at v6.5 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0+ */ 2#ifndef _LINUX_MAPLE_TREE_H 3#define _LINUX_MAPLE_TREE_H 4/* 5 * Maple Tree - An RCU-safe adaptive tree for storing ranges 6 * Copyright (c) 2018-2022 Oracle 7 * Authors: Liam R. Howlett <Liam.Howlett@Oracle.com> 8 * Matthew Wilcox <willy@infradead.org> 9 */ 10 11#include <linux/kernel.h> 12#include <linux/rcupdate.h> 13#include <linux/spinlock.h> 14/* #define CONFIG_MAPLE_RCU_DISABLED */ 15 16/* 17 * Allocated nodes are mutable until they have been inserted into the tree, 18 * at which time they cannot change their type until they have been removed 19 * from the tree and an RCU grace period has passed. 20 * 21 * Removed nodes have their ->parent set to point to themselves. RCU readers 22 * check ->parent before relying on the value that they loaded from the 23 * slots array. This lets us reuse the slots array for the RCU head. 24 * 25 * Nodes in the tree point to their parent unless bit 0 is set. 26 */ 27#if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) 28/* 64bit sizes */ 29#define MAPLE_NODE_SLOTS 31 /* 256 bytes including ->parent */ 30#define MAPLE_RANGE64_SLOTS 16 /* 256 bytes */ 31#define MAPLE_ARANGE64_SLOTS 10 /* 240 bytes */ 32#define MAPLE_ARANGE64_META_MAX 15 /* Out of range for metadata */ 33#define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 1) 34#else 35/* 32bit sizes */ 36#define MAPLE_NODE_SLOTS 63 /* 256 bytes including ->parent */ 37#define MAPLE_RANGE64_SLOTS 32 /* 256 bytes */ 38#define MAPLE_ARANGE64_SLOTS 21 /* 240 bytes */ 39#define MAPLE_ARANGE64_META_MAX 31 /* Out of range for metadata */ 40#define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 2) 41#endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */ 42 43#define MAPLE_NODE_MASK 255UL 44 45/* 46 * The node->parent of the root node has bit 0 set and the rest of the pointer 47 * is a pointer to the tree itself. No more bits are available in this pointer 48 * (on m68k, the data structure may only be 2-byte aligned). 49 * 50 * Internal non-root nodes can only have maple_range_* nodes as parents. The 51 * parent pointer is 256B aligned like all other tree nodes. When storing a 32 52 * or 64 bit values, the offset can fit into 4 bits. The 16 bit values need an 53 * extra bit to store the offset. This extra bit comes from a reuse of the last 54 * bit in the node type. This is possible by using bit 1 to indicate if bit 2 55 * is part of the type or the slot. 56 * 57 * Once the type is decided, the decision of an allocation range type or a range 58 * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE 59 * flag. 60 * 61 * Node types: 62 * 0x??1 = Root 63 * 0x?00 = 16 bit nodes 64 * 0x010 = 32 bit nodes 65 * 0x110 = 64 bit nodes 66 * 67 * Slot size and location in the parent pointer: 68 * type : slot location 69 * 0x??1 : Root 70 * 0x?00 : 16 bit values, type in 0-1, slot in 2-6 71 * 0x010 : 32 bit values, type in 0-2, slot in 3-6 72 * 0x110 : 64 bit values, type in 0-2, slot in 3-6 73 */ 74 75/* 76 * This metadata is used to optimize the gap updating code and in reverse 77 * searching for gaps or any other code that needs to find the end of the data. 78 */ 79struct maple_metadata { 80 unsigned char end; 81 unsigned char gap; 82}; 83 84/* 85 * Leaf nodes do not store pointers to nodes, they store user data. Users may 86 * store almost any bit pattern. As noted above, the optimisation of storing an 87 * entry at 0 in the root pointer cannot be done for data which have the bottom 88 * two bits set to '10'. We also reserve values with the bottom two bits set to 89 * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use. Some APIs 90 * return errnos as a negative errno shifted right by two bits and the bottom 91 * two bits set to '10', and while choosing to store these values in the array 92 * is not an error, it may lead to confusion if you're testing for an error with 93 * mas_is_err(). 94 * 95 * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits 96 * 3-6), bit 2 is reserved. That leaves bits 0-1 unused for now. 97 * 98 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 99 * indicate that the tree is specifying ranges, Pivots may appear in the 100 * subtree with an entry attached to the value whereas keys are unique to a 101 * specific position of a B-tree. Pivot values are inclusive of the slot with 102 * the same index. 103 */ 104 105struct maple_range_64 { 106 struct maple_pnode *parent; 107 unsigned long pivot[MAPLE_RANGE64_SLOTS - 1]; 108 union { 109 void __rcu *slot[MAPLE_RANGE64_SLOTS]; 110 struct { 111 void __rcu *pad[MAPLE_RANGE64_SLOTS - 1]; 112 struct maple_metadata meta; 113 }; 114 }; 115}; 116 117/* 118 * At tree creation time, the user can specify that they're willing to trade off 119 * storing fewer entries in a tree in return for storing more information in 120 * each node. 121 * 122 * The maple tree supports recording the largest range of NULL entries available 123 * in this node, also called gaps. This optimises the tree for allocating a 124 * range. 125 */ 126struct maple_arange_64 { 127 struct maple_pnode *parent; 128 unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1]; 129 void __rcu *slot[MAPLE_ARANGE64_SLOTS]; 130 unsigned long gap[MAPLE_ARANGE64_SLOTS]; 131 struct maple_metadata meta; 132}; 133 134struct maple_alloc { 135 unsigned long total; 136 unsigned char node_count; 137 unsigned int request_count; 138 struct maple_alloc *slot[MAPLE_ALLOC_SLOTS]; 139}; 140 141struct maple_topiary { 142 struct maple_pnode *parent; 143 struct maple_enode *next; /* Overlaps the pivot */ 144}; 145 146enum maple_type { 147 maple_dense, 148 maple_leaf_64, 149 maple_range_64, 150 maple_arange_64, 151}; 152 153 154/** 155 * DOC: Maple tree flags 156 * 157 * * MT_FLAGS_ALLOC_RANGE - Track gaps in this tree 158 * * MT_FLAGS_USE_RCU - Operate in RCU mode 159 * * MT_FLAGS_HEIGHT_OFFSET - The position of the tree height in the flags 160 * * MT_FLAGS_HEIGHT_MASK - The mask for the maple tree height value 161 * * MT_FLAGS_LOCK_MASK - How the mt_lock is used 162 * * MT_FLAGS_LOCK_IRQ - Acquired irq-safe 163 * * MT_FLAGS_LOCK_BH - Acquired bh-safe 164 * * MT_FLAGS_LOCK_EXTERN - mt_lock is not used 165 * 166 * MAPLE_HEIGHT_MAX The largest height that can be stored 167 */ 168#define MT_FLAGS_ALLOC_RANGE 0x01 169#define MT_FLAGS_USE_RCU 0x02 170#define MT_FLAGS_HEIGHT_OFFSET 0x02 171#define MT_FLAGS_HEIGHT_MASK 0x7C 172#define MT_FLAGS_LOCK_MASK 0x300 173#define MT_FLAGS_LOCK_IRQ 0x100 174#define MT_FLAGS_LOCK_BH 0x200 175#define MT_FLAGS_LOCK_EXTERN 0x300 176 177#define MAPLE_HEIGHT_MAX 31 178 179 180#define MAPLE_NODE_TYPE_MASK 0x0F 181#define MAPLE_NODE_TYPE_SHIFT 0x03 182 183#define MAPLE_RESERVED_RANGE 4096 184 185#ifdef CONFIG_LOCKDEP 186typedef struct lockdep_map *lockdep_map_p; 187#define mt_lock_is_held(mt) lock_is_held(mt->ma_external_lock) 188#define mt_set_external_lock(mt, lock) \ 189 (mt)->ma_external_lock = &(lock)->dep_map 190#else 191typedef struct { /* nothing */ } lockdep_map_p; 192#define mt_lock_is_held(mt) 1 193#define mt_set_external_lock(mt, lock) do { } while (0) 194#endif 195 196/* 197 * If the tree contains a single entry at index 0, it is usually stored in 198 * tree->ma_root. To optimise for the page cache, an entry which ends in '00', 199 * '01' or '11' is stored in the root, but an entry which ends in '10' will be 200 * stored in a node. Bits 3-6 are used to store enum maple_type. 201 * 202 * The flags are used both to store some immutable information about this tree 203 * (set at tree creation time) and dynamic information set under the spinlock. 204 * 205 * Another use of flags are to indicate global states of the tree. This is the 206 * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in 207 * RCU mode. This mode was added to allow the tree to reuse nodes instead of 208 * re-allocating and RCU freeing nodes when there is a single user. 209 */ 210struct maple_tree { 211 union { 212 spinlock_t ma_lock; 213 lockdep_map_p ma_external_lock; 214 }; 215 void __rcu *ma_root; 216 unsigned int ma_flags; 217}; 218 219/** 220 * MTREE_INIT() - Initialize a maple tree 221 * @name: The maple tree name 222 * @__flags: The maple tree flags 223 * 224 */ 225#define MTREE_INIT(name, __flags) { \ 226 .ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock), \ 227 .ma_flags = __flags, \ 228 .ma_root = NULL, \ 229} 230 231/** 232 * MTREE_INIT_EXT() - Initialize a maple tree with an external lock. 233 * @name: The tree name 234 * @__flags: The maple tree flags 235 * @__lock: The external lock 236 */ 237#ifdef CONFIG_LOCKDEP 238#define MTREE_INIT_EXT(name, __flags, __lock) { \ 239 .ma_external_lock = &(__lock).dep_map, \ 240 .ma_flags = (__flags), \ 241 .ma_root = NULL, \ 242} 243#else 244#define MTREE_INIT_EXT(name, __flags, __lock) MTREE_INIT(name, __flags) 245#endif 246 247#define DEFINE_MTREE(name) \ 248 struct maple_tree name = MTREE_INIT(name, 0) 249 250#define mtree_lock(mt) spin_lock((&(mt)->ma_lock)) 251#define mtree_unlock(mt) spin_unlock((&(mt)->ma_lock)) 252 253/* 254 * The Maple Tree squeezes various bits in at various points which aren't 255 * necessarily obvious. Usually, this is done by observing that pointers are 256 * N-byte aligned and thus the bottom log_2(N) bits are available for use. We 257 * don't use the high bits of pointers to store additional information because 258 * we don't know what bits are unused on any given architecture. 259 * 260 * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8 261 * low bits for our own purposes. Nodes are currently of 4 types: 262 * 1. Single pointer (Range is 0-0) 263 * 2. Non-leaf Allocation Range nodes 264 * 3. Non-leaf Range nodes 265 * 4. Leaf Range nodes All nodes consist of a number of node slots, 266 * pivots, and a parent pointer. 267 */ 268 269struct maple_node { 270 union { 271 struct { 272 struct maple_pnode *parent; 273 void __rcu *slot[MAPLE_NODE_SLOTS]; 274 }; 275 struct { 276 void *pad; 277 struct rcu_head rcu; 278 struct maple_enode *piv_parent; 279 unsigned char parent_slot; 280 enum maple_type type; 281 unsigned char slot_len; 282 unsigned int ma_flags; 283 }; 284 struct maple_range_64 mr64; 285 struct maple_arange_64 ma64; 286 struct maple_alloc alloc; 287 }; 288}; 289 290/* 291 * More complicated stores can cause two nodes to become one or three and 292 * potentially alter the height of the tree. Either half of the tree may need 293 * to be rebalanced against the other. The ma_topiary struct is used to track 294 * which nodes have been 'cut' from the tree so that the change can be done 295 * safely at a later date. This is done to support RCU. 296 */ 297struct ma_topiary { 298 struct maple_enode *head; 299 struct maple_enode *tail; 300 struct maple_tree *mtree; 301}; 302 303void *mtree_load(struct maple_tree *mt, unsigned long index); 304 305int mtree_insert(struct maple_tree *mt, unsigned long index, 306 void *entry, gfp_t gfp); 307int mtree_insert_range(struct maple_tree *mt, unsigned long first, 308 unsigned long last, void *entry, gfp_t gfp); 309int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 310 void *entry, unsigned long size, unsigned long min, 311 unsigned long max, gfp_t gfp); 312int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 313 void *entry, unsigned long size, unsigned long min, 314 unsigned long max, gfp_t gfp); 315 316int mtree_store_range(struct maple_tree *mt, unsigned long first, 317 unsigned long last, void *entry, gfp_t gfp); 318int mtree_store(struct maple_tree *mt, unsigned long index, 319 void *entry, gfp_t gfp); 320void *mtree_erase(struct maple_tree *mt, unsigned long index); 321 322void mtree_destroy(struct maple_tree *mt); 323void __mt_destroy(struct maple_tree *mt); 324 325/** 326 * mtree_empty() - Determine if a tree has any present entries. 327 * @mt: Maple Tree. 328 * 329 * Context: Any context. 330 * Return: %true if the tree contains only NULL pointers. 331 */ 332static inline bool mtree_empty(const struct maple_tree *mt) 333{ 334 return mt->ma_root == NULL; 335} 336 337/* Advanced API */ 338 339/* 340 * The maple state is defined in the struct ma_state and is used to keep track 341 * of information during operations, and even between operations when using the 342 * advanced API. 343 * 344 * If state->node has bit 0 set then it references a tree location which is not 345 * a node (eg the root). If bit 1 is set, the rest of the bits are a negative 346 * errno. Bit 2 (the 'unallocated slots' bit) is clear. Bits 3-6 indicate the 347 * node type. 348 * 349 * state->alloc either has a request number of nodes or an allocated node. If 350 * stat->alloc has a requested number of nodes, the first bit will be set (0x1) 351 * and the remaining bits are the value. If state->alloc is a node, then the 352 * node will be of type maple_alloc. maple_alloc has MAPLE_NODE_SLOTS - 1 for 353 * storing more allocated nodes, a total number of nodes allocated, and the 354 * node_count in this node. node_count is the number of allocated nodes in this 355 * node. The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further 356 * nodes into state->alloc->slot[0]'s node. Nodes are taken from state->alloc 357 * by removing a node from the state->alloc node until state->alloc->node_count 358 * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted 359 * to state->alloc. Nodes are pushed onto state->alloc by putting the current 360 * state->alloc into the pushed node's slot[0]. 361 * 362 * The state also contains the implied min/max of the state->node, the depth of 363 * this search, and the offset. The implied min/max are either from the parent 364 * node or are 0-oo for the root node. The depth is incremented or decremented 365 * every time a node is walked down or up. The offset is the slot/pivot of 366 * interest in the node - either for reading or writing. 367 * 368 * When returning a value the maple state index and last respectively contain 369 * the start and end of the range for the entry. Ranges are inclusive in the 370 * Maple Tree. 371 */ 372struct ma_state { 373 struct maple_tree *tree; /* The tree we're operating in */ 374 unsigned long index; /* The index we're operating on - range start */ 375 unsigned long last; /* The last index we're operating on - range end */ 376 struct maple_enode *node; /* The node containing this entry */ 377 unsigned long min; /* The minimum index of this node - implied pivot min */ 378 unsigned long max; /* The maximum index of this node - implied pivot max */ 379 struct maple_alloc *alloc; /* Allocated nodes for this operation */ 380 unsigned char depth; /* depth of tree descent during write */ 381 unsigned char offset; 382 unsigned char mas_flags; 383}; 384 385struct ma_wr_state { 386 struct ma_state *mas; 387 struct maple_node *node; /* Decoded mas->node */ 388 unsigned long r_min; /* range min */ 389 unsigned long r_max; /* range max */ 390 enum maple_type type; /* mas->node type */ 391 unsigned char offset_end; /* The offset where the write ends */ 392 unsigned char node_end; /* mas->node end */ 393 unsigned long *pivots; /* mas->node->pivots pointer */ 394 unsigned long end_piv; /* The pivot at the offset end */ 395 void __rcu **slots; /* mas->node->slots pointer */ 396 void *entry; /* The entry to write */ 397 void *content; /* The existing entry that is being overwritten */ 398}; 399 400#define mas_lock(mas) spin_lock(&((mas)->tree->ma_lock)) 401#define mas_unlock(mas) spin_unlock(&((mas)->tree->ma_lock)) 402 403 404/* 405 * Special values for ma_state.node. 406 * MAS_START means we have not searched the tree. 407 * MAS_ROOT means we have searched the tree and the entry we found lives in 408 * the root of the tree (ie it has index 0, length 1 and is the only entry in 409 * the tree). 410 * MAS_NONE means we have searched the tree and there is no node in the 411 * tree for this entry. For example, we searched for index 1 in an empty 412 * tree. Or we have a tree which points to a full leaf node and we 413 * searched for an entry which is larger than can be contained in that 414 * leaf node. 415 * MA_ERROR represents an errno. After dropping the lock and attempting 416 * to resolve the error, the walk would have to be restarted from the 417 * top of the tree as the tree may have been modified. 418 */ 419#define MAS_START ((struct maple_enode *)1UL) 420#define MAS_ROOT ((struct maple_enode *)5UL) 421#define MAS_NONE ((struct maple_enode *)9UL) 422#define MAS_PAUSE ((struct maple_enode *)17UL) 423#define MA_ERROR(err) \ 424 ((struct maple_enode *)(((unsigned long)err << 2) | 2UL)) 425 426#define MA_STATE(name, mt, first, end) \ 427 struct ma_state name = { \ 428 .tree = mt, \ 429 .index = first, \ 430 .last = end, \ 431 .node = MAS_START, \ 432 .min = 0, \ 433 .max = ULONG_MAX, \ 434 .alloc = NULL, \ 435 .mas_flags = 0, \ 436 } 437 438#define MA_WR_STATE(name, ma_state, wr_entry) \ 439 struct ma_wr_state name = { \ 440 .mas = ma_state, \ 441 .content = NULL, \ 442 .entry = wr_entry, \ 443 } 444 445#define MA_TOPIARY(name, tree) \ 446 struct ma_topiary name = { \ 447 .head = NULL, \ 448 .tail = NULL, \ 449 .mtree = tree, \ 450 } 451 452void *mas_walk(struct ma_state *mas); 453void *mas_store(struct ma_state *mas, void *entry); 454void *mas_erase(struct ma_state *mas); 455int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp); 456void mas_store_prealloc(struct ma_state *mas, void *entry); 457void *mas_find(struct ma_state *mas, unsigned long max); 458void *mas_find_range(struct ma_state *mas, unsigned long max); 459void *mas_find_rev(struct ma_state *mas, unsigned long min); 460void *mas_find_range_rev(struct ma_state *mas, unsigned long max); 461int mas_preallocate(struct ma_state *mas, gfp_t gfp); 462bool mas_is_err(struct ma_state *mas); 463 464bool mas_nomem(struct ma_state *mas, gfp_t gfp); 465void mas_pause(struct ma_state *mas); 466void maple_tree_init(void); 467void mas_destroy(struct ma_state *mas); 468int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries); 469 470void *mas_prev(struct ma_state *mas, unsigned long min); 471void *mas_prev_range(struct ma_state *mas, unsigned long max); 472void *mas_next(struct ma_state *mas, unsigned long max); 473void *mas_next_range(struct ma_state *mas, unsigned long max); 474 475int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max, 476 unsigned long size); 477/* 478 * This finds an empty area from the highest address to the lowest. 479 * AKA "Topdown" version, 480 */ 481int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 482 unsigned long max, unsigned long size); 483 484static inline void mas_init(struct ma_state *mas, struct maple_tree *tree, 485 unsigned long addr) 486{ 487 memset(mas, 0, sizeof(struct ma_state)); 488 mas->tree = tree; 489 mas->index = mas->last = addr; 490 mas->max = ULONG_MAX; 491 mas->node = MAS_START; 492} 493 494/* Checks if a mas has not found anything */ 495static inline bool mas_is_none(const struct ma_state *mas) 496{ 497 return mas->node == MAS_NONE; 498} 499 500/* Checks if a mas has been paused */ 501static inline bool mas_is_paused(const struct ma_state *mas) 502{ 503 return mas->node == MAS_PAUSE; 504} 505 506/** 507 * mas_reset() - Reset a Maple Tree operation state. 508 * @mas: Maple Tree operation state. 509 * 510 * Resets the error or walk state of the @mas so future walks of the 511 * array will start from the root. Use this if you have dropped the 512 * lock and want to reuse the ma_state. 513 * 514 * Context: Any context. 515 */ 516static inline void mas_reset(struct ma_state *mas) 517{ 518 mas->node = MAS_START; 519} 520 521/** 522 * mas_for_each() - Iterate over a range of the maple tree. 523 * @__mas: Maple Tree operation state (maple_state) 524 * @__entry: Entry retrieved from the tree 525 * @__max: maximum index to retrieve from the tree 526 * 527 * When returned, mas->index and mas->last will hold the entire range for the 528 * entry. 529 * 530 * Note: may return the zero entry. 531 */ 532#define mas_for_each(__mas, __entry, __max) \ 533 while (((__entry) = mas_find((__mas), (__max))) != NULL) 534 535/** 536 * mas_set_range() - Set up Maple Tree operation state for a different index. 537 * @mas: Maple Tree operation state. 538 * @start: New start of range in the Maple Tree. 539 * @last: New end of range in the Maple Tree. 540 * 541 * Move the operation state to refer to a different range. This will 542 * have the effect of starting a walk from the top; see mas_next() 543 * to move to an adjacent index. 544 */ 545static inline 546void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last) 547{ 548 mas->index = start; 549 mas->last = last; 550 mas->node = MAS_START; 551} 552 553/** 554 * mas_set() - Set up Maple Tree operation state for a different index. 555 * @mas: Maple Tree operation state. 556 * @index: New index into the Maple Tree. 557 * 558 * Move the operation state to refer to a different index. This will 559 * have the effect of starting a walk from the top; see mas_next() 560 * to move to an adjacent index. 561 */ 562static inline void mas_set(struct ma_state *mas, unsigned long index) 563{ 564 565 mas_set_range(mas, index, index); 566} 567 568static inline bool mt_external_lock(const struct maple_tree *mt) 569{ 570 return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN; 571} 572 573/** 574 * mt_init_flags() - Initialise an empty maple tree with flags. 575 * @mt: Maple Tree 576 * @flags: maple tree flags. 577 * 578 * If you need to initialise a Maple Tree with special flags (eg, an 579 * allocation tree), use this function. 580 * 581 * Context: Any context. 582 */ 583static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags) 584{ 585 mt->ma_flags = flags; 586 if (!mt_external_lock(mt)) 587 spin_lock_init(&mt->ma_lock); 588 rcu_assign_pointer(mt->ma_root, NULL); 589} 590 591/** 592 * mt_init() - Initialise an empty maple tree. 593 * @mt: Maple Tree 594 * 595 * An empty Maple Tree. 596 * 597 * Context: Any context. 598 */ 599static inline void mt_init(struct maple_tree *mt) 600{ 601 mt_init_flags(mt, 0); 602} 603 604static inline bool mt_in_rcu(struct maple_tree *mt) 605{ 606#ifdef CONFIG_MAPLE_RCU_DISABLED 607 return false; 608#endif 609 return mt->ma_flags & MT_FLAGS_USE_RCU; 610} 611 612/** 613 * mt_clear_in_rcu() - Switch the tree to non-RCU mode. 614 * @mt: The Maple Tree 615 */ 616static inline void mt_clear_in_rcu(struct maple_tree *mt) 617{ 618 if (!mt_in_rcu(mt)) 619 return; 620 621 if (mt_external_lock(mt)) { 622 WARN_ON(!mt_lock_is_held(mt)); 623 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 624 } else { 625 mtree_lock(mt); 626 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 627 mtree_unlock(mt); 628 } 629} 630 631/** 632 * mt_set_in_rcu() - Switch the tree to RCU safe mode. 633 * @mt: The Maple Tree 634 */ 635static inline void mt_set_in_rcu(struct maple_tree *mt) 636{ 637 if (mt_in_rcu(mt)) 638 return; 639 640 if (mt_external_lock(mt)) { 641 WARN_ON(!mt_lock_is_held(mt)); 642 mt->ma_flags |= MT_FLAGS_USE_RCU; 643 } else { 644 mtree_lock(mt); 645 mt->ma_flags |= MT_FLAGS_USE_RCU; 646 mtree_unlock(mt); 647 } 648} 649 650static inline unsigned int mt_height(const struct maple_tree *mt) 651{ 652 return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET; 653} 654 655void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max); 656void *mt_find_after(struct maple_tree *mt, unsigned long *index, 657 unsigned long max); 658void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min); 659void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max); 660 661/** 662 * mt_for_each - Iterate over each entry starting at index until max. 663 * @__tree: The Maple Tree 664 * @__entry: The current entry 665 * @__index: The index to update to track the location in the tree 666 * @__max: The maximum limit for @index 667 * 668 * Note: Will not return the zero entry. 669 */ 670#define mt_for_each(__tree, __entry, __index, __max) \ 671 for (__entry = mt_find(__tree, &(__index), __max); \ 672 __entry; __entry = mt_find_after(__tree, &(__index), __max)) 673 674 675#ifdef CONFIG_DEBUG_MAPLE_TREE 676enum mt_dump_format { 677 mt_dump_dec, 678 mt_dump_hex, 679}; 680 681extern atomic_t maple_tree_tests_run; 682extern atomic_t maple_tree_tests_passed; 683 684void mt_dump(const struct maple_tree *mt, enum mt_dump_format format); 685void mas_dump(const struct ma_state *mas); 686void mas_wr_dump(const struct ma_wr_state *wr_mas); 687void mt_validate(struct maple_tree *mt); 688void mt_cache_shrink(void); 689#define MT_BUG_ON(__tree, __x) do { \ 690 atomic_inc(&maple_tree_tests_run); \ 691 if (__x) { \ 692 pr_info("BUG at %s:%d (%u)\n", \ 693 __func__, __LINE__, __x); \ 694 mt_dump(__tree, mt_dump_hex); \ 695 pr_info("Pass: %u Run:%u\n", \ 696 atomic_read(&maple_tree_tests_passed), \ 697 atomic_read(&maple_tree_tests_run)); \ 698 dump_stack(); \ 699 } else { \ 700 atomic_inc(&maple_tree_tests_passed); \ 701 } \ 702} while (0) 703 704#define MAS_BUG_ON(__mas, __x) do { \ 705 atomic_inc(&maple_tree_tests_run); \ 706 if (__x) { \ 707 pr_info("BUG at %s:%d (%u)\n", \ 708 __func__, __LINE__, __x); \ 709 mas_dump(__mas); \ 710 mt_dump((__mas)->tree, mt_dump_hex); \ 711 pr_info("Pass: %u Run:%u\n", \ 712 atomic_read(&maple_tree_tests_passed), \ 713 atomic_read(&maple_tree_tests_run)); \ 714 dump_stack(); \ 715 } else { \ 716 atomic_inc(&maple_tree_tests_passed); \ 717 } \ 718} while (0) 719 720#define MAS_WR_BUG_ON(__wrmas, __x) do { \ 721 atomic_inc(&maple_tree_tests_run); \ 722 if (__x) { \ 723 pr_info("BUG at %s:%d (%u)\n", \ 724 __func__, __LINE__, __x); \ 725 mas_wr_dump(__wrmas); \ 726 mas_dump((__wrmas)->mas); \ 727 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 728 pr_info("Pass: %u Run:%u\n", \ 729 atomic_read(&maple_tree_tests_passed), \ 730 atomic_read(&maple_tree_tests_run)); \ 731 dump_stack(); \ 732 } else { \ 733 atomic_inc(&maple_tree_tests_passed); \ 734 } \ 735} while (0) 736 737#define MT_WARN_ON(__tree, __x) ({ \ 738 int ret = !!(__x); \ 739 atomic_inc(&maple_tree_tests_run); \ 740 if (ret) { \ 741 pr_info("WARN at %s:%d (%u)\n", \ 742 __func__, __LINE__, __x); \ 743 mt_dump(__tree, mt_dump_hex); \ 744 pr_info("Pass: %u Run:%u\n", \ 745 atomic_read(&maple_tree_tests_passed), \ 746 atomic_read(&maple_tree_tests_run)); \ 747 dump_stack(); \ 748 } else { \ 749 atomic_inc(&maple_tree_tests_passed); \ 750 } \ 751 unlikely(ret); \ 752}) 753 754#define MAS_WARN_ON(__mas, __x) ({ \ 755 int ret = !!(__x); \ 756 atomic_inc(&maple_tree_tests_run); \ 757 if (ret) { \ 758 pr_info("WARN at %s:%d (%u)\n", \ 759 __func__, __LINE__, __x); \ 760 mas_dump(__mas); \ 761 mt_dump((__mas)->tree, mt_dump_hex); \ 762 pr_info("Pass: %u Run:%u\n", \ 763 atomic_read(&maple_tree_tests_passed), \ 764 atomic_read(&maple_tree_tests_run)); \ 765 dump_stack(); \ 766 } else { \ 767 atomic_inc(&maple_tree_tests_passed); \ 768 } \ 769 unlikely(ret); \ 770}) 771 772#define MAS_WR_WARN_ON(__wrmas, __x) ({ \ 773 int ret = !!(__x); \ 774 atomic_inc(&maple_tree_tests_run); \ 775 if (ret) { \ 776 pr_info("WARN at %s:%d (%u)\n", \ 777 __func__, __LINE__, __x); \ 778 mas_wr_dump(__wrmas); \ 779 mas_dump((__wrmas)->mas); \ 780 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 781 pr_info("Pass: %u Run:%u\n", \ 782 atomic_read(&maple_tree_tests_passed), \ 783 atomic_read(&maple_tree_tests_run)); \ 784 dump_stack(); \ 785 } else { \ 786 atomic_inc(&maple_tree_tests_passed); \ 787 } \ 788 unlikely(ret); \ 789}) 790#else 791#define MT_BUG_ON(__tree, __x) BUG_ON(__x) 792#define MAS_BUG_ON(__mas, __x) BUG_ON(__x) 793#define MAS_WR_BUG_ON(__mas, __x) BUG_ON(__x) 794#define MT_WARN_ON(__tree, __x) WARN_ON(__x) 795#define MAS_WARN_ON(__mas, __x) WARN_ON(__x) 796#define MAS_WR_WARN_ON(__mas, __x) WARN_ON(__x) 797#endif /* CONFIG_DEBUG_MAPLE_TREE */ 798 799#endif /*_LINUX_MAPLE_TREE_H */