at v6.5 41 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/kref.h> 9#include <linux/list.h> 10#include <linux/spinlock.h> 11#include <linux/rbtree.h> 12#include <linux/maple_tree.h> 13#include <linux/rwsem.h> 14#include <linux/completion.h> 15#include <linux/cpumask.h> 16#include <linux/uprobes.h> 17#include <linux/rcupdate.h> 18#include <linux/page-flags-layout.h> 19#include <linux/workqueue.h> 20#include <linux/seqlock.h> 21#include <linux/percpu_counter.h> 22 23#include <asm/mmu.h> 24 25#ifndef AT_VECTOR_SIZE_ARCH 26#define AT_VECTOR_SIZE_ARCH 0 27#endif 28#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 29 30#define INIT_PASID 0 31 32struct address_space; 33struct mem_cgroup; 34 35/* 36 * Each physical page in the system has a struct page associated with 37 * it to keep track of whatever it is we are using the page for at the 38 * moment. Note that we have no way to track which tasks are using 39 * a page, though if it is a pagecache page, rmap structures can tell us 40 * who is mapping it. 41 * 42 * If you allocate the page using alloc_pages(), you can use some of the 43 * space in struct page for your own purposes. The five words in the main 44 * union are available, except for bit 0 of the first word which must be 45 * kept clear. Many users use this word to store a pointer to an object 46 * which is guaranteed to be aligned. If you use the same storage as 47 * page->mapping, you must restore it to NULL before freeing the page. 48 * 49 * If your page will not be mapped to userspace, you can also use the four 50 * bytes in the mapcount union, but you must call page_mapcount_reset() 51 * before freeing it. 52 * 53 * If you want to use the refcount field, it must be used in such a way 54 * that other CPUs temporarily incrementing and then decrementing the 55 * refcount does not cause problems. On receiving the page from 56 * alloc_pages(), the refcount will be positive. 57 * 58 * If you allocate pages of order > 0, you can use some of the fields 59 * in each subpage, but you may need to restore some of their values 60 * afterwards. 61 * 62 * SLUB uses cmpxchg_double() to atomically update its freelist and counters. 63 * That requires that freelist & counters in struct slab be adjacent and 64 * double-word aligned. Because struct slab currently just reinterprets the 65 * bits of struct page, we align all struct pages to double-word boundaries, 66 * and ensure that 'freelist' is aligned within struct slab. 67 */ 68#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 69#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 70#else 71#define _struct_page_alignment __aligned(sizeof(unsigned long)) 72#endif 73 74struct page { 75 unsigned long flags; /* Atomic flags, some possibly 76 * updated asynchronously */ 77 /* 78 * Five words (20/40 bytes) are available in this union. 79 * WARNING: bit 0 of the first word is used for PageTail(). That 80 * means the other users of this union MUST NOT use the bit to 81 * avoid collision and false-positive PageTail(). 82 */ 83 union { 84 struct { /* Page cache and anonymous pages */ 85 /** 86 * @lru: Pageout list, eg. active_list protected by 87 * lruvec->lru_lock. Sometimes used as a generic list 88 * by the page owner. 89 */ 90 union { 91 struct list_head lru; 92 93 /* Or, for the Unevictable "LRU list" slot */ 94 struct { 95 /* Always even, to negate PageTail */ 96 void *__filler; 97 /* Count page's or folio's mlocks */ 98 unsigned int mlock_count; 99 }; 100 101 /* Or, free page */ 102 struct list_head buddy_list; 103 struct list_head pcp_list; 104 }; 105 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 106 struct address_space *mapping; 107 union { 108 pgoff_t index; /* Our offset within mapping. */ 109 unsigned long share; /* share count for fsdax */ 110 }; 111 /** 112 * @private: Mapping-private opaque data. 113 * Usually used for buffer_heads if PagePrivate. 114 * Used for swp_entry_t if PageSwapCache. 115 * Indicates order in the buddy system if PageBuddy. 116 */ 117 unsigned long private; 118 }; 119 struct { /* page_pool used by netstack */ 120 /** 121 * @pp_magic: magic value to avoid recycling non 122 * page_pool allocated pages. 123 */ 124 unsigned long pp_magic; 125 struct page_pool *pp; 126 unsigned long _pp_mapping_pad; 127 unsigned long dma_addr; 128 union { 129 /** 130 * dma_addr_upper: might require a 64-bit 131 * value on 32-bit architectures. 132 */ 133 unsigned long dma_addr_upper; 134 /** 135 * For frag page support, not supported in 136 * 32-bit architectures with 64-bit DMA. 137 */ 138 atomic_long_t pp_frag_count; 139 }; 140 }; 141 struct { /* Tail pages of compound page */ 142 unsigned long compound_head; /* Bit zero is set */ 143 }; 144 struct { /* Page table pages */ 145 unsigned long _pt_pad_1; /* compound_head */ 146 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 147 unsigned long _pt_pad_2; /* mapping */ 148 union { 149 struct mm_struct *pt_mm; /* x86 pgds only */ 150 atomic_t pt_frag_refcount; /* powerpc */ 151 }; 152#if ALLOC_SPLIT_PTLOCKS 153 spinlock_t *ptl; 154#else 155 spinlock_t ptl; 156#endif 157 }; 158 struct { /* ZONE_DEVICE pages */ 159 /** @pgmap: Points to the hosting device page map. */ 160 struct dev_pagemap *pgmap; 161 void *zone_device_data; 162 /* 163 * ZONE_DEVICE private pages are counted as being 164 * mapped so the next 3 words hold the mapping, index, 165 * and private fields from the source anonymous or 166 * page cache page while the page is migrated to device 167 * private memory. 168 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 169 * use the mapping, index, and private fields when 170 * pmem backed DAX files are mapped. 171 */ 172 }; 173 174 /** @rcu_head: You can use this to free a page by RCU. */ 175 struct rcu_head rcu_head; 176 }; 177 178 union { /* This union is 4 bytes in size. */ 179 /* 180 * If the page can be mapped to userspace, encodes the number 181 * of times this page is referenced by a page table. 182 */ 183 atomic_t _mapcount; 184 185 /* 186 * If the page is neither PageSlab nor mappable to userspace, 187 * the value stored here may help determine what this page 188 * is used for. See page-flags.h for a list of page types 189 * which are currently stored here. 190 */ 191 unsigned int page_type; 192 }; 193 194 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 195 atomic_t _refcount; 196 197#ifdef CONFIG_MEMCG 198 unsigned long memcg_data; 199#endif 200 201 /* 202 * On machines where all RAM is mapped into kernel address space, 203 * we can simply calculate the virtual address. On machines with 204 * highmem some memory is mapped into kernel virtual memory 205 * dynamically, so we need a place to store that address. 206 * Note that this field could be 16 bits on x86 ... ;) 207 * 208 * Architectures with slow multiplication can define 209 * WANT_PAGE_VIRTUAL in asm/page.h 210 */ 211#if defined(WANT_PAGE_VIRTUAL) 212 void *virtual; /* Kernel virtual address (NULL if 213 not kmapped, ie. highmem) */ 214#endif /* WANT_PAGE_VIRTUAL */ 215 216#ifdef CONFIG_KMSAN 217 /* 218 * KMSAN metadata for this page: 219 * - shadow page: every bit indicates whether the corresponding 220 * bit of the original page is initialized (0) or not (1); 221 * - origin page: every 4 bytes contain an id of the stack trace 222 * where the uninitialized value was created. 223 */ 224 struct page *kmsan_shadow; 225 struct page *kmsan_origin; 226#endif 227 228#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 229 int _last_cpupid; 230#endif 231} _struct_page_alignment; 232 233/* 234 * struct encoded_page - a nonexistent type marking this pointer 235 * 236 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but 237 * with the low bits of the pointer indicating extra context-dependent 238 * information. Not super-common, but happens in mmu_gather and mlock 239 * handling, and this acts as a type system check on that use. 240 * 241 * We only really have two guaranteed bits in general, although you could 242 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 243 * for more. 244 * 245 * Use the supplied helper functions to endcode/decode the pointer and bits. 246 */ 247struct encoded_page; 248#define ENCODE_PAGE_BITS 3ul 249static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags) 250{ 251 BUILD_BUG_ON(flags > ENCODE_PAGE_BITS); 252 return (struct encoded_page *)(flags | (unsigned long)page); 253} 254 255static inline unsigned long encoded_page_flags(struct encoded_page *page) 256{ 257 return ENCODE_PAGE_BITS & (unsigned long)page; 258} 259 260static inline struct page *encoded_page_ptr(struct encoded_page *page) 261{ 262 return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page); 263} 264 265/** 266 * struct folio - Represents a contiguous set of bytes. 267 * @flags: Identical to the page flags. 268 * @lru: Least Recently Used list; tracks how recently this folio was used. 269 * @mlock_count: Number of times this folio has been pinned by mlock(). 270 * @mapping: The file this page belongs to, or refers to the anon_vma for 271 * anonymous memory. 272 * @index: Offset within the file, in units of pages. For anonymous memory, 273 * this is the index from the beginning of the mmap. 274 * @private: Filesystem per-folio data (see folio_attach_private()). 275 * Used for swp_entry_t if folio_test_swapcache(). 276 * @_mapcount: Do not access this member directly. Use folio_mapcount() to 277 * find out how many times this folio is mapped by userspace. 278 * @_refcount: Do not access this member directly. Use folio_ref_count() 279 * to find how many references there are to this folio. 280 * @memcg_data: Memory Control Group data. 281 * @_folio_dtor: Which destructor to use for this folio. 282 * @_folio_order: Do not use directly, call folio_order(). 283 * @_entire_mapcount: Do not use directly, call folio_entire_mapcount(). 284 * @_nr_pages_mapped: Do not use directly, call folio_mapcount(). 285 * @_pincount: Do not use directly, call folio_maybe_dma_pinned(). 286 * @_folio_nr_pages: Do not use directly, call folio_nr_pages(). 287 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h. 288 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h. 289 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h. 290 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head(). 291 * @_deferred_list: Folios to be split under memory pressure. 292 * 293 * A folio is a physically, virtually and logically contiguous set 294 * of bytes. It is a power-of-two in size, and it is aligned to that 295 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is 296 * in the page cache, it is at a file offset which is a multiple of that 297 * power-of-two. It may be mapped into userspace at an address which is 298 * at an arbitrary page offset, but its kernel virtual address is aligned 299 * to its size. 300 */ 301struct folio { 302 /* private: don't document the anon union */ 303 union { 304 struct { 305 /* public: */ 306 unsigned long flags; 307 union { 308 struct list_head lru; 309 /* private: avoid cluttering the output */ 310 struct { 311 void *__filler; 312 /* public: */ 313 unsigned int mlock_count; 314 /* private: */ 315 }; 316 /* public: */ 317 }; 318 struct address_space *mapping; 319 pgoff_t index; 320 void *private; 321 atomic_t _mapcount; 322 atomic_t _refcount; 323#ifdef CONFIG_MEMCG 324 unsigned long memcg_data; 325#endif 326 /* private: the union with struct page is transitional */ 327 }; 328 struct page page; 329 }; 330 union { 331 struct { 332 unsigned long _flags_1; 333 unsigned long _head_1; 334 /* public: */ 335 unsigned char _folio_dtor; 336 unsigned char _folio_order; 337 atomic_t _entire_mapcount; 338 atomic_t _nr_pages_mapped; 339 atomic_t _pincount; 340#ifdef CONFIG_64BIT 341 unsigned int _folio_nr_pages; 342#endif 343 /* private: the union with struct page is transitional */ 344 }; 345 struct page __page_1; 346 }; 347 union { 348 struct { 349 unsigned long _flags_2; 350 unsigned long _head_2; 351 /* public: */ 352 void *_hugetlb_subpool; 353 void *_hugetlb_cgroup; 354 void *_hugetlb_cgroup_rsvd; 355 void *_hugetlb_hwpoison; 356 /* private: the union with struct page is transitional */ 357 }; 358 struct { 359 unsigned long _flags_2a; 360 unsigned long _head_2a; 361 /* public: */ 362 struct list_head _deferred_list; 363 /* private: the union with struct page is transitional */ 364 }; 365 struct page __page_2; 366 }; 367}; 368 369#define FOLIO_MATCH(pg, fl) \ 370 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl)) 371FOLIO_MATCH(flags, flags); 372FOLIO_MATCH(lru, lru); 373FOLIO_MATCH(mapping, mapping); 374FOLIO_MATCH(compound_head, lru); 375FOLIO_MATCH(index, index); 376FOLIO_MATCH(private, private); 377FOLIO_MATCH(_mapcount, _mapcount); 378FOLIO_MATCH(_refcount, _refcount); 379#ifdef CONFIG_MEMCG 380FOLIO_MATCH(memcg_data, memcg_data); 381#endif 382#undef FOLIO_MATCH 383#define FOLIO_MATCH(pg, fl) \ 384 static_assert(offsetof(struct folio, fl) == \ 385 offsetof(struct page, pg) + sizeof(struct page)) 386FOLIO_MATCH(flags, _flags_1); 387FOLIO_MATCH(compound_head, _head_1); 388#undef FOLIO_MATCH 389#define FOLIO_MATCH(pg, fl) \ 390 static_assert(offsetof(struct folio, fl) == \ 391 offsetof(struct page, pg) + 2 * sizeof(struct page)) 392FOLIO_MATCH(flags, _flags_2); 393FOLIO_MATCH(compound_head, _head_2); 394#undef FOLIO_MATCH 395 396/* 397 * Used for sizing the vmemmap region on some architectures 398 */ 399#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 400 401#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 402#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 403 404/* 405 * page_private can be used on tail pages. However, PagePrivate is only 406 * checked by the VM on the head page. So page_private on the tail pages 407 * should be used for data that's ancillary to the head page (eg attaching 408 * buffer heads to tail pages after attaching buffer heads to the head page) 409 */ 410#define page_private(page) ((page)->private) 411 412static inline void set_page_private(struct page *page, unsigned long private) 413{ 414 page->private = private; 415} 416 417static inline void *folio_get_private(struct folio *folio) 418{ 419 return folio->private; 420} 421 422struct page_frag_cache { 423 void * va; 424#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 425 __u16 offset; 426 __u16 size; 427#else 428 __u32 offset; 429#endif 430 /* we maintain a pagecount bias, so that we dont dirty cache line 431 * containing page->_refcount every time we allocate a fragment. 432 */ 433 unsigned int pagecnt_bias; 434 bool pfmemalloc; 435}; 436 437typedef unsigned long vm_flags_t; 438 439/* 440 * A region containing a mapping of a non-memory backed file under NOMMU 441 * conditions. These are held in a global tree and are pinned by the VMAs that 442 * map parts of them. 443 */ 444struct vm_region { 445 struct rb_node vm_rb; /* link in global region tree */ 446 vm_flags_t vm_flags; /* VMA vm_flags */ 447 unsigned long vm_start; /* start address of region */ 448 unsigned long vm_end; /* region initialised to here */ 449 unsigned long vm_top; /* region allocated to here */ 450 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 451 struct file *vm_file; /* the backing file or NULL */ 452 453 int vm_usage; /* region usage count (access under nommu_region_sem) */ 454 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 455 * this region */ 456}; 457 458#ifdef CONFIG_USERFAULTFD 459#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 460struct vm_userfaultfd_ctx { 461 struct userfaultfd_ctx *ctx; 462}; 463#else /* CONFIG_USERFAULTFD */ 464#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 465struct vm_userfaultfd_ctx {}; 466#endif /* CONFIG_USERFAULTFD */ 467 468struct anon_vma_name { 469 struct kref kref; 470 /* The name needs to be at the end because it is dynamically sized. */ 471 char name[]; 472}; 473 474struct vma_lock { 475 struct rw_semaphore lock; 476}; 477 478struct vma_numab_state { 479 unsigned long next_scan; 480 unsigned long next_pid_reset; 481 unsigned long access_pids[2]; 482}; 483 484/* 485 * This struct describes a virtual memory area. There is one of these 486 * per VM-area/task. A VM area is any part of the process virtual memory 487 * space that has a special rule for the page-fault handlers (ie a shared 488 * library, the executable area etc). 489 */ 490struct vm_area_struct { 491 /* The first cache line has the info for VMA tree walking. */ 492 493 union { 494 struct { 495 /* VMA covers [vm_start; vm_end) addresses within mm */ 496 unsigned long vm_start; 497 unsigned long vm_end; 498 }; 499#ifdef CONFIG_PER_VMA_LOCK 500 struct rcu_head vm_rcu; /* Used for deferred freeing. */ 501#endif 502 }; 503 504 struct mm_struct *vm_mm; /* The address space we belong to. */ 505 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 506 507 /* 508 * Flags, see mm.h. 509 * To modify use vm_flags_{init|reset|set|clear|mod} functions. 510 */ 511 union { 512 const vm_flags_t vm_flags; 513 vm_flags_t __private __vm_flags; 514 }; 515 516#ifdef CONFIG_PER_VMA_LOCK 517 /* 518 * Can only be written (using WRITE_ONCE()) while holding both: 519 * - mmap_lock (in write mode) 520 * - vm_lock->lock (in write mode) 521 * Can be read reliably while holding one of: 522 * - mmap_lock (in read or write mode) 523 * - vm_lock->lock (in read or write mode) 524 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout 525 * while holding nothing (except RCU to keep the VMA struct allocated). 526 * 527 * This sequence counter is explicitly allowed to overflow; sequence 528 * counter reuse can only lead to occasional unnecessary use of the 529 * slowpath. 530 */ 531 int vm_lock_seq; 532 struct vma_lock *vm_lock; 533 534 /* Flag to indicate areas detached from the mm->mm_mt tree */ 535 bool detached; 536#endif 537 538 /* 539 * For areas with an address space and backing store, 540 * linkage into the address_space->i_mmap interval tree. 541 * 542 */ 543 struct { 544 struct rb_node rb; 545 unsigned long rb_subtree_last; 546 } shared; 547 548 /* 549 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 550 * list, after a COW of one of the file pages. A MAP_SHARED vma 551 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 552 * or brk vma (with NULL file) can only be in an anon_vma list. 553 */ 554 struct list_head anon_vma_chain; /* Serialized by mmap_lock & 555 * page_table_lock */ 556 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 557 558 /* Function pointers to deal with this struct. */ 559 const struct vm_operations_struct *vm_ops; 560 561 /* Information about our backing store: */ 562 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 563 units */ 564 struct file * vm_file; /* File we map to (can be NULL). */ 565 void * vm_private_data; /* was vm_pte (shared mem) */ 566 567#ifdef CONFIG_ANON_VMA_NAME 568 /* 569 * For private and shared anonymous mappings, a pointer to a null 570 * terminated string containing the name given to the vma, or NULL if 571 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access. 572 */ 573 struct anon_vma_name *anon_name; 574#endif 575#ifdef CONFIG_SWAP 576 atomic_long_t swap_readahead_info; 577#endif 578#ifndef CONFIG_MMU 579 struct vm_region *vm_region; /* NOMMU mapping region */ 580#endif 581#ifdef CONFIG_NUMA 582 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 583#endif 584#ifdef CONFIG_NUMA_BALANCING 585 struct vma_numab_state *numab_state; /* NUMA Balancing state */ 586#endif 587 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 588} __randomize_layout; 589 590#ifdef CONFIG_SCHED_MM_CID 591struct mm_cid { 592 u64 time; 593 int cid; 594}; 595#endif 596 597struct kioctx_table; 598struct mm_struct { 599 struct { 600 /* 601 * Fields which are often written to are placed in a separate 602 * cache line. 603 */ 604 struct { 605 /** 606 * @mm_count: The number of references to &struct 607 * mm_struct (@mm_users count as 1). 608 * 609 * Use mmgrab()/mmdrop() to modify. When this drops to 610 * 0, the &struct mm_struct is freed. 611 */ 612 atomic_t mm_count; 613 } ____cacheline_aligned_in_smp; 614 615 struct maple_tree mm_mt; 616#ifdef CONFIG_MMU 617 unsigned long (*get_unmapped_area) (struct file *filp, 618 unsigned long addr, unsigned long len, 619 unsigned long pgoff, unsigned long flags); 620#endif 621 unsigned long mmap_base; /* base of mmap area */ 622 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 623#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 624 /* Base addresses for compatible mmap() */ 625 unsigned long mmap_compat_base; 626 unsigned long mmap_compat_legacy_base; 627#endif 628 unsigned long task_size; /* size of task vm space */ 629 pgd_t * pgd; 630 631#ifdef CONFIG_MEMBARRIER 632 /** 633 * @membarrier_state: Flags controlling membarrier behavior. 634 * 635 * This field is close to @pgd to hopefully fit in the same 636 * cache-line, which needs to be touched by switch_mm(). 637 */ 638 atomic_t membarrier_state; 639#endif 640 641 /** 642 * @mm_users: The number of users including userspace. 643 * 644 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 645 * drops to 0 (i.e. when the task exits and there are no other 646 * temporary reference holders), we also release a reference on 647 * @mm_count (which may then free the &struct mm_struct if 648 * @mm_count also drops to 0). 649 */ 650 atomic_t mm_users; 651 652#ifdef CONFIG_SCHED_MM_CID 653 /** 654 * @pcpu_cid: Per-cpu current cid. 655 * 656 * Keep track of the currently allocated mm_cid for each cpu. 657 * The per-cpu mm_cid values are serialized by their respective 658 * runqueue locks. 659 */ 660 struct mm_cid __percpu *pcpu_cid; 661 /* 662 * @mm_cid_next_scan: Next mm_cid scan (in jiffies). 663 * 664 * When the next mm_cid scan is due (in jiffies). 665 */ 666 unsigned long mm_cid_next_scan; 667#endif 668#ifdef CONFIG_MMU 669 atomic_long_t pgtables_bytes; /* size of all page tables */ 670#endif 671 int map_count; /* number of VMAs */ 672 673 spinlock_t page_table_lock; /* Protects page tables and some 674 * counters 675 */ 676 /* 677 * With some kernel config, the current mmap_lock's offset 678 * inside 'mm_struct' is at 0x120, which is very optimal, as 679 * its two hot fields 'count' and 'owner' sit in 2 different 680 * cachelines, and when mmap_lock is highly contended, both 681 * of the 2 fields will be accessed frequently, current layout 682 * will help to reduce cache bouncing. 683 * 684 * So please be careful with adding new fields before 685 * mmap_lock, which can easily push the 2 fields into one 686 * cacheline. 687 */ 688 struct rw_semaphore mmap_lock; 689 690 struct list_head mmlist; /* List of maybe swapped mm's. These 691 * are globally strung together off 692 * init_mm.mmlist, and are protected 693 * by mmlist_lock 694 */ 695#ifdef CONFIG_PER_VMA_LOCK 696 /* 697 * This field has lock-like semantics, meaning it is sometimes 698 * accessed with ACQUIRE/RELEASE semantics. 699 * Roughly speaking, incrementing the sequence number is 700 * equivalent to releasing locks on VMAs; reading the sequence 701 * number can be part of taking a read lock on a VMA. 702 * 703 * Can be modified under write mmap_lock using RELEASE 704 * semantics. 705 * Can be read with no other protection when holding write 706 * mmap_lock. 707 * Can be read with ACQUIRE semantics if not holding write 708 * mmap_lock. 709 */ 710 int mm_lock_seq; 711#endif 712 713 714 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 715 unsigned long hiwater_vm; /* High-water virtual memory usage */ 716 717 unsigned long total_vm; /* Total pages mapped */ 718 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 719 atomic64_t pinned_vm; /* Refcount permanently increased */ 720 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 721 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 722 unsigned long stack_vm; /* VM_STACK */ 723 unsigned long def_flags; 724 725 /** 726 * @write_protect_seq: Locked when any thread is write 727 * protecting pages mapped by this mm to enforce a later COW, 728 * for instance during page table copying for fork(). 729 */ 730 seqcount_t write_protect_seq; 731 732 spinlock_t arg_lock; /* protect the below fields */ 733 734 unsigned long start_code, end_code, start_data, end_data; 735 unsigned long start_brk, brk, start_stack; 736 unsigned long arg_start, arg_end, env_start, env_end; 737 738 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 739 740 struct percpu_counter rss_stat[NR_MM_COUNTERS]; 741 742 struct linux_binfmt *binfmt; 743 744 /* Architecture-specific MM context */ 745 mm_context_t context; 746 747 unsigned long flags; /* Must use atomic bitops to access */ 748 749#ifdef CONFIG_AIO 750 spinlock_t ioctx_lock; 751 struct kioctx_table __rcu *ioctx_table; 752#endif 753#ifdef CONFIG_MEMCG 754 /* 755 * "owner" points to a task that is regarded as the canonical 756 * user/owner of this mm. All of the following must be true in 757 * order for it to be changed: 758 * 759 * current == mm->owner 760 * current->mm != mm 761 * new_owner->mm == mm 762 * new_owner->alloc_lock is held 763 */ 764 struct task_struct __rcu *owner; 765#endif 766 struct user_namespace *user_ns; 767 768 /* store ref to file /proc/<pid>/exe symlink points to */ 769 struct file __rcu *exe_file; 770#ifdef CONFIG_MMU_NOTIFIER 771 struct mmu_notifier_subscriptions *notifier_subscriptions; 772#endif 773#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 774 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 775#endif 776#ifdef CONFIG_NUMA_BALANCING 777 /* 778 * numa_next_scan is the next time that PTEs will be remapped 779 * PROT_NONE to trigger NUMA hinting faults; such faults gather 780 * statistics and migrate pages to new nodes if necessary. 781 */ 782 unsigned long numa_next_scan; 783 784 /* Restart point for scanning and remapping PTEs. */ 785 unsigned long numa_scan_offset; 786 787 /* numa_scan_seq prevents two threads remapping PTEs. */ 788 int numa_scan_seq; 789#endif 790 /* 791 * An operation with batched TLB flushing is going on. Anything 792 * that can move process memory needs to flush the TLB when 793 * moving a PROT_NONE mapped page. 794 */ 795 atomic_t tlb_flush_pending; 796#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 797 /* See flush_tlb_batched_pending() */ 798 atomic_t tlb_flush_batched; 799#endif 800 struct uprobes_state uprobes_state; 801#ifdef CONFIG_PREEMPT_RT 802 struct rcu_head delayed_drop; 803#endif 804#ifdef CONFIG_HUGETLB_PAGE 805 atomic_long_t hugetlb_usage; 806#endif 807 struct work_struct async_put_work; 808 809#ifdef CONFIG_IOMMU_SVA 810 u32 pasid; 811#endif 812#ifdef CONFIG_KSM 813 /* 814 * Represent how many pages of this process are involved in KSM 815 * merging. 816 */ 817 unsigned long ksm_merging_pages; 818 /* 819 * Represent how many pages are checked for ksm merging 820 * including merged and not merged. 821 */ 822 unsigned long ksm_rmap_items; 823#endif 824#ifdef CONFIG_LRU_GEN 825 struct { 826 /* this mm_struct is on lru_gen_mm_list */ 827 struct list_head list; 828 /* 829 * Set when switching to this mm_struct, as a hint of 830 * whether it has been used since the last time per-node 831 * page table walkers cleared the corresponding bits. 832 */ 833 unsigned long bitmap; 834#ifdef CONFIG_MEMCG 835 /* points to the memcg of "owner" above */ 836 struct mem_cgroup *memcg; 837#endif 838 } lru_gen; 839#endif /* CONFIG_LRU_GEN */ 840 } __randomize_layout; 841 842 /* 843 * The mm_cpumask needs to be at the end of mm_struct, because it 844 * is dynamically sized based on nr_cpu_ids. 845 */ 846 unsigned long cpu_bitmap[]; 847}; 848 849#define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \ 850 MT_FLAGS_USE_RCU) 851extern struct mm_struct init_mm; 852 853/* Pointer magic because the dynamic array size confuses some compilers. */ 854static inline void mm_init_cpumask(struct mm_struct *mm) 855{ 856 unsigned long cpu_bitmap = (unsigned long)mm; 857 858 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 859 cpumask_clear((struct cpumask *)cpu_bitmap); 860} 861 862/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 863static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 864{ 865 return (struct cpumask *)&mm->cpu_bitmap; 866} 867 868#ifdef CONFIG_LRU_GEN 869 870struct lru_gen_mm_list { 871 /* mm_struct list for page table walkers */ 872 struct list_head fifo; 873 /* protects the list above */ 874 spinlock_t lock; 875}; 876 877void lru_gen_add_mm(struct mm_struct *mm); 878void lru_gen_del_mm(struct mm_struct *mm); 879#ifdef CONFIG_MEMCG 880void lru_gen_migrate_mm(struct mm_struct *mm); 881#endif 882 883static inline void lru_gen_init_mm(struct mm_struct *mm) 884{ 885 INIT_LIST_HEAD(&mm->lru_gen.list); 886 mm->lru_gen.bitmap = 0; 887#ifdef CONFIG_MEMCG 888 mm->lru_gen.memcg = NULL; 889#endif 890} 891 892static inline void lru_gen_use_mm(struct mm_struct *mm) 893{ 894 /* 895 * When the bitmap is set, page reclaim knows this mm_struct has been 896 * used since the last time it cleared the bitmap. So it might be worth 897 * walking the page tables of this mm_struct to clear the accessed bit. 898 */ 899 WRITE_ONCE(mm->lru_gen.bitmap, -1); 900} 901 902#else /* !CONFIG_LRU_GEN */ 903 904static inline void lru_gen_add_mm(struct mm_struct *mm) 905{ 906} 907 908static inline void lru_gen_del_mm(struct mm_struct *mm) 909{ 910} 911 912#ifdef CONFIG_MEMCG 913static inline void lru_gen_migrate_mm(struct mm_struct *mm) 914{ 915} 916#endif 917 918static inline void lru_gen_init_mm(struct mm_struct *mm) 919{ 920} 921 922static inline void lru_gen_use_mm(struct mm_struct *mm) 923{ 924} 925 926#endif /* CONFIG_LRU_GEN */ 927 928struct vma_iterator { 929 struct ma_state mas; 930}; 931 932#define VMA_ITERATOR(name, __mm, __addr) \ 933 struct vma_iterator name = { \ 934 .mas = { \ 935 .tree = &(__mm)->mm_mt, \ 936 .index = __addr, \ 937 .node = MAS_START, \ 938 }, \ 939 } 940 941static inline void vma_iter_init(struct vma_iterator *vmi, 942 struct mm_struct *mm, unsigned long addr) 943{ 944 mas_init(&vmi->mas, &mm->mm_mt, addr); 945} 946 947#ifdef CONFIG_SCHED_MM_CID 948 949enum mm_cid_state { 950 MM_CID_UNSET = -1U, /* Unset state has lazy_put flag set. */ 951 MM_CID_LAZY_PUT = (1U << 31), 952}; 953 954static inline bool mm_cid_is_unset(int cid) 955{ 956 return cid == MM_CID_UNSET; 957} 958 959static inline bool mm_cid_is_lazy_put(int cid) 960{ 961 return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT); 962} 963 964static inline bool mm_cid_is_valid(int cid) 965{ 966 return !(cid & MM_CID_LAZY_PUT); 967} 968 969static inline int mm_cid_set_lazy_put(int cid) 970{ 971 return cid | MM_CID_LAZY_PUT; 972} 973 974static inline int mm_cid_clear_lazy_put(int cid) 975{ 976 return cid & ~MM_CID_LAZY_PUT; 977} 978 979/* Accessor for struct mm_struct's cidmask. */ 980static inline cpumask_t *mm_cidmask(struct mm_struct *mm) 981{ 982 unsigned long cid_bitmap = (unsigned long)mm; 983 984 cid_bitmap += offsetof(struct mm_struct, cpu_bitmap); 985 /* Skip cpu_bitmap */ 986 cid_bitmap += cpumask_size(); 987 return (struct cpumask *)cid_bitmap; 988} 989 990static inline void mm_init_cid(struct mm_struct *mm) 991{ 992 int i; 993 994 for_each_possible_cpu(i) { 995 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i); 996 997 pcpu_cid->cid = MM_CID_UNSET; 998 pcpu_cid->time = 0; 999 } 1000 cpumask_clear(mm_cidmask(mm)); 1001} 1002 1003static inline int mm_alloc_cid(struct mm_struct *mm) 1004{ 1005 mm->pcpu_cid = alloc_percpu(struct mm_cid); 1006 if (!mm->pcpu_cid) 1007 return -ENOMEM; 1008 mm_init_cid(mm); 1009 return 0; 1010} 1011 1012static inline void mm_destroy_cid(struct mm_struct *mm) 1013{ 1014 free_percpu(mm->pcpu_cid); 1015 mm->pcpu_cid = NULL; 1016} 1017 1018static inline unsigned int mm_cid_size(void) 1019{ 1020 return cpumask_size(); 1021} 1022#else /* CONFIG_SCHED_MM_CID */ 1023static inline void mm_init_cid(struct mm_struct *mm) { } 1024static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; } 1025static inline void mm_destroy_cid(struct mm_struct *mm) { } 1026static inline unsigned int mm_cid_size(void) 1027{ 1028 return 0; 1029} 1030#endif /* CONFIG_SCHED_MM_CID */ 1031 1032struct mmu_gather; 1033extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm); 1034extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm); 1035extern void tlb_finish_mmu(struct mmu_gather *tlb); 1036 1037struct vm_fault; 1038 1039/** 1040 * typedef vm_fault_t - Return type for page fault handlers. 1041 * 1042 * Page fault handlers return a bitmask of %VM_FAULT values. 1043 */ 1044typedef __bitwise unsigned int vm_fault_t; 1045 1046/** 1047 * enum vm_fault_reason - Page fault handlers return a bitmask of 1048 * these values to tell the core VM what happened when handling the 1049 * fault. Used to decide whether a process gets delivered SIGBUS or 1050 * just gets major/minor fault counters bumped up. 1051 * 1052 * @VM_FAULT_OOM: Out Of Memory 1053 * @VM_FAULT_SIGBUS: Bad access 1054 * @VM_FAULT_MAJOR: Page read from storage 1055 * @VM_FAULT_HWPOISON: Hit poisoned small page 1056 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 1057 * in upper bits 1058 * @VM_FAULT_SIGSEGV: segmentation fault 1059 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 1060 * @VM_FAULT_LOCKED: ->fault locked the returned page 1061 * @VM_FAULT_RETRY: ->fault blocked, must retry 1062 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 1063 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 1064 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 1065 * fsync() to complete (for synchronous page faults 1066 * in DAX) 1067 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released 1068 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 1069 * 1070 */ 1071enum vm_fault_reason { 1072 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 1073 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 1074 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 1075 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 1076 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 1077 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 1078 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 1079 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 1080 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 1081 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 1082 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 1083 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 1084 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000, 1085 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 1086}; 1087 1088/* Encode hstate index for a hwpoisoned large page */ 1089#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 1090#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 1091 1092#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 1093 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 1094 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 1095 1096#define VM_FAULT_RESULT_TRACE \ 1097 { VM_FAULT_OOM, "OOM" }, \ 1098 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1099 { VM_FAULT_MAJOR, "MAJOR" }, \ 1100 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1101 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1102 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1103 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1104 { VM_FAULT_LOCKED, "LOCKED" }, \ 1105 { VM_FAULT_RETRY, "RETRY" }, \ 1106 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1107 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1108 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1109 1110struct vm_special_mapping { 1111 const char *name; /* The name, e.g. "[vdso]". */ 1112 1113 /* 1114 * If .fault is not provided, this points to a 1115 * NULL-terminated array of pages that back the special mapping. 1116 * 1117 * This must not be NULL unless .fault is provided. 1118 */ 1119 struct page **pages; 1120 1121 /* 1122 * If non-NULL, then this is called to resolve page faults 1123 * on the special mapping. If used, .pages is not checked. 1124 */ 1125 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 1126 struct vm_area_struct *vma, 1127 struct vm_fault *vmf); 1128 1129 int (*mremap)(const struct vm_special_mapping *sm, 1130 struct vm_area_struct *new_vma); 1131}; 1132 1133enum tlb_flush_reason { 1134 TLB_FLUSH_ON_TASK_SWITCH, 1135 TLB_REMOTE_SHOOTDOWN, 1136 TLB_LOCAL_SHOOTDOWN, 1137 TLB_LOCAL_MM_SHOOTDOWN, 1138 TLB_REMOTE_SEND_IPI, 1139 NR_TLB_FLUSH_REASONS, 1140}; 1141 1142 /* 1143 * A swap entry has to fit into a "unsigned long", as the entry is hidden 1144 * in the "index" field of the swapper address space. 1145 */ 1146typedef struct { 1147 unsigned long val; 1148} swp_entry_t; 1149 1150/** 1151 * enum fault_flag - Fault flag definitions. 1152 * @FAULT_FLAG_WRITE: Fault was a write fault. 1153 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 1154 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 1155 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 1156 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 1157 * @FAULT_FLAG_TRIED: The fault has been tried once. 1158 * @FAULT_FLAG_USER: The fault originated in userspace. 1159 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 1160 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 1161 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 1162 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a 1163 * COW mapping, making sure that an exclusive anon page is 1164 * mapped after the fault. 1165 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached. 1166 * We should only access orig_pte if this flag set. 1167 * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock. 1168 * 1169 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 1170 * whether we would allow page faults to retry by specifying these two 1171 * fault flags correctly. Currently there can be three legal combinations: 1172 * 1173 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 1174 * this is the first try 1175 * 1176 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 1177 * we've already tried at least once 1178 * 1179 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 1180 * 1181 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 1182 * be used. Note that page faults can be allowed to retry for multiple times, 1183 * in which case we'll have an initial fault with flags (a) then later on 1184 * continuous faults with flags (b). We should always try to detect pending 1185 * signals before a retry to make sure the continuous page faults can still be 1186 * interrupted if necessary. 1187 * 1188 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal. 1189 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when 1190 * applied to mappings that are not COW mappings. 1191 */ 1192enum fault_flag { 1193 FAULT_FLAG_WRITE = 1 << 0, 1194 FAULT_FLAG_MKWRITE = 1 << 1, 1195 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 1196 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 1197 FAULT_FLAG_KILLABLE = 1 << 4, 1198 FAULT_FLAG_TRIED = 1 << 5, 1199 FAULT_FLAG_USER = 1 << 6, 1200 FAULT_FLAG_REMOTE = 1 << 7, 1201 FAULT_FLAG_INSTRUCTION = 1 << 8, 1202 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 1203 FAULT_FLAG_UNSHARE = 1 << 10, 1204 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11, 1205 FAULT_FLAG_VMA_LOCK = 1 << 12, 1206}; 1207 1208typedef unsigned int __bitwise zap_flags_t; 1209 1210/* 1211 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 1212 * other. Here is what they mean, and how to use them: 1213 * 1214 * 1215 * FIXME: For pages which are part of a filesystem, mappings are subject to the 1216 * lifetime enforced by the filesystem and we need guarantees that longterm 1217 * users like RDMA and V4L2 only establish mappings which coordinate usage with 1218 * the filesystem. Ideas for this coordination include revoking the longterm 1219 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 1220 * added after the problem with filesystems was found FS DAX VMAs are 1221 * specifically failed. Filesystem pages are still subject to bugs and use of 1222 * FOLL_LONGTERM should be avoided on those pages. 1223 * 1224 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 1225 * that region. And so, CMA attempts to migrate the page before pinning, when 1226 * FOLL_LONGTERM is specified. 1227 * 1228 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 1229 * but an additional pin counting system) will be invoked. This is intended for 1230 * anything that gets a page reference and then touches page data (for example, 1231 * Direct IO). This lets the filesystem know that some non-file-system entity is 1232 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 1233 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 1234 * a call to unpin_user_page(). 1235 * 1236 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 1237 * and separate refcounting mechanisms, however, and that means that each has 1238 * its own acquire and release mechanisms: 1239 * 1240 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 1241 * 1242 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 1243 * 1244 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 1245 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 1246 * calls applied to them, and that's perfectly OK. This is a constraint on the 1247 * callers, not on the pages.) 1248 * 1249 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 1250 * directly by the caller. That's in order to help avoid mismatches when 1251 * releasing pages: get_user_pages*() pages must be released via put_page(), 1252 * while pin_user_pages*() pages must be released via unpin_user_page(). 1253 * 1254 * Please see Documentation/core-api/pin_user_pages.rst for more information. 1255 */ 1256 1257enum { 1258 /* check pte is writable */ 1259 FOLL_WRITE = 1 << 0, 1260 /* do get_page on page */ 1261 FOLL_GET = 1 << 1, 1262 /* give error on hole if it would be zero */ 1263 FOLL_DUMP = 1 << 2, 1264 /* get_user_pages read/write w/o permission */ 1265 FOLL_FORCE = 1 << 3, 1266 /* 1267 * if a disk transfer is needed, start the IO and return without waiting 1268 * upon it 1269 */ 1270 FOLL_NOWAIT = 1 << 4, 1271 /* do not fault in pages */ 1272 FOLL_NOFAULT = 1 << 5, 1273 /* check page is hwpoisoned */ 1274 FOLL_HWPOISON = 1 << 6, 1275 /* don't do file mappings */ 1276 FOLL_ANON = 1 << 7, 1277 /* 1278 * FOLL_LONGTERM indicates that the page will be held for an indefinite 1279 * time period _often_ under userspace control. This is in contrast to 1280 * iov_iter_get_pages(), whose usages are transient. 1281 */ 1282 FOLL_LONGTERM = 1 << 8, 1283 /* split huge pmd before returning */ 1284 FOLL_SPLIT_PMD = 1 << 9, 1285 /* allow returning PCI P2PDMA pages */ 1286 FOLL_PCI_P2PDMA = 1 << 10, 1287 /* allow interrupts from generic signals */ 1288 FOLL_INTERRUPTIBLE = 1 << 11, 1289 /* 1290 * Always honor (trigger) NUMA hinting faults. 1291 * 1292 * FOLL_WRITE implicitly honors NUMA hinting faults because a 1293 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE 1294 * apply). get_user_pages_fast_only() always implicitly honors NUMA 1295 * hinting faults. 1296 */ 1297 FOLL_HONOR_NUMA_FAULT = 1 << 12, 1298 1299 /* See also internal only FOLL flags in mm/internal.h */ 1300}; 1301 1302#endif /* _LINUX_MM_TYPES_H */