Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#ifndef _LINUX_BPF_H
5#define _LINUX_BPF_H 1
6
7#include <uapi/linux/bpf.h>
8#include <uapi/linux/filter.h>
9
10#include <linux/workqueue.h>
11#include <linux/file.h>
12#include <linux/percpu.h>
13#include <linux/err.h>
14#include <linux/rbtree_latch.h>
15#include <linux/numa.h>
16#include <linux/mm_types.h>
17#include <linux/wait.h>
18#include <linux/refcount.h>
19#include <linux/mutex.h>
20#include <linux/module.h>
21#include <linux/kallsyms.h>
22#include <linux/capability.h>
23#include <linux/sched/mm.h>
24#include <linux/slab.h>
25#include <linux/percpu-refcount.h>
26#include <linux/stddef.h>
27#include <linux/bpfptr.h>
28#include <linux/btf.h>
29#include <linux/rcupdate_trace.h>
30#include <linux/static_call.h>
31#include <linux/memcontrol.h>
32
33struct bpf_verifier_env;
34struct bpf_verifier_log;
35struct perf_event;
36struct bpf_prog;
37struct bpf_prog_aux;
38struct bpf_map;
39struct sock;
40struct seq_file;
41struct btf;
42struct btf_type;
43struct exception_table_entry;
44struct seq_operations;
45struct bpf_iter_aux_info;
46struct bpf_local_storage;
47struct bpf_local_storage_map;
48struct kobject;
49struct mem_cgroup;
50struct module;
51struct bpf_func_state;
52struct ftrace_ops;
53struct cgroup;
54
55extern struct idr btf_idr;
56extern spinlock_t btf_idr_lock;
57extern struct kobject *btf_kobj;
58extern struct bpf_mem_alloc bpf_global_ma;
59extern bool bpf_global_ma_set;
60
61typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
62typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
63 struct bpf_iter_aux_info *aux);
64typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
65typedef unsigned int (*bpf_func_t)(const void *,
66 const struct bpf_insn *);
67struct bpf_iter_seq_info {
68 const struct seq_operations *seq_ops;
69 bpf_iter_init_seq_priv_t init_seq_private;
70 bpf_iter_fini_seq_priv_t fini_seq_private;
71 u32 seq_priv_size;
72};
73
74/* map is generic key/value storage optionally accessible by eBPF programs */
75struct bpf_map_ops {
76 /* funcs callable from userspace (via syscall) */
77 int (*map_alloc_check)(union bpf_attr *attr);
78 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
79 void (*map_release)(struct bpf_map *map, struct file *map_file);
80 void (*map_free)(struct bpf_map *map);
81 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
82 void (*map_release_uref)(struct bpf_map *map);
83 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
84 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
85 union bpf_attr __user *uattr);
86 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
87 void *value, u64 flags);
88 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
89 const union bpf_attr *attr,
90 union bpf_attr __user *uattr);
91 int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
92 const union bpf_attr *attr,
93 union bpf_attr __user *uattr);
94 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
95 union bpf_attr __user *uattr);
96
97 /* funcs callable from userspace and from eBPF programs */
98 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
99 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
100 long (*map_delete_elem)(struct bpf_map *map, void *key);
101 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
102 long (*map_pop_elem)(struct bpf_map *map, void *value);
103 long (*map_peek_elem)(struct bpf_map *map, void *value);
104 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
105
106 /* funcs called by prog_array and perf_event_array map */
107 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
108 int fd);
109 void (*map_fd_put_ptr)(void *ptr);
110 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
111 u32 (*map_fd_sys_lookup_elem)(void *ptr);
112 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
113 struct seq_file *m);
114 int (*map_check_btf)(const struct bpf_map *map,
115 const struct btf *btf,
116 const struct btf_type *key_type,
117 const struct btf_type *value_type);
118
119 /* Prog poke tracking helpers. */
120 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
121 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
122 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
123 struct bpf_prog *new);
124
125 /* Direct value access helpers. */
126 int (*map_direct_value_addr)(const struct bpf_map *map,
127 u64 *imm, u32 off);
128 int (*map_direct_value_meta)(const struct bpf_map *map,
129 u64 imm, u32 *off);
130 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
131 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
132 struct poll_table_struct *pts);
133
134 /* Functions called by bpf_local_storage maps */
135 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
136 void *owner, u32 size);
137 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
138 void *owner, u32 size);
139 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
140
141 /* Misc helpers.*/
142 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
143
144 /* map_meta_equal must be implemented for maps that can be
145 * used as an inner map. It is a runtime check to ensure
146 * an inner map can be inserted to an outer map.
147 *
148 * Some properties of the inner map has been used during the
149 * verification time. When inserting an inner map at the runtime,
150 * map_meta_equal has to ensure the inserting map has the same
151 * properties that the verifier has used earlier.
152 */
153 bool (*map_meta_equal)(const struct bpf_map *meta0,
154 const struct bpf_map *meta1);
155
156
157 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
158 struct bpf_func_state *caller,
159 struct bpf_func_state *callee);
160 long (*map_for_each_callback)(struct bpf_map *map,
161 bpf_callback_t callback_fn,
162 void *callback_ctx, u64 flags);
163
164 u64 (*map_mem_usage)(const struct bpf_map *map);
165
166 /* BTF id of struct allocated by map_alloc */
167 int *map_btf_id;
168
169 /* bpf_iter info used to open a seq_file */
170 const struct bpf_iter_seq_info *iter_seq_info;
171};
172
173enum {
174 /* Support at most 10 fields in a BTF type */
175 BTF_FIELDS_MAX = 10,
176};
177
178enum btf_field_type {
179 BPF_SPIN_LOCK = (1 << 0),
180 BPF_TIMER = (1 << 1),
181 BPF_KPTR_UNREF = (1 << 2),
182 BPF_KPTR_REF = (1 << 3),
183 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF,
184 BPF_LIST_HEAD = (1 << 4),
185 BPF_LIST_NODE = (1 << 5),
186 BPF_RB_ROOT = (1 << 6),
187 BPF_RB_NODE = (1 << 7),
188 BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD |
189 BPF_RB_NODE | BPF_RB_ROOT,
190 BPF_REFCOUNT = (1 << 8),
191};
192
193typedef void (*btf_dtor_kfunc_t)(void *);
194
195struct btf_field_kptr {
196 struct btf *btf;
197 struct module *module;
198 /* dtor used if btf_is_kernel(btf), otherwise the type is
199 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used
200 */
201 btf_dtor_kfunc_t dtor;
202 u32 btf_id;
203};
204
205struct btf_field_graph_root {
206 struct btf *btf;
207 u32 value_btf_id;
208 u32 node_offset;
209 struct btf_record *value_rec;
210};
211
212struct btf_field {
213 u32 offset;
214 u32 size;
215 enum btf_field_type type;
216 union {
217 struct btf_field_kptr kptr;
218 struct btf_field_graph_root graph_root;
219 };
220};
221
222struct btf_record {
223 u32 cnt;
224 u32 field_mask;
225 int spin_lock_off;
226 int timer_off;
227 int refcount_off;
228 struct btf_field fields[];
229};
230
231struct bpf_map {
232 /* The first two cachelines with read-mostly members of which some
233 * are also accessed in fast-path (e.g. ops, max_entries).
234 */
235 const struct bpf_map_ops *ops ____cacheline_aligned;
236 struct bpf_map *inner_map_meta;
237#ifdef CONFIG_SECURITY
238 void *security;
239#endif
240 enum bpf_map_type map_type;
241 u32 key_size;
242 u32 value_size;
243 u32 max_entries;
244 u64 map_extra; /* any per-map-type extra fields */
245 u32 map_flags;
246 u32 id;
247 struct btf_record *record;
248 int numa_node;
249 u32 btf_key_type_id;
250 u32 btf_value_type_id;
251 u32 btf_vmlinux_value_type_id;
252 struct btf *btf;
253#ifdef CONFIG_MEMCG_KMEM
254 struct obj_cgroup *objcg;
255#endif
256 char name[BPF_OBJ_NAME_LEN];
257 /* The 3rd and 4th cacheline with misc members to avoid false sharing
258 * particularly with refcounting.
259 */
260 atomic64_t refcnt ____cacheline_aligned;
261 atomic64_t usercnt;
262 struct work_struct work;
263 struct mutex freeze_mutex;
264 atomic64_t writecnt;
265 /* 'Ownership' of program-containing map is claimed by the first program
266 * that is going to use this map or by the first program which FD is
267 * stored in the map to make sure that all callers and callees have the
268 * same prog type, JITed flag and xdp_has_frags flag.
269 */
270 struct {
271 spinlock_t lock;
272 enum bpf_prog_type type;
273 bool jited;
274 bool xdp_has_frags;
275 } owner;
276 bool bypass_spec_v1;
277 bool frozen; /* write-once; write-protected by freeze_mutex */
278};
279
280static inline const char *btf_field_type_name(enum btf_field_type type)
281{
282 switch (type) {
283 case BPF_SPIN_LOCK:
284 return "bpf_spin_lock";
285 case BPF_TIMER:
286 return "bpf_timer";
287 case BPF_KPTR_UNREF:
288 case BPF_KPTR_REF:
289 return "kptr";
290 case BPF_LIST_HEAD:
291 return "bpf_list_head";
292 case BPF_LIST_NODE:
293 return "bpf_list_node";
294 case BPF_RB_ROOT:
295 return "bpf_rb_root";
296 case BPF_RB_NODE:
297 return "bpf_rb_node";
298 case BPF_REFCOUNT:
299 return "bpf_refcount";
300 default:
301 WARN_ON_ONCE(1);
302 return "unknown";
303 }
304}
305
306static inline u32 btf_field_type_size(enum btf_field_type type)
307{
308 switch (type) {
309 case BPF_SPIN_LOCK:
310 return sizeof(struct bpf_spin_lock);
311 case BPF_TIMER:
312 return sizeof(struct bpf_timer);
313 case BPF_KPTR_UNREF:
314 case BPF_KPTR_REF:
315 return sizeof(u64);
316 case BPF_LIST_HEAD:
317 return sizeof(struct bpf_list_head);
318 case BPF_LIST_NODE:
319 return sizeof(struct bpf_list_node);
320 case BPF_RB_ROOT:
321 return sizeof(struct bpf_rb_root);
322 case BPF_RB_NODE:
323 return sizeof(struct bpf_rb_node);
324 case BPF_REFCOUNT:
325 return sizeof(struct bpf_refcount);
326 default:
327 WARN_ON_ONCE(1);
328 return 0;
329 }
330}
331
332static inline u32 btf_field_type_align(enum btf_field_type type)
333{
334 switch (type) {
335 case BPF_SPIN_LOCK:
336 return __alignof__(struct bpf_spin_lock);
337 case BPF_TIMER:
338 return __alignof__(struct bpf_timer);
339 case BPF_KPTR_UNREF:
340 case BPF_KPTR_REF:
341 return __alignof__(u64);
342 case BPF_LIST_HEAD:
343 return __alignof__(struct bpf_list_head);
344 case BPF_LIST_NODE:
345 return __alignof__(struct bpf_list_node);
346 case BPF_RB_ROOT:
347 return __alignof__(struct bpf_rb_root);
348 case BPF_RB_NODE:
349 return __alignof__(struct bpf_rb_node);
350 case BPF_REFCOUNT:
351 return __alignof__(struct bpf_refcount);
352 default:
353 WARN_ON_ONCE(1);
354 return 0;
355 }
356}
357
358static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
359{
360 memset(addr, 0, field->size);
361
362 switch (field->type) {
363 case BPF_REFCOUNT:
364 refcount_set((refcount_t *)addr, 1);
365 break;
366 case BPF_RB_NODE:
367 RB_CLEAR_NODE((struct rb_node *)addr);
368 break;
369 case BPF_LIST_HEAD:
370 case BPF_LIST_NODE:
371 INIT_LIST_HEAD((struct list_head *)addr);
372 break;
373 case BPF_RB_ROOT:
374 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
375 case BPF_SPIN_LOCK:
376 case BPF_TIMER:
377 case BPF_KPTR_UNREF:
378 case BPF_KPTR_REF:
379 break;
380 default:
381 WARN_ON_ONCE(1);
382 return;
383 }
384}
385
386static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
387{
388 if (IS_ERR_OR_NULL(rec))
389 return false;
390 return rec->field_mask & type;
391}
392
393static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
394{
395 int i;
396
397 if (IS_ERR_OR_NULL(rec))
398 return;
399 for (i = 0; i < rec->cnt; i++)
400 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
401}
402
403/* 'dst' must be a temporary buffer and should not point to memory that is being
404 * used in parallel by a bpf program or bpf syscall, otherwise the access from
405 * the bpf program or bpf syscall may be corrupted by the reinitialization,
406 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
407 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
408 * program or bpf syscall.
409 */
410static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
411{
412 bpf_obj_init(map->record, dst);
413}
414
415/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
416 * forced to use 'long' read/writes to try to atomically copy long counters.
417 * Best-effort only. No barriers here, since it _will_ race with concurrent
418 * updates from BPF programs. Called from bpf syscall and mostly used with
419 * size 8 or 16 bytes, so ask compiler to inline it.
420 */
421static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
422{
423 const long *lsrc = src;
424 long *ldst = dst;
425
426 size /= sizeof(long);
427 while (size--)
428 *ldst++ = *lsrc++;
429}
430
431/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
432static inline void bpf_obj_memcpy(struct btf_record *rec,
433 void *dst, void *src, u32 size,
434 bool long_memcpy)
435{
436 u32 curr_off = 0;
437 int i;
438
439 if (IS_ERR_OR_NULL(rec)) {
440 if (long_memcpy)
441 bpf_long_memcpy(dst, src, round_up(size, 8));
442 else
443 memcpy(dst, src, size);
444 return;
445 }
446
447 for (i = 0; i < rec->cnt; i++) {
448 u32 next_off = rec->fields[i].offset;
449 u32 sz = next_off - curr_off;
450
451 memcpy(dst + curr_off, src + curr_off, sz);
452 curr_off += rec->fields[i].size + sz;
453 }
454 memcpy(dst + curr_off, src + curr_off, size - curr_off);
455}
456
457static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
458{
459 bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
460}
461
462static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
463{
464 bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
465}
466
467static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
468{
469 u32 curr_off = 0;
470 int i;
471
472 if (IS_ERR_OR_NULL(rec)) {
473 memset(dst, 0, size);
474 return;
475 }
476
477 for (i = 0; i < rec->cnt; i++) {
478 u32 next_off = rec->fields[i].offset;
479 u32 sz = next_off - curr_off;
480
481 memset(dst + curr_off, 0, sz);
482 curr_off += rec->fields[i].size + sz;
483 }
484 memset(dst + curr_off, 0, size - curr_off);
485}
486
487static inline void zero_map_value(struct bpf_map *map, void *dst)
488{
489 bpf_obj_memzero(map->record, dst, map->value_size);
490}
491
492void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
493 bool lock_src);
494void bpf_timer_cancel_and_free(void *timer);
495void bpf_list_head_free(const struct btf_field *field, void *list_head,
496 struct bpf_spin_lock *spin_lock);
497void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
498 struct bpf_spin_lock *spin_lock);
499
500
501int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
502
503struct bpf_offload_dev;
504struct bpf_offloaded_map;
505
506struct bpf_map_dev_ops {
507 int (*map_get_next_key)(struct bpf_offloaded_map *map,
508 void *key, void *next_key);
509 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
510 void *key, void *value);
511 int (*map_update_elem)(struct bpf_offloaded_map *map,
512 void *key, void *value, u64 flags);
513 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
514};
515
516struct bpf_offloaded_map {
517 struct bpf_map map;
518 struct net_device *netdev;
519 const struct bpf_map_dev_ops *dev_ops;
520 void *dev_priv;
521 struct list_head offloads;
522};
523
524static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
525{
526 return container_of(map, struct bpf_offloaded_map, map);
527}
528
529static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
530{
531 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
532}
533
534static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
535{
536 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
537 map->ops->map_seq_show_elem;
538}
539
540int map_check_no_btf(const struct bpf_map *map,
541 const struct btf *btf,
542 const struct btf_type *key_type,
543 const struct btf_type *value_type);
544
545bool bpf_map_meta_equal(const struct bpf_map *meta0,
546 const struct bpf_map *meta1);
547
548extern const struct bpf_map_ops bpf_map_offload_ops;
549
550/* bpf_type_flag contains a set of flags that are applicable to the values of
551 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
552 * or a memory is read-only. We classify types into two categories: base types
553 * and extended types. Extended types are base types combined with a type flag.
554 *
555 * Currently there are no more than 32 base types in arg_type, ret_type and
556 * reg_types.
557 */
558#define BPF_BASE_TYPE_BITS 8
559
560enum bpf_type_flag {
561 /* PTR may be NULL. */
562 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
563
564 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
565 * compatible with both mutable and immutable memory.
566 */
567 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
568
569 /* MEM points to BPF ring buffer reservation. */
570 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
571
572 /* MEM is in user address space. */
573 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
574
575 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
576 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
577 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
578 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
579 * to the specified cpu.
580 */
581 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
582
583 /* Indicates that the argument will be released. */
584 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
585
586 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
587 * unreferenced and referenced kptr loaded from map value using a load
588 * instruction, so that they can only be dereferenced but not escape the
589 * BPF program into the kernel (i.e. cannot be passed as arguments to
590 * kfunc or bpf helpers).
591 */
592 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
593
594 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
595
596 /* DYNPTR points to memory local to the bpf program. */
597 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
598
599 /* DYNPTR points to a kernel-produced ringbuf record. */
600 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
601
602 /* Size is known at compile time. */
603 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
604
605 /* MEM is of an allocated object of type in program BTF. This is used to
606 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
607 */
608 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
609
610 /* PTR was passed from the kernel in a trusted context, and may be
611 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
612 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
613 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
614 * without invoking bpf_kptr_xchg(). What we really need to know is
615 * whether a pointer is safe to pass to a kfunc or BPF helper function.
616 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
617 * helpers, they do not cover all possible instances of unsafe
618 * pointers. For example, a pointer that was obtained from walking a
619 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
620 * fact that it may be NULL, invalid, etc. This is due to backwards
621 * compatibility requirements, as this was the behavior that was first
622 * introduced when kptrs were added. The behavior is now considered
623 * deprecated, and PTR_UNTRUSTED will eventually be removed.
624 *
625 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
626 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
627 * For example, pointers passed to tracepoint arguments are considered
628 * PTR_TRUSTED, as are pointers that are passed to struct_ops
629 * callbacks. As alluded to above, pointers that are obtained from
630 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
631 * struct task_struct *task is PTR_TRUSTED, then accessing
632 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
633 * in a BPF register. Similarly, pointers passed to certain programs
634 * types such as kretprobes are not guaranteed to be valid, as they may
635 * for example contain an object that was recently freed.
636 */
637 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
638
639 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
640 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
641
642 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
643 * Currently only valid for linked-list and rbtree nodes.
644 */
645 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
646
647 /* DYNPTR points to sk_buff */
648 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
649
650 /* DYNPTR points to xdp_buff */
651 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
652
653 __BPF_TYPE_FLAG_MAX,
654 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
655};
656
657#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
658 | DYNPTR_TYPE_XDP)
659
660/* Max number of base types. */
661#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
662
663/* Max number of all types. */
664#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
665
666/* function argument constraints */
667enum bpf_arg_type {
668 ARG_DONTCARE = 0, /* unused argument in helper function */
669
670 /* the following constraints used to prototype
671 * bpf_map_lookup/update/delete_elem() functions
672 */
673 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
674 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
675 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
676
677 /* Used to prototype bpf_memcmp() and other functions that access data
678 * on eBPF program stack
679 */
680 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
681
682 ARG_CONST_SIZE, /* number of bytes accessed from memory */
683 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
684
685 ARG_PTR_TO_CTX, /* pointer to context */
686 ARG_ANYTHING, /* any (initialized) argument is ok */
687 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
688 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
689 ARG_PTR_TO_INT, /* pointer to int */
690 ARG_PTR_TO_LONG, /* pointer to long */
691 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
692 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
693 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
694 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
695 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
696 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
697 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
698 ARG_PTR_TO_STACK, /* pointer to stack */
699 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
700 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
701 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */
702 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
703 __BPF_ARG_TYPE_MAX,
704
705 /* Extended arg_types. */
706 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
707 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
708 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
709 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
710 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
711 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
712 /* pointer to memory does not need to be initialized, helper function must fill
713 * all bytes or clear them in error case.
714 */
715 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM,
716 /* Pointer to valid memory of size known at compile time. */
717 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
718
719 /* This must be the last entry. Its purpose is to ensure the enum is
720 * wide enough to hold the higher bits reserved for bpf_type_flag.
721 */
722 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
723};
724static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
725
726/* type of values returned from helper functions */
727enum bpf_return_type {
728 RET_INTEGER, /* function returns integer */
729 RET_VOID, /* function doesn't return anything */
730 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
731 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
732 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
733 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
734 RET_PTR_TO_MEM, /* returns a pointer to memory */
735 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
736 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
737 __BPF_RET_TYPE_MAX,
738
739 /* Extended ret_types. */
740 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
741 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
742 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
743 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
744 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
745 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
746 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
747 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
748
749 /* This must be the last entry. Its purpose is to ensure the enum is
750 * wide enough to hold the higher bits reserved for bpf_type_flag.
751 */
752 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
753};
754static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
755
756/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
757 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
758 * instructions after verifying
759 */
760struct bpf_func_proto {
761 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
762 bool gpl_only;
763 bool pkt_access;
764 bool might_sleep;
765 enum bpf_return_type ret_type;
766 union {
767 struct {
768 enum bpf_arg_type arg1_type;
769 enum bpf_arg_type arg2_type;
770 enum bpf_arg_type arg3_type;
771 enum bpf_arg_type arg4_type;
772 enum bpf_arg_type arg5_type;
773 };
774 enum bpf_arg_type arg_type[5];
775 };
776 union {
777 struct {
778 u32 *arg1_btf_id;
779 u32 *arg2_btf_id;
780 u32 *arg3_btf_id;
781 u32 *arg4_btf_id;
782 u32 *arg5_btf_id;
783 };
784 u32 *arg_btf_id[5];
785 struct {
786 size_t arg1_size;
787 size_t arg2_size;
788 size_t arg3_size;
789 size_t arg4_size;
790 size_t arg5_size;
791 };
792 size_t arg_size[5];
793 };
794 int *ret_btf_id; /* return value btf_id */
795 bool (*allowed)(const struct bpf_prog *prog);
796};
797
798/* bpf_context is intentionally undefined structure. Pointer to bpf_context is
799 * the first argument to eBPF programs.
800 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
801 */
802struct bpf_context;
803
804enum bpf_access_type {
805 BPF_READ = 1,
806 BPF_WRITE = 2
807};
808
809/* types of values stored in eBPF registers */
810/* Pointer types represent:
811 * pointer
812 * pointer + imm
813 * pointer + (u16) var
814 * pointer + (u16) var + imm
815 * if (range > 0) then [ptr, ptr + range - off) is safe to access
816 * if (id > 0) means that some 'var' was added
817 * if (off > 0) means that 'imm' was added
818 */
819enum bpf_reg_type {
820 NOT_INIT = 0, /* nothing was written into register */
821 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
822 PTR_TO_CTX, /* reg points to bpf_context */
823 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
824 PTR_TO_MAP_VALUE, /* reg points to map element value */
825 PTR_TO_MAP_KEY, /* reg points to a map element key */
826 PTR_TO_STACK, /* reg == frame_pointer + offset */
827 PTR_TO_PACKET_META, /* skb->data - meta_len */
828 PTR_TO_PACKET, /* reg points to skb->data */
829 PTR_TO_PACKET_END, /* skb->data + headlen */
830 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
831 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
832 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
833 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
834 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
835 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
836 /* PTR_TO_BTF_ID points to a kernel struct that does not need
837 * to be null checked by the BPF program. This does not imply the
838 * pointer is _not_ null and in practice this can easily be a null
839 * pointer when reading pointer chains. The assumption is program
840 * context will handle null pointer dereference typically via fault
841 * handling. The verifier must keep this in mind and can make no
842 * assumptions about null or non-null when doing branch analysis.
843 * Further, when passed into helpers the helpers can not, without
844 * additional context, assume the value is non-null.
845 */
846 PTR_TO_BTF_ID,
847 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
848 * been checked for null. Used primarily to inform the verifier
849 * an explicit null check is required for this struct.
850 */
851 PTR_TO_MEM, /* reg points to valid memory region */
852 PTR_TO_BUF, /* reg points to a read/write buffer */
853 PTR_TO_FUNC, /* reg points to a bpf program function */
854 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
855 __BPF_REG_TYPE_MAX,
856
857 /* Extended reg_types. */
858 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
859 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
860 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
861 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
862 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
863
864 /* This must be the last entry. Its purpose is to ensure the enum is
865 * wide enough to hold the higher bits reserved for bpf_type_flag.
866 */
867 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
868};
869static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
870
871/* The information passed from prog-specific *_is_valid_access
872 * back to the verifier.
873 */
874struct bpf_insn_access_aux {
875 enum bpf_reg_type reg_type;
876 union {
877 int ctx_field_size;
878 struct {
879 struct btf *btf;
880 u32 btf_id;
881 };
882 };
883 struct bpf_verifier_log *log; /* for verbose logs */
884};
885
886static inline void
887bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
888{
889 aux->ctx_field_size = size;
890}
891
892static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
893{
894 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
895 insn->src_reg == BPF_PSEUDO_FUNC;
896}
897
898struct bpf_prog_ops {
899 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
900 union bpf_attr __user *uattr);
901};
902
903struct bpf_reg_state;
904struct bpf_verifier_ops {
905 /* return eBPF function prototype for verification */
906 const struct bpf_func_proto *
907 (*get_func_proto)(enum bpf_func_id func_id,
908 const struct bpf_prog *prog);
909
910 /* return true if 'size' wide access at offset 'off' within bpf_context
911 * with 'type' (read or write) is allowed
912 */
913 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
914 const struct bpf_prog *prog,
915 struct bpf_insn_access_aux *info);
916 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
917 const struct bpf_prog *prog);
918 int (*gen_ld_abs)(const struct bpf_insn *orig,
919 struct bpf_insn *insn_buf);
920 u32 (*convert_ctx_access)(enum bpf_access_type type,
921 const struct bpf_insn *src,
922 struct bpf_insn *dst,
923 struct bpf_prog *prog, u32 *target_size);
924 int (*btf_struct_access)(struct bpf_verifier_log *log,
925 const struct bpf_reg_state *reg,
926 int off, int size);
927};
928
929struct bpf_prog_offload_ops {
930 /* verifier basic callbacks */
931 int (*insn_hook)(struct bpf_verifier_env *env,
932 int insn_idx, int prev_insn_idx);
933 int (*finalize)(struct bpf_verifier_env *env);
934 /* verifier optimization callbacks (called after .finalize) */
935 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
936 struct bpf_insn *insn);
937 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
938 /* program management callbacks */
939 int (*prepare)(struct bpf_prog *prog);
940 int (*translate)(struct bpf_prog *prog);
941 void (*destroy)(struct bpf_prog *prog);
942};
943
944struct bpf_prog_offload {
945 struct bpf_prog *prog;
946 struct net_device *netdev;
947 struct bpf_offload_dev *offdev;
948 void *dev_priv;
949 struct list_head offloads;
950 bool dev_state;
951 bool opt_failed;
952 void *jited_image;
953 u32 jited_len;
954};
955
956enum bpf_cgroup_storage_type {
957 BPF_CGROUP_STORAGE_SHARED,
958 BPF_CGROUP_STORAGE_PERCPU,
959 __BPF_CGROUP_STORAGE_MAX
960};
961
962#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
963
964/* The longest tracepoint has 12 args.
965 * See include/trace/bpf_probe.h
966 */
967#define MAX_BPF_FUNC_ARGS 12
968
969/* The maximum number of arguments passed through registers
970 * a single function may have.
971 */
972#define MAX_BPF_FUNC_REG_ARGS 5
973
974/* The argument is a structure. */
975#define BTF_FMODEL_STRUCT_ARG BIT(0)
976
977/* The argument is signed. */
978#define BTF_FMODEL_SIGNED_ARG BIT(1)
979
980struct btf_func_model {
981 u8 ret_size;
982 u8 ret_flags;
983 u8 nr_args;
984 u8 arg_size[MAX_BPF_FUNC_ARGS];
985 u8 arg_flags[MAX_BPF_FUNC_ARGS];
986};
987
988/* Restore arguments before returning from trampoline to let original function
989 * continue executing. This flag is used for fentry progs when there are no
990 * fexit progs.
991 */
992#define BPF_TRAMP_F_RESTORE_REGS BIT(0)
993/* Call original function after fentry progs, but before fexit progs.
994 * Makes sense for fentry/fexit, normal calls and indirect calls.
995 */
996#define BPF_TRAMP_F_CALL_ORIG BIT(1)
997/* Skip current frame and return to parent. Makes sense for fentry/fexit
998 * programs only. Should not be used with normal calls and indirect calls.
999 */
1000#define BPF_TRAMP_F_SKIP_FRAME BIT(2)
1001/* Store IP address of the caller on the trampoline stack,
1002 * so it's available for trampoline's programs.
1003 */
1004#define BPF_TRAMP_F_IP_ARG BIT(3)
1005/* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1006#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
1007
1008/* Get original function from stack instead of from provided direct address.
1009 * Makes sense for trampolines with fexit or fmod_ret programs.
1010 */
1011#define BPF_TRAMP_F_ORIG_STACK BIT(5)
1012
1013/* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1014 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1015 */
1016#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
1017
1018/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1019 * bytes on x86.
1020 */
1021enum {
1022#if defined(__s390x__)
1023 BPF_MAX_TRAMP_LINKS = 27,
1024#else
1025 BPF_MAX_TRAMP_LINKS = 38,
1026#endif
1027};
1028
1029struct bpf_tramp_links {
1030 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1031 int nr_links;
1032};
1033
1034struct bpf_tramp_run_ctx;
1035
1036/* Different use cases for BPF trampoline:
1037 * 1. replace nop at the function entry (kprobe equivalent)
1038 * flags = BPF_TRAMP_F_RESTORE_REGS
1039 * fentry = a set of programs to run before returning from trampoline
1040 *
1041 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1042 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1043 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
1044 * fentry = a set of program to run before calling original function
1045 * fexit = a set of program to run after original function
1046 *
1047 * 3. replace direct call instruction anywhere in the function body
1048 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1049 * With flags = 0
1050 * fentry = a set of programs to run before returning from trampoline
1051 * With flags = BPF_TRAMP_F_CALL_ORIG
1052 * orig_call = original callback addr or direct function addr
1053 * fentry = a set of program to run before calling original function
1054 * fexit = a set of program to run after original function
1055 */
1056struct bpf_tramp_image;
1057int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1058 const struct btf_func_model *m, u32 flags,
1059 struct bpf_tramp_links *tlinks,
1060 void *orig_call);
1061u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1062 struct bpf_tramp_run_ctx *run_ctx);
1063void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1064 struct bpf_tramp_run_ctx *run_ctx);
1065void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1066void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1067typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1068 struct bpf_tramp_run_ctx *run_ctx);
1069typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1070 struct bpf_tramp_run_ctx *run_ctx);
1071bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1072bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1073
1074struct bpf_ksym {
1075 unsigned long start;
1076 unsigned long end;
1077 char name[KSYM_NAME_LEN];
1078 struct list_head lnode;
1079 struct latch_tree_node tnode;
1080 bool prog;
1081};
1082
1083enum bpf_tramp_prog_type {
1084 BPF_TRAMP_FENTRY,
1085 BPF_TRAMP_FEXIT,
1086 BPF_TRAMP_MODIFY_RETURN,
1087 BPF_TRAMP_MAX,
1088 BPF_TRAMP_REPLACE, /* more than MAX */
1089};
1090
1091struct bpf_tramp_image {
1092 void *image;
1093 struct bpf_ksym ksym;
1094 struct percpu_ref pcref;
1095 void *ip_after_call;
1096 void *ip_epilogue;
1097 union {
1098 struct rcu_head rcu;
1099 struct work_struct work;
1100 };
1101};
1102
1103struct bpf_trampoline {
1104 /* hlist for trampoline_table */
1105 struct hlist_node hlist;
1106 struct ftrace_ops *fops;
1107 /* serializes access to fields of this trampoline */
1108 struct mutex mutex;
1109 refcount_t refcnt;
1110 u32 flags;
1111 u64 key;
1112 struct {
1113 struct btf_func_model model;
1114 void *addr;
1115 bool ftrace_managed;
1116 } func;
1117 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1118 * program by replacing one of its functions. func.addr is the address
1119 * of the function it replaced.
1120 */
1121 struct bpf_prog *extension_prog;
1122 /* list of BPF programs using this trampoline */
1123 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1124 /* Number of attached programs. A counter per kind. */
1125 int progs_cnt[BPF_TRAMP_MAX];
1126 /* Executable image of trampoline */
1127 struct bpf_tramp_image *cur_image;
1128 struct module *mod;
1129};
1130
1131struct bpf_attach_target_info {
1132 struct btf_func_model fmodel;
1133 long tgt_addr;
1134 struct module *tgt_mod;
1135 const char *tgt_name;
1136 const struct btf_type *tgt_type;
1137};
1138
1139#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1140
1141struct bpf_dispatcher_prog {
1142 struct bpf_prog *prog;
1143 refcount_t users;
1144};
1145
1146struct bpf_dispatcher {
1147 /* dispatcher mutex */
1148 struct mutex mutex;
1149 void *func;
1150 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1151 int num_progs;
1152 void *image;
1153 void *rw_image;
1154 u32 image_off;
1155 struct bpf_ksym ksym;
1156#ifdef CONFIG_HAVE_STATIC_CALL
1157 struct static_call_key *sc_key;
1158 void *sc_tramp;
1159#endif
1160};
1161
1162static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
1163 const void *ctx,
1164 const struct bpf_insn *insnsi,
1165 bpf_func_t bpf_func)
1166{
1167 return bpf_func(ctx, insnsi);
1168}
1169
1170/* the implementation of the opaque uapi struct bpf_dynptr */
1171struct bpf_dynptr_kern {
1172 void *data;
1173 /* Size represents the number of usable bytes of dynptr data.
1174 * If for example the offset is at 4 for a local dynptr whose data is
1175 * of type u64, the number of usable bytes is 4.
1176 *
1177 * The upper 8 bits are reserved. It is as follows:
1178 * Bits 0 - 23 = size
1179 * Bits 24 - 30 = dynptr type
1180 * Bit 31 = whether dynptr is read-only
1181 */
1182 u32 size;
1183 u32 offset;
1184} __aligned(8);
1185
1186enum bpf_dynptr_type {
1187 BPF_DYNPTR_TYPE_INVALID,
1188 /* Points to memory that is local to the bpf program */
1189 BPF_DYNPTR_TYPE_LOCAL,
1190 /* Underlying data is a ringbuf record */
1191 BPF_DYNPTR_TYPE_RINGBUF,
1192 /* Underlying data is a sk_buff */
1193 BPF_DYNPTR_TYPE_SKB,
1194 /* Underlying data is a xdp_buff */
1195 BPF_DYNPTR_TYPE_XDP,
1196};
1197
1198int bpf_dynptr_check_size(u32 size);
1199u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1200
1201#ifdef CONFIG_BPF_JIT
1202int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1203int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1204struct bpf_trampoline *bpf_trampoline_get(u64 key,
1205 struct bpf_attach_target_info *tgt_info);
1206void bpf_trampoline_put(struct bpf_trampoline *tr);
1207int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1208
1209/*
1210 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1211 * indirection with a direct call to the bpf program. If the architecture does
1212 * not have STATIC_CALL, avoid a double-indirection.
1213 */
1214#ifdef CONFIG_HAVE_STATIC_CALL
1215
1216#define __BPF_DISPATCHER_SC_INIT(_name) \
1217 .sc_key = &STATIC_CALL_KEY(_name), \
1218 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1219
1220#define __BPF_DISPATCHER_SC(name) \
1221 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1222
1223#define __BPF_DISPATCHER_CALL(name) \
1224 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1225
1226#define __BPF_DISPATCHER_UPDATE(_d, _new) \
1227 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1228
1229#else
1230#define __BPF_DISPATCHER_SC_INIT(name)
1231#define __BPF_DISPATCHER_SC(name)
1232#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1233#define __BPF_DISPATCHER_UPDATE(_d, _new)
1234#endif
1235
1236#define BPF_DISPATCHER_INIT(_name) { \
1237 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1238 .func = &_name##_func, \
1239 .progs = {}, \
1240 .num_progs = 0, \
1241 .image = NULL, \
1242 .image_off = 0, \
1243 .ksym = { \
1244 .name = #_name, \
1245 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1246 }, \
1247 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1248}
1249
1250#define DEFINE_BPF_DISPATCHER(name) \
1251 __BPF_DISPATCHER_SC(name); \
1252 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \
1253 const void *ctx, \
1254 const struct bpf_insn *insnsi, \
1255 bpf_func_t bpf_func) \
1256 { \
1257 return __BPF_DISPATCHER_CALL(name); \
1258 } \
1259 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1260 struct bpf_dispatcher bpf_dispatcher_##name = \
1261 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1262
1263#define DECLARE_BPF_DISPATCHER(name) \
1264 unsigned int bpf_dispatcher_##name##_func( \
1265 const void *ctx, \
1266 const struct bpf_insn *insnsi, \
1267 bpf_func_t bpf_func); \
1268 extern struct bpf_dispatcher bpf_dispatcher_##name;
1269
1270#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1271#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1272void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1273 struct bpf_prog *to);
1274/* Called only from JIT-enabled code, so there's no need for stubs. */
1275void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1276void bpf_image_ksym_del(struct bpf_ksym *ksym);
1277void bpf_ksym_add(struct bpf_ksym *ksym);
1278void bpf_ksym_del(struct bpf_ksym *ksym);
1279int bpf_jit_charge_modmem(u32 size);
1280void bpf_jit_uncharge_modmem(u32 size);
1281bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1282#else
1283static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1284 struct bpf_trampoline *tr)
1285{
1286 return -ENOTSUPP;
1287}
1288static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1289 struct bpf_trampoline *tr)
1290{
1291 return -ENOTSUPP;
1292}
1293static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1294 struct bpf_attach_target_info *tgt_info)
1295{
1296 return ERR_PTR(-EOPNOTSUPP);
1297}
1298static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1299#define DEFINE_BPF_DISPATCHER(name)
1300#define DECLARE_BPF_DISPATCHER(name)
1301#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1302#define BPF_DISPATCHER_PTR(name) NULL
1303static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1304 struct bpf_prog *from,
1305 struct bpf_prog *to) {}
1306static inline bool is_bpf_image_address(unsigned long address)
1307{
1308 return false;
1309}
1310static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1311{
1312 return false;
1313}
1314#endif
1315
1316struct bpf_func_info_aux {
1317 u16 linkage;
1318 bool unreliable;
1319};
1320
1321enum bpf_jit_poke_reason {
1322 BPF_POKE_REASON_TAIL_CALL,
1323};
1324
1325/* Descriptor of pokes pointing /into/ the JITed image. */
1326struct bpf_jit_poke_descriptor {
1327 void *tailcall_target;
1328 void *tailcall_bypass;
1329 void *bypass_addr;
1330 void *aux;
1331 union {
1332 struct {
1333 struct bpf_map *map;
1334 u32 key;
1335 } tail_call;
1336 };
1337 bool tailcall_target_stable;
1338 u8 adj_off;
1339 u16 reason;
1340 u32 insn_idx;
1341};
1342
1343/* reg_type info for ctx arguments */
1344struct bpf_ctx_arg_aux {
1345 u32 offset;
1346 enum bpf_reg_type reg_type;
1347 u32 btf_id;
1348};
1349
1350struct btf_mod_pair {
1351 struct btf *btf;
1352 struct module *module;
1353};
1354
1355struct bpf_kfunc_desc_tab;
1356
1357struct bpf_prog_aux {
1358 atomic64_t refcnt;
1359 u32 used_map_cnt;
1360 u32 used_btf_cnt;
1361 u32 max_ctx_offset;
1362 u32 max_pkt_offset;
1363 u32 max_tp_access;
1364 u32 stack_depth;
1365 u32 id;
1366 u32 func_cnt; /* used by non-func prog as the number of func progs */
1367 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1368 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1369 u32 ctx_arg_info_size;
1370 u32 max_rdonly_access;
1371 u32 max_rdwr_access;
1372 struct btf *attach_btf;
1373 const struct bpf_ctx_arg_aux *ctx_arg_info;
1374 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1375 struct bpf_prog *dst_prog;
1376 struct bpf_trampoline *dst_trampoline;
1377 enum bpf_prog_type saved_dst_prog_type;
1378 enum bpf_attach_type saved_dst_attach_type;
1379 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1380 bool dev_bound; /* Program is bound to the netdev. */
1381 bool offload_requested; /* Program is bound and offloaded to the netdev. */
1382 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1383 bool func_proto_unreliable;
1384 bool sleepable;
1385 bool tail_call_reachable;
1386 bool xdp_has_frags;
1387 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1388 const struct btf_type *attach_func_proto;
1389 /* function name for valid attach_btf_id */
1390 const char *attach_func_name;
1391 struct bpf_prog **func;
1392 void *jit_data; /* JIT specific data. arch dependent */
1393 struct bpf_jit_poke_descriptor *poke_tab;
1394 struct bpf_kfunc_desc_tab *kfunc_tab;
1395 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1396 u32 size_poke_tab;
1397 struct bpf_ksym ksym;
1398 const struct bpf_prog_ops *ops;
1399 struct bpf_map **used_maps;
1400 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1401 struct btf_mod_pair *used_btfs;
1402 struct bpf_prog *prog;
1403 struct user_struct *user;
1404 u64 load_time; /* ns since boottime */
1405 u32 verified_insns;
1406 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1407 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1408 char name[BPF_OBJ_NAME_LEN];
1409#ifdef CONFIG_SECURITY
1410 void *security;
1411#endif
1412 struct bpf_prog_offload *offload;
1413 struct btf *btf;
1414 struct bpf_func_info *func_info;
1415 struct bpf_func_info_aux *func_info_aux;
1416 /* bpf_line_info loaded from userspace. linfo->insn_off
1417 * has the xlated insn offset.
1418 * Both the main and sub prog share the same linfo.
1419 * The subprog can access its first linfo by
1420 * using the linfo_idx.
1421 */
1422 struct bpf_line_info *linfo;
1423 /* jited_linfo is the jited addr of the linfo. It has a
1424 * one to one mapping to linfo:
1425 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1426 * Both the main and sub prog share the same jited_linfo.
1427 * The subprog can access its first jited_linfo by
1428 * using the linfo_idx.
1429 */
1430 void **jited_linfo;
1431 u32 func_info_cnt;
1432 u32 nr_linfo;
1433 /* subprog can use linfo_idx to access its first linfo and
1434 * jited_linfo.
1435 * main prog always has linfo_idx == 0
1436 */
1437 u32 linfo_idx;
1438 struct module *mod;
1439 u32 num_exentries;
1440 struct exception_table_entry *extable;
1441 union {
1442 struct work_struct work;
1443 struct rcu_head rcu;
1444 };
1445};
1446
1447struct bpf_prog {
1448 u16 pages; /* Number of allocated pages */
1449 u16 jited:1, /* Is our filter JIT'ed? */
1450 jit_requested:1,/* archs need to JIT the prog */
1451 gpl_compatible:1, /* Is filter GPL compatible? */
1452 cb_access:1, /* Is control block accessed? */
1453 dst_needed:1, /* Do we need dst entry? */
1454 blinding_requested:1, /* needs constant blinding */
1455 blinded:1, /* Was blinded */
1456 is_func:1, /* program is a bpf function */
1457 kprobe_override:1, /* Do we override a kprobe? */
1458 has_callchain_buf:1, /* callchain buffer allocated? */
1459 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1460 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1461 call_get_func_ip:1, /* Do we call get_func_ip() */
1462 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1463 enum bpf_prog_type type; /* Type of BPF program */
1464 enum bpf_attach_type expected_attach_type; /* For some prog types */
1465 u32 len; /* Number of filter blocks */
1466 u32 jited_len; /* Size of jited insns in bytes */
1467 u8 tag[BPF_TAG_SIZE];
1468 struct bpf_prog_stats __percpu *stats;
1469 int __percpu *active;
1470 unsigned int (*bpf_func)(const void *ctx,
1471 const struct bpf_insn *insn);
1472 struct bpf_prog_aux *aux; /* Auxiliary fields */
1473 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1474 /* Instructions for interpreter */
1475 union {
1476 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1477 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1478 };
1479};
1480
1481struct bpf_array_aux {
1482 /* Programs with direct jumps into programs part of this array. */
1483 struct list_head poke_progs;
1484 struct bpf_map *map;
1485 struct mutex poke_mutex;
1486 struct work_struct work;
1487};
1488
1489struct bpf_link {
1490 atomic64_t refcnt;
1491 u32 id;
1492 enum bpf_link_type type;
1493 const struct bpf_link_ops *ops;
1494 struct bpf_prog *prog;
1495 struct work_struct work;
1496};
1497
1498struct bpf_link_ops {
1499 void (*release)(struct bpf_link *link);
1500 void (*dealloc)(struct bpf_link *link);
1501 int (*detach)(struct bpf_link *link);
1502 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1503 struct bpf_prog *old_prog);
1504 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1505 int (*fill_link_info)(const struct bpf_link *link,
1506 struct bpf_link_info *info);
1507 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1508 struct bpf_map *old_map);
1509};
1510
1511struct bpf_tramp_link {
1512 struct bpf_link link;
1513 struct hlist_node tramp_hlist;
1514 u64 cookie;
1515};
1516
1517struct bpf_shim_tramp_link {
1518 struct bpf_tramp_link link;
1519 struct bpf_trampoline *trampoline;
1520};
1521
1522struct bpf_tracing_link {
1523 struct bpf_tramp_link link;
1524 enum bpf_attach_type attach_type;
1525 struct bpf_trampoline *trampoline;
1526 struct bpf_prog *tgt_prog;
1527};
1528
1529struct bpf_link_primer {
1530 struct bpf_link *link;
1531 struct file *file;
1532 int fd;
1533 u32 id;
1534};
1535
1536struct bpf_struct_ops_value;
1537struct btf_member;
1538
1539#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1540struct bpf_struct_ops {
1541 const struct bpf_verifier_ops *verifier_ops;
1542 int (*init)(struct btf *btf);
1543 int (*check_member)(const struct btf_type *t,
1544 const struct btf_member *member,
1545 const struct bpf_prog *prog);
1546 int (*init_member)(const struct btf_type *t,
1547 const struct btf_member *member,
1548 void *kdata, const void *udata);
1549 int (*reg)(void *kdata);
1550 void (*unreg)(void *kdata);
1551 int (*update)(void *kdata, void *old_kdata);
1552 int (*validate)(void *kdata);
1553 const struct btf_type *type;
1554 const struct btf_type *value_type;
1555 const char *name;
1556 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1557 u32 type_id;
1558 u32 value_id;
1559};
1560
1561#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1562#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1563const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1564void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1565bool bpf_struct_ops_get(const void *kdata);
1566void bpf_struct_ops_put(const void *kdata);
1567int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1568 void *value);
1569int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1570 struct bpf_tramp_link *link,
1571 const struct btf_func_model *model,
1572 void *image, void *image_end);
1573static inline bool bpf_try_module_get(const void *data, struct module *owner)
1574{
1575 if (owner == BPF_MODULE_OWNER)
1576 return bpf_struct_ops_get(data);
1577 else
1578 return try_module_get(owner);
1579}
1580static inline void bpf_module_put(const void *data, struct module *owner)
1581{
1582 if (owner == BPF_MODULE_OWNER)
1583 bpf_struct_ops_put(data);
1584 else
1585 module_put(owner);
1586}
1587int bpf_struct_ops_link_create(union bpf_attr *attr);
1588
1589#ifdef CONFIG_NET
1590/* Define it here to avoid the use of forward declaration */
1591struct bpf_dummy_ops_state {
1592 int val;
1593};
1594
1595struct bpf_dummy_ops {
1596 int (*test_1)(struct bpf_dummy_ops_state *cb);
1597 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1598 char a3, unsigned long a4);
1599 int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1600};
1601
1602int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1603 union bpf_attr __user *uattr);
1604#endif
1605#else
1606static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1607{
1608 return NULL;
1609}
1610static inline void bpf_struct_ops_init(struct btf *btf,
1611 struct bpf_verifier_log *log)
1612{
1613}
1614static inline bool bpf_try_module_get(const void *data, struct module *owner)
1615{
1616 return try_module_get(owner);
1617}
1618static inline void bpf_module_put(const void *data, struct module *owner)
1619{
1620 module_put(owner);
1621}
1622static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1623 void *key,
1624 void *value)
1625{
1626 return -EINVAL;
1627}
1628static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1629{
1630 return -EOPNOTSUPP;
1631}
1632
1633#endif
1634
1635#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1636int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1637 int cgroup_atype);
1638void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1639#else
1640static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1641 int cgroup_atype)
1642{
1643 return -EOPNOTSUPP;
1644}
1645static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1646{
1647}
1648#endif
1649
1650struct bpf_array {
1651 struct bpf_map map;
1652 u32 elem_size;
1653 u32 index_mask;
1654 struct bpf_array_aux *aux;
1655 union {
1656 DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1657 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1658 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1659 };
1660};
1661
1662#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
1663#define MAX_TAIL_CALL_CNT 33
1664
1665/* Maximum number of loops for bpf_loop and bpf_iter_num.
1666 * It's enum to expose it (and thus make it discoverable) through BTF.
1667 */
1668enum {
1669 BPF_MAX_LOOPS = 8 * 1024 * 1024,
1670};
1671
1672#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
1673 BPF_F_RDONLY_PROG | \
1674 BPF_F_WRONLY | \
1675 BPF_F_WRONLY_PROG)
1676
1677#define BPF_MAP_CAN_READ BIT(0)
1678#define BPF_MAP_CAN_WRITE BIT(1)
1679
1680/* Maximum number of user-producer ring buffer samples that can be drained in
1681 * a call to bpf_user_ringbuf_drain().
1682 */
1683#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1684
1685static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1686{
1687 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1688
1689 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1690 * not possible.
1691 */
1692 if (access_flags & BPF_F_RDONLY_PROG)
1693 return BPF_MAP_CAN_READ;
1694 else if (access_flags & BPF_F_WRONLY_PROG)
1695 return BPF_MAP_CAN_WRITE;
1696 else
1697 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1698}
1699
1700static inline bool bpf_map_flags_access_ok(u32 access_flags)
1701{
1702 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1703 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1704}
1705
1706struct bpf_event_entry {
1707 struct perf_event *event;
1708 struct file *perf_file;
1709 struct file *map_file;
1710 struct rcu_head rcu;
1711};
1712
1713static inline bool map_type_contains_progs(struct bpf_map *map)
1714{
1715 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1716 map->map_type == BPF_MAP_TYPE_DEVMAP ||
1717 map->map_type == BPF_MAP_TYPE_CPUMAP;
1718}
1719
1720bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1721int bpf_prog_calc_tag(struct bpf_prog *fp);
1722
1723const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1724const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1725
1726typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1727 unsigned long off, unsigned long len);
1728typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1729 const struct bpf_insn *src,
1730 struct bpf_insn *dst,
1731 struct bpf_prog *prog,
1732 u32 *target_size);
1733
1734u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1735 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1736
1737/* an array of programs to be executed under rcu_lock.
1738 *
1739 * Typical usage:
1740 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1741 *
1742 * the structure returned by bpf_prog_array_alloc() should be populated
1743 * with program pointers and the last pointer must be NULL.
1744 * The user has to keep refcnt on the program and make sure the program
1745 * is removed from the array before bpf_prog_put().
1746 * The 'struct bpf_prog_array *' should only be replaced with xchg()
1747 * since other cpus are walking the array of pointers in parallel.
1748 */
1749struct bpf_prog_array_item {
1750 struct bpf_prog *prog;
1751 union {
1752 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1753 u64 bpf_cookie;
1754 };
1755};
1756
1757struct bpf_prog_array {
1758 struct rcu_head rcu;
1759 struct bpf_prog_array_item items[];
1760};
1761
1762struct bpf_empty_prog_array {
1763 struct bpf_prog_array hdr;
1764 struct bpf_prog *null_prog;
1765};
1766
1767/* to avoid allocating empty bpf_prog_array for cgroups that
1768 * don't have bpf program attached use one global 'bpf_empty_prog_array'
1769 * It will not be modified the caller of bpf_prog_array_alloc()
1770 * (since caller requested prog_cnt == 0)
1771 * that pointer should be 'freed' by bpf_prog_array_free()
1772 */
1773extern struct bpf_empty_prog_array bpf_empty_prog_array;
1774
1775struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1776void bpf_prog_array_free(struct bpf_prog_array *progs);
1777/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1778void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1779int bpf_prog_array_length(struct bpf_prog_array *progs);
1780bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1781int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1782 __u32 __user *prog_ids, u32 cnt);
1783
1784void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1785 struct bpf_prog *old_prog);
1786int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1787int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1788 struct bpf_prog *prog);
1789int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1790 u32 *prog_ids, u32 request_cnt,
1791 u32 *prog_cnt);
1792int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1793 struct bpf_prog *exclude_prog,
1794 struct bpf_prog *include_prog,
1795 u64 bpf_cookie,
1796 struct bpf_prog_array **new_array);
1797
1798struct bpf_run_ctx {};
1799
1800struct bpf_cg_run_ctx {
1801 struct bpf_run_ctx run_ctx;
1802 const struct bpf_prog_array_item *prog_item;
1803 int retval;
1804};
1805
1806struct bpf_trace_run_ctx {
1807 struct bpf_run_ctx run_ctx;
1808 u64 bpf_cookie;
1809};
1810
1811struct bpf_tramp_run_ctx {
1812 struct bpf_run_ctx run_ctx;
1813 u64 bpf_cookie;
1814 struct bpf_run_ctx *saved_run_ctx;
1815};
1816
1817static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1818{
1819 struct bpf_run_ctx *old_ctx = NULL;
1820
1821#ifdef CONFIG_BPF_SYSCALL
1822 old_ctx = current->bpf_ctx;
1823 current->bpf_ctx = new_ctx;
1824#endif
1825 return old_ctx;
1826}
1827
1828static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1829{
1830#ifdef CONFIG_BPF_SYSCALL
1831 current->bpf_ctx = old_ctx;
1832#endif
1833}
1834
1835/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1836#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
1837/* BPF program asks to set CN on the packet. */
1838#define BPF_RET_SET_CN (1 << 0)
1839
1840typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1841
1842static __always_inline u32
1843bpf_prog_run_array(const struct bpf_prog_array *array,
1844 const void *ctx, bpf_prog_run_fn run_prog)
1845{
1846 const struct bpf_prog_array_item *item;
1847 const struct bpf_prog *prog;
1848 struct bpf_run_ctx *old_run_ctx;
1849 struct bpf_trace_run_ctx run_ctx;
1850 u32 ret = 1;
1851
1852 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1853
1854 if (unlikely(!array))
1855 return ret;
1856
1857 migrate_disable();
1858 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1859 item = &array->items[0];
1860 while ((prog = READ_ONCE(item->prog))) {
1861 run_ctx.bpf_cookie = item->bpf_cookie;
1862 ret &= run_prog(prog, ctx);
1863 item++;
1864 }
1865 bpf_reset_run_ctx(old_run_ctx);
1866 migrate_enable();
1867 return ret;
1868}
1869
1870/* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1871 *
1872 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1873 * overall. As a result, we must use the bpf_prog_array_free_sleepable
1874 * in order to use the tasks_trace rcu grace period.
1875 *
1876 * When a non-sleepable program is inside the array, we take the rcu read
1877 * section and disable preemption for that program alone, so it can access
1878 * rcu-protected dynamically sized maps.
1879 */
1880static __always_inline u32
1881bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu,
1882 const void *ctx, bpf_prog_run_fn run_prog)
1883{
1884 const struct bpf_prog_array_item *item;
1885 const struct bpf_prog *prog;
1886 const struct bpf_prog_array *array;
1887 struct bpf_run_ctx *old_run_ctx;
1888 struct bpf_trace_run_ctx run_ctx;
1889 u32 ret = 1;
1890
1891 might_fault();
1892
1893 rcu_read_lock_trace();
1894 migrate_disable();
1895
1896 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
1897 if (unlikely(!array))
1898 goto out;
1899 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1900 item = &array->items[0];
1901 while ((prog = READ_ONCE(item->prog))) {
1902 if (!prog->aux->sleepable)
1903 rcu_read_lock();
1904
1905 run_ctx.bpf_cookie = item->bpf_cookie;
1906 ret &= run_prog(prog, ctx);
1907 item++;
1908
1909 if (!prog->aux->sleepable)
1910 rcu_read_unlock();
1911 }
1912 bpf_reset_run_ctx(old_run_ctx);
1913out:
1914 migrate_enable();
1915 rcu_read_unlock_trace();
1916 return ret;
1917}
1918
1919#ifdef CONFIG_BPF_SYSCALL
1920DECLARE_PER_CPU(int, bpf_prog_active);
1921extern struct mutex bpf_stats_enabled_mutex;
1922
1923/*
1924 * Block execution of BPF programs attached to instrumentation (perf,
1925 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
1926 * these events can happen inside a region which holds a map bucket lock
1927 * and can deadlock on it.
1928 */
1929static inline void bpf_disable_instrumentation(void)
1930{
1931 migrate_disable();
1932 this_cpu_inc(bpf_prog_active);
1933}
1934
1935static inline void bpf_enable_instrumentation(void)
1936{
1937 this_cpu_dec(bpf_prog_active);
1938 migrate_enable();
1939}
1940
1941extern const struct file_operations bpf_map_fops;
1942extern const struct file_operations bpf_prog_fops;
1943extern const struct file_operations bpf_iter_fops;
1944
1945#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
1946 extern const struct bpf_prog_ops _name ## _prog_ops; \
1947 extern const struct bpf_verifier_ops _name ## _verifier_ops;
1948#define BPF_MAP_TYPE(_id, _ops) \
1949 extern const struct bpf_map_ops _ops;
1950#define BPF_LINK_TYPE(_id, _name)
1951#include <linux/bpf_types.h>
1952#undef BPF_PROG_TYPE
1953#undef BPF_MAP_TYPE
1954#undef BPF_LINK_TYPE
1955
1956extern const struct bpf_prog_ops bpf_offload_prog_ops;
1957extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
1958extern const struct bpf_verifier_ops xdp_analyzer_ops;
1959
1960struct bpf_prog *bpf_prog_get(u32 ufd);
1961struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
1962 bool attach_drv);
1963void bpf_prog_add(struct bpf_prog *prog, int i);
1964void bpf_prog_sub(struct bpf_prog *prog, int i);
1965void bpf_prog_inc(struct bpf_prog *prog);
1966struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
1967void bpf_prog_put(struct bpf_prog *prog);
1968
1969void bpf_prog_free_id(struct bpf_prog *prog);
1970void bpf_map_free_id(struct bpf_map *map);
1971
1972struct btf_field *btf_record_find(const struct btf_record *rec,
1973 u32 offset, u32 field_mask);
1974void btf_record_free(struct btf_record *rec);
1975void bpf_map_free_record(struct bpf_map *map);
1976struct btf_record *btf_record_dup(const struct btf_record *rec);
1977bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
1978void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
1979void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
1980
1981struct bpf_map *bpf_map_get(u32 ufd);
1982struct bpf_map *bpf_map_get_with_uref(u32 ufd);
1983struct bpf_map *__bpf_map_get(struct fd f);
1984void bpf_map_inc(struct bpf_map *map);
1985void bpf_map_inc_with_uref(struct bpf_map *map);
1986struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
1987struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
1988void bpf_map_put_with_uref(struct bpf_map *map);
1989void bpf_map_put(struct bpf_map *map);
1990void *bpf_map_area_alloc(u64 size, int numa_node);
1991void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
1992void bpf_map_area_free(void *base);
1993bool bpf_map_write_active(const struct bpf_map *map);
1994void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
1995int generic_map_lookup_batch(struct bpf_map *map,
1996 const union bpf_attr *attr,
1997 union bpf_attr __user *uattr);
1998int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
1999 const union bpf_attr *attr,
2000 union bpf_attr __user *uattr);
2001int generic_map_delete_batch(struct bpf_map *map,
2002 const union bpf_attr *attr,
2003 union bpf_attr __user *uattr);
2004struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2005struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2006
2007#ifdef CONFIG_MEMCG_KMEM
2008void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2009 int node);
2010void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2011void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2012 gfp_t flags);
2013void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2014 size_t align, gfp_t flags);
2015#else
2016static inline void *
2017bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2018 int node)
2019{
2020 return kmalloc_node(size, flags, node);
2021}
2022
2023static inline void *
2024bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2025{
2026 return kzalloc(size, flags);
2027}
2028
2029static inline void *
2030bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2031{
2032 return kvcalloc(n, size, flags);
2033}
2034
2035static inline void __percpu *
2036bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2037 gfp_t flags)
2038{
2039 return __alloc_percpu_gfp(size, align, flags);
2040}
2041#endif
2042
2043extern int sysctl_unprivileged_bpf_disabled;
2044
2045static inline bool bpf_allow_ptr_leaks(void)
2046{
2047 return perfmon_capable();
2048}
2049
2050static inline bool bpf_allow_uninit_stack(void)
2051{
2052 return perfmon_capable();
2053}
2054
2055static inline bool bpf_bypass_spec_v1(void)
2056{
2057 return perfmon_capable();
2058}
2059
2060static inline bool bpf_bypass_spec_v4(void)
2061{
2062 return perfmon_capable();
2063}
2064
2065int bpf_map_new_fd(struct bpf_map *map, int flags);
2066int bpf_prog_new_fd(struct bpf_prog *prog);
2067
2068void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2069 const struct bpf_link_ops *ops, struct bpf_prog *prog);
2070int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2071int bpf_link_settle(struct bpf_link_primer *primer);
2072void bpf_link_cleanup(struct bpf_link_primer *primer);
2073void bpf_link_inc(struct bpf_link *link);
2074void bpf_link_put(struct bpf_link *link);
2075int bpf_link_new_fd(struct bpf_link *link);
2076struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd);
2077struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2078struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2079
2080int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2081int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2082
2083#define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2084#define DEFINE_BPF_ITER_FUNC(target, args...) \
2085 extern int bpf_iter_ ## target(args); \
2086 int __init bpf_iter_ ## target(args) { return 0; }
2087
2088/*
2089 * The task type of iterators.
2090 *
2091 * For BPF task iterators, they can be parameterized with various
2092 * parameters to visit only some of tasks.
2093 *
2094 * BPF_TASK_ITER_ALL (default)
2095 * Iterate over resources of every task.
2096 *
2097 * BPF_TASK_ITER_TID
2098 * Iterate over resources of a task/tid.
2099 *
2100 * BPF_TASK_ITER_TGID
2101 * Iterate over resources of every task of a process / task group.
2102 */
2103enum bpf_iter_task_type {
2104 BPF_TASK_ITER_ALL = 0,
2105 BPF_TASK_ITER_TID,
2106 BPF_TASK_ITER_TGID,
2107};
2108
2109struct bpf_iter_aux_info {
2110 /* for map_elem iter */
2111 struct bpf_map *map;
2112
2113 /* for cgroup iter */
2114 struct {
2115 struct cgroup *start; /* starting cgroup */
2116 enum bpf_cgroup_iter_order order;
2117 } cgroup;
2118 struct {
2119 enum bpf_iter_task_type type;
2120 u32 pid;
2121 } task;
2122};
2123
2124typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2125 union bpf_iter_link_info *linfo,
2126 struct bpf_iter_aux_info *aux);
2127typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2128typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2129 struct seq_file *seq);
2130typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2131 struct bpf_link_info *info);
2132typedef const struct bpf_func_proto *
2133(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2134 const struct bpf_prog *prog);
2135
2136enum bpf_iter_feature {
2137 BPF_ITER_RESCHED = BIT(0),
2138};
2139
2140#define BPF_ITER_CTX_ARG_MAX 2
2141struct bpf_iter_reg {
2142 const char *target;
2143 bpf_iter_attach_target_t attach_target;
2144 bpf_iter_detach_target_t detach_target;
2145 bpf_iter_show_fdinfo_t show_fdinfo;
2146 bpf_iter_fill_link_info_t fill_link_info;
2147 bpf_iter_get_func_proto_t get_func_proto;
2148 u32 ctx_arg_info_size;
2149 u32 feature;
2150 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2151 const struct bpf_iter_seq_info *seq_info;
2152};
2153
2154struct bpf_iter_meta {
2155 __bpf_md_ptr(struct seq_file *, seq);
2156 u64 session_id;
2157 u64 seq_num;
2158};
2159
2160struct bpf_iter__bpf_map_elem {
2161 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2162 __bpf_md_ptr(struct bpf_map *, map);
2163 __bpf_md_ptr(void *, key);
2164 __bpf_md_ptr(void *, value);
2165};
2166
2167int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2168void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2169bool bpf_iter_prog_supported(struct bpf_prog *prog);
2170const struct bpf_func_proto *
2171bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2172int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2173int bpf_iter_new_fd(struct bpf_link *link);
2174bool bpf_link_is_iter(struct bpf_link *link);
2175struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2176int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2177void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2178 struct seq_file *seq);
2179int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2180 struct bpf_link_info *info);
2181
2182int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2183 struct bpf_func_state *caller,
2184 struct bpf_func_state *callee);
2185
2186int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2187int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2188int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2189 u64 flags);
2190int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2191 u64 flags);
2192
2193int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2194
2195int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2196 void *key, void *value, u64 map_flags);
2197int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2198int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2199 void *key, void *value, u64 map_flags);
2200int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2201
2202int bpf_get_file_flag(int flags);
2203int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2204 size_t actual_size);
2205
2206/* verify correctness of eBPF program */
2207int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2208
2209#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2210void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2211#endif
2212
2213struct btf *bpf_get_btf_vmlinux(void);
2214
2215/* Map specifics */
2216struct xdp_frame;
2217struct sk_buff;
2218struct bpf_dtab_netdev;
2219struct bpf_cpu_map_entry;
2220
2221void __dev_flush(void);
2222int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2223 struct net_device *dev_rx);
2224int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2225 struct net_device *dev_rx);
2226int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2227 struct bpf_map *map, bool exclude_ingress);
2228int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2229 struct bpf_prog *xdp_prog);
2230int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2231 struct bpf_prog *xdp_prog, struct bpf_map *map,
2232 bool exclude_ingress);
2233
2234void __cpu_map_flush(void);
2235int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2236 struct net_device *dev_rx);
2237int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2238 struct sk_buff *skb);
2239
2240/* Return map's numa specified by userspace */
2241static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2242{
2243 return (attr->map_flags & BPF_F_NUMA_NODE) ?
2244 attr->numa_node : NUMA_NO_NODE;
2245}
2246
2247struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2248int array_map_alloc_check(union bpf_attr *attr);
2249
2250int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2251 union bpf_attr __user *uattr);
2252int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2253 union bpf_attr __user *uattr);
2254int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2255 const union bpf_attr *kattr,
2256 union bpf_attr __user *uattr);
2257int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2258 const union bpf_attr *kattr,
2259 union bpf_attr __user *uattr);
2260int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2261 const union bpf_attr *kattr,
2262 union bpf_attr __user *uattr);
2263int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2264 const union bpf_attr *kattr,
2265 union bpf_attr __user *uattr);
2266int bpf_prog_test_run_nf(struct bpf_prog *prog,
2267 const union bpf_attr *kattr,
2268 union bpf_attr __user *uattr);
2269bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2270 const struct bpf_prog *prog,
2271 struct bpf_insn_access_aux *info);
2272
2273static inline bool bpf_tracing_ctx_access(int off, int size,
2274 enum bpf_access_type type)
2275{
2276 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2277 return false;
2278 if (type != BPF_READ)
2279 return false;
2280 if (off % size != 0)
2281 return false;
2282 return true;
2283}
2284
2285static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2286 enum bpf_access_type type,
2287 const struct bpf_prog *prog,
2288 struct bpf_insn_access_aux *info)
2289{
2290 if (!bpf_tracing_ctx_access(off, size, type))
2291 return false;
2292 return btf_ctx_access(off, size, type, prog, info);
2293}
2294
2295int btf_struct_access(struct bpf_verifier_log *log,
2296 const struct bpf_reg_state *reg,
2297 int off, int size, enum bpf_access_type atype,
2298 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2299bool btf_struct_ids_match(struct bpf_verifier_log *log,
2300 const struct btf *btf, u32 id, int off,
2301 const struct btf *need_btf, u32 need_type_id,
2302 bool strict);
2303
2304int btf_distill_func_proto(struct bpf_verifier_log *log,
2305 struct btf *btf,
2306 const struct btf_type *func_proto,
2307 const char *func_name,
2308 struct btf_func_model *m);
2309
2310struct bpf_reg_state;
2311int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2312 struct bpf_reg_state *regs);
2313int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2314 struct bpf_reg_state *regs);
2315int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2316 struct bpf_reg_state *reg);
2317int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2318 struct btf *btf, const struct btf_type *t);
2319
2320struct bpf_prog *bpf_prog_by_id(u32 id);
2321struct bpf_link *bpf_link_by_id(u32 id);
2322
2323const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2324void bpf_task_storage_free(struct task_struct *task);
2325void bpf_cgrp_storage_free(struct cgroup *cgroup);
2326bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2327const struct btf_func_model *
2328bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2329 const struct bpf_insn *insn);
2330int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2331 u16 btf_fd_idx, u8 **func_addr);
2332
2333struct bpf_core_ctx {
2334 struct bpf_verifier_log *log;
2335 const struct btf *btf;
2336};
2337
2338bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2339 const struct bpf_reg_state *reg,
2340 const char *field_name, u32 btf_id, const char *suffix);
2341
2342bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2343 const struct btf *reg_btf, u32 reg_id,
2344 const struct btf *arg_btf, u32 arg_id);
2345
2346int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2347 int relo_idx, void *insn);
2348
2349static inline bool unprivileged_ebpf_enabled(void)
2350{
2351 return !sysctl_unprivileged_bpf_disabled;
2352}
2353
2354/* Not all bpf prog type has the bpf_ctx.
2355 * For the bpf prog type that has initialized the bpf_ctx,
2356 * this function can be used to decide if a kernel function
2357 * is called by a bpf program.
2358 */
2359static inline bool has_current_bpf_ctx(void)
2360{
2361 return !!current->bpf_ctx;
2362}
2363
2364void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2365
2366void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2367 enum bpf_dynptr_type type, u32 offset, u32 size);
2368void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2369void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2370#else /* !CONFIG_BPF_SYSCALL */
2371static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2372{
2373 return ERR_PTR(-EOPNOTSUPP);
2374}
2375
2376static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2377 enum bpf_prog_type type,
2378 bool attach_drv)
2379{
2380 return ERR_PTR(-EOPNOTSUPP);
2381}
2382
2383static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2384{
2385}
2386
2387static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2388{
2389}
2390
2391static inline void bpf_prog_put(struct bpf_prog *prog)
2392{
2393}
2394
2395static inline void bpf_prog_inc(struct bpf_prog *prog)
2396{
2397}
2398
2399static inline struct bpf_prog *__must_check
2400bpf_prog_inc_not_zero(struct bpf_prog *prog)
2401{
2402 return ERR_PTR(-EOPNOTSUPP);
2403}
2404
2405static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2406 const struct bpf_link_ops *ops,
2407 struct bpf_prog *prog)
2408{
2409}
2410
2411static inline int bpf_link_prime(struct bpf_link *link,
2412 struct bpf_link_primer *primer)
2413{
2414 return -EOPNOTSUPP;
2415}
2416
2417static inline int bpf_link_settle(struct bpf_link_primer *primer)
2418{
2419 return -EOPNOTSUPP;
2420}
2421
2422static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2423{
2424}
2425
2426static inline void bpf_link_inc(struct bpf_link *link)
2427{
2428}
2429
2430static inline void bpf_link_put(struct bpf_link *link)
2431{
2432}
2433
2434static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2435{
2436 return -EOPNOTSUPP;
2437}
2438
2439static inline void __dev_flush(void)
2440{
2441}
2442
2443struct xdp_frame;
2444struct bpf_dtab_netdev;
2445struct bpf_cpu_map_entry;
2446
2447static inline
2448int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2449 struct net_device *dev_rx)
2450{
2451 return 0;
2452}
2453
2454static inline
2455int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2456 struct net_device *dev_rx)
2457{
2458 return 0;
2459}
2460
2461static inline
2462int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2463 struct bpf_map *map, bool exclude_ingress)
2464{
2465 return 0;
2466}
2467
2468struct sk_buff;
2469
2470static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2471 struct sk_buff *skb,
2472 struct bpf_prog *xdp_prog)
2473{
2474 return 0;
2475}
2476
2477static inline
2478int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2479 struct bpf_prog *xdp_prog, struct bpf_map *map,
2480 bool exclude_ingress)
2481{
2482 return 0;
2483}
2484
2485static inline void __cpu_map_flush(void)
2486{
2487}
2488
2489static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2490 struct xdp_frame *xdpf,
2491 struct net_device *dev_rx)
2492{
2493 return 0;
2494}
2495
2496static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2497 struct sk_buff *skb)
2498{
2499 return -EOPNOTSUPP;
2500}
2501
2502static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2503 enum bpf_prog_type type)
2504{
2505 return ERR_PTR(-EOPNOTSUPP);
2506}
2507
2508static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2509 const union bpf_attr *kattr,
2510 union bpf_attr __user *uattr)
2511{
2512 return -ENOTSUPP;
2513}
2514
2515static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2516 const union bpf_attr *kattr,
2517 union bpf_attr __user *uattr)
2518{
2519 return -ENOTSUPP;
2520}
2521
2522static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2523 const union bpf_attr *kattr,
2524 union bpf_attr __user *uattr)
2525{
2526 return -ENOTSUPP;
2527}
2528
2529static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2530 const union bpf_attr *kattr,
2531 union bpf_attr __user *uattr)
2532{
2533 return -ENOTSUPP;
2534}
2535
2536static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2537 const union bpf_attr *kattr,
2538 union bpf_attr __user *uattr)
2539{
2540 return -ENOTSUPP;
2541}
2542
2543static inline void bpf_map_put(struct bpf_map *map)
2544{
2545}
2546
2547static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2548{
2549 return ERR_PTR(-ENOTSUPP);
2550}
2551
2552static inline int btf_struct_access(struct bpf_verifier_log *log,
2553 const struct bpf_reg_state *reg,
2554 int off, int size, enum bpf_access_type atype,
2555 u32 *next_btf_id, enum bpf_type_flag *flag,
2556 const char **field_name)
2557{
2558 return -EACCES;
2559}
2560
2561static inline const struct bpf_func_proto *
2562bpf_base_func_proto(enum bpf_func_id func_id)
2563{
2564 return NULL;
2565}
2566
2567static inline void bpf_task_storage_free(struct task_struct *task)
2568{
2569}
2570
2571static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2572{
2573 return false;
2574}
2575
2576static inline const struct btf_func_model *
2577bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2578 const struct bpf_insn *insn)
2579{
2580 return NULL;
2581}
2582
2583static inline int
2584bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2585 u16 btf_fd_idx, u8 **func_addr)
2586{
2587 return -ENOTSUPP;
2588}
2589
2590static inline bool unprivileged_ebpf_enabled(void)
2591{
2592 return false;
2593}
2594
2595static inline bool has_current_bpf_ctx(void)
2596{
2597 return false;
2598}
2599
2600static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2601{
2602}
2603
2604static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2605{
2606}
2607
2608static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2609 enum bpf_dynptr_type type, u32 offset, u32 size)
2610{
2611}
2612
2613static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2614{
2615}
2616
2617static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2618{
2619}
2620#endif /* CONFIG_BPF_SYSCALL */
2621
2622void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2623 struct btf_mod_pair *used_btfs, u32 len);
2624
2625static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2626 enum bpf_prog_type type)
2627{
2628 return bpf_prog_get_type_dev(ufd, type, false);
2629}
2630
2631void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2632 struct bpf_map **used_maps, u32 len);
2633
2634bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2635
2636int bpf_prog_offload_compile(struct bpf_prog *prog);
2637void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2638int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2639 struct bpf_prog *prog);
2640
2641int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2642
2643int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2644int bpf_map_offload_update_elem(struct bpf_map *map,
2645 void *key, void *value, u64 flags);
2646int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2647int bpf_map_offload_get_next_key(struct bpf_map *map,
2648 void *key, void *next_key);
2649
2650bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2651
2652struct bpf_offload_dev *
2653bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2654void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2655void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2656int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2657 struct net_device *netdev);
2658void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2659 struct net_device *netdev);
2660bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2661
2662void unpriv_ebpf_notify(int new_state);
2663
2664#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2665int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2666 struct bpf_prog_aux *prog_aux);
2667void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2668int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2669int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2670void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2671
2672static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2673{
2674 return aux->dev_bound;
2675}
2676
2677static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2678{
2679 return aux->offload_requested;
2680}
2681
2682bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2683
2684static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2685{
2686 return unlikely(map->ops == &bpf_map_offload_ops);
2687}
2688
2689struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2690void bpf_map_offload_map_free(struct bpf_map *map);
2691u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2692int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2693 const union bpf_attr *kattr,
2694 union bpf_attr __user *uattr);
2695
2696int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2697int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2698int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2699int sock_map_bpf_prog_query(const union bpf_attr *attr,
2700 union bpf_attr __user *uattr);
2701
2702void sock_map_unhash(struct sock *sk);
2703void sock_map_destroy(struct sock *sk);
2704void sock_map_close(struct sock *sk, long timeout);
2705#else
2706static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2707 struct bpf_prog_aux *prog_aux)
2708{
2709 return -EOPNOTSUPP;
2710}
2711
2712static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
2713 u32 func_id)
2714{
2715 return NULL;
2716}
2717
2718static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
2719 union bpf_attr *attr)
2720{
2721 return -EOPNOTSUPP;
2722}
2723
2724static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
2725 struct bpf_prog *old_prog)
2726{
2727 return -EOPNOTSUPP;
2728}
2729
2730static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
2731{
2732}
2733
2734static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2735{
2736 return false;
2737}
2738
2739static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
2740{
2741 return false;
2742}
2743
2744static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
2745{
2746 return false;
2747}
2748
2749static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2750{
2751 return false;
2752}
2753
2754static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2755{
2756 return ERR_PTR(-EOPNOTSUPP);
2757}
2758
2759static inline void bpf_map_offload_map_free(struct bpf_map *map)
2760{
2761}
2762
2763static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
2764{
2765 return 0;
2766}
2767
2768static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2769 const union bpf_attr *kattr,
2770 union bpf_attr __user *uattr)
2771{
2772 return -ENOTSUPP;
2773}
2774
2775#ifdef CONFIG_BPF_SYSCALL
2776static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2777 struct bpf_prog *prog)
2778{
2779 return -EINVAL;
2780}
2781
2782static inline int sock_map_prog_detach(const union bpf_attr *attr,
2783 enum bpf_prog_type ptype)
2784{
2785 return -EOPNOTSUPP;
2786}
2787
2788static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2789 u64 flags)
2790{
2791 return -EOPNOTSUPP;
2792}
2793
2794static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2795 union bpf_attr __user *uattr)
2796{
2797 return -EINVAL;
2798}
2799#endif /* CONFIG_BPF_SYSCALL */
2800#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2801
2802#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2803void bpf_sk_reuseport_detach(struct sock *sk);
2804int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2805 void *value);
2806int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2807 void *value, u64 map_flags);
2808#else
2809static inline void bpf_sk_reuseport_detach(struct sock *sk)
2810{
2811}
2812
2813#ifdef CONFIG_BPF_SYSCALL
2814static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2815 void *key, void *value)
2816{
2817 return -EOPNOTSUPP;
2818}
2819
2820static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2821 void *key, void *value,
2822 u64 map_flags)
2823{
2824 return -EOPNOTSUPP;
2825}
2826#endif /* CONFIG_BPF_SYSCALL */
2827#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2828
2829/* verifier prototypes for helper functions called from eBPF programs */
2830extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2831extern const struct bpf_func_proto bpf_map_update_elem_proto;
2832extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2833extern const struct bpf_func_proto bpf_map_push_elem_proto;
2834extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2835extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2836extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2837
2838extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2839extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2840extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2841extern const struct bpf_func_proto bpf_tail_call_proto;
2842extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
2843extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
2844extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
2845extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
2846extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
2847extern const struct bpf_func_proto bpf_get_current_comm_proto;
2848extern const struct bpf_func_proto bpf_get_stackid_proto;
2849extern const struct bpf_func_proto bpf_get_stack_proto;
2850extern const struct bpf_func_proto bpf_get_task_stack_proto;
2851extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
2852extern const struct bpf_func_proto bpf_get_stack_proto_pe;
2853extern const struct bpf_func_proto bpf_sock_map_update_proto;
2854extern const struct bpf_func_proto bpf_sock_hash_update_proto;
2855extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
2856extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
2857extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
2858extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
2859extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
2860extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
2861extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
2862extern const struct bpf_func_proto bpf_spin_lock_proto;
2863extern const struct bpf_func_proto bpf_spin_unlock_proto;
2864extern const struct bpf_func_proto bpf_get_local_storage_proto;
2865extern const struct bpf_func_proto bpf_strtol_proto;
2866extern const struct bpf_func_proto bpf_strtoul_proto;
2867extern const struct bpf_func_proto bpf_tcp_sock_proto;
2868extern const struct bpf_func_proto bpf_jiffies64_proto;
2869extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
2870extern const struct bpf_func_proto bpf_event_output_data_proto;
2871extern const struct bpf_func_proto bpf_ringbuf_output_proto;
2872extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
2873extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
2874extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
2875extern const struct bpf_func_proto bpf_ringbuf_query_proto;
2876extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
2877extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
2878extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
2879extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
2880extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
2881extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
2882extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
2883extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
2884extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
2885extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
2886extern const struct bpf_func_proto bpf_copy_from_user_proto;
2887extern const struct bpf_func_proto bpf_snprintf_btf_proto;
2888extern const struct bpf_func_proto bpf_snprintf_proto;
2889extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
2890extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
2891extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
2892extern const struct bpf_func_proto bpf_sock_from_file_proto;
2893extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
2894extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
2895extern const struct bpf_func_proto bpf_task_storage_get_proto;
2896extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
2897extern const struct bpf_func_proto bpf_task_storage_delete_proto;
2898extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
2899extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
2900extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
2901extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
2902extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
2903extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
2904extern const struct bpf_func_proto bpf_find_vma_proto;
2905extern const struct bpf_func_proto bpf_loop_proto;
2906extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
2907extern const struct bpf_func_proto bpf_set_retval_proto;
2908extern const struct bpf_func_proto bpf_get_retval_proto;
2909extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
2910extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
2911extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
2912
2913const struct bpf_func_proto *tracing_prog_func_proto(
2914 enum bpf_func_id func_id, const struct bpf_prog *prog);
2915
2916/* Shared helpers among cBPF and eBPF. */
2917void bpf_user_rnd_init_once(void);
2918u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
2919u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
2920
2921#if defined(CONFIG_NET)
2922bool bpf_sock_common_is_valid_access(int off, int size,
2923 enum bpf_access_type type,
2924 struct bpf_insn_access_aux *info);
2925bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2926 struct bpf_insn_access_aux *info);
2927u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
2928 const struct bpf_insn *si,
2929 struct bpf_insn *insn_buf,
2930 struct bpf_prog *prog,
2931 u32 *target_size);
2932int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
2933 struct bpf_dynptr_kern *ptr);
2934#else
2935static inline bool bpf_sock_common_is_valid_access(int off, int size,
2936 enum bpf_access_type type,
2937 struct bpf_insn_access_aux *info)
2938{
2939 return false;
2940}
2941static inline bool bpf_sock_is_valid_access(int off, int size,
2942 enum bpf_access_type type,
2943 struct bpf_insn_access_aux *info)
2944{
2945 return false;
2946}
2947static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
2948 const struct bpf_insn *si,
2949 struct bpf_insn *insn_buf,
2950 struct bpf_prog *prog,
2951 u32 *target_size)
2952{
2953 return 0;
2954}
2955static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
2956 struct bpf_dynptr_kern *ptr)
2957{
2958 return -EOPNOTSUPP;
2959}
2960#endif
2961
2962#ifdef CONFIG_INET
2963struct sk_reuseport_kern {
2964 struct sk_buff *skb;
2965 struct sock *sk;
2966 struct sock *selected_sk;
2967 struct sock *migrating_sk;
2968 void *data_end;
2969 u32 hash;
2970 u32 reuseport_id;
2971 bool bind_inany;
2972};
2973bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2974 struct bpf_insn_access_aux *info);
2975
2976u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
2977 const struct bpf_insn *si,
2978 struct bpf_insn *insn_buf,
2979 struct bpf_prog *prog,
2980 u32 *target_size);
2981
2982bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2983 struct bpf_insn_access_aux *info);
2984
2985u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
2986 const struct bpf_insn *si,
2987 struct bpf_insn *insn_buf,
2988 struct bpf_prog *prog,
2989 u32 *target_size);
2990#else
2991static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
2992 enum bpf_access_type type,
2993 struct bpf_insn_access_aux *info)
2994{
2995 return false;
2996}
2997
2998static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
2999 const struct bpf_insn *si,
3000 struct bpf_insn *insn_buf,
3001 struct bpf_prog *prog,
3002 u32 *target_size)
3003{
3004 return 0;
3005}
3006static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3007 enum bpf_access_type type,
3008 struct bpf_insn_access_aux *info)
3009{
3010 return false;
3011}
3012
3013static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3014 const struct bpf_insn *si,
3015 struct bpf_insn *insn_buf,
3016 struct bpf_prog *prog,
3017 u32 *target_size)
3018{
3019 return 0;
3020}
3021#endif /* CONFIG_INET */
3022
3023enum bpf_text_poke_type {
3024 BPF_MOD_CALL,
3025 BPF_MOD_JUMP,
3026};
3027
3028int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3029 void *addr1, void *addr2);
3030
3031void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3032int bpf_arch_text_invalidate(void *dst, size_t len);
3033
3034struct btf_id_set;
3035bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3036
3037#define MAX_BPRINTF_VARARGS 12
3038#define MAX_BPRINTF_BUF 1024
3039
3040struct bpf_bprintf_data {
3041 u32 *bin_args;
3042 char *buf;
3043 bool get_bin_args;
3044 bool get_buf;
3045};
3046
3047int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3048 u32 num_args, struct bpf_bprintf_data *data);
3049void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3050
3051#ifdef CONFIG_BPF_LSM
3052void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3053void bpf_cgroup_atype_put(int cgroup_atype);
3054#else
3055static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3056static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3057#endif /* CONFIG_BPF_LSM */
3058
3059struct key;
3060
3061#ifdef CONFIG_KEYS
3062struct bpf_key {
3063 struct key *key;
3064 bool has_ref;
3065};
3066#endif /* CONFIG_KEYS */
3067
3068static inline bool type_is_alloc(u32 type)
3069{
3070 return type & MEM_ALLOC;
3071}
3072
3073static inline gfp_t bpf_memcg_flags(gfp_t flags)
3074{
3075 if (memcg_bpf_enabled())
3076 return flags | __GFP_ACCOUNT;
3077 return flags;
3078}
3079
3080#endif /* _LINUX_BPF_H */