at v6.5 121 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/bug.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/atomic.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15#include <linux/mmap_lock.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/percpu-refcount.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21#include <linux/resource.h> 22#include <linux/page_ext.h> 23#include <linux/err.h> 24#include <linux/page-flags.h> 25#include <linux/page_ref.h> 26#include <linux/overflow.h> 27#include <linux/sizes.h> 28#include <linux/sched.h> 29#include <linux/pgtable.h> 30#include <linux/kasan.h> 31#include <linux/memremap.h> 32#include <linux/slab.h> 33 34struct mempolicy; 35struct anon_vma; 36struct anon_vma_chain; 37struct user_struct; 38struct pt_regs; 39 40extern int sysctl_page_lock_unfairness; 41 42void mm_core_init(void); 43void init_mm_internals(void); 44 45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 46extern unsigned long max_mapnr; 47 48static inline void set_max_mapnr(unsigned long limit) 49{ 50 max_mapnr = limit; 51} 52#else 53static inline void set_max_mapnr(unsigned long limit) { } 54#endif 55 56extern atomic_long_t _totalram_pages; 57static inline unsigned long totalram_pages(void) 58{ 59 return (unsigned long)atomic_long_read(&_totalram_pages); 60} 61 62static inline void totalram_pages_inc(void) 63{ 64 atomic_long_inc(&_totalram_pages); 65} 66 67static inline void totalram_pages_dec(void) 68{ 69 atomic_long_dec(&_totalram_pages); 70} 71 72static inline void totalram_pages_add(long count) 73{ 74 atomic_long_add(count, &_totalram_pages); 75} 76 77extern void * high_memory; 78extern int page_cluster; 79extern const int page_cluster_max; 80 81#ifdef CONFIG_SYSCTL 82extern int sysctl_legacy_va_layout; 83#else 84#define sysctl_legacy_va_layout 0 85#endif 86 87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88extern const int mmap_rnd_bits_min; 89extern const int mmap_rnd_bits_max; 90extern int mmap_rnd_bits __read_mostly; 91#endif 92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93extern const int mmap_rnd_compat_bits_min; 94extern const int mmap_rnd_compat_bits_max; 95extern int mmap_rnd_compat_bits __read_mostly; 96#endif 97 98#include <asm/page.h> 99#include <asm/processor.h> 100 101#ifndef __pa_symbol 102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 103#endif 104 105#ifndef page_to_virt 106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 107#endif 108 109#ifndef lm_alias 110#define lm_alias(x) __va(__pa_symbol(x)) 111#endif 112 113/* 114 * To prevent common memory management code establishing 115 * a zero page mapping on a read fault. 116 * This macro should be defined within <asm/pgtable.h>. 117 * s390 does this to prevent multiplexing of hardware bits 118 * related to the physical page in case of virtualization. 119 */ 120#ifndef mm_forbids_zeropage 121#define mm_forbids_zeropage(X) (0) 122#endif 123 124/* 125 * On some architectures it is expensive to call memset() for small sizes. 126 * If an architecture decides to implement their own version of 127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 128 * define their own version of this macro in <asm/pgtable.h> 129 */ 130#if BITS_PER_LONG == 64 131/* This function must be updated when the size of struct page grows above 96 132 * or reduces below 56. The idea that compiler optimizes out switch() 133 * statement, and only leaves move/store instructions. Also the compiler can 134 * combine write statements if they are both assignments and can be reordered, 135 * this can result in several of the writes here being dropped. 136 */ 137#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 138static inline void __mm_zero_struct_page(struct page *page) 139{ 140 unsigned long *_pp = (void *)page; 141 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 143 BUILD_BUG_ON(sizeof(struct page) & 7); 144 BUILD_BUG_ON(sizeof(struct page) < 56); 145 BUILD_BUG_ON(sizeof(struct page) > 96); 146 147 switch (sizeof(struct page)) { 148 case 96: 149 _pp[11] = 0; 150 fallthrough; 151 case 88: 152 _pp[10] = 0; 153 fallthrough; 154 case 80: 155 _pp[9] = 0; 156 fallthrough; 157 case 72: 158 _pp[8] = 0; 159 fallthrough; 160 case 64: 161 _pp[7] = 0; 162 fallthrough; 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172} 173#else 174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175#endif 176 177/* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193#define MAPCOUNT_ELF_CORE_MARGIN (5) 194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196extern int sysctl_max_map_count; 197 198extern unsigned long sysctl_user_reserve_kbytes; 199extern unsigned long sysctl_admin_reserve_kbytes; 200 201extern int sysctl_overcommit_memory; 202extern int sysctl_overcommit_ratio; 203extern unsigned long sysctl_overcommit_kbytes; 204 205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 212#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 215#else 216#define nth_page(page,n) ((page) + (n)) 217#define folio_page_idx(folio, p) ((p) - &(folio)->page) 218#endif 219 220/* to align the pointer to the (next) page boundary */ 221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 222 223/* to align the pointer to the (prev) page boundary */ 224#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 225 226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 228 229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 230static inline struct folio *lru_to_folio(struct list_head *head) 231{ 232 return list_entry((head)->prev, struct folio, lru); 233} 234 235void setup_initial_init_mm(void *start_code, void *end_code, 236 void *end_data, void *brk); 237 238/* 239 * Linux kernel virtual memory manager primitives. 240 * The idea being to have a "virtual" mm in the same way 241 * we have a virtual fs - giving a cleaner interface to the 242 * mm details, and allowing different kinds of memory mappings 243 * (from shared memory to executable loading to arbitrary 244 * mmap() functions). 245 */ 246 247struct vm_area_struct *vm_area_alloc(struct mm_struct *); 248struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 249void vm_area_free(struct vm_area_struct *); 250/* Use only if VMA has no other users */ 251void __vm_area_free(struct vm_area_struct *vma); 252 253#ifndef CONFIG_MMU 254extern struct rb_root nommu_region_tree; 255extern struct rw_semaphore nommu_region_sem; 256 257extern unsigned int kobjsize(const void *objp); 258#endif 259 260/* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264#define VM_NONE 0x00000000 265 266#define VM_READ 0x00000001 /* currently active flags */ 267#define VM_WRITE 0x00000002 268#define VM_EXEC 0x00000004 269#define VM_SHARED 0x00000008 270 271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273#define VM_MAYWRITE 0x00000020 274#define VM_MAYEXEC 0x00000040 275#define VM_MAYSHARE 0x00000080 276 277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278#ifdef CONFIG_MMU 279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280#else /* CONFIG_MMU */ 281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 282#define VM_UFFD_MISSING 0 283#endif /* CONFIG_MMU */ 284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287#define VM_LOCKED 0x00002000 288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300#define VM_SYNC 0x00800000 /* Synchronous page faults */ 301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305#ifdef CONFIG_MEM_SOFT_DIRTY 306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307#else 308# define VM_SOFTDIRTY 0 309#endif 310 311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 323#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 324#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 325#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 326#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 327#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 328 329#ifdef CONFIG_ARCH_HAS_PKEYS 330# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 331# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 332# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 333# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 334# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 335#ifdef CONFIG_PPC 336# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 337#else 338# define VM_PKEY_BIT4 0 339#endif 340#endif /* CONFIG_ARCH_HAS_PKEYS */ 341 342#if defined(CONFIG_X86) 343# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 344#elif defined(CONFIG_PPC) 345# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 346#elif defined(CONFIG_PARISC) 347# define VM_GROWSUP VM_ARCH_1 348#elif defined(CONFIG_IA64) 349# define VM_GROWSUP VM_ARCH_1 350#elif defined(CONFIG_SPARC64) 351# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 352# define VM_ARCH_CLEAR VM_SPARC_ADI 353#elif defined(CONFIG_ARM64) 354# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 355# define VM_ARCH_CLEAR VM_ARM64_BTI 356#elif !defined(CONFIG_MMU) 357# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 358#endif 359 360#if defined(CONFIG_ARM64_MTE) 361# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 362# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 363#else 364# define VM_MTE VM_NONE 365# define VM_MTE_ALLOWED VM_NONE 366#endif 367 368#ifndef VM_GROWSUP 369# define VM_GROWSUP VM_NONE 370#endif 371 372#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 373# define VM_UFFD_MINOR_BIT 37 374# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 375#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 376# define VM_UFFD_MINOR VM_NONE 377#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 378 379/* Bits set in the VMA until the stack is in its final location */ 380#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 381 382#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 383 384/* Common data flag combinations */ 385#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 387#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 388 VM_MAYWRITE | VM_MAYEXEC) 389#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 391 392#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 393#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 394#endif 395 396#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 397#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 398#endif 399 400#ifdef CONFIG_STACK_GROWSUP 401#define VM_STACK VM_GROWSUP 402#define VM_STACK_EARLY VM_GROWSDOWN 403#else 404#define VM_STACK VM_GROWSDOWN 405#define VM_STACK_EARLY 0 406#endif 407 408#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 409 410/* VMA basic access permission flags */ 411#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 412 413 414/* 415 * Special vmas that are non-mergable, non-mlock()able. 416 */ 417#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 418 419/* This mask prevents VMA from being scanned with khugepaged */ 420#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 421 422/* This mask defines which mm->def_flags a process can inherit its parent */ 423#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 424 425/* This mask represents all the VMA flag bits used by mlock */ 426#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 427 428/* Arch-specific flags to clear when updating VM flags on protection change */ 429#ifndef VM_ARCH_CLEAR 430# define VM_ARCH_CLEAR VM_NONE 431#endif 432#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 433 434/* 435 * mapping from the currently active vm_flags protection bits (the 436 * low four bits) to a page protection mask.. 437 */ 438 439/* 440 * The default fault flags that should be used by most of the 441 * arch-specific page fault handlers. 442 */ 443#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 444 FAULT_FLAG_KILLABLE | \ 445 FAULT_FLAG_INTERRUPTIBLE) 446 447/** 448 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 449 * @flags: Fault flags. 450 * 451 * This is mostly used for places where we want to try to avoid taking 452 * the mmap_lock for too long a time when waiting for another condition 453 * to change, in which case we can try to be polite to release the 454 * mmap_lock in the first round to avoid potential starvation of other 455 * processes that would also want the mmap_lock. 456 * 457 * Return: true if the page fault allows retry and this is the first 458 * attempt of the fault handling; false otherwise. 459 */ 460static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 461{ 462 return (flags & FAULT_FLAG_ALLOW_RETRY) && 463 (!(flags & FAULT_FLAG_TRIED)); 464} 465 466#define FAULT_FLAG_TRACE \ 467 { FAULT_FLAG_WRITE, "WRITE" }, \ 468 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 469 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 470 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 471 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 472 { FAULT_FLAG_TRIED, "TRIED" }, \ 473 { FAULT_FLAG_USER, "USER" }, \ 474 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 475 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 476 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 477 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 478 479/* 480 * vm_fault is filled by the pagefault handler and passed to the vma's 481 * ->fault function. The vma's ->fault is responsible for returning a bitmask 482 * of VM_FAULT_xxx flags that give details about how the fault was handled. 483 * 484 * MM layer fills up gfp_mask for page allocations but fault handler might 485 * alter it if its implementation requires a different allocation context. 486 * 487 * pgoff should be used in favour of virtual_address, if possible. 488 */ 489struct vm_fault { 490 const struct { 491 struct vm_area_struct *vma; /* Target VMA */ 492 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 493 pgoff_t pgoff; /* Logical page offset based on vma */ 494 unsigned long address; /* Faulting virtual address - masked */ 495 unsigned long real_address; /* Faulting virtual address - unmasked */ 496 }; 497 enum fault_flag flags; /* FAULT_FLAG_xxx flags 498 * XXX: should really be 'const' */ 499 pmd_t *pmd; /* Pointer to pmd entry matching 500 * the 'address' */ 501 pud_t *pud; /* Pointer to pud entry matching 502 * the 'address' 503 */ 504 union { 505 pte_t orig_pte; /* Value of PTE at the time of fault */ 506 pmd_t orig_pmd; /* Value of PMD at the time of fault, 507 * used by PMD fault only. 508 */ 509 }; 510 511 struct page *cow_page; /* Page handler may use for COW fault */ 512 struct page *page; /* ->fault handlers should return a 513 * page here, unless VM_FAULT_NOPAGE 514 * is set (which is also implied by 515 * VM_FAULT_ERROR). 516 */ 517 /* These three entries are valid only while holding ptl lock */ 518 pte_t *pte; /* Pointer to pte entry matching 519 * the 'address'. NULL if the page 520 * table hasn't been allocated. 521 */ 522 spinlock_t *ptl; /* Page table lock. 523 * Protects pte page table if 'pte' 524 * is not NULL, otherwise pmd. 525 */ 526 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 527 * vm_ops->map_pages() sets up a page 528 * table from atomic context. 529 * do_fault_around() pre-allocates 530 * page table to avoid allocation from 531 * atomic context. 532 */ 533}; 534 535/* page entry size for vm->huge_fault() */ 536enum page_entry_size { 537 PE_SIZE_PTE = 0, 538 PE_SIZE_PMD, 539 PE_SIZE_PUD, 540}; 541 542/* 543 * These are the virtual MM functions - opening of an area, closing and 544 * unmapping it (needed to keep files on disk up-to-date etc), pointer 545 * to the functions called when a no-page or a wp-page exception occurs. 546 */ 547struct vm_operations_struct { 548 void (*open)(struct vm_area_struct * area); 549 /** 550 * @close: Called when the VMA is being removed from the MM. 551 * Context: User context. May sleep. Caller holds mmap_lock. 552 */ 553 void (*close)(struct vm_area_struct * area); 554 /* Called any time before splitting to check if it's allowed */ 555 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 556 int (*mremap)(struct vm_area_struct *area); 557 /* 558 * Called by mprotect() to make driver-specific permission 559 * checks before mprotect() is finalised. The VMA must not 560 * be modified. Returns 0 if mprotect() can proceed. 561 */ 562 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 563 unsigned long end, unsigned long newflags); 564 vm_fault_t (*fault)(struct vm_fault *vmf); 565 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 566 enum page_entry_size pe_size); 567 vm_fault_t (*map_pages)(struct vm_fault *vmf, 568 pgoff_t start_pgoff, pgoff_t end_pgoff); 569 unsigned long (*pagesize)(struct vm_area_struct * area); 570 571 /* notification that a previously read-only page is about to become 572 * writable, if an error is returned it will cause a SIGBUS */ 573 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 574 575 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 576 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 577 578 /* called by access_process_vm when get_user_pages() fails, typically 579 * for use by special VMAs. See also generic_access_phys() for a generic 580 * implementation useful for any iomem mapping. 581 */ 582 int (*access)(struct vm_area_struct *vma, unsigned long addr, 583 void *buf, int len, int write); 584 585 /* Called by the /proc/PID/maps code to ask the vma whether it 586 * has a special name. Returning non-NULL will also cause this 587 * vma to be dumped unconditionally. */ 588 const char *(*name)(struct vm_area_struct *vma); 589 590#ifdef CONFIG_NUMA 591 /* 592 * set_policy() op must add a reference to any non-NULL @new mempolicy 593 * to hold the policy upon return. Caller should pass NULL @new to 594 * remove a policy and fall back to surrounding context--i.e. do not 595 * install a MPOL_DEFAULT policy, nor the task or system default 596 * mempolicy. 597 */ 598 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 599 600 /* 601 * get_policy() op must add reference [mpol_get()] to any policy at 602 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 603 * in mm/mempolicy.c will do this automatically. 604 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 605 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 606 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 607 * must return NULL--i.e., do not "fallback" to task or system default 608 * policy. 609 */ 610 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 611 unsigned long addr); 612#endif 613 /* 614 * Called by vm_normal_page() for special PTEs to find the 615 * page for @addr. This is useful if the default behavior 616 * (using pte_page()) would not find the correct page. 617 */ 618 struct page *(*find_special_page)(struct vm_area_struct *vma, 619 unsigned long addr); 620}; 621 622#ifdef CONFIG_NUMA_BALANCING 623static inline void vma_numab_state_init(struct vm_area_struct *vma) 624{ 625 vma->numab_state = NULL; 626} 627static inline void vma_numab_state_free(struct vm_area_struct *vma) 628{ 629 kfree(vma->numab_state); 630} 631#else 632static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 633static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 634#endif /* CONFIG_NUMA_BALANCING */ 635 636#ifdef CONFIG_PER_VMA_LOCK 637/* 638 * Try to read-lock a vma. The function is allowed to occasionally yield false 639 * locked result to avoid performance overhead, in which case we fall back to 640 * using mmap_lock. The function should never yield false unlocked result. 641 */ 642static inline bool vma_start_read(struct vm_area_struct *vma) 643{ 644 /* 645 * Check before locking. A race might cause false locked result. 646 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 647 * ACQUIRE semantics, because this is just a lockless check whose result 648 * we don't rely on for anything - the mm_lock_seq read against which we 649 * need ordering is below. 650 */ 651 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 652 return false; 653 654 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 655 return false; 656 657 /* 658 * Overflow might produce false locked result. 659 * False unlocked result is impossible because we modify and check 660 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 661 * modification invalidates all existing locks. 662 * 663 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 664 * racing with vma_end_write_all(), we only start reading from the VMA 665 * after it has been unlocked. 666 * This pairs with RELEASE semantics in vma_end_write_all(). 667 */ 668 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 669 up_read(&vma->vm_lock->lock); 670 return false; 671 } 672 return true; 673} 674 675static inline void vma_end_read(struct vm_area_struct *vma) 676{ 677 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 678 up_read(&vma->vm_lock->lock); 679 rcu_read_unlock(); 680} 681 682static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 683{ 684 mmap_assert_write_locked(vma->vm_mm); 685 686 /* 687 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 688 * mm->mm_lock_seq can't be concurrently modified. 689 */ 690 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 691 return (vma->vm_lock_seq == *mm_lock_seq); 692} 693 694static inline void vma_start_write(struct vm_area_struct *vma) 695{ 696 int mm_lock_seq; 697 698 if (__is_vma_write_locked(vma, &mm_lock_seq)) 699 return; 700 701 down_write(&vma->vm_lock->lock); 702 /* 703 * We should use WRITE_ONCE() here because we can have concurrent reads 704 * from the early lockless pessimistic check in vma_start_read(). 705 * We don't really care about the correctness of that early check, but 706 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 707 */ 708 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 709 up_write(&vma->vm_lock->lock); 710} 711 712static inline bool vma_try_start_write(struct vm_area_struct *vma) 713{ 714 int mm_lock_seq; 715 716 if (__is_vma_write_locked(vma, &mm_lock_seq)) 717 return true; 718 719 if (!down_write_trylock(&vma->vm_lock->lock)) 720 return false; 721 722 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 723 up_write(&vma->vm_lock->lock); 724 return true; 725} 726 727static inline void vma_assert_write_locked(struct vm_area_struct *vma) 728{ 729 int mm_lock_seq; 730 731 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 732} 733 734static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 735{ 736 /* When detaching vma should be write-locked */ 737 if (detached) 738 vma_assert_write_locked(vma); 739 vma->detached = detached; 740} 741 742struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 743 unsigned long address); 744 745#else /* CONFIG_PER_VMA_LOCK */ 746 747static inline bool vma_start_read(struct vm_area_struct *vma) 748 { return false; } 749static inline void vma_end_read(struct vm_area_struct *vma) {} 750static inline void vma_start_write(struct vm_area_struct *vma) {} 751static inline bool vma_try_start_write(struct vm_area_struct *vma) 752 { return true; } 753static inline void vma_assert_write_locked(struct vm_area_struct *vma) {} 754static inline void vma_mark_detached(struct vm_area_struct *vma, 755 bool detached) {} 756 757#endif /* CONFIG_PER_VMA_LOCK */ 758 759/* 760 * WARNING: vma_init does not initialize vma->vm_lock. 761 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 762 */ 763static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 764{ 765 static const struct vm_operations_struct dummy_vm_ops = {}; 766 767 memset(vma, 0, sizeof(*vma)); 768 vma->vm_mm = mm; 769 vma->vm_ops = &dummy_vm_ops; 770 INIT_LIST_HEAD(&vma->anon_vma_chain); 771 vma_mark_detached(vma, false); 772 vma_numab_state_init(vma); 773} 774 775/* Use when VMA is not part of the VMA tree and needs no locking */ 776static inline void vm_flags_init(struct vm_area_struct *vma, 777 vm_flags_t flags) 778{ 779 ACCESS_PRIVATE(vma, __vm_flags) = flags; 780} 781 782/* Use when VMA is part of the VMA tree and modifications need coordination */ 783static inline void vm_flags_reset(struct vm_area_struct *vma, 784 vm_flags_t flags) 785{ 786 vma_start_write(vma); 787 vm_flags_init(vma, flags); 788} 789 790static inline void vm_flags_reset_once(struct vm_area_struct *vma, 791 vm_flags_t flags) 792{ 793 vma_start_write(vma); 794 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 795} 796 797static inline void vm_flags_set(struct vm_area_struct *vma, 798 vm_flags_t flags) 799{ 800 vma_start_write(vma); 801 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 802} 803 804static inline void vm_flags_clear(struct vm_area_struct *vma, 805 vm_flags_t flags) 806{ 807 vma_start_write(vma); 808 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 809} 810 811/* 812 * Use only if VMA is not part of the VMA tree or has no other users and 813 * therefore needs no locking. 814 */ 815static inline void __vm_flags_mod(struct vm_area_struct *vma, 816 vm_flags_t set, vm_flags_t clear) 817{ 818 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 819} 820 821/* 822 * Use only when the order of set/clear operations is unimportant, otherwise 823 * use vm_flags_{set|clear} explicitly. 824 */ 825static inline void vm_flags_mod(struct vm_area_struct *vma, 826 vm_flags_t set, vm_flags_t clear) 827{ 828 vma_start_write(vma); 829 __vm_flags_mod(vma, set, clear); 830} 831 832static inline void vma_set_anonymous(struct vm_area_struct *vma) 833{ 834 vma->vm_ops = NULL; 835} 836 837static inline bool vma_is_anonymous(struct vm_area_struct *vma) 838{ 839 return !vma->vm_ops; 840} 841 842static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 843{ 844 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 845 846 if (!maybe_stack) 847 return false; 848 849 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 850 VM_STACK_INCOMPLETE_SETUP) 851 return true; 852 853 return false; 854} 855 856static inline bool vma_is_foreign(struct vm_area_struct *vma) 857{ 858 if (!current->mm) 859 return true; 860 861 if (current->mm != vma->vm_mm) 862 return true; 863 864 return false; 865} 866 867static inline bool vma_is_accessible(struct vm_area_struct *vma) 868{ 869 return vma->vm_flags & VM_ACCESS_FLAGS; 870} 871 872static inline 873struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 874{ 875 return mas_find(&vmi->mas, max - 1); 876} 877 878static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 879{ 880 /* 881 * Uses mas_find() to get the first VMA when the iterator starts. 882 * Calling mas_next() could skip the first entry. 883 */ 884 return mas_find(&vmi->mas, ULONG_MAX); 885} 886 887static inline 888struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 889{ 890 return mas_next_range(&vmi->mas, ULONG_MAX); 891} 892 893 894static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 895{ 896 return mas_prev(&vmi->mas, 0); 897} 898 899static inline 900struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 901{ 902 return mas_prev_range(&vmi->mas, 0); 903} 904 905static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 906{ 907 return vmi->mas.index; 908} 909 910static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 911{ 912 return vmi->mas.last + 1; 913} 914static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 915 unsigned long count) 916{ 917 return mas_expected_entries(&vmi->mas, count); 918} 919 920/* Free any unused preallocations */ 921static inline void vma_iter_free(struct vma_iterator *vmi) 922{ 923 mas_destroy(&vmi->mas); 924} 925 926static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 927 struct vm_area_struct *vma) 928{ 929 vmi->mas.index = vma->vm_start; 930 vmi->mas.last = vma->vm_end - 1; 931 mas_store(&vmi->mas, vma); 932 if (unlikely(mas_is_err(&vmi->mas))) 933 return -ENOMEM; 934 935 return 0; 936} 937 938static inline void vma_iter_invalidate(struct vma_iterator *vmi) 939{ 940 mas_pause(&vmi->mas); 941} 942 943static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 944{ 945 mas_set(&vmi->mas, addr); 946} 947 948#define for_each_vma(__vmi, __vma) \ 949 while (((__vma) = vma_next(&(__vmi))) != NULL) 950 951/* The MM code likes to work with exclusive end addresses */ 952#define for_each_vma_range(__vmi, __vma, __end) \ 953 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 954 955#ifdef CONFIG_SHMEM 956/* 957 * The vma_is_shmem is not inline because it is used only by slow 958 * paths in userfault. 959 */ 960bool vma_is_shmem(struct vm_area_struct *vma); 961bool vma_is_anon_shmem(struct vm_area_struct *vma); 962#else 963static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 964static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 965#endif 966 967int vma_is_stack_for_current(struct vm_area_struct *vma); 968 969/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 970#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 971 972struct mmu_gather; 973struct inode; 974 975/* 976 * compound_order() can be called without holding a reference, which means 977 * that niceties like page_folio() don't work. These callers should be 978 * prepared to handle wild return values. For example, PG_head may be 979 * set before _folio_order is initialised, or this may be a tail page. 980 * See compaction.c for some good examples. 981 */ 982static inline unsigned int compound_order(struct page *page) 983{ 984 struct folio *folio = (struct folio *)page; 985 986 if (!test_bit(PG_head, &folio->flags)) 987 return 0; 988 return folio->_folio_order; 989} 990 991/** 992 * folio_order - The allocation order of a folio. 993 * @folio: The folio. 994 * 995 * A folio is composed of 2^order pages. See get_order() for the definition 996 * of order. 997 * 998 * Return: The order of the folio. 999 */ 1000static inline unsigned int folio_order(struct folio *folio) 1001{ 1002 if (!folio_test_large(folio)) 1003 return 0; 1004 return folio->_folio_order; 1005} 1006 1007#include <linux/huge_mm.h> 1008 1009/* 1010 * Methods to modify the page usage count. 1011 * 1012 * What counts for a page usage: 1013 * - cache mapping (page->mapping) 1014 * - private data (page->private) 1015 * - page mapped in a task's page tables, each mapping 1016 * is counted separately 1017 * 1018 * Also, many kernel routines increase the page count before a critical 1019 * routine so they can be sure the page doesn't go away from under them. 1020 */ 1021 1022/* 1023 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1024 */ 1025static inline int put_page_testzero(struct page *page) 1026{ 1027 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1028 return page_ref_dec_and_test(page); 1029} 1030 1031static inline int folio_put_testzero(struct folio *folio) 1032{ 1033 return put_page_testzero(&folio->page); 1034} 1035 1036/* 1037 * Try to grab a ref unless the page has a refcount of zero, return false if 1038 * that is the case. 1039 * This can be called when MMU is off so it must not access 1040 * any of the virtual mappings. 1041 */ 1042static inline bool get_page_unless_zero(struct page *page) 1043{ 1044 return page_ref_add_unless(page, 1, 0); 1045} 1046 1047static inline struct folio *folio_get_nontail_page(struct page *page) 1048{ 1049 if (unlikely(!get_page_unless_zero(page))) 1050 return NULL; 1051 return (struct folio *)page; 1052} 1053 1054extern int page_is_ram(unsigned long pfn); 1055 1056enum { 1057 REGION_INTERSECTS, 1058 REGION_DISJOINT, 1059 REGION_MIXED, 1060}; 1061 1062int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1063 unsigned long desc); 1064 1065/* Support for virtually mapped pages */ 1066struct page *vmalloc_to_page(const void *addr); 1067unsigned long vmalloc_to_pfn(const void *addr); 1068 1069/* 1070 * Determine if an address is within the vmalloc range 1071 * 1072 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1073 * is no special casing required. 1074 */ 1075 1076#ifndef is_ioremap_addr 1077#define is_ioremap_addr(x) is_vmalloc_addr(x) 1078#endif 1079 1080#ifdef CONFIG_MMU 1081extern bool is_vmalloc_addr(const void *x); 1082extern int is_vmalloc_or_module_addr(const void *x); 1083#else 1084static inline bool is_vmalloc_addr(const void *x) 1085{ 1086 return false; 1087} 1088static inline int is_vmalloc_or_module_addr(const void *x) 1089{ 1090 return 0; 1091} 1092#endif 1093 1094/* 1095 * How many times the entire folio is mapped as a single unit (eg by a 1096 * PMD or PUD entry). This is probably not what you want, except for 1097 * debugging purposes - it does not include PTE-mapped sub-pages; look 1098 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 1099 */ 1100static inline int folio_entire_mapcount(struct folio *folio) 1101{ 1102 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1103 return atomic_read(&folio->_entire_mapcount) + 1; 1104} 1105 1106/* 1107 * The atomic page->_mapcount, starts from -1: so that transitions 1108 * both from it and to it can be tracked, using atomic_inc_and_test 1109 * and atomic_add_negative(-1). 1110 */ 1111static inline void page_mapcount_reset(struct page *page) 1112{ 1113 atomic_set(&(page)->_mapcount, -1); 1114} 1115 1116/** 1117 * page_mapcount() - Number of times this precise page is mapped. 1118 * @page: The page. 1119 * 1120 * The number of times this page is mapped. If this page is part of 1121 * a large folio, it includes the number of times this page is mapped 1122 * as part of that folio. 1123 * 1124 * The result is undefined for pages which cannot be mapped into userspace. 1125 * For example SLAB or special types of pages. See function page_has_type(). 1126 * They use this field in struct page differently. 1127 */ 1128static inline int page_mapcount(struct page *page) 1129{ 1130 int mapcount = atomic_read(&page->_mapcount) + 1; 1131 1132 if (unlikely(PageCompound(page))) 1133 mapcount += folio_entire_mapcount(page_folio(page)); 1134 1135 return mapcount; 1136} 1137 1138int folio_total_mapcount(struct folio *folio); 1139 1140/** 1141 * folio_mapcount() - Calculate the number of mappings of this folio. 1142 * @folio: The folio. 1143 * 1144 * A large folio tracks both how many times the entire folio is mapped, 1145 * and how many times each individual page in the folio is mapped. 1146 * This function calculates the total number of times the folio is 1147 * mapped. 1148 * 1149 * Return: The number of times this folio is mapped. 1150 */ 1151static inline int folio_mapcount(struct folio *folio) 1152{ 1153 if (likely(!folio_test_large(folio))) 1154 return atomic_read(&folio->_mapcount) + 1; 1155 return folio_total_mapcount(folio); 1156} 1157 1158static inline int total_mapcount(struct page *page) 1159{ 1160 if (likely(!PageCompound(page))) 1161 return atomic_read(&page->_mapcount) + 1; 1162 return folio_total_mapcount(page_folio(page)); 1163} 1164 1165static inline bool folio_large_is_mapped(struct folio *folio) 1166{ 1167 /* 1168 * Reading _entire_mapcount below could be omitted if hugetlb 1169 * participated in incrementing nr_pages_mapped when compound mapped. 1170 */ 1171 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1172 atomic_read(&folio->_entire_mapcount) >= 0; 1173} 1174 1175/** 1176 * folio_mapped - Is this folio mapped into userspace? 1177 * @folio: The folio. 1178 * 1179 * Return: True if any page in this folio is referenced by user page tables. 1180 */ 1181static inline bool folio_mapped(struct folio *folio) 1182{ 1183 if (likely(!folio_test_large(folio))) 1184 return atomic_read(&folio->_mapcount) >= 0; 1185 return folio_large_is_mapped(folio); 1186} 1187 1188/* 1189 * Return true if this page is mapped into pagetables. 1190 * For compound page it returns true if any sub-page of compound page is mapped, 1191 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1192 */ 1193static inline bool page_mapped(struct page *page) 1194{ 1195 if (likely(!PageCompound(page))) 1196 return atomic_read(&page->_mapcount) >= 0; 1197 return folio_large_is_mapped(page_folio(page)); 1198} 1199 1200static inline struct page *virt_to_head_page(const void *x) 1201{ 1202 struct page *page = virt_to_page(x); 1203 1204 return compound_head(page); 1205} 1206 1207static inline struct folio *virt_to_folio(const void *x) 1208{ 1209 struct page *page = virt_to_page(x); 1210 1211 return page_folio(page); 1212} 1213 1214void __folio_put(struct folio *folio); 1215 1216void put_pages_list(struct list_head *pages); 1217 1218void split_page(struct page *page, unsigned int order); 1219void folio_copy(struct folio *dst, struct folio *src); 1220 1221unsigned long nr_free_buffer_pages(void); 1222 1223/* 1224 * Compound pages have a destructor function. Provide a 1225 * prototype for that function and accessor functions. 1226 * These are _only_ valid on the head of a compound page. 1227 */ 1228typedef void compound_page_dtor(struct page *); 1229 1230/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 1231enum compound_dtor_id { 1232 NULL_COMPOUND_DTOR, 1233 COMPOUND_PAGE_DTOR, 1234#ifdef CONFIG_HUGETLB_PAGE 1235 HUGETLB_PAGE_DTOR, 1236#endif 1237#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1238 TRANSHUGE_PAGE_DTOR, 1239#endif 1240 NR_COMPOUND_DTORS, 1241}; 1242 1243static inline void folio_set_compound_dtor(struct folio *folio, 1244 enum compound_dtor_id compound_dtor) 1245{ 1246 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio); 1247 folio->_folio_dtor = compound_dtor; 1248} 1249 1250void destroy_large_folio(struct folio *folio); 1251 1252/* Returns the number of bytes in this potentially compound page. */ 1253static inline unsigned long page_size(struct page *page) 1254{ 1255 return PAGE_SIZE << compound_order(page); 1256} 1257 1258/* Returns the number of bits needed for the number of bytes in a page */ 1259static inline unsigned int page_shift(struct page *page) 1260{ 1261 return PAGE_SHIFT + compound_order(page); 1262} 1263 1264/** 1265 * thp_order - Order of a transparent huge page. 1266 * @page: Head page of a transparent huge page. 1267 */ 1268static inline unsigned int thp_order(struct page *page) 1269{ 1270 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1271 return compound_order(page); 1272} 1273 1274/** 1275 * thp_size - Size of a transparent huge page. 1276 * @page: Head page of a transparent huge page. 1277 * 1278 * Return: Number of bytes in this page. 1279 */ 1280static inline unsigned long thp_size(struct page *page) 1281{ 1282 return PAGE_SIZE << thp_order(page); 1283} 1284 1285void free_compound_page(struct page *page); 1286 1287#ifdef CONFIG_MMU 1288/* 1289 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1290 * servicing faults for write access. In the normal case, do always want 1291 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1292 * that do not have writing enabled, when used by access_process_vm. 1293 */ 1294static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1295{ 1296 if (likely(vma->vm_flags & VM_WRITE)) 1297 pte = pte_mkwrite(pte); 1298 return pte; 1299} 1300 1301vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1302void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1303 1304vm_fault_t finish_fault(struct vm_fault *vmf); 1305vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1306#endif 1307 1308/* 1309 * Multiple processes may "see" the same page. E.g. for untouched 1310 * mappings of /dev/null, all processes see the same page full of 1311 * zeroes, and text pages of executables and shared libraries have 1312 * only one copy in memory, at most, normally. 1313 * 1314 * For the non-reserved pages, page_count(page) denotes a reference count. 1315 * page_count() == 0 means the page is free. page->lru is then used for 1316 * freelist management in the buddy allocator. 1317 * page_count() > 0 means the page has been allocated. 1318 * 1319 * Pages are allocated by the slab allocator in order to provide memory 1320 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1321 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1322 * unless a particular usage is carefully commented. (the responsibility of 1323 * freeing the kmalloc memory is the caller's, of course). 1324 * 1325 * A page may be used by anyone else who does a __get_free_page(). 1326 * In this case, page_count still tracks the references, and should only 1327 * be used through the normal accessor functions. The top bits of page->flags 1328 * and page->virtual store page management information, but all other fields 1329 * are unused and could be used privately, carefully. The management of this 1330 * page is the responsibility of the one who allocated it, and those who have 1331 * subsequently been given references to it. 1332 * 1333 * The other pages (we may call them "pagecache pages") are completely 1334 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1335 * The following discussion applies only to them. 1336 * 1337 * A pagecache page contains an opaque `private' member, which belongs to the 1338 * page's address_space. Usually, this is the address of a circular list of 1339 * the page's disk buffers. PG_private must be set to tell the VM to call 1340 * into the filesystem to release these pages. 1341 * 1342 * A page may belong to an inode's memory mapping. In this case, page->mapping 1343 * is the pointer to the inode, and page->index is the file offset of the page, 1344 * in units of PAGE_SIZE. 1345 * 1346 * If pagecache pages are not associated with an inode, they are said to be 1347 * anonymous pages. These may become associated with the swapcache, and in that 1348 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1349 * 1350 * In either case (swapcache or inode backed), the pagecache itself holds one 1351 * reference to the page. Setting PG_private should also increment the 1352 * refcount. The each user mapping also has a reference to the page. 1353 * 1354 * The pagecache pages are stored in a per-mapping radix tree, which is 1355 * rooted at mapping->i_pages, and indexed by offset. 1356 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1357 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1358 * 1359 * All pagecache pages may be subject to I/O: 1360 * - inode pages may need to be read from disk, 1361 * - inode pages which have been modified and are MAP_SHARED may need 1362 * to be written back to the inode on disk, 1363 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1364 * modified may need to be swapped out to swap space and (later) to be read 1365 * back into memory. 1366 */ 1367 1368#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1369DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1370 1371bool __put_devmap_managed_page_refs(struct page *page, int refs); 1372static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1373{ 1374 if (!static_branch_unlikely(&devmap_managed_key)) 1375 return false; 1376 if (!is_zone_device_page(page)) 1377 return false; 1378 return __put_devmap_managed_page_refs(page, refs); 1379} 1380#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1381static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1382{ 1383 return false; 1384} 1385#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1386 1387static inline bool put_devmap_managed_page(struct page *page) 1388{ 1389 return put_devmap_managed_page_refs(page, 1); 1390} 1391 1392/* 127: arbitrary random number, small enough to assemble well */ 1393#define folio_ref_zero_or_close_to_overflow(folio) \ 1394 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1395 1396/** 1397 * folio_get - Increment the reference count on a folio. 1398 * @folio: The folio. 1399 * 1400 * Context: May be called in any context, as long as you know that 1401 * you have a refcount on the folio. If you do not already have one, 1402 * folio_try_get() may be the right interface for you to use. 1403 */ 1404static inline void folio_get(struct folio *folio) 1405{ 1406 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1407 folio_ref_inc(folio); 1408} 1409 1410static inline void get_page(struct page *page) 1411{ 1412 folio_get(page_folio(page)); 1413} 1414 1415static inline __must_check bool try_get_page(struct page *page) 1416{ 1417 page = compound_head(page); 1418 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1419 return false; 1420 page_ref_inc(page); 1421 return true; 1422} 1423 1424/** 1425 * folio_put - Decrement the reference count on a folio. 1426 * @folio: The folio. 1427 * 1428 * If the folio's reference count reaches zero, the memory will be 1429 * released back to the page allocator and may be used by another 1430 * allocation immediately. Do not access the memory or the struct folio 1431 * after calling folio_put() unless you can be sure that it wasn't the 1432 * last reference. 1433 * 1434 * Context: May be called in process or interrupt context, but not in NMI 1435 * context. May be called while holding a spinlock. 1436 */ 1437static inline void folio_put(struct folio *folio) 1438{ 1439 if (folio_put_testzero(folio)) 1440 __folio_put(folio); 1441} 1442 1443/** 1444 * folio_put_refs - Reduce the reference count on a folio. 1445 * @folio: The folio. 1446 * @refs: The amount to subtract from the folio's reference count. 1447 * 1448 * If the folio's reference count reaches zero, the memory will be 1449 * released back to the page allocator and may be used by another 1450 * allocation immediately. Do not access the memory or the struct folio 1451 * after calling folio_put_refs() unless you can be sure that these weren't 1452 * the last references. 1453 * 1454 * Context: May be called in process or interrupt context, but not in NMI 1455 * context. May be called while holding a spinlock. 1456 */ 1457static inline void folio_put_refs(struct folio *folio, int refs) 1458{ 1459 if (folio_ref_sub_and_test(folio, refs)) 1460 __folio_put(folio); 1461} 1462 1463/* 1464 * union release_pages_arg - an array of pages or folios 1465 * 1466 * release_pages() releases a simple array of multiple pages, and 1467 * accepts various different forms of said page array: either 1468 * a regular old boring array of pages, an array of folios, or 1469 * an array of encoded page pointers. 1470 * 1471 * The transparent union syntax for this kind of "any of these 1472 * argument types" is all kinds of ugly, so look away. 1473 */ 1474typedef union { 1475 struct page **pages; 1476 struct folio **folios; 1477 struct encoded_page **encoded_pages; 1478} release_pages_arg __attribute__ ((__transparent_union__)); 1479 1480void release_pages(release_pages_arg, int nr); 1481 1482/** 1483 * folios_put - Decrement the reference count on an array of folios. 1484 * @folios: The folios. 1485 * @nr: How many folios there are. 1486 * 1487 * Like folio_put(), but for an array of folios. This is more efficient 1488 * than writing the loop yourself as it will optimise the locks which 1489 * need to be taken if the folios are freed. 1490 * 1491 * Context: May be called in process or interrupt context, but not in NMI 1492 * context. May be called while holding a spinlock. 1493 */ 1494static inline void folios_put(struct folio **folios, unsigned int nr) 1495{ 1496 release_pages(folios, nr); 1497} 1498 1499static inline void put_page(struct page *page) 1500{ 1501 struct folio *folio = page_folio(page); 1502 1503 /* 1504 * For some devmap managed pages we need to catch refcount transition 1505 * from 2 to 1: 1506 */ 1507 if (put_devmap_managed_page(&folio->page)) 1508 return; 1509 folio_put(folio); 1510} 1511 1512/* 1513 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1514 * the page's refcount so that two separate items are tracked: the original page 1515 * reference count, and also a new count of how many pin_user_pages() calls were 1516 * made against the page. ("gup-pinned" is another term for the latter). 1517 * 1518 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1519 * distinct from normal pages. As such, the unpin_user_page() call (and its 1520 * variants) must be used in order to release gup-pinned pages. 1521 * 1522 * Choice of value: 1523 * 1524 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1525 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1526 * simpler, due to the fact that adding an even power of two to the page 1527 * refcount has the effect of using only the upper N bits, for the code that 1528 * counts up using the bias value. This means that the lower bits are left for 1529 * the exclusive use of the original code that increments and decrements by one 1530 * (or at least, by much smaller values than the bias value). 1531 * 1532 * Of course, once the lower bits overflow into the upper bits (and this is 1533 * OK, because subtraction recovers the original values), then visual inspection 1534 * no longer suffices to directly view the separate counts. However, for normal 1535 * applications that don't have huge page reference counts, this won't be an 1536 * issue. 1537 * 1538 * Locking: the lockless algorithm described in folio_try_get_rcu() 1539 * provides safe operation for get_user_pages(), page_mkclean() and 1540 * other calls that race to set up page table entries. 1541 */ 1542#define GUP_PIN_COUNTING_BIAS (1U << 10) 1543 1544void unpin_user_page(struct page *page); 1545void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1546 bool make_dirty); 1547void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1548 bool make_dirty); 1549void unpin_user_pages(struct page **pages, unsigned long npages); 1550 1551static inline bool is_cow_mapping(vm_flags_t flags) 1552{ 1553 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1554} 1555 1556#ifndef CONFIG_MMU 1557static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1558{ 1559 /* 1560 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1561 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1562 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1563 * underlying memory if ptrace is active, so this is only possible if 1564 * ptrace does not apply. Note that there is no mprotect() to upgrade 1565 * write permissions later. 1566 */ 1567 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1568} 1569#endif 1570 1571#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1572#define SECTION_IN_PAGE_FLAGS 1573#endif 1574 1575/* 1576 * The identification function is mainly used by the buddy allocator for 1577 * determining if two pages could be buddies. We are not really identifying 1578 * the zone since we could be using the section number id if we do not have 1579 * node id available in page flags. 1580 * We only guarantee that it will return the same value for two combinable 1581 * pages in a zone. 1582 */ 1583static inline int page_zone_id(struct page *page) 1584{ 1585 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1586} 1587 1588#ifdef NODE_NOT_IN_PAGE_FLAGS 1589extern int page_to_nid(const struct page *page); 1590#else 1591static inline int page_to_nid(const struct page *page) 1592{ 1593 struct page *p = (struct page *)page; 1594 1595 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1596} 1597#endif 1598 1599static inline int folio_nid(const struct folio *folio) 1600{ 1601 return page_to_nid(&folio->page); 1602} 1603 1604#ifdef CONFIG_NUMA_BALANCING 1605/* page access time bits needs to hold at least 4 seconds */ 1606#define PAGE_ACCESS_TIME_MIN_BITS 12 1607#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1608#define PAGE_ACCESS_TIME_BUCKETS \ 1609 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1610#else 1611#define PAGE_ACCESS_TIME_BUCKETS 0 1612#endif 1613 1614#define PAGE_ACCESS_TIME_MASK \ 1615 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1616 1617static inline int cpu_pid_to_cpupid(int cpu, int pid) 1618{ 1619 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1620} 1621 1622static inline int cpupid_to_pid(int cpupid) 1623{ 1624 return cpupid & LAST__PID_MASK; 1625} 1626 1627static inline int cpupid_to_cpu(int cpupid) 1628{ 1629 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1630} 1631 1632static inline int cpupid_to_nid(int cpupid) 1633{ 1634 return cpu_to_node(cpupid_to_cpu(cpupid)); 1635} 1636 1637static inline bool cpupid_pid_unset(int cpupid) 1638{ 1639 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1640} 1641 1642static inline bool cpupid_cpu_unset(int cpupid) 1643{ 1644 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1645} 1646 1647static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1648{ 1649 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1650} 1651 1652#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1653#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1654static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1655{ 1656 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1657} 1658 1659static inline int page_cpupid_last(struct page *page) 1660{ 1661 return page->_last_cpupid; 1662} 1663static inline void page_cpupid_reset_last(struct page *page) 1664{ 1665 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1666} 1667#else 1668static inline int page_cpupid_last(struct page *page) 1669{ 1670 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1671} 1672 1673extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1674 1675static inline void page_cpupid_reset_last(struct page *page) 1676{ 1677 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1678} 1679#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1680 1681static inline int xchg_page_access_time(struct page *page, int time) 1682{ 1683 int last_time; 1684 1685 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS); 1686 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1687} 1688 1689static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1690{ 1691 unsigned int pid_bit; 1692 1693 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1694 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) { 1695 __set_bit(pid_bit, &vma->numab_state->access_pids[1]); 1696 } 1697} 1698#else /* !CONFIG_NUMA_BALANCING */ 1699static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1700{ 1701 return page_to_nid(page); /* XXX */ 1702} 1703 1704static inline int xchg_page_access_time(struct page *page, int time) 1705{ 1706 return 0; 1707} 1708 1709static inline int page_cpupid_last(struct page *page) 1710{ 1711 return page_to_nid(page); /* XXX */ 1712} 1713 1714static inline int cpupid_to_nid(int cpupid) 1715{ 1716 return -1; 1717} 1718 1719static inline int cpupid_to_pid(int cpupid) 1720{ 1721 return -1; 1722} 1723 1724static inline int cpupid_to_cpu(int cpupid) 1725{ 1726 return -1; 1727} 1728 1729static inline int cpu_pid_to_cpupid(int nid, int pid) 1730{ 1731 return -1; 1732} 1733 1734static inline bool cpupid_pid_unset(int cpupid) 1735{ 1736 return true; 1737} 1738 1739static inline void page_cpupid_reset_last(struct page *page) 1740{ 1741} 1742 1743static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1744{ 1745 return false; 1746} 1747 1748static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1749{ 1750} 1751#endif /* CONFIG_NUMA_BALANCING */ 1752 1753#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1754 1755/* 1756 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1757 * setting tags for all pages to native kernel tag value 0xff, as the default 1758 * value 0x00 maps to 0xff. 1759 */ 1760 1761static inline u8 page_kasan_tag(const struct page *page) 1762{ 1763 u8 tag = 0xff; 1764 1765 if (kasan_enabled()) { 1766 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1767 tag ^= 0xff; 1768 } 1769 1770 return tag; 1771} 1772 1773static inline void page_kasan_tag_set(struct page *page, u8 tag) 1774{ 1775 unsigned long old_flags, flags; 1776 1777 if (!kasan_enabled()) 1778 return; 1779 1780 tag ^= 0xff; 1781 old_flags = READ_ONCE(page->flags); 1782 do { 1783 flags = old_flags; 1784 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1785 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1786 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1787} 1788 1789static inline void page_kasan_tag_reset(struct page *page) 1790{ 1791 if (kasan_enabled()) 1792 page_kasan_tag_set(page, 0xff); 1793} 1794 1795#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1796 1797static inline u8 page_kasan_tag(const struct page *page) 1798{ 1799 return 0xff; 1800} 1801 1802static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1803static inline void page_kasan_tag_reset(struct page *page) { } 1804 1805#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1806 1807static inline struct zone *page_zone(const struct page *page) 1808{ 1809 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1810} 1811 1812static inline pg_data_t *page_pgdat(const struct page *page) 1813{ 1814 return NODE_DATA(page_to_nid(page)); 1815} 1816 1817static inline struct zone *folio_zone(const struct folio *folio) 1818{ 1819 return page_zone(&folio->page); 1820} 1821 1822static inline pg_data_t *folio_pgdat(const struct folio *folio) 1823{ 1824 return page_pgdat(&folio->page); 1825} 1826 1827#ifdef SECTION_IN_PAGE_FLAGS 1828static inline void set_page_section(struct page *page, unsigned long section) 1829{ 1830 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1831 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1832} 1833 1834static inline unsigned long page_to_section(const struct page *page) 1835{ 1836 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1837} 1838#endif 1839 1840/** 1841 * folio_pfn - Return the Page Frame Number of a folio. 1842 * @folio: The folio. 1843 * 1844 * A folio may contain multiple pages. The pages have consecutive 1845 * Page Frame Numbers. 1846 * 1847 * Return: The Page Frame Number of the first page in the folio. 1848 */ 1849static inline unsigned long folio_pfn(struct folio *folio) 1850{ 1851 return page_to_pfn(&folio->page); 1852} 1853 1854static inline struct folio *pfn_folio(unsigned long pfn) 1855{ 1856 return page_folio(pfn_to_page(pfn)); 1857} 1858 1859/** 1860 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1861 * @folio: The folio. 1862 * 1863 * This function checks if a folio has been pinned via a call to 1864 * a function in the pin_user_pages() family. 1865 * 1866 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1867 * because it means "definitely not pinned for DMA", but true means "probably 1868 * pinned for DMA, but possibly a false positive due to having at least 1869 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1870 * 1871 * False positives are OK, because: a) it's unlikely for a folio to 1872 * get that many refcounts, and b) all the callers of this routine are 1873 * expected to be able to deal gracefully with a false positive. 1874 * 1875 * For large folios, the result will be exactly correct. That's because 1876 * we have more tracking data available: the _pincount field is used 1877 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1878 * 1879 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1880 * 1881 * Return: True, if it is likely that the page has been "dma-pinned". 1882 * False, if the page is definitely not dma-pinned. 1883 */ 1884static inline bool folio_maybe_dma_pinned(struct folio *folio) 1885{ 1886 if (folio_test_large(folio)) 1887 return atomic_read(&folio->_pincount) > 0; 1888 1889 /* 1890 * folio_ref_count() is signed. If that refcount overflows, then 1891 * folio_ref_count() returns a negative value, and callers will avoid 1892 * further incrementing the refcount. 1893 * 1894 * Here, for that overflow case, use the sign bit to count a little 1895 * bit higher via unsigned math, and thus still get an accurate result. 1896 */ 1897 return ((unsigned int)folio_ref_count(folio)) >= 1898 GUP_PIN_COUNTING_BIAS; 1899} 1900 1901static inline bool page_maybe_dma_pinned(struct page *page) 1902{ 1903 return folio_maybe_dma_pinned(page_folio(page)); 1904} 1905 1906/* 1907 * This should most likely only be called during fork() to see whether we 1908 * should break the cow immediately for an anon page on the src mm. 1909 * 1910 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1911 */ 1912static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1913 struct page *page) 1914{ 1915 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1916 1917 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1918 return false; 1919 1920 return page_maybe_dma_pinned(page); 1921} 1922 1923/** 1924 * is_zero_page - Query if a page is a zero page 1925 * @page: The page to query 1926 * 1927 * This returns true if @page is one of the permanent zero pages. 1928 */ 1929static inline bool is_zero_page(const struct page *page) 1930{ 1931 return is_zero_pfn(page_to_pfn(page)); 1932} 1933 1934/** 1935 * is_zero_folio - Query if a folio is a zero page 1936 * @folio: The folio to query 1937 * 1938 * This returns true if @folio is one of the permanent zero pages. 1939 */ 1940static inline bool is_zero_folio(const struct folio *folio) 1941{ 1942 return is_zero_page(&folio->page); 1943} 1944 1945/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1946#ifdef CONFIG_MIGRATION 1947static inline bool folio_is_longterm_pinnable(struct folio *folio) 1948{ 1949#ifdef CONFIG_CMA 1950 int mt = folio_migratetype(folio); 1951 1952 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1953 return false; 1954#endif 1955 /* The zero page can be "pinned" but gets special handling. */ 1956 if (is_zero_folio(folio)) 1957 return true; 1958 1959 /* Coherent device memory must always allow eviction. */ 1960 if (folio_is_device_coherent(folio)) 1961 return false; 1962 1963 /* Otherwise, non-movable zone folios can be pinned. */ 1964 return !folio_is_zone_movable(folio); 1965 1966} 1967#else 1968static inline bool folio_is_longterm_pinnable(struct folio *folio) 1969{ 1970 return true; 1971} 1972#endif 1973 1974static inline void set_page_zone(struct page *page, enum zone_type zone) 1975{ 1976 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1977 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1978} 1979 1980static inline void set_page_node(struct page *page, unsigned long node) 1981{ 1982 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1983 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1984} 1985 1986static inline void set_page_links(struct page *page, enum zone_type zone, 1987 unsigned long node, unsigned long pfn) 1988{ 1989 set_page_zone(page, zone); 1990 set_page_node(page, node); 1991#ifdef SECTION_IN_PAGE_FLAGS 1992 set_page_section(page, pfn_to_section_nr(pfn)); 1993#endif 1994} 1995 1996/** 1997 * folio_nr_pages - The number of pages in the folio. 1998 * @folio: The folio. 1999 * 2000 * Return: A positive power of two. 2001 */ 2002static inline long folio_nr_pages(struct folio *folio) 2003{ 2004 if (!folio_test_large(folio)) 2005 return 1; 2006#ifdef CONFIG_64BIT 2007 return folio->_folio_nr_pages; 2008#else 2009 return 1L << folio->_folio_order; 2010#endif 2011} 2012 2013/* 2014 * compound_nr() returns the number of pages in this potentially compound 2015 * page. compound_nr() can be called on a tail page, and is defined to 2016 * return 1 in that case. 2017 */ 2018static inline unsigned long compound_nr(struct page *page) 2019{ 2020 struct folio *folio = (struct folio *)page; 2021 2022 if (!test_bit(PG_head, &folio->flags)) 2023 return 1; 2024#ifdef CONFIG_64BIT 2025 return folio->_folio_nr_pages; 2026#else 2027 return 1L << folio->_folio_order; 2028#endif 2029} 2030 2031/** 2032 * thp_nr_pages - The number of regular pages in this huge page. 2033 * @page: The head page of a huge page. 2034 */ 2035static inline int thp_nr_pages(struct page *page) 2036{ 2037 return folio_nr_pages((struct folio *)page); 2038} 2039 2040/** 2041 * folio_next - Move to the next physical folio. 2042 * @folio: The folio we're currently operating on. 2043 * 2044 * If you have physically contiguous memory which may span more than 2045 * one folio (eg a &struct bio_vec), use this function to move from one 2046 * folio to the next. Do not use it if the memory is only virtually 2047 * contiguous as the folios are almost certainly not adjacent to each 2048 * other. This is the folio equivalent to writing ``page++``. 2049 * 2050 * Context: We assume that the folios are refcounted and/or locked at a 2051 * higher level and do not adjust the reference counts. 2052 * Return: The next struct folio. 2053 */ 2054static inline struct folio *folio_next(struct folio *folio) 2055{ 2056 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2057} 2058 2059/** 2060 * folio_shift - The size of the memory described by this folio. 2061 * @folio: The folio. 2062 * 2063 * A folio represents a number of bytes which is a power-of-two in size. 2064 * This function tells you which power-of-two the folio is. See also 2065 * folio_size() and folio_order(). 2066 * 2067 * Context: The caller should have a reference on the folio to prevent 2068 * it from being split. It is not necessary for the folio to be locked. 2069 * Return: The base-2 logarithm of the size of this folio. 2070 */ 2071static inline unsigned int folio_shift(struct folio *folio) 2072{ 2073 return PAGE_SHIFT + folio_order(folio); 2074} 2075 2076/** 2077 * folio_size - The number of bytes in a folio. 2078 * @folio: The folio. 2079 * 2080 * Context: The caller should have a reference on the folio to prevent 2081 * it from being split. It is not necessary for the folio to be locked. 2082 * Return: The number of bytes in this folio. 2083 */ 2084static inline size_t folio_size(struct folio *folio) 2085{ 2086 return PAGE_SIZE << folio_order(folio); 2087} 2088 2089/** 2090 * folio_estimated_sharers - Estimate the number of sharers of a folio. 2091 * @folio: The folio. 2092 * 2093 * folio_estimated_sharers() aims to serve as a function to efficiently 2094 * estimate the number of processes sharing a folio. This is done by 2095 * looking at the precise mapcount of the first subpage in the folio, and 2096 * assuming the other subpages are the same. This may not be true for large 2097 * folios. If you want exact mapcounts for exact calculations, look at 2098 * page_mapcount() or folio_total_mapcount(). 2099 * 2100 * Return: The estimated number of processes sharing a folio. 2101 */ 2102static inline int folio_estimated_sharers(struct folio *folio) 2103{ 2104 return page_mapcount(folio_page(folio, 0)); 2105} 2106 2107#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2108static inline int arch_make_page_accessible(struct page *page) 2109{ 2110 return 0; 2111} 2112#endif 2113 2114#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2115static inline int arch_make_folio_accessible(struct folio *folio) 2116{ 2117 int ret; 2118 long i, nr = folio_nr_pages(folio); 2119 2120 for (i = 0; i < nr; i++) { 2121 ret = arch_make_page_accessible(folio_page(folio, i)); 2122 if (ret) 2123 break; 2124 } 2125 2126 return ret; 2127} 2128#endif 2129 2130/* 2131 * Some inline functions in vmstat.h depend on page_zone() 2132 */ 2133#include <linux/vmstat.h> 2134 2135static __always_inline void *lowmem_page_address(const struct page *page) 2136{ 2137 return page_to_virt(page); 2138} 2139 2140#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2141#define HASHED_PAGE_VIRTUAL 2142#endif 2143 2144#if defined(WANT_PAGE_VIRTUAL) 2145static inline void *page_address(const struct page *page) 2146{ 2147 return page->virtual; 2148} 2149static inline void set_page_address(struct page *page, void *address) 2150{ 2151 page->virtual = address; 2152} 2153#define page_address_init() do { } while(0) 2154#endif 2155 2156#if defined(HASHED_PAGE_VIRTUAL) 2157void *page_address(const struct page *page); 2158void set_page_address(struct page *page, void *virtual); 2159void page_address_init(void); 2160#endif 2161 2162#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2163#define page_address(page) lowmem_page_address(page) 2164#define set_page_address(page, address) do { } while(0) 2165#define page_address_init() do { } while(0) 2166#endif 2167 2168static inline void *folio_address(const struct folio *folio) 2169{ 2170 return page_address(&folio->page); 2171} 2172 2173extern void *page_rmapping(struct page *page); 2174extern pgoff_t __page_file_index(struct page *page); 2175 2176/* 2177 * Return the pagecache index of the passed page. Regular pagecache pages 2178 * use ->index whereas swapcache pages use swp_offset(->private) 2179 */ 2180static inline pgoff_t page_index(struct page *page) 2181{ 2182 if (unlikely(PageSwapCache(page))) 2183 return __page_file_index(page); 2184 return page->index; 2185} 2186 2187/* 2188 * Return true only if the page has been allocated with 2189 * ALLOC_NO_WATERMARKS and the low watermark was not 2190 * met implying that the system is under some pressure. 2191 */ 2192static inline bool page_is_pfmemalloc(const struct page *page) 2193{ 2194 /* 2195 * lru.next has bit 1 set if the page is allocated from the 2196 * pfmemalloc reserves. Callers may simply overwrite it if 2197 * they do not need to preserve that information. 2198 */ 2199 return (uintptr_t)page->lru.next & BIT(1); 2200} 2201 2202/* 2203 * Return true only if the folio has been allocated with 2204 * ALLOC_NO_WATERMARKS and the low watermark was not 2205 * met implying that the system is under some pressure. 2206 */ 2207static inline bool folio_is_pfmemalloc(const struct folio *folio) 2208{ 2209 /* 2210 * lru.next has bit 1 set if the page is allocated from the 2211 * pfmemalloc reserves. Callers may simply overwrite it if 2212 * they do not need to preserve that information. 2213 */ 2214 return (uintptr_t)folio->lru.next & BIT(1); 2215} 2216 2217/* 2218 * Only to be called by the page allocator on a freshly allocated 2219 * page. 2220 */ 2221static inline void set_page_pfmemalloc(struct page *page) 2222{ 2223 page->lru.next = (void *)BIT(1); 2224} 2225 2226static inline void clear_page_pfmemalloc(struct page *page) 2227{ 2228 page->lru.next = NULL; 2229} 2230 2231/* 2232 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2233 */ 2234extern void pagefault_out_of_memory(void); 2235 2236#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2237#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2238#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2239 2240/* 2241 * Flags passed to show_mem() and show_free_areas() to suppress output in 2242 * various contexts. 2243 */ 2244#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 2245 2246extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 2247static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask) 2248{ 2249 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1); 2250} 2251 2252/* 2253 * Parameter block passed down to zap_pte_range in exceptional cases. 2254 */ 2255struct zap_details { 2256 struct folio *single_folio; /* Locked folio to be unmapped */ 2257 bool even_cows; /* Zap COWed private pages too? */ 2258 zap_flags_t zap_flags; /* Extra flags for zapping */ 2259}; 2260 2261/* 2262 * Whether to drop the pte markers, for example, the uffd-wp information for 2263 * file-backed memory. This should only be specified when we will completely 2264 * drop the page in the mm, either by truncation or unmapping of the vma. By 2265 * default, the flag is not set. 2266 */ 2267#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2268/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2269#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2270 2271#ifdef CONFIG_SCHED_MM_CID 2272void sched_mm_cid_before_execve(struct task_struct *t); 2273void sched_mm_cid_after_execve(struct task_struct *t); 2274void sched_mm_cid_fork(struct task_struct *t); 2275void sched_mm_cid_exit_signals(struct task_struct *t); 2276static inline int task_mm_cid(struct task_struct *t) 2277{ 2278 return t->mm_cid; 2279} 2280#else 2281static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2282static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2283static inline void sched_mm_cid_fork(struct task_struct *t) { } 2284static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2285static inline int task_mm_cid(struct task_struct *t) 2286{ 2287 /* 2288 * Use the processor id as a fall-back when the mm cid feature is 2289 * disabled. This provides functional per-cpu data structure accesses 2290 * in user-space, althrough it won't provide the memory usage benefits. 2291 */ 2292 return raw_smp_processor_id(); 2293} 2294#endif 2295 2296#ifdef CONFIG_MMU 2297extern bool can_do_mlock(void); 2298#else 2299static inline bool can_do_mlock(void) { return false; } 2300#endif 2301extern int user_shm_lock(size_t, struct ucounts *); 2302extern void user_shm_unlock(size_t, struct ucounts *); 2303 2304struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2305 pte_t pte); 2306struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2307 pte_t pte); 2308struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2309 pmd_t pmd); 2310 2311void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2312 unsigned long size); 2313void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2314 unsigned long size, struct zap_details *details); 2315static inline void zap_vma_pages(struct vm_area_struct *vma) 2316{ 2317 zap_page_range_single(vma, vma->vm_start, 2318 vma->vm_end - vma->vm_start, NULL); 2319} 2320void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 2321 struct vm_area_struct *start_vma, unsigned long start, 2322 unsigned long end, bool mm_wr_locked); 2323 2324struct mmu_notifier_range; 2325 2326void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2327 unsigned long end, unsigned long floor, unsigned long ceiling); 2328int 2329copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2330int follow_pte(struct mm_struct *mm, unsigned long address, 2331 pte_t **ptepp, spinlock_t **ptlp); 2332int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2333 unsigned long *pfn); 2334int follow_phys(struct vm_area_struct *vma, unsigned long address, 2335 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2336int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2337 void *buf, int len, int write); 2338 2339extern void truncate_pagecache(struct inode *inode, loff_t new); 2340extern void truncate_setsize(struct inode *inode, loff_t newsize); 2341void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2342void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2343int generic_error_remove_page(struct address_space *mapping, struct page *page); 2344 2345struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2346 unsigned long address, struct pt_regs *regs); 2347 2348#ifdef CONFIG_MMU 2349extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2350 unsigned long address, unsigned int flags, 2351 struct pt_regs *regs); 2352extern int fixup_user_fault(struct mm_struct *mm, 2353 unsigned long address, unsigned int fault_flags, 2354 bool *unlocked); 2355void unmap_mapping_pages(struct address_space *mapping, 2356 pgoff_t start, pgoff_t nr, bool even_cows); 2357void unmap_mapping_range(struct address_space *mapping, 2358 loff_t const holebegin, loff_t const holelen, int even_cows); 2359#else 2360static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2361 unsigned long address, unsigned int flags, 2362 struct pt_regs *regs) 2363{ 2364 /* should never happen if there's no MMU */ 2365 BUG(); 2366 return VM_FAULT_SIGBUS; 2367} 2368static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2369 unsigned int fault_flags, bool *unlocked) 2370{ 2371 /* should never happen if there's no MMU */ 2372 BUG(); 2373 return -EFAULT; 2374} 2375static inline void unmap_mapping_pages(struct address_space *mapping, 2376 pgoff_t start, pgoff_t nr, bool even_cows) { } 2377static inline void unmap_mapping_range(struct address_space *mapping, 2378 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2379#endif 2380 2381static inline void unmap_shared_mapping_range(struct address_space *mapping, 2382 loff_t const holebegin, loff_t const holelen) 2383{ 2384 unmap_mapping_range(mapping, holebegin, holelen, 0); 2385} 2386 2387static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2388 unsigned long addr); 2389 2390extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2391 void *buf, int len, unsigned int gup_flags); 2392extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2393 void *buf, int len, unsigned int gup_flags); 2394extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 2395 void *buf, int len, unsigned int gup_flags); 2396 2397long get_user_pages_remote(struct mm_struct *mm, 2398 unsigned long start, unsigned long nr_pages, 2399 unsigned int gup_flags, struct page **pages, 2400 int *locked); 2401long pin_user_pages_remote(struct mm_struct *mm, 2402 unsigned long start, unsigned long nr_pages, 2403 unsigned int gup_flags, struct page **pages, 2404 int *locked); 2405 2406static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2407 unsigned long addr, 2408 int gup_flags, 2409 struct vm_area_struct **vmap) 2410{ 2411 struct page *page; 2412 struct vm_area_struct *vma; 2413 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2414 2415 if (got < 0) 2416 return ERR_PTR(got); 2417 if (got == 0) 2418 return NULL; 2419 2420 vma = vma_lookup(mm, addr); 2421 if (WARN_ON_ONCE(!vma)) { 2422 put_page(page); 2423 return ERR_PTR(-EINVAL); 2424 } 2425 2426 *vmap = vma; 2427 return page; 2428} 2429 2430long get_user_pages(unsigned long start, unsigned long nr_pages, 2431 unsigned int gup_flags, struct page **pages); 2432long pin_user_pages(unsigned long start, unsigned long nr_pages, 2433 unsigned int gup_flags, struct page **pages); 2434long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2435 struct page **pages, unsigned int gup_flags); 2436long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2437 struct page **pages, unsigned int gup_flags); 2438 2439int get_user_pages_fast(unsigned long start, int nr_pages, 2440 unsigned int gup_flags, struct page **pages); 2441int pin_user_pages_fast(unsigned long start, int nr_pages, 2442 unsigned int gup_flags, struct page **pages); 2443void folio_add_pin(struct folio *folio); 2444 2445int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2446int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2447 struct task_struct *task, bool bypass_rlim); 2448 2449struct kvec; 2450struct page *get_dump_page(unsigned long addr); 2451 2452bool folio_mark_dirty(struct folio *folio); 2453bool set_page_dirty(struct page *page); 2454int set_page_dirty_lock(struct page *page); 2455 2456int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2457 2458extern unsigned long move_page_tables(struct vm_area_struct *vma, 2459 unsigned long old_addr, struct vm_area_struct *new_vma, 2460 unsigned long new_addr, unsigned long len, 2461 bool need_rmap_locks); 2462 2463/* 2464 * Flags used by change_protection(). For now we make it a bitmap so 2465 * that we can pass in multiple flags just like parameters. However 2466 * for now all the callers are only use one of the flags at the same 2467 * time. 2468 */ 2469/* 2470 * Whether we should manually check if we can map individual PTEs writable, 2471 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2472 * PTEs automatically in a writable mapping. 2473 */ 2474#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2475/* Whether this protection change is for NUMA hints */ 2476#define MM_CP_PROT_NUMA (1UL << 1) 2477/* Whether this change is for write protecting */ 2478#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2479#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2480#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2481 MM_CP_UFFD_WP_RESOLVE) 2482 2483bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2484int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2485static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2486{ 2487 /* 2488 * We want to check manually if we can change individual PTEs writable 2489 * if we can't do that automatically for all PTEs in a mapping. For 2490 * private mappings, that's always the case when we have write 2491 * permissions as we properly have to handle COW. 2492 */ 2493 if (vma->vm_flags & VM_SHARED) 2494 return vma_wants_writenotify(vma, vma->vm_page_prot); 2495 return !!(vma->vm_flags & VM_WRITE); 2496 2497} 2498bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2499 pte_t pte); 2500extern long change_protection(struct mmu_gather *tlb, 2501 struct vm_area_struct *vma, unsigned long start, 2502 unsigned long end, unsigned long cp_flags); 2503extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2504 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2505 unsigned long start, unsigned long end, unsigned long newflags); 2506 2507/* 2508 * doesn't attempt to fault and will return short. 2509 */ 2510int get_user_pages_fast_only(unsigned long start, int nr_pages, 2511 unsigned int gup_flags, struct page **pages); 2512 2513static inline bool get_user_page_fast_only(unsigned long addr, 2514 unsigned int gup_flags, struct page **pagep) 2515{ 2516 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2517} 2518/* 2519 * per-process(per-mm_struct) statistics. 2520 */ 2521static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2522{ 2523 return percpu_counter_read_positive(&mm->rss_stat[member]); 2524} 2525 2526void mm_trace_rss_stat(struct mm_struct *mm, int member); 2527 2528static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2529{ 2530 percpu_counter_add(&mm->rss_stat[member], value); 2531 2532 mm_trace_rss_stat(mm, member); 2533} 2534 2535static inline void inc_mm_counter(struct mm_struct *mm, int member) 2536{ 2537 percpu_counter_inc(&mm->rss_stat[member]); 2538 2539 mm_trace_rss_stat(mm, member); 2540} 2541 2542static inline void dec_mm_counter(struct mm_struct *mm, int member) 2543{ 2544 percpu_counter_dec(&mm->rss_stat[member]); 2545 2546 mm_trace_rss_stat(mm, member); 2547} 2548 2549/* Optimized variant when page is already known not to be PageAnon */ 2550static inline int mm_counter_file(struct page *page) 2551{ 2552 if (PageSwapBacked(page)) 2553 return MM_SHMEMPAGES; 2554 return MM_FILEPAGES; 2555} 2556 2557static inline int mm_counter(struct page *page) 2558{ 2559 if (PageAnon(page)) 2560 return MM_ANONPAGES; 2561 return mm_counter_file(page); 2562} 2563 2564static inline unsigned long get_mm_rss(struct mm_struct *mm) 2565{ 2566 return get_mm_counter(mm, MM_FILEPAGES) + 2567 get_mm_counter(mm, MM_ANONPAGES) + 2568 get_mm_counter(mm, MM_SHMEMPAGES); 2569} 2570 2571static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2572{ 2573 return max(mm->hiwater_rss, get_mm_rss(mm)); 2574} 2575 2576static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2577{ 2578 return max(mm->hiwater_vm, mm->total_vm); 2579} 2580 2581static inline void update_hiwater_rss(struct mm_struct *mm) 2582{ 2583 unsigned long _rss = get_mm_rss(mm); 2584 2585 if ((mm)->hiwater_rss < _rss) 2586 (mm)->hiwater_rss = _rss; 2587} 2588 2589static inline void update_hiwater_vm(struct mm_struct *mm) 2590{ 2591 if (mm->hiwater_vm < mm->total_vm) 2592 mm->hiwater_vm = mm->total_vm; 2593} 2594 2595static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2596{ 2597 mm->hiwater_rss = get_mm_rss(mm); 2598} 2599 2600static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2601 struct mm_struct *mm) 2602{ 2603 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2604 2605 if (*maxrss < hiwater_rss) 2606 *maxrss = hiwater_rss; 2607} 2608 2609#if defined(SPLIT_RSS_COUNTING) 2610void sync_mm_rss(struct mm_struct *mm); 2611#else 2612static inline void sync_mm_rss(struct mm_struct *mm) 2613{ 2614} 2615#endif 2616 2617#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2618static inline int pte_special(pte_t pte) 2619{ 2620 return 0; 2621} 2622 2623static inline pte_t pte_mkspecial(pte_t pte) 2624{ 2625 return pte; 2626} 2627#endif 2628 2629#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2630static inline int pte_devmap(pte_t pte) 2631{ 2632 return 0; 2633} 2634#endif 2635 2636extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2637 spinlock_t **ptl); 2638static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2639 spinlock_t **ptl) 2640{ 2641 pte_t *ptep; 2642 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2643 return ptep; 2644} 2645 2646#ifdef __PAGETABLE_P4D_FOLDED 2647static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2648 unsigned long address) 2649{ 2650 return 0; 2651} 2652#else 2653int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2654#endif 2655 2656#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2657static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2658 unsigned long address) 2659{ 2660 return 0; 2661} 2662static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2663static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2664 2665#else 2666int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2667 2668static inline void mm_inc_nr_puds(struct mm_struct *mm) 2669{ 2670 if (mm_pud_folded(mm)) 2671 return; 2672 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2673} 2674 2675static inline void mm_dec_nr_puds(struct mm_struct *mm) 2676{ 2677 if (mm_pud_folded(mm)) 2678 return; 2679 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2680} 2681#endif 2682 2683#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2684static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2685 unsigned long address) 2686{ 2687 return 0; 2688} 2689 2690static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2691static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2692 2693#else 2694int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2695 2696static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2697{ 2698 if (mm_pmd_folded(mm)) 2699 return; 2700 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2701} 2702 2703static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2704{ 2705 if (mm_pmd_folded(mm)) 2706 return; 2707 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2708} 2709#endif 2710 2711#ifdef CONFIG_MMU 2712static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2713{ 2714 atomic_long_set(&mm->pgtables_bytes, 0); 2715} 2716 2717static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2718{ 2719 return atomic_long_read(&mm->pgtables_bytes); 2720} 2721 2722static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2723{ 2724 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2725} 2726 2727static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2728{ 2729 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2730} 2731#else 2732 2733static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2734static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2735{ 2736 return 0; 2737} 2738 2739static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2740static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2741#endif 2742 2743int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2744int __pte_alloc_kernel(pmd_t *pmd); 2745 2746#if defined(CONFIG_MMU) 2747 2748static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2749 unsigned long address) 2750{ 2751 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2752 NULL : p4d_offset(pgd, address); 2753} 2754 2755static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2756 unsigned long address) 2757{ 2758 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2759 NULL : pud_offset(p4d, address); 2760} 2761 2762static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2763{ 2764 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2765 NULL: pmd_offset(pud, address); 2766} 2767#endif /* CONFIG_MMU */ 2768 2769#if USE_SPLIT_PTE_PTLOCKS 2770#if ALLOC_SPLIT_PTLOCKS 2771void __init ptlock_cache_init(void); 2772extern bool ptlock_alloc(struct page *page); 2773extern void ptlock_free(struct page *page); 2774 2775static inline spinlock_t *ptlock_ptr(struct page *page) 2776{ 2777 return page->ptl; 2778} 2779#else /* ALLOC_SPLIT_PTLOCKS */ 2780static inline void ptlock_cache_init(void) 2781{ 2782} 2783 2784static inline bool ptlock_alloc(struct page *page) 2785{ 2786 return true; 2787} 2788 2789static inline void ptlock_free(struct page *page) 2790{ 2791} 2792 2793static inline spinlock_t *ptlock_ptr(struct page *page) 2794{ 2795 return &page->ptl; 2796} 2797#endif /* ALLOC_SPLIT_PTLOCKS */ 2798 2799static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2800{ 2801 return ptlock_ptr(pmd_page(*pmd)); 2802} 2803 2804static inline bool ptlock_init(struct page *page) 2805{ 2806 /* 2807 * prep_new_page() initialize page->private (and therefore page->ptl) 2808 * with 0. Make sure nobody took it in use in between. 2809 * 2810 * It can happen if arch try to use slab for page table allocation: 2811 * slab code uses page->slab_cache, which share storage with page->ptl. 2812 */ 2813 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2814 if (!ptlock_alloc(page)) 2815 return false; 2816 spin_lock_init(ptlock_ptr(page)); 2817 return true; 2818} 2819 2820#else /* !USE_SPLIT_PTE_PTLOCKS */ 2821/* 2822 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2823 */ 2824static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2825{ 2826 return &mm->page_table_lock; 2827} 2828static inline void ptlock_cache_init(void) {} 2829static inline bool ptlock_init(struct page *page) { return true; } 2830static inline void ptlock_free(struct page *page) {} 2831#endif /* USE_SPLIT_PTE_PTLOCKS */ 2832 2833static inline bool pgtable_pte_page_ctor(struct page *page) 2834{ 2835 if (!ptlock_init(page)) 2836 return false; 2837 __SetPageTable(page); 2838 inc_lruvec_page_state(page, NR_PAGETABLE); 2839 return true; 2840} 2841 2842static inline void pgtable_pte_page_dtor(struct page *page) 2843{ 2844 ptlock_free(page); 2845 __ClearPageTable(page); 2846 dec_lruvec_page_state(page, NR_PAGETABLE); 2847} 2848 2849pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2850static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2851{ 2852 return __pte_offset_map(pmd, addr, NULL); 2853} 2854 2855pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2856 unsigned long addr, spinlock_t **ptlp); 2857static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2858 unsigned long addr, spinlock_t **ptlp) 2859{ 2860 pte_t *pte; 2861 2862 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2863 return pte; 2864} 2865 2866pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 2867 unsigned long addr, spinlock_t **ptlp); 2868 2869#define pte_unmap_unlock(pte, ptl) do { \ 2870 spin_unlock(ptl); \ 2871 pte_unmap(pte); \ 2872} while (0) 2873 2874#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2875 2876#define pte_alloc_map(mm, pmd, address) \ 2877 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2878 2879#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2880 (pte_alloc(mm, pmd) ? \ 2881 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2882 2883#define pte_alloc_kernel(pmd, address) \ 2884 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2885 NULL: pte_offset_kernel(pmd, address)) 2886 2887#if USE_SPLIT_PMD_PTLOCKS 2888 2889static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2890{ 2891 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2892 return virt_to_page((void *)((unsigned long) pmd & mask)); 2893} 2894 2895static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2896{ 2897 return ptlock_ptr(pmd_pgtable_page(pmd)); 2898} 2899 2900static inline bool pmd_ptlock_init(struct page *page) 2901{ 2902#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2903 page->pmd_huge_pte = NULL; 2904#endif 2905 return ptlock_init(page); 2906} 2907 2908static inline void pmd_ptlock_free(struct page *page) 2909{ 2910#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2911 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2912#endif 2913 ptlock_free(page); 2914} 2915 2916#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte) 2917 2918#else 2919 2920static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2921{ 2922 return &mm->page_table_lock; 2923} 2924 2925static inline bool pmd_ptlock_init(struct page *page) { return true; } 2926static inline void pmd_ptlock_free(struct page *page) {} 2927 2928#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2929 2930#endif 2931 2932static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2933{ 2934 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2935 spin_lock(ptl); 2936 return ptl; 2937} 2938 2939static inline bool pgtable_pmd_page_ctor(struct page *page) 2940{ 2941 if (!pmd_ptlock_init(page)) 2942 return false; 2943 __SetPageTable(page); 2944 inc_lruvec_page_state(page, NR_PAGETABLE); 2945 return true; 2946} 2947 2948static inline void pgtable_pmd_page_dtor(struct page *page) 2949{ 2950 pmd_ptlock_free(page); 2951 __ClearPageTable(page); 2952 dec_lruvec_page_state(page, NR_PAGETABLE); 2953} 2954 2955/* 2956 * No scalability reason to split PUD locks yet, but follow the same pattern 2957 * as the PMD locks to make it easier if we decide to. The VM should not be 2958 * considered ready to switch to split PUD locks yet; there may be places 2959 * which need to be converted from page_table_lock. 2960 */ 2961static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2962{ 2963 return &mm->page_table_lock; 2964} 2965 2966static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2967{ 2968 spinlock_t *ptl = pud_lockptr(mm, pud); 2969 2970 spin_lock(ptl); 2971 return ptl; 2972} 2973 2974extern void __init pagecache_init(void); 2975extern void free_initmem(void); 2976 2977/* 2978 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2979 * into the buddy system. The freed pages will be poisoned with pattern 2980 * "poison" if it's within range [0, UCHAR_MAX]. 2981 * Return pages freed into the buddy system. 2982 */ 2983extern unsigned long free_reserved_area(void *start, void *end, 2984 int poison, const char *s); 2985 2986extern void adjust_managed_page_count(struct page *page, long count); 2987 2988extern void reserve_bootmem_region(phys_addr_t start, 2989 phys_addr_t end, int nid); 2990 2991/* Free the reserved page into the buddy system, so it gets managed. */ 2992static inline void free_reserved_page(struct page *page) 2993{ 2994 ClearPageReserved(page); 2995 init_page_count(page); 2996 __free_page(page); 2997 adjust_managed_page_count(page, 1); 2998} 2999#define free_highmem_page(page) free_reserved_page(page) 3000 3001static inline void mark_page_reserved(struct page *page) 3002{ 3003 SetPageReserved(page); 3004 adjust_managed_page_count(page, -1); 3005} 3006 3007/* 3008 * Default method to free all the __init memory into the buddy system. 3009 * The freed pages will be poisoned with pattern "poison" if it's within 3010 * range [0, UCHAR_MAX]. 3011 * Return pages freed into the buddy system. 3012 */ 3013static inline unsigned long free_initmem_default(int poison) 3014{ 3015 extern char __init_begin[], __init_end[]; 3016 3017 return free_reserved_area(&__init_begin, &__init_end, 3018 poison, "unused kernel image (initmem)"); 3019} 3020 3021static inline unsigned long get_num_physpages(void) 3022{ 3023 int nid; 3024 unsigned long phys_pages = 0; 3025 3026 for_each_online_node(nid) 3027 phys_pages += node_present_pages(nid); 3028 3029 return phys_pages; 3030} 3031 3032/* 3033 * Using memblock node mappings, an architecture may initialise its 3034 * zones, allocate the backing mem_map and account for memory holes in an 3035 * architecture independent manner. 3036 * 3037 * An architecture is expected to register range of page frames backed by 3038 * physical memory with memblock_add[_node]() before calling 3039 * free_area_init() passing in the PFN each zone ends at. At a basic 3040 * usage, an architecture is expected to do something like 3041 * 3042 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3043 * max_highmem_pfn}; 3044 * for_each_valid_physical_page_range() 3045 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3046 * free_area_init(max_zone_pfns); 3047 */ 3048void free_area_init(unsigned long *max_zone_pfn); 3049unsigned long node_map_pfn_alignment(void); 3050unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 3051 unsigned long end_pfn); 3052extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3053 unsigned long end_pfn); 3054extern void get_pfn_range_for_nid(unsigned int nid, 3055 unsigned long *start_pfn, unsigned long *end_pfn); 3056 3057#ifndef CONFIG_NUMA 3058static inline int early_pfn_to_nid(unsigned long pfn) 3059{ 3060 return 0; 3061} 3062#else 3063/* please see mm/page_alloc.c */ 3064extern int __meminit early_pfn_to_nid(unsigned long pfn); 3065#endif 3066 3067extern void set_dma_reserve(unsigned long new_dma_reserve); 3068extern void mem_init(void); 3069extern void __init mmap_init(void); 3070 3071extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3072static inline void show_mem(unsigned int flags, nodemask_t *nodemask) 3073{ 3074 __show_mem(flags, nodemask, MAX_NR_ZONES - 1); 3075} 3076extern long si_mem_available(void); 3077extern void si_meminfo(struct sysinfo * val); 3078extern void si_meminfo_node(struct sysinfo *val, int nid); 3079#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 3080extern unsigned long arch_reserved_kernel_pages(void); 3081#endif 3082 3083extern __printf(3, 4) 3084void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3085 3086extern void setup_per_cpu_pageset(void); 3087 3088/* nommu.c */ 3089extern atomic_long_t mmap_pages_allocated; 3090extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3091 3092/* interval_tree.c */ 3093void vma_interval_tree_insert(struct vm_area_struct *node, 3094 struct rb_root_cached *root); 3095void vma_interval_tree_insert_after(struct vm_area_struct *node, 3096 struct vm_area_struct *prev, 3097 struct rb_root_cached *root); 3098void vma_interval_tree_remove(struct vm_area_struct *node, 3099 struct rb_root_cached *root); 3100struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3101 unsigned long start, unsigned long last); 3102struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3103 unsigned long start, unsigned long last); 3104 3105#define vma_interval_tree_foreach(vma, root, start, last) \ 3106 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3107 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3108 3109void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3110 struct rb_root_cached *root); 3111void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3112 struct rb_root_cached *root); 3113struct anon_vma_chain * 3114anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3115 unsigned long start, unsigned long last); 3116struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3117 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3118#ifdef CONFIG_DEBUG_VM_RB 3119void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3120#endif 3121 3122#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3123 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3124 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3125 3126/* mmap.c */ 3127extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3128extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3129 unsigned long start, unsigned long end, pgoff_t pgoff, 3130 struct vm_area_struct *next); 3131extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3132 unsigned long start, unsigned long end, pgoff_t pgoff); 3133extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi, 3134 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, 3135 unsigned long end, unsigned long vm_flags, struct anon_vma *, 3136 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx, 3137 struct anon_vma_name *); 3138extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3139extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3140 unsigned long addr, int new_below); 3141extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3142 unsigned long addr, int new_below); 3143extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3144extern void unlink_file_vma(struct vm_area_struct *); 3145extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3146 unsigned long addr, unsigned long len, pgoff_t pgoff, 3147 bool *need_rmap_locks); 3148extern void exit_mmap(struct mm_struct *); 3149 3150static inline int check_data_rlimit(unsigned long rlim, 3151 unsigned long new, 3152 unsigned long start, 3153 unsigned long end_data, 3154 unsigned long start_data) 3155{ 3156 if (rlim < RLIM_INFINITY) { 3157 if (((new - start) + (end_data - start_data)) > rlim) 3158 return -ENOSPC; 3159 } 3160 3161 return 0; 3162} 3163 3164extern int mm_take_all_locks(struct mm_struct *mm); 3165extern void mm_drop_all_locks(struct mm_struct *mm); 3166 3167extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3168extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3169extern struct file *get_mm_exe_file(struct mm_struct *mm); 3170extern struct file *get_task_exe_file(struct task_struct *task); 3171 3172extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3173extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3174 3175extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3176 const struct vm_special_mapping *sm); 3177extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3178 unsigned long addr, unsigned long len, 3179 unsigned long flags, 3180 const struct vm_special_mapping *spec); 3181/* This is an obsolete alternative to _install_special_mapping. */ 3182extern int install_special_mapping(struct mm_struct *mm, 3183 unsigned long addr, unsigned long len, 3184 unsigned long flags, struct page **pages); 3185 3186unsigned long randomize_stack_top(unsigned long stack_top); 3187unsigned long randomize_page(unsigned long start, unsigned long range); 3188 3189extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3190 3191extern unsigned long mmap_region(struct file *file, unsigned long addr, 3192 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3193 struct list_head *uf); 3194extern unsigned long do_mmap(struct file *file, unsigned long addr, 3195 unsigned long len, unsigned long prot, unsigned long flags, 3196 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 3197extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3198 unsigned long start, size_t len, struct list_head *uf, 3199 bool unlock); 3200extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3201 struct list_head *uf); 3202extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3203 3204#ifdef CONFIG_MMU 3205extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3206 unsigned long start, unsigned long end, 3207 struct list_head *uf, bool unlock); 3208extern int __mm_populate(unsigned long addr, unsigned long len, 3209 int ignore_errors); 3210static inline void mm_populate(unsigned long addr, unsigned long len) 3211{ 3212 /* Ignore errors */ 3213 (void) __mm_populate(addr, len, 1); 3214} 3215#else 3216static inline void mm_populate(unsigned long addr, unsigned long len) {} 3217#endif 3218 3219/* These take the mm semaphore themselves */ 3220extern int __must_check vm_brk(unsigned long, unsigned long); 3221extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3222extern int vm_munmap(unsigned long, size_t); 3223extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3224 unsigned long, unsigned long, 3225 unsigned long, unsigned long); 3226 3227struct vm_unmapped_area_info { 3228#define VM_UNMAPPED_AREA_TOPDOWN 1 3229 unsigned long flags; 3230 unsigned long length; 3231 unsigned long low_limit; 3232 unsigned long high_limit; 3233 unsigned long align_mask; 3234 unsigned long align_offset; 3235}; 3236 3237extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3238 3239/* truncate.c */ 3240extern void truncate_inode_pages(struct address_space *, loff_t); 3241extern void truncate_inode_pages_range(struct address_space *, 3242 loff_t lstart, loff_t lend); 3243extern void truncate_inode_pages_final(struct address_space *); 3244 3245/* generic vm_area_ops exported for stackable file systems */ 3246extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3247extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3248 pgoff_t start_pgoff, pgoff_t end_pgoff); 3249extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3250 3251extern unsigned long stack_guard_gap; 3252/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3253int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3254struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3255 3256/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3257int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3258 3259/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3260extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3261extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3262 struct vm_area_struct **pprev); 3263 3264/* 3265 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3266 * NULL if none. Assume start_addr < end_addr. 3267 */ 3268struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3269 unsigned long start_addr, unsigned long end_addr); 3270 3271/** 3272 * vma_lookup() - Find a VMA at a specific address 3273 * @mm: The process address space. 3274 * @addr: The user address. 3275 * 3276 * Return: The vm_area_struct at the given address, %NULL otherwise. 3277 */ 3278static inline 3279struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3280{ 3281 return mtree_load(&mm->mm_mt, addr); 3282} 3283 3284static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3285{ 3286 unsigned long vm_start = vma->vm_start; 3287 3288 if (vma->vm_flags & VM_GROWSDOWN) { 3289 vm_start -= stack_guard_gap; 3290 if (vm_start > vma->vm_start) 3291 vm_start = 0; 3292 } 3293 return vm_start; 3294} 3295 3296static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3297{ 3298 unsigned long vm_end = vma->vm_end; 3299 3300 if (vma->vm_flags & VM_GROWSUP) { 3301 vm_end += stack_guard_gap; 3302 if (vm_end < vma->vm_end) 3303 vm_end = -PAGE_SIZE; 3304 } 3305 return vm_end; 3306} 3307 3308static inline unsigned long vma_pages(struct vm_area_struct *vma) 3309{ 3310 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3311} 3312 3313/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3314static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3315 unsigned long vm_start, unsigned long vm_end) 3316{ 3317 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3318 3319 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3320 vma = NULL; 3321 3322 return vma; 3323} 3324 3325static inline bool range_in_vma(struct vm_area_struct *vma, 3326 unsigned long start, unsigned long end) 3327{ 3328 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3329} 3330 3331#ifdef CONFIG_MMU 3332pgprot_t vm_get_page_prot(unsigned long vm_flags); 3333void vma_set_page_prot(struct vm_area_struct *vma); 3334#else 3335static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3336{ 3337 return __pgprot(0); 3338} 3339static inline void vma_set_page_prot(struct vm_area_struct *vma) 3340{ 3341 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3342} 3343#endif 3344 3345void vma_set_file(struct vm_area_struct *vma, struct file *file); 3346 3347#ifdef CONFIG_NUMA_BALANCING 3348unsigned long change_prot_numa(struct vm_area_struct *vma, 3349 unsigned long start, unsigned long end); 3350#endif 3351 3352struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3353 unsigned long addr); 3354int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3355 unsigned long pfn, unsigned long size, pgprot_t); 3356int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3357 unsigned long pfn, unsigned long size, pgprot_t prot); 3358int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3359int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3360 struct page **pages, unsigned long *num); 3361int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3362 unsigned long num); 3363int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3364 unsigned long num); 3365vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3366 unsigned long pfn); 3367vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3368 unsigned long pfn, pgprot_t pgprot); 3369vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3370 pfn_t pfn); 3371vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3372 unsigned long addr, pfn_t pfn); 3373int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3374 3375static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3376 unsigned long addr, struct page *page) 3377{ 3378 int err = vm_insert_page(vma, addr, page); 3379 3380 if (err == -ENOMEM) 3381 return VM_FAULT_OOM; 3382 if (err < 0 && err != -EBUSY) 3383 return VM_FAULT_SIGBUS; 3384 3385 return VM_FAULT_NOPAGE; 3386} 3387 3388#ifndef io_remap_pfn_range 3389static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3390 unsigned long addr, unsigned long pfn, 3391 unsigned long size, pgprot_t prot) 3392{ 3393 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3394} 3395#endif 3396 3397static inline vm_fault_t vmf_error(int err) 3398{ 3399 if (err == -ENOMEM) 3400 return VM_FAULT_OOM; 3401 else if (err == -EHWPOISON) 3402 return VM_FAULT_HWPOISON; 3403 return VM_FAULT_SIGBUS; 3404} 3405 3406struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3407 unsigned int foll_flags); 3408 3409static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3410{ 3411 if (vm_fault & VM_FAULT_OOM) 3412 return -ENOMEM; 3413 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3414 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3415 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3416 return -EFAULT; 3417 return 0; 3418} 3419 3420/* 3421 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3422 * a (NUMA hinting) fault is required. 3423 */ 3424static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3425 unsigned int flags) 3426{ 3427 /* 3428 * If callers don't want to honor NUMA hinting faults, no need to 3429 * determine if we would actually have to trigger a NUMA hinting fault. 3430 */ 3431 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3432 return true; 3433 3434 /* 3435 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3436 * 3437 * Requiring a fault here even for inaccessible VMAs would mean that 3438 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3439 * refuses to process NUMA hinting faults in inaccessible VMAs. 3440 */ 3441 return !vma_is_accessible(vma); 3442} 3443 3444typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3445extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3446 unsigned long size, pte_fn_t fn, void *data); 3447extern int apply_to_existing_page_range(struct mm_struct *mm, 3448 unsigned long address, unsigned long size, 3449 pte_fn_t fn, void *data); 3450 3451#ifdef CONFIG_PAGE_POISONING 3452extern void __kernel_poison_pages(struct page *page, int numpages); 3453extern void __kernel_unpoison_pages(struct page *page, int numpages); 3454extern bool _page_poisoning_enabled_early; 3455DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3456static inline bool page_poisoning_enabled(void) 3457{ 3458 return _page_poisoning_enabled_early; 3459} 3460/* 3461 * For use in fast paths after init_mem_debugging() has run, or when a 3462 * false negative result is not harmful when called too early. 3463 */ 3464static inline bool page_poisoning_enabled_static(void) 3465{ 3466 return static_branch_unlikely(&_page_poisoning_enabled); 3467} 3468static inline void kernel_poison_pages(struct page *page, int numpages) 3469{ 3470 if (page_poisoning_enabled_static()) 3471 __kernel_poison_pages(page, numpages); 3472} 3473static inline void kernel_unpoison_pages(struct page *page, int numpages) 3474{ 3475 if (page_poisoning_enabled_static()) 3476 __kernel_unpoison_pages(page, numpages); 3477} 3478#else 3479static inline bool page_poisoning_enabled(void) { return false; } 3480static inline bool page_poisoning_enabled_static(void) { return false; } 3481static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3482static inline void kernel_poison_pages(struct page *page, int numpages) { } 3483static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3484#endif 3485 3486DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3487static inline bool want_init_on_alloc(gfp_t flags) 3488{ 3489 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3490 &init_on_alloc)) 3491 return true; 3492 return flags & __GFP_ZERO; 3493} 3494 3495DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3496static inline bool want_init_on_free(void) 3497{ 3498 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3499 &init_on_free); 3500} 3501 3502extern bool _debug_pagealloc_enabled_early; 3503DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3504 3505static inline bool debug_pagealloc_enabled(void) 3506{ 3507 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3508 _debug_pagealloc_enabled_early; 3509} 3510 3511/* 3512 * For use in fast paths after init_debug_pagealloc() has run, or when a 3513 * false negative result is not harmful when called too early. 3514 */ 3515static inline bool debug_pagealloc_enabled_static(void) 3516{ 3517 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3518 return false; 3519 3520 return static_branch_unlikely(&_debug_pagealloc_enabled); 3521} 3522 3523/* 3524 * To support DEBUG_PAGEALLOC architecture must ensure that 3525 * __kernel_map_pages() never fails 3526 */ 3527extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3528#ifdef CONFIG_DEBUG_PAGEALLOC 3529static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3530{ 3531 if (debug_pagealloc_enabled_static()) 3532 __kernel_map_pages(page, numpages, 1); 3533} 3534 3535static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3536{ 3537 if (debug_pagealloc_enabled_static()) 3538 __kernel_map_pages(page, numpages, 0); 3539} 3540 3541extern unsigned int _debug_guardpage_minorder; 3542DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3543 3544static inline unsigned int debug_guardpage_minorder(void) 3545{ 3546 return _debug_guardpage_minorder; 3547} 3548 3549static inline bool debug_guardpage_enabled(void) 3550{ 3551 return static_branch_unlikely(&_debug_guardpage_enabled); 3552} 3553 3554static inline bool page_is_guard(struct page *page) 3555{ 3556 if (!debug_guardpage_enabled()) 3557 return false; 3558 3559 return PageGuard(page); 3560} 3561 3562bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order, 3563 int migratetype); 3564static inline bool set_page_guard(struct zone *zone, struct page *page, 3565 unsigned int order, int migratetype) 3566{ 3567 if (!debug_guardpage_enabled()) 3568 return false; 3569 return __set_page_guard(zone, page, order, migratetype); 3570} 3571 3572void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order, 3573 int migratetype); 3574static inline void clear_page_guard(struct zone *zone, struct page *page, 3575 unsigned int order, int migratetype) 3576{ 3577 if (!debug_guardpage_enabled()) 3578 return; 3579 __clear_page_guard(zone, page, order, migratetype); 3580} 3581 3582#else /* CONFIG_DEBUG_PAGEALLOC */ 3583static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3584static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3585static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3586static inline bool debug_guardpage_enabled(void) { return false; } 3587static inline bool page_is_guard(struct page *page) { return false; } 3588static inline bool set_page_guard(struct zone *zone, struct page *page, 3589 unsigned int order, int migratetype) { return false; } 3590static inline void clear_page_guard(struct zone *zone, struct page *page, 3591 unsigned int order, int migratetype) {} 3592#endif /* CONFIG_DEBUG_PAGEALLOC */ 3593 3594#ifdef __HAVE_ARCH_GATE_AREA 3595extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3596extern int in_gate_area_no_mm(unsigned long addr); 3597extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3598#else 3599static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3600{ 3601 return NULL; 3602} 3603static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3604static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3605{ 3606 return 0; 3607} 3608#endif /* __HAVE_ARCH_GATE_AREA */ 3609 3610extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3611 3612#ifdef CONFIG_SYSCTL 3613extern int sysctl_drop_caches; 3614int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3615 loff_t *); 3616#endif 3617 3618void drop_slab(void); 3619 3620#ifndef CONFIG_MMU 3621#define randomize_va_space 0 3622#else 3623extern int randomize_va_space; 3624#endif 3625 3626const char * arch_vma_name(struct vm_area_struct *vma); 3627#ifdef CONFIG_MMU 3628void print_vma_addr(char *prefix, unsigned long rip); 3629#else 3630static inline void print_vma_addr(char *prefix, unsigned long rip) 3631{ 3632} 3633#endif 3634 3635void *sparse_buffer_alloc(unsigned long size); 3636struct page * __populate_section_memmap(unsigned long pfn, 3637 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3638 struct dev_pagemap *pgmap); 3639void pmd_init(void *addr); 3640void pud_init(void *addr); 3641pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3642p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3643pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3644pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3645pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3646 struct vmem_altmap *altmap, struct page *reuse); 3647void *vmemmap_alloc_block(unsigned long size, int node); 3648struct vmem_altmap; 3649void *vmemmap_alloc_block_buf(unsigned long size, int node, 3650 struct vmem_altmap *altmap); 3651void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3652void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3653 unsigned long addr, unsigned long next); 3654int vmemmap_check_pmd(pmd_t *pmd, int node, 3655 unsigned long addr, unsigned long next); 3656int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3657 int node, struct vmem_altmap *altmap); 3658int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3659 int node, struct vmem_altmap *altmap); 3660int vmemmap_populate(unsigned long start, unsigned long end, int node, 3661 struct vmem_altmap *altmap); 3662void vmemmap_populate_print_last(void); 3663#ifdef CONFIG_MEMORY_HOTPLUG 3664void vmemmap_free(unsigned long start, unsigned long end, 3665 struct vmem_altmap *altmap); 3666#endif 3667 3668#ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP 3669static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3670 struct dev_pagemap *pgmap) 3671{ 3672 return is_power_of_2(sizeof(struct page)) && 3673 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap; 3674} 3675#else 3676static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3677 struct dev_pagemap *pgmap) 3678{ 3679 return false; 3680} 3681#endif 3682 3683void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3684 unsigned long nr_pages); 3685 3686enum mf_flags { 3687 MF_COUNT_INCREASED = 1 << 0, 3688 MF_ACTION_REQUIRED = 1 << 1, 3689 MF_MUST_KILL = 1 << 2, 3690 MF_SOFT_OFFLINE = 1 << 3, 3691 MF_UNPOISON = 1 << 4, 3692 MF_SW_SIMULATED = 1 << 5, 3693 MF_NO_RETRY = 1 << 6, 3694}; 3695int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3696 unsigned long count, int mf_flags); 3697extern int memory_failure(unsigned long pfn, int flags); 3698extern void memory_failure_queue_kick(int cpu); 3699extern int unpoison_memory(unsigned long pfn); 3700extern void shake_page(struct page *p); 3701extern atomic_long_t num_poisoned_pages __read_mostly; 3702extern int soft_offline_page(unsigned long pfn, int flags); 3703#ifdef CONFIG_MEMORY_FAILURE 3704/* 3705 * Sysfs entries for memory failure handling statistics. 3706 */ 3707extern const struct attribute_group memory_failure_attr_group; 3708extern void memory_failure_queue(unsigned long pfn, int flags); 3709extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3710 bool *migratable_cleared); 3711void num_poisoned_pages_inc(unsigned long pfn); 3712void num_poisoned_pages_sub(unsigned long pfn, long i); 3713struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 3714#else 3715static inline void memory_failure_queue(unsigned long pfn, int flags) 3716{ 3717} 3718 3719static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3720 bool *migratable_cleared) 3721{ 3722 return 0; 3723} 3724 3725static inline void num_poisoned_pages_inc(unsigned long pfn) 3726{ 3727} 3728 3729static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3730{ 3731} 3732#endif 3733 3734#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 3735void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 3736 struct vm_area_struct *vma, struct list_head *to_kill, 3737 unsigned long ksm_addr); 3738#endif 3739 3740#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3741extern void memblk_nr_poison_inc(unsigned long pfn); 3742extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3743#else 3744static inline void memblk_nr_poison_inc(unsigned long pfn) 3745{ 3746} 3747 3748static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3749{ 3750} 3751#endif 3752 3753#ifndef arch_memory_failure 3754static inline int arch_memory_failure(unsigned long pfn, int flags) 3755{ 3756 return -ENXIO; 3757} 3758#endif 3759 3760#ifndef arch_is_platform_page 3761static inline bool arch_is_platform_page(u64 paddr) 3762{ 3763 return false; 3764} 3765#endif 3766 3767/* 3768 * Error handlers for various types of pages. 3769 */ 3770enum mf_result { 3771 MF_IGNORED, /* Error: cannot be handled */ 3772 MF_FAILED, /* Error: handling failed */ 3773 MF_DELAYED, /* Will be handled later */ 3774 MF_RECOVERED, /* Successfully recovered */ 3775}; 3776 3777enum mf_action_page_type { 3778 MF_MSG_KERNEL, 3779 MF_MSG_KERNEL_HIGH_ORDER, 3780 MF_MSG_SLAB, 3781 MF_MSG_DIFFERENT_COMPOUND, 3782 MF_MSG_HUGE, 3783 MF_MSG_FREE_HUGE, 3784 MF_MSG_UNMAP_FAILED, 3785 MF_MSG_DIRTY_SWAPCACHE, 3786 MF_MSG_CLEAN_SWAPCACHE, 3787 MF_MSG_DIRTY_MLOCKED_LRU, 3788 MF_MSG_CLEAN_MLOCKED_LRU, 3789 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3790 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3791 MF_MSG_DIRTY_LRU, 3792 MF_MSG_CLEAN_LRU, 3793 MF_MSG_TRUNCATED_LRU, 3794 MF_MSG_BUDDY, 3795 MF_MSG_DAX, 3796 MF_MSG_UNSPLIT_THP, 3797 MF_MSG_UNKNOWN, 3798}; 3799 3800#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3801extern void clear_huge_page(struct page *page, 3802 unsigned long addr_hint, 3803 unsigned int pages_per_huge_page); 3804int copy_user_large_folio(struct folio *dst, struct folio *src, 3805 unsigned long addr_hint, 3806 struct vm_area_struct *vma); 3807long copy_folio_from_user(struct folio *dst_folio, 3808 const void __user *usr_src, 3809 bool allow_pagefault); 3810 3811/** 3812 * vma_is_special_huge - Are transhuge page-table entries considered special? 3813 * @vma: Pointer to the struct vm_area_struct to consider 3814 * 3815 * Whether transhuge page-table entries are considered "special" following 3816 * the definition in vm_normal_page(). 3817 * 3818 * Return: true if transhuge page-table entries should be considered special, 3819 * false otherwise. 3820 */ 3821static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3822{ 3823 return vma_is_dax(vma) || (vma->vm_file && 3824 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3825} 3826 3827#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3828 3829#if MAX_NUMNODES > 1 3830void __init setup_nr_node_ids(void); 3831#else 3832static inline void setup_nr_node_ids(void) {} 3833#endif 3834 3835extern int memcmp_pages(struct page *page1, struct page *page2); 3836 3837static inline int pages_identical(struct page *page1, struct page *page2) 3838{ 3839 return !memcmp_pages(page1, page2); 3840} 3841 3842#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3843unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3844 pgoff_t first_index, pgoff_t nr, 3845 pgoff_t bitmap_pgoff, 3846 unsigned long *bitmap, 3847 pgoff_t *start, 3848 pgoff_t *end); 3849 3850unsigned long wp_shared_mapping_range(struct address_space *mapping, 3851 pgoff_t first_index, pgoff_t nr); 3852#endif 3853 3854extern int sysctl_nr_trim_pages; 3855 3856#ifdef CONFIG_PRINTK 3857void mem_dump_obj(void *object); 3858#else 3859static inline void mem_dump_obj(void *object) {} 3860#endif 3861 3862/** 3863 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3864 * @seals: the seals to check 3865 * @vma: the vma to operate on 3866 * 3867 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3868 * the vma flags. Return 0 if check pass, or <0 for errors. 3869 */ 3870static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3871{ 3872 if (seals & F_SEAL_FUTURE_WRITE) { 3873 /* 3874 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3875 * "future write" seal active. 3876 */ 3877 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3878 return -EPERM; 3879 3880 /* 3881 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3882 * MAP_SHARED and read-only, take care to not allow mprotect to 3883 * revert protections on such mappings. Do this only for shared 3884 * mappings. For private mappings, don't need to mask 3885 * VM_MAYWRITE as we still want them to be COW-writable. 3886 */ 3887 if (vma->vm_flags & VM_SHARED) 3888 vm_flags_clear(vma, VM_MAYWRITE); 3889 } 3890 3891 return 0; 3892} 3893 3894#ifdef CONFIG_ANON_VMA_NAME 3895int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3896 unsigned long len_in, 3897 struct anon_vma_name *anon_name); 3898#else 3899static inline int 3900madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3901 unsigned long len_in, struct anon_vma_name *anon_name) { 3902 return 0; 3903} 3904#endif 3905 3906#ifdef CONFIG_UNACCEPTED_MEMORY 3907 3908bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 3909void accept_memory(phys_addr_t start, phys_addr_t end); 3910 3911#else 3912 3913static inline bool range_contains_unaccepted_memory(phys_addr_t start, 3914 phys_addr_t end) 3915{ 3916 return false; 3917} 3918 3919static inline void accept_memory(phys_addr_t start, phys_addr_t end) 3920{ 3921} 3922 3923#endif 3924 3925#endif /* _LINUX_MM_H */