at v6.5 6.6 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PID_H 3#define _LINUX_PID_H 4 5#include <linux/rculist.h> 6#include <linux/wait.h> 7#include <linux/refcount.h> 8 9enum pid_type 10{ 11 PIDTYPE_PID, 12 PIDTYPE_TGID, 13 PIDTYPE_PGID, 14 PIDTYPE_SID, 15 PIDTYPE_MAX, 16}; 17 18/* 19 * What is struct pid? 20 * 21 * A struct pid is the kernel's internal notion of a process identifier. 22 * It refers to individual tasks, process groups, and sessions. While 23 * there are processes attached to it the struct pid lives in a hash 24 * table, so it and then the processes that it refers to can be found 25 * quickly from the numeric pid value. The attached processes may be 26 * quickly accessed by following pointers from struct pid. 27 * 28 * Storing pid_t values in the kernel and referring to them later has a 29 * problem. The process originally with that pid may have exited and the 30 * pid allocator wrapped, and another process could have come along 31 * and been assigned that pid. 32 * 33 * Referring to user space processes by holding a reference to struct 34 * task_struct has a problem. When the user space process exits 35 * the now useless task_struct is still kept. A task_struct plus a 36 * stack consumes around 10K of low kernel memory. More precisely 37 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison 38 * a struct pid is about 64 bytes. 39 * 40 * Holding a reference to struct pid solves both of these problems. 41 * It is small so holding a reference does not consume a lot of 42 * resources, and since a new struct pid is allocated when the numeric pid 43 * value is reused (when pids wrap around) we don't mistakenly refer to new 44 * processes. 45 */ 46 47 48/* 49 * struct upid is used to get the id of the struct pid, as it is 50 * seen in particular namespace. Later the struct pid is found with 51 * find_pid_ns() using the int nr and struct pid_namespace *ns. 52 */ 53 54struct upid { 55 int nr; 56 struct pid_namespace *ns; 57}; 58 59struct pid 60{ 61 refcount_t count; 62 unsigned int level; 63 spinlock_t lock; 64 /* lists of tasks that use this pid */ 65 struct hlist_head tasks[PIDTYPE_MAX]; 66 struct hlist_head inodes; 67 /* wait queue for pidfd notifications */ 68 wait_queue_head_t wait_pidfd; 69 struct rcu_head rcu; 70 struct upid numbers[]; 71}; 72 73extern struct pid init_struct_pid; 74 75extern const struct file_operations pidfd_fops; 76 77struct file; 78 79extern struct pid *pidfd_pid(const struct file *file); 80struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags); 81struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags); 82int pidfd_create(struct pid *pid, unsigned int flags); 83int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret); 84 85static inline struct pid *get_pid(struct pid *pid) 86{ 87 if (pid) 88 refcount_inc(&pid->count); 89 return pid; 90} 91 92extern void put_pid(struct pid *pid); 93extern struct task_struct *pid_task(struct pid *pid, enum pid_type); 94static inline bool pid_has_task(struct pid *pid, enum pid_type type) 95{ 96 return !hlist_empty(&pid->tasks[type]); 97} 98extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type); 99 100extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); 101 102/* 103 * these helpers must be called with the tasklist_lock write-held. 104 */ 105extern void attach_pid(struct task_struct *task, enum pid_type); 106extern void detach_pid(struct task_struct *task, enum pid_type); 107extern void change_pid(struct task_struct *task, enum pid_type, 108 struct pid *pid); 109extern void exchange_tids(struct task_struct *task, struct task_struct *old); 110extern void transfer_pid(struct task_struct *old, struct task_struct *new, 111 enum pid_type); 112 113struct pid_namespace; 114extern struct pid_namespace init_pid_ns; 115 116extern int pid_max; 117extern int pid_max_min, pid_max_max; 118 119/* 120 * look up a PID in the hash table. Must be called with the tasklist_lock 121 * or rcu_read_lock() held. 122 * 123 * find_pid_ns() finds the pid in the namespace specified 124 * find_vpid() finds the pid by its virtual id, i.e. in the current namespace 125 * 126 * see also find_task_by_vpid() set in include/linux/sched.h 127 */ 128extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns); 129extern struct pid *find_vpid(int nr); 130 131/* 132 * Lookup a PID in the hash table, and return with it's count elevated. 133 */ 134extern struct pid *find_get_pid(int nr); 135extern struct pid *find_ge_pid(int nr, struct pid_namespace *); 136 137extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 138 size_t set_tid_size); 139extern void free_pid(struct pid *pid); 140extern void disable_pid_allocation(struct pid_namespace *ns); 141 142/* 143 * ns_of_pid() returns the pid namespace in which the specified pid was 144 * allocated. 145 * 146 * NOTE: 147 * ns_of_pid() is expected to be called for a process (task) that has 148 * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid 149 * is expected to be non-NULL. If @pid is NULL, caller should handle 150 * the resulting NULL pid-ns. 151 */ 152static inline struct pid_namespace *ns_of_pid(struct pid *pid) 153{ 154 struct pid_namespace *ns = NULL; 155 if (pid) 156 ns = pid->numbers[pid->level].ns; 157 return ns; 158} 159 160/* 161 * is_child_reaper returns true if the pid is the init process 162 * of the current namespace. As this one could be checked before 163 * pid_ns->child_reaper is assigned in copy_process, we check 164 * with the pid number. 165 */ 166static inline bool is_child_reaper(struct pid *pid) 167{ 168 return pid->numbers[pid->level].nr == 1; 169} 170 171/* 172 * the helpers to get the pid's id seen from different namespaces 173 * 174 * pid_nr() : global id, i.e. the id seen from the init namespace; 175 * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of 176 * current. 177 * pid_nr_ns() : id seen from the ns specified. 178 * 179 * see also task_xid_nr() etc in include/linux/sched.h 180 */ 181 182static inline pid_t pid_nr(struct pid *pid) 183{ 184 pid_t nr = 0; 185 if (pid) 186 nr = pid->numbers[0].nr; 187 return nr; 188} 189 190pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns); 191pid_t pid_vnr(struct pid *pid); 192 193#define do_each_pid_task(pid, type, task) \ 194 do { \ 195 if ((pid) != NULL) \ 196 hlist_for_each_entry_rcu((task), \ 197 &(pid)->tasks[type], pid_links[type]) { 198 199 /* 200 * Both old and new leaders may be attached to 201 * the same pid in the middle of de_thread(). 202 */ 203#define while_each_pid_task(pid, type, task) \ 204 if (type == PIDTYPE_PID) \ 205 break; \ 206 } \ 207 } while (0) 208 209#define do_each_pid_thread(pid, type, task) \ 210 do_each_pid_task(pid, type, task) { \ 211 struct task_struct *tg___ = task; \ 212 for_each_thread(tg___, task) { 213 214#define while_each_pid_thread(pid, type, task) \ 215 } \ 216 task = tg___; \ 217 } while_each_pid_task(pid, type, task) 218#endif /* _LINUX_PID_H */