Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
5#ifndef __ASSEMBLY__
6#ifndef __GENERATING_BOUNDS_H
7
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/list_nulls.h>
11#include <linux/wait.h>
12#include <linux/bitops.h>
13#include <linux/cache.h>
14#include <linux/threads.h>
15#include <linux/numa.h>
16#include <linux/init.h>
17#include <linux/seqlock.h>
18#include <linux/nodemask.h>
19#include <linux/pageblock-flags.h>
20#include <linux/page-flags-layout.h>
21#include <linux/atomic.h>
22#include <linux/mm_types.h>
23#include <linux/page-flags.h>
24#include <linux/local_lock.h>
25#include <asm/page.h>
26
27/* Free memory management - zoned buddy allocator. */
28#ifndef CONFIG_ARCH_FORCE_MAX_ORDER
29#define MAX_ORDER 10
30#else
31#define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
32#endif
33#define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
34
35#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
36
37/*
38 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
39 * costly to service. That is between allocation orders which should
40 * coalesce naturally under reasonable reclaim pressure and those which
41 * will not.
42 */
43#define PAGE_ALLOC_COSTLY_ORDER 3
44
45enum migratetype {
46 MIGRATE_UNMOVABLE,
47 MIGRATE_MOVABLE,
48 MIGRATE_RECLAIMABLE,
49 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
50 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
51#ifdef CONFIG_CMA
52 /*
53 * MIGRATE_CMA migration type is designed to mimic the way
54 * ZONE_MOVABLE works. Only movable pages can be allocated
55 * from MIGRATE_CMA pageblocks and page allocator never
56 * implicitly change migration type of MIGRATE_CMA pageblock.
57 *
58 * The way to use it is to change migratetype of a range of
59 * pageblocks to MIGRATE_CMA which can be done by
60 * __free_pageblock_cma() function.
61 */
62 MIGRATE_CMA,
63#endif
64#ifdef CONFIG_MEMORY_ISOLATION
65 MIGRATE_ISOLATE, /* can't allocate from here */
66#endif
67 MIGRATE_TYPES
68};
69
70/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
71extern const char * const migratetype_names[MIGRATE_TYPES];
72
73#ifdef CONFIG_CMA
74# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
75# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
76#else
77# define is_migrate_cma(migratetype) false
78# define is_migrate_cma_page(_page) false
79#endif
80
81static inline bool is_migrate_movable(int mt)
82{
83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
84}
85
86/*
87 * Check whether a migratetype can be merged with another migratetype.
88 *
89 * It is only mergeable when it can fall back to other migratetypes for
90 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
91 */
92static inline bool migratetype_is_mergeable(int mt)
93{
94 return mt < MIGRATE_PCPTYPES;
95}
96
97#define for_each_migratetype_order(order, type) \
98 for (order = 0; order <= MAX_ORDER; order++) \
99 for (type = 0; type < MIGRATE_TYPES; type++)
100
101extern int page_group_by_mobility_disabled;
102
103#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
104
105#define get_pageblock_migratetype(page) \
106 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
107
108#define folio_migratetype(folio) \
109 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \
110 MIGRATETYPE_MASK)
111struct free_area {
112 struct list_head free_list[MIGRATE_TYPES];
113 unsigned long nr_free;
114};
115
116struct pglist_data;
117
118#ifdef CONFIG_NUMA
119enum numa_stat_item {
120 NUMA_HIT, /* allocated in intended node */
121 NUMA_MISS, /* allocated in non intended node */
122 NUMA_FOREIGN, /* was intended here, hit elsewhere */
123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
124 NUMA_LOCAL, /* allocation from local node */
125 NUMA_OTHER, /* allocation from other node */
126 NR_VM_NUMA_EVENT_ITEMS
127};
128#else
129#define NR_VM_NUMA_EVENT_ITEMS 0
130#endif
131
132enum zone_stat_item {
133 /* First 128 byte cacheline (assuming 64 bit words) */
134 NR_FREE_PAGES,
135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 NR_ZONE_ACTIVE_ANON,
138 NR_ZONE_INACTIVE_FILE,
139 NR_ZONE_ACTIVE_FILE,
140 NR_ZONE_UNEVICTABLE,
141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
143 /* Second 128 byte cacheline */
144 NR_BOUNCE,
145#if IS_ENABLED(CONFIG_ZSMALLOC)
146 NR_ZSPAGES, /* allocated in zsmalloc */
147#endif
148 NR_FREE_CMA_PAGES,
149#ifdef CONFIG_UNACCEPTED_MEMORY
150 NR_UNACCEPTED,
151#endif
152 NR_VM_ZONE_STAT_ITEMS };
153
154enum node_stat_item {
155 NR_LRU_BASE,
156 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
157 NR_ACTIVE_ANON, /* " " " " " */
158 NR_INACTIVE_FILE, /* " " " " " */
159 NR_ACTIVE_FILE, /* " " " " " */
160 NR_UNEVICTABLE, /* " " " " " */
161 NR_SLAB_RECLAIMABLE_B,
162 NR_SLAB_UNRECLAIMABLE_B,
163 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
164 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
165 WORKINGSET_NODES,
166 WORKINGSET_REFAULT_BASE,
167 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
168 WORKINGSET_REFAULT_FILE,
169 WORKINGSET_ACTIVATE_BASE,
170 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
171 WORKINGSET_ACTIVATE_FILE,
172 WORKINGSET_RESTORE_BASE,
173 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
174 WORKINGSET_RESTORE_FILE,
175 WORKINGSET_NODERECLAIM,
176 NR_ANON_MAPPED, /* Mapped anonymous pages */
177 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
178 only modified from process context */
179 NR_FILE_PAGES,
180 NR_FILE_DIRTY,
181 NR_WRITEBACK,
182 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
183 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
184 NR_SHMEM_THPS,
185 NR_SHMEM_PMDMAPPED,
186 NR_FILE_THPS,
187 NR_FILE_PMDMAPPED,
188 NR_ANON_THPS,
189 NR_VMSCAN_WRITE,
190 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
191 NR_DIRTIED, /* page dirtyings since bootup */
192 NR_WRITTEN, /* page writings since bootup */
193 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
194 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
195 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
196 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
197 NR_KERNEL_STACK_KB, /* measured in KiB */
198#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
199 NR_KERNEL_SCS_KB, /* measured in KiB */
200#endif
201 NR_PAGETABLE, /* used for pagetables */
202 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
203#ifdef CONFIG_SWAP
204 NR_SWAPCACHE,
205#endif
206#ifdef CONFIG_NUMA_BALANCING
207 PGPROMOTE_SUCCESS, /* promote successfully */
208 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
209#endif
210 NR_VM_NODE_STAT_ITEMS
211};
212
213/*
214 * Returns true if the item should be printed in THPs (/proc/vmstat
215 * currently prints number of anon, file and shmem THPs. But the item
216 * is charged in pages).
217 */
218static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
219{
220 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
221 return false;
222
223 return item == NR_ANON_THPS ||
224 item == NR_FILE_THPS ||
225 item == NR_SHMEM_THPS ||
226 item == NR_SHMEM_PMDMAPPED ||
227 item == NR_FILE_PMDMAPPED;
228}
229
230/*
231 * Returns true if the value is measured in bytes (most vmstat values are
232 * measured in pages). This defines the API part, the internal representation
233 * might be different.
234 */
235static __always_inline bool vmstat_item_in_bytes(int idx)
236{
237 /*
238 * Global and per-node slab counters track slab pages.
239 * It's expected that changes are multiples of PAGE_SIZE.
240 * Internally values are stored in pages.
241 *
242 * Per-memcg and per-lruvec counters track memory, consumed
243 * by individual slab objects. These counters are actually
244 * byte-precise.
245 */
246 return (idx == NR_SLAB_RECLAIMABLE_B ||
247 idx == NR_SLAB_UNRECLAIMABLE_B);
248}
249
250/*
251 * We do arithmetic on the LRU lists in various places in the code,
252 * so it is important to keep the active lists LRU_ACTIVE higher in
253 * the array than the corresponding inactive lists, and to keep
254 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
255 *
256 * This has to be kept in sync with the statistics in zone_stat_item
257 * above and the descriptions in vmstat_text in mm/vmstat.c
258 */
259#define LRU_BASE 0
260#define LRU_ACTIVE 1
261#define LRU_FILE 2
262
263enum lru_list {
264 LRU_INACTIVE_ANON = LRU_BASE,
265 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
266 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
267 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
268 LRU_UNEVICTABLE,
269 NR_LRU_LISTS
270};
271
272enum vmscan_throttle_state {
273 VMSCAN_THROTTLE_WRITEBACK,
274 VMSCAN_THROTTLE_ISOLATED,
275 VMSCAN_THROTTLE_NOPROGRESS,
276 VMSCAN_THROTTLE_CONGESTED,
277 NR_VMSCAN_THROTTLE,
278};
279
280#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
281
282#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
283
284static inline bool is_file_lru(enum lru_list lru)
285{
286 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
287}
288
289static inline bool is_active_lru(enum lru_list lru)
290{
291 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
292}
293
294#define WORKINGSET_ANON 0
295#define WORKINGSET_FILE 1
296#define ANON_AND_FILE 2
297
298enum lruvec_flags {
299 /*
300 * An lruvec has many dirty pages backed by a congested BDI:
301 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
302 * It can be cleared by cgroup reclaim or kswapd.
303 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
304 * It can only be cleared by kswapd.
305 *
306 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
307 * reclaim, but not vice versa. This only applies to the root cgroup.
308 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
309 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
310 * by kswapd).
311 */
312 LRUVEC_CGROUP_CONGESTED,
313 LRUVEC_NODE_CONGESTED,
314};
315
316#endif /* !__GENERATING_BOUNDS_H */
317
318/*
319 * Evictable pages are divided into multiple generations. The youngest and the
320 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
321 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
322 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
323 * corresponding generation. The gen counter in folio->flags stores gen+1 while
324 * a page is on one of lrugen->folios[]. Otherwise it stores 0.
325 *
326 * A page is added to the youngest generation on faulting. The aging needs to
327 * check the accessed bit at least twice before handing this page over to the
328 * eviction. The first check takes care of the accessed bit set on the initial
329 * fault; the second check makes sure this page hasn't been used since then.
330 * This process, AKA second chance, requires a minimum of two generations,
331 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
332 * LRU, e.g., /proc/vmstat, these two generations are considered active; the
333 * rest of generations, if they exist, are considered inactive. See
334 * lru_gen_is_active().
335 *
336 * PG_active is always cleared while a page is on one of lrugen->folios[] so
337 * that the aging needs not to worry about it. And it's set again when a page
338 * considered active is isolated for non-reclaiming purposes, e.g., migration.
339 * See lru_gen_add_folio() and lru_gen_del_folio().
340 *
341 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
342 * number of categories of the active/inactive LRU when keeping track of
343 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
344 * in folio->flags.
345 */
346#define MIN_NR_GENS 2U
347#define MAX_NR_GENS 4U
348
349/*
350 * Each generation is divided into multiple tiers. A page accessed N times
351 * through file descriptors is in tier order_base_2(N). A page in the first tier
352 * (N=0,1) is marked by PG_referenced unless it was faulted in through page
353 * tables or read ahead. A page in any other tier (N>1) is marked by
354 * PG_referenced and PG_workingset. This implies a minimum of two tiers is
355 * supported without using additional bits in folio->flags.
356 *
357 * In contrast to moving across generations which requires the LRU lock, moving
358 * across tiers only involves atomic operations on folio->flags and therefore
359 * has a negligible cost in the buffered access path. In the eviction path,
360 * comparisons of refaulted/(evicted+protected) from the first tier and the
361 * rest infer whether pages accessed multiple times through file descriptors
362 * are statistically hot and thus worth protecting.
363 *
364 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
365 * number of categories of the active/inactive LRU when keeping track of
366 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
367 * folio->flags.
368 */
369#define MAX_NR_TIERS 4U
370
371#ifndef __GENERATING_BOUNDS_H
372
373struct lruvec;
374struct page_vma_mapped_walk;
375
376#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
377#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
378
379#ifdef CONFIG_LRU_GEN
380
381enum {
382 LRU_GEN_ANON,
383 LRU_GEN_FILE,
384};
385
386enum {
387 LRU_GEN_CORE,
388 LRU_GEN_MM_WALK,
389 LRU_GEN_NONLEAF_YOUNG,
390 NR_LRU_GEN_CAPS
391};
392
393#define MIN_LRU_BATCH BITS_PER_LONG
394#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
395
396/* whether to keep historical stats from evicted generations */
397#ifdef CONFIG_LRU_GEN_STATS
398#define NR_HIST_GENS MAX_NR_GENS
399#else
400#define NR_HIST_GENS 1U
401#endif
402
403/*
404 * The youngest generation number is stored in max_seq for both anon and file
405 * types as they are aged on an equal footing. The oldest generation numbers are
406 * stored in min_seq[] separately for anon and file types as clean file pages
407 * can be evicted regardless of swap constraints.
408 *
409 * Normally anon and file min_seq are in sync. But if swapping is constrained,
410 * e.g., out of swap space, file min_seq is allowed to advance and leave anon
411 * min_seq behind.
412 *
413 * The number of pages in each generation is eventually consistent and therefore
414 * can be transiently negative when reset_batch_size() is pending.
415 */
416struct lru_gen_folio {
417 /* the aging increments the youngest generation number */
418 unsigned long max_seq;
419 /* the eviction increments the oldest generation numbers */
420 unsigned long min_seq[ANON_AND_FILE];
421 /* the birth time of each generation in jiffies */
422 unsigned long timestamps[MAX_NR_GENS];
423 /* the multi-gen LRU lists, lazily sorted on eviction */
424 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
425 /* the multi-gen LRU sizes, eventually consistent */
426 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
427 /* the exponential moving average of refaulted */
428 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
429 /* the exponential moving average of evicted+protected */
430 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
431 /* the first tier doesn't need protection, hence the minus one */
432 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
433 /* can be modified without holding the LRU lock */
434 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
435 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
436 /* whether the multi-gen LRU is enabled */
437 bool enabled;
438#ifdef CONFIG_MEMCG
439 /* the memcg generation this lru_gen_folio belongs to */
440 u8 gen;
441 /* the list segment this lru_gen_folio belongs to */
442 u8 seg;
443 /* per-node lru_gen_folio list for global reclaim */
444 struct hlist_nulls_node list;
445#endif
446};
447
448enum {
449 MM_LEAF_TOTAL, /* total leaf entries */
450 MM_LEAF_OLD, /* old leaf entries */
451 MM_LEAF_YOUNG, /* young leaf entries */
452 MM_NONLEAF_TOTAL, /* total non-leaf entries */
453 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
454 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
455 NR_MM_STATS
456};
457
458/* double-buffering Bloom filters */
459#define NR_BLOOM_FILTERS 2
460
461struct lru_gen_mm_state {
462 /* set to max_seq after each iteration */
463 unsigned long seq;
464 /* where the current iteration continues after */
465 struct list_head *head;
466 /* where the last iteration ended before */
467 struct list_head *tail;
468 /* Bloom filters flip after each iteration */
469 unsigned long *filters[NR_BLOOM_FILTERS];
470 /* the mm stats for debugging */
471 unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
472};
473
474struct lru_gen_mm_walk {
475 /* the lruvec under reclaim */
476 struct lruvec *lruvec;
477 /* unstable max_seq from lru_gen_folio */
478 unsigned long max_seq;
479 /* the next address within an mm to scan */
480 unsigned long next_addr;
481 /* to batch promoted pages */
482 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
483 /* to batch the mm stats */
484 int mm_stats[NR_MM_STATS];
485 /* total batched items */
486 int batched;
487 bool can_swap;
488 bool force_scan;
489};
490
491void lru_gen_init_lruvec(struct lruvec *lruvec);
492void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
493
494#ifdef CONFIG_MEMCG
495
496/*
497 * For each node, memcgs are divided into two generations: the old and the
498 * young. For each generation, memcgs are randomly sharded into multiple bins
499 * to improve scalability. For each bin, the hlist_nulls is virtually divided
500 * into three segments: the head, the tail and the default.
501 *
502 * An onlining memcg is added to the tail of a random bin in the old generation.
503 * The eviction starts at the head of a random bin in the old generation. The
504 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
505 * the old generation, is incremented when all its bins become empty.
506 *
507 * There are four operations:
508 * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
509 * current generation (old or young) and updates its "seg" to "head";
510 * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
511 * current generation (old or young) and updates its "seg" to "tail";
512 * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
513 * generation, updates its "gen" to "old" and resets its "seg" to "default";
514 * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
515 * young generation, updates its "gen" to "young" and resets its "seg" to
516 * "default".
517 *
518 * The events that trigger the above operations are:
519 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
520 * 2. The first attempt to reclaim an memcg below low, which triggers
521 * MEMCG_LRU_TAIL;
522 * 3. The first attempt to reclaim an memcg below reclaimable size threshold,
523 * which triggers MEMCG_LRU_TAIL;
524 * 4. The second attempt to reclaim an memcg below reclaimable size threshold,
525 * which triggers MEMCG_LRU_YOUNG;
526 * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
527 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
528 * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
529 *
530 * Note that memcg LRU only applies to global reclaim, and the round-robin
531 * incrementing of their max_seq counters ensures the eventual fairness to all
532 * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
533 */
534#define MEMCG_NR_GENS 2
535#define MEMCG_NR_BINS 8
536
537struct lru_gen_memcg {
538 /* the per-node memcg generation counter */
539 unsigned long seq;
540 /* each memcg has one lru_gen_folio per node */
541 unsigned long nr_memcgs[MEMCG_NR_GENS];
542 /* per-node lru_gen_folio list for global reclaim */
543 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
544 /* protects the above */
545 spinlock_t lock;
546};
547
548void lru_gen_init_pgdat(struct pglist_data *pgdat);
549
550void lru_gen_init_memcg(struct mem_cgroup *memcg);
551void lru_gen_exit_memcg(struct mem_cgroup *memcg);
552void lru_gen_online_memcg(struct mem_cgroup *memcg);
553void lru_gen_offline_memcg(struct mem_cgroup *memcg);
554void lru_gen_release_memcg(struct mem_cgroup *memcg);
555void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
556
557#else /* !CONFIG_MEMCG */
558
559#define MEMCG_NR_GENS 1
560
561struct lru_gen_memcg {
562};
563
564static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
565{
566}
567
568#endif /* CONFIG_MEMCG */
569
570#else /* !CONFIG_LRU_GEN */
571
572static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
573{
574}
575
576static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
577{
578}
579
580static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
581{
582}
583
584#ifdef CONFIG_MEMCG
585
586static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
587{
588}
589
590static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
591{
592}
593
594static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
595{
596}
597
598static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
599{
600}
601
602static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
603{
604}
605
606static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
607{
608}
609
610#endif /* CONFIG_MEMCG */
611
612#endif /* CONFIG_LRU_GEN */
613
614struct lruvec {
615 struct list_head lists[NR_LRU_LISTS];
616 /* per lruvec lru_lock for memcg */
617 spinlock_t lru_lock;
618 /*
619 * These track the cost of reclaiming one LRU - file or anon -
620 * over the other. As the observed cost of reclaiming one LRU
621 * increases, the reclaim scan balance tips toward the other.
622 */
623 unsigned long anon_cost;
624 unsigned long file_cost;
625 /* Non-resident age, driven by LRU movement */
626 atomic_long_t nonresident_age;
627 /* Refaults at the time of last reclaim cycle */
628 unsigned long refaults[ANON_AND_FILE];
629 /* Various lruvec state flags (enum lruvec_flags) */
630 unsigned long flags;
631#ifdef CONFIG_LRU_GEN
632 /* evictable pages divided into generations */
633 struct lru_gen_folio lrugen;
634 /* to concurrently iterate lru_gen_mm_list */
635 struct lru_gen_mm_state mm_state;
636#endif
637#ifdef CONFIG_MEMCG
638 struct pglist_data *pgdat;
639#endif
640};
641
642/* Isolate unmapped pages */
643#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
644/* Isolate for asynchronous migration */
645#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
646/* Isolate unevictable pages */
647#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
648
649/* LRU Isolation modes. */
650typedef unsigned __bitwise isolate_mode_t;
651
652enum zone_watermarks {
653 WMARK_MIN,
654 WMARK_LOW,
655 WMARK_HIGH,
656 WMARK_PROMO,
657 NR_WMARK
658};
659
660/*
661 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
662 * for THP which will usually be GFP_MOVABLE. Even if it is another type,
663 * it should not contribute to serious fragmentation causing THP allocation
664 * failures.
665 */
666#ifdef CONFIG_TRANSPARENT_HUGEPAGE
667#define NR_PCP_THP 1
668#else
669#define NR_PCP_THP 0
670#endif
671#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
672#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
673
674#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
675#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
676#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
677#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
678
679/* Fields and list protected by pagesets local_lock in page_alloc.c */
680struct per_cpu_pages {
681 spinlock_t lock; /* Protects lists field */
682 int count; /* number of pages in the list */
683 int high; /* high watermark, emptying needed */
684 int batch; /* chunk size for buddy add/remove */
685 short free_factor; /* batch scaling factor during free */
686#ifdef CONFIG_NUMA
687 short expire; /* When 0, remote pagesets are drained */
688#endif
689
690 /* Lists of pages, one per migrate type stored on the pcp-lists */
691 struct list_head lists[NR_PCP_LISTS];
692} ____cacheline_aligned_in_smp;
693
694struct per_cpu_zonestat {
695#ifdef CONFIG_SMP
696 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
697 s8 stat_threshold;
698#endif
699#ifdef CONFIG_NUMA
700 /*
701 * Low priority inaccurate counters that are only folded
702 * on demand. Use a large type to avoid the overhead of
703 * folding during refresh_cpu_vm_stats.
704 */
705 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
706#endif
707};
708
709struct per_cpu_nodestat {
710 s8 stat_threshold;
711 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
712};
713
714#endif /* !__GENERATING_BOUNDS.H */
715
716enum zone_type {
717 /*
718 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
719 * to DMA to all of the addressable memory (ZONE_NORMAL).
720 * On architectures where this area covers the whole 32 bit address
721 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
722 * DMA addressing constraints. This distinction is important as a 32bit
723 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
724 * platforms may need both zones as they support peripherals with
725 * different DMA addressing limitations.
726 */
727#ifdef CONFIG_ZONE_DMA
728 ZONE_DMA,
729#endif
730#ifdef CONFIG_ZONE_DMA32
731 ZONE_DMA32,
732#endif
733 /*
734 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
735 * performed on pages in ZONE_NORMAL if the DMA devices support
736 * transfers to all addressable memory.
737 */
738 ZONE_NORMAL,
739#ifdef CONFIG_HIGHMEM
740 /*
741 * A memory area that is only addressable by the kernel through
742 * mapping portions into its own address space. This is for example
743 * used by i386 to allow the kernel to address the memory beyond
744 * 900MB. The kernel will set up special mappings (page
745 * table entries on i386) for each page that the kernel needs to
746 * access.
747 */
748 ZONE_HIGHMEM,
749#endif
750 /*
751 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
752 * movable pages with few exceptional cases described below. Main use
753 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
754 * likely to succeed, and to locally limit unmovable allocations - e.g.,
755 * to increase the number of THP/huge pages. Notable special cases are:
756 *
757 * 1. Pinned pages: (long-term) pinning of movable pages might
758 * essentially turn such pages unmovable. Therefore, we do not allow
759 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
760 * faulted, they come from the right zone right away. However, it is
761 * still possible that address space already has pages in
762 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
763 * touches that memory before pinning). In such case we migrate them
764 * to a different zone. When migration fails - pinning fails.
765 * 2. memblock allocations: kernelcore/movablecore setups might create
766 * situations where ZONE_MOVABLE contains unmovable allocations
767 * after boot. Memory offlining and allocations fail early.
768 * 3. Memory holes: kernelcore/movablecore setups might create very rare
769 * situations where ZONE_MOVABLE contains memory holes after boot,
770 * for example, if we have sections that are only partially
771 * populated. Memory offlining and allocations fail early.
772 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
773 * memory offlining, such pages cannot be allocated.
774 * 5. Unmovable PG_offline pages: in paravirtualized environments,
775 * hotplugged memory blocks might only partially be managed by the
776 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
777 * parts not manged by the buddy are unmovable PG_offline pages. In
778 * some cases (virtio-mem), such pages can be skipped during
779 * memory offlining, however, cannot be moved/allocated. These
780 * techniques might use alloc_contig_range() to hide previously
781 * exposed pages from the buddy again (e.g., to implement some sort
782 * of memory unplug in virtio-mem).
783 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
784 * situations where ZERO_PAGE(0) which is allocated differently
785 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
786 * cannot be migrated.
787 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
788 * memory to the MOVABLE zone, the vmemmap pages are also placed in
789 * such zone. Such pages cannot be really moved around as they are
790 * self-stored in the range, but they are treated as movable when
791 * the range they describe is about to be offlined.
792 *
793 * In general, no unmovable allocations that degrade memory offlining
794 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
795 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
796 * if has_unmovable_pages() states that there are no unmovable pages,
797 * there can be false negatives).
798 */
799 ZONE_MOVABLE,
800#ifdef CONFIG_ZONE_DEVICE
801 ZONE_DEVICE,
802#endif
803 __MAX_NR_ZONES
804
805};
806
807#ifndef __GENERATING_BOUNDS_H
808
809#define ASYNC_AND_SYNC 2
810
811struct zone {
812 /* Read-mostly fields */
813
814 /* zone watermarks, access with *_wmark_pages(zone) macros */
815 unsigned long _watermark[NR_WMARK];
816 unsigned long watermark_boost;
817
818 unsigned long nr_reserved_highatomic;
819
820 /*
821 * We don't know if the memory that we're going to allocate will be
822 * freeable or/and it will be released eventually, so to avoid totally
823 * wasting several GB of ram we must reserve some of the lower zone
824 * memory (otherwise we risk to run OOM on the lower zones despite
825 * there being tons of freeable ram on the higher zones). This array is
826 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
827 * changes.
828 */
829 long lowmem_reserve[MAX_NR_ZONES];
830
831#ifdef CONFIG_NUMA
832 int node;
833#endif
834 struct pglist_data *zone_pgdat;
835 struct per_cpu_pages __percpu *per_cpu_pageset;
836 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
837 /*
838 * the high and batch values are copied to individual pagesets for
839 * faster access
840 */
841 int pageset_high;
842 int pageset_batch;
843
844#ifndef CONFIG_SPARSEMEM
845 /*
846 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
847 * In SPARSEMEM, this map is stored in struct mem_section
848 */
849 unsigned long *pageblock_flags;
850#endif /* CONFIG_SPARSEMEM */
851
852 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
853 unsigned long zone_start_pfn;
854
855 /*
856 * spanned_pages is the total pages spanned by the zone, including
857 * holes, which is calculated as:
858 * spanned_pages = zone_end_pfn - zone_start_pfn;
859 *
860 * present_pages is physical pages existing within the zone, which
861 * is calculated as:
862 * present_pages = spanned_pages - absent_pages(pages in holes);
863 *
864 * present_early_pages is present pages existing within the zone
865 * located on memory available since early boot, excluding hotplugged
866 * memory.
867 *
868 * managed_pages is present pages managed by the buddy system, which
869 * is calculated as (reserved_pages includes pages allocated by the
870 * bootmem allocator):
871 * managed_pages = present_pages - reserved_pages;
872 *
873 * cma pages is present pages that are assigned for CMA use
874 * (MIGRATE_CMA).
875 *
876 * So present_pages may be used by memory hotplug or memory power
877 * management logic to figure out unmanaged pages by checking
878 * (present_pages - managed_pages). And managed_pages should be used
879 * by page allocator and vm scanner to calculate all kinds of watermarks
880 * and thresholds.
881 *
882 * Locking rules:
883 *
884 * zone_start_pfn and spanned_pages are protected by span_seqlock.
885 * It is a seqlock because it has to be read outside of zone->lock,
886 * and it is done in the main allocator path. But, it is written
887 * quite infrequently.
888 *
889 * The span_seq lock is declared along with zone->lock because it is
890 * frequently read in proximity to zone->lock. It's good to
891 * give them a chance of being in the same cacheline.
892 *
893 * Write access to present_pages at runtime should be protected by
894 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
895 * present_pages should use get_online_mems() to get a stable value.
896 */
897 atomic_long_t managed_pages;
898 unsigned long spanned_pages;
899 unsigned long present_pages;
900#if defined(CONFIG_MEMORY_HOTPLUG)
901 unsigned long present_early_pages;
902#endif
903#ifdef CONFIG_CMA
904 unsigned long cma_pages;
905#endif
906
907 const char *name;
908
909#ifdef CONFIG_MEMORY_ISOLATION
910 /*
911 * Number of isolated pageblock. It is used to solve incorrect
912 * freepage counting problem due to racy retrieving migratetype
913 * of pageblock. Protected by zone->lock.
914 */
915 unsigned long nr_isolate_pageblock;
916#endif
917
918#ifdef CONFIG_MEMORY_HOTPLUG
919 /* see spanned/present_pages for more description */
920 seqlock_t span_seqlock;
921#endif
922
923 int initialized;
924
925 /* Write-intensive fields used from the page allocator */
926 CACHELINE_PADDING(_pad1_);
927
928 /* free areas of different sizes */
929 struct free_area free_area[MAX_ORDER + 1];
930
931#ifdef CONFIG_UNACCEPTED_MEMORY
932 /* Pages to be accepted. All pages on the list are MAX_ORDER */
933 struct list_head unaccepted_pages;
934#endif
935
936 /* zone flags, see below */
937 unsigned long flags;
938
939 /* Primarily protects free_area */
940 spinlock_t lock;
941
942 /* Write-intensive fields used by compaction and vmstats. */
943 CACHELINE_PADDING(_pad2_);
944
945 /*
946 * When free pages are below this point, additional steps are taken
947 * when reading the number of free pages to avoid per-cpu counter
948 * drift allowing watermarks to be breached
949 */
950 unsigned long percpu_drift_mark;
951
952#if defined CONFIG_COMPACTION || defined CONFIG_CMA
953 /* pfn where compaction free scanner should start */
954 unsigned long compact_cached_free_pfn;
955 /* pfn where compaction migration scanner should start */
956 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
957 unsigned long compact_init_migrate_pfn;
958 unsigned long compact_init_free_pfn;
959#endif
960
961#ifdef CONFIG_COMPACTION
962 /*
963 * On compaction failure, 1<<compact_defer_shift compactions
964 * are skipped before trying again. The number attempted since
965 * last failure is tracked with compact_considered.
966 * compact_order_failed is the minimum compaction failed order.
967 */
968 unsigned int compact_considered;
969 unsigned int compact_defer_shift;
970 int compact_order_failed;
971#endif
972
973#if defined CONFIG_COMPACTION || defined CONFIG_CMA
974 /* Set to true when the PG_migrate_skip bits should be cleared */
975 bool compact_blockskip_flush;
976#endif
977
978 bool contiguous;
979
980 CACHELINE_PADDING(_pad3_);
981 /* Zone statistics */
982 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
983 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
984} ____cacheline_internodealigned_in_smp;
985
986enum pgdat_flags {
987 PGDAT_DIRTY, /* reclaim scanning has recently found
988 * many dirty file pages at the tail
989 * of the LRU.
990 */
991 PGDAT_WRITEBACK, /* reclaim scanning has recently found
992 * many pages under writeback
993 */
994 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
995};
996
997enum zone_flags {
998 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
999 * Cleared when kswapd is woken.
1000 */
1001 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
1002};
1003
1004static inline unsigned long zone_managed_pages(struct zone *zone)
1005{
1006 return (unsigned long)atomic_long_read(&zone->managed_pages);
1007}
1008
1009static inline unsigned long zone_cma_pages(struct zone *zone)
1010{
1011#ifdef CONFIG_CMA
1012 return zone->cma_pages;
1013#else
1014 return 0;
1015#endif
1016}
1017
1018static inline unsigned long zone_end_pfn(const struct zone *zone)
1019{
1020 return zone->zone_start_pfn + zone->spanned_pages;
1021}
1022
1023static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1024{
1025 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1026}
1027
1028static inline bool zone_is_initialized(struct zone *zone)
1029{
1030 return zone->initialized;
1031}
1032
1033static inline bool zone_is_empty(struct zone *zone)
1034{
1035 return zone->spanned_pages == 0;
1036}
1037
1038#ifndef BUILD_VDSO32_64
1039/*
1040 * The zone field is never updated after free_area_init_core()
1041 * sets it, so none of the operations on it need to be atomic.
1042 */
1043
1044/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1045#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1046#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1047#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1048#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1049#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1050#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1051#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1052
1053/*
1054 * Define the bit shifts to access each section. For non-existent
1055 * sections we define the shift as 0; that plus a 0 mask ensures
1056 * the compiler will optimise away reference to them.
1057 */
1058#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1059#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1060#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1061#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1062#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1063
1064/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1065#ifdef NODE_NOT_IN_PAGE_FLAGS
1066#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1067#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1068 SECTIONS_PGOFF : ZONES_PGOFF)
1069#else
1070#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1071#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
1072 NODES_PGOFF : ZONES_PGOFF)
1073#endif
1074
1075#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1076
1077#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1078#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1079#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1080#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1081#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1082#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1083
1084static inline enum zone_type page_zonenum(const struct page *page)
1085{
1086 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1087 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1088}
1089
1090static inline enum zone_type folio_zonenum(const struct folio *folio)
1091{
1092 return page_zonenum(&folio->page);
1093}
1094
1095#ifdef CONFIG_ZONE_DEVICE
1096static inline bool is_zone_device_page(const struct page *page)
1097{
1098 return page_zonenum(page) == ZONE_DEVICE;
1099}
1100
1101/*
1102 * Consecutive zone device pages should not be merged into the same sgl
1103 * or bvec segment with other types of pages or if they belong to different
1104 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1105 * without scanning the entire segment. This helper returns true either if
1106 * both pages are not zone device pages or both pages are zone device pages
1107 * with the same pgmap.
1108 */
1109static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1110 const struct page *b)
1111{
1112 if (is_zone_device_page(a) != is_zone_device_page(b))
1113 return false;
1114 if (!is_zone_device_page(a))
1115 return true;
1116 return a->pgmap == b->pgmap;
1117}
1118
1119extern void memmap_init_zone_device(struct zone *, unsigned long,
1120 unsigned long, struct dev_pagemap *);
1121#else
1122static inline bool is_zone_device_page(const struct page *page)
1123{
1124 return false;
1125}
1126static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1127 const struct page *b)
1128{
1129 return true;
1130}
1131#endif
1132
1133static inline bool folio_is_zone_device(const struct folio *folio)
1134{
1135 return is_zone_device_page(&folio->page);
1136}
1137
1138static inline bool is_zone_movable_page(const struct page *page)
1139{
1140 return page_zonenum(page) == ZONE_MOVABLE;
1141}
1142
1143static inline bool folio_is_zone_movable(const struct folio *folio)
1144{
1145 return folio_zonenum(folio) == ZONE_MOVABLE;
1146}
1147#endif
1148
1149/*
1150 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1151 * intersection with the given zone
1152 */
1153static inline bool zone_intersects(struct zone *zone,
1154 unsigned long start_pfn, unsigned long nr_pages)
1155{
1156 if (zone_is_empty(zone))
1157 return false;
1158 if (start_pfn >= zone_end_pfn(zone) ||
1159 start_pfn + nr_pages <= zone->zone_start_pfn)
1160 return false;
1161
1162 return true;
1163}
1164
1165/*
1166 * The "priority" of VM scanning is how much of the queues we will scan in one
1167 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1168 * queues ("queue_length >> 12") during an aging round.
1169 */
1170#define DEF_PRIORITY 12
1171
1172/* Maximum number of zones on a zonelist */
1173#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1174
1175enum {
1176 ZONELIST_FALLBACK, /* zonelist with fallback */
1177#ifdef CONFIG_NUMA
1178 /*
1179 * The NUMA zonelists are doubled because we need zonelists that
1180 * restrict the allocations to a single node for __GFP_THISNODE.
1181 */
1182 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
1183#endif
1184 MAX_ZONELISTS
1185};
1186
1187/*
1188 * This struct contains information about a zone in a zonelist. It is stored
1189 * here to avoid dereferences into large structures and lookups of tables
1190 */
1191struct zoneref {
1192 struct zone *zone; /* Pointer to actual zone */
1193 int zone_idx; /* zone_idx(zoneref->zone) */
1194};
1195
1196/*
1197 * One allocation request operates on a zonelist. A zonelist
1198 * is a list of zones, the first one is the 'goal' of the
1199 * allocation, the other zones are fallback zones, in decreasing
1200 * priority.
1201 *
1202 * To speed the reading of the zonelist, the zonerefs contain the zone index
1203 * of the entry being read. Helper functions to access information given
1204 * a struct zoneref are
1205 *
1206 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
1207 * zonelist_zone_idx() - Return the index of the zone for an entry
1208 * zonelist_node_idx() - Return the index of the node for an entry
1209 */
1210struct zonelist {
1211 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1212};
1213
1214/*
1215 * The array of struct pages for flatmem.
1216 * It must be declared for SPARSEMEM as well because there are configurations
1217 * that rely on that.
1218 */
1219extern struct page *mem_map;
1220
1221#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1222struct deferred_split {
1223 spinlock_t split_queue_lock;
1224 struct list_head split_queue;
1225 unsigned long split_queue_len;
1226};
1227#endif
1228
1229#ifdef CONFIG_MEMORY_FAILURE
1230/*
1231 * Per NUMA node memory failure handling statistics.
1232 */
1233struct memory_failure_stats {
1234 /*
1235 * Number of raw pages poisoned.
1236 * Cases not accounted: memory outside kernel control, offline page,
1237 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1238 * error events, and unpoison actions from hwpoison_unpoison.
1239 */
1240 unsigned long total;
1241 /*
1242 * Recovery results of poisoned raw pages handled by memory_failure,
1243 * in sync with mf_result.
1244 * total = ignored + failed + delayed + recovered.
1245 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1246 */
1247 unsigned long ignored;
1248 unsigned long failed;
1249 unsigned long delayed;
1250 unsigned long recovered;
1251};
1252#endif
1253
1254/*
1255 * On NUMA machines, each NUMA node would have a pg_data_t to describe
1256 * it's memory layout. On UMA machines there is a single pglist_data which
1257 * describes the whole memory.
1258 *
1259 * Memory statistics and page replacement data structures are maintained on a
1260 * per-zone basis.
1261 */
1262typedef struct pglist_data {
1263 /*
1264 * node_zones contains just the zones for THIS node. Not all of the
1265 * zones may be populated, but it is the full list. It is referenced by
1266 * this node's node_zonelists as well as other node's node_zonelists.
1267 */
1268 struct zone node_zones[MAX_NR_ZONES];
1269
1270 /*
1271 * node_zonelists contains references to all zones in all nodes.
1272 * Generally the first zones will be references to this node's
1273 * node_zones.
1274 */
1275 struct zonelist node_zonelists[MAX_ZONELISTS];
1276
1277 int nr_zones; /* number of populated zones in this node */
1278#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1279 struct page *node_mem_map;
1280#ifdef CONFIG_PAGE_EXTENSION
1281 struct page_ext *node_page_ext;
1282#endif
1283#endif
1284#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1285 /*
1286 * Must be held any time you expect node_start_pfn,
1287 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1288 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1289 * init.
1290 *
1291 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1292 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1293 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1294 *
1295 * Nests above zone->lock and zone->span_seqlock
1296 */
1297 spinlock_t node_size_lock;
1298#endif
1299 unsigned long node_start_pfn;
1300 unsigned long node_present_pages; /* total number of physical pages */
1301 unsigned long node_spanned_pages; /* total size of physical page
1302 range, including holes */
1303 int node_id;
1304 wait_queue_head_t kswapd_wait;
1305 wait_queue_head_t pfmemalloc_wait;
1306
1307 /* workqueues for throttling reclaim for different reasons. */
1308 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1309
1310 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1311 unsigned long nr_reclaim_start; /* nr pages written while throttled
1312 * when throttling started. */
1313#ifdef CONFIG_MEMORY_HOTPLUG
1314 struct mutex kswapd_lock;
1315#endif
1316 struct task_struct *kswapd; /* Protected by kswapd_lock */
1317 int kswapd_order;
1318 enum zone_type kswapd_highest_zoneidx;
1319
1320 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
1321
1322#ifdef CONFIG_COMPACTION
1323 int kcompactd_max_order;
1324 enum zone_type kcompactd_highest_zoneidx;
1325 wait_queue_head_t kcompactd_wait;
1326 struct task_struct *kcompactd;
1327 bool proactive_compact_trigger;
1328#endif
1329 /*
1330 * This is a per-node reserve of pages that are not available
1331 * to userspace allocations.
1332 */
1333 unsigned long totalreserve_pages;
1334
1335#ifdef CONFIG_NUMA
1336 /*
1337 * node reclaim becomes active if more unmapped pages exist.
1338 */
1339 unsigned long min_unmapped_pages;
1340 unsigned long min_slab_pages;
1341#endif /* CONFIG_NUMA */
1342
1343 /* Write-intensive fields used by page reclaim */
1344 CACHELINE_PADDING(_pad1_);
1345
1346#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1347 /*
1348 * If memory initialisation on large machines is deferred then this
1349 * is the first PFN that needs to be initialised.
1350 */
1351 unsigned long first_deferred_pfn;
1352#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1353
1354#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1355 struct deferred_split deferred_split_queue;
1356#endif
1357
1358#ifdef CONFIG_NUMA_BALANCING
1359 /* start time in ms of current promote rate limit period */
1360 unsigned int nbp_rl_start;
1361 /* number of promote candidate pages at start time of current rate limit period */
1362 unsigned long nbp_rl_nr_cand;
1363 /* promote threshold in ms */
1364 unsigned int nbp_threshold;
1365 /* start time in ms of current promote threshold adjustment period */
1366 unsigned int nbp_th_start;
1367 /*
1368 * number of promote candidate pages at start time of current promote
1369 * threshold adjustment period
1370 */
1371 unsigned long nbp_th_nr_cand;
1372#endif
1373 /* Fields commonly accessed by the page reclaim scanner */
1374
1375 /*
1376 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1377 *
1378 * Use mem_cgroup_lruvec() to look up lruvecs.
1379 */
1380 struct lruvec __lruvec;
1381
1382 unsigned long flags;
1383
1384#ifdef CONFIG_LRU_GEN
1385 /* kswap mm walk data */
1386 struct lru_gen_mm_walk mm_walk;
1387 /* lru_gen_folio list */
1388 struct lru_gen_memcg memcg_lru;
1389#endif
1390
1391 CACHELINE_PADDING(_pad2_);
1392
1393 /* Per-node vmstats */
1394 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1395 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1396#ifdef CONFIG_NUMA
1397 struct memory_tier __rcu *memtier;
1398#endif
1399#ifdef CONFIG_MEMORY_FAILURE
1400 struct memory_failure_stats mf_stats;
1401#endif
1402} pg_data_t;
1403
1404#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1405#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1406
1407#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
1408#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1409
1410static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1411{
1412 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1413}
1414
1415#include <linux/memory_hotplug.h>
1416
1417void build_all_zonelists(pg_data_t *pgdat);
1418void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1419 enum zone_type highest_zoneidx);
1420bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1421 int highest_zoneidx, unsigned int alloc_flags,
1422 long free_pages);
1423bool zone_watermark_ok(struct zone *z, unsigned int order,
1424 unsigned long mark, int highest_zoneidx,
1425 unsigned int alloc_flags);
1426bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1427 unsigned long mark, int highest_zoneidx);
1428/*
1429 * Memory initialization context, use to differentiate memory added by
1430 * the platform statically or via memory hotplug interface.
1431 */
1432enum meminit_context {
1433 MEMINIT_EARLY,
1434 MEMINIT_HOTPLUG,
1435};
1436
1437extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1438 unsigned long size);
1439
1440extern void lruvec_init(struct lruvec *lruvec);
1441
1442static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1443{
1444#ifdef CONFIG_MEMCG
1445 return lruvec->pgdat;
1446#else
1447 return container_of(lruvec, struct pglist_data, __lruvec);
1448#endif
1449}
1450
1451#ifdef CONFIG_HAVE_MEMORYLESS_NODES
1452int local_memory_node(int node_id);
1453#else
1454static inline int local_memory_node(int node_id) { return node_id; };
1455#endif
1456
1457/*
1458 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1459 */
1460#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1461
1462#ifdef CONFIG_ZONE_DEVICE
1463static inline bool zone_is_zone_device(struct zone *zone)
1464{
1465 return zone_idx(zone) == ZONE_DEVICE;
1466}
1467#else
1468static inline bool zone_is_zone_device(struct zone *zone)
1469{
1470 return false;
1471}
1472#endif
1473
1474/*
1475 * Returns true if a zone has pages managed by the buddy allocator.
1476 * All the reclaim decisions have to use this function rather than
1477 * populated_zone(). If the whole zone is reserved then we can easily
1478 * end up with populated_zone() && !managed_zone().
1479 */
1480static inline bool managed_zone(struct zone *zone)
1481{
1482 return zone_managed_pages(zone);
1483}
1484
1485/* Returns true if a zone has memory */
1486static inline bool populated_zone(struct zone *zone)
1487{
1488 return zone->present_pages;
1489}
1490
1491#ifdef CONFIG_NUMA
1492static inline int zone_to_nid(struct zone *zone)
1493{
1494 return zone->node;
1495}
1496
1497static inline void zone_set_nid(struct zone *zone, int nid)
1498{
1499 zone->node = nid;
1500}
1501#else
1502static inline int zone_to_nid(struct zone *zone)
1503{
1504 return 0;
1505}
1506
1507static inline void zone_set_nid(struct zone *zone, int nid) {}
1508#endif
1509
1510extern int movable_zone;
1511
1512static inline int is_highmem_idx(enum zone_type idx)
1513{
1514#ifdef CONFIG_HIGHMEM
1515 return (idx == ZONE_HIGHMEM ||
1516 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1517#else
1518 return 0;
1519#endif
1520}
1521
1522/**
1523 * is_highmem - helper function to quickly check if a struct zone is a
1524 * highmem zone or not. This is an attempt to keep references
1525 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1526 * @zone: pointer to struct zone variable
1527 * Return: 1 for a highmem zone, 0 otherwise
1528 */
1529static inline int is_highmem(struct zone *zone)
1530{
1531 return is_highmem_idx(zone_idx(zone));
1532}
1533
1534#ifdef CONFIG_ZONE_DMA
1535bool has_managed_dma(void);
1536#else
1537static inline bool has_managed_dma(void)
1538{
1539 return false;
1540}
1541#endif
1542
1543
1544#ifndef CONFIG_NUMA
1545
1546extern struct pglist_data contig_page_data;
1547static inline struct pglist_data *NODE_DATA(int nid)
1548{
1549 return &contig_page_data;
1550}
1551
1552#else /* CONFIG_NUMA */
1553
1554#include <asm/mmzone.h>
1555
1556#endif /* !CONFIG_NUMA */
1557
1558extern struct pglist_data *first_online_pgdat(void);
1559extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1560extern struct zone *next_zone(struct zone *zone);
1561
1562/**
1563 * for_each_online_pgdat - helper macro to iterate over all online nodes
1564 * @pgdat: pointer to a pg_data_t variable
1565 */
1566#define for_each_online_pgdat(pgdat) \
1567 for (pgdat = first_online_pgdat(); \
1568 pgdat; \
1569 pgdat = next_online_pgdat(pgdat))
1570/**
1571 * for_each_zone - helper macro to iterate over all memory zones
1572 * @zone: pointer to struct zone variable
1573 *
1574 * The user only needs to declare the zone variable, for_each_zone
1575 * fills it in.
1576 */
1577#define for_each_zone(zone) \
1578 for (zone = (first_online_pgdat())->node_zones; \
1579 zone; \
1580 zone = next_zone(zone))
1581
1582#define for_each_populated_zone(zone) \
1583 for (zone = (first_online_pgdat())->node_zones; \
1584 zone; \
1585 zone = next_zone(zone)) \
1586 if (!populated_zone(zone)) \
1587 ; /* do nothing */ \
1588 else
1589
1590static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1591{
1592 return zoneref->zone;
1593}
1594
1595static inline int zonelist_zone_idx(struct zoneref *zoneref)
1596{
1597 return zoneref->zone_idx;
1598}
1599
1600static inline int zonelist_node_idx(struct zoneref *zoneref)
1601{
1602 return zone_to_nid(zoneref->zone);
1603}
1604
1605struct zoneref *__next_zones_zonelist(struct zoneref *z,
1606 enum zone_type highest_zoneidx,
1607 nodemask_t *nodes);
1608
1609/**
1610 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1611 * @z: The cursor used as a starting point for the search
1612 * @highest_zoneidx: The zone index of the highest zone to return
1613 * @nodes: An optional nodemask to filter the zonelist with
1614 *
1615 * This function returns the next zone at or below a given zone index that is
1616 * within the allowed nodemask using a cursor as the starting point for the
1617 * search. The zoneref returned is a cursor that represents the current zone
1618 * being examined. It should be advanced by one before calling
1619 * next_zones_zonelist again.
1620 *
1621 * Return: the next zone at or below highest_zoneidx within the allowed
1622 * nodemask using a cursor within a zonelist as a starting point
1623 */
1624static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1625 enum zone_type highest_zoneidx,
1626 nodemask_t *nodes)
1627{
1628 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1629 return z;
1630 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1631}
1632
1633/**
1634 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1635 * @zonelist: The zonelist to search for a suitable zone
1636 * @highest_zoneidx: The zone index of the highest zone to return
1637 * @nodes: An optional nodemask to filter the zonelist with
1638 *
1639 * This function returns the first zone at or below a given zone index that is
1640 * within the allowed nodemask. The zoneref returned is a cursor that can be
1641 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1642 * one before calling.
1643 *
1644 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1645 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1646 * update due to cpuset modification.
1647 *
1648 * Return: Zoneref pointer for the first suitable zone found
1649 */
1650static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1651 enum zone_type highest_zoneidx,
1652 nodemask_t *nodes)
1653{
1654 return next_zones_zonelist(zonelist->_zonerefs,
1655 highest_zoneidx, nodes);
1656}
1657
1658/**
1659 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1660 * @zone: The current zone in the iterator
1661 * @z: The current pointer within zonelist->_zonerefs being iterated
1662 * @zlist: The zonelist being iterated
1663 * @highidx: The zone index of the highest zone to return
1664 * @nodemask: Nodemask allowed by the allocator
1665 *
1666 * This iterator iterates though all zones at or below a given zone index and
1667 * within a given nodemask
1668 */
1669#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1670 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1671 zone; \
1672 z = next_zones_zonelist(++z, highidx, nodemask), \
1673 zone = zonelist_zone(z))
1674
1675#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1676 for (zone = z->zone; \
1677 zone; \
1678 z = next_zones_zonelist(++z, highidx, nodemask), \
1679 zone = zonelist_zone(z))
1680
1681
1682/**
1683 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1684 * @zone: The current zone in the iterator
1685 * @z: The current pointer within zonelist->zones being iterated
1686 * @zlist: The zonelist being iterated
1687 * @highidx: The zone index of the highest zone to return
1688 *
1689 * This iterator iterates though all zones at or below a given zone index.
1690 */
1691#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1692 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1693
1694/* Whether the 'nodes' are all movable nodes */
1695static inline bool movable_only_nodes(nodemask_t *nodes)
1696{
1697 struct zonelist *zonelist;
1698 struct zoneref *z;
1699 int nid;
1700
1701 if (nodes_empty(*nodes))
1702 return false;
1703
1704 /*
1705 * We can chose arbitrary node from the nodemask to get a
1706 * zonelist as they are interlinked. We just need to find
1707 * at least one zone that can satisfy kernel allocations.
1708 */
1709 nid = first_node(*nodes);
1710 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1711 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1712 return (!z->zone) ? true : false;
1713}
1714
1715
1716#ifdef CONFIG_SPARSEMEM
1717#include <asm/sparsemem.h>
1718#endif
1719
1720#ifdef CONFIG_FLATMEM
1721#define pfn_to_nid(pfn) (0)
1722#endif
1723
1724#ifdef CONFIG_SPARSEMEM
1725
1726/*
1727 * PA_SECTION_SHIFT physical address to/from section number
1728 * PFN_SECTION_SHIFT pfn to/from section number
1729 */
1730#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1731#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1732
1733#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1734
1735#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1736#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1737
1738#define SECTION_BLOCKFLAGS_BITS \
1739 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1740
1741#if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1742#error Allocator MAX_ORDER exceeds SECTION_SIZE
1743#endif
1744
1745static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1746{
1747 return pfn >> PFN_SECTION_SHIFT;
1748}
1749static inline unsigned long section_nr_to_pfn(unsigned long sec)
1750{
1751 return sec << PFN_SECTION_SHIFT;
1752}
1753
1754#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1755#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1756
1757#define SUBSECTION_SHIFT 21
1758#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1759
1760#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1761#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1762#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1763
1764#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1765#error Subsection size exceeds section size
1766#else
1767#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1768#endif
1769
1770#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1771#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1772
1773struct mem_section_usage {
1774#ifdef CONFIG_SPARSEMEM_VMEMMAP
1775 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1776#endif
1777 /* See declaration of similar field in struct zone */
1778 unsigned long pageblock_flags[0];
1779};
1780
1781void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1782
1783struct page;
1784struct page_ext;
1785struct mem_section {
1786 /*
1787 * This is, logically, a pointer to an array of struct
1788 * pages. However, it is stored with some other magic.
1789 * (see sparse.c::sparse_init_one_section())
1790 *
1791 * Additionally during early boot we encode node id of
1792 * the location of the section here to guide allocation.
1793 * (see sparse.c::memory_present())
1794 *
1795 * Making it a UL at least makes someone do a cast
1796 * before using it wrong.
1797 */
1798 unsigned long section_mem_map;
1799
1800 struct mem_section_usage *usage;
1801#ifdef CONFIG_PAGE_EXTENSION
1802 /*
1803 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1804 * section. (see page_ext.h about this.)
1805 */
1806 struct page_ext *page_ext;
1807 unsigned long pad;
1808#endif
1809 /*
1810 * WARNING: mem_section must be a power-of-2 in size for the
1811 * calculation and use of SECTION_ROOT_MASK to make sense.
1812 */
1813};
1814
1815#ifdef CONFIG_SPARSEMEM_EXTREME
1816#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1817#else
1818#define SECTIONS_PER_ROOT 1
1819#endif
1820
1821#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1822#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1823#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1824
1825#ifdef CONFIG_SPARSEMEM_EXTREME
1826extern struct mem_section **mem_section;
1827#else
1828extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1829#endif
1830
1831static inline unsigned long *section_to_usemap(struct mem_section *ms)
1832{
1833 return ms->usage->pageblock_flags;
1834}
1835
1836static inline struct mem_section *__nr_to_section(unsigned long nr)
1837{
1838 unsigned long root = SECTION_NR_TO_ROOT(nr);
1839
1840 if (unlikely(root >= NR_SECTION_ROOTS))
1841 return NULL;
1842
1843#ifdef CONFIG_SPARSEMEM_EXTREME
1844 if (!mem_section || !mem_section[root])
1845 return NULL;
1846#endif
1847 return &mem_section[root][nr & SECTION_ROOT_MASK];
1848}
1849extern size_t mem_section_usage_size(void);
1850
1851/*
1852 * We use the lower bits of the mem_map pointer to store
1853 * a little bit of information. The pointer is calculated
1854 * as mem_map - section_nr_to_pfn(pnum). The result is
1855 * aligned to the minimum alignment of the two values:
1856 * 1. All mem_map arrays are page-aligned.
1857 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1858 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1859 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1860 * worst combination is powerpc with 256k pages,
1861 * which results in PFN_SECTION_SHIFT equal 6.
1862 * To sum it up, at least 6 bits are available on all architectures.
1863 * However, we can exceed 6 bits on some other architectures except
1864 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1865 * with the worst case of 64K pages on arm64) if we make sure the
1866 * exceeded bit is not applicable to powerpc.
1867 */
1868enum {
1869 SECTION_MARKED_PRESENT_BIT,
1870 SECTION_HAS_MEM_MAP_BIT,
1871 SECTION_IS_ONLINE_BIT,
1872 SECTION_IS_EARLY_BIT,
1873#ifdef CONFIG_ZONE_DEVICE
1874 SECTION_TAINT_ZONE_DEVICE_BIT,
1875#endif
1876 SECTION_MAP_LAST_BIT,
1877};
1878
1879#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1880#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1881#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1882#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1883#ifdef CONFIG_ZONE_DEVICE
1884#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1885#endif
1886#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1887#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
1888
1889static inline struct page *__section_mem_map_addr(struct mem_section *section)
1890{
1891 unsigned long map = section->section_mem_map;
1892 map &= SECTION_MAP_MASK;
1893 return (struct page *)map;
1894}
1895
1896static inline int present_section(struct mem_section *section)
1897{
1898 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1899}
1900
1901static inline int present_section_nr(unsigned long nr)
1902{
1903 return present_section(__nr_to_section(nr));
1904}
1905
1906static inline int valid_section(struct mem_section *section)
1907{
1908 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1909}
1910
1911static inline int early_section(struct mem_section *section)
1912{
1913 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1914}
1915
1916static inline int valid_section_nr(unsigned long nr)
1917{
1918 return valid_section(__nr_to_section(nr));
1919}
1920
1921static inline int online_section(struct mem_section *section)
1922{
1923 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1924}
1925
1926#ifdef CONFIG_ZONE_DEVICE
1927static inline int online_device_section(struct mem_section *section)
1928{
1929 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1930
1931 return section && ((section->section_mem_map & flags) == flags);
1932}
1933#else
1934static inline int online_device_section(struct mem_section *section)
1935{
1936 return 0;
1937}
1938#endif
1939
1940static inline int online_section_nr(unsigned long nr)
1941{
1942 return online_section(__nr_to_section(nr));
1943}
1944
1945#ifdef CONFIG_MEMORY_HOTPLUG
1946void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1947void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1948#endif
1949
1950static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1951{
1952 return __nr_to_section(pfn_to_section_nr(pfn));
1953}
1954
1955extern unsigned long __highest_present_section_nr;
1956
1957static inline int subsection_map_index(unsigned long pfn)
1958{
1959 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1960}
1961
1962#ifdef CONFIG_SPARSEMEM_VMEMMAP
1963static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1964{
1965 int idx = subsection_map_index(pfn);
1966
1967 return test_bit(idx, ms->usage->subsection_map);
1968}
1969#else
1970static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1971{
1972 return 1;
1973}
1974#endif
1975
1976#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1977/**
1978 * pfn_valid - check if there is a valid memory map entry for a PFN
1979 * @pfn: the page frame number to check
1980 *
1981 * Check if there is a valid memory map entry aka struct page for the @pfn.
1982 * Note, that availability of the memory map entry does not imply that
1983 * there is actual usable memory at that @pfn. The struct page may
1984 * represent a hole or an unusable page frame.
1985 *
1986 * Return: 1 for PFNs that have memory map entries and 0 otherwise
1987 */
1988static inline int pfn_valid(unsigned long pfn)
1989{
1990 struct mem_section *ms;
1991
1992 /*
1993 * Ensure the upper PAGE_SHIFT bits are clear in the
1994 * pfn. Else it might lead to false positives when
1995 * some of the upper bits are set, but the lower bits
1996 * match a valid pfn.
1997 */
1998 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1999 return 0;
2000
2001 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2002 return 0;
2003 ms = __pfn_to_section(pfn);
2004 if (!valid_section(ms))
2005 return 0;
2006 /*
2007 * Traditionally early sections always returned pfn_valid() for
2008 * the entire section-sized span.
2009 */
2010 return early_section(ms) || pfn_section_valid(ms, pfn);
2011}
2012#endif
2013
2014static inline int pfn_in_present_section(unsigned long pfn)
2015{
2016 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2017 return 0;
2018 return present_section(__pfn_to_section(pfn));
2019}
2020
2021static inline unsigned long next_present_section_nr(unsigned long section_nr)
2022{
2023 while (++section_nr <= __highest_present_section_nr) {
2024 if (present_section_nr(section_nr))
2025 return section_nr;
2026 }
2027
2028 return -1;
2029}
2030
2031/*
2032 * These are _only_ used during initialisation, therefore they
2033 * can use __initdata ... They could have names to indicate
2034 * this restriction.
2035 */
2036#ifdef CONFIG_NUMA
2037#define pfn_to_nid(pfn) \
2038({ \
2039 unsigned long __pfn_to_nid_pfn = (pfn); \
2040 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
2041})
2042#else
2043#define pfn_to_nid(pfn) (0)
2044#endif
2045
2046void sparse_init(void);
2047#else
2048#define sparse_init() do {} while (0)
2049#define sparse_index_init(_sec, _nid) do {} while (0)
2050#define pfn_in_present_section pfn_valid
2051#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2052#endif /* CONFIG_SPARSEMEM */
2053
2054#endif /* !__GENERATING_BOUNDS.H */
2055#endif /* !__ASSEMBLY__ */
2056#endif /* _LINUX_MMZONE_H */