Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <uapi/linux/perf_event.h>
18#include <uapi/linux/bpf_perf_event.h>
19
20/*
21 * Kernel-internal data types and definitions:
22 */
23
24#ifdef CONFIG_PERF_EVENTS
25# include <asm/perf_event.h>
26# include <asm/local64.h>
27#endif
28
29#define PERF_GUEST_ACTIVE 0x01
30#define PERF_GUEST_USER 0x02
31
32struct perf_guest_info_callbacks {
33 unsigned int (*state)(void);
34 unsigned long (*get_ip)(void);
35 unsigned int (*handle_intel_pt_intr)(void);
36};
37
38#ifdef CONFIG_HAVE_HW_BREAKPOINT
39#include <linux/rhashtable-types.h>
40#include <asm/hw_breakpoint.h>
41#endif
42
43#include <linux/list.h>
44#include <linux/mutex.h>
45#include <linux/rculist.h>
46#include <linux/rcupdate.h>
47#include <linux/spinlock.h>
48#include <linux/hrtimer.h>
49#include <linux/fs.h>
50#include <linux/pid_namespace.h>
51#include <linux/workqueue.h>
52#include <linux/ftrace.h>
53#include <linux/cpu.h>
54#include <linux/irq_work.h>
55#include <linux/static_key.h>
56#include <linux/jump_label_ratelimit.h>
57#include <linux/atomic.h>
58#include <linux/sysfs.h>
59#include <linux/perf_regs.h>
60#include <linux/cgroup.h>
61#include <linux/refcount.h>
62#include <linux/security.h>
63#include <linux/static_call.h>
64#include <linux/lockdep.h>
65#include <asm/local.h>
66
67struct perf_callchain_entry {
68 __u64 nr;
69 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70};
71
72struct perf_callchain_entry_ctx {
73 struct perf_callchain_entry *entry;
74 u32 max_stack;
75 u32 nr;
76 short contexts;
77 bool contexts_maxed;
78};
79
80typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81 unsigned long off, unsigned long len);
82
83struct perf_raw_frag {
84 union {
85 struct perf_raw_frag *next;
86 unsigned long pad;
87 };
88 perf_copy_f copy;
89 void *data;
90 u32 size;
91} __packed;
92
93struct perf_raw_record {
94 struct perf_raw_frag frag;
95 u32 size;
96};
97
98static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99{
100 return frag->pad < sizeof(u64);
101}
102
103/*
104 * branch stack layout:
105 * nr: number of taken branches stored in entries[]
106 * hw_idx: The low level index of raw branch records
107 * for the most recent branch.
108 * -1ULL means invalid/unknown.
109 *
110 * Note that nr can vary from sample to sample
111 * branches (to, from) are stored from most recent
112 * to least recent, i.e., entries[0] contains the most
113 * recent branch.
114 * The entries[] is an abstraction of raw branch records,
115 * which may not be stored in age order in HW, e.g. Intel LBR.
116 * The hw_idx is to expose the low level index of raw
117 * branch record for the most recent branch aka entries[0].
118 * The hw_idx index is between -1 (unknown) and max depth,
119 * which can be retrieved in /sys/devices/cpu/caps/branches.
120 * For the architectures whose raw branch records are
121 * already stored in age order, the hw_idx should be 0.
122 */
123struct perf_branch_stack {
124 __u64 nr;
125 __u64 hw_idx;
126 struct perf_branch_entry entries[];
127};
128
129struct task_struct;
130
131/*
132 * extra PMU register associated with an event
133 */
134struct hw_perf_event_extra {
135 u64 config; /* register value */
136 unsigned int reg; /* register address or index */
137 int alloc; /* extra register already allocated */
138 int idx; /* index in shared_regs->regs[] */
139};
140
141/**
142 * hw_perf_event::flag values
143 *
144 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145 * usage.
146 */
147#define PERF_EVENT_FLAG_ARCH 0x000fffff
148#define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000
149
150static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151
152/**
153 * struct hw_perf_event - performance event hardware details:
154 */
155struct hw_perf_event {
156#ifdef CONFIG_PERF_EVENTS
157 union {
158 struct { /* hardware */
159 u64 config;
160 u64 last_tag;
161 unsigned long config_base;
162 unsigned long event_base;
163 int event_base_rdpmc;
164 int idx;
165 int last_cpu;
166 int flags;
167
168 struct hw_perf_event_extra extra_reg;
169 struct hw_perf_event_extra branch_reg;
170 };
171 struct { /* software */
172 struct hrtimer hrtimer;
173 };
174 struct { /* tracepoint */
175 /* for tp_event->class */
176 struct list_head tp_list;
177 };
178 struct { /* amd_power */
179 u64 pwr_acc;
180 u64 ptsc;
181 };
182#ifdef CONFIG_HAVE_HW_BREAKPOINT
183 struct { /* breakpoint */
184 /*
185 * Crufty hack to avoid the chicken and egg
186 * problem hw_breakpoint has with context
187 * creation and event initalization.
188 */
189 struct arch_hw_breakpoint info;
190 struct rhlist_head bp_list;
191 };
192#endif
193 struct { /* amd_iommu */
194 u8 iommu_bank;
195 u8 iommu_cntr;
196 u16 padding;
197 u64 conf;
198 u64 conf1;
199 };
200 };
201 /*
202 * If the event is a per task event, this will point to the task in
203 * question. See the comment in perf_event_alloc().
204 */
205 struct task_struct *target;
206
207 /*
208 * PMU would store hardware filter configuration
209 * here.
210 */
211 void *addr_filters;
212
213 /* Last sync'ed generation of filters */
214 unsigned long addr_filters_gen;
215
216/*
217 * hw_perf_event::state flags; used to track the PERF_EF_* state.
218 */
219#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
220#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
221#define PERF_HES_ARCH 0x04
222
223 int state;
224
225 /*
226 * The last observed hardware counter value, updated with a
227 * local64_cmpxchg() such that pmu::read() can be called nested.
228 */
229 local64_t prev_count;
230
231 /*
232 * The period to start the next sample with.
233 */
234 u64 sample_period;
235
236 union {
237 struct { /* Sampling */
238 /*
239 * The period we started this sample with.
240 */
241 u64 last_period;
242
243 /*
244 * However much is left of the current period;
245 * note that this is a full 64bit value and
246 * allows for generation of periods longer
247 * than hardware might allow.
248 */
249 local64_t period_left;
250 };
251 struct { /* Topdown events counting for context switch */
252 u64 saved_metric;
253 u64 saved_slots;
254 };
255 };
256
257 /*
258 * State for throttling the event, see __perf_event_overflow() and
259 * perf_adjust_freq_unthr_context().
260 */
261 u64 interrupts_seq;
262 u64 interrupts;
263
264 /*
265 * State for freq target events, see __perf_event_overflow() and
266 * perf_adjust_freq_unthr_context().
267 */
268 u64 freq_time_stamp;
269 u64 freq_count_stamp;
270#endif
271};
272
273struct perf_event;
274struct perf_event_pmu_context;
275
276/*
277 * Common implementation detail of pmu::{start,commit,cancel}_txn
278 */
279#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
280#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
281
282/**
283 * pmu::capabilities flags
284 */
285#define PERF_PMU_CAP_NO_INTERRUPT 0x0001
286#define PERF_PMU_CAP_NO_NMI 0x0002
287#define PERF_PMU_CAP_AUX_NO_SG 0x0004
288#define PERF_PMU_CAP_EXTENDED_REGS 0x0008
289#define PERF_PMU_CAP_EXCLUSIVE 0x0010
290#define PERF_PMU_CAP_ITRACE 0x0020
291#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040
292#define PERF_PMU_CAP_NO_EXCLUDE 0x0080
293#define PERF_PMU_CAP_AUX_OUTPUT 0x0100
294#define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200
295
296struct perf_output_handle;
297
298#define PMU_NULL_DEV ((void *)(~0UL))
299
300/**
301 * struct pmu - generic performance monitoring unit
302 */
303struct pmu {
304 struct list_head entry;
305
306 struct module *module;
307 struct device *dev;
308 struct device *parent;
309 const struct attribute_group **attr_groups;
310 const struct attribute_group **attr_update;
311 const char *name;
312 int type;
313
314 /*
315 * various common per-pmu feature flags
316 */
317 int capabilities;
318
319 int __percpu *pmu_disable_count;
320 struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
321 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
322 int task_ctx_nr;
323 int hrtimer_interval_ms;
324
325 /* number of address filters this PMU can do */
326 unsigned int nr_addr_filters;
327
328 /*
329 * Fully disable/enable this PMU, can be used to protect from the PMI
330 * as well as for lazy/batch writing of the MSRs.
331 */
332 void (*pmu_enable) (struct pmu *pmu); /* optional */
333 void (*pmu_disable) (struct pmu *pmu); /* optional */
334
335 /*
336 * Try and initialize the event for this PMU.
337 *
338 * Returns:
339 * -ENOENT -- @event is not for this PMU
340 *
341 * -ENODEV -- @event is for this PMU but PMU not present
342 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
343 * -EINVAL -- @event is for this PMU but @event is not valid
344 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
345 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
346 *
347 * 0 -- @event is for this PMU and valid
348 *
349 * Other error return values are allowed.
350 */
351 int (*event_init) (struct perf_event *event);
352
353 /*
354 * Notification that the event was mapped or unmapped. Called
355 * in the context of the mapping task.
356 */
357 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
358 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
359
360 /*
361 * Flags for ->add()/->del()/ ->start()/->stop(). There are
362 * matching hw_perf_event::state flags.
363 */
364#define PERF_EF_START 0x01 /* start the counter when adding */
365#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
366#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
367
368 /*
369 * Adds/Removes a counter to/from the PMU, can be done inside a
370 * transaction, see the ->*_txn() methods.
371 *
372 * The add/del callbacks will reserve all hardware resources required
373 * to service the event, this includes any counter constraint
374 * scheduling etc.
375 *
376 * Called with IRQs disabled and the PMU disabled on the CPU the event
377 * is on.
378 *
379 * ->add() called without PERF_EF_START should result in the same state
380 * as ->add() followed by ->stop().
381 *
382 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
383 * ->stop() that must deal with already being stopped without
384 * PERF_EF_UPDATE.
385 */
386 int (*add) (struct perf_event *event, int flags);
387 void (*del) (struct perf_event *event, int flags);
388
389 /*
390 * Starts/Stops a counter present on the PMU.
391 *
392 * The PMI handler should stop the counter when perf_event_overflow()
393 * returns !0. ->start() will be used to continue.
394 *
395 * Also used to change the sample period.
396 *
397 * Called with IRQs disabled and the PMU disabled on the CPU the event
398 * is on -- will be called from NMI context with the PMU generates
399 * NMIs.
400 *
401 * ->stop() with PERF_EF_UPDATE will read the counter and update
402 * period/count values like ->read() would.
403 *
404 * ->start() with PERF_EF_RELOAD will reprogram the counter
405 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
406 */
407 void (*start) (struct perf_event *event, int flags);
408 void (*stop) (struct perf_event *event, int flags);
409
410 /*
411 * Updates the counter value of the event.
412 *
413 * For sampling capable PMUs this will also update the software period
414 * hw_perf_event::period_left field.
415 */
416 void (*read) (struct perf_event *event);
417
418 /*
419 * Group events scheduling is treated as a transaction, add
420 * group events as a whole and perform one schedulability test.
421 * If the test fails, roll back the whole group
422 *
423 * Start the transaction, after this ->add() doesn't need to
424 * do schedulability tests.
425 *
426 * Optional.
427 */
428 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
429 /*
430 * If ->start_txn() disabled the ->add() schedulability test
431 * then ->commit_txn() is required to perform one. On success
432 * the transaction is closed. On error the transaction is kept
433 * open until ->cancel_txn() is called.
434 *
435 * Optional.
436 */
437 int (*commit_txn) (struct pmu *pmu);
438 /*
439 * Will cancel the transaction, assumes ->del() is called
440 * for each successful ->add() during the transaction.
441 *
442 * Optional.
443 */
444 void (*cancel_txn) (struct pmu *pmu);
445
446 /*
447 * Will return the value for perf_event_mmap_page::index for this event,
448 * if no implementation is provided it will default to: event->hw.idx + 1.
449 */
450 int (*event_idx) (struct perf_event *event); /*optional */
451
452 /*
453 * context-switches callback
454 */
455 void (*sched_task) (struct perf_event_pmu_context *pmu_ctx,
456 bool sched_in);
457
458 /*
459 * Kmem cache of PMU specific data
460 */
461 struct kmem_cache *task_ctx_cache;
462
463 /*
464 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
465 * can be synchronized using this function. See Intel LBR callstack support
466 * implementation and Perf core context switch handling callbacks for usage
467 * examples.
468 */
469 void (*swap_task_ctx) (struct perf_event_pmu_context *prev_epc,
470 struct perf_event_pmu_context *next_epc);
471 /* optional */
472
473 /*
474 * Set up pmu-private data structures for an AUX area
475 */
476 void *(*setup_aux) (struct perf_event *event, void **pages,
477 int nr_pages, bool overwrite);
478 /* optional */
479
480 /*
481 * Free pmu-private AUX data structures
482 */
483 void (*free_aux) (void *aux); /* optional */
484
485 /*
486 * Take a snapshot of the AUX buffer without touching the event
487 * state, so that preempting ->start()/->stop() callbacks does
488 * not interfere with their logic. Called in PMI context.
489 *
490 * Returns the size of AUX data copied to the output handle.
491 *
492 * Optional.
493 */
494 long (*snapshot_aux) (struct perf_event *event,
495 struct perf_output_handle *handle,
496 unsigned long size);
497
498 /*
499 * Validate address range filters: make sure the HW supports the
500 * requested configuration and number of filters; return 0 if the
501 * supplied filters are valid, -errno otherwise.
502 *
503 * Runs in the context of the ioctl()ing process and is not serialized
504 * with the rest of the PMU callbacks.
505 */
506 int (*addr_filters_validate) (struct list_head *filters);
507 /* optional */
508
509 /*
510 * Synchronize address range filter configuration:
511 * translate hw-agnostic filters into hardware configuration in
512 * event::hw::addr_filters.
513 *
514 * Runs as a part of filter sync sequence that is done in ->start()
515 * callback by calling perf_event_addr_filters_sync().
516 *
517 * May (and should) traverse event::addr_filters::list, for which its
518 * caller provides necessary serialization.
519 */
520 void (*addr_filters_sync) (struct perf_event *event);
521 /* optional */
522
523 /*
524 * Check if event can be used for aux_output purposes for
525 * events of this PMU.
526 *
527 * Runs from perf_event_open(). Should return 0 for "no match"
528 * or non-zero for "match".
529 */
530 int (*aux_output_match) (struct perf_event *event);
531 /* optional */
532
533 /*
534 * Skip programming this PMU on the given CPU. Typically needed for
535 * big.LITTLE things.
536 */
537 bool (*filter) (struct pmu *pmu, int cpu); /* optional */
538
539 /*
540 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
541 */
542 int (*check_period) (struct perf_event *event, u64 value); /* optional */
543};
544
545enum perf_addr_filter_action_t {
546 PERF_ADDR_FILTER_ACTION_STOP = 0,
547 PERF_ADDR_FILTER_ACTION_START,
548 PERF_ADDR_FILTER_ACTION_FILTER,
549};
550
551/**
552 * struct perf_addr_filter - address range filter definition
553 * @entry: event's filter list linkage
554 * @path: object file's path for file-based filters
555 * @offset: filter range offset
556 * @size: filter range size (size==0 means single address trigger)
557 * @action: filter/start/stop
558 *
559 * This is a hardware-agnostic filter configuration as specified by the user.
560 */
561struct perf_addr_filter {
562 struct list_head entry;
563 struct path path;
564 unsigned long offset;
565 unsigned long size;
566 enum perf_addr_filter_action_t action;
567};
568
569/**
570 * struct perf_addr_filters_head - container for address range filters
571 * @list: list of filters for this event
572 * @lock: spinlock that serializes accesses to the @list and event's
573 * (and its children's) filter generations.
574 * @nr_file_filters: number of file-based filters
575 *
576 * A child event will use parent's @list (and therefore @lock), so they are
577 * bundled together; see perf_event_addr_filters().
578 */
579struct perf_addr_filters_head {
580 struct list_head list;
581 raw_spinlock_t lock;
582 unsigned int nr_file_filters;
583};
584
585struct perf_addr_filter_range {
586 unsigned long start;
587 unsigned long size;
588};
589
590/**
591 * enum perf_event_state - the states of an event:
592 */
593enum perf_event_state {
594 PERF_EVENT_STATE_DEAD = -4,
595 PERF_EVENT_STATE_EXIT = -3,
596 PERF_EVENT_STATE_ERROR = -2,
597 PERF_EVENT_STATE_OFF = -1,
598 PERF_EVENT_STATE_INACTIVE = 0,
599 PERF_EVENT_STATE_ACTIVE = 1,
600};
601
602struct file;
603struct perf_sample_data;
604
605typedef void (*perf_overflow_handler_t)(struct perf_event *,
606 struct perf_sample_data *,
607 struct pt_regs *regs);
608
609/*
610 * Event capabilities. For event_caps and groups caps.
611 *
612 * PERF_EV_CAP_SOFTWARE: Is a software event.
613 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
614 * from any CPU in the package where it is active.
615 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
616 * cannot be a group leader. If an event with this flag is detached from the
617 * group it is scheduled out and moved into an unrecoverable ERROR state.
618 */
619#define PERF_EV_CAP_SOFTWARE BIT(0)
620#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
621#define PERF_EV_CAP_SIBLING BIT(2)
622
623#define SWEVENT_HLIST_BITS 8
624#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
625
626struct swevent_hlist {
627 struct hlist_head heads[SWEVENT_HLIST_SIZE];
628 struct rcu_head rcu_head;
629};
630
631#define PERF_ATTACH_CONTEXT 0x01
632#define PERF_ATTACH_GROUP 0x02
633#define PERF_ATTACH_TASK 0x04
634#define PERF_ATTACH_TASK_DATA 0x08
635#define PERF_ATTACH_ITRACE 0x10
636#define PERF_ATTACH_SCHED_CB 0x20
637#define PERF_ATTACH_CHILD 0x40
638
639struct bpf_prog;
640struct perf_cgroup;
641struct perf_buffer;
642
643struct pmu_event_list {
644 raw_spinlock_t lock;
645 struct list_head list;
646};
647
648/*
649 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
650 * as such iteration must hold either lock. However, since ctx->lock is an IRQ
651 * safe lock, and is only held by the CPU doing the modification, having IRQs
652 * disabled is sufficient since it will hold-off the IPIs.
653 */
654#ifdef CONFIG_PROVE_LOCKING
655#define lockdep_assert_event_ctx(event) \
656 WARN_ON_ONCE(__lockdep_enabled && \
657 (this_cpu_read(hardirqs_enabled) && \
658 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
659#else
660#define lockdep_assert_event_ctx(event)
661#endif
662
663#define for_each_sibling_event(sibling, event) \
664 lockdep_assert_event_ctx(event); \
665 if ((event)->group_leader == (event)) \
666 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
667
668/**
669 * struct perf_event - performance event kernel representation:
670 */
671struct perf_event {
672#ifdef CONFIG_PERF_EVENTS
673 /*
674 * entry onto perf_event_context::event_list;
675 * modifications require ctx->lock
676 * RCU safe iterations.
677 */
678 struct list_head event_entry;
679
680 /*
681 * Locked for modification by both ctx->mutex and ctx->lock; holding
682 * either sufficies for read.
683 */
684 struct list_head sibling_list;
685 struct list_head active_list;
686 /*
687 * Node on the pinned or flexible tree located at the event context;
688 */
689 struct rb_node group_node;
690 u64 group_index;
691 /*
692 * We need storage to track the entries in perf_pmu_migrate_context; we
693 * cannot use the event_entry because of RCU and we want to keep the
694 * group in tact which avoids us using the other two entries.
695 */
696 struct list_head migrate_entry;
697
698 struct hlist_node hlist_entry;
699 struct list_head active_entry;
700 int nr_siblings;
701
702 /* Not serialized. Only written during event initialization. */
703 int event_caps;
704 /* The cumulative AND of all event_caps for events in this group. */
705 int group_caps;
706
707 struct perf_event *group_leader;
708 /*
709 * event->pmu will always point to pmu in which this event belongs.
710 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
711 * different pmu events is created.
712 */
713 struct pmu *pmu;
714 void *pmu_private;
715
716 enum perf_event_state state;
717 unsigned int attach_state;
718 local64_t count;
719 atomic64_t child_count;
720
721 /*
722 * These are the total time in nanoseconds that the event
723 * has been enabled (i.e. eligible to run, and the task has
724 * been scheduled in, if this is a per-task event)
725 * and running (scheduled onto the CPU), respectively.
726 */
727 u64 total_time_enabled;
728 u64 total_time_running;
729 u64 tstamp;
730
731 struct perf_event_attr attr;
732 u16 header_size;
733 u16 id_header_size;
734 u16 read_size;
735 struct hw_perf_event hw;
736
737 struct perf_event_context *ctx;
738 /*
739 * event->pmu_ctx points to perf_event_pmu_context in which the event
740 * is added. This pmu_ctx can be of other pmu for sw event when that
741 * sw event is part of a group which also contains non-sw events.
742 */
743 struct perf_event_pmu_context *pmu_ctx;
744 atomic_long_t refcount;
745
746 /*
747 * These accumulate total time (in nanoseconds) that children
748 * events have been enabled and running, respectively.
749 */
750 atomic64_t child_total_time_enabled;
751 atomic64_t child_total_time_running;
752
753 /*
754 * Protect attach/detach and child_list:
755 */
756 struct mutex child_mutex;
757 struct list_head child_list;
758 struct perf_event *parent;
759
760 int oncpu;
761 int cpu;
762
763 struct list_head owner_entry;
764 struct task_struct *owner;
765
766 /* mmap bits */
767 struct mutex mmap_mutex;
768 atomic_t mmap_count;
769
770 struct perf_buffer *rb;
771 struct list_head rb_entry;
772 unsigned long rcu_batches;
773 int rcu_pending;
774
775 /* poll related */
776 wait_queue_head_t waitq;
777 struct fasync_struct *fasync;
778
779 /* delayed work for NMIs and such */
780 unsigned int pending_wakeup;
781 unsigned int pending_kill;
782 unsigned int pending_disable;
783 unsigned int pending_sigtrap;
784 unsigned long pending_addr; /* SIGTRAP */
785 struct irq_work pending_irq;
786 struct callback_head pending_task;
787 unsigned int pending_work;
788
789 atomic_t event_limit;
790
791 /* address range filters */
792 struct perf_addr_filters_head addr_filters;
793 /* vma address array for file-based filders */
794 struct perf_addr_filter_range *addr_filter_ranges;
795 unsigned long addr_filters_gen;
796
797 /* for aux_output events */
798 struct perf_event *aux_event;
799
800 void (*destroy)(struct perf_event *);
801 struct rcu_head rcu_head;
802
803 struct pid_namespace *ns;
804 u64 id;
805
806 atomic64_t lost_samples;
807
808 u64 (*clock)(void);
809 perf_overflow_handler_t overflow_handler;
810 void *overflow_handler_context;
811#ifdef CONFIG_BPF_SYSCALL
812 perf_overflow_handler_t orig_overflow_handler;
813 struct bpf_prog *prog;
814 u64 bpf_cookie;
815#endif
816
817#ifdef CONFIG_EVENT_TRACING
818 struct trace_event_call *tp_event;
819 struct event_filter *filter;
820#ifdef CONFIG_FUNCTION_TRACER
821 struct ftrace_ops ftrace_ops;
822#endif
823#endif
824
825#ifdef CONFIG_CGROUP_PERF
826 struct perf_cgroup *cgrp; /* cgroup event is attach to */
827#endif
828
829#ifdef CONFIG_SECURITY
830 void *security;
831#endif
832 struct list_head sb_list;
833
834 /*
835 * Certain events gets forwarded to another pmu internally by over-
836 * writing kernel copy of event->attr.type without user being aware
837 * of it. event->orig_type contains original 'type' requested by
838 * user.
839 */
840 __u32 orig_type;
841#endif /* CONFIG_PERF_EVENTS */
842};
843
844/*
845 * ,-----------------------[1:n]----------------------.
846 * V V
847 * perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
848 * ^ ^ | |
849 * `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
850 *
851 *
852 * struct perf_event_pmu_context lifetime is refcount based and RCU freed
853 * (similar to perf_event_context). Locking is as if it were a member of
854 * perf_event_context; specifically:
855 *
856 * modification, both: ctx->mutex && ctx->lock
857 * reading, either: ctx->mutex || ctx->lock
858 *
859 * There is one exception to this; namely put_pmu_ctx() isn't always called
860 * with ctx->mutex held; this means that as long as we can guarantee the epc
861 * has events the above rules hold.
862 *
863 * Specificially, sys_perf_event_open()'s group_leader case depends on
864 * ctx->mutex pinning the configuration. Since we hold a reference on
865 * group_leader (through the filedesc) it can't go away, therefore it's
866 * associated pmu_ctx must exist and cannot change due to ctx->mutex.
867 */
868struct perf_event_pmu_context {
869 struct pmu *pmu;
870 struct perf_event_context *ctx;
871
872 struct list_head pmu_ctx_entry;
873
874 struct list_head pinned_active;
875 struct list_head flexible_active;
876
877 /* Used to avoid freeing per-cpu perf_event_pmu_context */
878 unsigned int embedded : 1;
879
880 unsigned int nr_events;
881
882 atomic_t refcount; /* event <-> epc */
883 struct rcu_head rcu_head;
884
885 void *task_ctx_data; /* pmu specific data */
886 /*
887 * Set when one or more (plausibly active) event can't be scheduled
888 * due to pmu overcommit or pmu constraints, except tolerant to
889 * events not necessary to be active due to scheduling constraints,
890 * such as cgroups.
891 */
892 int rotate_necessary;
893};
894
895struct perf_event_groups {
896 struct rb_root tree;
897 u64 index;
898};
899
900
901/**
902 * struct perf_event_context - event context structure
903 *
904 * Used as a container for task events and CPU events as well:
905 */
906struct perf_event_context {
907 /*
908 * Protect the states of the events in the list,
909 * nr_active, and the list:
910 */
911 raw_spinlock_t lock;
912 /*
913 * Protect the list of events. Locking either mutex or lock
914 * is sufficient to ensure the list doesn't change; to change
915 * the list you need to lock both the mutex and the spinlock.
916 */
917 struct mutex mutex;
918
919 struct list_head pmu_ctx_list;
920 struct perf_event_groups pinned_groups;
921 struct perf_event_groups flexible_groups;
922 struct list_head event_list;
923
924 int nr_events;
925 int nr_user;
926 int is_active;
927
928 int nr_task_data;
929 int nr_stat;
930 int nr_freq;
931 int rotate_disable;
932
933 refcount_t refcount; /* event <-> ctx */
934 struct task_struct *task;
935
936 /*
937 * Context clock, runs when context enabled.
938 */
939 u64 time;
940 u64 timestamp;
941 u64 timeoffset;
942
943 /*
944 * These fields let us detect when two contexts have both
945 * been cloned (inherited) from a common ancestor.
946 */
947 struct perf_event_context *parent_ctx;
948 u64 parent_gen;
949 u64 generation;
950 int pin_count;
951#ifdef CONFIG_CGROUP_PERF
952 int nr_cgroups; /* cgroup evts */
953#endif
954 struct rcu_head rcu_head;
955
956 /*
957 * Sum (event->pending_sigtrap + event->pending_work)
958 *
959 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
960 * that until the signal is delivered.
961 */
962 local_t nr_pending;
963};
964
965/*
966 * Number of contexts where an event can trigger:
967 * task, softirq, hardirq, nmi.
968 */
969#define PERF_NR_CONTEXTS 4
970
971struct perf_cpu_pmu_context {
972 struct perf_event_pmu_context epc;
973 struct perf_event_pmu_context *task_epc;
974
975 struct list_head sched_cb_entry;
976 int sched_cb_usage;
977
978 int active_oncpu;
979 int exclusive;
980
981 raw_spinlock_t hrtimer_lock;
982 struct hrtimer hrtimer;
983 ktime_t hrtimer_interval;
984 unsigned int hrtimer_active;
985};
986
987/**
988 * struct perf_event_cpu_context - per cpu event context structure
989 */
990struct perf_cpu_context {
991 struct perf_event_context ctx;
992 struct perf_event_context *task_ctx;
993 int online;
994
995#ifdef CONFIG_CGROUP_PERF
996 struct perf_cgroup *cgrp;
997#endif
998
999 /*
1000 * Per-CPU storage for iterators used in visit_groups_merge. The default
1001 * storage is of size 2 to hold the CPU and any CPU event iterators.
1002 */
1003 int heap_size;
1004 struct perf_event **heap;
1005 struct perf_event *heap_default[2];
1006};
1007
1008struct perf_output_handle {
1009 struct perf_event *event;
1010 struct perf_buffer *rb;
1011 unsigned long wakeup;
1012 unsigned long size;
1013 u64 aux_flags;
1014 union {
1015 void *addr;
1016 unsigned long head;
1017 };
1018 int page;
1019};
1020
1021struct bpf_perf_event_data_kern {
1022 bpf_user_pt_regs_t *regs;
1023 struct perf_sample_data *data;
1024 struct perf_event *event;
1025};
1026
1027#ifdef CONFIG_CGROUP_PERF
1028
1029/*
1030 * perf_cgroup_info keeps track of time_enabled for a cgroup.
1031 * This is a per-cpu dynamically allocated data structure.
1032 */
1033struct perf_cgroup_info {
1034 u64 time;
1035 u64 timestamp;
1036 u64 timeoffset;
1037 int active;
1038};
1039
1040struct perf_cgroup {
1041 struct cgroup_subsys_state css;
1042 struct perf_cgroup_info __percpu *info;
1043};
1044
1045/*
1046 * Must ensure cgroup is pinned (css_get) before calling
1047 * this function. In other words, we cannot call this function
1048 * if there is no cgroup event for the current CPU context.
1049 */
1050static inline struct perf_cgroup *
1051perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1052{
1053 return container_of(task_css_check(task, perf_event_cgrp_id,
1054 ctx ? lockdep_is_held(&ctx->lock)
1055 : true),
1056 struct perf_cgroup, css);
1057}
1058#endif /* CONFIG_CGROUP_PERF */
1059
1060#ifdef CONFIG_PERF_EVENTS
1061
1062extern struct perf_event_context *perf_cpu_task_ctx(void);
1063
1064extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1065 struct perf_event *event);
1066extern void perf_aux_output_end(struct perf_output_handle *handle,
1067 unsigned long size);
1068extern int perf_aux_output_skip(struct perf_output_handle *handle,
1069 unsigned long size);
1070extern void *perf_get_aux(struct perf_output_handle *handle);
1071extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1072extern void perf_event_itrace_started(struct perf_event *event);
1073
1074extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1075extern void perf_pmu_unregister(struct pmu *pmu);
1076
1077extern void __perf_event_task_sched_in(struct task_struct *prev,
1078 struct task_struct *task);
1079extern void __perf_event_task_sched_out(struct task_struct *prev,
1080 struct task_struct *next);
1081extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1082extern void perf_event_exit_task(struct task_struct *child);
1083extern void perf_event_free_task(struct task_struct *task);
1084extern void perf_event_delayed_put(struct task_struct *task);
1085extern struct file *perf_event_get(unsigned int fd);
1086extern const struct perf_event *perf_get_event(struct file *file);
1087extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1088extern void perf_event_print_debug(void);
1089extern void perf_pmu_disable(struct pmu *pmu);
1090extern void perf_pmu_enable(struct pmu *pmu);
1091extern void perf_sched_cb_dec(struct pmu *pmu);
1092extern void perf_sched_cb_inc(struct pmu *pmu);
1093extern int perf_event_task_disable(void);
1094extern int perf_event_task_enable(void);
1095
1096extern void perf_pmu_resched(struct pmu *pmu);
1097
1098extern int perf_event_refresh(struct perf_event *event, int refresh);
1099extern void perf_event_update_userpage(struct perf_event *event);
1100extern int perf_event_release_kernel(struct perf_event *event);
1101extern struct perf_event *
1102perf_event_create_kernel_counter(struct perf_event_attr *attr,
1103 int cpu,
1104 struct task_struct *task,
1105 perf_overflow_handler_t callback,
1106 void *context);
1107extern void perf_pmu_migrate_context(struct pmu *pmu,
1108 int src_cpu, int dst_cpu);
1109int perf_event_read_local(struct perf_event *event, u64 *value,
1110 u64 *enabled, u64 *running);
1111extern u64 perf_event_read_value(struct perf_event *event,
1112 u64 *enabled, u64 *running);
1113
1114extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1115
1116static inline bool branch_sample_no_flags(const struct perf_event *event)
1117{
1118 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1119}
1120
1121static inline bool branch_sample_no_cycles(const struct perf_event *event)
1122{
1123 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1124}
1125
1126static inline bool branch_sample_type(const struct perf_event *event)
1127{
1128 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1129}
1130
1131static inline bool branch_sample_hw_index(const struct perf_event *event)
1132{
1133 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1134}
1135
1136static inline bool branch_sample_priv(const struct perf_event *event)
1137{
1138 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1139}
1140
1141
1142struct perf_sample_data {
1143 /*
1144 * Fields set by perf_sample_data_init() unconditionally,
1145 * group so as to minimize the cachelines touched.
1146 */
1147 u64 sample_flags;
1148 u64 period;
1149 u64 dyn_size;
1150
1151 /*
1152 * Fields commonly set by __perf_event_header__init_id(),
1153 * group so as to minimize the cachelines touched.
1154 */
1155 u64 type;
1156 struct {
1157 u32 pid;
1158 u32 tid;
1159 } tid_entry;
1160 u64 time;
1161 u64 id;
1162 struct {
1163 u32 cpu;
1164 u32 reserved;
1165 } cpu_entry;
1166
1167 /*
1168 * The other fields, optionally {set,used} by
1169 * perf_{prepare,output}_sample().
1170 */
1171 u64 ip;
1172 struct perf_callchain_entry *callchain;
1173 struct perf_raw_record *raw;
1174 struct perf_branch_stack *br_stack;
1175 union perf_sample_weight weight;
1176 union perf_mem_data_src data_src;
1177 u64 txn;
1178
1179 struct perf_regs regs_user;
1180 struct perf_regs regs_intr;
1181 u64 stack_user_size;
1182
1183 u64 stream_id;
1184 u64 cgroup;
1185 u64 addr;
1186 u64 phys_addr;
1187 u64 data_page_size;
1188 u64 code_page_size;
1189 u64 aux_size;
1190} ____cacheline_aligned;
1191
1192/* default value for data source */
1193#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1194 PERF_MEM_S(LVL, NA) |\
1195 PERF_MEM_S(SNOOP, NA) |\
1196 PERF_MEM_S(LOCK, NA) |\
1197 PERF_MEM_S(TLB, NA))
1198
1199static inline void perf_sample_data_init(struct perf_sample_data *data,
1200 u64 addr, u64 period)
1201{
1202 /* remaining struct members initialized in perf_prepare_sample() */
1203 data->sample_flags = PERF_SAMPLE_PERIOD;
1204 data->period = period;
1205 data->dyn_size = 0;
1206
1207 if (addr) {
1208 data->addr = addr;
1209 data->sample_flags |= PERF_SAMPLE_ADDR;
1210 }
1211}
1212
1213static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1214 struct perf_event *event,
1215 struct pt_regs *regs)
1216{
1217 int size = 1;
1218
1219 data->callchain = perf_callchain(event, regs);
1220 size += data->callchain->nr;
1221
1222 data->dyn_size += size * sizeof(u64);
1223 data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1224}
1225
1226static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1227 struct perf_raw_record *raw)
1228{
1229 struct perf_raw_frag *frag = &raw->frag;
1230 u32 sum = 0;
1231 int size;
1232
1233 do {
1234 sum += frag->size;
1235 if (perf_raw_frag_last(frag))
1236 break;
1237 frag = frag->next;
1238 } while (1);
1239
1240 size = round_up(sum + sizeof(u32), sizeof(u64));
1241 raw->size = size - sizeof(u32);
1242 frag->pad = raw->size - sum;
1243
1244 data->raw = raw;
1245 data->dyn_size += size;
1246 data->sample_flags |= PERF_SAMPLE_RAW;
1247}
1248
1249static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1250 struct perf_event *event,
1251 struct perf_branch_stack *brs)
1252{
1253 int size = sizeof(u64); /* nr */
1254
1255 if (branch_sample_hw_index(event))
1256 size += sizeof(u64);
1257 size += brs->nr * sizeof(struct perf_branch_entry);
1258
1259 data->br_stack = brs;
1260 data->dyn_size += size;
1261 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1262}
1263
1264static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1265 struct perf_event *event)
1266{
1267 u32 size = sizeof(struct perf_event_header);
1268
1269 size += event->header_size + event->id_header_size;
1270 size += data->dyn_size;
1271
1272 return size;
1273}
1274
1275/*
1276 * Clear all bitfields in the perf_branch_entry.
1277 * The to and from fields are not cleared because they are
1278 * systematically modified by caller.
1279 */
1280static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1281{
1282 br->mispred = 0;
1283 br->predicted = 0;
1284 br->in_tx = 0;
1285 br->abort = 0;
1286 br->cycles = 0;
1287 br->type = 0;
1288 br->spec = PERF_BR_SPEC_NA;
1289 br->reserved = 0;
1290}
1291
1292extern void perf_output_sample(struct perf_output_handle *handle,
1293 struct perf_event_header *header,
1294 struct perf_sample_data *data,
1295 struct perf_event *event);
1296extern void perf_prepare_sample(struct perf_sample_data *data,
1297 struct perf_event *event,
1298 struct pt_regs *regs);
1299extern void perf_prepare_header(struct perf_event_header *header,
1300 struct perf_sample_data *data,
1301 struct perf_event *event,
1302 struct pt_regs *regs);
1303
1304extern int perf_event_overflow(struct perf_event *event,
1305 struct perf_sample_data *data,
1306 struct pt_regs *regs);
1307
1308extern void perf_event_output_forward(struct perf_event *event,
1309 struct perf_sample_data *data,
1310 struct pt_regs *regs);
1311extern void perf_event_output_backward(struct perf_event *event,
1312 struct perf_sample_data *data,
1313 struct pt_regs *regs);
1314extern int perf_event_output(struct perf_event *event,
1315 struct perf_sample_data *data,
1316 struct pt_regs *regs);
1317
1318static inline bool
1319is_default_overflow_handler(struct perf_event *event)
1320{
1321 if (likely(event->overflow_handler == perf_event_output_forward))
1322 return true;
1323 if (unlikely(event->overflow_handler == perf_event_output_backward))
1324 return true;
1325 return false;
1326}
1327
1328extern void
1329perf_event_header__init_id(struct perf_event_header *header,
1330 struct perf_sample_data *data,
1331 struct perf_event *event);
1332extern void
1333perf_event__output_id_sample(struct perf_event *event,
1334 struct perf_output_handle *handle,
1335 struct perf_sample_data *sample);
1336
1337extern void
1338perf_log_lost_samples(struct perf_event *event, u64 lost);
1339
1340static inline bool event_has_any_exclude_flag(struct perf_event *event)
1341{
1342 struct perf_event_attr *attr = &event->attr;
1343
1344 return attr->exclude_idle || attr->exclude_user ||
1345 attr->exclude_kernel || attr->exclude_hv ||
1346 attr->exclude_guest || attr->exclude_host;
1347}
1348
1349static inline bool is_sampling_event(struct perf_event *event)
1350{
1351 return event->attr.sample_period != 0;
1352}
1353
1354/*
1355 * Return 1 for a software event, 0 for a hardware event
1356 */
1357static inline int is_software_event(struct perf_event *event)
1358{
1359 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1360}
1361
1362/*
1363 * Return 1 for event in sw context, 0 for event in hw context
1364 */
1365static inline int in_software_context(struct perf_event *event)
1366{
1367 return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1368}
1369
1370static inline int is_exclusive_pmu(struct pmu *pmu)
1371{
1372 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1373}
1374
1375extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1376
1377extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1378extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1379
1380#ifndef perf_arch_fetch_caller_regs
1381static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1382#endif
1383
1384/*
1385 * When generating a perf sample in-line, instead of from an interrupt /
1386 * exception, we lack a pt_regs. This is typically used from software events
1387 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1388 *
1389 * We typically don't need a full set, but (for x86) do require:
1390 * - ip for PERF_SAMPLE_IP
1391 * - cs for user_mode() tests
1392 * - sp for PERF_SAMPLE_CALLCHAIN
1393 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1394 *
1395 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1396 * things like PERF_SAMPLE_REGS_INTR.
1397 */
1398static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1399{
1400 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1401}
1402
1403static __always_inline void
1404perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1405{
1406 if (static_key_false(&perf_swevent_enabled[event_id]))
1407 __perf_sw_event(event_id, nr, regs, addr);
1408}
1409
1410DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1411
1412/*
1413 * 'Special' version for the scheduler, it hard assumes no recursion,
1414 * which is guaranteed by us not actually scheduling inside other swevents
1415 * because those disable preemption.
1416 */
1417static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1418{
1419 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1420
1421 perf_fetch_caller_regs(regs);
1422 ___perf_sw_event(event_id, nr, regs, addr);
1423}
1424
1425extern struct static_key_false perf_sched_events;
1426
1427static __always_inline bool __perf_sw_enabled(int swevt)
1428{
1429 return static_key_false(&perf_swevent_enabled[swevt]);
1430}
1431
1432static inline void perf_event_task_migrate(struct task_struct *task)
1433{
1434 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1435 task->sched_migrated = 1;
1436}
1437
1438static inline void perf_event_task_sched_in(struct task_struct *prev,
1439 struct task_struct *task)
1440{
1441 if (static_branch_unlikely(&perf_sched_events))
1442 __perf_event_task_sched_in(prev, task);
1443
1444 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1445 task->sched_migrated) {
1446 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1447 task->sched_migrated = 0;
1448 }
1449}
1450
1451static inline void perf_event_task_sched_out(struct task_struct *prev,
1452 struct task_struct *next)
1453{
1454 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1455 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1456
1457#ifdef CONFIG_CGROUP_PERF
1458 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1459 perf_cgroup_from_task(prev, NULL) !=
1460 perf_cgroup_from_task(next, NULL))
1461 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1462#endif
1463
1464 if (static_branch_unlikely(&perf_sched_events))
1465 __perf_event_task_sched_out(prev, next);
1466}
1467
1468extern void perf_event_mmap(struct vm_area_struct *vma);
1469
1470extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1471 bool unregister, const char *sym);
1472extern void perf_event_bpf_event(struct bpf_prog *prog,
1473 enum perf_bpf_event_type type,
1474 u16 flags);
1475
1476#ifdef CONFIG_GUEST_PERF_EVENTS
1477extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1478
1479DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1480DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1481DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1482
1483static inline unsigned int perf_guest_state(void)
1484{
1485 return static_call(__perf_guest_state)();
1486}
1487static inline unsigned long perf_guest_get_ip(void)
1488{
1489 return static_call(__perf_guest_get_ip)();
1490}
1491static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1492{
1493 return static_call(__perf_guest_handle_intel_pt_intr)();
1494}
1495extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1496extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1497#else
1498static inline unsigned int perf_guest_state(void) { return 0; }
1499static inline unsigned long perf_guest_get_ip(void) { return 0; }
1500static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1501#endif /* CONFIG_GUEST_PERF_EVENTS */
1502
1503extern void perf_event_exec(void);
1504extern void perf_event_comm(struct task_struct *tsk, bool exec);
1505extern void perf_event_namespaces(struct task_struct *tsk);
1506extern void perf_event_fork(struct task_struct *tsk);
1507extern void perf_event_text_poke(const void *addr,
1508 const void *old_bytes, size_t old_len,
1509 const void *new_bytes, size_t new_len);
1510
1511/* Callchains */
1512DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1513
1514extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1515extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1516extern struct perf_callchain_entry *
1517get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1518 u32 max_stack, bool crosstask, bool add_mark);
1519extern int get_callchain_buffers(int max_stack);
1520extern void put_callchain_buffers(void);
1521extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1522extern void put_callchain_entry(int rctx);
1523
1524extern int sysctl_perf_event_max_stack;
1525extern int sysctl_perf_event_max_contexts_per_stack;
1526
1527static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1528{
1529 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1530 struct perf_callchain_entry *entry = ctx->entry;
1531 entry->ip[entry->nr++] = ip;
1532 ++ctx->contexts;
1533 return 0;
1534 } else {
1535 ctx->contexts_maxed = true;
1536 return -1; /* no more room, stop walking the stack */
1537 }
1538}
1539
1540static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1541{
1542 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1543 struct perf_callchain_entry *entry = ctx->entry;
1544 entry->ip[entry->nr++] = ip;
1545 ++ctx->nr;
1546 return 0;
1547 } else {
1548 return -1; /* no more room, stop walking the stack */
1549 }
1550}
1551
1552extern int sysctl_perf_event_paranoid;
1553extern int sysctl_perf_event_mlock;
1554extern int sysctl_perf_event_sample_rate;
1555extern int sysctl_perf_cpu_time_max_percent;
1556
1557extern void perf_sample_event_took(u64 sample_len_ns);
1558
1559int perf_proc_update_handler(struct ctl_table *table, int write,
1560 void *buffer, size_t *lenp, loff_t *ppos);
1561int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1562 void *buffer, size_t *lenp, loff_t *ppos);
1563int perf_event_max_stack_handler(struct ctl_table *table, int write,
1564 void *buffer, size_t *lenp, loff_t *ppos);
1565
1566/* Access to perf_event_open(2) syscall. */
1567#define PERF_SECURITY_OPEN 0
1568
1569/* Finer grained perf_event_open(2) access control. */
1570#define PERF_SECURITY_CPU 1
1571#define PERF_SECURITY_KERNEL 2
1572#define PERF_SECURITY_TRACEPOINT 3
1573
1574static inline int perf_is_paranoid(void)
1575{
1576 return sysctl_perf_event_paranoid > -1;
1577}
1578
1579static inline int perf_allow_kernel(struct perf_event_attr *attr)
1580{
1581 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1582 return -EACCES;
1583
1584 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1585}
1586
1587static inline int perf_allow_cpu(struct perf_event_attr *attr)
1588{
1589 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1590 return -EACCES;
1591
1592 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1593}
1594
1595static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1596{
1597 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1598 return -EPERM;
1599
1600 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1601}
1602
1603extern void perf_event_init(void);
1604extern void perf_tp_event(u16 event_type, u64 count, void *record,
1605 int entry_size, struct pt_regs *regs,
1606 struct hlist_head *head, int rctx,
1607 struct task_struct *task);
1608extern void perf_bp_event(struct perf_event *event, void *data);
1609
1610#ifndef perf_misc_flags
1611# define perf_misc_flags(regs) \
1612 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1613# define perf_instruction_pointer(regs) instruction_pointer(regs)
1614#endif
1615#ifndef perf_arch_bpf_user_pt_regs
1616# define perf_arch_bpf_user_pt_regs(regs) regs
1617#endif
1618
1619static inline bool has_branch_stack(struct perf_event *event)
1620{
1621 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1622}
1623
1624static inline bool needs_branch_stack(struct perf_event *event)
1625{
1626 return event->attr.branch_sample_type != 0;
1627}
1628
1629static inline bool has_aux(struct perf_event *event)
1630{
1631 return event->pmu->setup_aux;
1632}
1633
1634static inline bool is_write_backward(struct perf_event *event)
1635{
1636 return !!event->attr.write_backward;
1637}
1638
1639static inline bool has_addr_filter(struct perf_event *event)
1640{
1641 return event->pmu->nr_addr_filters;
1642}
1643
1644/*
1645 * An inherited event uses parent's filters
1646 */
1647static inline struct perf_addr_filters_head *
1648perf_event_addr_filters(struct perf_event *event)
1649{
1650 struct perf_addr_filters_head *ifh = &event->addr_filters;
1651
1652 if (event->parent)
1653 ifh = &event->parent->addr_filters;
1654
1655 return ifh;
1656}
1657
1658extern void perf_event_addr_filters_sync(struct perf_event *event);
1659extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1660
1661extern int perf_output_begin(struct perf_output_handle *handle,
1662 struct perf_sample_data *data,
1663 struct perf_event *event, unsigned int size);
1664extern int perf_output_begin_forward(struct perf_output_handle *handle,
1665 struct perf_sample_data *data,
1666 struct perf_event *event,
1667 unsigned int size);
1668extern int perf_output_begin_backward(struct perf_output_handle *handle,
1669 struct perf_sample_data *data,
1670 struct perf_event *event,
1671 unsigned int size);
1672
1673extern void perf_output_end(struct perf_output_handle *handle);
1674extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1675 const void *buf, unsigned int len);
1676extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1677 unsigned int len);
1678extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1679 struct perf_output_handle *handle,
1680 unsigned long from, unsigned long to);
1681extern int perf_swevent_get_recursion_context(void);
1682extern void perf_swevent_put_recursion_context(int rctx);
1683extern u64 perf_swevent_set_period(struct perf_event *event);
1684extern void perf_event_enable(struct perf_event *event);
1685extern void perf_event_disable(struct perf_event *event);
1686extern void perf_event_disable_local(struct perf_event *event);
1687extern void perf_event_disable_inatomic(struct perf_event *event);
1688extern void perf_event_task_tick(void);
1689extern int perf_event_account_interrupt(struct perf_event *event);
1690extern int perf_event_period(struct perf_event *event, u64 value);
1691extern u64 perf_event_pause(struct perf_event *event, bool reset);
1692#else /* !CONFIG_PERF_EVENTS: */
1693static inline void *
1694perf_aux_output_begin(struct perf_output_handle *handle,
1695 struct perf_event *event) { return NULL; }
1696static inline void
1697perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1698 { }
1699static inline int
1700perf_aux_output_skip(struct perf_output_handle *handle,
1701 unsigned long size) { return -EINVAL; }
1702static inline void *
1703perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1704static inline void
1705perf_event_task_migrate(struct task_struct *task) { }
1706static inline void
1707perf_event_task_sched_in(struct task_struct *prev,
1708 struct task_struct *task) { }
1709static inline void
1710perf_event_task_sched_out(struct task_struct *prev,
1711 struct task_struct *next) { }
1712static inline int perf_event_init_task(struct task_struct *child,
1713 u64 clone_flags) { return 0; }
1714static inline void perf_event_exit_task(struct task_struct *child) { }
1715static inline void perf_event_free_task(struct task_struct *task) { }
1716static inline void perf_event_delayed_put(struct task_struct *task) { }
1717static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1718static inline const struct perf_event *perf_get_event(struct file *file)
1719{
1720 return ERR_PTR(-EINVAL);
1721}
1722static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1723{
1724 return ERR_PTR(-EINVAL);
1725}
1726static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1727 u64 *enabled, u64 *running)
1728{
1729 return -EINVAL;
1730}
1731static inline void perf_event_print_debug(void) { }
1732static inline int perf_event_task_disable(void) { return -EINVAL; }
1733static inline int perf_event_task_enable(void) { return -EINVAL; }
1734static inline int perf_event_refresh(struct perf_event *event, int refresh)
1735{
1736 return -EINVAL;
1737}
1738
1739static inline void
1740perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1741static inline void
1742perf_bp_event(struct perf_event *event, void *data) { }
1743
1744static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1745
1746typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1747static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1748 bool unregister, const char *sym) { }
1749static inline void perf_event_bpf_event(struct bpf_prog *prog,
1750 enum perf_bpf_event_type type,
1751 u16 flags) { }
1752static inline void perf_event_exec(void) { }
1753static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1754static inline void perf_event_namespaces(struct task_struct *tsk) { }
1755static inline void perf_event_fork(struct task_struct *tsk) { }
1756static inline void perf_event_text_poke(const void *addr,
1757 const void *old_bytes,
1758 size_t old_len,
1759 const void *new_bytes,
1760 size_t new_len) { }
1761static inline void perf_event_init(void) { }
1762static inline int perf_swevent_get_recursion_context(void) { return -1; }
1763static inline void perf_swevent_put_recursion_context(int rctx) { }
1764static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1765static inline void perf_event_enable(struct perf_event *event) { }
1766static inline void perf_event_disable(struct perf_event *event) { }
1767static inline int __perf_event_disable(void *info) { return -1; }
1768static inline void perf_event_task_tick(void) { }
1769static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1770static inline int perf_event_period(struct perf_event *event, u64 value)
1771{
1772 return -EINVAL;
1773}
1774static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1775{
1776 return 0;
1777}
1778#endif
1779
1780#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1781extern void perf_restore_debug_store(void);
1782#else
1783static inline void perf_restore_debug_store(void) { }
1784#endif
1785
1786#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1787
1788struct perf_pmu_events_attr {
1789 struct device_attribute attr;
1790 u64 id;
1791 const char *event_str;
1792};
1793
1794struct perf_pmu_events_ht_attr {
1795 struct device_attribute attr;
1796 u64 id;
1797 const char *event_str_ht;
1798 const char *event_str_noht;
1799};
1800
1801struct perf_pmu_events_hybrid_attr {
1802 struct device_attribute attr;
1803 u64 id;
1804 const char *event_str;
1805 u64 pmu_type;
1806};
1807
1808struct perf_pmu_format_hybrid_attr {
1809 struct device_attribute attr;
1810 u64 pmu_type;
1811};
1812
1813ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1814 char *page);
1815
1816#define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1817static struct perf_pmu_events_attr _var = { \
1818 .attr = __ATTR(_name, 0444, _show, NULL), \
1819 .id = _id, \
1820};
1821
1822#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1823static struct perf_pmu_events_attr _var = { \
1824 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1825 .id = 0, \
1826 .event_str = _str, \
1827};
1828
1829#define PMU_EVENT_ATTR_ID(_name, _show, _id) \
1830 (&((struct perf_pmu_events_attr[]) { \
1831 { .attr = __ATTR(_name, 0444, _show, NULL), \
1832 .id = _id, } \
1833 })[0].attr.attr)
1834
1835#define PMU_FORMAT_ATTR_SHOW(_name, _format) \
1836static ssize_t \
1837_name##_show(struct device *dev, \
1838 struct device_attribute *attr, \
1839 char *page) \
1840{ \
1841 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1842 return sprintf(page, _format "\n"); \
1843} \
1844
1845#define PMU_FORMAT_ATTR(_name, _format) \
1846 PMU_FORMAT_ATTR_SHOW(_name, _format) \
1847 \
1848static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1849
1850/* Performance counter hotplug functions */
1851#ifdef CONFIG_PERF_EVENTS
1852int perf_event_init_cpu(unsigned int cpu);
1853int perf_event_exit_cpu(unsigned int cpu);
1854#else
1855#define perf_event_init_cpu NULL
1856#define perf_event_exit_cpu NULL
1857#endif
1858
1859extern void arch_perf_update_userpage(struct perf_event *event,
1860 struct perf_event_mmap_page *userpg,
1861 u64 now);
1862
1863#ifdef CONFIG_MMU
1864extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1865#endif
1866
1867/*
1868 * Snapshot branch stack on software events.
1869 *
1870 * Branch stack can be very useful in understanding software events. For
1871 * example, when a long function, e.g. sys_perf_event_open, returns an
1872 * errno, it is not obvious why the function failed. Branch stack could
1873 * provide very helpful information in this type of scenarios.
1874 *
1875 * On software event, it is necessary to stop the hardware branch recorder
1876 * fast. Otherwise, the hardware register/buffer will be flushed with
1877 * entries of the triggering event. Therefore, static call is used to
1878 * stop the hardware recorder.
1879 */
1880
1881/*
1882 * cnt is the number of entries allocated for entries.
1883 * Return number of entries copied to .
1884 */
1885typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1886 unsigned int cnt);
1887DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1888
1889#ifndef PERF_NEEDS_LOPWR_CB
1890static inline void perf_lopwr_cb(bool mode)
1891{
1892}
1893#endif
1894
1895#endif /* _LINUX_PERF_EVENT_H */