Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_TYPES_H
3#define _LINUX_MM_TYPES_H
4
5#include <linux/mm_types_task.h>
6
7#include <linux/auxvec.h>
8#include <linux/kref.h>
9#include <linux/list.h>
10#include <linux/spinlock.h>
11#include <linux/rbtree.h>
12#include <linux/maple_tree.h>
13#include <linux/rwsem.h>
14#include <linux/completion.h>
15#include <linux/cpumask.h>
16#include <linux/uprobes.h>
17#include <linux/rcupdate.h>
18#include <linux/page-flags-layout.h>
19#include <linux/workqueue.h>
20#include <linux/seqlock.h>
21#include <linux/percpu_counter.h>
22
23#include <asm/mmu.h>
24
25#ifndef AT_VECTOR_SIZE_ARCH
26#define AT_VECTOR_SIZE_ARCH 0
27#endif
28#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
29
30#define INIT_PASID 0
31
32struct address_space;
33struct mem_cgroup;
34
35/*
36 * Each physical page in the system has a struct page associated with
37 * it to keep track of whatever it is we are using the page for at the
38 * moment. Note that we have no way to track which tasks are using
39 * a page, though if it is a pagecache page, rmap structures can tell us
40 * who is mapping it.
41 *
42 * If you allocate the page using alloc_pages(), you can use some of the
43 * space in struct page for your own purposes. The five words in the main
44 * union are available, except for bit 0 of the first word which must be
45 * kept clear. Many users use this word to store a pointer to an object
46 * which is guaranteed to be aligned. If you use the same storage as
47 * page->mapping, you must restore it to NULL before freeing the page.
48 *
49 * If your page will not be mapped to userspace, you can also use the four
50 * bytes in the mapcount union, but you must call page_mapcount_reset()
51 * before freeing it.
52 *
53 * If you want to use the refcount field, it must be used in such a way
54 * that other CPUs temporarily incrementing and then decrementing the
55 * refcount does not cause problems. On receiving the page from
56 * alloc_pages(), the refcount will be positive.
57 *
58 * If you allocate pages of order > 0, you can use some of the fields
59 * in each subpage, but you may need to restore some of their values
60 * afterwards.
61 *
62 * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
63 * That requires that freelist & counters in struct slab be adjacent and
64 * double-word aligned. Because struct slab currently just reinterprets the
65 * bits of struct page, we align all struct pages to double-word boundaries,
66 * and ensure that 'freelist' is aligned within struct slab.
67 */
68#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
69#define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
70#else
71#define _struct_page_alignment __aligned(sizeof(unsigned long))
72#endif
73
74struct page {
75 unsigned long flags; /* Atomic flags, some possibly
76 * updated asynchronously */
77 /*
78 * Five words (20/40 bytes) are available in this union.
79 * WARNING: bit 0 of the first word is used for PageTail(). That
80 * means the other users of this union MUST NOT use the bit to
81 * avoid collision and false-positive PageTail().
82 */
83 union {
84 struct { /* Page cache and anonymous pages */
85 /**
86 * @lru: Pageout list, eg. active_list protected by
87 * lruvec->lru_lock. Sometimes used as a generic list
88 * by the page owner.
89 */
90 union {
91 struct list_head lru;
92
93 /* Or, for the Unevictable "LRU list" slot */
94 struct {
95 /* Always even, to negate PageTail */
96 void *__filler;
97 /* Count page's or folio's mlocks */
98 unsigned int mlock_count;
99 };
100
101 /* Or, free page */
102 struct list_head buddy_list;
103 struct list_head pcp_list;
104 };
105 /* See page-flags.h for PAGE_MAPPING_FLAGS */
106 struct address_space *mapping;
107 union {
108 pgoff_t index; /* Our offset within mapping. */
109 unsigned long share; /* share count for fsdax */
110 };
111 /**
112 * @private: Mapping-private opaque data.
113 * Usually used for buffer_heads if PagePrivate.
114 * Used for swp_entry_t if PageSwapCache.
115 * Indicates order in the buddy system if PageBuddy.
116 */
117 unsigned long private;
118 };
119 struct { /* page_pool used by netstack */
120 /**
121 * @pp_magic: magic value to avoid recycling non
122 * page_pool allocated pages.
123 */
124 unsigned long pp_magic;
125 struct page_pool *pp;
126 unsigned long _pp_mapping_pad;
127 unsigned long dma_addr;
128 union {
129 /**
130 * dma_addr_upper: might require a 64-bit
131 * value on 32-bit architectures.
132 */
133 unsigned long dma_addr_upper;
134 /**
135 * For frag page support, not supported in
136 * 32-bit architectures with 64-bit DMA.
137 */
138 atomic_long_t pp_frag_count;
139 };
140 };
141 struct { /* Tail pages of compound page */
142 unsigned long compound_head; /* Bit zero is set */
143 };
144 struct { /* Page table pages */
145 unsigned long _pt_pad_1; /* compound_head */
146 pgtable_t pmd_huge_pte; /* protected by page->ptl */
147 unsigned long _pt_pad_2; /* mapping */
148 union {
149 struct mm_struct *pt_mm; /* x86 pgds only */
150 atomic_t pt_frag_refcount; /* powerpc */
151 };
152#if ALLOC_SPLIT_PTLOCKS
153 spinlock_t *ptl;
154#else
155 spinlock_t ptl;
156#endif
157 };
158 struct { /* ZONE_DEVICE pages */
159 /** @pgmap: Points to the hosting device page map. */
160 struct dev_pagemap *pgmap;
161 void *zone_device_data;
162 /*
163 * ZONE_DEVICE private pages are counted as being
164 * mapped so the next 3 words hold the mapping, index,
165 * and private fields from the source anonymous or
166 * page cache page while the page is migrated to device
167 * private memory.
168 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
169 * use the mapping, index, and private fields when
170 * pmem backed DAX files are mapped.
171 */
172 };
173
174 /** @rcu_head: You can use this to free a page by RCU. */
175 struct rcu_head rcu_head;
176 };
177
178 union { /* This union is 4 bytes in size. */
179 /*
180 * If the page can be mapped to userspace, encodes the number
181 * of times this page is referenced by a page table.
182 */
183 atomic_t _mapcount;
184
185 /*
186 * If the page is neither PageSlab nor mappable to userspace,
187 * the value stored here may help determine what this page
188 * is used for. See page-flags.h for a list of page types
189 * which are currently stored here.
190 */
191 unsigned int page_type;
192 };
193
194 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
195 atomic_t _refcount;
196
197#ifdef CONFIG_MEMCG
198 unsigned long memcg_data;
199#endif
200
201 /*
202 * On machines where all RAM is mapped into kernel address space,
203 * we can simply calculate the virtual address. On machines with
204 * highmem some memory is mapped into kernel virtual memory
205 * dynamically, so we need a place to store that address.
206 * Note that this field could be 16 bits on x86 ... ;)
207 *
208 * Architectures with slow multiplication can define
209 * WANT_PAGE_VIRTUAL in asm/page.h
210 */
211#if defined(WANT_PAGE_VIRTUAL)
212 void *virtual; /* Kernel virtual address (NULL if
213 not kmapped, ie. highmem) */
214#endif /* WANT_PAGE_VIRTUAL */
215
216#ifdef CONFIG_KMSAN
217 /*
218 * KMSAN metadata for this page:
219 * - shadow page: every bit indicates whether the corresponding
220 * bit of the original page is initialized (0) or not (1);
221 * - origin page: every 4 bytes contain an id of the stack trace
222 * where the uninitialized value was created.
223 */
224 struct page *kmsan_shadow;
225 struct page *kmsan_origin;
226#endif
227
228#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
229 int _last_cpupid;
230#endif
231} _struct_page_alignment;
232
233/*
234 * struct encoded_page - a nonexistent type marking this pointer
235 *
236 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
237 * with the low bits of the pointer indicating extra context-dependent
238 * information. Not super-common, but happens in mmu_gather and mlock
239 * handling, and this acts as a type system check on that use.
240 *
241 * We only really have two guaranteed bits in general, although you could
242 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
243 * for more.
244 *
245 * Use the supplied helper functions to endcode/decode the pointer and bits.
246 */
247struct encoded_page;
248#define ENCODE_PAGE_BITS 3ul
249static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
250{
251 BUILD_BUG_ON(flags > ENCODE_PAGE_BITS);
252 return (struct encoded_page *)(flags | (unsigned long)page);
253}
254
255static inline unsigned long encoded_page_flags(struct encoded_page *page)
256{
257 return ENCODE_PAGE_BITS & (unsigned long)page;
258}
259
260static inline struct page *encoded_page_ptr(struct encoded_page *page)
261{
262 return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page);
263}
264
265/**
266 * struct folio - Represents a contiguous set of bytes.
267 * @flags: Identical to the page flags.
268 * @lru: Least Recently Used list; tracks how recently this folio was used.
269 * @mlock_count: Number of times this folio has been pinned by mlock().
270 * @mapping: The file this page belongs to, or refers to the anon_vma for
271 * anonymous memory.
272 * @index: Offset within the file, in units of pages. For anonymous memory,
273 * this is the index from the beginning of the mmap.
274 * @private: Filesystem per-folio data (see folio_attach_private()).
275 * Used for swp_entry_t if folio_test_swapcache().
276 * @_mapcount: Do not access this member directly. Use folio_mapcount() to
277 * find out how many times this folio is mapped by userspace.
278 * @_refcount: Do not access this member directly. Use folio_ref_count()
279 * to find how many references there are to this folio.
280 * @memcg_data: Memory Control Group data.
281 * @_folio_dtor: Which destructor to use for this folio.
282 * @_folio_order: Do not use directly, call folio_order().
283 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
284 * @_nr_pages_mapped: Do not use directly, call folio_mapcount().
285 * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
286 * @_folio_nr_pages: Do not use directly, call folio_nr_pages().
287 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
288 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
289 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
290 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
291 * @_deferred_list: Folios to be split under memory pressure.
292 *
293 * A folio is a physically, virtually and logically contiguous set
294 * of bytes. It is a power-of-two in size, and it is aligned to that
295 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is
296 * in the page cache, it is at a file offset which is a multiple of that
297 * power-of-two. It may be mapped into userspace at an address which is
298 * at an arbitrary page offset, but its kernel virtual address is aligned
299 * to its size.
300 */
301struct folio {
302 /* private: don't document the anon union */
303 union {
304 struct {
305 /* public: */
306 unsigned long flags;
307 union {
308 struct list_head lru;
309 /* private: avoid cluttering the output */
310 struct {
311 void *__filler;
312 /* public: */
313 unsigned int mlock_count;
314 /* private: */
315 };
316 /* public: */
317 };
318 struct address_space *mapping;
319 pgoff_t index;
320 void *private;
321 atomic_t _mapcount;
322 atomic_t _refcount;
323#ifdef CONFIG_MEMCG
324 unsigned long memcg_data;
325#endif
326 /* private: the union with struct page is transitional */
327 };
328 struct page page;
329 };
330 union {
331 struct {
332 unsigned long _flags_1;
333 unsigned long _head_1;
334 /* public: */
335 unsigned char _folio_dtor;
336 unsigned char _folio_order;
337 atomic_t _entire_mapcount;
338 atomic_t _nr_pages_mapped;
339 atomic_t _pincount;
340#ifdef CONFIG_64BIT
341 unsigned int _folio_nr_pages;
342#endif
343 /* private: the union with struct page is transitional */
344 };
345 struct page __page_1;
346 };
347 union {
348 struct {
349 unsigned long _flags_2;
350 unsigned long _head_2;
351 /* public: */
352 void *_hugetlb_subpool;
353 void *_hugetlb_cgroup;
354 void *_hugetlb_cgroup_rsvd;
355 void *_hugetlb_hwpoison;
356 /* private: the union with struct page is transitional */
357 };
358 struct {
359 unsigned long _flags_2a;
360 unsigned long _head_2a;
361 /* public: */
362 struct list_head _deferred_list;
363 /* private: the union with struct page is transitional */
364 };
365 struct page __page_2;
366 };
367};
368
369#define FOLIO_MATCH(pg, fl) \
370 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
371FOLIO_MATCH(flags, flags);
372FOLIO_MATCH(lru, lru);
373FOLIO_MATCH(mapping, mapping);
374FOLIO_MATCH(compound_head, lru);
375FOLIO_MATCH(index, index);
376FOLIO_MATCH(private, private);
377FOLIO_MATCH(_mapcount, _mapcount);
378FOLIO_MATCH(_refcount, _refcount);
379#ifdef CONFIG_MEMCG
380FOLIO_MATCH(memcg_data, memcg_data);
381#endif
382#undef FOLIO_MATCH
383#define FOLIO_MATCH(pg, fl) \
384 static_assert(offsetof(struct folio, fl) == \
385 offsetof(struct page, pg) + sizeof(struct page))
386FOLIO_MATCH(flags, _flags_1);
387FOLIO_MATCH(compound_head, _head_1);
388#undef FOLIO_MATCH
389#define FOLIO_MATCH(pg, fl) \
390 static_assert(offsetof(struct folio, fl) == \
391 offsetof(struct page, pg) + 2 * sizeof(struct page))
392FOLIO_MATCH(flags, _flags_2);
393FOLIO_MATCH(compound_head, _head_2);
394#undef FOLIO_MATCH
395
396/*
397 * Used for sizing the vmemmap region on some architectures
398 */
399#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
400
401#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
402#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
403
404/*
405 * page_private can be used on tail pages. However, PagePrivate is only
406 * checked by the VM on the head page. So page_private on the tail pages
407 * should be used for data that's ancillary to the head page (eg attaching
408 * buffer heads to tail pages after attaching buffer heads to the head page)
409 */
410#define page_private(page) ((page)->private)
411
412static inline void set_page_private(struct page *page, unsigned long private)
413{
414 page->private = private;
415}
416
417static inline void *folio_get_private(struct folio *folio)
418{
419 return folio->private;
420}
421
422struct page_frag_cache {
423 void * va;
424#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
425 __u16 offset;
426 __u16 size;
427#else
428 __u32 offset;
429#endif
430 /* we maintain a pagecount bias, so that we dont dirty cache line
431 * containing page->_refcount every time we allocate a fragment.
432 */
433 unsigned int pagecnt_bias;
434 bool pfmemalloc;
435};
436
437typedef unsigned long vm_flags_t;
438
439/*
440 * A region containing a mapping of a non-memory backed file under NOMMU
441 * conditions. These are held in a global tree and are pinned by the VMAs that
442 * map parts of them.
443 */
444struct vm_region {
445 struct rb_node vm_rb; /* link in global region tree */
446 vm_flags_t vm_flags; /* VMA vm_flags */
447 unsigned long vm_start; /* start address of region */
448 unsigned long vm_end; /* region initialised to here */
449 unsigned long vm_top; /* region allocated to here */
450 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
451 struct file *vm_file; /* the backing file or NULL */
452
453 int vm_usage; /* region usage count (access under nommu_region_sem) */
454 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
455 * this region */
456};
457
458#ifdef CONFIG_USERFAULTFD
459#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
460struct vm_userfaultfd_ctx {
461 struct userfaultfd_ctx *ctx;
462};
463#else /* CONFIG_USERFAULTFD */
464#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
465struct vm_userfaultfd_ctx {};
466#endif /* CONFIG_USERFAULTFD */
467
468struct anon_vma_name {
469 struct kref kref;
470 /* The name needs to be at the end because it is dynamically sized. */
471 char name[];
472};
473
474struct vma_lock {
475 struct rw_semaphore lock;
476};
477
478struct vma_numab_state {
479 unsigned long next_scan;
480 unsigned long next_pid_reset;
481 unsigned long access_pids[2];
482};
483
484/*
485 * This struct describes a virtual memory area. There is one of these
486 * per VM-area/task. A VM area is any part of the process virtual memory
487 * space that has a special rule for the page-fault handlers (ie a shared
488 * library, the executable area etc).
489 */
490struct vm_area_struct {
491 /* The first cache line has the info for VMA tree walking. */
492
493 union {
494 struct {
495 /* VMA covers [vm_start; vm_end) addresses within mm */
496 unsigned long vm_start;
497 unsigned long vm_end;
498 };
499#ifdef CONFIG_PER_VMA_LOCK
500 struct rcu_head vm_rcu; /* Used for deferred freeing. */
501#endif
502 };
503
504 struct mm_struct *vm_mm; /* The address space we belong to. */
505 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
506
507 /*
508 * Flags, see mm.h.
509 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
510 */
511 union {
512 const vm_flags_t vm_flags;
513 vm_flags_t __private __vm_flags;
514 };
515
516#ifdef CONFIG_PER_VMA_LOCK
517 /*
518 * Can only be written (using WRITE_ONCE()) while holding both:
519 * - mmap_lock (in write mode)
520 * - vm_lock->lock (in write mode)
521 * Can be read reliably while holding one of:
522 * - mmap_lock (in read or write mode)
523 * - vm_lock->lock (in read or write mode)
524 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
525 * while holding nothing (except RCU to keep the VMA struct allocated).
526 *
527 * This sequence counter is explicitly allowed to overflow; sequence
528 * counter reuse can only lead to occasional unnecessary use of the
529 * slowpath.
530 */
531 int vm_lock_seq;
532 struct vma_lock *vm_lock;
533
534 /* Flag to indicate areas detached from the mm->mm_mt tree */
535 bool detached;
536#endif
537
538 /*
539 * For areas with an address space and backing store,
540 * linkage into the address_space->i_mmap interval tree.
541 *
542 */
543 struct {
544 struct rb_node rb;
545 unsigned long rb_subtree_last;
546 } shared;
547
548 /*
549 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
550 * list, after a COW of one of the file pages. A MAP_SHARED vma
551 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
552 * or brk vma (with NULL file) can only be in an anon_vma list.
553 */
554 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
555 * page_table_lock */
556 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
557
558 /* Function pointers to deal with this struct. */
559 const struct vm_operations_struct *vm_ops;
560
561 /* Information about our backing store: */
562 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
563 units */
564 struct file * vm_file; /* File we map to (can be NULL). */
565 void * vm_private_data; /* was vm_pte (shared mem) */
566
567#ifdef CONFIG_ANON_VMA_NAME
568 /*
569 * For private and shared anonymous mappings, a pointer to a null
570 * terminated string containing the name given to the vma, or NULL if
571 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
572 */
573 struct anon_vma_name *anon_name;
574#endif
575#ifdef CONFIG_SWAP
576 atomic_long_t swap_readahead_info;
577#endif
578#ifndef CONFIG_MMU
579 struct vm_region *vm_region; /* NOMMU mapping region */
580#endif
581#ifdef CONFIG_NUMA
582 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
583#endif
584#ifdef CONFIG_NUMA_BALANCING
585 struct vma_numab_state *numab_state; /* NUMA Balancing state */
586#endif
587 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
588} __randomize_layout;
589
590#ifdef CONFIG_SCHED_MM_CID
591struct mm_cid {
592 u64 time;
593 int cid;
594};
595#endif
596
597struct kioctx_table;
598struct mm_struct {
599 struct {
600 /*
601 * Fields which are often written to are placed in a separate
602 * cache line.
603 */
604 struct {
605 /**
606 * @mm_count: The number of references to &struct
607 * mm_struct (@mm_users count as 1).
608 *
609 * Use mmgrab()/mmdrop() to modify. When this drops to
610 * 0, the &struct mm_struct is freed.
611 */
612 atomic_t mm_count;
613 } ____cacheline_aligned_in_smp;
614
615 struct maple_tree mm_mt;
616#ifdef CONFIG_MMU
617 unsigned long (*get_unmapped_area) (struct file *filp,
618 unsigned long addr, unsigned long len,
619 unsigned long pgoff, unsigned long flags);
620#endif
621 unsigned long mmap_base; /* base of mmap area */
622 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
623#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
624 /* Base addresses for compatible mmap() */
625 unsigned long mmap_compat_base;
626 unsigned long mmap_compat_legacy_base;
627#endif
628 unsigned long task_size; /* size of task vm space */
629 pgd_t * pgd;
630
631#ifdef CONFIG_MEMBARRIER
632 /**
633 * @membarrier_state: Flags controlling membarrier behavior.
634 *
635 * This field is close to @pgd to hopefully fit in the same
636 * cache-line, which needs to be touched by switch_mm().
637 */
638 atomic_t membarrier_state;
639#endif
640
641 /**
642 * @mm_users: The number of users including userspace.
643 *
644 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
645 * drops to 0 (i.e. when the task exits and there are no other
646 * temporary reference holders), we also release a reference on
647 * @mm_count (which may then free the &struct mm_struct if
648 * @mm_count also drops to 0).
649 */
650 atomic_t mm_users;
651
652#ifdef CONFIG_SCHED_MM_CID
653 /**
654 * @pcpu_cid: Per-cpu current cid.
655 *
656 * Keep track of the currently allocated mm_cid for each cpu.
657 * The per-cpu mm_cid values are serialized by their respective
658 * runqueue locks.
659 */
660 struct mm_cid __percpu *pcpu_cid;
661 /*
662 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
663 *
664 * When the next mm_cid scan is due (in jiffies).
665 */
666 unsigned long mm_cid_next_scan;
667#endif
668#ifdef CONFIG_MMU
669 atomic_long_t pgtables_bytes; /* size of all page tables */
670#endif
671 int map_count; /* number of VMAs */
672
673 spinlock_t page_table_lock; /* Protects page tables and some
674 * counters
675 */
676 /*
677 * With some kernel config, the current mmap_lock's offset
678 * inside 'mm_struct' is at 0x120, which is very optimal, as
679 * its two hot fields 'count' and 'owner' sit in 2 different
680 * cachelines, and when mmap_lock is highly contended, both
681 * of the 2 fields will be accessed frequently, current layout
682 * will help to reduce cache bouncing.
683 *
684 * So please be careful with adding new fields before
685 * mmap_lock, which can easily push the 2 fields into one
686 * cacheline.
687 */
688 struct rw_semaphore mmap_lock;
689
690 struct list_head mmlist; /* List of maybe swapped mm's. These
691 * are globally strung together off
692 * init_mm.mmlist, and are protected
693 * by mmlist_lock
694 */
695#ifdef CONFIG_PER_VMA_LOCK
696 /*
697 * This field has lock-like semantics, meaning it is sometimes
698 * accessed with ACQUIRE/RELEASE semantics.
699 * Roughly speaking, incrementing the sequence number is
700 * equivalent to releasing locks on VMAs; reading the sequence
701 * number can be part of taking a read lock on a VMA.
702 *
703 * Can be modified under write mmap_lock using RELEASE
704 * semantics.
705 * Can be read with no other protection when holding write
706 * mmap_lock.
707 * Can be read with ACQUIRE semantics if not holding write
708 * mmap_lock.
709 */
710 int mm_lock_seq;
711#endif
712
713
714 unsigned long hiwater_rss; /* High-watermark of RSS usage */
715 unsigned long hiwater_vm; /* High-water virtual memory usage */
716
717 unsigned long total_vm; /* Total pages mapped */
718 unsigned long locked_vm; /* Pages that have PG_mlocked set */
719 atomic64_t pinned_vm; /* Refcount permanently increased */
720 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
721 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
722 unsigned long stack_vm; /* VM_STACK */
723 unsigned long def_flags;
724
725 /**
726 * @write_protect_seq: Locked when any thread is write
727 * protecting pages mapped by this mm to enforce a later COW,
728 * for instance during page table copying for fork().
729 */
730 seqcount_t write_protect_seq;
731
732 spinlock_t arg_lock; /* protect the below fields */
733
734 unsigned long start_code, end_code, start_data, end_data;
735 unsigned long start_brk, brk, start_stack;
736 unsigned long arg_start, arg_end, env_start, env_end;
737
738 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
739
740 struct percpu_counter rss_stat[NR_MM_COUNTERS];
741
742 struct linux_binfmt *binfmt;
743
744 /* Architecture-specific MM context */
745 mm_context_t context;
746
747 unsigned long flags; /* Must use atomic bitops to access */
748
749#ifdef CONFIG_AIO
750 spinlock_t ioctx_lock;
751 struct kioctx_table __rcu *ioctx_table;
752#endif
753#ifdef CONFIG_MEMCG
754 /*
755 * "owner" points to a task that is regarded as the canonical
756 * user/owner of this mm. All of the following must be true in
757 * order for it to be changed:
758 *
759 * current == mm->owner
760 * current->mm != mm
761 * new_owner->mm == mm
762 * new_owner->alloc_lock is held
763 */
764 struct task_struct __rcu *owner;
765#endif
766 struct user_namespace *user_ns;
767
768 /* store ref to file /proc/<pid>/exe symlink points to */
769 struct file __rcu *exe_file;
770#ifdef CONFIG_MMU_NOTIFIER
771 struct mmu_notifier_subscriptions *notifier_subscriptions;
772#endif
773#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
774 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
775#endif
776#ifdef CONFIG_NUMA_BALANCING
777 /*
778 * numa_next_scan is the next time that PTEs will be remapped
779 * PROT_NONE to trigger NUMA hinting faults; such faults gather
780 * statistics and migrate pages to new nodes if necessary.
781 */
782 unsigned long numa_next_scan;
783
784 /* Restart point for scanning and remapping PTEs. */
785 unsigned long numa_scan_offset;
786
787 /* numa_scan_seq prevents two threads remapping PTEs. */
788 int numa_scan_seq;
789#endif
790 /*
791 * An operation with batched TLB flushing is going on. Anything
792 * that can move process memory needs to flush the TLB when
793 * moving a PROT_NONE mapped page.
794 */
795 atomic_t tlb_flush_pending;
796#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
797 /* See flush_tlb_batched_pending() */
798 atomic_t tlb_flush_batched;
799#endif
800 struct uprobes_state uprobes_state;
801#ifdef CONFIG_PREEMPT_RT
802 struct rcu_head delayed_drop;
803#endif
804#ifdef CONFIG_HUGETLB_PAGE
805 atomic_long_t hugetlb_usage;
806#endif
807 struct work_struct async_put_work;
808
809#ifdef CONFIG_IOMMU_SVA
810 u32 pasid;
811#endif
812#ifdef CONFIG_KSM
813 /*
814 * Represent how many pages of this process are involved in KSM
815 * merging.
816 */
817 unsigned long ksm_merging_pages;
818 /*
819 * Represent how many pages are checked for ksm merging
820 * including merged and not merged.
821 */
822 unsigned long ksm_rmap_items;
823#endif
824#ifdef CONFIG_LRU_GEN
825 struct {
826 /* this mm_struct is on lru_gen_mm_list */
827 struct list_head list;
828 /*
829 * Set when switching to this mm_struct, as a hint of
830 * whether it has been used since the last time per-node
831 * page table walkers cleared the corresponding bits.
832 */
833 unsigned long bitmap;
834#ifdef CONFIG_MEMCG
835 /* points to the memcg of "owner" above */
836 struct mem_cgroup *memcg;
837#endif
838 } lru_gen;
839#endif /* CONFIG_LRU_GEN */
840 } __randomize_layout;
841
842 /*
843 * The mm_cpumask needs to be at the end of mm_struct, because it
844 * is dynamically sized based on nr_cpu_ids.
845 */
846 unsigned long cpu_bitmap[];
847};
848
849#define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
850 MT_FLAGS_USE_RCU)
851extern struct mm_struct init_mm;
852
853/* Pointer magic because the dynamic array size confuses some compilers. */
854static inline void mm_init_cpumask(struct mm_struct *mm)
855{
856 unsigned long cpu_bitmap = (unsigned long)mm;
857
858 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
859 cpumask_clear((struct cpumask *)cpu_bitmap);
860}
861
862/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
863static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
864{
865 return (struct cpumask *)&mm->cpu_bitmap;
866}
867
868#ifdef CONFIG_LRU_GEN
869
870struct lru_gen_mm_list {
871 /* mm_struct list for page table walkers */
872 struct list_head fifo;
873 /* protects the list above */
874 spinlock_t lock;
875};
876
877void lru_gen_add_mm(struct mm_struct *mm);
878void lru_gen_del_mm(struct mm_struct *mm);
879#ifdef CONFIG_MEMCG
880void lru_gen_migrate_mm(struct mm_struct *mm);
881#endif
882
883static inline void lru_gen_init_mm(struct mm_struct *mm)
884{
885 INIT_LIST_HEAD(&mm->lru_gen.list);
886 mm->lru_gen.bitmap = 0;
887#ifdef CONFIG_MEMCG
888 mm->lru_gen.memcg = NULL;
889#endif
890}
891
892static inline void lru_gen_use_mm(struct mm_struct *mm)
893{
894 /*
895 * When the bitmap is set, page reclaim knows this mm_struct has been
896 * used since the last time it cleared the bitmap. So it might be worth
897 * walking the page tables of this mm_struct to clear the accessed bit.
898 */
899 WRITE_ONCE(mm->lru_gen.bitmap, -1);
900}
901
902#else /* !CONFIG_LRU_GEN */
903
904static inline void lru_gen_add_mm(struct mm_struct *mm)
905{
906}
907
908static inline void lru_gen_del_mm(struct mm_struct *mm)
909{
910}
911
912#ifdef CONFIG_MEMCG
913static inline void lru_gen_migrate_mm(struct mm_struct *mm)
914{
915}
916#endif
917
918static inline void lru_gen_init_mm(struct mm_struct *mm)
919{
920}
921
922static inline void lru_gen_use_mm(struct mm_struct *mm)
923{
924}
925
926#endif /* CONFIG_LRU_GEN */
927
928struct vma_iterator {
929 struct ma_state mas;
930};
931
932#define VMA_ITERATOR(name, __mm, __addr) \
933 struct vma_iterator name = { \
934 .mas = { \
935 .tree = &(__mm)->mm_mt, \
936 .index = __addr, \
937 .node = MAS_START, \
938 }, \
939 }
940
941static inline void vma_iter_init(struct vma_iterator *vmi,
942 struct mm_struct *mm, unsigned long addr)
943{
944 mas_init(&vmi->mas, &mm->mm_mt, addr);
945}
946
947#ifdef CONFIG_SCHED_MM_CID
948
949enum mm_cid_state {
950 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */
951 MM_CID_LAZY_PUT = (1U << 31),
952};
953
954static inline bool mm_cid_is_unset(int cid)
955{
956 return cid == MM_CID_UNSET;
957}
958
959static inline bool mm_cid_is_lazy_put(int cid)
960{
961 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
962}
963
964static inline bool mm_cid_is_valid(int cid)
965{
966 return !(cid & MM_CID_LAZY_PUT);
967}
968
969static inline int mm_cid_set_lazy_put(int cid)
970{
971 return cid | MM_CID_LAZY_PUT;
972}
973
974static inline int mm_cid_clear_lazy_put(int cid)
975{
976 return cid & ~MM_CID_LAZY_PUT;
977}
978
979/* Accessor for struct mm_struct's cidmask. */
980static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
981{
982 unsigned long cid_bitmap = (unsigned long)mm;
983
984 cid_bitmap += offsetof(struct mm_struct, cpu_bitmap);
985 /* Skip cpu_bitmap */
986 cid_bitmap += cpumask_size();
987 return (struct cpumask *)cid_bitmap;
988}
989
990static inline void mm_init_cid(struct mm_struct *mm)
991{
992 int i;
993
994 for_each_possible_cpu(i) {
995 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
996
997 pcpu_cid->cid = MM_CID_UNSET;
998 pcpu_cid->time = 0;
999 }
1000 cpumask_clear(mm_cidmask(mm));
1001}
1002
1003static inline int mm_alloc_cid(struct mm_struct *mm)
1004{
1005 mm->pcpu_cid = alloc_percpu(struct mm_cid);
1006 if (!mm->pcpu_cid)
1007 return -ENOMEM;
1008 mm_init_cid(mm);
1009 return 0;
1010}
1011
1012static inline void mm_destroy_cid(struct mm_struct *mm)
1013{
1014 free_percpu(mm->pcpu_cid);
1015 mm->pcpu_cid = NULL;
1016}
1017
1018static inline unsigned int mm_cid_size(void)
1019{
1020 return cpumask_size();
1021}
1022#else /* CONFIG_SCHED_MM_CID */
1023static inline void mm_init_cid(struct mm_struct *mm) { }
1024static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; }
1025static inline void mm_destroy_cid(struct mm_struct *mm) { }
1026static inline unsigned int mm_cid_size(void)
1027{
1028 return 0;
1029}
1030#endif /* CONFIG_SCHED_MM_CID */
1031
1032struct mmu_gather;
1033extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1034extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1035extern void tlb_finish_mmu(struct mmu_gather *tlb);
1036
1037struct vm_fault;
1038
1039/**
1040 * typedef vm_fault_t - Return type for page fault handlers.
1041 *
1042 * Page fault handlers return a bitmask of %VM_FAULT values.
1043 */
1044typedef __bitwise unsigned int vm_fault_t;
1045
1046/**
1047 * enum vm_fault_reason - Page fault handlers return a bitmask of
1048 * these values to tell the core VM what happened when handling the
1049 * fault. Used to decide whether a process gets delivered SIGBUS or
1050 * just gets major/minor fault counters bumped up.
1051 *
1052 * @VM_FAULT_OOM: Out Of Memory
1053 * @VM_FAULT_SIGBUS: Bad access
1054 * @VM_FAULT_MAJOR: Page read from storage
1055 * @VM_FAULT_HWPOISON: Hit poisoned small page
1056 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
1057 * in upper bits
1058 * @VM_FAULT_SIGSEGV: segmentation fault
1059 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
1060 * @VM_FAULT_LOCKED: ->fault locked the returned page
1061 * @VM_FAULT_RETRY: ->fault blocked, must retry
1062 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
1063 * @VM_FAULT_DONE_COW: ->fault has fully handled COW
1064 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
1065 * fsync() to complete (for synchronous page faults
1066 * in DAX)
1067 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released
1068 * @VM_FAULT_HINDEX_MASK: mask HINDEX value
1069 *
1070 */
1071enum vm_fault_reason {
1072 VM_FAULT_OOM = (__force vm_fault_t)0x000001,
1073 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
1074 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
1075 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
1076 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1077 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
1078 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
1079 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
1080 VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
1081 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
1082 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
1083 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
1084 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000,
1085 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
1086};
1087
1088/* Encode hstate index for a hwpoisoned large page */
1089#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1090#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1091
1092#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
1093 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
1094 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1095
1096#define VM_FAULT_RESULT_TRACE \
1097 { VM_FAULT_OOM, "OOM" }, \
1098 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1099 { VM_FAULT_MAJOR, "MAJOR" }, \
1100 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1101 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1102 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1103 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1104 { VM_FAULT_LOCKED, "LOCKED" }, \
1105 { VM_FAULT_RETRY, "RETRY" }, \
1106 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1107 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1108 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1109
1110struct vm_special_mapping {
1111 const char *name; /* The name, e.g. "[vdso]". */
1112
1113 /*
1114 * If .fault is not provided, this points to a
1115 * NULL-terminated array of pages that back the special mapping.
1116 *
1117 * This must not be NULL unless .fault is provided.
1118 */
1119 struct page **pages;
1120
1121 /*
1122 * If non-NULL, then this is called to resolve page faults
1123 * on the special mapping. If used, .pages is not checked.
1124 */
1125 vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1126 struct vm_area_struct *vma,
1127 struct vm_fault *vmf);
1128
1129 int (*mremap)(const struct vm_special_mapping *sm,
1130 struct vm_area_struct *new_vma);
1131};
1132
1133enum tlb_flush_reason {
1134 TLB_FLUSH_ON_TASK_SWITCH,
1135 TLB_REMOTE_SHOOTDOWN,
1136 TLB_LOCAL_SHOOTDOWN,
1137 TLB_LOCAL_MM_SHOOTDOWN,
1138 TLB_REMOTE_SEND_IPI,
1139 NR_TLB_FLUSH_REASONS,
1140};
1141
1142 /*
1143 * A swap entry has to fit into a "unsigned long", as the entry is hidden
1144 * in the "index" field of the swapper address space.
1145 */
1146typedef struct {
1147 unsigned long val;
1148} swp_entry_t;
1149
1150/**
1151 * enum fault_flag - Fault flag definitions.
1152 * @FAULT_FLAG_WRITE: Fault was a write fault.
1153 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1154 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1155 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1156 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1157 * @FAULT_FLAG_TRIED: The fault has been tried once.
1158 * @FAULT_FLAG_USER: The fault originated in userspace.
1159 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1160 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1161 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1162 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1163 * COW mapping, making sure that an exclusive anon page is
1164 * mapped after the fault.
1165 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1166 * We should only access orig_pte if this flag set.
1167 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1168 *
1169 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1170 * whether we would allow page faults to retry by specifying these two
1171 * fault flags correctly. Currently there can be three legal combinations:
1172 *
1173 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
1174 * this is the first try
1175 *
1176 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
1177 * we've already tried at least once
1178 *
1179 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1180 *
1181 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1182 * be used. Note that page faults can be allowed to retry for multiple times,
1183 * in which case we'll have an initial fault with flags (a) then later on
1184 * continuous faults with flags (b). We should always try to detect pending
1185 * signals before a retry to make sure the continuous page faults can still be
1186 * interrupted if necessary.
1187 *
1188 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1189 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1190 * applied to mappings that are not COW mappings.
1191 */
1192enum fault_flag {
1193 FAULT_FLAG_WRITE = 1 << 0,
1194 FAULT_FLAG_MKWRITE = 1 << 1,
1195 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
1196 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
1197 FAULT_FLAG_KILLABLE = 1 << 4,
1198 FAULT_FLAG_TRIED = 1 << 5,
1199 FAULT_FLAG_USER = 1 << 6,
1200 FAULT_FLAG_REMOTE = 1 << 7,
1201 FAULT_FLAG_INSTRUCTION = 1 << 8,
1202 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
1203 FAULT_FLAG_UNSHARE = 1 << 10,
1204 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11,
1205 FAULT_FLAG_VMA_LOCK = 1 << 12,
1206};
1207
1208typedef unsigned int __bitwise zap_flags_t;
1209
1210/*
1211 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1212 * other. Here is what they mean, and how to use them:
1213 *
1214 *
1215 * FIXME: For pages which are part of a filesystem, mappings are subject to the
1216 * lifetime enforced by the filesystem and we need guarantees that longterm
1217 * users like RDMA and V4L2 only establish mappings which coordinate usage with
1218 * the filesystem. Ideas for this coordination include revoking the longterm
1219 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
1220 * added after the problem with filesystems was found FS DAX VMAs are
1221 * specifically failed. Filesystem pages are still subject to bugs and use of
1222 * FOLL_LONGTERM should be avoided on those pages.
1223 *
1224 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1225 * that region. And so, CMA attempts to migrate the page before pinning, when
1226 * FOLL_LONGTERM is specified.
1227 *
1228 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1229 * but an additional pin counting system) will be invoked. This is intended for
1230 * anything that gets a page reference and then touches page data (for example,
1231 * Direct IO). This lets the filesystem know that some non-file-system entity is
1232 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1233 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1234 * a call to unpin_user_page().
1235 *
1236 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1237 * and separate refcounting mechanisms, however, and that means that each has
1238 * its own acquire and release mechanisms:
1239 *
1240 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1241 *
1242 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1243 *
1244 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1245 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1246 * calls applied to them, and that's perfectly OK. This is a constraint on the
1247 * callers, not on the pages.)
1248 *
1249 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1250 * directly by the caller. That's in order to help avoid mismatches when
1251 * releasing pages: get_user_pages*() pages must be released via put_page(),
1252 * while pin_user_pages*() pages must be released via unpin_user_page().
1253 *
1254 * Please see Documentation/core-api/pin_user_pages.rst for more information.
1255 */
1256
1257enum {
1258 /* check pte is writable */
1259 FOLL_WRITE = 1 << 0,
1260 /* do get_page on page */
1261 FOLL_GET = 1 << 1,
1262 /* give error on hole if it would be zero */
1263 FOLL_DUMP = 1 << 2,
1264 /* get_user_pages read/write w/o permission */
1265 FOLL_FORCE = 1 << 3,
1266 /*
1267 * if a disk transfer is needed, start the IO and return without waiting
1268 * upon it
1269 */
1270 FOLL_NOWAIT = 1 << 4,
1271 /* do not fault in pages */
1272 FOLL_NOFAULT = 1 << 5,
1273 /* check page is hwpoisoned */
1274 FOLL_HWPOISON = 1 << 6,
1275 /* don't do file mappings */
1276 FOLL_ANON = 1 << 7,
1277 /*
1278 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1279 * time period _often_ under userspace control. This is in contrast to
1280 * iov_iter_get_pages(), whose usages are transient.
1281 */
1282 FOLL_LONGTERM = 1 << 8,
1283 /* split huge pmd before returning */
1284 FOLL_SPLIT_PMD = 1 << 9,
1285 /* allow returning PCI P2PDMA pages */
1286 FOLL_PCI_P2PDMA = 1 << 10,
1287 /* allow interrupts from generic signals */
1288 FOLL_INTERRUPTIBLE = 1 << 11,
1289 /*
1290 * Always honor (trigger) NUMA hinting faults.
1291 *
1292 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1293 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1294 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1295 * hinting faults.
1296 */
1297 FOLL_HONOR_NUMA_FAULT = 1 << 12,
1298
1299 /* See also internal only FOLL flags in mm/internal.h */
1300};
1301
1302#endif /* _LINUX_MM_TYPES_H */