Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/sched/stat.h>
14#include <linux/bug.h>
15#include <linux/minmax.h>
16#include <linux/mm.h>
17#include <linux/mmu_notifier.h>
18#include <linux/preempt.h>
19#include <linux/msi.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/rcupdate.h>
23#include <linux/ratelimit.h>
24#include <linux/err.h>
25#include <linux/irqflags.h>
26#include <linux/context_tracking.h>
27#include <linux/irqbypass.h>
28#include <linux/rcuwait.h>
29#include <linux/refcount.h>
30#include <linux/nospec.h>
31#include <linux/notifier.h>
32#include <linux/ftrace.h>
33#include <linux/hashtable.h>
34#include <linux/instrumentation.h>
35#include <linux/interval_tree.h>
36#include <linux/rbtree.h>
37#include <linux/xarray.h>
38#include <asm/signal.h>
39
40#include <linux/kvm.h>
41#include <linux/kvm_para.h>
42
43#include <linux/kvm_types.h>
44
45#include <asm/kvm_host.h>
46#include <linux/kvm_dirty_ring.h>
47
48#ifndef KVM_MAX_VCPU_IDS
49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50#endif
51
52/*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57#define KVM_MEMSLOT_INVALID (1UL << 16)
58
59/*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80/* Two fragments for cross MMIO pages. */
81#define KVM_MAX_MMIO_FRAGMENTS 2
82
83#ifndef KVM_ADDRESS_SPACE_NUM
84#define KVM_ADDRESS_SPACE_NUM 1
85#endif
86
87/*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94#define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
100
101/*
102 * error pfns indicate that the gfn is in slot but faild to
103 * translate it to pfn on host.
104 */
105static inline bool is_error_pfn(kvm_pfn_t pfn)
106{
107 return !!(pfn & KVM_PFN_ERR_MASK);
108}
109
110/*
111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112 * by a pending signal. Note, the signal may or may not be fatal.
113 */
114static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115{
116 return pfn == KVM_PFN_ERR_SIGPENDING;
117}
118
119/*
120 * error_noslot pfns indicate that the gfn can not be
121 * translated to pfn - it is not in slot or failed to
122 * translate it to pfn.
123 */
124static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125{
126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127}
128
129/* noslot pfn indicates that the gfn is not in slot. */
130static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131{
132 return pfn == KVM_PFN_NOSLOT;
133}
134
135/*
136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137 * provide own defines and kvm_is_error_hva
138 */
139#ifndef KVM_HVA_ERR_BAD
140
141#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
142#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
143
144static inline bool kvm_is_error_hva(unsigned long addr)
145{
146 return addr >= PAGE_OFFSET;
147}
148
149#endif
150
151#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
152
153static inline bool is_error_page(struct page *page)
154{
155 return IS_ERR(page);
156}
157
158#define KVM_REQUEST_MASK GENMASK(7,0)
159#define KVM_REQUEST_NO_WAKEUP BIT(8)
160#define KVM_REQUEST_WAIT BIT(9)
161#define KVM_REQUEST_NO_ACTION BIT(10)
162/*
163 * Architecture-independent vcpu->requests bit members
164 * Bits 3-7 are reserved for more arch-independent bits.
165 */
166#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168#define KVM_REQ_UNBLOCK 2
169#define KVM_REQ_DIRTY_RING_SOFT_FULL 3
170#define KVM_REQUEST_ARCH_BASE 8
171
172/*
173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178 * guarantee the vCPU received an IPI and has actually exited guest mode.
179 */
180#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181
182#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185})
186#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
187
188bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 unsigned long *vcpu_bitmap);
190bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
192 struct kvm_vcpu *except);
193bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
194 unsigned long *vcpu_bitmap);
195
196#define KVM_USERSPACE_IRQ_SOURCE_ID 0
197#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
198
199extern struct mutex kvm_lock;
200extern struct list_head vm_list;
201
202struct kvm_io_range {
203 gpa_t addr;
204 int len;
205 struct kvm_io_device *dev;
206};
207
208#define NR_IOBUS_DEVS 1000
209
210struct kvm_io_bus {
211 int dev_count;
212 int ioeventfd_count;
213 struct kvm_io_range range[];
214};
215
216enum kvm_bus {
217 KVM_MMIO_BUS,
218 KVM_PIO_BUS,
219 KVM_VIRTIO_CCW_NOTIFY_BUS,
220 KVM_FAST_MMIO_BUS,
221 KVM_NR_BUSES
222};
223
224int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
225 int len, const void *val);
226int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
227 gpa_t addr, int len, const void *val, long cookie);
228int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
229 int len, void *val);
230int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
231 int len, struct kvm_io_device *dev);
232int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
233 struct kvm_io_device *dev);
234struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
235 gpa_t addr);
236
237#ifdef CONFIG_KVM_ASYNC_PF
238struct kvm_async_pf {
239 struct work_struct work;
240 struct list_head link;
241 struct list_head queue;
242 struct kvm_vcpu *vcpu;
243 struct mm_struct *mm;
244 gpa_t cr2_or_gpa;
245 unsigned long addr;
246 struct kvm_arch_async_pf arch;
247 bool wakeup_all;
248 bool notpresent_injected;
249};
250
251void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254 unsigned long hva, struct kvm_arch_async_pf *arch);
255int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256#endif
257
258#ifdef KVM_ARCH_WANT_MMU_NOTIFIER
259struct kvm_gfn_range {
260 struct kvm_memory_slot *slot;
261 gfn_t start;
262 gfn_t end;
263 pte_t pte;
264 bool may_block;
265};
266bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
267bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
268bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
269bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
270#endif
271
272enum {
273 OUTSIDE_GUEST_MODE,
274 IN_GUEST_MODE,
275 EXITING_GUEST_MODE,
276 READING_SHADOW_PAGE_TABLES,
277};
278
279#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
280
281struct kvm_host_map {
282 /*
283 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
284 * a 'struct page' for it. When using mem= kernel parameter some memory
285 * can be used as guest memory but they are not managed by host
286 * kernel).
287 * If 'pfn' is not managed by the host kernel, this field is
288 * initialized to KVM_UNMAPPED_PAGE.
289 */
290 struct page *page;
291 void *hva;
292 kvm_pfn_t pfn;
293 kvm_pfn_t gfn;
294};
295
296/*
297 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
298 * directly to check for that.
299 */
300static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
301{
302 return !!map->hva;
303}
304
305static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
306{
307 return single_task_running() && !need_resched() && ktime_before(cur, stop);
308}
309
310/*
311 * Sometimes a large or cross-page mmio needs to be broken up into separate
312 * exits for userspace servicing.
313 */
314struct kvm_mmio_fragment {
315 gpa_t gpa;
316 void *data;
317 unsigned len;
318};
319
320struct kvm_vcpu {
321 struct kvm *kvm;
322#ifdef CONFIG_PREEMPT_NOTIFIERS
323 struct preempt_notifier preempt_notifier;
324#endif
325 int cpu;
326 int vcpu_id; /* id given by userspace at creation */
327 int vcpu_idx; /* index into kvm->vcpu_array */
328 int ____srcu_idx; /* Don't use this directly. You've been warned. */
329#ifdef CONFIG_PROVE_RCU
330 int srcu_depth;
331#endif
332 int mode;
333 u64 requests;
334 unsigned long guest_debug;
335
336 struct mutex mutex;
337 struct kvm_run *run;
338
339#ifndef __KVM_HAVE_ARCH_WQP
340 struct rcuwait wait;
341#endif
342 struct pid __rcu *pid;
343 int sigset_active;
344 sigset_t sigset;
345 unsigned int halt_poll_ns;
346 bool valid_wakeup;
347
348#ifdef CONFIG_HAS_IOMEM
349 int mmio_needed;
350 int mmio_read_completed;
351 int mmio_is_write;
352 int mmio_cur_fragment;
353 int mmio_nr_fragments;
354 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
355#endif
356
357#ifdef CONFIG_KVM_ASYNC_PF
358 struct {
359 u32 queued;
360 struct list_head queue;
361 struct list_head done;
362 spinlock_t lock;
363 } async_pf;
364#endif
365
366#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
367 /*
368 * Cpu relax intercept or pause loop exit optimization
369 * in_spin_loop: set when a vcpu does a pause loop exit
370 * or cpu relax intercepted.
371 * dy_eligible: indicates whether vcpu is eligible for directed yield.
372 */
373 struct {
374 bool in_spin_loop;
375 bool dy_eligible;
376 } spin_loop;
377#endif
378 bool preempted;
379 bool ready;
380 struct kvm_vcpu_arch arch;
381 struct kvm_vcpu_stat stat;
382 char stats_id[KVM_STATS_NAME_SIZE];
383 struct kvm_dirty_ring dirty_ring;
384
385 /*
386 * The most recently used memslot by this vCPU and the slots generation
387 * for which it is valid.
388 * No wraparound protection is needed since generations won't overflow in
389 * thousands of years, even assuming 1M memslot operations per second.
390 */
391 struct kvm_memory_slot *last_used_slot;
392 u64 last_used_slot_gen;
393};
394
395/*
396 * Start accounting time towards a guest.
397 * Must be called before entering guest context.
398 */
399static __always_inline void guest_timing_enter_irqoff(void)
400{
401 /*
402 * This is running in ioctl context so its safe to assume that it's the
403 * stime pending cputime to flush.
404 */
405 instrumentation_begin();
406 vtime_account_guest_enter();
407 instrumentation_end();
408}
409
410/*
411 * Enter guest context and enter an RCU extended quiescent state.
412 *
413 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
414 * unsafe to use any code which may directly or indirectly use RCU, tracing
415 * (including IRQ flag tracing), or lockdep. All code in this period must be
416 * non-instrumentable.
417 */
418static __always_inline void guest_context_enter_irqoff(void)
419{
420 /*
421 * KVM does not hold any references to rcu protected data when it
422 * switches CPU into a guest mode. In fact switching to a guest mode
423 * is very similar to exiting to userspace from rcu point of view. In
424 * addition CPU may stay in a guest mode for quite a long time (up to
425 * one time slice). Lets treat guest mode as quiescent state, just like
426 * we do with user-mode execution.
427 */
428 if (!context_tracking_guest_enter()) {
429 instrumentation_begin();
430 rcu_virt_note_context_switch();
431 instrumentation_end();
432 }
433}
434
435/*
436 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
437 * guest_state_enter_irqoff().
438 */
439static __always_inline void guest_enter_irqoff(void)
440{
441 guest_timing_enter_irqoff();
442 guest_context_enter_irqoff();
443}
444
445/**
446 * guest_state_enter_irqoff - Fixup state when entering a guest
447 *
448 * Entry to a guest will enable interrupts, but the kernel state is interrupts
449 * disabled when this is invoked. Also tell RCU about it.
450 *
451 * 1) Trace interrupts on state
452 * 2) Invoke context tracking if enabled to adjust RCU state
453 * 3) Tell lockdep that interrupts are enabled
454 *
455 * Invoked from architecture specific code before entering a guest.
456 * Must be called with interrupts disabled and the caller must be
457 * non-instrumentable.
458 * The caller has to invoke guest_timing_enter_irqoff() before this.
459 *
460 * Note: this is analogous to exit_to_user_mode().
461 */
462static __always_inline void guest_state_enter_irqoff(void)
463{
464 instrumentation_begin();
465 trace_hardirqs_on_prepare();
466 lockdep_hardirqs_on_prepare();
467 instrumentation_end();
468
469 guest_context_enter_irqoff();
470 lockdep_hardirqs_on(CALLER_ADDR0);
471}
472
473/*
474 * Exit guest context and exit an RCU extended quiescent state.
475 *
476 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
477 * unsafe to use any code which may directly or indirectly use RCU, tracing
478 * (including IRQ flag tracing), or lockdep. All code in this period must be
479 * non-instrumentable.
480 */
481static __always_inline void guest_context_exit_irqoff(void)
482{
483 context_tracking_guest_exit();
484}
485
486/*
487 * Stop accounting time towards a guest.
488 * Must be called after exiting guest context.
489 */
490static __always_inline void guest_timing_exit_irqoff(void)
491{
492 instrumentation_begin();
493 /* Flush the guest cputime we spent on the guest */
494 vtime_account_guest_exit();
495 instrumentation_end();
496}
497
498/*
499 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
500 * guest_timing_exit_irqoff().
501 */
502static __always_inline void guest_exit_irqoff(void)
503{
504 guest_context_exit_irqoff();
505 guest_timing_exit_irqoff();
506}
507
508static inline void guest_exit(void)
509{
510 unsigned long flags;
511
512 local_irq_save(flags);
513 guest_exit_irqoff();
514 local_irq_restore(flags);
515}
516
517/**
518 * guest_state_exit_irqoff - Establish state when returning from guest mode
519 *
520 * Entry from a guest disables interrupts, but guest mode is traced as
521 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
522 *
523 * 1) Tell lockdep that interrupts are disabled
524 * 2) Invoke context tracking if enabled to reactivate RCU
525 * 3) Trace interrupts off state
526 *
527 * Invoked from architecture specific code after exiting a guest.
528 * Must be invoked with interrupts disabled and the caller must be
529 * non-instrumentable.
530 * The caller has to invoke guest_timing_exit_irqoff() after this.
531 *
532 * Note: this is analogous to enter_from_user_mode().
533 */
534static __always_inline void guest_state_exit_irqoff(void)
535{
536 lockdep_hardirqs_off(CALLER_ADDR0);
537 guest_context_exit_irqoff();
538
539 instrumentation_begin();
540 trace_hardirqs_off_finish();
541 instrumentation_end();
542}
543
544static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
545{
546 /*
547 * The memory barrier ensures a previous write to vcpu->requests cannot
548 * be reordered with the read of vcpu->mode. It pairs with the general
549 * memory barrier following the write of vcpu->mode in VCPU RUN.
550 */
551 smp_mb__before_atomic();
552 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
553}
554
555/*
556 * Some of the bitops functions do not support too long bitmaps.
557 * This number must be determined not to exceed such limits.
558 */
559#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
560
561/*
562 * Since at idle each memslot belongs to two memslot sets it has to contain
563 * two embedded nodes for each data structure that it forms a part of.
564 *
565 * Two memslot sets (one active and one inactive) are necessary so the VM
566 * continues to run on one memslot set while the other is being modified.
567 *
568 * These two memslot sets normally point to the same set of memslots.
569 * They can, however, be desynchronized when performing a memslot management
570 * operation by replacing the memslot to be modified by its copy.
571 * After the operation is complete, both memslot sets once again point to
572 * the same, common set of memslot data.
573 *
574 * The memslots themselves are independent of each other so they can be
575 * individually added or deleted.
576 */
577struct kvm_memory_slot {
578 struct hlist_node id_node[2];
579 struct interval_tree_node hva_node[2];
580 struct rb_node gfn_node[2];
581 gfn_t base_gfn;
582 unsigned long npages;
583 unsigned long *dirty_bitmap;
584 struct kvm_arch_memory_slot arch;
585 unsigned long userspace_addr;
586 u32 flags;
587 short id;
588 u16 as_id;
589};
590
591static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
592{
593 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
594}
595
596static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
597{
598 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
599}
600
601static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
602{
603 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
604
605 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
606}
607
608#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
609#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
610#endif
611
612struct kvm_s390_adapter_int {
613 u64 ind_addr;
614 u64 summary_addr;
615 u64 ind_offset;
616 u32 summary_offset;
617 u32 adapter_id;
618};
619
620struct kvm_hv_sint {
621 u32 vcpu;
622 u32 sint;
623};
624
625struct kvm_xen_evtchn {
626 u32 port;
627 u32 vcpu_id;
628 int vcpu_idx;
629 u32 priority;
630};
631
632struct kvm_kernel_irq_routing_entry {
633 u32 gsi;
634 u32 type;
635 int (*set)(struct kvm_kernel_irq_routing_entry *e,
636 struct kvm *kvm, int irq_source_id, int level,
637 bool line_status);
638 union {
639 struct {
640 unsigned irqchip;
641 unsigned pin;
642 } irqchip;
643 struct {
644 u32 address_lo;
645 u32 address_hi;
646 u32 data;
647 u32 flags;
648 u32 devid;
649 } msi;
650 struct kvm_s390_adapter_int adapter;
651 struct kvm_hv_sint hv_sint;
652 struct kvm_xen_evtchn xen_evtchn;
653 };
654 struct hlist_node link;
655};
656
657#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
658struct kvm_irq_routing_table {
659 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
660 u32 nr_rt_entries;
661 /*
662 * Array indexed by gsi. Each entry contains list of irq chips
663 * the gsi is connected to.
664 */
665 struct hlist_head map[];
666};
667#endif
668
669bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
670
671#ifndef KVM_INTERNAL_MEM_SLOTS
672#define KVM_INTERNAL_MEM_SLOTS 0
673#endif
674
675#define KVM_MEM_SLOTS_NUM SHRT_MAX
676#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
677
678#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
679static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
680{
681 return 0;
682}
683#endif
684
685struct kvm_memslots {
686 u64 generation;
687 atomic_long_t last_used_slot;
688 struct rb_root_cached hva_tree;
689 struct rb_root gfn_tree;
690 /*
691 * The mapping table from slot id to memslot.
692 *
693 * 7-bit bucket count matches the size of the old id to index array for
694 * 512 slots, while giving good performance with this slot count.
695 * Higher bucket counts bring only small performance improvements but
696 * always result in higher memory usage (even for lower memslot counts).
697 */
698 DECLARE_HASHTABLE(id_hash, 7);
699 int node_idx;
700};
701
702struct kvm {
703#ifdef KVM_HAVE_MMU_RWLOCK
704 rwlock_t mmu_lock;
705#else
706 spinlock_t mmu_lock;
707#endif /* KVM_HAVE_MMU_RWLOCK */
708
709 struct mutex slots_lock;
710
711 /*
712 * Protects the arch-specific fields of struct kvm_memory_slots in
713 * use by the VM. To be used under the slots_lock (above) or in a
714 * kvm->srcu critical section where acquiring the slots_lock would
715 * lead to deadlock with the synchronize_srcu in
716 * kvm_swap_active_memslots().
717 */
718 struct mutex slots_arch_lock;
719 struct mm_struct *mm; /* userspace tied to this vm */
720 unsigned long nr_memslot_pages;
721 /* The two memslot sets - active and inactive (per address space) */
722 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
723 /* The current active memslot set for each address space */
724 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
725 struct xarray vcpu_array;
726 /*
727 * Protected by slots_lock, but can be read outside if an
728 * incorrect answer is acceptable.
729 */
730 atomic_t nr_memslots_dirty_logging;
731
732 /* Used to wait for completion of MMU notifiers. */
733 spinlock_t mn_invalidate_lock;
734 unsigned long mn_active_invalidate_count;
735 struct rcuwait mn_memslots_update_rcuwait;
736
737 /* For management / invalidation of gfn_to_pfn_caches */
738 spinlock_t gpc_lock;
739 struct list_head gpc_list;
740
741 /*
742 * created_vcpus is protected by kvm->lock, and is incremented
743 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
744 * incremented after storing the kvm_vcpu pointer in vcpus,
745 * and is accessed atomically.
746 */
747 atomic_t online_vcpus;
748 int max_vcpus;
749 int created_vcpus;
750 int last_boosted_vcpu;
751 struct list_head vm_list;
752 struct mutex lock;
753 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
754#ifdef CONFIG_HAVE_KVM_EVENTFD
755 struct {
756 spinlock_t lock;
757 struct list_head items;
758 /* resampler_list update side is protected by resampler_lock. */
759 struct list_head resampler_list;
760 struct mutex resampler_lock;
761 } irqfds;
762 struct list_head ioeventfds;
763#endif
764 struct kvm_vm_stat stat;
765 struct kvm_arch arch;
766 refcount_t users_count;
767#ifdef CONFIG_KVM_MMIO
768 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
769 spinlock_t ring_lock;
770 struct list_head coalesced_zones;
771#endif
772
773 struct mutex irq_lock;
774#ifdef CONFIG_HAVE_KVM_IRQCHIP
775 /*
776 * Update side is protected by irq_lock.
777 */
778 struct kvm_irq_routing_table __rcu *irq_routing;
779#endif
780#ifdef CONFIG_HAVE_KVM_IRQFD
781 struct hlist_head irq_ack_notifier_list;
782#endif
783
784#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
785 struct mmu_notifier mmu_notifier;
786 unsigned long mmu_invalidate_seq;
787 long mmu_invalidate_in_progress;
788 unsigned long mmu_invalidate_range_start;
789 unsigned long mmu_invalidate_range_end;
790#endif
791 struct list_head devices;
792 u64 manual_dirty_log_protect;
793 struct dentry *debugfs_dentry;
794 struct kvm_stat_data **debugfs_stat_data;
795 struct srcu_struct srcu;
796 struct srcu_struct irq_srcu;
797 pid_t userspace_pid;
798 bool override_halt_poll_ns;
799 unsigned int max_halt_poll_ns;
800 u32 dirty_ring_size;
801 bool dirty_ring_with_bitmap;
802 bool vm_bugged;
803 bool vm_dead;
804
805#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
806 struct notifier_block pm_notifier;
807#endif
808 char stats_id[KVM_STATS_NAME_SIZE];
809};
810
811#define kvm_err(fmt, ...) \
812 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
813#define kvm_info(fmt, ...) \
814 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
815#define kvm_debug(fmt, ...) \
816 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
817#define kvm_debug_ratelimited(fmt, ...) \
818 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
819 ## __VA_ARGS__)
820#define kvm_pr_unimpl(fmt, ...) \
821 pr_err_ratelimited("kvm [%i]: " fmt, \
822 task_tgid_nr(current), ## __VA_ARGS__)
823
824/* The guest did something we don't support. */
825#define vcpu_unimpl(vcpu, fmt, ...) \
826 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
827 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
828
829#define vcpu_debug(vcpu, fmt, ...) \
830 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
831#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
832 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
833 ## __VA_ARGS__)
834#define vcpu_err(vcpu, fmt, ...) \
835 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
836
837static inline void kvm_vm_dead(struct kvm *kvm)
838{
839 kvm->vm_dead = true;
840 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
841}
842
843static inline void kvm_vm_bugged(struct kvm *kvm)
844{
845 kvm->vm_bugged = true;
846 kvm_vm_dead(kvm);
847}
848
849
850#define KVM_BUG(cond, kvm, fmt...) \
851({ \
852 bool __ret = !!(cond); \
853 \
854 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
855 kvm_vm_bugged(kvm); \
856 unlikely(__ret); \
857})
858
859#define KVM_BUG_ON(cond, kvm) \
860({ \
861 bool __ret = !!(cond); \
862 \
863 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
864 kvm_vm_bugged(kvm); \
865 unlikely(__ret); \
866})
867
868static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
869{
870#ifdef CONFIG_PROVE_RCU
871 WARN_ONCE(vcpu->srcu_depth++,
872 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
873#endif
874 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
875}
876
877static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
878{
879 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
880
881#ifdef CONFIG_PROVE_RCU
882 WARN_ONCE(--vcpu->srcu_depth,
883 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
884#endif
885}
886
887static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
888{
889 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
890}
891
892static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
893{
894 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
895 lockdep_is_held(&kvm->slots_lock) ||
896 !refcount_read(&kvm->users_count));
897}
898
899static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
900{
901 int num_vcpus = atomic_read(&kvm->online_vcpus);
902 i = array_index_nospec(i, num_vcpus);
903
904 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
905 smp_rmb();
906 return xa_load(&kvm->vcpu_array, i);
907}
908
909#define kvm_for_each_vcpu(idx, vcpup, kvm) \
910 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
911 (atomic_read(&kvm->online_vcpus) - 1))
912
913static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
914{
915 struct kvm_vcpu *vcpu = NULL;
916 unsigned long i;
917
918 if (id < 0)
919 return NULL;
920 if (id < KVM_MAX_VCPUS)
921 vcpu = kvm_get_vcpu(kvm, id);
922 if (vcpu && vcpu->vcpu_id == id)
923 return vcpu;
924 kvm_for_each_vcpu(i, vcpu, kvm)
925 if (vcpu->vcpu_id == id)
926 return vcpu;
927 return NULL;
928}
929
930void kvm_destroy_vcpus(struct kvm *kvm);
931
932void vcpu_load(struct kvm_vcpu *vcpu);
933void vcpu_put(struct kvm_vcpu *vcpu);
934
935#ifdef __KVM_HAVE_IOAPIC
936void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
937void kvm_arch_post_irq_routing_update(struct kvm *kvm);
938#else
939static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
940{
941}
942static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
943{
944}
945#endif
946
947#ifdef CONFIG_HAVE_KVM_IRQFD
948int kvm_irqfd_init(void);
949void kvm_irqfd_exit(void);
950#else
951static inline int kvm_irqfd_init(void)
952{
953 return 0;
954}
955
956static inline void kvm_irqfd_exit(void)
957{
958}
959#endif
960int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
961void kvm_exit(void);
962
963void kvm_get_kvm(struct kvm *kvm);
964bool kvm_get_kvm_safe(struct kvm *kvm);
965void kvm_put_kvm(struct kvm *kvm);
966bool file_is_kvm(struct file *file);
967void kvm_put_kvm_no_destroy(struct kvm *kvm);
968
969static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
970{
971 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
972 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
973 lockdep_is_held(&kvm->slots_lock) ||
974 !refcount_read(&kvm->users_count));
975}
976
977static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
978{
979 return __kvm_memslots(kvm, 0);
980}
981
982static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
983{
984 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
985
986 return __kvm_memslots(vcpu->kvm, as_id);
987}
988
989static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
990{
991 return RB_EMPTY_ROOT(&slots->gfn_tree);
992}
993
994bool kvm_are_all_memslots_empty(struct kvm *kvm);
995
996#define kvm_for_each_memslot(memslot, bkt, slots) \
997 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
998 if (WARN_ON_ONCE(!memslot->npages)) { \
999 } else
1000
1001static inline
1002struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1003{
1004 struct kvm_memory_slot *slot;
1005 int idx = slots->node_idx;
1006
1007 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1008 if (slot->id == id)
1009 return slot;
1010 }
1011
1012 return NULL;
1013}
1014
1015/* Iterator used for walking memslots that overlap a gfn range. */
1016struct kvm_memslot_iter {
1017 struct kvm_memslots *slots;
1018 struct rb_node *node;
1019 struct kvm_memory_slot *slot;
1020};
1021
1022static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1023{
1024 iter->node = rb_next(iter->node);
1025 if (!iter->node)
1026 return;
1027
1028 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1029}
1030
1031static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1032 struct kvm_memslots *slots,
1033 gfn_t start)
1034{
1035 int idx = slots->node_idx;
1036 struct rb_node *tmp;
1037 struct kvm_memory_slot *slot;
1038
1039 iter->slots = slots;
1040
1041 /*
1042 * Find the so called "upper bound" of a key - the first node that has
1043 * its key strictly greater than the searched one (the start gfn in our case).
1044 */
1045 iter->node = NULL;
1046 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1047 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1048 if (start < slot->base_gfn) {
1049 iter->node = tmp;
1050 tmp = tmp->rb_left;
1051 } else {
1052 tmp = tmp->rb_right;
1053 }
1054 }
1055
1056 /*
1057 * Find the slot with the lowest gfn that can possibly intersect with
1058 * the range, so we'll ideally have slot start <= range start
1059 */
1060 if (iter->node) {
1061 /*
1062 * A NULL previous node means that the very first slot
1063 * already has a higher start gfn.
1064 * In this case slot start > range start.
1065 */
1066 tmp = rb_prev(iter->node);
1067 if (tmp)
1068 iter->node = tmp;
1069 } else {
1070 /* a NULL node below means no slots */
1071 iter->node = rb_last(&slots->gfn_tree);
1072 }
1073
1074 if (iter->node) {
1075 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1076
1077 /*
1078 * It is possible in the slot start < range start case that the
1079 * found slot ends before or at range start (slot end <= range start)
1080 * and so it does not overlap the requested range.
1081 *
1082 * In such non-overlapping case the next slot (if it exists) will
1083 * already have slot start > range start, otherwise the logic above
1084 * would have found it instead of the current slot.
1085 */
1086 if (iter->slot->base_gfn + iter->slot->npages <= start)
1087 kvm_memslot_iter_next(iter);
1088 }
1089}
1090
1091static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1092{
1093 if (!iter->node)
1094 return false;
1095
1096 /*
1097 * If this slot starts beyond or at the end of the range so does
1098 * every next one
1099 */
1100 return iter->slot->base_gfn < end;
1101}
1102
1103/* Iterate over each memslot at least partially intersecting [start, end) range */
1104#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1105 for (kvm_memslot_iter_start(iter, slots, start); \
1106 kvm_memslot_iter_is_valid(iter, end); \
1107 kvm_memslot_iter_next(iter))
1108
1109/*
1110 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1111 * - create a new memory slot
1112 * - delete an existing memory slot
1113 * - modify an existing memory slot
1114 * -- move it in the guest physical memory space
1115 * -- just change its flags
1116 *
1117 * Since flags can be changed by some of these operations, the following
1118 * differentiation is the best we can do for __kvm_set_memory_region():
1119 */
1120enum kvm_mr_change {
1121 KVM_MR_CREATE,
1122 KVM_MR_DELETE,
1123 KVM_MR_MOVE,
1124 KVM_MR_FLAGS_ONLY,
1125};
1126
1127int kvm_set_memory_region(struct kvm *kvm,
1128 const struct kvm_userspace_memory_region *mem);
1129int __kvm_set_memory_region(struct kvm *kvm,
1130 const struct kvm_userspace_memory_region *mem);
1131void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1132void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1133int kvm_arch_prepare_memory_region(struct kvm *kvm,
1134 const struct kvm_memory_slot *old,
1135 struct kvm_memory_slot *new,
1136 enum kvm_mr_change change);
1137void kvm_arch_commit_memory_region(struct kvm *kvm,
1138 struct kvm_memory_slot *old,
1139 const struct kvm_memory_slot *new,
1140 enum kvm_mr_change change);
1141/* flush all memory translations */
1142void kvm_arch_flush_shadow_all(struct kvm *kvm);
1143/* flush memory translations pointing to 'slot' */
1144void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1145 struct kvm_memory_slot *slot);
1146
1147int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1148 struct page **pages, int nr_pages);
1149
1150struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1151unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1152unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1153unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1154unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1155 bool *writable);
1156void kvm_release_page_clean(struct page *page);
1157void kvm_release_page_dirty(struct page *page);
1158
1159kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1160kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1161 bool *writable);
1162kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1163kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1164kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1165 bool atomic, bool interruptible, bool *async,
1166 bool write_fault, bool *writable, hva_t *hva);
1167
1168void kvm_release_pfn_clean(kvm_pfn_t pfn);
1169void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1170void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1171void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1172
1173void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1174int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1175 int len);
1176int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1177int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1178 void *data, unsigned long len);
1179int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1180 void *data, unsigned int offset,
1181 unsigned long len);
1182int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1183 int offset, int len);
1184int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1185 unsigned long len);
1186int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1187 void *data, unsigned long len);
1188int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1189 void *data, unsigned int offset,
1190 unsigned long len);
1191int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1192 gpa_t gpa, unsigned long len);
1193
1194#define __kvm_get_guest(kvm, gfn, offset, v) \
1195({ \
1196 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1197 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1198 int __ret = -EFAULT; \
1199 \
1200 if (!kvm_is_error_hva(__addr)) \
1201 __ret = get_user(v, __uaddr); \
1202 __ret; \
1203})
1204
1205#define kvm_get_guest(kvm, gpa, v) \
1206({ \
1207 gpa_t __gpa = gpa; \
1208 struct kvm *__kvm = kvm; \
1209 \
1210 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1211 offset_in_page(__gpa), v); \
1212})
1213
1214#define __kvm_put_guest(kvm, gfn, offset, v) \
1215({ \
1216 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1217 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1218 int __ret = -EFAULT; \
1219 \
1220 if (!kvm_is_error_hva(__addr)) \
1221 __ret = put_user(v, __uaddr); \
1222 if (!__ret) \
1223 mark_page_dirty(kvm, gfn); \
1224 __ret; \
1225})
1226
1227#define kvm_put_guest(kvm, gpa, v) \
1228({ \
1229 gpa_t __gpa = gpa; \
1230 struct kvm *__kvm = kvm; \
1231 \
1232 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1233 offset_in_page(__gpa), v); \
1234})
1235
1236int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1237struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1238bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1239bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1240unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1241void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1242void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1243
1244struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1245struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1246kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1247kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1248int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1249void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1250unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1251unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1252int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1253 int len);
1254int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1255 unsigned long len);
1256int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1257 unsigned long len);
1258int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1259 int offset, int len);
1260int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1261 unsigned long len);
1262void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1263
1264/**
1265 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1266 *
1267 * @gpc: struct gfn_to_pfn_cache object.
1268 * @kvm: pointer to kvm instance.
1269 * @vcpu: vCPU to be used for marking pages dirty and to be woken on
1270 * invalidation.
1271 * @usage: indicates if the resulting host physical PFN is used while
1272 * the @vcpu is IN_GUEST_MODE (in which case invalidation of
1273 * the cache from MMU notifiers---but not for KVM memslot
1274 * changes!---will also force @vcpu to exit the guest and
1275 * refresh the cache); and/or if the PFN used directly
1276 * by KVM (and thus needs a kernel virtual mapping).
1277 *
1278 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1279 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1280 * the caller before init).
1281 */
1282void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm,
1283 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage);
1284
1285/**
1286 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1287 * physical address.
1288 *
1289 * @gpc: struct gfn_to_pfn_cache object.
1290 * @gpa: guest physical address to map.
1291 * @len: sanity check; the range being access must fit a single page.
1292 *
1293 * @return: 0 for success.
1294 * -EINVAL for a mapping which would cross a page boundary.
1295 * -EFAULT for an untranslatable guest physical address.
1296 *
1297 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1298 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1299 * to ensure that the cache is valid before accessing the target page.
1300 */
1301int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1302
1303/**
1304 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1305 *
1306 * @gpc: struct gfn_to_pfn_cache object.
1307 * @len: sanity check; the range being access must fit a single page.
1308 *
1309 * @return: %true if the cache is still valid and the address matches.
1310 * %false if the cache is not valid.
1311 *
1312 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1313 * while calling this function, and then continue to hold the lock until the
1314 * access is complete.
1315 *
1316 * Callers in IN_GUEST_MODE may do so without locking, although they should
1317 * still hold a read lock on kvm->scru for the memslot checks.
1318 */
1319bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1320
1321/**
1322 * kvm_gpc_refresh - update a previously initialized cache.
1323 *
1324 * @gpc: struct gfn_to_pfn_cache object.
1325 * @len: sanity check; the range being access must fit a single page.
1326 *
1327 * @return: 0 for success.
1328 * -EINVAL for a mapping which would cross a page boundary.
1329 * -EFAULT for an untranslatable guest physical address.
1330 *
1331 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1332 * return from this function does not mean the page can be immediately
1333 * accessed because it may have raced with an invalidation. Callers must
1334 * still lock and check the cache status, as this function does not return
1335 * with the lock still held to permit access.
1336 */
1337int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1338
1339/**
1340 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1341 *
1342 * @gpc: struct gfn_to_pfn_cache object.
1343 *
1344 * This removes a cache from the VM's list to be processed on MMU notifier
1345 * invocation.
1346 */
1347void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1348
1349void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1350void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1351
1352void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1353bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1354void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1355void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1356bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1357void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1358int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1359void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1360
1361void kvm_flush_remote_tlbs(struct kvm *kvm);
1362
1363#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1364int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1365int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1366int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1367void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1368void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1369#endif
1370
1371void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
1372 unsigned long end);
1373void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
1374 unsigned long end);
1375
1376long kvm_arch_dev_ioctl(struct file *filp,
1377 unsigned int ioctl, unsigned long arg);
1378long kvm_arch_vcpu_ioctl(struct file *filp,
1379 unsigned int ioctl, unsigned long arg);
1380vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1381
1382int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1383
1384void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1385 struct kvm_memory_slot *slot,
1386 gfn_t gfn_offset,
1387 unsigned long mask);
1388void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1389
1390#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1391void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1392 const struct kvm_memory_slot *memslot);
1393#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1394int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1395int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1396 int *is_dirty, struct kvm_memory_slot **memslot);
1397#endif
1398
1399int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1400 bool line_status);
1401int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1402 struct kvm_enable_cap *cap);
1403int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1404long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1405 unsigned long arg);
1406
1407int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1408int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1409
1410int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1411 struct kvm_translation *tr);
1412
1413int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1414int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1415int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1416 struct kvm_sregs *sregs);
1417int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1418 struct kvm_sregs *sregs);
1419int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1420 struct kvm_mp_state *mp_state);
1421int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1422 struct kvm_mp_state *mp_state);
1423int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1424 struct kvm_guest_debug *dbg);
1425int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1426
1427void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1428
1429void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1430void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1431int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1432int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1433void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1434void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1435
1436#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1437int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1438#endif
1439
1440#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1441void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1442#else
1443static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1444#endif
1445
1446#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1447int kvm_arch_hardware_enable(void);
1448void kvm_arch_hardware_disable(void);
1449#endif
1450int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1451bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1452int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1453bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1454bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1455int kvm_arch_post_init_vm(struct kvm *kvm);
1456void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1457int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1458
1459#ifndef __KVM_HAVE_ARCH_VM_ALLOC
1460/*
1461 * All architectures that want to use vzalloc currently also
1462 * need their own kvm_arch_alloc_vm implementation.
1463 */
1464static inline struct kvm *kvm_arch_alloc_vm(void)
1465{
1466 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1467}
1468#endif
1469
1470static inline void __kvm_arch_free_vm(struct kvm *kvm)
1471{
1472 kvfree(kvm);
1473}
1474
1475#ifndef __KVM_HAVE_ARCH_VM_FREE
1476static inline void kvm_arch_free_vm(struct kvm *kvm)
1477{
1478 __kvm_arch_free_vm(kvm);
1479}
1480#endif
1481
1482#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1483static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1484{
1485 return -ENOTSUPP;
1486}
1487#endif
1488
1489#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1490void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1491void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1492bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1493#else
1494static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1495{
1496}
1497
1498static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1499{
1500}
1501
1502static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1503{
1504 return false;
1505}
1506#endif
1507#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1508void kvm_arch_start_assignment(struct kvm *kvm);
1509void kvm_arch_end_assignment(struct kvm *kvm);
1510bool kvm_arch_has_assigned_device(struct kvm *kvm);
1511#else
1512static inline void kvm_arch_start_assignment(struct kvm *kvm)
1513{
1514}
1515
1516static inline void kvm_arch_end_assignment(struct kvm *kvm)
1517{
1518}
1519
1520static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1521{
1522 return false;
1523}
1524#endif
1525
1526static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1527{
1528#ifdef __KVM_HAVE_ARCH_WQP
1529 return vcpu->arch.waitp;
1530#else
1531 return &vcpu->wait;
1532#endif
1533}
1534
1535/*
1536 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1537 * true if the vCPU was blocking and was awakened, false otherwise.
1538 */
1539static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1540{
1541 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1542}
1543
1544static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1545{
1546 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1547}
1548
1549#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1550/*
1551 * returns true if the virtual interrupt controller is initialized and
1552 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1553 * controller is dynamically instantiated and this is not always true.
1554 */
1555bool kvm_arch_intc_initialized(struct kvm *kvm);
1556#else
1557static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1558{
1559 return true;
1560}
1561#endif
1562
1563#ifdef CONFIG_GUEST_PERF_EVENTS
1564unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1565
1566void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1567void kvm_unregister_perf_callbacks(void);
1568#else
1569static inline void kvm_register_perf_callbacks(void *ign) {}
1570static inline void kvm_unregister_perf_callbacks(void) {}
1571#endif /* CONFIG_GUEST_PERF_EVENTS */
1572
1573int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1574void kvm_arch_destroy_vm(struct kvm *kvm);
1575void kvm_arch_sync_events(struct kvm *kvm);
1576
1577int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1578
1579struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1580bool kvm_is_zone_device_page(struct page *page);
1581
1582struct kvm_irq_ack_notifier {
1583 struct hlist_node link;
1584 unsigned gsi;
1585 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1586};
1587
1588int kvm_irq_map_gsi(struct kvm *kvm,
1589 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1590int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1591
1592int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1593 bool line_status);
1594int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1595 int irq_source_id, int level, bool line_status);
1596int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1597 struct kvm *kvm, int irq_source_id,
1598 int level, bool line_status);
1599bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1600void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1601void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1602void kvm_register_irq_ack_notifier(struct kvm *kvm,
1603 struct kvm_irq_ack_notifier *kian);
1604void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1605 struct kvm_irq_ack_notifier *kian);
1606int kvm_request_irq_source_id(struct kvm *kvm);
1607void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1608bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1609
1610/*
1611 * Returns a pointer to the memslot if it contains gfn.
1612 * Otherwise returns NULL.
1613 */
1614static inline struct kvm_memory_slot *
1615try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1616{
1617 if (!slot)
1618 return NULL;
1619
1620 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1621 return slot;
1622 else
1623 return NULL;
1624}
1625
1626/*
1627 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1628 *
1629 * With "approx" set returns the memslot also when the address falls
1630 * in a hole. In that case one of the memslots bordering the hole is
1631 * returned.
1632 */
1633static inline struct kvm_memory_slot *
1634search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1635{
1636 struct kvm_memory_slot *slot;
1637 struct rb_node *node;
1638 int idx = slots->node_idx;
1639
1640 slot = NULL;
1641 for (node = slots->gfn_tree.rb_node; node; ) {
1642 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1643 if (gfn >= slot->base_gfn) {
1644 if (gfn < slot->base_gfn + slot->npages)
1645 return slot;
1646 node = node->rb_right;
1647 } else
1648 node = node->rb_left;
1649 }
1650
1651 return approx ? slot : NULL;
1652}
1653
1654static inline struct kvm_memory_slot *
1655____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1656{
1657 struct kvm_memory_slot *slot;
1658
1659 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1660 slot = try_get_memslot(slot, gfn);
1661 if (slot)
1662 return slot;
1663
1664 slot = search_memslots(slots, gfn, approx);
1665 if (slot) {
1666 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1667 return slot;
1668 }
1669
1670 return NULL;
1671}
1672
1673/*
1674 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1675 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1676 * because that would bloat other code too much.
1677 */
1678static inline struct kvm_memory_slot *
1679__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1680{
1681 return ____gfn_to_memslot(slots, gfn, false);
1682}
1683
1684static inline unsigned long
1685__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1686{
1687 /*
1688 * The index was checked originally in search_memslots. To avoid
1689 * that a malicious guest builds a Spectre gadget out of e.g. page
1690 * table walks, do not let the processor speculate loads outside
1691 * the guest's registered memslots.
1692 */
1693 unsigned long offset = gfn - slot->base_gfn;
1694 offset = array_index_nospec(offset, slot->npages);
1695 return slot->userspace_addr + offset * PAGE_SIZE;
1696}
1697
1698static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1699{
1700 return gfn_to_memslot(kvm, gfn)->id;
1701}
1702
1703static inline gfn_t
1704hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1705{
1706 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1707
1708 return slot->base_gfn + gfn_offset;
1709}
1710
1711static inline gpa_t gfn_to_gpa(gfn_t gfn)
1712{
1713 return (gpa_t)gfn << PAGE_SHIFT;
1714}
1715
1716static inline gfn_t gpa_to_gfn(gpa_t gpa)
1717{
1718 return (gfn_t)(gpa >> PAGE_SHIFT);
1719}
1720
1721static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1722{
1723 return (hpa_t)pfn << PAGE_SHIFT;
1724}
1725
1726static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1727{
1728 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1729
1730 return kvm_is_error_hva(hva);
1731}
1732
1733enum kvm_stat_kind {
1734 KVM_STAT_VM,
1735 KVM_STAT_VCPU,
1736};
1737
1738struct kvm_stat_data {
1739 struct kvm *kvm;
1740 const struct _kvm_stats_desc *desc;
1741 enum kvm_stat_kind kind;
1742};
1743
1744struct _kvm_stats_desc {
1745 struct kvm_stats_desc desc;
1746 char name[KVM_STATS_NAME_SIZE];
1747};
1748
1749#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1750 .flags = type | unit | base | \
1751 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1752 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1753 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1754 .exponent = exp, \
1755 .size = sz, \
1756 .bucket_size = bsz
1757
1758#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1759 { \
1760 { \
1761 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1762 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1763 }, \
1764 .name = #stat, \
1765 }
1766#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1767 { \
1768 { \
1769 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1770 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1771 }, \
1772 .name = #stat, \
1773 }
1774#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1775 { \
1776 { \
1777 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1778 .offset = offsetof(struct kvm_vm_stat, stat) \
1779 }, \
1780 .name = #stat, \
1781 }
1782#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1783 { \
1784 { \
1785 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1786 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1787 }, \
1788 .name = #stat, \
1789 }
1790/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1791#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1792 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1793
1794#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1795 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1796 unit, base, exponent, 1, 0)
1797#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1798 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1799 unit, base, exponent, 1, 0)
1800#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1801 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1802 unit, base, exponent, 1, 0)
1803#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1804 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1805 unit, base, exponent, sz, bsz)
1806#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1807 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1808 unit, base, exponent, sz, 0)
1809
1810/* Cumulative counter, read/write */
1811#define STATS_DESC_COUNTER(SCOPE, name) \
1812 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1813 KVM_STATS_BASE_POW10, 0)
1814/* Instantaneous counter, read only */
1815#define STATS_DESC_ICOUNTER(SCOPE, name) \
1816 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1817 KVM_STATS_BASE_POW10, 0)
1818/* Peak counter, read/write */
1819#define STATS_DESC_PCOUNTER(SCOPE, name) \
1820 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1821 KVM_STATS_BASE_POW10, 0)
1822
1823/* Instantaneous boolean value, read only */
1824#define STATS_DESC_IBOOLEAN(SCOPE, name) \
1825 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1826 KVM_STATS_BASE_POW10, 0)
1827/* Peak (sticky) boolean value, read/write */
1828#define STATS_DESC_PBOOLEAN(SCOPE, name) \
1829 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1830 KVM_STATS_BASE_POW10, 0)
1831
1832/* Cumulative time in nanosecond */
1833#define STATS_DESC_TIME_NSEC(SCOPE, name) \
1834 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1835 KVM_STATS_BASE_POW10, -9)
1836/* Linear histogram for time in nanosecond */
1837#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1838 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1839 KVM_STATS_BASE_POW10, -9, sz, bsz)
1840/* Logarithmic histogram for time in nanosecond */
1841#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1842 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1843 KVM_STATS_BASE_POW10, -9, sz)
1844
1845#define KVM_GENERIC_VM_STATS() \
1846 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1847 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1848
1849#define KVM_GENERIC_VCPU_STATS() \
1850 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1851 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1852 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1853 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1854 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1855 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1856 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1857 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1858 HALT_POLL_HIST_COUNT), \
1859 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1860 HALT_POLL_HIST_COUNT), \
1861 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1862 HALT_POLL_HIST_COUNT), \
1863 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1864
1865extern struct dentry *kvm_debugfs_dir;
1866
1867ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1868 const struct _kvm_stats_desc *desc,
1869 void *stats, size_t size_stats,
1870 char __user *user_buffer, size_t size, loff_t *offset);
1871
1872/**
1873 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1874 * statistics data.
1875 *
1876 * @data: start address of the stats data
1877 * @size: the number of bucket of the stats data
1878 * @value: the new value used to update the linear histogram's bucket
1879 * @bucket_size: the size (width) of a bucket
1880 */
1881static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1882 u64 value, size_t bucket_size)
1883{
1884 size_t index = div64_u64(value, bucket_size);
1885
1886 index = min(index, size - 1);
1887 ++data[index];
1888}
1889
1890/**
1891 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1892 * statistics data.
1893 *
1894 * @data: start address of the stats data
1895 * @size: the number of bucket of the stats data
1896 * @value: the new value used to update the logarithmic histogram's bucket
1897 */
1898static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1899{
1900 size_t index = fls64(value);
1901
1902 index = min(index, size - 1);
1903 ++data[index];
1904}
1905
1906#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1907 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1908#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1909 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1910
1911
1912extern const struct kvm_stats_header kvm_vm_stats_header;
1913extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1914extern const struct kvm_stats_header kvm_vcpu_stats_header;
1915extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1916
1917#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1918static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1919{
1920 if (unlikely(kvm->mmu_invalidate_in_progress))
1921 return 1;
1922 /*
1923 * Ensure the read of mmu_invalidate_in_progress happens before
1924 * the read of mmu_invalidate_seq. This interacts with the
1925 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1926 * that the caller either sees the old (non-zero) value of
1927 * mmu_invalidate_in_progress or the new (incremented) value of
1928 * mmu_invalidate_seq.
1929 *
1930 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1931 * than under kvm->mmu_lock, for scalability, so can't rely on
1932 * kvm->mmu_lock to keep things ordered.
1933 */
1934 smp_rmb();
1935 if (kvm->mmu_invalidate_seq != mmu_seq)
1936 return 1;
1937 return 0;
1938}
1939
1940static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
1941 unsigned long mmu_seq,
1942 unsigned long hva)
1943{
1944 lockdep_assert_held(&kvm->mmu_lock);
1945 /*
1946 * If mmu_invalidate_in_progress is non-zero, then the range maintained
1947 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
1948 * that might be being invalidated. Note that it may include some false
1949 * positives, due to shortcuts when handing concurrent invalidations.
1950 */
1951 if (unlikely(kvm->mmu_invalidate_in_progress) &&
1952 hva >= kvm->mmu_invalidate_range_start &&
1953 hva < kvm->mmu_invalidate_range_end)
1954 return 1;
1955 if (kvm->mmu_invalidate_seq != mmu_seq)
1956 return 1;
1957 return 0;
1958}
1959#endif
1960
1961#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1962
1963#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1964
1965bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1966int kvm_set_irq_routing(struct kvm *kvm,
1967 const struct kvm_irq_routing_entry *entries,
1968 unsigned nr,
1969 unsigned flags);
1970int kvm_set_routing_entry(struct kvm *kvm,
1971 struct kvm_kernel_irq_routing_entry *e,
1972 const struct kvm_irq_routing_entry *ue);
1973void kvm_free_irq_routing(struct kvm *kvm);
1974
1975#else
1976
1977static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1978
1979#endif
1980
1981int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1982
1983#ifdef CONFIG_HAVE_KVM_EVENTFD
1984
1985void kvm_eventfd_init(struct kvm *kvm);
1986int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1987
1988#ifdef CONFIG_HAVE_KVM_IRQFD
1989int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1990void kvm_irqfd_release(struct kvm *kvm);
1991bool kvm_notify_irqfd_resampler(struct kvm *kvm,
1992 unsigned int irqchip,
1993 unsigned int pin);
1994void kvm_irq_routing_update(struct kvm *);
1995#else
1996static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1997{
1998 return -EINVAL;
1999}
2000
2001static inline void kvm_irqfd_release(struct kvm *kvm) {}
2002
2003static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2004 unsigned int irqchip,
2005 unsigned int pin)
2006{
2007 return false;
2008}
2009#endif
2010
2011#else
2012
2013static inline void kvm_eventfd_init(struct kvm *kvm) {}
2014
2015static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2016{
2017 return -EINVAL;
2018}
2019
2020static inline void kvm_irqfd_release(struct kvm *kvm) {}
2021
2022#ifdef CONFIG_HAVE_KVM_IRQCHIP
2023static inline void kvm_irq_routing_update(struct kvm *kvm)
2024{
2025}
2026#endif
2027
2028static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2029{
2030 return -ENOSYS;
2031}
2032
2033#endif /* CONFIG_HAVE_KVM_EVENTFD */
2034
2035void kvm_arch_irq_routing_update(struct kvm *kvm);
2036
2037static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2038{
2039 /*
2040 * Ensure the rest of the request is published to kvm_check_request's
2041 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2042 */
2043 smp_wmb();
2044 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2045}
2046
2047static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2048{
2049 /*
2050 * Request that don't require vCPU action should never be logged in
2051 * vcpu->requests. The vCPU won't clear the request, so it will stay
2052 * logged indefinitely and prevent the vCPU from entering the guest.
2053 */
2054 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2055 (req & KVM_REQUEST_NO_ACTION));
2056
2057 __kvm_make_request(req, vcpu);
2058}
2059
2060static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2061{
2062 return READ_ONCE(vcpu->requests);
2063}
2064
2065static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2066{
2067 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2068}
2069
2070static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2071{
2072 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2073}
2074
2075static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2076{
2077 if (kvm_test_request(req, vcpu)) {
2078 kvm_clear_request(req, vcpu);
2079
2080 /*
2081 * Ensure the rest of the request is visible to kvm_check_request's
2082 * caller. Paired with the smp_wmb in kvm_make_request.
2083 */
2084 smp_mb__after_atomic();
2085 return true;
2086 } else {
2087 return false;
2088 }
2089}
2090
2091#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2092extern bool kvm_rebooting;
2093#endif
2094
2095extern unsigned int halt_poll_ns;
2096extern unsigned int halt_poll_ns_grow;
2097extern unsigned int halt_poll_ns_grow_start;
2098extern unsigned int halt_poll_ns_shrink;
2099
2100struct kvm_device {
2101 const struct kvm_device_ops *ops;
2102 struct kvm *kvm;
2103 void *private;
2104 struct list_head vm_node;
2105};
2106
2107/* create, destroy, and name are mandatory */
2108struct kvm_device_ops {
2109 const char *name;
2110
2111 /*
2112 * create is called holding kvm->lock and any operations not suitable
2113 * to do while holding the lock should be deferred to init (see
2114 * below).
2115 */
2116 int (*create)(struct kvm_device *dev, u32 type);
2117
2118 /*
2119 * init is called after create if create is successful and is called
2120 * outside of holding kvm->lock.
2121 */
2122 void (*init)(struct kvm_device *dev);
2123
2124 /*
2125 * Destroy is responsible for freeing dev.
2126 *
2127 * Destroy may be called before or after destructors are called
2128 * on emulated I/O regions, depending on whether a reference is
2129 * held by a vcpu or other kvm component that gets destroyed
2130 * after the emulated I/O.
2131 */
2132 void (*destroy)(struct kvm_device *dev);
2133
2134 /*
2135 * Release is an alternative method to free the device. It is
2136 * called when the device file descriptor is closed. Once
2137 * release is called, the destroy method will not be called
2138 * anymore as the device is removed from the device list of
2139 * the VM. kvm->lock is held.
2140 */
2141 void (*release)(struct kvm_device *dev);
2142
2143 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2144 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2145 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2146 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2147 unsigned long arg);
2148 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2149};
2150
2151void kvm_device_get(struct kvm_device *dev);
2152void kvm_device_put(struct kvm_device *dev);
2153struct kvm_device *kvm_device_from_filp(struct file *filp);
2154int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2155void kvm_unregister_device_ops(u32 type);
2156
2157extern struct kvm_device_ops kvm_mpic_ops;
2158extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2159extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2160
2161#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2162
2163static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2164{
2165 vcpu->spin_loop.in_spin_loop = val;
2166}
2167static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2168{
2169 vcpu->spin_loop.dy_eligible = val;
2170}
2171
2172#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2173
2174static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2175{
2176}
2177
2178static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2179{
2180}
2181#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2182
2183static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2184{
2185 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2186 !(memslot->flags & KVM_MEMSLOT_INVALID));
2187}
2188
2189struct kvm_vcpu *kvm_get_running_vcpu(void);
2190struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2191
2192#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2193bool kvm_arch_has_irq_bypass(void);
2194int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2195 struct irq_bypass_producer *);
2196void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2197 struct irq_bypass_producer *);
2198void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2199void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2200int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2201 uint32_t guest_irq, bool set);
2202bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2203 struct kvm_kernel_irq_routing_entry *);
2204#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2205
2206#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2207/* If we wakeup during the poll time, was it a sucessful poll? */
2208static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2209{
2210 return vcpu->valid_wakeup;
2211}
2212
2213#else
2214static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2215{
2216 return true;
2217}
2218#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2219
2220#ifdef CONFIG_HAVE_KVM_NO_POLL
2221/* Callback that tells if we must not poll */
2222bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2223#else
2224static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2225{
2226 return false;
2227}
2228#endif /* CONFIG_HAVE_KVM_NO_POLL */
2229
2230#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2231long kvm_arch_vcpu_async_ioctl(struct file *filp,
2232 unsigned int ioctl, unsigned long arg);
2233#else
2234static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2235 unsigned int ioctl,
2236 unsigned long arg)
2237{
2238 return -ENOIOCTLCMD;
2239}
2240#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2241
2242void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2243
2244#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2245int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2246#else
2247static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2248{
2249 return 0;
2250}
2251#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2252
2253typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2254
2255int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2256 uintptr_t data, const char *name,
2257 struct task_struct **thread_ptr);
2258
2259#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2260static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2261{
2262 vcpu->run->exit_reason = KVM_EXIT_INTR;
2263 vcpu->stat.signal_exits++;
2264}
2265#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2266
2267/*
2268 * If more than one page is being (un)accounted, @virt must be the address of
2269 * the first page of a block of pages what were allocated together (i.e
2270 * accounted together).
2271 *
2272 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2273 * is thread-safe.
2274 */
2275static inline void kvm_account_pgtable_pages(void *virt, int nr)
2276{
2277 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2278}
2279
2280/*
2281 * This defines how many reserved entries we want to keep before we
2282 * kick the vcpu to the userspace to avoid dirty ring full. This
2283 * value can be tuned to higher if e.g. PML is enabled on the host.
2284 */
2285#define KVM_DIRTY_RING_RSVD_ENTRIES 64
2286
2287/* Max number of entries allowed for each kvm dirty ring */
2288#define KVM_DIRTY_RING_MAX_ENTRIES 65536
2289
2290#endif