Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Linux Socket Filter Data Structures
4 */
5#ifndef __LINUX_FILTER_H__
6#define __LINUX_FILTER_H__
7
8#include <linux/atomic.h>
9#include <linux/bpf.h>
10#include <linux/refcount.h>
11#include <linux/compat.h>
12#include <linux/skbuff.h>
13#include <linux/linkage.h>
14#include <linux/printk.h>
15#include <linux/workqueue.h>
16#include <linux/sched.h>
17#include <linux/sched/clock.h>
18#include <linux/capability.h>
19#include <linux/set_memory.h>
20#include <linux/kallsyms.h>
21#include <linux/if_vlan.h>
22#include <linux/vmalloc.h>
23#include <linux/sockptr.h>
24#include <crypto/sha1.h>
25#include <linux/u64_stats_sync.h>
26
27#include <net/sch_generic.h>
28
29#include <asm/byteorder.h>
30#include <uapi/linux/filter.h>
31
32struct sk_buff;
33struct sock;
34struct seccomp_data;
35struct bpf_prog_aux;
36struct xdp_rxq_info;
37struct xdp_buff;
38struct sock_reuseport;
39struct ctl_table;
40struct ctl_table_header;
41
42/* ArgX, context and stack frame pointer register positions. Note,
43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44 * calls in BPF_CALL instruction.
45 */
46#define BPF_REG_ARG1 BPF_REG_1
47#define BPF_REG_ARG2 BPF_REG_2
48#define BPF_REG_ARG3 BPF_REG_3
49#define BPF_REG_ARG4 BPF_REG_4
50#define BPF_REG_ARG5 BPF_REG_5
51#define BPF_REG_CTX BPF_REG_6
52#define BPF_REG_FP BPF_REG_10
53
54/* Additional register mappings for converted user programs. */
55#define BPF_REG_A BPF_REG_0
56#define BPF_REG_X BPF_REG_7
57#define BPF_REG_TMP BPF_REG_2 /* scratch reg */
58#define BPF_REG_D BPF_REG_8 /* data, callee-saved */
59#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
60
61/* Kernel hidden auxiliary/helper register. */
62#define BPF_REG_AX MAX_BPF_REG
63#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
64#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
65
66/* unused opcode to mark special call to bpf_tail_call() helper */
67#define BPF_TAIL_CALL 0xf0
68
69/* unused opcode to mark special load instruction. Same as BPF_ABS */
70#define BPF_PROBE_MEM 0x20
71
72/* unused opcode to mark call to interpreter with arguments */
73#define BPF_CALL_ARGS 0xe0
74
75/* unused opcode to mark speculation barrier for mitigating
76 * Speculative Store Bypass
77 */
78#define BPF_NOSPEC 0xc0
79
80/* As per nm, we expose JITed images as text (code) section for
81 * kallsyms. That way, tools like perf can find it to match
82 * addresses.
83 */
84#define BPF_SYM_ELF_TYPE 't'
85
86/* BPF program can access up to 512 bytes of stack space. */
87#define MAX_BPF_STACK 512
88
89/* Helper macros for filter block array initializers. */
90
91/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
92
93#define BPF_ALU64_REG(OP, DST, SRC) \
94 ((struct bpf_insn) { \
95 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
96 .dst_reg = DST, \
97 .src_reg = SRC, \
98 .off = 0, \
99 .imm = 0 })
100
101#define BPF_ALU32_REG(OP, DST, SRC) \
102 ((struct bpf_insn) { \
103 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
104 .dst_reg = DST, \
105 .src_reg = SRC, \
106 .off = 0, \
107 .imm = 0 })
108
109/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
110
111#define BPF_ALU64_IMM(OP, DST, IMM) \
112 ((struct bpf_insn) { \
113 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
114 .dst_reg = DST, \
115 .src_reg = 0, \
116 .off = 0, \
117 .imm = IMM })
118
119#define BPF_ALU32_IMM(OP, DST, IMM) \
120 ((struct bpf_insn) { \
121 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
122 .dst_reg = DST, \
123 .src_reg = 0, \
124 .off = 0, \
125 .imm = IMM })
126
127/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
128
129#define BPF_ENDIAN(TYPE, DST, LEN) \
130 ((struct bpf_insn) { \
131 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
132 .dst_reg = DST, \
133 .src_reg = 0, \
134 .off = 0, \
135 .imm = LEN })
136
137/* Short form of mov, dst_reg = src_reg */
138
139#define BPF_MOV64_REG(DST, SRC) \
140 ((struct bpf_insn) { \
141 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
142 .dst_reg = DST, \
143 .src_reg = SRC, \
144 .off = 0, \
145 .imm = 0 })
146
147#define BPF_MOV32_REG(DST, SRC) \
148 ((struct bpf_insn) { \
149 .code = BPF_ALU | BPF_MOV | BPF_X, \
150 .dst_reg = DST, \
151 .src_reg = SRC, \
152 .off = 0, \
153 .imm = 0 })
154
155/* Short form of mov, dst_reg = imm32 */
156
157#define BPF_MOV64_IMM(DST, IMM) \
158 ((struct bpf_insn) { \
159 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
160 .dst_reg = DST, \
161 .src_reg = 0, \
162 .off = 0, \
163 .imm = IMM })
164
165#define BPF_MOV32_IMM(DST, IMM) \
166 ((struct bpf_insn) { \
167 .code = BPF_ALU | BPF_MOV | BPF_K, \
168 .dst_reg = DST, \
169 .src_reg = 0, \
170 .off = 0, \
171 .imm = IMM })
172
173/* Special form of mov32, used for doing explicit zero extension on dst. */
174#define BPF_ZEXT_REG(DST) \
175 ((struct bpf_insn) { \
176 .code = BPF_ALU | BPF_MOV | BPF_X, \
177 .dst_reg = DST, \
178 .src_reg = DST, \
179 .off = 0, \
180 .imm = 1 })
181
182static inline bool insn_is_zext(const struct bpf_insn *insn)
183{
184 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
185}
186
187/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
188#define BPF_LD_IMM64(DST, IMM) \
189 BPF_LD_IMM64_RAW(DST, 0, IMM)
190
191#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
192 ((struct bpf_insn) { \
193 .code = BPF_LD | BPF_DW | BPF_IMM, \
194 .dst_reg = DST, \
195 .src_reg = SRC, \
196 .off = 0, \
197 .imm = (__u32) (IMM) }), \
198 ((struct bpf_insn) { \
199 .code = 0, /* zero is reserved opcode */ \
200 .dst_reg = 0, \
201 .src_reg = 0, \
202 .off = 0, \
203 .imm = ((__u64) (IMM)) >> 32 })
204
205/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
206#define BPF_LD_MAP_FD(DST, MAP_FD) \
207 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
208
209/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
210
211#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
212 ((struct bpf_insn) { \
213 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
214 .dst_reg = DST, \
215 .src_reg = SRC, \
216 .off = 0, \
217 .imm = IMM })
218
219#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
220 ((struct bpf_insn) { \
221 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
222 .dst_reg = DST, \
223 .src_reg = SRC, \
224 .off = 0, \
225 .imm = IMM })
226
227/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
228
229#define BPF_LD_ABS(SIZE, IMM) \
230 ((struct bpf_insn) { \
231 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
232 .dst_reg = 0, \
233 .src_reg = 0, \
234 .off = 0, \
235 .imm = IMM })
236
237/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
238
239#define BPF_LD_IND(SIZE, SRC, IMM) \
240 ((struct bpf_insn) { \
241 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
242 .dst_reg = 0, \
243 .src_reg = SRC, \
244 .off = 0, \
245 .imm = IMM })
246
247/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
248
249#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
250 ((struct bpf_insn) { \
251 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
252 .dst_reg = DST, \
253 .src_reg = SRC, \
254 .off = OFF, \
255 .imm = 0 })
256
257/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
258
259#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
260 ((struct bpf_insn) { \
261 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
262 .dst_reg = DST, \
263 .src_reg = SRC, \
264 .off = OFF, \
265 .imm = 0 })
266
267
268/*
269 * Atomic operations:
270 *
271 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg
272 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg
273 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg
274 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg
275 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
276 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
277 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
278 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
279 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg)
280 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
281 */
282
283#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \
284 ((struct bpf_insn) { \
285 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
286 .dst_reg = DST, \
287 .src_reg = SRC, \
288 .off = OFF, \
289 .imm = OP })
290
291/* Legacy alias */
292#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
293
294/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
295
296#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
297 ((struct bpf_insn) { \
298 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
299 .dst_reg = DST, \
300 .src_reg = 0, \
301 .off = OFF, \
302 .imm = IMM })
303
304/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
305
306#define BPF_JMP_REG(OP, DST, SRC, OFF) \
307 ((struct bpf_insn) { \
308 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
309 .dst_reg = DST, \
310 .src_reg = SRC, \
311 .off = OFF, \
312 .imm = 0 })
313
314/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
315
316#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
317 ((struct bpf_insn) { \
318 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
319 .dst_reg = DST, \
320 .src_reg = 0, \
321 .off = OFF, \
322 .imm = IMM })
323
324/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
325
326#define BPF_JMP32_REG(OP, DST, SRC, OFF) \
327 ((struct bpf_insn) { \
328 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
329 .dst_reg = DST, \
330 .src_reg = SRC, \
331 .off = OFF, \
332 .imm = 0 })
333
334/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
335
336#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
337 ((struct bpf_insn) { \
338 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
339 .dst_reg = DST, \
340 .src_reg = 0, \
341 .off = OFF, \
342 .imm = IMM })
343
344/* Unconditional jumps, goto pc + off16 */
345
346#define BPF_JMP_A(OFF) \
347 ((struct bpf_insn) { \
348 .code = BPF_JMP | BPF_JA, \
349 .dst_reg = 0, \
350 .src_reg = 0, \
351 .off = OFF, \
352 .imm = 0 })
353
354/* Relative call */
355
356#define BPF_CALL_REL(TGT) \
357 ((struct bpf_insn) { \
358 .code = BPF_JMP | BPF_CALL, \
359 .dst_reg = 0, \
360 .src_reg = BPF_PSEUDO_CALL, \
361 .off = 0, \
362 .imm = TGT })
363
364/* Convert function address to BPF immediate */
365
366#define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base)
367
368#define BPF_EMIT_CALL(FUNC) \
369 ((struct bpf_insn) { \
370 .code = BPF_JMP | BPF_CALL, \
371 .dst_reg = 0, \
372 .src_reg = 0, \
373 .off = 0, \
374 .imm = BPF_CALL_IMM(FUNC) })
375
376/* Raw code statement block */
377
378#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
379 ((struct bpf_insn) { \
380 .code = CODE, \
381 .dst_reg = DST, \
382 .src_reg = SRC, \
383 .off = OFF, \
384 .imm = IMM })
385
386/* Program exit */
387
388#define BPF_EXIT_INSN() \
389 ((struct bpf_insn) { \
390 .code = BPF_JMP | BPF_EXIT, \
391 .dst_reg = 0, \
392 .src_reg = 0, \
393 .off = 0, \
394 .imm = 0 })
395
396/* Speculation barrier */
397
398#define BPF_ST_NOSPEC() \
399 ((struct bpf_insn) { \
400 .code = BPF_ST | BPF_NOSPEC, \
401 .dst_reg = 0, \
402 .src_reg = 0, \
403 .off = 0, \
404 .imm = 0 })
405
406/* Internal classic blocks for direct assignment */
407
408#define __BPF_STMT(CODE, K) \
409 ((struct sock_filter) BPF_STMT(CODE, K))
410
411#define __BPF_JUMP(CODE, K, JT, JF) \
412 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
413
414#define bytes_to_bpf_size(bytes) \
415({ \
416 int bpf_size = -EINVAL; \
417 \
418 if (bytes == sizeof(u8)) \
419 bpf_size = BPF_B; \
420 else if (bytes == sizeof(u16)) \
421 bpf_size = BPF_H; \
422 else if (bytes == sizeof(u32)) \
423 bpf_size = BPF_W; \
424 else if (bytes == sizeof(u64)) \
425 bpf_size = BPF_DW; \
426 \
427 bpf_size; \
428})
429
430#define bpf_size_to_bytes(bpf_size) \
431({ \
432 int bytes = -EINVAL; \
433 \
434 if (bpf_size == BPF_B) \
435 bytes = sizeof(u8); \
436 else if (bpf_size == BPF_H) \
437 bytes = sizeof(u16); \
438 else if (bpf_size == BPF_W) \
439 bytes = sizeof(u32); \
440 else if (bpf_size == BPF_DW) \
441 bytes = sizeof(u64); \
442 \
443 bytes; \
444})
445
446#define BPF_SIZEOF(type) \
447 ({ \
448 const int __size = bytes_to_bpf_size(sizeof(type)); \
449 BUILD_BUG_ON(__size < 0); \
450 __size; \
451 })
452
453#define BPF_FIELD_SIZEOF(type, field) \
454 ({ \
455 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
456 BUILD_BUG_ON(__size < 0); \
457 __size; \
458 })
459
460#define BPF_LDST_BYTES(insn) \
461 ({ \
462 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
463 WARN_ON(__size < 0); \
464 __size; \
465 })
466
467#define __BPF_MAP_0(m, v, ...) v
468#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
469#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
470#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
471#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
472#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
473
474#define __BPF_REG_0(...) __BPF_PAD(5)
475#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
476#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
477#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
478#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
479#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
480
481#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
482#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
483
484#define __BPF_CAST(t, a) \
485 (__force t) \
486 (__force \
487 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
488 (unsigned long)0, (t)0))) a
489#define __BPF_V void
490#define __BPF_N
491
492#define __BPF_DECL_ARGS(t, a) t a
493#define __BPF_DECL_REGS(t, a) u64 a
494
495#define __BPF_PAD(n) \
496 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
497 u64, __ur_3, u64, __ur_4, u64, __ur_5)
498
499#define BPF_CALL_x(x, name, ...) \
500 static __always_inline \
501 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
502 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
503 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
504 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
505 { \
506 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
507 } \
508 static __always_inline \
509 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
510
511#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
512#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
513#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
514#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
515#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
516#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
517
518#define bpf_ctx_range(TYPE, MEMBER) \
519 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
520#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
521 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
522#if BITS_PER_LONG == 64
523# define bpf_ctx_range_ptr(TYPE, MEMBER) \
524 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
525#else
526# define bpf_ctx_range_ptr(TYPE, MEMBER) \
527 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
528#endif /* BITS_PER_LONG == 64 */
529
530#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
531 ({ \
532 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \
533 *(PTR_SIZE) = (SIZE); \
534 offsetof(TYPE, MEMBER); \
535 })
536
537/* A struct sock_filter is architecture independent. */
538struct compat_sock_fprog {
539 u16 len;
540 compat_uptr_t filter; /* struct sock_filter * */
541};
542
543struct sock_fprog_kern {
544 u16 len;
545 struct sock_filter *filter;
546};
547
548/* Some arches need doubleword alignment for their instructions and/or data */
549#define BPF_IMAGE_ALIGNMENT 8
550
551struct bpf_binary_header {
552 u32 size;
553 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
554};
555
556struct bpf_prog_stats {
557 u64_stats_t cnt;
558 u64_stats_t nsecs;
559 u64_stats_t misses;
560 struct u64_stats_sync syncp;
561} __aligned(2 * sizeof(u64));
562
563struct sk_filter {
564 refcount_t refcnt;
565 struct rcu_head rcu;
566 struct bpf_prog *prog;
567};
568
569DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
570
571extern struct mutex nf_conn_btf_access_lock;
572extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
573 const struct bpf_reg_state *reg,
574 int off, int size);
575
576typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
577 const struct bpf_insn *insnsi,
578 unsigned int (*bpf_func)(const void *,
579 const struct bpf_insn *));
580
581static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
582 const void *ctx,
583 bpf_dispatcher_fn dfunc)
584{
585 u32 ret;
586
587 cant_migrate();
588 if (static_branch_unlikely(&bpf_stats_enabled_key)) {
589 struct bpf_prog_stats *stats;
590 u64 start = sched_clock();
591 unsigned long flags;
592
593 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
594 stats = this_cpu_ptr(prog->stats);
595 flags = u64_stats_update_begin_irqsave(&stats->syncp);
596 u64_stats_inc(&stats->cnt);
597 u64_stats_add(&stats->nsecs, sched_clock() - start);
598 u64_stats_update_end_irqrestore(&stats->syncp, flags);
599 } else {
600 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
601 }
602 return ret;
603}
604
605static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
606{
607 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
608}
609
610/*
611 * Use in preemptible and therefore migratable context to make sure that
612 * the execution of the BPF program runs on one CPU.
613 *
614 * This uses migrate_disable/enable() explicitly to document that the
615 * invocation of a BPF program does not require reentrancy protection
616 * against a BPF program which is invoked from a preempting task.
617 */
618static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
619 const void *ctx)
620{
621 u32 ret;
622
623 migrate_disable();
624 ret = bpf_prog_run(prog, ctx);
625 migrate_enable();
626 return ret;
627}
628
629#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
630
631struct bpf_skb_data_end {
632 struct qdisc_skb_cb qdisc_cb;
633 void *data_meta;
634 void *data_end;
635};
636
637struct bpf_nh_params {
638 u32 nh_family;
639 union {
640 u32 ipv4_nh;
641 struct in6_addr ipv6_nh;
642 };
643};
644
645struct bpf_redirect_info {
646 u64 tgt_index;
647 void *tgt_value;
648 struct bpf_map *map;
649 u32 flags;
650 u32 kern_flags;
651 u32 map_id;
652 enum bpf_map_type map_type;
653 struct bpf_nh_params nh;
654};
655
656DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
657
658/* flags for bpf_redirect_info kern_flags */
659#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
660
661/* Compute the linear packet data range [data, data_end) which
662 * will be accessed by various program types (cls_bpf, act_bpf,
663 * lwt, ...). Subsystems allowing direct data access must (!)
664 * ensure that cb[] area can be written to when BPF program is
665 * invoked (otherwise cb[] save/restore is necessary).
666 */
667static inline void bpf_compute_data_pointers(struct sk_buff *skb)
668{
669 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
670
671 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
672 cb->data_meta = skb->data - skb_metadata_len(skb);
673 cb->data_end = skb->data + skb_headlen(skb);
674}
675
676/* Similar to bpf_compute_data_pointers(), except that save orginal
677 * data in cb->data and cb->meta_data for restore.
678 */
679static inline void bpf_compute_and_save_data_end(
680 struct sk_buff *skb, void **saved_data_end)
681{
682 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
683
684 *saved_data_end = cb->data_end;
685 cb->data_end = skb->data + skb_headlen(skb);
686}
687
688/* Restore data saved by bpf_compute_data_pointers(). */
689static inline void bpf_restore_data_end(
690 struct sk_buff *skb, void *saved_data_end)
691{
692 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
693
694 cb->data_end = saved_data_end;
695}
696
697static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
698{
699 /* eBPF programs may read/write skb->cb[] area to transfer meta
700 * data between tail calls. Since this also needs to work with
701 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
702 *
703 * In some socket filter cases, the cb unfortunately needs to be
704 * saved/restored so that protocol specific skb->cb[] data won't
705 * be lost. In any case, due to unpriviledged eBPF programs
706 * attached to sockets, we need to clear the bpf_skb_cb() area
707 * to not leak previous contents to user space.
708 */
709 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
710 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
711 sizeof_field(struct qdisc_skb_cb, data));
712
713 return qdisc_skb_cb(skb)->data;
714}
715
716/* Must be invoked with migration disabled */
717static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
718 const void *ctx)
719{
720 const struct sk_buff *skb = ctx;
721 u8 *cb_data = bpf_skb_cb(skb);
722 u8 cb_saved[BPF_SKB_CB_LEN];
723 u32 res;
724
725 if (unlikely(prog->cb_access)) {
726 memcpy(cb_saved, cb_data, sizeof(cb_saved));
727 memset(cb_data, 0, sizeof(cb_saved));
728 }
729
730 res = bpf_prog_run(prog, skb);
731
732 if (unlikely(prog->cb_access))
733 memcpy(cb_data, cb_saved, sizeof(cb_saved));
734
735 return res;
736}
737
738static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
739 struct sk_buff *skb)
740{
741 u32 res;
742
743 migrate_disable();
744 res = __bpf_prog_run_save_cb(prog, skb);
745 migrate_enable();
746 return res;
747}
748
749static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
750 struct sk_buff *skb)
751{
752 u8 *cb_data = bpf_skb_cb(skb);
753 u32 res;
754
755 if (unlikely(prog->cb_access))
756 memset(cb_data, 0, BPF_SKB_CB_LEN);
757
758 res = bpf_prog_run_pin_on_cpu(prog, skb);
759 return res;
760}
761
762DECLARE_BPF_DISPATCHER(xdp)
763
764DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
765
766u32 xdp_master_redirect(struct xdp_buff *xdp);
767
768static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
769 struct xdp_buff *xdp)
770{
771 /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
772 * under local_bh_disable(), which provides the needed RCU protection
773 * for accessing map entries.
774 */
775 u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
776
777 if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) {
778 if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev))
779 act = xdp_master_redirect(xdp);
780 }
781
782 return act;
783}
784
785void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
786
787static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
788{
789 return prog->len * sizeof(struct bpf_insn);
790}
791
792static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
793{
794 return round_up(bpf_prog_insn_size(prog) +
795 sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
796}
797
798static inline unsigned int bpf_prog_size(unsigned int proglen)
799{
800 return max(sizeof(struct bpf_prog),
801 offsetof(struct bpf_prog, insns[proglen]));
802}
803
804static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
805{
806 /* When classic BPF programs have been loaded and the arch
807 * does not have a classic BPF JIT (anymore), they have been
808 * converted via bpf_migrate_filter() to eBPF and thus always
809 * have an unspec program type.
810 */
811 return prog->type == BPF_PROG_TYPE_UNSPEC;
812}
813
814static inline u32 bpf_ctx_off_adjust_machine(u32 size)
815{
816 const u32 size_machine = sizeof(unsigned long);
817
818 if (size > size_machine && size % size_machine == 0)
819 size = size_machine;
820
821 return size;
822}
823
824static inline bool
825bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
826{
827 return size <= size_default && (size & (size - 1)) == 0;
828}
829
830static inline u8
831bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
832{
833 u8 access_off = off & (size_default - 1);
834
835#ifdef __LITTLE_ENDIAN
836 return access_off;
837#else
838 return size_default - (access_off + size);
839#endif
840}
841
842#define bpf_ctx_wide_access_ok(off, size, type, field) \
843 (size == sizeof(__u64) && \
844 off >= offsetof(type, field) && \
845 off + sizeof(__u64) <= offsetofend(type, field) && \
846 off % sizeof(__u64) == 0)
847
848#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
849
850static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
851{
852#ifndef CONFIG_BPF_JIT_ALWAYS_ON
853 if (!fp->jited) {
854 set_vm_flush_reset_perms(fp);
855 set_memory_ro((unsigned long)fp, fp->pages);
856 }
857#endif
858}
859
860static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
861{
862 set_vm_flush_reset_perms(hdr);
863 set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
864}
865
866int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
867static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
868{
869 return sk_filter_trim_cap(sk, skb, 1);
870}
871
872struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
873void bpf_prog_free(struct bpf_prog *fp);
874
875bool bpf_opcode_in_insntable(u8 code);
876
877void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
878 const u32 *insn_to_jit_off);
879int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
880void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
881
882struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
883struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
884struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
885 gfp_t gfp_extra_flags);
886void __bpf_prog_free(struct bpf_prog *fp);
887
888static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
889{
890 __bpf_prog_free(fp);
891}
892
893typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
894 unsigned int flen);
895
896int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
897int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
898 bpf_aux_classic_check_t trans, bool save_orig);
899void bpf_prog_destroy(struct bpf_prog *fp);
900
901int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
902int sk_attach_bpf(u32 ufd, struct sock *sk);
903int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
904int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
905void sk_reuseport_prog_free(struct bpf_prog *prog);
906int sk_detach_filter(struct sock *sk);
907int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
908
909bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
910void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
911
912u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
913#define __bpf_call_base_args \
914 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
915 (void *)__bpf_call_base)
916
917struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
918void bpf_jit_compile(struct bpf_prog *prog);
919bool bpf_jit_needs_zext(void);
920bool bpf_jit_supports_subprog_tailcalls(void);
921bool bpf_jit_supports_kfunc_call(void);
922bool bpf_jit_supports_far_kfunc_call(void);
923bool bpf_helper_changes_pkt_data(void *func);
924
925static inline bool bpf_dump_raw_ok(const struct cred *cred)
926{
927 /* Reconstruction of call-sites is dependent on kallsyms,
928 * thus make dump the same restriction.
929 */
930 return kallsyms_show_value(cred);
931}
932
933struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
934 const struct bpf_insn *patch, u32 len);
935int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
936
937void bpf_clear_redirect_map(struct bpf_map *map);
938
939static inline bool xdp_return_frame_no_direct(void)
940{
941 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
942
943 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
944}
945
946static inline void xdp_set_return_frame_no_direct(void)
947{
948 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
949
950 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
951}
952
953static inline void xdp_clear_return_frame_no_direct(void)
954{
955 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
956
957 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
958}
959
960static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
961 unsigned int pktlen)
962{
963 unsigned int len;
964
965 if (unlikely(!(fwd->flags & IFF_UP)))
966 return -ENETDOWN;
967
968 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
969 if (pktlen > len)
970 return -EMSGSIZE;
971
972 return 0;
973}
974
975/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
976 * same cpu context. Further for best results no more than a single map
977 * for the do_redirect/do_flush pair should be used. This limitation is
978 * because we only track one map and force a flush when the map changes.
979 * This does not appear to be a real limitation for existing software.
980 */
981int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
982 struct xdp_buff *xdp, struct bpf_prog *prog);
983int xdp_do_redirect(struct net_device *dev,
984 struct xdp_buff *xdp,
985 struct bpf_prog *prog);
986int xdp_do_redirect_frame(struct net_device *dev,
987 struct xdp_buff *xdp,
988 struct xdp_frame *xdpf,
989 struct bpf_prog *prog);
990void xdp_do_flush(void);
991
992/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
993 * it is no longer only flushing maps. Keep this define for compatibility
994 * until all drivers are updated - do not use xdp_do_flush_map() in new code!
995 */
996#define xdp_do_flush_map xdp_do_flush
997
998void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
999
1000#ifdef CONFIG_INET
1001struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1002 struct bpf_prog *prog, struct sk_buff *skb,
1003 struct sock *migrating_sk,
1004 u32 hash);
1005#else
1006static inline struct sock *
1007bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1008 struct bpf_prog *prog, struct sk_buff *skb,
1009 struct sock *migrating_sk,
1010 u32 hash)
1011{
1012 return NULL;
1013}
1014#endif
1015
1016#ifdef CONFIG_BPF_JIT
1017extern int bpf_jit_enable;
1018extern int bpf_jit_harden;
1019extern int bpf_jit_kallsyms;
1020extern long bpf_jit_limit;
1021extern long bpf_jit_limit_max;
1022
1023typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1024
1025void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1026
1027struct bpf_binary_header *
1028bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1029 unsigned int alignment,
1030 bpf_jit_fill_hole_t bpf_fill_ill_insns);
1031void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1032u64 bpf_jit_alloc_exec_limit(void);
1033void *bpf_jit_alloc_exec(unsigned long size);
1034void bpf_jit_free_exec(void *addr);
1035void bpf_jit_free(struct bpf_prog *fp);
1036struct bpf_binary_header *
1037bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1038
1039void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1040void bpf_prog_pack_free(struct bpf_binary_header *hdr);
1041
1042static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1043{
1044 return list_empty(&fp->aux->ksym.lnode) ||
1045 fp->aux->ksym.lnode.prev == LIST_POISON2;
1046}
1047
1048struct bpf_binary_header *
1049bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1050 unsigned int alignment,
1051 struct bpf_binary_header **rw_hdr,
1052 u8 **rw_image,
1053 bpf_jit_fill_hole_t bpf_fill_ill_insns);
1054int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1055 struct bpf_binary_header *ro_header,
1056 struct bpf_binary_header *rw_header);
1057void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1058 struct bpf_binary_header *rw_header);
1059
1060int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1061 struct bpf_jit_poke_descriptor *poke);
1062
1063int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1064 const struct bpf_insn *insn, bool extra_pass,
1065 u64 *func_addr, bool *func_addr_fixed);
1066
1067struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1068void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1069
1070static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1071 u32 pass, void *image)
1072{
1073 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1074 proglen, pass, image, current->comm, task_pid_nr(current));
1075
1076 if (image)
1077 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1078 16, 1, image, proglen, false);
1079}
1080
1081static inline bool bpf_jit_is_ebpf(void)
1082{
1083# ifdef CONFIG_HAVE_EBPF_JIT
1084 return true;
1085# else
1086 return false;
1087# endif
1088}
1089
1090static inline bool ebpf_jit_enabled(void)
1091{
1092 return bpf_jit_enable && bpf_jit_is_ebpf();
1093}
1094
1095static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1096{
1097 return fp->jited && bpf_jit_is_ebpf();
1098}
1099
1100static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1101{
1102 /* These are the prerequisites, should someone ever have the
1103 * idea to call blinding outside of them, we make sure to
1104 * bail out.
1105 */
1106 if (!bpf_jit_is_ebpf())
1107 return false;
1108 if (!prog->jit_requested)
1109 return false;
1110 if (!bpf_jit_harden)
1111 return false;
1112 if (bpf_jit_harden == 1 && bpf_capable())
1113 return false;
1114
1115 return true;
1116}
1117
1118static inline bool bpf_jit_kallsyms_enabled(void)
1119{
1120 /* There are a couple of corner cases where kallsyms should
1121 * not be enabled f.e. on hardening.
1122 */
1123 if (bpf_jit_harden)
1124 return false;
1125 if (!bpf_jit_kallsyms)
1126 return false;
1127 if (bpf_jit_kallsyms == 1)
1128 return true;
1129
1130 return false;
1131}
1132
1133const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1134 unsigned long *off, char *sym);
1135bool is_bpf_text_address(unsigned long addr);
1136int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1137 char *sym);
1138
1139static inline const char *
1140bpf_address_lookup(unsigned long addr, unsigned long *size,
1141 unsigned long *off, char **modname, char *sym)
1142{
1143 const char *ret = __bpf_address_lookup(addr, size, off, sym);
1144
1145 if (ret && modname)
1146 *modname = NULL;
1147 return ret;
1148}
1149
1150void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1151void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1152
1153#else /* CONFIG_BPF_JIT */
1154
1155static inline bool ebpf_jit_enabled(void)
1156{
1157 return false;
1158}
1159
1160static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1161{
1162 return false;
1163}
1164
1165static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1166{
1167 return false;
1168}
1169
1170static inline int
1171bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1172 struct bpf_jit_poke_descriptor *poke)
1173{
1174 return -ENOTSUPP;
1175}
1176
1177static inline void bpf_jit_free(struct bpf_prog *fp)
1178{
1179 bpf_prog_unlock_free(fp);
1180}
1181
1182static inline bool bpf_jit_kallsyms_enabled(void)
1183{
1184 return false;
1185}
1186
1187static inline const char *
1188__bpf_address_lookup(unsigned long addr, unsigned long *size,
1189 unsigned long *off, char *sym)
1190{
1191 return NULL;
1192}
1193
1194static inline bool is_bpf_text_address(unsigned long addr)
1195{
1196 return false;
1197}
1198
1199static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1200 char *type, char *sym)
1201{
1202 return -ERANGE;
1203}
1204
1205static inline const char *
1206bpf_address_lookup(unsigned long addr, unsigned long *size,
1207 unsigned long *off, char **modname, char *sym)
1208{
1209 return NULL;
1210}
1211
1212static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1213{
1214}
1215
1216static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1217{
1218}
1219
1220#endif /* CONFIG_BPF_JIT */
1221
1222void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1223
1224#define BPF_ANC BIT(15)
1225
1226static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1227{
1228 switch (first->code) {
1229 case BPF_RET | BPF_K:
1230 case BPF_LD | BPF_W | BPF_LEN:
1231 return false;
1232
1233 case BPF_LD | BPF_W | BPF_ABS:
1234 case BPF_LD | BPF_H | BPF_ABS:
1235 case BPF_LD | BPF_B | BPF_ABS:
1236 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1237 return true;
1238 return false;
1239
1240 default:
1241 return true;
1242 }
1243}
1244
1245static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1246{
1247 BUG_ON(ftest->code & BPF_ANC);
1248
1249 switch (ftest->code) {
1250 case BPF_LD | BPF_W | BPF_ABS:
1251 case BPF_LD | BPF_H | BPF_ABS:
1252 case BPF_LD | BPF_B | BPF_ABS:
1253#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1254 return BPF_ANC | SKF_AD_##CODE
1255 switch (ftest->k) {
1256 BPF_ANCILLARY(PROTOCOL);
1257 BPF_ANCILLARY(PKTTYPE);
1258 BPF_ANCILLARY(IFINDEX);
1259 BPF_ANCILLARY(NLATTR);
1260 BPF_ANCILLARY(NLATTR_NEST);
1261 BPF_ANCILLARY(MARK);
1262 BPF_ANCILLARY(QUEUE);
1263 BPF_ANCILLARY(HATYPE);
1264 BPF_ANCILLARY(RXHASH);
1265 BPF_ANCILLARY(CPU);
1266 BPF_ANCILLARY(ALU_XOR_X);
1267 BPF_ANCILLARY(VLAN_TAG);
1268 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1269 BPF_ANCILLARY(PAY_OFFSET);
1270 BPF_ANCILLARY(RANDOM);
1271 BPF_ANCILLARY(VLAN_TPID);
1272 }
1273 fallthrough;
1274 default:
1275 return ftest->code;
1276 }
1277}
1278
1279void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1280 int k, unsigned int size);
1281
1282static inline int bpf_tell_extensions(void)
1283{
1284 return SKF_AD_MAX;
1285}
1286
1287struct bpf_sock_addr_kern {
1288 struct sock *sk;
1289 struct sockaddr *uaddr;
1290 /* Temporary "register" to make indirect stores to nested structures
1291 * defined above. We need three registers to make such a store, but
1292 * only two (src and dst) are available at convert_ctx_access time
1293 */
1294 u64 tmp_reg;
1295 void *t_ctx; /* Attach type specific context. */
1296};
1297
1298struct bpf_sock_ops_kern {
1299 struct sock *sk;
1300 union {
1301 u32 args[4];
1302 u32 reply;
1303 u32 replylong[4];
1304 };
1305 struct sk_buff *syn_skb;
1306 struct sk_buff *skb;
1307 void *skb_data_end;
1308 u8 op;
1309 u8 is_fullsock;
1310 u8 remaining_opt_len;
1311 u64 temp; /* temp and everything after is not
1312 * initialized to 0 before calling
1313 * the BPF program. New fields that
1314 * should be initialized to 0 should
1315 * be inserted before temp.
1316 * temp is scratch storage used by
1317 * sock_ops_convert_ctx_access
1318 * as temporary storage of a register.
1319 */
1320};
1321
1322struct bpf_sysctl_kern {
1323 struct ctl_table_header *head;
1324 struct ctl_table *table;
1325 void *cur_val;
1326 size_t cur_len;
1327 void *new_val;
1328 size_t new_len;
1329 int new_updated;
1330 int write;
1331 loff_t *ppos;
1332 /* Temporary "register" for indirect stores to ppos. */
1333 u64 tmp_reg;
1334};
1335
1336#define BPF_SOCKOPT_KERN_BUF_SIZE 32
1337struct bpf_sockopt_buf {
1338 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE];
1339};
1340
1341struct bpf_sockopt_kern {
1342 struct sock *sk;
1343 u8 *optval;
1344 u8 *optval_end;
1345 s32 level;
1346 s32 optname;
1347 s32 optlen;
1348 /* for retval in struct bpf_cg_run_ctx */
1349 struct task_struct *current_task;
1350 /* Temporary "register" for indirect stores to ppos. */
1351 u64 tmp_reg;
1352};
1353
1354int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1355
1356struct bpf_sk_lookup_kern {
1357 u16 family;
1358 u16 protocol;
1359 __be16 sport;
1360 u16 dport;
1361 struct {
1362 __be32 saddr;
1363 __be32 daddr;
1364 } v4;
1365 struct {
1366 const struct in6_addr *saddr;
1367 const struct in6_addr *daddr;
1368 } v6;
1369 struct sock *selected_sk;
1370 u32 ingress_ifindex;
1371 bool no_reuseport;
1372};
1373
1374extern struct static_key_false bpf_sk_lookup_enabled;
1375
1376/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1377 *
1378 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1379 * SK_DROP. Their meaning is as follows:
1380 *
1381 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1382 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1383 * SK_DROP : terminate lookup with -ECONNREFUSED
1384 *
1385 * This macro aggregates return values and selected sockets from
1386 * multiple BPF programs according to following rules in order:
1387 *
1388 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1389 * macro result is SK_PASS and last ctx.selected_sk is used.
1390 * 2. If any program returned SK_DROP return value,
1391 * macro result is SK_DROP.
1392 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1393 *
1394 * Caller must ensure that the prog array is non-NULL, and that the
1395 * array as well as the programs it contains remain valid.
1396 */
1397#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \
1398 ({ \
1399 struct bpf_sk_lookup_kern *_ctx = &(ctx); \
1400 struct bpf_prog_array_item *_item; \
1401 struct sock *_selected_sk = NULL; \
1402 bool _no_reuseport = false; \
1403 struct bpf_prog *_prog; \
1404 bool _all_pass = true; \
1405 u32 _ret; \
1406 \
1407 migrate_disable(); \
1408 _item = &(array)->items[0]; \
1409 while ((_prog = READ_ONCE(_item->prog))) { \
1410 /* restore most recent selection */ \
1411 _ctx->selected_sk = _selected_sk; \
1412 _ctx->no_reuseport = _no_reuseport; \
1413 \
1414 _ret = func(_prog, _ctx); \
1415 if (_ret == SK_PASS && _ctx->selected_sk) { \
1416 /* remember last non-NULL socket */ \
1417 _selected_sk = _ctx->selected_sk; \
1418 _no_reuseport = _ctx->no_reuseport; \
1419 } else if (_ret == SK_DROP && _all_pass) { \
1420 _all_pass = false; \
1421 } \
1422 _item++; \
1423 } \
1424 _ctx->selected_sk = _selected_sk; \
1425 _ctx->no_reuseport = _no_reuseport; \
1426 migrate_enable(); \
1427 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \
1428 })
1429
1430static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1431 const __be32 saddr, const __be16 sport,
1432 const __be32 daddr, const u16 dport,
1433 const int ifindex, struct sock **psk)
1434{
1435 struct bpf_prog_array *run_array;
1436 struct sock *selected_sk = NULL;
1437 bool no_reuseport = false;
1438
1439 rcu_read_lock();
1440 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1441 if (run_array) {
1442 struct bpf_sk_lookup_kern ctx = {
1443 .family = AF_INET,
1444 .protocol = protocol,
1445 .v4.saddr = saddr,
1446 .v4.daddr = daddr,
1447 .sport = sport,
1448 .dport = dport,
1449 .ingress_ifindex = ifindex,
1450 };
1451 u32 act;
1452
1453 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1454 if (act == SK_PASS) {
1455 selected_sk = ctx.selected_sk;
1456 no_reuseport = ctx.no_reuseport;
1457 } else {
1458 selected_sk = ERR_PTR(-ECONNREFUSED);
1459 }
1460 }
1461 rcu_read_unlock();
1462 *psk = selected_sk;
1463 return no_reuseport;
1464}
1465
1466#if IS_ENABLED(CONFIG_IPV6)
1467static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1468 const struct in6_addr *saddr,
1469 const __be16 sport,
1470 const struct in6_addr *daddr,
1471 const u16 dport,
1472 const int ifindex, struct sock **psk)
1473{
1474 struct bpf_prog_array *run_array;
1475 struct sock *selected_sk = NULL;
1476 bool no_reuseport = false;
1477
1478 rcu_read_lock();
1479 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1480 if (run_array) {
1481 struct bpf_sk_lookup_kern ctx = {
1482 .family = AF_INET6,
1483 .protocol = protocol,
1484 .v6.saddr = saddr,
1485 .v6.daddr = daddr,
1486 .sport = sport,
1487 .dport = dport,
1488 .ingress_ifindex = ifindex,
1489 };
1490 u32 act;
1491
1492 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1493 if (act == SK_PASS) {
1494 selected_sk = ctx.selected_sk;
1495 no_reuseport = ctx.no_reuseport;
1496 } else {
1497 selected_sk = ERR_PTR(-ECONNREFUSED);
1498 }
1499 }
1500 rcu_read_unlock();
1501 *psk = selected_sk;
1502 return no_reuseport;
1503}
1504#endif /* IS_ENABLED(CONFIG_IPV6) */
1505
1506static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1507 u64 flags, const u64 flag_mask,
1508 void *lookup_elem(struct bpf_map *map, u32 key))
1509{
1510 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1511 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1512
1513 /* Lower bits of the flags are used as return code on lookup failure */
1514 if (unlikely(flags & ~(action_mask | flag_mask)))
1515 return XDP_ABORTED;
1516
1517 ri->tgt_value = lookup_elem(map, index);
1518 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1519 /* If the lookup fails we want to clear out the state in the
1520 * redirect_info struct completely, so that if an eBPF program
1521 * performs multiple lookups, the last one always takes
1522 * precedence.
1523 */
1524 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1525 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1526 return flags & action_mask;
1527 }
1528
1529 ri->tgt_index = index;
1530 ri->map_id = map->id;
1531 ri->map_type = map->map_type;
1532
1533 if (flags & BPF_F_BROADCAST) {
1534 WRITE_ONCE(ri->map, map);
1535 ri->flags = flags;
1536 } else {
1537 WRITE_ONCE(ri->map, NULL);
1538 ri->flags = 0;
1539 }
1540
1541 return XDP_REDIRECT;
1542}
1543
1544#ifdef CONFIG_NET
1545int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1546int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1547 u32 len, u64 flags);
1548int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1549int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1550void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1551void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1552 void *buf, unsigned long len, bool flush);
1553#else /* CONFIG_NET */
1554static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1555 void *to, u32 len)
1556{
1557 return -EOPNOTSUPP;
1558}
1559
1560static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1561 const void *from, u32 len, u64 flags)
1562{
1563 return -EOPNOTSUPP;
1564}
1565
1566static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1567 void *buf, u32 len)
1568{
1569 return -EOPNOTSUPP;
1570}
1571
1572static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1573 void *buf, u32 len)
1574{
1575 return -EOPNOTSUPP;
1576}
1577
1578static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1579{
1580 return NULL;
1581}
1582
1583static inline void *bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1584 unsigned long len, bool flush)
1585{
1586 return NULL;
1587}
1588#endif /* CONFIG_NET */
1589
1590#endif /* __LINUX_FILTER_H__ */