAT
1231 struct compat_robust_list_head __user *compat_robust_list;
1232#endif
1233 struct list_head pi_state_list;
1234 struct futex_pi_state *pi_state_cache;
1235 struct mutex futex_exit_mutex;
1236 unsigned int futex_state;
1237#endif
1238#ifdef CONFIG_PERF_EVENTS
1239 struct perf_event_context *perf_event_ctxp;
1240 struct mutex perf_event_mutex;
1241 struct list_head perf_event_list;
1242#endif
1243#ifdef CONFIG_DEBUG_PREEMPT
1244 unsigned long preempt_disable_ip;
1245#endif
1246#ifdef CONFIG_NUMA
1247 /* Protected by alloc_lock: */
1248 struct mempolicy *mempolicy;
1249 short il_prev;
1250 short pref_node_fork;
1251#endif
1252#ifdef CONFIG_NUMA_BALANCING
1253 int numa_scan_seq;
1254 unsigned int numa_scan_period;
1255 unsigned int numa_scan_period_max;
1256 int numa_preferred_nid;
1257 unsigned long numa_migrate_retry;
1258 /* Migration stamp: */
1259 u64 node_stamp;
1260 u64 last_task_numa_placement;
1261 u64 last_sum_exec_runtime;
1262 struct callback_head numa_work;
1263
1264 /*
1265 * This pointer is only modified for current in syscall and
1266 * pagefault context (and for tasks being destroyed), so it can be read
1267 * from any of the following contexts:
1268 * - RCU read-side critical section
1269 * - current->numa_group from everywhere
1270 * - task's runqueue locked, task not running
1271 */
1272 struct numa_group __rcu *numa_group;
1273
1274 /*
1275 * numa_faults is an array split into four regions:
1276 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1277 * in this precise order.
1278 *
1279 * faults_memory: Exponential decaying average of faults on a per-node
1280 * basis. Scheduling placement decisions are made based on these
1281 * counts. The values remain static for the duration of a PTE scan.
1282 * faults_cpu: Track the nodes the process was running on when a NUMA
1283 * hinting fault was incurred.
1284 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1285 * during the current scan window. When the scan completes, the counts
1286 * in faults_memory and faults_cpu decay and these values are copied.
1287 */
1288 unsigned long *numa_faults;
1289 unsigned long total_numa_faults;
1290
1291 /*
1292 * numa_faults_locality tracks if faults recorded during the last
1293 * scan window were remote/local or failed to migrate. The task scan
1294 * period is adapted based on the locality of the faults with different
1295 * weights depending on whether they were shared or private faults
1296 */
1297 unsigned long numa_faults_locality[3];
1298
1299 unsigned long numa_pages_migrated;
1300#endif /* CONFIG_NUMA_BALANCING */
1301
1302#ifdef CONFIG_RSEQ
1303 struct rseq __user *rseq;
1304 u32 rseq_len;
1305 u32 rseq_sig;
1306 /*
1307 * RmW on rseq_event_mask must be performed atomically
1308 * with respect to preemption.
1309 */
1310 unsigned long rseq_event_mask;
1311#endif
1312
1313#ifdef CONFIG_SCHED_MM_CID
1314 int mm_cid; /* Current cid in mm */
1315 int last_mm_cid; /* Most recent cid in mm */
1316 int migrate_from_cpu;
1317 int mm_cid_active; /* Whether cid bitmap is active */
1318 struct callback_head cid_work;
1319#endif
1320
1321 struct tlbflush_unmap_batch tlb_ubc;
1322
1323 /* Cache last used pipe for splice(): */
1324 struct pipe_inode_info *splice_pipe;
1325
1326 struct page_frag task_frag;
1327
1328#ifdef CONFIG_TASK_DELAY_ACCT
1329 struct task_delay_info *delays;
1330#endif
1331
1332#ifdef CONFIG_FAULT_INJECTION
1333 int make_it_fail;
1334 unsigned int fail_nth;
1335#endif
1336 /*
1337 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1338 * balance_dirty_pages() for a dirty throttling pause:
1339 */
1340 int nr_dirtied;
1341 int nr_dirtied_pause;
1342 /* Start of a write-and-pause period: */
1343 unsigned long dirty_paused_when;
1344
1345#ifdef CONFIG_LATENCYTOP
1346 int latency_record_count;
1347 struct latency_record latency_record[LT_SAVECOUNT];
1348#endif
1349 /*
1350 * Time slack values; these are used to round up poll() and
1351 * select() etc timeout values. These are in nanoseconds.
1352 */
1353 u64 timer_slack_ns;
1354 u64 default_timer_slack_ns;
1355
1356#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1357 unsigned int kasan_depth;
1358#endif
1359
1360#ifdef CONFIG_KCSAN
1361 struct kcsan_ctx kcsan_ctx;
1362#ifdef CONFIG_TRACE_IRQFLAGS
1363 struct irqtrace_events kcsan_save_irqtrace;
1364#endif
1365#ifdef CONFIG_KCSAN_WEAK_MEMORY
1366 int kcsan_stack_depth;
1367#endif
1368#endif
1369
1370#ifdef CONFIG_KMSAN
1371 struct kmsan_ctx kmsan_ctx;
1372#endif
1373
1374#if IS_ENABLED(CONFIG_KUNIT)
1375 struct kunit *kunit_test;
1376#endif
1377
1378#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1379 /* Index of current stored address in ret_stack: */
1380 int curr_ret_stack;
1381 int curr_ret_depth;
1382
1383 /* Stack of return addresses for return function tracing: */
1384 struct ftrace_ret_stack *ret_stack;
1385
1386 /* Timestamp for last schedule: */
1387 unsigned long long ftrace_timestamp;
1388
1389 /*
1390 * Number of functions that haven't been traced
1391 * because of depth overrun:
1392 */
1393 atomic_t trace_overrun;
1394
1395 /* Pause tracing: */
1396 atomic_t tracing_graph_pause;
1397#endif
1398
1399#ifdef CONFIG_TRACING
1400 /* Bitmask and counter of trace recursion: */
1401 unsigned long trace_recursion;
1402#endif /* CONFIG_TRACING */
1403
1404#ifdef CONFIG_KCOV
1405 /* See kernel/kcov.c for more details. */
1406
1407 /* Coverage collection mode enabled for this task (0 if disabled): */
1408 unsigned int kcov_mode;
1409
1410 /* Size of the kcov_area: */
1411 unsigned int kcov_size;
1412
1413 /* Buffer for coverage collection: */
1414 void *kcov_area;
1415
1416 /* KCOV descriptor wired with this task or NULL: */
1417 struct kcov *kcov;
1418
1419 /* KCOV common handle for remote coverage collection: */
1420 u64 kcov_handle;
1421
1422 /* KCOV sequence number: */
1423 int kcov_sequence;
1424
1425 /* Collect coverage from softirq context: */
1426 unsigned int kcov_softirq;
1427#endif
1428
1429#ifdef CONFIG_MEMCG
1430 struct mem_cgroup *memcg_in_oom;
1431 gfp_t memcg_oom_gfp_mask;
1432 int memcg_oom_order;
1433
1434 /* Number of pages to reclaim on returning to userland: */
1435 unsigned int memcg_nr_pages_over_high;
1436
1437 /* Used by memcontrol for targeted memcg charge: */
1438 struct mem_cgroup *active_memcg;
1439#endif
1440
1441#ifdef CONFIG_BLK_CGROUP
1442 struct gendisk *throttle_disk;
1443#endif
1444
1445#ifdef CONFIG_UPROBES
1446 struct uprobe_task *utask;
1447#endif
1448#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1449 unsigned int sequential_io;
1450 unsigned int sequential_io_avg;
1451#endif
1452 struct kmap_ctrl kmap_ctrl;
1453#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1454 unsigned long task_state_change;
1455# ifdef CONFIG_PREEMPT_RT
1456 unsigned long saved_state_change;
1457# endif
1458#endif
1459 struct rcu_head rcu;
1460 refcount_t rcu_users;
1461 int pagefault_disabled;
1462#ifdef CONFIG_MMU
1463 struct task_struct *oom_reaper_list;
1464 struct timer_list oom_reaper_timer;
1465#endif
1466#ifdef CONFIG_VMAP_STACK
1467 struct vm_struct *stack_vm_area;
1468#endif
1469#ifdef CONFIG_THREAD_INFO_IN_TASK
1470 /* A live task holds one reference: */
1471 refcount_t stack_refcount;
1472#endif
1473#ifdef CONFIG_LIVEPATCH
1474 int patch_state;
1475#endif
1476#ifdef CONFIG_SECURITY
1477 /* Used by LSM modules for access restriction: */
1478 void *security;
1479#endif
1480#ifdef CONFIG_BPF_SYSCALL
1481 /* Used by BPF task local storage */
1482 struct bpf_local_storage __rcu *bpf_storage;
1483 /* Used for BPF run context */
1484 struct bpf_run_ctx *bpf_ctx;
1485#endif
1486
1487#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1488 unsigned long lowest_stack;
1489 unsigned long prev_lowest_stack;
1490#endif
1491
1492#ifdef CONFIG_X86_MCE
1493 void __user *mce_vaddr;
1494 __u64 mce_kflags;
1495 u64 mce_addr;
1496 __u64 mce_ripv : 1,
1497 mce_whole_page : 1,
1498 __mce_reserved : 62;
1499 struct callback_head mce_kill_me;
1500 int mce_count;
1501#endif
1502
1503#ifdef CONFIG_KRETPROBES
1504 struct llist_head kretprobe_instances;
1505#endif
1506#ifdef CONFIG_RETHOOK
1507 struct llist_head rethooks;
1508#endif
1509
1510#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1511 /*
1512 * If L1D flush is supported on mm context switch
1513 * then we use this callback head to queue kill work
1514 * to kill tasks that are not running on SMT disabled
1515 * cores
1516 */
1517 struct callback_head l1d_flush_kill;
1518#endif
1519
1520#ifdef CONFIG_RV
1521 /*
1522 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1523 * If we find justification for more monitors, we can think
1524 * about adding more or developing a dynamic method. So far,
1525 * none of these are justified.
1526 */
1527 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1528#endif
1529
1530#ifdef CONFIG_USER_EVENTS
1531 struct user_event_mm *user_event_mm;
1532#endif
1533
1534 /*
1535 * New fields for task_struct should be added above here, so that
1536 * they are included in the randomized portion of task_struct.
1537 */
1538 randomized_struct_fields_end
1539
1540 /* CPU-specific state of this task: */
1541 struct thread_struct thread;
1542
1543 /*
1544 * WARNING: on x86, 'thread_struct' contains a variable-sized
1545 * structure. It *MUST* be at the end of 'task_struct'.
1546 *
1547 * Do not put anything below here!
1548 */
1549};
1550
1551static inline struct pid *task_pid(struct task_struct *task)
1552{
1553 return task->thread_pid;
1554}
1555
1556/*
1557 * the helpers to get the task's different pids as they are seen
1558 * from various namespaces
1559 *
1560 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1561 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1562 * current.
1563 * task_xid_nr_ns() : id seen from the ns specified;
1564 *
1565 * see also pid_nr() etc in include/linux/pid.h
1566 */
1567pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1568
1569static inline pid_t task_pid_nr(struct task_struct *tsk)
1570{
1571 return tsk->pid;
1572}
1573
1574static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1575{
1576 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1577}
1578
1579static inline pid_t task_pid_vnr(struct task_struct *tsk)
1580{
1581 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1582}
1583
1584
1585static inline pid_t task_tgid_nr(struct task_struct *tsk)
1586{
1587 return tsk->tgid;
1588}
1589
1590/**
1591 * pid_alive - check that a task structure is not stale
1592 * @p: Task structure to be checked.
1593 *
1594 * Test if a process is not yet dead (at most zombie state)
1595 * If pid_alive fails, then pointers within the task structure
1596 * can be stale and must not be dereferenced.
1597 *
1598 * Return: 1 if the process is alive. 0 otherwise.
1599 */
1600static inline int pid_alive(const struct task_struct *p)
1601{
1602 return p->thread_pid != NULL;
1603}
1604
1605static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1606{
1607 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1608}
1609
1610static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1611{
1612 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1613}
1614
1615
1616static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1617{
1618 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1619}
1620
1621static inline pid_t task_session_vnr(struct task_struct *tsk)
1622{
1623 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1624}
1625
1626static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1627{
1628 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1629}
1630
1631static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1632{
1633 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1634}
1635
1636static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1637{
1638 pid_t pid = 0;
1639
1640 rcu_read_lock();
1641 if (pid_alive(tsk))
1642 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1643 rcu_read_unlock();
1644
1645 return pid;
1646}
1647
1648static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1649{
1650 return task_ppid_nr_ns(tsk, &init_pid_ns);
1651}
1652
1653/* Obsolete, do not use: */
1654static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1655{
1656 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1657}
1658
1659#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1660#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1661
1662static inline unsigned int __task_state_index(unsigned int tsk_state,
1663 unsigned int tsk_exit_state)
1664{
1665 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1666
1667 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1668
1669 if (tsk_state == TASK_IDLE)
1670 state = TASK_REPORT_IDLE;
1671
1672 /*
1673 * We're lying here, but rather than expose a completely new task state
1674 * to userspace, we can make this appear as if the task has gone through
1675 * a regular rt_mutex_lock() call.
1676 */
1677 if (tsk_state == TASK_RTLOCK_WAIT)
1678 state = TASK_UNINTERRUPTIBLE;
1679
1680 return fls(state);
1681}
1682
1683static inline unsigned int task_state_index(struct task_struct *tsk)
1684{
1685 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1686}
1687
1688static inline char task_index_to_char(unsigned int state)
1689{
1690 static const char state_char[] = "RSDTtXZPI";
1691
1692 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1693
1694 return state_char[state];
1695}
1696
1697static inline char task_state_to_char(struct task_struct *tsk)
1698{
1699 return task_index_to_char(task_state_index(tsk));
1700}
1701
1702/**
1703 * is_global_init - check if a task structure is init. Since init
1704 * is free to have sub-threads we need to check tgid.
1705 * @tsk: Task structure to be checked.
1706 *
1707 * Check if a task structure is the first user space task the kernel created.
1708 *
1709 * Return: 1 if the task structure is init. 0 otherwise.
1710 */
1711static inline int is_global_init(struct task_struct *tsk)
1712{
1713 return task_tgid_nr(tsk) == 1;
1714}
1715
1716extern struct pid *cad_pid;
1717
1718/*
1719 * Per process flags
1720 */
1721#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1722#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1723#define PF_EXITING 0x00000004 /* Getting shut down */
1724#define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1725#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1726#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1727#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1728#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1729#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1730#define PF_DUMPCORE 0x00000200 /* Dumped core */
1731#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1732#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1733#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1734#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1735#define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
1736#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1737#define PF__HOLE__00010000 0x00010000
1738#define PF_KSWAPD 0x00020000 /* I am kswapd */
1739#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1740#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1741#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1742 * I am cleaning dirty pages from some other bdi. */
1743#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1744#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1745#define PF__HOLE__00800000 0x00800000
1746#define PF__HOLE__01000000 0x01000000
1747#define PF__HOLE__02000000 0x02000000
1748#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1749#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1750#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1751#define PF__HOLE__20000000 0x20000000
1752#define PF__HOLE__40000000 0x40000000
1753#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1754
1755/*
1756 * Only the _current_ task can read/write to tsk->flags, but other
1757 * tasks can access tsk->flags in readonly mode for example
1758 * with tsk_used_math (like during threaded core dumping).
1759 * There is however an exception to this rule during ptrace
1760 * or during fork: the ptracer task is allowed to write to the
1761 * child->flags of its traced child (same goes for fork, the parent
1762 * can write to the child->flags), because we're guaranteed the
1763 * child is not running and in turn not changing child->flags
1764 * at the same time the parent does it.
1765 */
1766#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1767#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1768#define clear_used_math() clear_stopped_child_used_math(current)
1769#define set_used_math() set_stopped_child_used_math(current)
1770
1771#define conditional_stopped_child_used_math(condition, child) \
1772 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1773
1774#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1775
1776#define copy_to_stopped_child_used_math(child) \
1777 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1778
1779/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1780#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1781#define used_math() tsk_used_math(current)
1782
1783static __always_inline bool is_percpu_thread(void)
1784{
1785#ifdef CONFIG_SMP
1786 return (current->flags & PF_NO_SETAFFINITY) &&
1787 (current->nr_cpus_allowed == 1);
1788#else
1789 return true;
1790#endif
1791}
1792
1793/* Per-process atomic flags. */
1794#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1795#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1796#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1797#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1798#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1799#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1800#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1801#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1802
1803#define TASK_PFA_TEST(name, func) \
1804 static inline bool task_##func(struct task_struct *p) \
1805 { return test_bit(PFA_##name, &p->atomic_flags); }
1806
1807#define TASK_PFA_SET(name, func) \
1808 static inline void task_set_##func(struct task_struct *p) \
1809 { set_bit(PFA_##name, &p->atomic_flags); }
1810
1811#define TASK_PFA_CLEAR(name, func) \
1812 static inline void task_clear_##func(struct task_struct *p) \
1813 { clear_bit(PFA_##name, &p->atomic_flags); }
1814
1815TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1816TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1817
1818TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1819TASK_PFA_SET(SPREAD_PAGE, spread_page)
1820TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1821
1822TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1823TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1824TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1825
1826TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1827TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1828TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1829
1830TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1831TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1832TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1833
1834TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1835TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1836
1837TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1838TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1839TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1840
1841TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1842TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1843
1844static inline void
1845current_restore_flags(unsigned long orig_flags, unsigned long flags)
1846{
1847 current->flags &= ~flags;
1848 current->flags |= orig_flags & flags;
1849}
1850
1851extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1852extern int task_can_attach(struct task_struct *p);
1853extern int dl_bw_alloc(int cpu, u64 dl_bw);
1854extern void dl_bw_free(int cpu, u64 dl_bw);
1855#ifdef CONFIG_SMP
1856extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1857extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1858extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1859extern void release_user_cpus_ptr(struct task_struct *p);
1860extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1861extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1862extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1863#else
1864static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1865{
1866}
1867static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1868{
1869 if (!cpumask_test_cpu(0, new_mask))
1870 return -EINVAL;
1871 return 0;
1872}
1873static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1874{
1875 if (src->user_cpus_ptr)
1876 return -EINVAL;
1877 return 0;
1878}
1879static inline void release_user_cpus_ptr(struct task_struct *p)
1880{
1881 WARN_ON(p->user_cpus_ptr);
1882}
1883
1884static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1885{
1886 return 0;
1887}
1888#endif
1889
1890extern int yield_to(struct task_struct *p, bool preempt);
1891extern void set_user_nice(struct task_struct *p, long nice);
1892extern int task_prio(const struct task_struct *p);
1893
1894/**
1895 * task_nice - return the nice value of a given task.
1896 * @p: the task in question.
1897 *
1898 * Return: The nice value [ -20 ... 0 ... 19 ].
1899 */
1900static inline int task_nice(const struct task_struct *p)
1901{
1902 return PRIO_TO_NICE((p)->static_prio);
1903}
1904
1905extern int can_nice(const struct task_struct *p, const int nice);
1906extern int task_curr(const struct task_struct *p);
1907extern int idle_cpu(int cpu);
1908extern int available_idle_cpu(int cpu);
1909extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1910extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1911extern void sched_set_fifo(struct task_struct *p);
1912extern void sched_set_fifo_low(struct task_struct *p);
1913extern void sched_set_normal(struct task_struct *p, int nice);
1914extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1915extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1916extern struct task_struct *idle_task(int cpu);
1917
1918/**
1919 * is_idle_task - is the specified task an idle task?
1920 * @p: the task in question.
1921 *
1922 * Return: 1 if @p is an idle task. 0 otherwise.
1923 */
1924static __always_inline bool is_idle_task(const struct task_struct *p)
1925{
1926 return !!(p->flags & PF_IDLE);
1927}
1928
1929extern struct task_struct *curr_task(int cpu);
1930extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1931
1932void yield(void);
1933
1934union thread_union {
1935#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1936 struct task_struct task;
1937#endif
1938#ifndef CONFIG_THREAD_INFO_IN_TASK
1939 struct thread_info thread_info;
1940#endif
1941 unsigned long stack[THREAD_SIZE/sizeof(long)];
1942};
1943
1944#ifndef CONFIG_THREAD_INFO_IN_TASK
1945extern struct thread_info init_thread_info;
1946#endif
1947
1948extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1949
1950#ifdef CONFIG_THREAD_INFO_IN_TASK
1951# define task_thread_info(task) (&(task)->thread_info)
1952#elif !defined(__HAVE_THREAD_FUNCTIONS)
1953# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1954#endif
1955
1956/*
1957 * find a task by one of its numerical ids
1958 *
1959 * find_task_by_pid_ns():
1960 * finds a task by its pid in the specified namespace
1961 * find_task_by_vpid():
1962 * finds a task by its virtual pid
1963 *
1964 * see also find_vpid() etc in include/linux/pid.h
1965 */
1966
1967extern struct task_struct *find_task_by_vpid(pid_t nr);
1968extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1969
1970/*
1971 * find a task by its virtual pid and get the task struct
1972 */
1973extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1974
1975extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1976extern int wake_up_process(struct task_struct *tsk);
1977extern void wake_up_new_task(struct task_struct *tsk);
1978
1979#ifdef CONFIG_SMP
1980extern void kick_process(struct task_struct *tsk);
1981#else
1982static inline void kick_process(struct task_struct *tsk) { }
1983#endif
1984
1985extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1986
1987static inline void set_task_comm(struct task_struct *tsk, const char *from)
1988{
1989 __set_task_comm(tsk, from, false);
1990}
1991
1992extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1993#define get_task_comm(buf, tsk) ({ \
1994 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1995 __get_task_comm(buf, sizeof(buf), tsk); \
1996})
1997
1998#ifdef CONFIG_SMP
1999static __always_inline void scheduler_ipi(void)
2000{
2001 /*
2002 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2003 * TIF_NEED_RESCHED remotely (for the first time) will also send
2004 * this IPI.
2005 */
2006 preempt_fold_need_resched();
2007}
2008#else
2009static inline void scheduler_ipi(void) { }
2010#endif
2011
2012extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2013
2014/*
2015 * Set thread flags in other task's structures.
2016 * See asm/thread_info.h for TIF_xxxx flags available:
2017 */
2018static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2019{
2020 set_ti_thread_flag(task_thread_info(tsk), flag);
2021}
2022
2023static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2024{
2025 clear_ti_thread_flag(task_thread_info(tsk), flag);
2026}
2027
2028static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2029 bool value)
2030{
2031 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2032}
2033
2034static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2035{
2036 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2037}
2038
2039static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2040{
2041 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2042}
2043
2044static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2045{
2046 return test_ti_thread_flag(task_thread_info(tsk), flag);
2047}
2048
2049static inline void set_tsk_need_resched(struct task_struct *tsk)
2050{
2051 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2052}
2053
2054static inline void clear_tsk_need_resched(struct task_struct *tsk)
2055{
2056 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2057}
2058
2059static inline int test_tsk_need_resched(struct task_struct *tsk)
2060{
2061 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2062}
2063
2064/*
2065 * cond_resched() and cond_resched_lock(): latency reduction via
2066 * explicit rescheduling in places that are safe. The return
2067 * value indicates whether a reschedule was done in fact.
2068 * cond_resched_lock() will drop the spinlock before scheduling,
2069 */
2070#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2071extern int __cond_resched(void);
2072
2073#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2074
2075void sched_dynamic_klp_enable(void);
2076void sched_dynamic_klp_disable(void);
2077
2078DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2079
2080static __always_inline int _cond_resched(void)
2081{
2082 return static_call_mod(cond_resched)();
2083}
2084
2085#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2086
2087extern int dynamic_cond_resched(void);
2088
2089static __always_inline int _cond_resched(void)
2090{
2091 return dynamic_cond_resched();
2092}
2093
2094#else /* !CONFIG_PREEMPTION */
2095
2096static inline int _cond_resched(void)
2097{
2098 klp_sched_try_switch();
2099 return __cond_resched();
2100}
2101
2102#endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2103
2104#else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2105
2106static inline int _cond_resched(void)
2107{
2108 klp_sched_try_switch();
2109 return 0;
2110}
2111
2112#endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2113
2114#define cond_resched() ({ \
2115 __might_resched(__FILE__, __LINE__, 0); \
2116 _cond_resched(); \
2117})
2118
2119extern int __cond_resched_lock(spinlock_t *lock);
2120extern int __cond_resched_rwlock_read(rwlock_t *lock);
2121extern int __cond_resched_rwlock_write(rwlock_t *lock);
2122
2123#define MIGHT_RESCHED_RCU_SHIFT 8
2124#define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2125
2126#ifndef CONFIG_PREEMPT_RT
2127/*
2128 * Non RT kernels have an elevated preempt count due to the held lock,
2129 * but are not allowed to be inside a RCU read side critical section
2130 */
2131# define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2132#else
2133/*
2134 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2135 * cond_resched*lock() has to take that into account because it checks for
2136 * preempt_count() and rcu_preempt_depth().
2137 */
2138# define PREEMPT_LOCK_RESCHED_OFFSETS \
2139 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2140#endif
2141
2142#define cond_resched_lock(lock) ({ \
2143 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2144 __cond_resched_lock(lock); \
2145})
2146
2147#define cond_resched_rwlock_read(lock) ({ \
2148 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2149 __cond_resched_rwlock_read(lock); \
2150})
2151
2152#define cond_resched_rwlock_write(lock) ({ \
2153 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2154 __cond_resched_rwlock_write(lock); \
2155})
2156
2157static inline void cond_resched_rcu(void)
2158{
2159#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2160 rcu_read_unlock();
2161 cond_resched();
2162 rcu_read_lock();
2163#endif
2164}
2165
2166#ifdef CONFIG_PREEMPT_DYNAMIC
2167
2168extern bool preempt_model_none(void);
2169extern bool preempt_model_voluntary(void);
2170extern bool preempt_model_full(void);
2171
2172#else
2173
2174static inline bool preempt_model_none(void)
2175{
2176 return IS_ENABLED(CONFIG_PREEMPT_NONE);
2177}
2178static inline bool preempt_model_voluntary(void)
2179{
2180 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2181}
2182static inline bool preempt_model_full(void)
2183{
2184 return IS_ENABLED(CONFIG_PREEMPT);
2185}
2186
2187#endif
2188
2189static inline bool preempt_model_rt(void)
2190{
2191 return IS_ENABLED(CONFIG_PREEMPT_RT);
2192}
2193
2194/*
2195 * Does the preemption model allow non-cooperative preemption?
2196 *
2197 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2198 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2199 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2200 * PREEMPT_NONE model.
2201 */
2202static inline bool preempt_model_preemptible(void)
2203{
2204 return preempt_model_full() || preempt_model_rt();
2205}
2206
2207/*
2208 * Does a critical section need to be broken due to another
2209 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2210 * but a general need for low latency)
2211 */
2212static inline int spin_needbreak(spinlock_t *lock)
2213{
2214#ifdef CONFIG_PREEMPTION
2215 return spin_is_contended(lock);
2216#else
2217 return 0;
2218#endif
2219}
2220
2221/*
2222 * Check if a rwlock is contended.
2223 * Returns non-zero if there is another task waiting on the rwlock.
2224 * Returns zero if the lock is not contended or the system / underlying
2225 * rwlock implementation does not support contention detection.
2226 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2227 * for low latency.
2228 */
2229static inline int rwlock_needbreak(rwlock_t *lock)
2230{
2231#ifdef CONFIG_PREEMPTION
2232 return rwlock_is_contended(lock);
2233#else
2234 return 0;
2235#endif
2236}
2237
2238static __always_inline bool need_resched(void)
2239{
2240 return unlikely(tif_need_resched());
2241}
2242
2243/*
2244 * Wrappers for p->thread_info->cpu access. No-op on UP.
2245 */
2246#ifdef CONFIG_SMP
2247
2248static inline unsigned int task_cpu(const struct task_struct *p)
2249{
2250 return READ_ONCE(task_thread_info(p)->cpu);
2251}
2252
2253extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2254
2255#else
2256
2257static inline unsigned int task_cpu(const struct task_struct *p)
2258{
2259 return 0;
2260}
2261
2262static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2263{
2264}
2265
2266#endif /* CONFIG_SMP */
2267
2268extern bool sched_task_on_rq(struct task_struct *p);
2269extern unsigned long get_wchan(struct task_struct *p);
2270extern struct task_struct *cpu_curr_snapshot(int cpu);
2271
2272/*
2273 * In order to reduce various lock holder preemption latencies provide an
2274 * interface to see if a vCPU is currently running or not.
2275 *
2276 * This allows us to terminate optimistic spin loops and block, analogous to
2277 * the native optimistic spin heuristic of testing if the lock owner task is
2278 * running or not.
2279 */
2280#ifndef vcpu_is_preempted
2281static inline bool vcpu_is_preempted(int cpu)
2282{
2283 return false;
2284}
2285#endif
2286
2287extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2288extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2289
2290#ifndef TASK_SIZE_OF
2291#define TASK_SIZE_OF(tsk) TASK_SIZE
2292#endif
2293
2294#ifdef CONFIG_SMP
2295static inline bool owner_on_cpu(struct task_struct *owner)
2296{
2297 /*
2298 * As lock holder preemption issue, we both skip spinning if
2299 * task is not on cpu or its cpu is preempted
2300 */
2301 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2302}
2303
2304/* Returns effective CPU energy utilization, as seen by the scheduler */
2305unsigned long sched_cpu_util(int cpu);
2306#endif /* CONFIG_SMP */
2307
2308#ifdef CONFIG_RSEQ
2309
2310/*
2311 * Map the event mask on the user-space ABI enum rseq_cs_flags
2312 * for direct mask checks.
2313 */
2314enum rseq_event_mask_bits {
2315 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2316 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2317 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2318};
2319
2320enum rseq_event_mask {
2321 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2322 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2323 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2324};
2325
2326static inline void rseq_set_notify_resume(struct task_struct *t)
2327{
2328 if (t->rseq)
2329 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2330}
2331
2332void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2333
2334static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2335 struct pt_regs *regs)
2336{
2337 if (current->rseq)
2338 __rseq_handle_notify_resume(ksig, regs);
2339}
2340
2341static inline void rseq_signal_deliver(struct ksignal *ksig,
2342 struct pt_regs *regs)
2343{
2344 preempt_disable();
2345 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2346 preempt_enable();
2347 rseq_handle_notify_resume(ksig, regs);
2348}
2349
2350/* rseq_preempt() requires preemption to be disabled. */
2351static inline void rseq_preempt(struct task_struct *t)
2352{
2353 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2354 rseq_set_notify_resume(t);
2355}
2356
2357/* rseq_migrate() requires preemption to be disabled. */
2358static inline void rseq_migrate(struct task_struct *t)
2359{
2360 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2361 rseq_set_notify_resume(t);
2362}
2363
2364/*
2365 * If parent process has a registered restartable sequences area, the
2366 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2367 */
2368static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2369{
2370 if (clone_flags & CLONE_VM) {
2371 t->rseq = NULL;
2372 t->rseq_len = 0;
2373 t->rseq_sig = 0;
2374 t->rseq_event_mask = 0;
2375 } else {
2376 t->rseq = current->rseq;
2377 t->rseq_len = current->rseq_len;
2378 t->rseq_sig = current->rseq_sig;
2379 t->rseq_event_mask = current->rseq_event_mask;
2380 }
2381}
2382
2383static inline void rseq_execve(struct task_struct *t)
2384{
2385 t->rseq = NULL;
2386 t->rseq_len = 0;
2387 t->rseq_sig = 0;
2388 t->rseq_event_mask = 0;
2389}
2390
2391#else
2392
2393static inline void rseq_set_notify_resume(struct task_struct *t)
2394{
2395}
2396static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2397 struct pt_regs *regs)
2398{
2399}
2400static inline void rseq_signal_deliver(struct ksignal *ksig,
2401 struct pt_regs *regs)
2402{
2403}
2404static inline void rseq_preempt(struct task_struct *t)
2405{
2406}
2407static inline void rseq_migrate(struct task_struct *t)
2408{
2409}
2410static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2411{
2412}
2413static inline void rseq_execve(struct task_struct *t)
2414{
2415}
2416
2417#endif
2418
2419#ifdef CONFIG_DEBUG_RSEQ
2420
2421void rseq_syscall(struct pt_regs *regs);
2422
2423#else
2424
2425static inline void rseq_syscall(struct pt_regs *regs)
2426{
2427}
2428
2429#endif
2430
2431#ifdef CONFIG_SCHED_CORE
2432extern void sched_core_free(struct task_struct *tsk);
2433extern void sched_core_fork(struct task_struct *p);
2434extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2435 unsigned long uaddr);
2436#else
2437static inline void sched_core_free(struct task_struct *tsk) { }
2438static inline void sched_core_fork(struct task_struct *p) { }
2439#endif
2440
2441extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2442
2443#endif