at v6.5 55 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5#ifndef LINUX_DMAENGINE_H 6#define LINUX_DMAENGINE_H 7 8#include <linux/device.h> 9#include <linux/err.h> 10#include <linux/uio.h> 11#include <linux/bug.h> 12#include <linux/scatterlist.h> 13#include <linux/bitmap.h> 14#include <linux/types.h> 15#include <asm/page.h> 16 17/** 18 * typedef dma_cookie_t - an opaque DMA cookie 19 * 20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 21 */ 22typedef s32 dma_cookie_t; 23#define DMA_MIN_COOKIE 1 24 25static inline int dma_submit_error(dma_cookie_t cookie) 26{ 27 return cookie < 0 ? cookie : 0; 28} 29 30/** 31 * enum dma_status - DMA transaction status 32 * @DMA_COMPLETE: transaction completed 33 * @DMA_IN_PROGRESS: transaction not yet processed 34 * @DMA_PAUSED: transaction is paused 35 * @DMA_ERROR: transaction failed 36 */ 37enum dma_status { 38 DMA_COMPLETE, 39 DMA_IN_PROGRESS, 40 DMA_PAUSED, 41 DMA_ERROR, 42 DMA_OUT_OF_ORDER, 43}; 44 45/** 46 * enum dma_transaction_type - DMA transaction types/indexes 47 * 48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 49 * automatically set as dma devices are registered. 50 */ 51enum dma_transaction_type { 52 DMA_MEMCPY, 53 DMA_XOR, 54 DMA_PQ, 55 DMA_XOR_VAL, 56 DMA_PQ_VAL, 57 DMA_MEMSET, 58 DMA_MEMSET_SG, 59 DMA_INTERRUPT, 60 DMA_PRIVATE, 61 DMA_ASYNC_TX, 62 DMA_SLAVE, 63 DMA_CYCLIC, 64 DMA_INTERLEAVE, 65 DMA_COMPLETION_NO_ORDER, 66 DMA_REPEAT, 67 DMA_LOAD_EOT, 68/* last transaction type for creation of the capabilities mask */ 69 DMA_TX_TYPE_END, 70}; 71 72/** 73 * enum dma_transfer_direction - dma transfer mode and direction indicator 74 * @DMA_MEM_TO_MEM: Async/Memcpy mode 75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 78 */ 79enum dma_transfer_direction { 80 DMA_MEM_TO_MEM, 81 DMA_MEM_TO_DEV, 82 DMA_DEV_TO_MEM, 83 DMA_DEV_TO_DEV, 84 DMA_TRANS_NONE, 85}; 86 87/** 88 * Interleaved Transfer Request 89 * ---------------------------- 90 * A chunk is collection of contiguous bytes to be transferred. 91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 92 * ICGs may or may not change between chunks. 93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 94 * that when repeated an integral number of times, specifies the transfer. 95 * A transfer template is specification of a Frame, the number of times 96 * it is to be repeated and other per-transfer attributes. 97 * 98 * Practically, a client driver would have ready a template for each 99 * type of transfer it is going to need during its lifetime and 100 * set only 'src_start' and 'dst_start' before submitting the requests. 101 * 102 * 103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 105 * 106 * == Chunk size 107 * ... ICG 108 */ 109 110/** 111 * struct data_chunk - Element of scatter-gather list that makes a frame. 112 * @size: Number of bytes to read from source. 113 * size_dst := fn(op, size_src), so doesn't mean much for destination. 114 * @icg: Number of bytes to jump after last src/dst address of this 115 * chunk and before first src/dst address for next chunk. 116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 118 * @dst_icg: Number of bytes to jump after last dst address of this 119 * chunk and before the first dst address for next chunk. 120 * Ignored if dst_inc is true and dst_sgl is false. 121 * @src_icg: Number of bytes to jump after last src address of this 122 * chunk and before the first src address for next chunk. 123 * Ignored if src_inc is true and src_sgl is false. 124 */ 125struct data_chunk { 126 size_t size; 127 size_t icg; 128 size_t dst_icg; 129 size_t src_icg; 130}; 131 132/** 133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 134 * and attributes. 135 * @src_start: Bus address of source for the first chunk. 136 * @dst_start: Bus address of destination for the first chunk. 137 * @dir: Specifies the type of Source and Destination. 138 * @src_inc: If the source address increments after reading from it. 139 * @dst_inc: If the destination address increments after writing to it. 140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 141 * Otherwise, source is read contiguously (icg ignored). 142 * Ignored if src_inc is false. 143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 144 * Otherwise, destination is filled contiguously (icg ignored). 145 * Ignored if dst_inc is false. 146 * @numf: Number of frames in this template. 147 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 148 * @sgl: Array of {chunk,icg} pairs that make up a frame. 149 */ 150struct dma_interleaved_template { 151 dma_addr_t src_start; 152 dma_addr_t dst_start; 153 enum dma_transfer_direction dir; 154 bool src_inc; 155 bool dst_inc; 156 bool src_sgl; 157 bool dst_sgl; 158 size_t numf; 159 size_t frame_size; 160 struct data_chunk sgl[]; 161}; 162 163/** 164 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 165 * control completion, and communicate status. 166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 167 * this transaction 168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 169 * acknowledges receipt, i.e. has a chance to establish any dependency 170 * chains 171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 174 * sources that were the result of a previous operation, in the case of a PQ 175 * operation it continues the calculation with new sources 176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 177 * on the result of this operation 178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 179 * cleared or freed 180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command 181 * data and the descriptor should be in different format from normal 182 * data descriptors. 183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically 184 * repeated when it ends until a transaction is issued on the same channel 185 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to 186 * interleaved transactions and is ignored for all other transaction types. 187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any 188 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the 189 * repeated transaction ends. Not setting this flag when the previously queued 190 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction 191 * to never be processed and stay in the issued queue forever. The flag is 192 * ignored if the previous transaction is not a repeated transaction. 193 */ 194enum dma_ctrl_flags { 195 DMA_PREP_INTERRUPT = (1 << 0), 196 DMA_CTRL_ACK = (1 << 1), 197 DMA_PREP_PQ_DISABLE_P = (1 << 2), 198 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 199 DMA_PREP_CONTINUE = (1 << 4), 200 DMA_PREP_FENCE = (1 << 5), 201 DMA_CTRL_REUSE = (1 << 6), 202 DMA_PREP_CMD = (1 << 7), 203 DMA_PREP_REPEAT = (1 << 8), 204 DMA_PREP_LOAD_EOT = (1 << 9), 205}; 206 207/** 208 * enum sum_check_bits - bit position of pq_check_flags 209 */ 210enum sum_check_bits { 211 SUM_CHECK_P = 0, 212 SUM_CHECK_Q = 1, 213}; 214 215/** 216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 219 */ 220enum sum_check_flags { 221 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 222 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 223}; 224 225 226/** 227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 228 * See linux/cpumask.h 229 */ 230typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 231 232/** 233 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported 234 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the 235 * client driver and it is attached (via the dmaengine_desc_attach_metadata() 236 * helper) to the descriptor. 237 * 238 * Client drivers interested to use this mode can follow: 239 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 240 * 1. prepare the descriptor (dmaengine_prep_*) 241 * construct the metadata in the client's buffer 242 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 243 * descriptor 244 * 3. submit the transfer 245 * - DMA_DEV_TO_MEM: 246 * 1. prepare the descriptor (dmaengine_prep_*) 247 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 248 * descriptor 249 * 3. submit the transfer 250 * 4. when the transfer is completed, the metadata should be available in the 251 * attached buffer 252 * 253 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA 254 * driver. The client driver can ask for the pointer, maximum size and the 255 * currently used size of the metadata and can directly update or read it. 256 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is 257 * provided as helper functions. 258 * 259 * Note: the metadata area for the descriptor is no longer valid after the 260 * transfer has been completed (valid up to the point when the completion 261 * callback returns if used). 262 * 263 * Client drivers interested to use this mode can follow: 264 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 265 * 1. prepare the descriptor (dmaengine_prep_*) 266 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's 267 * metadata area 268 * 3. update the metadata at the pointer 269 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount 270 * of data the client has placed into the metadata buffer 271 * 5. submit the transfer 272 * - DMA_DEV_TO_MEM: 273 * 1. prepare the descriptor (dmaengine_prep_*) 274 * 2. submit the transfer 275 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the 276 * pointer to the engine's metadata area 277 * 4. Read out the metadata from the pointer 278 * 279 * Note: the two mode is not compatible and clients must use one mode for a 280 * descriptor. 281 */ 282enum dma_desc_metadata_mode { 283 DESC_METADATA_NONE = 0, 284 DESC_METADATA_CLIENT = BIT(0), 285 DESC_METADATA_ENGINE = BIT(1), 286}; 287 288/** 289 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 290 * @memcpy_count: transaction counter 291 * @bytes_transferred: byte counter 292 */ 293struct dma_chan_percpu { 294 /* stats */ 295 unsigned long memcpy_count; 296 unsigned long bytes_transferred; 297}; 298 299/** 300 * struct dma_router - DMA router structure 301 * @dev: pointer to the DMA router device 302 * @route_free: function to be called when the route can be disconnected 303 */ 304struct dma_router { 305 struct device *dev; 306 void (*route_free)(struct device *dev, void *route_data); 307}; 308 309/** 310 * struct dma_chan - devices supply DMA channels, clients use them 311 * @device: ptr to the dma device who supplies this channel, always !%NULL 312 * @slave: ptr to the device using this channel 313 * @cookie: last cookie value returned to client 314 * @completed_cookie: last completed cookie for this channel 315 * @chan_id: channel ID for sysfs 316 * @dev: class device for sysfs 317 * @name: backlink name for sysfs 318 * @dbg_client_name: slave name for debugfs in format: 319 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx" 320 * @device_node: used to add this to the device chan list 321 * @local: per-cpu pointer to a struct dma_chan_percpu 322 * @client_count: how many clients are using this channel 323 * @table_count: number of appearances in the mem-to-mem allocation table 324 * @router: pointer to the DMA router structure 325 * @route_data: channel specific data for the router 326 * @private: private data for certain client-channel associations 327 */ 328struct dma_chan { 329 struct dma_device *device; 330 struct device *slave; 331 dma_cookie_t cookie; 332 dma_cookie_t completed_cookie; 333 334 /* sysfs */ 335 int chan_id; 336 struct dma_chan_dev *dev; 337 const char *name; 338#ifdef CONFIG_DEBUG_FS 339 char *dbg_client_name; 340#endif 341 342 struct list_head device_node; 343 struct dma_chan_percpu __percpu *local; 344 int client_count; 345 int table_count; 346 347 /* DMA router */ 348 struct dma_router *router; 349 void *route_data; 350 351 void *private; 352}; 353 354/** 355 * struct dma_chan_dev - relate sysfs device node to backing channel device 356 * @chan: driver channel device 357 * @device: sysfs device 358 * @dev_id: parent dma_device dev_id 359 * @chan_dma_dev: The channel is using custom/different dma-mapping 360 * compared to the parent dma_device 361 */ 362struct dma_chan_dev { 363 struct dma_chan *chan; 364 struct device device; 365 int dev_id; 366 bool chan_dma_dev; 367}; 368 369/** 370 * enum dma_slave_buswidth - defines bus width of the DMA slave 371 * device, source or target buses 372 */ 373enum dma_slave_buswidth { 374 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 375 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 376 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 377 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 378 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 379 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 380 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 381 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 382 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 383 DMA_SLAVE_BUSWIDTH_128_BYTES = 128, 384}; 385 386/** 387 * struct dma_slave_config - dma slave channel runtime config 388 * @direction: whether the data shall go in or out on this slave 389 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 390 * legal values. DEPRECATED, drivers should use the direction argument 391 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 392 * the dir field in the dma_interleaved_template structure. 393 * @src_addr: this is the physical address where DMA slave data 394 * should be read (RX), if the source is memory this argument is 395 * ignored. 396 * @dst_addr: this is the physical address where DMA slave data 397 * should be written (TX), if the destination is memory this argument 398 * is ignored. 399 * @src_addr_width: this is the width in bytes of the source (RX) 400 * register where DMA data shall be read. If the source 401 * is memory this may be ignored depending on architecture. 402 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128. 403 * @dst_addr_width: same as src_addr_width but for destination 404 * target (TX) mutatis mutandis. 405 * @src_maxburst: the maximum number of words (note: words, as in 406 * units of the src_addr_width member, not bytes) that can be sent 407 * in one burst to the device. Typically something like half the 408 * FIFO depth on I/O peripherals so you don't overflow it. This 409 * may or may not be applicable on memory sources. 410 * @dst_maxburst: same as src_maxburst but for destination target 411 * mutatis mutandis. 412 * @src_port_window_size: The length of the register area in words the data need 413 * to be accessed on the device side. It is only used for devices which is using 414 * an area instead of a single register to receive the data. Typically the DMA 415 * loops in this area in order to transfer the data. 416 * @dst_port_window_size: same as src_port_window_size but for the destination 417 * port. 418 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 419 * with 'true' if peripheral should be flow controller. Direction will be 420 * selected at Runtime. 421 * @peripheral_config: peripheral configuration for programming peripheral 422 * for dmaengine transfer 423 * @peripheral_size: peripheral configuration buffer size 424 * 425 * This struct is passed in as configuration data to a DMA engine 426 * in order to set up a certain channel for DMA transport at runtime. 427 * The DMA device/engine has to provide support for an additional 428 * callback in the dma_device structure, device_config and this struct 429 * will then be passed in as an argument to the function. 430 * 431 * The rationale for adding configuration information to this struct is as 432 * follows: if it is likely that more than one DMA slave controllers in 433 * the world will support the configuration option, then make it generic. 434 * If not: if it is fixed so that it be sent in static from the platform 435 * data, then prefer to do that. 436 */ 437struct dma_slave_config { 438 enum dma_transfer_direction direction; 439 phys_addr_t src_addr; 440 phys_addr_t dst_addr; 441 enum dma_slave_buswidth src_addr_width; 442 enum dma_slave_buswidth dst_addr_width; 443 u32 src_maxburst; 444 u32 dst_maxburst; 445 u32 src_port_window_size; 446 u32 dst_port_window_size; 447 bool device_fc; 448 void *peripheral_config; 449 size_t peripheral_size; 450}; 451 452/** 453 * enum dma_residue_granularity - Granularity of the reported transfer residue 454 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 455 * DMA channel is only able to tell whether a descriptor has been completed or 456 * not, which means residue reporting is not supported by this channel. The 457 * residue field of the dma_tx_state field will always be 0. 458 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 459 * completed segment of the transfer (For cyclic transfers this is after each 460 * period). This is typically implemented by having the hardware generate an 461 * interrupt after each transferred segment and then the drivers updates the 462 * outstanding residue by the size of the segment. Another possibility is if 463 * the hardware supports scatter-gather and the segment descriptor has a field 464 * which gets set after the segment has been completed. The driver then counts 465 * the number of segments without the flag set to compute the residue. 466 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 467 * burst. This is typically only supported if the hardware has a progress 468 * register of some sort (E.g. a register with the current read/write address 469 * or a register with the amount of bursts/beats/bytes that have been 470 * transferred or still need to be transferred). 471 */ 472enum dma_residue_granularity { 473 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 474 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 475 DMA_RESIDUE_GRANULARITY_BURST = 2, 476}; 477 478/** 479 * struct dma_slave_caps - expose capabilities of a slave channel only 480 * @src_addr_widths: bit mask of src addr widths the channel supports. 481 * Width is specified in bytes, e.g. for a channel supporting 482 * a width of 4 the mask should have BIT(4) set. 483 * @dst_addr_widths: bit mask of dst addr widths the channel supports 484 * @directions: bit mask of slave directions the channel supports. 485 * Since the enum dma_transfer_direction is not defined as bit flag for 486 * each type, the dma controller should set BIT(<TYPE>) and same 487 * should be checked by controller as well 488 * @min_burst: min burst capability per-transfer 489 * @max_burst: max burst capability per-transfer 490 * @max_sg_burst: max number of SG list entries executed in a single burst 491 * DMA tansaction with no software intervention for reinitialization. 492 * Zero value means unlimited number of entries. 493 * @cmd_pause: true, if pause is supported (i.e. for reading residue or 494 * for resume later) 495 * @cmd_resume: true, if resume is supported 496 * @cmd_terminate: true, if terminate cmd is supported 497 * @residue_granularity: granularity of the reported transfer residue 498 * @descriptor_reuse: if a descriptor can be reused by client and 499 * resubmitted multiple times 500 */ 501struct dma_slave_caps { 502 u32 src_addr_widths; 503 u32 dst_addr_widths; 504 u32 directions; 505 u32 min_burst; 506 u32 max_burst; 507 u32 max_sg_burst; 508 bool cmd_pause; 509 bool cmd_resume; 510 bool cmd_terminate; 511 enum dma_residue_granularity residue_granularity; 512 bool descriptor_reuse; 513}; 514 515static inline const char *dma_chan_name(struct dma_chan *chan) 516{ 517 return dev_name(&chan->dev->device); 518} 519 520void dma_chan_cleanup(struct kref *kref); 521 522/** 523 * typedef dma_filter_fn - callback filter for dma_request_channel 524 * @chan: channel to be reviewed 525 * @filter_param: opaque parameter passed through dma_request_channel 526 * 527 * When this optional parameter is specified in a call to dma_request_channel a 528 * suitable channel is passed to this routine for further dispositioning before 529 * being returned. Where 'suitable' indicates a non-busy channel that 530 * satisfies the given capability mask. It returns 'true' to indicate that the 531 * channel is suitable. 532 */ 533typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 534 535typedef void (*dma_async_tx_callback)(void *dma_async_param); 536 537enum dmaengine_tx_result { 538 DMA_TRANS_NOERROR = 0, /* SUCCESS */ 539 DMA_TRANS_READ_FAILED, /* Source DMA read failed */ 540 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ 541 DMA_TRANS_ABORTED, /* Op never submitted / aborted */ 542}; 543 544struct dmaengine_result { 545 enum dmaengine_tx_result result; 546 u32 residue; 547}; 548 549typedef void (*dma_async_tx_callback_result)(void *dma_async_param, 550 const struct dmaengine_result *result); 551 552struct dmaengine_unmap_data { 553#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 554 u16 map_cnt; 555#else 556 u8 map_cnt; 557#endif 558 u8 to_cnt; 559 u8 from_cnt; 560 u8 bidi_cnt; 561 struct device *dev; 562 struct kref kref; 563 size_t len; 564 dma_addr_t addr[]; 565}; 566 567struct dma_async_tx_descriptor; 568 569struct dma_descriptor_metadata_ops { 570 int (*attach)(struct dma_async_tx_descriptor *desc, void *data, 571 size_t len); 572 573 void *(*get_ptr)(struct dma_async_tx_descriptor *desc, 574 size_t *payload_len, size_t *max_len); 575 int (*set_len)(struct dma_async_tx_descriptor *desc, 576 size_t payload_len); 577}; 578 579/** 580 * struct dma_async_tx_descriptor - async transaction descriptor 581 * ---dma generic offload fields--- 582 * @cookie: tracking cookie for this transaction, set to -EBUSY if 583 * this tx is sitting on a dependency list 584 * @flags: flags to augment operation preparation, control completion, and 585 * communicate status 586 * @phys: physical address of the descriptor 587 * @chan: target channel for this operation 588 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 589 * descriptor pending. To be pushed on .issue_pending() call 590 * @callback: routine to call after this operation is complete 591 * @callback_param: general parameter to pass to the callback routine 592 * @desc_metadata_mode: core managed metadata mode to protect mixed use of 593 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise 594 * DESC_METADATA_NONE 595 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the 596 * DMA driver if metadata mode is supported with the descriptor 597 * ---async_tx api specific fields--- 598 * @next: at completion submit this descriptor 599 * @parent: pointer to the next level up in the dependency chain 600 * @lock: protect the parent and next pointers 601 */ 602struct dma_async_tx_descriptor { 603 dma_cookie_t cookie; 604 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 605 dma_addr_t phys; 606 struct dma_chan *chan; 607 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 608 int (*desc_free)(struct dma_async_tx_descriptor *tx); 609 dma_async_tx_callback callback; 610 dma_async_tx_callback_result callback_result; 611 void *callback_param; 612 struct dmaengine_unmap_data *unmap; 613 enum dma_desc_metadata_mode desc_metadata_mode; 614 struct dma_descriptor_metadata_ops *metadata_ops; 615#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 616 struct dma_async_tx_descriptor *next; 617 struct dma_async_tx_descriptor *parent; 618 spinlock_t lock; 619#endif 620}; 621 622#ifdef CONFIG_DMA_ENGINE 623static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 624 struct dmaengine_unmap_data *unmap) 625{ 626 kref_get(&unmap->kref); 627 tx->unmap = unmap; 628} 629 630struct dmaengine_unmap_data * 631dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 632void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 633#else 634static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 635 struct dmaengine_unmap_data *unmap) 636{ 637} 638static inline struct dmaengine_unmap_data * 639dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 640{ 641 return NULL; 642} 643static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 644{ 645} 646#endif 647 648static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 649{ 650 if (!tx->unmap) 651 return; 652 653 dmaengine_unmap_put(tx->unmap); 654 tx->unmap = NULL; 655} 656 657#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 658static inline void txd_lock(struct dma_async_tx_descriptor *txd) 659{ 660} 661static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 662{ 663} 664static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 665{ 666 BUG(); 667} 668static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 669{ 670} 671static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 672{ 673} 674static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 675{ 676 return NULL; 677} 678static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 679{ 680 return NULL; 681} 682 683#else 684static inline void txd_lock(struct dma_async_tx_descriptor *txd) 685{ 686 spin_lock_bh(&txd->lock); 687} 688static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 689{ 690 spin_unlock_bh(&txd->lock); 691} 692static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 693{ 694 txd->next = next; 695 next->parent = txd; 696} 697static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 698{ 699 txd->parent = NULL; 700} 701static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 702{ 703 txd->next = NULL; 704} 705static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 706{ 707 return txd->parent; 708} 709static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 710{ 711 return txd->next; 712} 713#endif 714 715/** 716 * struct dma_tx_state - filled in to report the status of 717 * a transfer. 718 * @last: last completed DMA cookie 719 * @used: last issued DMA cookie (i.e. the one in progress) 720 * @residue: the remaining number of bytes left to transmit 721 * on the selected transfer for states DMA_IN_PROGRESS and 722 * DMA_PAUSED if this is implemented in the driver, else 0 723 * @in_flight_bytes: amount of data in bytes cached by the DMA. 724 */ 725struct dma_tx_state { 726 dma_cookie_t last; 727 dma_cookie_t used; 728 u32 residue; 729 u32 in_flight_bytes; 730}; 731 732/** 733 * enum dmaengine_alignment - defines alignment of the DMA async tx 734 * buffers 735 */ 736enum dmaengine_alignment { 737 DMAENGINE_ALIGN_1_BYTE = 0, 738 DMAENGINE_ALIGN_2_BYTES = 1, 739 DMAENGINE_ALIGN_4_BYTES = 2, 740 DMAENGINE_ALIGN_8_BYTES = 3, 741 DMAENGINE_ALIGN_16_BYTES = 4, 742 DMAENGINE_ALIGN_32_BYTES = 5, 743 DMAENGINE_ALIGN_64_BYTES = 6, 744 DMAENGINE_ALIGN_128_BYTES = 7, 745 DMAENGINE_ALIGN_256_BYTES = 8, 746}; 747 748/** 749 * struct dma_slave_map - associates slave device and it's slave channel with 750 * parameter to be used by a filter function 751 * @devname: name of the device 752 * @slave: slave channel name 753 * @param: opaque parameter to pass to struct dma_filter.fn 754 */ 755struct dma_slave_map { 756 const char *devname; 757 const char *slave; 758 void *param; 759}; 760 761/** 762 * struct dma_filter - information for slave device/channel to filter_fn/param 763 * mapping 764 * @fn: filter function callback 765 * @mapcnt: number of slave device/channel in the map 766 * @map: array of channel to filter mapping data 767 */ 768struct dma_filter { 769 dma_filter_fn fn; 770 int mapcnt; 771 const struct dma_slave_map *map; 772}; 773 774/** 775 * struct dma_device - info on the entity supplying DMA services 776 * @ref: reference is taken and put every time a channel is allocated or freed 777 * @chancnt: how many DMA channels are supported 778 * @privatecnt: how many DMA channels are requested by dma_request_channel 779 * @channels: the list of struct dma_chan 780 * @global_node: list_head for global dma_device_list 781 * @filter: information for device/slave to filter function/param mapping 782 * @cap_mask: one or more dma_capability flags 783 * @desc_metadata_modes: supported metadata modes by the DMA device 784 * @max_xor: maximum number of xor sources, 0 if no capability 785 * @max_pq: maximum number of PQ sources and PQ-continue capability 786 * @copy_align: alignment shift for memcpy operations 787 * @xor_align: alignment shift for xor operations 788 * @pq_align: alignment shift for pq operations 789 * @fill_align: alignment shift for memset operations 790 * @dev_id: unique device ID 791 * @dev: struct device reference for dma mapping api 792 * @owner: owner module (automatically set based on the provided dev) 793 * @chan_ida: unique channel ID 794 * @src_addr_widths: bit mask of src addr widths the device supports 795 * Width is specified in bytes, e.g. for a device supporting 796 * a width of 4 the mask should have BIT(4) set. 797 * @dst_addr_widths: bit mask of dst addr widths the device supports 798 * @directions: bit mask of slave directions the device supports. 799 * Since the enum dma_transfer_direction is not defined as bit flag for 800 * each type, the dma controller should set BIT(<TYPE>) and same 801 * should be checked by controller as well 802 * @min_burst: min burst capability per-transfer 803 * @max_burst: max burst capability per-transfer 804 * @max_sg_burst: max number of SG list entries executed in a single burst 805 * DMA tansaction with no software intervention for reinitialization. 806 * Zero value means unlimited number of entries. 807 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 808 * @residue_granularity: granularity of the transfer residue reported 809 * by tx_status 810 * @device_alloc_chan_resources: allocate resources and return the 811 * number of allocated descriptors 812 * @device_router_config: optional callback for DMA router configuration 813 * @device_free_chan_resources: release DMA channel's resources 814 * @device_prep_dma_memcpy: prepares a memcpy operation 815 * @device_prep_dma_xor: prepares a xor operation 816 * @device_prep_dma_xor_val: prepares a xor validation operation 817 * @device_prep_dma_pq: prepares a pq operation 818 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 819 * @device_prep_dma_memset: prepares a memset operation 820 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 821 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 822 * @device_prep_slave_sg: prepares a slave dma operation 823 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 824 * The function takes a buffer of size buf_len. The callback function will 825 * be called after period_len bytes have been transferred. 826 * @device_prep_interleaved_dma: Transfer expression in a generic way. 827 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 828 * @device_caps: May be used to override the generic DMA slave capabilities 829 * with per-channel specific ones 830 * @device_config: Pushes a new configuration to a channel, return 0 or an error 831 * code 832 * @device_pause: Pauses any transfer happening on a channel. Returns 833 * 0 or an error code 834 * @device_resume: Resumes any transfer on a channel previously 835 * paused. Returns 0 or an error code 836 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 837 * or an error code 838 * @device_synchronize: Synchronizes the termination of a transfers to the 839 * current context. 840 * @device_tx_status: poll for transaction completion, the optional 841 * txstate parameter can be supplied with a pointer to get a 842 * struct with auxiliary transfer status information, otherwise the call 843 * will just return a simple status code 844 * @device_issue_pending: push pending transactions to hardware 845 * @device_release: called sometime atfer dma_async_device_unregister() is 846 * called and there are no further references to this structure. This 847 * must be implemented to free resources however many existing drivers 848 * do not and are therefore not safe to unbind while in use. 849 * @dbg_summary_show: optional routine to show contents in debugfs; default code 850 * will be used when this is omitted, but custom code can show extra, 851 * controller specific information. 852 * @dbg_dev_root: the root folder in debugfs for this device 853 */ 854struct dma_device { 855 struct kref ref; 856 unsigned int chancnt; 857 unsigned int privatecnt; 858 struct list_head channels; 859 struct list_head global_node; 860 struct dma_filter filter; 861 dma_cap_mask_t cap_mask; 862 enum dma_desc_metadata_mode desc_metadata_modes; 863 unsigned short max_xor; 864 unsigned short max_pq; 865 enum dmaengine_alignment copy_align; 866 enum dmaengine_alignment xor_align; 867 enum dmaengine_alignment pq_align; 868 enum dmaengine_alignment fill_align; 869 #define DMA_HAS_PQ_CONTINUE (1 << 15) 870 871 int dev_id; 872 struct device *dev; 873 struct module *owner; 874 struct ida chan_ida; 875 876 u32 src_addr_widths; 877 u32 dst_addr_widths; 878 u32 directions; 879 u32 min_burst; 880 u32 max_burst; 881 u32 max_sg_burst; 882 bool descriptor_reuse; 883 enum dma_residue_granularity residue_granularity; 884 885 int (*device_alloc_chan_resources)(struct dma_chan *chan); 886 int (*device_router_config)(struct dma_chan *chan); 887 void (*device_free_chan_resources)(struct dma_chan *chan); 888 889 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 890 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 891 size_t len, unsigned long flags); 892 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 893 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 894 unsigned int src_cnt, size_t len, unsigned long flags); 895 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 896 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 897 size_t len, enum sum_check_flags *result, unsigned long flags); 898 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 899 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 900 unsigned int src_cnt, const unsigned char *scf, 901 size_t len, unsigned long flags); 902 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 903 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 904 unsigned int src_cnt, const unsigned char *scf, size_t len, 905 enum sum_check_flags *pqres, unsigned long flags); 906 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 907 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 908 unsigned long flags); 909 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 910 struct dma_chan *chan, struct scatterlist *sg, 911 unsigned int nents, int value, unsigned long flags); 912 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 913 struct dma_chan *chan, unsigned long flags); 914 915 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 916 struct dma_chan *chan, struct scatterlist *sgl, 917 unsigned int sg_len, enum dma_transfer_direction direction, 918 unsigned long flags, void *context); 919 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 920 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 921 size_t period_len, enum dma_transfer_direction direction, 922 unsigned long flags); 923 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 924 struct dma_chan *chan, struct dma_interleaved_template *xt, 925 unsigned long flags); 926 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 927 struct dma_chan *chan, dma_addr_t dst, u64 data, 928 unsigned long flags); 929 930 void (*device_caps)(struct dma_chan *chan, struct dma_slave_caps *caps); 931 int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config); 932 int (*device_pause)(struct dma_chan *chan); 933 int (*device_resume)(struct dma_chan *chan); 934 int (*device_terminate_all)(struct dma_chan *chan); 935 void (*device_synchronize)(struct dma_chan *chan); 936 937 enum dma_status (*device_tx_status)(struct dma_chan *chan, 938 dma_cookie_t cookie, 939 struct dma_tx_state *txstate); 940 void (*device_issue_pending)(struct dma_chan *chan); 941 void (*device_release)(struct dma_device *dev); 942 /* debugfs support */ 943 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev); 944 struct dentry *dbg_dev_root; 945}; 946 947static inline int dmaengine_slave_config(struct dma_chan *chan, 948 struct dma_slave_config *config) 949{ 950 if (chan->device->device_config) 951 return chan->device->device_config(chan, config); 952 953 return -ENOSYS; 954} 955 956static inline bool is_slave_direction(enum dma_transfer_direction direction) 957{ 958 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 959} 960 961static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 962 struct dma_chan *chan, dma_addr_t buf, size_t len, 963 enum dma_transfer_direction dir, unsigned long flags) 964{ 965 struct scatterlist sg; 966 sg_init_table(&sg, 1); 967 sg_dma_address(&sg) = buf; 968 sg_dma_len(&sg) = len; 969 970 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 971 return NULL; 972 973 return chan->device->device_prep_slave_sg(chan, &sg, 1, 974 dir, flags, NULL); 975} 976 977static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 978 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 979 enum dma_transfer_direction dir, unsigned long flags) 980{ 981 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 982 return NULL; 983 984 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 985 dir, flags, NULL); 986} 987 988#ifdef CONFIG_RAPIDIO_DMA_ENGINE 989struct rio_dma_ext; 990static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 991 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 992 enum dma_transfer_direction dir, unsigned long flags, 993 struct rio_dma_ext *rio_ext) 994{ 995 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 996 return NULL; 997 998 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 999 dir, flags, rio_ext); 1000} 1001#endif 1002 1003static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 1004 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1005 size_t period_len, enum dma_transfer_direction dir, 1006 unsigned long flags) 1007{ 1008 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) 1009 return NULL; 1010 1011 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 1012 period_len, dir, flags); 1013} 1014 1015static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 1016 struct dma_chan *chan, struct dma_interleaved_template *xt, 1017 unsigned long flags) 1018{ 1019 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) 1020 return NULL; 1021 if (flags & DMA_PREP_REPEAT && 1022 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits)) 1023 return NULL; 1024 1025 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 1026} 1027 1028/** 1029 * dmaengine_prep_dma_memset() - Prepare a DMA memset descriptor. 1030 * @chan: The channel to be used for this descriptor 1031 * @dest: Address of buffer to be set 1032 * @value: Treated as a single byte value that fills the destination buffer 1033 * @len: The total size of dest 1034 * @flags: DMA engine flags 1035 */ 1036static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 1037 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 1038 unsigned long flags) 1039{ 1040 if (!chan || !chan->device || !chan->device->device_prep_dma_memset) 1041 return NULL; 1042 1043 return chan->device->device_prep_dma_memset(chan, dest, value, 1044 len, flags); 1045} 1046 1047static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( 1048 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1049 size_t len, unsigned long flags) 1050{ 1051 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) 1052 return NULL; 1053 1054 return chan->device->device_prep_dma_memcpy(chan, dest, src, 1055 len, flags); 1056} 1057 1058static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, 1059 enum dma_desc_metadata_mode mode) 1060{ 1061 if (!chan) 1062 return false; 1063 1064 return !!(chan->device->desc_metadata_modes & mode); 1065} 1066 1067#ifdef CONFIG_DMA_ENGINE 1068int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1069 void *data, size_t len); 1070void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1071 size_t *payload_len, size_t *max_len); 1072int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1073 size_t payload_len); 1074#else /* CONFIG_DMA_ENGINE */ 1075static inline int dmaengine_desc_attach_metadata( 1076 struct dma_async_tx_descriptor *desc, void *data, size_t len) 1077{ 1078 return -EINVAL; 1079} 1080static inline void *dmaengine_desc_get_metadata_ptr( 1081 struct dma_async_tx_descriptor *desc, size_t *payload_len, 1082 size_t *max_len) 1083{ 1084 return NULL; 1085} 1086static inline int dmaengine_desc_set_metadata_len( 1087 struct dma_async_tx_descriptor *desc, size_t payload_len) 1088{ 1089 return -EINVAL; 1090} 1091#endif /* CONFIG_DMA_ENGINE */ 1092 1093/** 1094 * dmaengine_terminate_all() - Terminate all active DMA transfers 1095 * @chan: The channel for which to terminate the transfers 1096 * 1097 * This function is DEPRECATED use either dmaengine_terminate_sync() or 1098 * dmaengine_terminate_async() instead. 1099 */ 1100static inline int dmaengine_terminate_all(struct dma_chan *chan) 1101{ 1102 if (chan->device->device_terminate_all) 1103 return chan->device->device_terminate_all(chan); 1104 1105 return -ENOSYS; 1106} 1107 1108/** 1109 * dmaengine_terminate_async() - Terminate all active DMA transfers 1110 * @chan: The channel for which to terminate the transfers 1111 * 1112 * Calling this function will terminate all active and pending descriptors 1113 * that have previously been submitted to the channel. It is not guaranteed 1114 * though that the transfer for the active descriptor has stopped when the 1115 * function returns. Furthermore it is possible the complete callback of a 1116 * submitted transfer is still running when this function returns. 1117 * 1118 * dmaengine_synchronize() needs to be called before it is safe to free 1119 * any memory that is accessed by previously submitted descriptors or before 1120 * freeing any resources accessed from within the completion callback of any 1121 * previously submitted descriptors. 1122 * 1123 * This function can be called from atomic context as well as from within a 1124 * complete callback of a descriptor submitted on the same channel. 1125 * 1126 * If none of the two conditions above apply consider using 1127 * dmaengine_terminate_sync() instead. 1128 */ 1129static inline int dmaengine_terminate_async(struct dma_chan *chan) 1130{ 1131 if (chan->device->device_terminate_all) 1132 return chan->device->device_terminate_all(chan); 1133 1134 return -EINVAL; 1135} 1136 1137/** 1138 * dmaengine_synchronize() - Synchronize DMA channel termination 1139 * @chan: The channel to synchronize 1140 * 1141 * Synchronizes to the DMA channel termination to the current context. When this 1142 * function returns it is guaranteed that all transfers for previously issued 1143 * descriptors have stopped and it is safe to free the memory associated 1144 * with them. Furthermore it is guaranteed that all complete callback functions 1145 * for a previously submitted descriptor have finished running and it is safe to 1146 * free resources accessed from within the complete callbacks. 1147 * 1148 * The behavior of this function is undefined if dma_async_issue_pending() has 1149 * been called between dmaengine_terminate_async() and this function. 1150 * 1151 * This function must only be called from non-atomic context and must not be 1152 * called from within a complete callback of a descriptor submitted on the same 1153 * channel. 1154 */ 1155static inline void dmaengine_synchronize(struct dma_chan *chan) 1156{ 1157 might_sleep(); 1158 1159 if (chan->device->device_synchronize) 1160 chan->device->device_synchronize(chan); 1161} 1162 1163/** 1164 * dmaengine_terminate_sync() - Terminate all active DMA transfers 1165 * @chan: The channel for which to terminate the transfers 1166 * 1167 * Calling this function will terminate all active and pending transfers 1168 * that have previously been submitted to the channel. It is similar to 1169 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 1170 * stopped and that all complete callbacks have finished running when the 1171 * function returns. 1172 * 1173 * This function must only be called from non-atomic context and must not be 1174 * called from within a complete callback of a descriptor submitted on the same 1175 * channel. 1176 */ 1177static inline int dmaengine_terminate_sync(struct dma_chan *chan) 1178{ 1179 int ret; 1180 1181 ret = dmaengine_terminate_async(chan); 1182 if (ret) 1183 return ret; 1184 1185 dmaengine_synchronize(chan); 1186 1187 return 0; 1188} 1189 1190static inline int dmaengine_pause(struct dma_chan *chan) 1191{ 1192 if (chan->device->device_pause) 1193 return chan->device->device_pause(chan); 1194 1195 return -ENOSYS; 1196} 1197 1198static inline int dmaengine_resume(struct dma_chan *chan) 1199{ 1200 if (chan->device->device_resume) 1201 return chan->device->device_resume(chan); 1202 1203 return -ENOSYS; 1204} 1205 1206static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 1207 dma_cookie_t cookie, struct dma_tx_state *state) 1208{ 1209 return chan->device->device_tx_status(chan, cookie, state); 1210} 1211 1212static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 1213{ 1214 return desc->tx_submit(desc); 1215} 1216 1217static inline bool dmaengine_check_align(enum dmaengine_alignment align, 1218 size_t off1, size_t off2, size_t len) 1219{ 1220 return !(((1 << align) - 1) & (off1 | off2 | len)); 1221} 1222 1223static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1224 size_t off2, size_t len) 1225{ 1226 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1227} 1228 1229static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1230 size_t off2, size_t len) 1231{ 1232 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1233} 1234 1235static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1236 size_t off2, size_t len) 1237{ 1238 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1239} 1240 1241static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1242 size_t off2, size_t len) 1243{ 1244 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1245} 1246 1247static inline void 1248dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1249{ 1250 dma->max_pq = maxpq; 1251 if (has_pq_continue) 1252 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1253} 1254 1255static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1256{ 1257 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1258} 1259 1260static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1261{ 1262 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1263 1264 return (flags & mask) == mask; 1265} 1266 1267static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1268{ 1269 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1270} 1271 1272static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1273{ 1274 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1275} 1276 1277/* dma_maxpq - reduce maxpq in the face of continued operations 1278 * @dma - dma device with PQ capability 1279 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1280 * 1281 * When an engine does not support native continuation we need 3 extra 1282 * source slots to reuse P and Q with the following coefficients: 1283 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1284 * 2/ {01} * Q : use Q to continue Q' calculation 1285 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1286 * 1287 * In the case where P is disabled we only need 1 extra source: 1288 * 1/ {01} * Q : use Q to continue Q' calculation 1289 */ 1290static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1291{ 1292 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1293 return dma_dev_to_maxpq(dma); 1294 if (dmaf_p_disabled_continue(flags)) 1295 return dma_dev_to_maxpq(dma) - 1; 1296 if (dmaf_continue(flags)) 1297 return dma_dev_to_maxpq(dma) - 3; 1298 BUG(); 1299} 1300 1301static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1302 size_t dir_icg) 1303{ 1304 if (inc) { 1305 if (dir_icg) 1306 return dir_icg; 1307 if (sgl) 1308 return icg; 1309 } 1310 1311 return 0; 1312} 1313 1314static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1315 struct data_chunk *chunk) 1316{ 1317 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1318 chunk->icg, chunk->dst_icg); 1319} 1320 1321static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1322 struct data_chunk *chunk) 1323{ 1324 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1325 chunk->icg, chunk->src_icg); 1326} 1327 1328/* --- public DMA engine API --- */ 1329 1330#ifdef CONFIG_DMA_ENGINE 1331void dmaengine_get(void); 1332void dmaengine_put(void); 1333#else 1334static inline void dmaengine_get(void) 1335{ 1336} 1337static inline void dmaengine_put(void) 1338{ 1339} 1340#endif 1341 1342#ifdef CONFIG_ASYNC_TX_DMA 1343#define async_dmaengine_get() dmaengine_get() 1344#define async_dmaengine_put() dmaengine_put() 1345#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1346#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1347#else 1348#define async_dma_find_channel(type) dma_find_channel(type) 1349#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1350#else 1351static inline void async_dmaengine_get(void) 1352{ 1353} 1354static inline void async_dmaengine_put(void) 1355{ 1356} 1357static inline struct dma_chan * 1358async_dma_find_channel(enum dma_transaction_type type) 1359{ 1360 return NULL; 1361} 1362#endif /* CONFIG_ASYNC_TX_DMA */ 1363void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1364 struct dma_chan *chan); 1365 1366static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1367{ 1368 tx->flags |= DMA_CTRL_ACK; 1369} 1370 1371static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1372{ 1373 tx->flags &= ~DMA_CTRL_ACK; 1374} 1375 1376static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1377{ 1378 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1379} 1380 1381#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1382static inline void 1383__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1384{ 1385 set_bit(tx_type, dstp->bits); 1386} 1387 1388#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1389static inline void 1390__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1391{ 1392 clear_bit(tx_type, dstp->bits); 1393} 1394 1395#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1396static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1397{ 1398 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1399} 1400 1401#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1402static inline int 1403__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1404{ 1405 return test_bit(tx_type, srcp->bits); 1406} 1407 1408#define for_each_dma_cap_mask(cap, mask) \ 1409 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1410 1411/** 1412 * dma_async_issue_pending - flush pending transactions to HW 1413 * @chan: target DMA channel 1414 * 1415 * This allows drivers to push copies to HW in batches, 1416 * reducing MMIO writes where possible. 1417 */ 1418static inline void dma_async_issue_pending(struct dma_chan *chan) 1419{ 1420 chan->device->device_issue_pending(chan); 1421} 1422 1423/** 1424 * dma_async_is_tx_complete - poll for transaction completion 1425 * @chan: DMA channel 1426 * @cookie: transaction identifier to check status of 1427 * @last: returns last completed cookie, can be NULL 1428 * @used: returns last issued cookie, can be NULL 1429 * 1430 * If @last and @used are passed in, upon return they reflect the driver 1431 * internal state and can be used with dma_async_is_complete() to check 1432 * the status of multiple cookies without re-checking hardware state. 1433 */ 1434static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1435 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1436{ 1437 struct dma_tx_state state; 1438 enum dma_status status; 1439 1440 status = chan->device->device_tx_status(chan, cookie, &state); 1441 if (last) 1442 *last = state.last; 1443 if (used) 1444 *used = state.used; 1445 return status; 1446} 1447 1448/** 1449 * dma_async_is_complete - test a cookie against chan state 1450 * @cookie: transaction identifier to test status of 1451 * @last_complete: last know completed transaction 1452 * @last_used: last cookie value handed out 1453 * 1454 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1455 * the test logic is separated for lightweight testing of multiple cookies 1456 */ 1457static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1458 dma_cookie_t last_complete, dma_cookie_t last_used) 1459{ 1460 if (last_complete <= last_used) { 1461 if ((cookie <= last_complete) || (cookie > last_used)) 1462 return DMA_COMPLETE; 1463 } else { 1464 if ((cookie <= last_complete) && (cookie > last_used)) 1465 return DMA_COMPLETE; 1466 } 1467 return DMA_IN_PROGRESS; 1468} 1469 1470static inline void 1471dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1472{ 1473 if (!st) 1474 return; 1475 1476 st->last = last; 1477 st->used = used; 1478 st->residue = residue; 1479} 1480 1481#ifdef CONFIG_DMA_ENGINE 1482struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1483enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1484enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1485void dma_issue_pending_all(void); 1486struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1487 dma_filter_fn fn, void *fn_param, 1488 struct device_node *np); 1489 1490struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1491struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1492 1493void dma_release_channel(struct dma_chan *chan); 1494int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1495#else 1496static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1497{ 1498 return NULL; 1499} 1500static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1501{ 1502 return DMA_COMPLETE; 1503} 1504static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1505{ 1506 return DMA_COMPLETE; 1507} 1508static inline void dma_issue_pending_all(void) 1509{ 1510} 1511static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1512 dma_filter_fn fn, 1513 void *fn_param, 1514 struct device_node *np) 1515{ 1516 return NULL; 1517} 1518static inline struct dma_chan *dma_request_chan(struct device *dev, 1519 const char *name) 1520{ 1521 return ERR_PTR(-ENODEV); 1522} 1523static inline struct dma_chan *dma_request_chan_by_mask( 1524 const dma_cap_mask_t *mask) 1525{ 1526 return ERR_PTR(-ENODEV); 1527} 1528static inline void dma_release_channel(struct dma_chan *chan) 1529{ 1530} 1531static inline int dma_get_slave_caps(struct dma_chan *chan, 1532 struct dma_slave_caps *caps) 1533{ 1534 return -ENXIO; 1535} 1536#endif 1537 1538static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1539{ 1540 struct dma_slave_caps caps; 1541 int ret; 1542 1543 ret = dma_get_slave_caps(tx->chan, &caps); 1544 if (ret) 1545 return ret; 1546 1547 if (!caps.descriptor_reuse) 1548 return -EPERM; 1549 1550 tx->flags |= DMA_CTRL_REUSE; 1551 return 0; 1552} 1553 1554static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1555{ 1556 tx->flags &= ~DMA_CTRL_REUSE; 1557} 1558 1559static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1560{ 1561 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1562} 1563 1564static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1565{ 1566 /* this is supported for reusable desc, so check that */ 1567 if (!dmaengine_desc_test_reuse(desc)) 1568 return -EPERM; 1569 1570 return desc->desc_free(desc); 1571} 1572 1573/* --- DMA device --- */ 1574 1575int dma_async_device_register(struct dma_device *device); 1576int dmaenginem_async_device_register(struct dma_device *device); 1577void dma_async_device_unregister(struct dma_device *device); 1578int dma_async_device_channel_register(struct dma_device *device, 1579 struct dma_chan *chan); 1580void dma_async_device_channel_unregister(struct dma_device *device, 1581 struct dma_chan *chan); 1582void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1583#define dma_request_channel(mask, x, y) \ 1584 __dma_request_channel(&(mask), x, y, NULL) 1585 1586/* Deprecated, please use dma_request_chan() directly */ 1587static inline struct dma_chan * __deprecated 1588dma_request_slave_channel(struct device *dev, const char *name) 1589{ 1590 struct dma_chan *ch = dma_request_chan(dev, name); 1591 1592 return IS_ERR(ch) ? NULL : ch; 1593} 1594 1595static inline struct dma_chan 1596*dma_request_slave_channel_compat(const dma_cap_mask_t mask, 1597 dma_filter_fn fn, void *fn_param, 1598 struct device *dev, const char *name) 1599{ 1600 struct dma_chan *chan; 1601 1602 chan = dma_request_slave_channel(dev, name); 1603 if (chan) 1604 return chan; 1605 1606 if (!fn || !fn_param) 1607 return NULL; 1608 1609 return __dma_request_channel(&mask, fn, fn_param, NULL); 1610} 1611 1612static inline char * 1613dmaengine_get_direction_text(enum dma_transfer_direction dir) 1614{ 1615 switch (dir) { 1616 case DMA_DEV_TO_MEM: 1617 return "DEV_TO_MEM"; 1618 case DMA_MEM_TO_DEV: 1619 return "MEM_TO_DEV"; 1620 case DMA_MEM_TO_MEM: 1621 return "MEM_TO_MEM"; 1622 case DMA_DEV_TO_DEV: 1623 return "DEV_TO_DEV"; 1624 default: 1625 return "invalid"; 1626 } 1627} 1628 1629static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan) 1630{ 1631 if (chan->dev->chan_dma_dev) 1632 return &chan->dev->device; 1633 1634 return chan->device->dev; 1635} 1636 1637#endif /* DMAENGINE_H */