at v6.5 29 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_FORTIFY_STRING_H_ 3#define _LINUX_FORTIFY_STRING_H_ 4 5#include <linux/bug.h> 6#include <linux/const.h> 7#include <linux/limits.h> 8 9#define __FORTIFY_INLINE extern __always_inline __gnu_inline __overloadable 10#define __RENAME(x) __asm__(#x) 11 12void fortify_panic(const char *name) __noreturn __cold; 13void __read_overflow(void) __compiletime_error("detected read beyond size of object (1st parameter)"); 14void __read_overflow2(void) __compiletime_error("detected read beyond size of object (2nd parameter)"); 15void __read_overflow2_field(size_t avail, size_t wanted) __compiletime_warning("detected read beyond size of field (2nd parameter); maybe use struct_group()?"); 16void __write_overflow(void) __compiletime_error("detected write beyond size of object (1st parameter)"); 17void __write_overflow_field(size_t avail, size_t wanted) __compiletime_warning("detected write beyond size of field (1st parameter); maybe use struct_group()?"); 18 19#define __compiletime_strlen(p) \ 20({ \ 21 char *__p = (char *)(p); \ 22 size_t __ret = SIZE_MAX; \ 23 const size_t __p_size = __member_size(p); \ 24 if (__p_size != SIZE_MAX && \ 25 __builtin_constant_p(*__p)) { \ 26 size_t __p_len = __p_size - 1; \ 27 if (__builtin_constant_p(__p[__p_len]) && \ 28 __p[__p_len] == '\0') \ 29 __ret = __builtin_strlen(__p); \ 30 } \ 31 __ret; \ 32}) 33 34#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 35extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr); 36extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp); 37extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy); 38extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove); 39extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset); 40extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat); 41extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy); 42extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen); 43extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat); 44extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy); 45#else 46 47#if defined(__SANITIZE_MEMORY__) 48/* 49 * For KMSAN builds all memcpy/memset/memmove calls should be replaced by the 50 * corresponding __msan_XXX functions. 51 */ 52#include <linux/kmsan_string.h> 53#define __underlying_memcpy __msan_memcpy 54#define __underlying_memmove __msan_memmove 55#define __underlying_memset __msan_memset 56#else 57#define __underlying_memcpy __builtin_memcpy 58#define __underlying_memmove __builtin_memmove 59#define __underlying_memset __builtin_memset 60#endif 61 62#define __underlying_memchr __builtin_memchr 63#define __underlying_memcmp __builtin_memcmp 64#define __underlying_strcat __builtin_strcat 65#define __underlying_strcpy __builtin_strcpy 66#define __underlying_strlen __builtin_strlen 67#define __underlying_strncat __builtin_strncat 68#define __underlying_strncpy __builtin_strncpy 69#endif 70 71/** 72 * unsafe_memcpy - memcpy implementation with no FORTIFY bounds checking 73 * 74 * @dst: Destination memory address to write to 75 * @src: Source memory address to read from 76 * @bytes: How many bytes to write to @dst from @src 77 * @justification: Free-form text or comment describing why the use is needed 78 * 79 * This should be used for corner cases where the compiler cannot do the 80 * right thing, or during transitions between APIs, etc. It should be used 81 * very rarely, and includes a place for justification detailing where bounds 82 * checking has happened, and why existing solutions cannot be employed. 83 */ 84#define unsafe_memcpy(dst, src, bytes, justification) \ 85 __underlying_memcpy(dst, src, bytes) 86 87/* 88 * Clang's use of __builtin_*object_size() within inlines needs hinting via 89 * __pass_*object_size(). The preference is to only ever use type 1 (member 90 * size, rather than struct size), but there remain some stragglers using 91 * type 0 that will be converted in the future. 92 */ 93#if __has_builtin(__builtin_dynamic_object_size) 94#define POS __pass_dynamic_object_size(1) 95#define POS0 __pass_dynamic_object_size(0) 96#define __struct_size(p) __builtin_dynamic_object_size(p, 0) 97#define __member_size(p) __builtin_dynamic_object_size(p, 1) 98#else 99#define POS __pass_object_size(1) 100#define POS0 __pass_object_size(0) 101#define __struct_size(p) __builtin_object_size(p, 0) 102#define __member_size(p) __builtin_object_size(p, 1) 103#endif 104 105#define __compiletime_lessthan(bounds, length) ( \ 106 __builtin_constant_p((bounds) < (length)) && \ 107 (bounds) < (length) \ 108) 109 110/** 111 * strncpy - Copy a string to memory with non-guaranteed NUL padding 112 * 113 * @p: pointer to destination of copy 114 * @q: pointer to NUL-terminated source string to copy 115 * @size: bytes to write at @p 116 * 117 * If strlen(@q) >= @size, the copy of @q will stop after @size bytes, 118 * and @p will NOT be NUL-terminated 119 * 120 * If strlen(@q) < @size, following the copy of @q, trailing NUL bytes 121 * will be written to @p until @size total bytes have been written. 122 * 123 * Do not use this function. While FORTIFY_SOURCE tries to avoid 124 * over-reads of @q, it cannot defend against writing unterminated 125 * results to @p. Using strncpy() remains ambiguous and fragile. 126 * Instead, please choose an alternative, so that the expectation 127 * of @p's contents is unambiguous: 128 * 129 * +--------------------+--------------------+------------+ 130 * | **p** needs to be: | padded to **size** | not padded | 131 * +====================+====================+============+ 132 * | NUL-terminated | strscpy_pad() | strscpy() | 133 * +--------------------+--------------------+------------+ 134 * | not NUL-terminated | strtomem_pad() | strtomem() | 135 * +--------------------+--------------------+------------+ 136 * 137 * Note strscpy*()'s differing return values for detecting truncation, 138 * and strtomem*()'s expectation that the destination is marked with 139 * __nonstring when it is a character array. 140 * 141 */ 142__FORTIFY_INLINE __diagnose_as(__builtin_strncpy, 1, 2, 3) 143char *strncpy(char * const POS p, const char *q, __kernel_size_t size) 144{ 145 const size_t p_size = __member_size(p); 146 147 if (__compiletime_lessthan(p_size, size)) 148 __write_overflow(); 149 if (p_size < size) 150 fortify_panic(__func__); 151 return __underlying_strncpy(p, q, size); 152} 153 154extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen); 155/** 156 * strnlen - Return bounded count of characters in a NUL-terminated string 157 * 158 * @p: pointer to NUL-terminated string to count. 159 * @maxlen: maximum number of characters to count. 160 * 161 * Returns number of characters in @p (NOT including the final NUL), or 162 * @maxlen, if no NUL has been found up to there. 163 * 164 */ 165__FORTIFY_INLINE __kernel_size_t strnlen(const char * const POS p, __kernel_size_t maxlen) 166{ 167 const size_t p_size = __member_size(p); 168 const size_t p_len = __compiletime_strlen(p); 169 size_t ret; 170 171 /* We can take compile-time actions when maxlen is const. */ 172 if (__builtin_constant_p(maxlen) && p_len != SIZE_MAX) { 173 /* If p is const, we can use its compile-time-known len. */ 174 if (maxlen >= p_size) 175 return p_len; 176 } 177 178 /* Do not check characters beyond the end of p. */ 179 ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size); 180 if (p_size <= ret && maxlen != ret) 181 fortify_panic(__func__); 182 return ret; 183} 184 185/* 186 * Defined after fortified strnlen to reuse it. However, it must still be 187 * possible for strlen() to be used on compile-time strings for use in 188 * static initializers (i.e. as a constant expression). 189 */ 190/** 191 * strlen - Return count of characters in a NUL-terminated string 192 * 193 * @p: pointer to NUL-terminated string to count. 194 * 195 * Do not use this function unless the string length is known at 196 * compile-time. When @p is unterminated, this function may crash 197 * or return unexpected counts that could lead to memory content 198 * exposures. Prefer strnlen(). 199 * 200 * Returns number of characters in @p (NOT including the final NUL). 201 * 202 */ 203#define strlen(p) \ 204 __builtin_choose_expr(__is_constexpr(__builtin_strlen(p)), \ 205 __builtin_strlen(p), __fortify_strlen(p)) 206__FORTIFY_INLINE __diagnose_as(__builtin_strlen, 1) 207__kernel_size_t __fortify_strlen(const char * const POS p) 208{ 209 const size_t p_size = __member_size(p); 210 __kernel_size_t ret; 211 212 /* Give up if we don't know how large p is. */ 213 if (p_size == SIZE_MAX) 214 return __underlying_strlen(p); 215 ret = strnlen(p, p_size); 216 if (p_size <= ret) 217 fortify_panic(__func__); 218 return ret; 219} 220 221/* Defined after fortified strlen() to reuse it. */ 222extern size_t __real_strlcpy(char *, const char *, size_t) __RENAME(strlcpy); 223/** 224 * strlcpy - Copy a string into another string buffer 225 * 226 * @p: pointer to destination of copy 227 * @q: pointer to NUL-terminated source string to copy 228 * @size: maximum number of bytes to write at @p 229 * 230 * If strlen(@q) >= @size, the copy of @q will be truncated at 231 * @size - 1 bytes. @p will always be NUL-terminated. 232 * 233 * Do not use this function. While FORTIFY_SOURCE tries to avoid 234 * over-reads when calculating strlen(@q), it is still possible. 235 * Prefer strscpy(), though note its different return values for 236 * detecting truncation. 237 * 238 * Returns total number of bytes written to @p, including terminating NUL. 239 * 240 */ 241__FORTIFY_INLINE size_t strlcpy(char * const POS p, const char * const POS q, size_t size) 242{ 243 const size_t p_size = __member_size(p); 244 const size_t q_size = __member_size(q); 245 size_t q_len; /* Full count of source string length. */ 246 size_t len; /* Count of characters going into destination. */ 247 248 if (p_size == SIZE_MAX && q_size == SIZE_MAX) 249 return __real_strlcpy(p, q, size); 250 q_len = strlen(q); 251 len = (q_len >= size) ? size - 1 : q_len; 252 if (__builtin_constant_p(size) && __builtin_constant_p(q_len) && size) { 253 /* Write size is always larger than destination. */ 254 if (len >= p_size) 255 __write_overflow(); 256 } 257 if (size) { 258 if (len >= p_size) 259 fortify_panic(__func__); 260 __underlying_memcpy(p, q, len); 261 p[len] = '\0'; 262 } 263 return q_len; 264} 265 266/* Defined after fortified strnlen() to reuse it. */ 267extern ssize_t __real_strscpy(char *, const char *, size_t) __RENAME(strscpy); 268/** 269 * strscpy - Copy a C-string into a sized buffer 270 * 271 * @p: Where to copy the string to 272 * @q: Where to copy the string from 273 * @size: Size of destination buffer 274 * 275 * Copy the source string @q, or as much of it as fits, into the destination 276 * @p buffer. The behavior is undefined if the string buffers overlap. The 277 * destination @p buffer is always NUL terminated, unless it's zero-sized. 278 * 279 * Preferred to strlcpy() since the API doesn't require reading memory 280 * from the source @q string beyond the specified @size bytes, and since 281 * the return value is easier to error-check than strlcpy()'s. 282 * In addition, the implementation is robust to the string changing out 283 * from underneath it, unlike the current strlcpy() implementation. 284 * 285 * Preferred to strncpy() since it always returns a valid string, and 286 * doesn't unnecessarily force the tail of the destination buffer to be 287 * zero padded. If padding is desired please use strscpy_pad(). 288 * 289 * Returns the number of characters copied in @p (not including the 290 * trailing %NUL) or -E2BIG if @size is 0 or the copy of @q was truncated. 291 */ 292__FORTIFY_INLINE ssize_t strscpy(char * const POS p, const char * const POS q, size_t size) 293{ 294 /* Use string size rather than possible enclosing struct size. */ 295 const size_t p_size = __member_size(p); 296 const size_t q_size = __member_size(q); 297 size_t len; 298 299 /* If we cannot get size of p and q default to call strscpy. */ 300 if (p_size == SIZE_MAX && q_size == SIZE_MAX) 301 return __real_strscpy(p, q, size); 302 303 /* 304 * If size can be known at compile time and is greater than 305 * p_size, generate a compile time write overflow error. 306 */ 307 if (__compiletime_lessthan(p_size, size)) 308 __write_overflow(); 309 310 /* Short-circuit for compile-time known-safe lengths. */ 311 if (__compiletime_lessthan(p_size, SIZE_MAX)) { 312 len = __compiletime_strlen(q); 313 314 if (len < SIZE_MAX && __compiletime_lessthan(len, size)) { 315 __underlying_memcpy(p, q, len + 1); 316 return len; 317 } 318 } 319 320 /* 321 * This call protects from read overflow, because len will default to q 322 * length if it smaller than size. 323 */ 324 len = strnlen(q, size); 325 /* 326 * If len equals size, we will copy only size bytes which leads to 327 * -E2BIG being returned. 328 * Otherwise we will copy len + 1 because of the final '\O'. 329 */ 330 len = len == size ? size : len + 1; 331 332 /* 333 * Generate a runtime write overflow error if len is greater than 334 * p_size. 335 */ 336 if (len > p_size) 337 fortify_panic(__func__); 338 339 /* 340 * We can now safely call vanilla strscpy because we are protected from: 341 * 1. Read overflow thanks to call to strnlen(). 342 * 2. Write overflow thanks to above ifs. 343 */ 344 return __real_strscpy(p, q, len); 345} 346 347/* Defined after fortified strlen() to reuse it. */ 348extern size_t __real_strlcat(char *p, const char *q, size_t avail) __RENAME(strlcat); 349/** 350 * strlcat - Append a string to an existing string 351 * 352 * @p: pointer to %NUL-terminated string to append to 353 * @q: pointer to %NUL-terminated string to append from 354 * @avail: Maximum bytes available in @p 355 * 356 * Appends %NUL-terminated string @q after the %NUL-terminated 357 * string at @p, but will not write beyond @avail bytes total, 358 * potentially truncating the copy from @q. @p will stay 359 * %NUL-terminated only if a %NUL already existed within 360 * the @avail bytes of @p. If so, the resulting number of 361 * bytes copied from @q will be at most "@avail - strlen(@p) - 1". 362 * 363 * Do not use this function. While FORTIFY_SOURCE tries to avoid 364 * read and write overflows, this is only possible when the sizes 365 * of @p and @q are known to the compiler. Prefer building the 366 * string with formatting, via scnprintf(), seq_buf, or similar. 367 * 368 * Returns total bytes that _would_ have been contained by @p 369 * regardless of truncation, similar to snprintf(). If return 370 * value is >= @avail, the string has been truncated. 371 * 372 */ 373__FORTIFY_INLINE 374size_t strlcat(char * const POS p, const char * const POS q, size_t avail) 375{ 376 const size_t p_size = __member_size(p); 377 const size_t q_size = __member_size(q); 378 size_t p_len, copy_len; 379 size_t actual, wanted; 380 381 /* Give up immediately if both buffer sizes are unknown. */ 382 if (p_size == SIZE_MAX && q_size == SIZE_MAX) 383 return __real_strlcat(p, q, avail); 384 385 p_len = strnlen(p, avail); 386 copy_len = strlen(q); 387 wanted = actual = p_len + copy_len; 388 389 /* Cannot append any more: report truncation. */ 390 if (avail <= p_len) 391 return wanted; 392 393 /* Give up if string is already overflowed. */ 394 if (p_size <= p_len) 395 fortify_panic(__func__); 396 397 if (actual >= avail) { 398 copy_len = avail - p_len - 1; 399 actual = p_len + copy_len; 400 } 401 402 /* Give up if copy will overflow. */ 403 if (p_size <= actual) 404 fortify_panic(__func__); 405 __underlying_memcpy(p + p_len, q, copy_len); 406 p[actual] = '\0'; 407 408 return wanted; 409} 410 411/* Defined after fortified strlcat() to reuse it. */ 412/** 413 * strcat - Append a string to an existing string 414 * 415 * @p: pointer to NUL-terminated string to append to 416 * @q: pointer to NUL-terminated source string to append from 417 * 418 * Do not use this function. While FORTIFY_SOURCE tries to avoid 419 * read and write overflows, this is only possible when the 420 * destination buffer size is known to the compiler. Prefer 421 * building the string with formatting, via scnprintf() or similar. 422 * At the very least, use strncat(). 423 * 424 * Returns @p. 425 * 426 */ 427__FORTIFY_INLINE __diagnose_as(__builtin_strcat, 1, 2) 428char *strcat(char * const POS p, const char *q) 429{ 430 const size_t p_size = __member_size(p); 431 432 if (strlcat(p, q, p_size) >= p_size) 433 fortify_panic(__func__); 434 return p; 435} 436 437/** 438 * strncat - Append a string to an existing string 439 * 440 * @p: pointer to NUL-terminated string to append to 441 * @q: pointer to source string to append from 442 * @count: Maximum bytes to read from @q 443 * 444 * Appends at most @count bytes from @q (stopping at the first 445 * NUL byte) after the NUL-terminated string at @p. @p will be 446 * NUL-terminated. 447 * 448 * Do not use this function. While FORTIFY_SOURCE tries to avoid 449 * read and write overflows, this is only possible when the sizes 450 * of @p and @q are known to the compiler. Prefer building the 451 * string with formatting, via scnprintf() or similar. 452 * 453 * Returns @p. 454 * 455 */ 456/* Defined after fortified strlen() and strnlen() to reuse them. */ 457__FORTIFY_INLINE __diagnose_as(__builtin_strncat, 1, 2, 3) 458char *strncat(char * const POS p, const char * const POS q, __kernel_size_t count) 459{ 460 const size_t p_size = __member_size(p); 461 const size_t q_size = __member_size(q); 462 size_t p_len, copy_len; 463 464 if (p_size == SIZE_MAX && q_size == SIZE_MAX) 465 return __underlying_strncat(p, q, count); 466 p_len = strlen(p); 467 copy_len = strnlen(q, count); 468 if (p_size < p_len + copy_len + 1) 469 fortify_panic(__func__); 470 __underlying_memcpy(p + p_len, q, copy_len); 471 p[p_len + copy_len] = '\0'; 472 return p; 473} 474 475__FORTIFY_INLINE void fortify_memset_chk(__kernel_size_t size, 476 const size_t p_size, 477 const size_t p_size_field) 478{ 479 if (__builtin_constant_p(size)) { 480 /* 481 * Length argument is a constant expression, so we 482 * can perform compile-time bounds checking where 483 * buffer sizes are also known at compile time. 484 */ 485 486 /* Error when size is larger than enclosing struct. */ 487 if (__compiletime_lessthan(p_size_field, p_size) && 488 __compiletime_lessthan(p_size, size)) 489 __write_overflow(); 490 491 /* Warn when write size is larger than dest field. */ 492 if (__compiletime_lessthan(p_size_field, size)) 493 __write_overflow_field(p_size_field, size); 494 } 495 /* 496 * At this point, length argument may not be a constant expression, 497 * so run-time bounds checking can be done where buffer sizes are 498 * known. (This is not an "else" because the above checks may only 499 * be compile-time warnings, and we want to still warn for run-time 500 * overflows.) 501 */ 502 503 /* 504 * Always stop accesses beyond the struct that contains the 505 * field, when the buffer's remaining size is known. 506 * (The SIZE_MAX test is to optimize away checks where the buffer 507 * lengths are unknown.) 508 */ 509 if (p_size != SIZE_MAX && p_size < size) 510 fortify_panic("memset"); 511} 512 513#define __fortify_memset_chk(p, c, size, p_size, p_size_field) ({ \ 514 size_t __fortify_size = (size_t)(size); \ 515 fortify_memset_chk(__fortify_size, p_size, p_size_field), \ 516 __underlying_memset(p, c, __fortify_size); \ 517}) 518 519/* 520 * __struct_size() vs __member_size() must be captured here to avoid 521 * evaluating argument side-effects further into the macro layers. 522 */ 523#ifndef CONFIG_KMSAN 524#define memset(p, c, s) __fortify_memset_chk(p, c, s, \ 525 __struct_size(p), __member_size(p)) 526#endif 527 528/* 529 * To make sure the compiler can enforce protection against buffer overflows, 530 * memcpy(), memmove(), and memset() must not be used beyond individual 531 * struct members. If you need to copy across multiple members, please use 532 * struct_group() to create a named mirror of an anonymous struct union. 533 * (e.g. see struct sk_buff.) Read overflow checking is currently only 534 * done when a write overflow is also present, or when building with W=1. 535 * 536 * Mitigation coverage matrix 537 * Bounds checking at: 538 * +-------+-------+-------+-------+ 539 * | Compile time | Run time | 540 * memcpy() argument sizes: | write | read | write | read | 541 * dest source length +-------+-------+-------+-------+ 542 * memcpy(known, known, constant) | y | y | n/a | n/a | 543 * memcpy(known, unknown, constant) | y | n | n/a | V | 544 * memcpy(known, known, dynamic) | n | n | B | B | 545 * memcpy(known, unknown, dynamic) | n | n | B | V | 546 * memcpy(unknown, known, constant) | n | y | V | n/a | 547 * memcpy(unknown, unknown, constant) | n | n | V | V | 548 * memcpy(unknown, known, dynamic) | n | n | V | B | 549 * memcpy(unknown, unknown, dynamic) | n | n | V | V | 550 * +-------+-------+-------+-------+ 551 * 552 * y = perform deterministic compile-time bounds checking 553 * n = cannot perform deterministic compile-time bounds checking 554 * n/a = no run-time bounds checking needed since compile-time deterministic 555 * B = can perform run-time bounds checking (currently unimplemented) 556 * V = vulnerable to run-time overflow (will need refactoring to solve) 557 * 558 */ 559__FORTIFY_INLINE bool fortify_memcpy_chk(__kernel_size_t size, 560 const size_t p_size, 561 const size_t q_size, 562 const size_t p_size_field, 563 const size_t q_size_field, 564 const char *func) 565{ 566 if (__builtin_constant_p(size)) { 567 /* 568 * Length argument is a constant expression, so we 569 * can perform compile-time bounds checking where 570 * buffer sizes are also known at compile time. 571 */ 572 573 /* Error when size is larger than enclosing struct. */ 574 if (__compiletime_lessthan(p_size_field, p_size) && 575 __compiletime_lessthan(p_size, size)) 576 __write_overflow(); 577 if (__compiletime_lessthan(q_size_field, q_size) && 578 __compiletime_lessthan(q_size, size)) 579 __read_overflow2(); 580 581 /* Warn when write size argument larger than dest field. */ 582 if (__compiletime_lessthan(p_size_field, size)) 583 __write_overflow_field(p_size_field, size); 584 /* 585 * Warn for source field over-read when building with W=1 586 * or when an over-write happened, so both can be fixed at 587 * the same time. 588 */ 589 if ((IS_ENABLED(KBUILD_EXTRA_WARN1) || 590 __compiletime_lessthan(p_size_field, size)) && 591 __compiletime_lessthan(q_size_field, size)) 592 __read_overflow2_field(q_size_field, size); 593 } 594 /* 595 * At this point, length argument may not be a constant expression, 596 * so run-time bounds checking can be done where buffer sizes are 597 * known. (This is not an "else" because the above checks may only 598 * be compile-time warnings, and we want to still warn for run-time 599 * overflows.) 600 */ 601 602 /* 603 * Always stop accesses beyond the struct that contains the 604 * field, when the buffer's remaining size is known. 605 * (The SIZE_MAX test is to optimize away checks where the buffer 606 * lengths are unknown.) 607 */ 608 if ((p_size != SIZE_MAX && p_size < size) || 609 (q_size != SIZE_MAX && q_size < size)) 610 fortify_panic(func); 611 612 /* 613 * Warn when writing beyond destination field size. 614 * 615 * We must ignore p_size_field == 0 for existing 0-element 616 * fake flexible arrays, until they are all converted to 617 * proper flexible arrays. 618 * 619 * The implementation of __builtin_*object_size() behaves 620 * like sizeof() when not directly referencing a flexible 621 * array member, which means there will be many bounds checks 622 * that will appear at run-time, without a way for them to be 623 * detected at compile-time (as can be done when the destination 624 * is specifically the flexible array member). 625 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101832 626 */ 627 if (p_size_field != 0 && p_size_field != SIZE_MAX && 628 p_size != p_size_field && p_size_field < size) 629 return true; 630 631 return false; 632} 633 634#define __fortify_memcpy_chk(p, q, size, p_size, q_size, \ 635 p_size_field, q_size_field, op) ({ \ 636 const size_t __fortify_size = (size_t)(size); \ 637 const size_t __p_size = (p_size); \ 638 const size_t __q_size = (q_size); \ 639 const size_t __p_size_field = (p_size_field); \ 640 const size_t __q_size_field = (q_size_field); \ 641 WARN_ONCE(fortify_memcpy_chk(__fortify_size, __p_size, \ 642 __q_size, __p_size_field, \ 643 __q_size_field, #op), \ 644 #op ": detected field-spanning write (size %zu) of single %s (size %zu)\n", \ 645 __fortify_size, \ 646 "field \"" #p "\" at " __FILE__ ":" __stringify(__LINE__), \ 647 __p_size_field); \ 648 __underlying_##op(p, q, __fortify_size); \ 649}) 650 651/* 652 * Notes about compile-time buffer size detection: 653 * 654 * With these types... 655 * 656 * struct middle { 657 * u16 a; 658 * u8 middle_buf[16]; 659 * int b; 660 * }; 661 * struct end { 662 * u16 a; 663 * u8 end_buf[16]; 664 * }; 665 * struct flex { 666 * int a; 667 * u8 flex_buf[]; 668 * }; 669 * 670 * void func(TYPE *ptr) { ... } 671 * 672 * Cases where destination size cannot be currently detected: 673 * - the size of ptr's object (seemingly by design, gcc & clang fail): 674 * __builtin_object_size(ptr, 1) == SIZE_MAX 675 * - the size of flexible arrays in ptr's obj (by design, dynamic size): 676 * __builtin_object_size(ptr->flex_buf, 1) == SIZE_MAX 677 * - the size of ANY array at the end of ptr's obj (gcc and clang bug): 678 * __builtin_object_size(ptr->end_buf, 1) == SIZE_MAX 679 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836 680 * 681 * Cases where destination size is currently detected: 682 * - the size of non-array members within ptr's object: 683 * __builtin_object_size(ptr->a, 1) == 2 684 * - the size of non-flexible-array in the middle of ptr's obj: 685 * __builtin_object_size(ptr->middle_buf, 1) == 16 686 * 687 */ 688 689/* 690 * __struct_size() vs __member_size() must be captured here to avoid 691 * evaluating argument side-effects further into the macro layers. 692 */ 693#define memcpy(p, q, s) __fortify_memcpy_chk(p, q, s, \ 694 __struct_size(p), __struct_size(q), \ 695 __member_size(p), __member_size(q), \ 696 memcpy) 697#define memmove(p, q, s) __fortify_memcpy_chk(p, q, s, \ 698 __struct_size(p), __struct_size(q), \ 699 __member_size(p), __member_size(q), \ 700 memmove) 701 702extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan); 703__FORTIFY_INLINE void *memscan(void * const POS0 p, int c, __kernel_size_t size) 704{ 705 const size_t p_size = __struct_size(p); 706 707 if (__compiletime_lessthan(p_size, size)) 708 __read_overflow(); 709 if (p_size < size) 710 fortify_panic(__func__); 711 return __real_memscan(p, c, size); 712} 713 714__FORTIFY_INLINE __diagnose_as(__builtin_memcmp, 1, 2, 3) 715int memcmp(const void * const POS0 p, const void * const POS0 q, __kernel_size_t size) 716{ 717 const size_t p_size = __struct_size(p); 718 const size_t q_size = __struct_size(q); 719 720 if (__builtin_constant_p(size)) { 721 if (__compiletime_lessthan(p_size, size)) 722 __read_overflow(); 723 if (__compiletime_lessthan(q_size, size)) 724 __read_overflow2(); 725 } 726 if (p_size < size || q_size < size) 727 fortify_panic(__func__); 728 return __underlying_memcmp(p, q, size); 729} 730 731__FORTIFY_INLINE __diagnose_as(__builtin_memchr, 1, 2, 3) 732void *memchr(const void * const POS0 p, int c, __kernel_size_t size) 733{ 734 const size_t p_size = __struct_size(p); 735 736 if (__compiletime_lessthan(p_size, size)) 737 __read_overflow(); 738 if (p_size < size) 739 fortify_panic(__func__); 740 return __underlying_memchr(p, c, size); 741} 742 743void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv); 744__FORTIFY_INLINE void *memchr_inv(const void * const POS0 p, int c, size_t size) 745{ 746 const size_t p_size = __struct_size(p); 747 748 if (__compiletime_lessthan(p_size, size)) 749 __read_overflow(); 750 if (p_size < size) 751 fortify_panic(__func__); 752 return __real_memchr_inv(p, c, size); 753} 754 755extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup) 756 __realloc_size(2); 757__FORTIFY_INLINE void *kmemdup(const void * const POS0 p, size_t size, gfp_t gfp) 758{ 759 const size_t p_size = __struct_size(p); 760 761 if (__compiletime_lessthan(p_size, size)) 762 __read_overflow(); 763 if (p_size < size) 764 fortify_panic(__func__); 765 return __real_kmemdup(p, size, gfp); 766} 767 768/** 769 * strcpy - Copy a string into another string buffer 770 * 771 * @p: pointer to destination of copy 772 * @q: pointer to NUL-terminated source string to copy 773 * 774 * Do not use this function. While FORTIFY_SOURCE tries to avoid 775 * overflows, this is only possible when the sizes of @q and @p are 776 * known to the compiler. Prefer strscpy(), though note its different 777 * return values for detecting truncation. 778 * 779 * Returns @p. 780 * 781 */ 782/* Defined after fortified strlen to reuse it. */ 783__FORTIFY_INLINE __diagnose_as(__builtin_strcpy, 1, 2) 784char *strcpy(char * const POS p, const char * const POS q) 785{ 786 const size_t p_size = __member_size(p); 787 const size_t q_size = __member_size(q); 788 size_t size; 789 790 /* If neither buffer size is known, immediately give up. */ 791 if (__builtin_constant_p(p_size) && 792 __builtin_constant_p(q_size) && 793 p_size == SIZE_MAX && q_size == SIZE_MAX) 794 return __underlying_strcpy(p, q); 795 size = strlen(q) + 1; 796 /* Compile-time check for const size overflow. */ 797 if (__compiletime_lessthan(p_size, size)) 798 __write_overflow(); 799 /* Run-time check for dynamic size overflow. */ 800 if (p_size < size) 801 fortify_panic(__func__); 802 __underlying_memcpy(p, q, size); 803 return p; 804} 805 806/* Don't use these outside the FORITFY_SOURCE implementation */ 807#undef __underlying_memchr 808#undef __underlying_memcmp 809#undef __underlying_strcat 810#undef __underlying_strcpy 811#undef __underlying_strlen 812#undef __underlying_strncat 813#undef __underlying_strncpy 814 815#undef POS 816#undef POS0 817 818#endif /* _LINUX_FORTIFY_STRING_H_ */